Search

Selected option

Search Results

SearchMCU Physical Security , find 54 items
  • Sort by
  • Most recent
  • Popularity
Product  Application  Webinar  Watch time - 1:8:14
While connected devices have been everywhere and keep increasing the quantity, protecting the IoT applications is still challenging. During this one-hour webinar, you will learn how to select IoT Security microcontrollers to create connected products that do not just be operated remotely but also guarantee IoT services with security. • Gain an understanding of state-of-the-art IoT reference architectures from microcontrollers, wireless modules, middleware, IoT Cloud, and engagement across the user life cycle. • Know what IoT design features will create a wow user experience across the entire product life cycle. • Learn about the typical network-connected challenges and how to solve them from an end-to-end point of view. • Discover an efficient way to engage with users with practical examples and ask questions. • You may have a chance to win free M235x IoT Security Series development boards and a discount code for purchasing. Speakers: Robert Ling, Senior Technology manager at Nuvoton Vanitha Ramaswami, IoT Partner Solutions Architect at AWS Agenda: • IoT Security and IoT Security Standards • Security Features of NuMicro IoT Security MCUs - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC buy now: https://direct.nuvoton.com/ contact us: SalesSupport@nuvoton.com #Product #Application #Product #Webinar #General #en
Product  Application  Webinar  Watch time - 1:14:18
Debriefing of M2354 enhanced MCU security features for Smart Meter applications. You will learn the infrastructure solution, AMI 2.0 smart meter, benefitting from the IoT security microcontroller. The brand new NuMicro M2354 IoT Security microcontroller series inherits the security features of the M2351 that have been Arm PSA Certified™ Level 1, Level 2, and PSA Functional API Certified, M2354 Series endows the microcontrollers used by network-connected devices with the physical level (chip-level) security protection function. It ensures the software and hardware integration system products developed can meet information and communication security requirements for the international mainstream standards. It can also simplify the implementation of regulations-compliant products that require security certification. Simultaneously, it satisfies the development and design requirements of the device itself that requires a low-power operation. - Agenda: • Nuvoton business at a glance • Nuvoton microcontroller ecosystem • A brief introduction to international mainstream IoT security standards • NuMicro M2354 IoT security series • Smart meter solution • Multi-OS and multi-cloud support for IoT node devices • Conclusion - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC buy now: https://direct.nuvoton.com/ contact us: SalesSupport@nuvoton.com #Product #Application #Webinar #General #en
Watch time - 2:41
NuMicro® M031BT BLE 5.0 低功耗藍牙微控制器系列,以 Arm® Cortex®-M0 為核心,工作頻率高達 48 MHz,內建最高 128 KB Flash 和 16 KB SRAM,提供 BLE 5.0 和 2.4 GHz 雙模功能。相較於傳統集成簡單周邊的 BLE SoC,NuMicro® M031BT 系列內建豐富周邊與優異類比控制功能,實現一顆微控制器取代 BLE SoC 加控制晶片的方案,不僅大幅縮小 PCB 尺寸,QFN48封裝面積僅有 5mm x 5mm,也降低射頻佈局困難度,加上新唐參考設計方案與範例代碼,使得低功耗藍芽的應用開發變得相當容易。 NuMicro® M031BT 系列針對射頻應用提供高達 +8 dBm 的射頻發射功率、-94 dBm 的良好接收靈敏度、1 Mb/s 或 2 Mb/s 的傳輸速度,並且能在 2.4GHz 干擾嚴重的環境提供突出的抗噪表現,提升通訊距離和可靠性,滿足智慧家庭、消費電子以及工業物聯網等應用場景的需求。 NuMicro® M031BT 系列運作於 1.8V 至 3.6 V 工作電壓,內建 32 位硬體乘法器/除法器、高達 5 通道 PDMA、16 通道 12 位2 MSPS 高採樣率的 ADC 可運行在 1.8V 低電壓,提供精確且快速地效能表現,12 路 96 MHz PWM 可快速響應和精準的控制外部裝置。此外,M031BT 亦提供了豐富的周邊,例如 1 組 24 MHz SPI/I2S、3 組 6 MHz UART 並可支援單線式傳輸、2 組 I2C、1 組高彈性通用串行控制接口 (USCI) 可設為 UART, I2C 或 SPI。 NuMicro® M031BT 系列為了保護開發者的智慧財產權,內嵌一個額外的安全保護 Flash 區塊 (SPROM, Security Protection ROM),提供一個獨立且安全加密執行區域以保護關鍵程式代碼。記憶體鎖定功能 (Flash lock bits) 設計提供韌體防止外界存取或寫入保護。每一顆M031BT 具有一個 96 位元晶片唯一序號 (Unique Identification, UID) 及一個 128 位元唯一客戶序號 (Unique Customer Identification, UCID),大幅提升產品的保密與代碼安全性。 NuMicro® M031BT series: An low-power BLE 5.0 and 2.4GHz dual-mode microcontroller series by Arm® Cortex®-M0 core operating up to 48 MHz, with up to 128 KB Flash and 16 KB SRAM. In addition to the BLE 5.0 and 2.4GHz RF functions, the NuMicro® M031BT series built-in rich peripherals and analog control functions realize wireless connectivity. The 5mm x 5mm QFN48 package greatly reduces the PCB size and reduces RF layout difficulty. Furthermore, Nuvoton's reference design and rich sample code make the application development for low-power microcontroller with BLE/2.4G RF easier. The NuMicro® M031BT series provides up to +8 dBm RF transmit power, a good receiving sensitivity of -94 dBm, 1 Mb/s, or 2 Mb/s transmission speed RF applications, and outstanding anti-noise performance in 2.4GHz interference environments to ensure communication distance and reliability. With these, the M031BT series are expected to meet the needs of application scenarios such as industrial Internet of Things (IIoT), smart home, consumer electronics, etc. The NuMicro® M031BT series operates from 1.8V to 3.6V. It features a built-in 32-bit hardware divider, up to 5-channel PDMA, a 16-channel 12-bit 2 MSPS high sampling rate ADC that can run down to 1.8V low voltage, and 12-channel PWM running up to 96 MHz that can quickly respond and accurately control external devices. Besides, the M031BT also provides many peripherals such as one set of 24 MHz SPI/I2S, three sets of 6 MHz UART supporting single-wire transmission, two sets of I2C, and one set of highly flexible universal serial control interface (USCI) that can be configured as UART, I2C or SPI. To protect the intellectual property rights, the NuMicro® M031BT series is embedded with an additional security protection Flash block (Security Protection ROM, SPROM) to provide an independent and secure encrypted execution area to protect critical program code. Flash lock bits are designed to provide firmware to prevent external access or write protection. There is a 96-bit unique chip identification (Unique Identification, UID) and a 128-bit unique customer identification (UCID) on each M031BT, which significantly improves product confidentiality and code security. Nuvoton provides complete development tools, such as the NuMaker-M031BT evaluation board, software development kits, and sample codes, as well as free downloadable Keil MDK to speed up the end-product evaluation and development cycle. - 更多產品資訊,請至新唐科技網站 https://bit.ly/3hVdcmC 購買管道:https://direct.nuvoton.com/tw 聯絡我們:SalesSupport@nuvoton.com
Product  Learning  Watch time - 2:43
Hello! Everyone! I am Nuvoton FAE Tim. Today, I will show you ML56 Capacitive Touch Key Technology. First introduce the Capacitive Touch Key Fundamentals. The capacitance of the sensor without a finger touch is called as “parasitic capacitance”, CP. Parasitic capacitance results from the electric field between the sensor (including the sensor pad and traces) and other conductors in the system such as the ground planes, traces, any metal in the product’s chassis or enclosure, etc. The capacitance between the sensor pad and the finger is CF. The total capacitance CT of the sensor is the sum of CP and CF. Next, we will explain the ML56 Capacitive Touch Key Sensing Method. ML56 implements two switching capacitor banks for injecting charges to CP (or CT) and CR. CR is the parasitic capacitance of reference channel. After touch key calibration, CP and CR are balanced with CB and CCB (comparator output is “low”). Touch the sensing touch key which makes CT = CP + CF Now the negative input terminal voltage of the comparator is lower than positive side and comparator output is “high”. ML56 touch key controller will increase CCB to CCB’ to balance CT and CR again (comparator output is “low”). A finger touch can be detected by checking the difference of CCB and CCB’. By comparing the CCB’ shift level from CCB, the steady state to a predetermined threshold, the algorithm can determine whether the touch key is in ON (Touch) or OFF (No Touch) state. That's all for today's video, thank you everyone! If you have any questions, please contact us. - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/low-power-8051-series/ Contact us: SalesSupport@nuvoton.comon.com #Product #Learning #Basic #en
Training  Tool  Learning  Watch time - 2:21
Hello everyone! I am Chris, the Field Application Engineer from Nuvoton Technology. Today, I will introduce how to run a simple sample code on NuMicro M251/M252 series microcontroller. First, we connect the M251/M252 NuMaker development Board to the computer. Then click the M251/M252 BSP folder, click the Sample Code folder, template folder, Keil folder, and finally open the Template project file. What we are going to do is running a simple GPIO Toggle LED Sample Code. Introduce the main program briefly. First, set GPIO PB14 to Output Mode. After writing a small loop, set PB14 to reverse. Finally, set CLK_SysTickDelay to 300,000 microseconds (uSec). Before Rebuild, we must add the GPIO Source Code to the Library, find the corresponding Source Code and load it, and press Rebuild after it is complete. After the Rebuild, press Load and program the Code into the IC. When programing is over, press the reset button on the development board to confirm whether the LED lights are flashing on the board. That’s all for the tutorial of running sample code. Thank you for watching it. If you want to know more information, please feel free to contact us. #Tool #Training #Learning #Intermediate #en - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/numaker-m251sd Contact us: SalesSupport@nuvoton.com
Product  Application  Webinar  Watch time - 59:3
Developing IoT devices can be a painful process. In this webinar, you will learn how to develop an IoT enabled device quickly and easily with Nuvoton IoT platforms. We will cover IoT device system architectures, security consideration, development kits for different cloud services, and the latest practices to bring your IoT products time to market quickly. Speaker: UE00 Senior Product Marketing Manager, Harry Chen - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://bit.ly/3bk0AD8 Contact us: SalesSupport@nuvoton.com #Product #Application #Webinar #General #en
Training  Tool  Learning  Watch time - 8:37
NuMaker-IoT-M487 (5) Connect to Pelion Device Management on Mbed OS Hello everyone, I am Morgan, the principal engineer of Nuvoton Technology. Today, I will show you how to connect to Pelion Device Management with Mbed OS on NuMaker-IoT-M487 development board. Because the demonstration needs to store certificate, a MicroSD card is required. Open Chrome browser, enter the URL https://cloud.mbed.com/quick-start If you didn’t use Pelion Device Management before, you need to activate your Mbed account to access Pelion. Click the “Activate your free access”. Then log in your Mbed account. Click “Activate Pelion Device Management account“… Select the “Start the Connect Tutorial” Then scroll down to select NuMaker-IoT-M487 (WiFi) --After selected, scroll down and click “Get started”-- If you have completed previous tutorial, the NuMaker-IoT-M487 board has been selected in your Mbed account. Please click the “2.2” to import the Pelion Connect Tutorial into your Online Compiler. It shows the import dialog box, please click Import. Wait for a moment while importing the sample code. Click “mbed-os-example-pelion” project name, Then click “Pelion Device Management” on menu bar, select “Manage Connect Certificates” in pull-down menu to create a Pelion certificate. You need to provide API key. You can create a new one here. Log in your mbed account. Accept Then click New API key Assign an API Key name Click Close After created an API key, back to online compiler, Then click Manage Connect Certificate again. API Key automatically filled here. Click OK. Click “Create”, then assign a name for the certificate. Click OK. Click the certificate just created to select it, then click OK. The online compiler will automatically update source code with the selected certificate. Click “Pelion Device Management” on menu bar again, select “Apply Update Certificate”. An “Update Certificates” dialog box appears. Create it. Click Download Private Key and save it. Please make sure that NuMaker-IoT-M487 board already selected in the upper right corner. If not, please refer Nuvoton IoT Tutorial series “Get Started with Mbed OS” which has a detailed description of how to add a board. In order to use Wi-Fi, you have to configure SSID and password to match your Wi-Fi access point setting. In the mbed_app.json file, the default Wi-Fi security set to WPA and WPA2 in “nsapi.default-wifi-security” field. Please modify the field “nsapi.default-wifi-ssid” to your Wi-Fi SSID Then modify “nsapi.default-wifi-password” to your Wi-Fi password. Click on “Compile” to build it. Have to wait for a while. Then you can see the last message is “Success!” at the bottom of this page. The browser will download the binary firmware file directly after a successful compiling. It will be saved in a default download folder or the folder based on your browser setting. In Chrome, you can click download file and select “Show in folder”. Then we connect the NuMaker-IoT-M487 USB port to your computer and make sure the onboard LED lights up. Let’s back to the download folder where you can see the binary firmware file (mbed-os-example-pelion.NUMAKER_IOT_M487.bin). Drag and drop the file to NuMicro MCU drive. You will see the copying progress dialog box. Please find the virtual COM port assigned for NuMaker-IoT-M487 in Device Manager. In the tutorial, the “Nu-Link Virtual Com Port” is COMx. Then use your terminal tool. Here we use Putty. Open the COMx port with 115200 baud rate, 8 bits, 1 stop bit, none parity, and no flow control settings. Then “Open” it. Press Reset button on board to run again. You can see the connection messages printed on terminal. It shows the board’s IP address obtained from the Wi-Fi access point, and the Endpoint Name. Then you can see the device resource in Pelion Device Management Portal. Log in Pelion Portal with the same Mbed account. Click Device directory. Find the device ID which should be registered state. Click the Device ID, it shows the Device details. Click RESOURCES, find the resource 3200/0/5501. Click the resource. Now, you can press keys in terminal to increase the counter. Or the counter automatically increase 1 by one second. The demo code also updates the counter to Pelion. You will see the value change in the graph. That’s all for this tutorial. Thank you for watching. Welcome to subscribe to our channel. If you want to know more information, please contact us at SalesSupport@nuvoton.com - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/numaker-iot-m487 Contact us: SalesSupport@nuvoton.com #tool #training #learning #intermediate #en
Training  Tool  Learning  Watch time - 5:29
Hello everyone, I am Morgan, the principal engineer of Nuvoton Technology. Today, I will show you how to use Wi-Fi with Mbed OS on NuMaker-IoT-M487 development board. First, open Chrome browser, enter the URL https://ide.mbed.com Please make sure that NuMaker-IoT-M487 board already selected in the upper right corner after you log in. If not, please refer Nuvoton IoT Tutorial series “Get Started with Mbed OS” which has a detailed description of how to add a board. Click the “New” on the upper left, a “Create new program” window will be displayed. You can see that the Platform has been set to NuMaker-IoT-M487. In the Template field, select the "NuMaker WiFi TCP Example" for this tutorial. Then click OK. Now you can see that the sample code has loaded on the page. Click on “mbed_app.json” to open it. In order to use Wi-Fi, you have to configure SSID and password to match your Wi-Fi access point setting. In the mbed_app.json file, the default Wi-Fi security set to WPA and WPA2 in “nsapi.default-wifi-security” field. Please modify the field “nsapi.default-wifi-ssid” to your Wi-Fi SSID Then modify “nsapi.default-wifi-password” to your Wi-Fi password. Click on “Compile” to build it. It is in compiling, please wait a moment. Then you can see the last message is “Success!” at the bottom of this page. The browser will download the binary firmware file directly after a successful compiling. It will be saved in a default download folder or the folder based on your browser setting. In Chrome, you can click download file and select “Show in folder”. Then we connect the NuMaker-IoT-M487 USB port to your computer and make sure the onboard LED lights up. Let’s back to the download folder where you can see the binary firmware file (NuMaker-mbed-wifi-tcp.NUMAKER_IOT_M487.bin). Drag and drop the file to NuMicro MCU drive. You will see the copying progress dialog box. Please find the virtual COM port assigned for NuMaker-IoT-M487 in Device Manager. In the demonstration, the “Nu-Link Virtual Com Port” is COMx. Then use your terminal tool. Here we use Putty. Open the COMx port with 115200 baud rate, 8 bits, 1 stop bit, none parity, and no flow control settings. Then “Open” it. Press Reset button on board to run again. You can see the connection messages printed on terminal. It shows the board’s IP address obtained from the Wi-Fi access point, sends a TCP/HTTP connection to server, and the result of return. That’s all for this tutorial. Thank you for watching. Welcome to subscribe to our channel. If you want to know more information, please contact us at SalesSupport@nuvoton.com - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/numaker-iot-m487 Contact us: SalesSupport@nuvoton.com #Tool #Training #Learning #Intermediate #en
Watch time - 4:33
Tubular motors can be easily seen everywhere such as curtains, rolling doors, and automatic clothes racks. As the concept of home automation is spreading widely, those products become more and more popular. Nuvoton provides completed platform, ML51 series for different needs of tubular motors. It’s based on 1-T 8051 core, running up to 24 MHz core speed. It provides 12-bit ADC detecting motor current and up to 2 sets of analog comparators for overcurrent and overvoltage protection. Much higher safety features for the tubular motors are realized. 105-degree high-temperature resistance makes it suitable for control box exposed outdoors. As for the multiple noises and inference environment, ML51 series provides strong immunity like 8 kV ESD and 4.4 kV EFT. Hello, everyone, welcome back to Nuvoton’s YouTube channel, I am the product manager of microcontrollers. Today I am going to show you our successful story, home automation with the Tubular motor, which adopts our latest industrial microcontroller, ML51 series. Today the topic we are going to talk about is the home automation and motorization system for curtain and doors. These tubular motors can be easily seen around everywhere, like curtain, rolling door, garage door, and automatic clothes rake…and so on. As the concept of home automation is spreading widely, those products are more and more popular. For example, the automatic curtain is popularly applied in hotel, new building, hospital and new store, why is this product become more and more popular? Lazy economy becomes a new type of consumption demand, people pursue a time-saving and labor-saving product, imagined if you have an emitter to control curtain automatically, and smart adjustment with the brightness of outdoor. And the new product hit the shelf is automatic clothes rake, now this new product is not only a hanger but also integrated with UV light disinfection, heating function and fan controller. About the garage door, now integrated more security function, such as overcurrent protection for device longevity, infrared system can be added to increase anti-pinch security. Nuvoton provides completed platform, ML51 series for different needs of tubular motors. It’s based on 1-T 8051 core, running at 24MHz core speed, provides 12-bit ADC can detect motor current, up to 2 sets of analog comparator to have overcurrent and over voltage protection so can provide much higher safety feature for the tubular motors. ML51 series also provide from 1.8V to 5V power supply, so whether the AC power or the battery supplied can easily be adapts to different power source. This series has up to 105-degree high temperature resistance, which also can be very suitable for control box explore at outdoors. As for the multiple noise and inference environment, ML51 series provides strong immunity like 8 kV ESD and 4.4 kV EFT. Nuvoton provides an easy-to-use development environment, which includes NuMaker board, Nu-Link, BSP and sample codes, those tools can help you shorten your development cycles. On the backside of each development board, you can find the website which the comprehensive information is available. Nuvoton has some successful case in China and Europe. We hope to have more new opportunities after releasing this video. Thanks for watching, if you like this video please give it a thumbs up, if you have any question can also leave a message at bottom, we will have personal to reply the question soon. The ML51 NuMaker boards are now available at Nuvoton official eStore direct.nuvoton.com. Thank you again for staying with us. Hope to see you soon. Bye~ For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC buy now: NuMaker-ML51PC/ http://direct.nuvoton.com/numaker-ml51pc NuTiny-ML51EB9AE/ https://direct.nuvoton.com/tw/nutiny-ml51eb9ae contact us: SalesSupport@nuvoton.com
Watch time - 4:59
Secure Smart Metering Communication Reference Design Hi everybody, today we are going to introduce a reference design of Smart-Metering communication card based on NuMicro M2351 Series microcontroller. You can find useful security features based on the Arm Cortex-M23 CPU core with Nuvoton’s in-house technology integration. The auto-metering is an infrastructure for automatic, remotely, wire or wireless meter data reading. It’s highly possible to be intervened if there is no security mechanism. That is a very typical IoT security issue in the IoT era. In many countries, there are a lot of Auto-Metering Infrastructure (AMI) projects being undertaken by main electricity power companies worldwide. Most projects start from upgrading the communication modem cards as the first step rather than retiring the meters. The modem card can play as a gateway to monitor the incorrect device operation and data transmission security. Issues of modem card security are covering: First, a limited performance due to crypto computation efficiency Second, speed limitation due to interface choice The third, cost burden due to extra hardware modules for different communication protocols Nuvoton’s reference design of Secure Smart Meter Communication is an end-to-end security solution for AMI. With the collaboration with SPI-Korea, the solution incorporates a lot of advantages such as TrustZone security for firmware, a range of interfaces for device communication, secure over-the-air firmware update, and remote management. With the complete hardware specification of M2351, a security software company, SPI-Korea, can easily implement their secure AMI solution for modem card which connects meters and cloud servers. M2351 also contributes the crypto acceleration during the cryptographic computing in order to save CPU time for different communication protocol modules by its powerful hardware functionalities during message transmission outside of a microcontroller unit. SPI-Korea has developed a range of Armv8-M TrustZone based technologies. Her expertise covers Boot Manager, Key Manager, and Device Manager, which is very useful for microcontroller security and certainly shows the stability of a microcontroller device. Also, they are certified by Korea Electricity Company. We hope this successful experience can be further adopted in other areas worldwide because it’s a secure, accurate and environmentally safe solution for AMI. This slide is a picture for SPI-Korea AMI modem card design. NuMicro Family microcontrollers can be utilized for designs of auto-metering infrastructure devices. We start from AMI modem card and we are confident to support meters of any next-generation of AMI. We now integrate M23-based microcontroller with M4-based or Arm9-based microcontroller as a proposal for next-generation modem card of Korea AMI and we hope to provide high-performing cost-effective solution for all AMI devices in the future. - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC contact us: SalesSupport@nuvoton.com
Product  Learning  Watch time - 7:17
.Why FIDO Authentication .Security Device for Personal Identity .USB Dongles Usage .M2351 USB FIDO Key SDK .Support Capacitive Fingerprint Sensors .M2351 USB FIDO Key with TrustZone .Values Brought by M2351 .Collaborative Software Development .An Open Platform with Content Protection .Leading Market Position for Software Protection For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC #Product #Learning #Basic #en 0:00 簡介 0:28 Why FIDO Authentication 1:19 Security Device for Personal Identity 2:01 USB Dongles Usage 2:29 M2351 USB FIDO Key SDK 3:36 M2351 USB FIDO Key with TrustZone 4:07 Values Brought by M2351 4:55 Collaborative Software Development (2) 6:10 An Open Platform with Content Protection
Product  Learning  Watch time - 4:26
NUC980 Series Microprocessor is a solution designed for industrial control and industrial IoT applications, such as gateway, serial server, remote control unit, plug and play data collector and IoT development platforms. NUC980 series embedded with an ARM9 core supports Linux, FreeRTOS and Non-OS Board Supporting Package. By using MCP technology, NUC980 series supports up to 128 MB DRAM. Not only can NUC980 simplify your hardware design, but help your product time to market. A less-layered PCB and a reduced PCB size can lower the BOM cost. NUC980 supports 2 High Speed and 6 Full Speed USB Host controllers that can be used for a replaceable module due to the plug and play feature of USB interface. Other interfaces include 10 UART, 4 I2C, 3 SPI, 4 CAN BUS, and 2 Camera sensor interface. Designers can use these interfaces to collect or convert the data needed. NUC980 features AES, RSA, SHA and ECC hardware crypto accelerator for CPU offloading. This crypto engine can be applied at data transfer, identification, and key exchange.Nuvoton also provides IoT protocols like HTTP, HTTPS, MQTT, CoAP, openSSL to help customers accomplish a security IoT platform easily. Nuvoton NUC980 adopts MCP technology supporting up to 128 MB DRAM. Developers can design a secure IoT product fast and convenient with the help of the hardware crypto engine. Next, I will introduce related development platforms. NuMaker NUC980 Serial Server Board is suitable for applications like serial server or serial to Ethernet gateways. This develop board includes 2 10/100 Ethernet ports, 8 UART ports, 1 MicroSD Slot, 2 USB ports and 16MB SPI NOR Flash. NuMaker NUC980 USB developer board is suitable for data collection applications. This board includes 1 10/100 Ethernet port, 8 USB ports, 5 UART ports, and 128 MB NAND Flash. NuMaker NUC980 Industrial IOT developer board is suitable for IOT applications. This board includes 1 10/100 Ethernet Port, 2 USB ports, microphone input, earphone output, 128 MB SPI NAND Flash and an Arduino Compatible interface. - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC buy now: http://direct.nuvoton.com/arm9-mpus/ contact us: SalesSupport@nuvoton.com #Product #Learning #Basic #en
This website uses cookies to ensure you get the best experience on our website. Learn more
OK