Search

Selected option

Search Results

SearchTouch Key Shapes , find 25 items
  • Sort by
  • Most recent
  • Popularity
Product  Learning  Watch time - 3:12
Hello! Everyone! I am Nuvoton FAE Tim. Today, I will show you ML56 Capacitive Touch Key PCB Design. First introduce the Touch Sensor Channel Selection. Touch Sensor Channels. ML56 series supports up to 14 touch sensor channels. #Reference Sensor It is recommended to select one reference sensor at touch sensor channel TK7 or TK14. Maximize the distance between the reference sensor and other signals to minimize crosstalk. #Shield Electrodes Put the shield electrode around the touch sensor to get better signal quality and waterproof capability. Recommended to select shield channel at touch TK0, TK4 or clock out pins (P3.2 / P4.6 / P5.7). Next, we will explain the PCB Layout Rules. #Touch Key Shapes Recommended to have a 10 x 10 mm sensor area for good touch key sensitivity. Larger touch sensor electrode work better for thicker cover. #Reference Sensor Recommended to assign the reference key at touch channel TK7 or TK14. Maximize the distance to other signals to minimize crosstalk. Round shape electrode with 1 mm diameter size is enough for normal case. #Ground Plane It is recommended that the traces of the touch key have a good hatched ground plane surround. It is recommended to have hatched ground plane under the touch keys. Hatched ground plane with 6 mil trace and 50 mil grid. #Shield Electrode Put touch keys with shield electrode around which provides the same phase signal around touch keys. Hatched shield electrode with 6 mil trace and 50 mil grid. Shield electrode area needs to keep filled around the touch key in greater than 10 mm width. Finally, explain the Touch Key Cover Thickness. As the cover thickness increases, the touch key sensitivities will decrease. Larger touch key size work better for thicker cover. Recommended touch key diameter size with difference acrylic cover thickness as shown in the table. That's all for today's video, thank you everyone! If you have any questions, please contact us. - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/low-power-8051-series/ Contact us: SalesSupport@nuvoton.comon.com #Product #Learning #Basic #en
Product  Learning  Watch time - 6:27
Nuvoton provides a development tool for capacitive Touch Sensors. The best feature of the calibration tool is that it uses the GUI to configure and tune your design automatically. Besides, the tool can export the configuration parameters and import them to another. Not only can greatly shorten the development time of developers, but also shorten the time for mass production. This video will introduce how to use this development tool and the definition of parameter. - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/low-power-8051-series/ Contact us: SalesSupport@nuvoton.comon.com #Product #Learning #Basic #en
Product  Learning  Watch time - 6:6
Nuvoton announced the latest ML56 microcontroller, built-in capacitive touch sensing, LCD driver highly integrated low power platform. And provides capacitive touch sensor and LCD driver library. The solution is delivered through the API guide, which includes details on each function call, parameters and returns. Finally, this video provides an overview on how to develop a custom touch key and LCD application from the BSP release. - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/low-power-8051-series/ Contact us: SalesSupport@nuvoton.comon.com #Product #Learning #Basic #en
Product  Learning  Watch time - 9:3
Nuvoton announced the latest ML51/ML54/ML56 microcontroller, built-in capacitive touch sensing, LCD driver highly integrated low power platform. Based on 1T 8051 core, running up to 24MHz, the power consumption in normal run mode is 80uA/MHz, lower than 1uA in power down mode the power consumption while power down with LCD on is lower than 20uA. 0:00 intro 0:37 NuMicro 8051 Microcontroller 1:38 ML51/ML54/ML56 Product Portfolio 2:18 ML51/ML54/ML56 Features 3:27 Broad Scalability 4:05 Provide 4 Different Power Modes 4:44 LCD Driver Feature 5:52 Touch Key Features 7:05 Target Applications #Product #Learning #Basic #en #ML51 #ML54 #ML56 #8051 #LowPower #LCD-Driver #HumanMachineInterface #HMI #TouchKey-IC #HomeAppliance #EmbeddedWorld2022 - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/low-power-8051-series/ Contact us: SalesSupport@nuvoton.com
Training  Tool  Learning  Watch time - 5:53
Hello everyone, I am Morgan, the principal engineer of Nuvoton Technology. Today, I will show you how to connect to AWS IoT service using MbedOS on NuMaker-IoT-M487 development board The sample code is on GitHub, the URL is https://github.com/OpenNuvoton/Mbed-to-AWS-IoT To avoid typos, use keyword “OpenNuvoton” to search on google. Find the Nuvoton on GitHub, and click it On the Nuvoton GitHub page, use AWS as keyword to search the sample code: Mbed-to-AWS-IoT Right click to copy the URL for later use. Then enter the URL https://ide.mbed.com After log in, make sure the NuMaker-IoT-M487 board has selected in the upper right corner. If not, please refer Nuvoton IoT Tutorial series “Get Started with Mbed OS”. There is detailed description of how to add a board. Click the “Import” on the left of menu bar. In the “Import Wizard”, click “Click here” Please paste or key in the sample code URL to “Source URL:”, Select Import as “Program” Click “Import Name”, the project name “Mbed-to-AWS-IoT” will be filled automatically. Then click “Import”. After sample code imported, click “mbed_app.json” to open it. To use Wi-Fi, you have to configure SSID and password to match your Wi-Fi AP setting. In NuMaker_IOT_M487 session of mbed_app.json file, find the “wifi-ssid” to set your SSID. It is at line 44. And then set password to “wifi-password”. It is at line 45. Save it and click “Compile” to build the code. It takes time to compile code, please wait. You need an AWS account to use AWS IoT Core service. To create a thing, a policy, and certificates, then put the certificate to MQTT_server_setting.h file in the sample code. The sample code has included a certificate provided by Nuvoton for test only, so that you can quickly operate this example. If you don’t have an AWS account, it is recommended that you apply for an account and use your certificates in the example to observe the connection status on AWS IoT console page. After completed, “Success” will appear in the compile output window. The browser downloads the binary firmware file directly after a successful compiling. It will be saved in a default download folder. In Chrome, you can click download file and select “Show in folder”. Then we connect the NuMaker-IoT-M487 USB port to your computer. Please find the virtual COM port assigned for NuMaker-IoT-M487 in Device Manager. In the tutorial, the “Nu-Link Virtual Com Port” is COMx. Then use your favorite terminal tool. Here we use Putty. Open the COMx port with 115200 baud rate. And no flow control settings. Then “Open” it. Back to the folder you just download the binary firmware file (Mbed-to-AWS-IoT.NUMAKER_IOT_M487.bin). Drag and drop the file to NuMicro MCU drive. You will see the copying progress dialog box. You can see the messages on terminal. The device has acquired IP address from Wi-Fi AP, then successfully connect to AWS IoT and subscribe a topic. Then press button (SW2) on board to send a message. You can see the message published to server and received a message from server. That’s all for this tutorial. Thank you for watching. Welcome to subscribe to our channel. If you want to get more information, please contact us “SalesSupport@nuvoton.com” - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/numaker-iot-m487 Contact us: SalesSupport@nuvoton.com #tool #training #learning #intermediate #en
Watch time - 3:32
The NAU82011YG is a highly efficient, filter-free, mono Class-D audio amplifier with variable gain, which is capable of driving a 4Ω load with up to 2.9W output power. This device provides chip enable pin with extremely low standby current and fast start-up time of 4ms. The NAU82011YG is ideal for battery driven portable applications. NAU82011YG features 91% efficiency, low quiescent current (i.e. 1.25mA at 3.6V) and superior EMI performance. The audio input of this device can be configured as either single-ended or differential input mode. Target Applications: • Portable Audio Device/Speaker • Portable Navigation Device • Tablet PC Key Features: • Audio Input - Differential / Single-end input - DC PSRR Typ.@95dB - CMRR Typ.@63dB • Audio Output - Powerful Mono Class-D Amplifier - 2.9W (4Ω @ 5V, 10% THD+N) - 2.3W (4Ω @ 5V, 1% THD+N) - Low Output Noise: 20 μVRMS • Advance Feature - Low Current Shutdown Mode - Click-and Pop Suppression - Integrated Image Reject Filter - Integrated feedback resistor of 300 kΩ • Operating Characteristics - voltage range: 2.5 V to 5.5 V - Temperature range: -40°C to 85°C - Low Quiescent Current: 1.2mA@3.6V, 1.7mA@5V • Package - WLCPS-9
Training  Tool  Learning  Watch time - 5:0
Hello everyone, I am Morgan, the principal engineer of Nuvoton Technology. Today, I will show you how to record and play audio with Mbed OS on NuMaker-IoT-M487 development board. Open Chrome browser, and enter the URL https://ide.mbed.com to use the Mbed Online Compiler. After log in, make sure that NuMaker-IoT-M487 board already selected in the upper right corner. If not, please refer Nuvoton IoT Tutorial series “Get Started with Mbed OS” which has a detailed description of how to add a board. Click the “New” on the left of menu bar, a “Create new program” window will be displayed. You can see that the Platform has been set to NuMaker-IoT-M487. In the Template, select the "NuMaker audio playback" for this tutorial. Then click OK. Now you can see that the sample code has loaded on the page. The sample code has three functions: 1. Record 10 seconds sound and save to Micro SD card 2. Play sounds stored in Micro SD card 3. Loopback. Record sound and play it immediately. Click main.cpp to open it. Then scroll down to line 421. You can see the functions calls here. It set to loopback only. Let’s do a little modification. Hit a key on console to start record 10 seconds then play it, and then do loopback. printf("Press a key to start recording 10 seconds..."); getchar(); demo_record(); demo_play(); demo_loopback(); Save it and click “Compile” to build the code. Compilation takes a while, please wait. After the compilation is completed, “Success” will appear in the compile output window. The browser downloads the binary firmware file directly after a successful compiling. It will be saved in a default download folder. In Chrome, you can click download file and select “Show in folder”. Please plug an earphone commonly used for mobile phone in headphone jack on NuMaker-IoT-M487 board. For demonstration, we use a headphone splitter cable to connect a microphone and a speaker. Do not put the microphone and speaker too close to avoid feedback howling. Then connect the USB port to your computer and make sure the onboard LED lights up. Back to the folder you just download the binary firmware file (NuMaker-mbed-AudioPlayback-example.NUMAKER_IOT_M487.bin). Drag and drop the file to NuMicro MCU drive. You will see the copying progress dialog box. Please find the virtual COM port assigned for NuMaker-IoT-M487 in Device Manager. In the demonstration, the “Nu-Link Virtual Com Port” is COMx. Then use your favorite terminal tool. Here we use Putty. Open the COMx port with 9600 baud rate. And no flow control settings. Then “Open” it. Press “Reset” on board to run the firmware again. Press a key on terminal to start record. Speak for about 10 seconds, then your voice will be played. That’s all for this tutorial. Thank you for watching. Welcome to subscribe to our channel. If you want to get more information, please contact us “SalesSupport@nuvoton.com” - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/numaker-iot-m487 Contact us: SalesSupport@nuvoton.com #tool #training #learning #intermediate #en
Training  Tool  Learning  Watch time - 8:37
NuMaker-IoT-M487 (5) Connect to Pelion Device Management on Mbed OS Hello everyone, I am Morgan, the principal engineer of Nuvoton Technology. Today, I will show you how to connect to Pelion Device Management with Mbed OS on NuMaker-IoT-M487 development board. Because the demonstration needs to store certificate, a MicroSD card is required. Open Chrome browser, enter the URL https://cloud.mbed.com/quick-start If you didn’t use Pelion Device Management before, you need to activate your Mbed account to access Pelion. Click the “Activate your free access”. Then log in your Mbed account. Click “Activate Pelion Device Management account“… Select the “Start the Connect Tutorial” Then scroll down to select NuMaker-IoT-M487 (WiFi) --After selected, scroll down and click “Get started”-- If you have completed previous tutorial, the NuMaker-IoT-M487 board has been selected in your Mbed account. Please click the “2.2” to import the Pelion Connect Tutorial into your Online Compiler. It shows the import dialog box, please click Import. Wait for a moment while importing the sample code. Click “mbed-os-example-pelion” project name, Then click “Pelion Device Management” on menu bar, select “Manage Connect Certificates” in pull-down menu to create a Pelion certificate. You need to provide API key. You can create a new one here. Log in your mbed account. Accept Then click New API key Assign an API Key name Click Close After created an API key, back to online compiler, Then click Manage Connect Certificate again. API Key automatically filled here. Click OK. Click “Create”, then assign a name for the certificate. Click OK. Click the certificate just created to select it, then click OK. The online compiler will automatically update source code with the selected certificate. Click “Pelion Device Management” on menu bar again, select “Apply Update Certificate”. An “Update Certificates” dialog box appears. Create it. Click Download Private Key and save it. Please make sure that NuMaker-IoT-M487 board already selected in the upper right corner. If not, please refer Nuvoton IoT Tutorial series “Get Started with Mbed OS” which has a detailed description of how to add a board. In order to use Wi-Fi, you have to configure SSID and password to match your Wi-Fi access point setting. In the mbed_app.json file, the default Wi-Fi security set to WPA and WPA2 in “nsapi.default-wifi-security” field. Please modify the field “nsapi.default-wifi-ssid” to your Wi-Fi SSID Then modify “nsapi.default-wifi-password” to your Wi-Fi password. Click on “Compile” to build it. Have to wait for a while. Then you can see the last message is “Success!” at the bottom of this page. The browser will download the binary firmware file directly after a successful compiling. It will be saved in a default download folder or the folder based on your browser setting. In Chrome, you can click download file and select “Show in folder”. Then we connect the NuMaker-IoT-M487 USB port to your computer and make sure the onboard LED lights up. Let’s back to the download folder where you can see the binary firmware file (mbed-os-example-pelion.NUMAKER_IOT_M487.bin). Drag and drop the file to NuMicro MCU drive. You will see the copying progress dialog box. Please find the virtual COM port assigned for NuMaker-IoT-M487 in Device Manager. In the tutorial, the “Nu-Link Virtual Com Port” is COMx. Then use your terminal tool. Here we use Putty. Open the COMx port with 115200 baud rate, 8 bits, 1 stop bit, none parity, and no flow control settings. Then “Open” it. Press Reset button on board to run again. You can see the connection messages printed on terminal. It shows the board’s IP address obtained from the Wi-Fi access point, and the Endpoint Name. Then you can see the device resource in Pelion Device Management Portal. Log in Pelion Portal with the same Mbed account. Click Device directory. Find the device ID which should be registered state. Click the Device ID, it shows the Device details. Click RESOURCES, find the resource 3200/0/5501. Click the resource. Now, you can press keys in terminal to increase the counter. Or the counter automatically increase 1 by one second. The demo code also updates the counter to Pelion. You will see the value change in the graph. That’s all for this tutorial. Thank you for watching. Welcome to subscribe to our channel. If you want to know more information, please contact us at SalesSupport@nuvoton.com - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC Buy now: https://direct.nuvoton.com/tw/numaker-iot-m487 Contact us: SalesSupport@nuvoton.com #tool #training #learning #intermediate #en
Watch time - 9:40
以新唐 NuMaker NUC980 IIoT 為平台,使用 Linux 進行開發,學習開發各式功能,觀看本片,您將學會在 NuMaker NUC980 IIoT上使用 Ethernet 連接到 AWS IoT 服務。 大家好我是新唐工程師 Miya,今天要為各位介紹,如何使用 NuMaker NUC980 IIoT 開發平台連接 Amazon 的物聯網,以下簡稱 AWS 連結網址 https://aws.amazon.com/ ,登入 AWS 帳號 點擊右上角的 “Sign In to the Console”,進入帳號登入頁面 輸入您的帳號密碼,點擊 “Sign In” 進行登入 登入之後,進到 “AWS 管理控制台” 頁面 在搜尋欄位,輸入 “IoT Core”,會出現 IoT Core 連結,點擊進入 在左邊的欄位選擇 “入門” 頁面 在 “設定裝置” 點擊 “開始使用” ,開始設置 IoT 裝置 選擇連接 AWS IoT連線方式。platform 請選擇 Linux, SDK 請選擇 Python。 點擊 “下一步” 進到下一個頁面。 接下來開始註冊一個 IoT Thing,有三個步驟。 首先命名 IoT Thing,接著按下一步。 這個連線套件不會用到,按取消之後跳到下一步。 接下來2個頁面直接按 “完成” “完成”。 系統會跳回到管理頁面。 點擊左側選單 “管理”  “實物”。可以看到剛剛建立的 my-IoT 出現在 IoT Thing 裡面了。 接下來要對這個新建立的 Thing 做一些設定,直接點擊新建立的 Thing-my-IoT,進入管理頁面。 在左側選單,選擇 “互動” 。 在互動頁面裡可以看到 Thing 的 HTTPS 連結。 複製此 HTTPS,用戶端應用程序需要知道這個連結,才能夠連接到這個 IoT Thing。 接下來下載安全憑證,請在頁面左側選單,點擊 “安全”,進入憑證頁面。 然後點擊 “建立憑證”。 憑證建立完成會產生三個檔案,分別是憑證、公鑰及私鑰。分別點擊 “下載”以下載這三個檔案,NuMaker NUC980 IIoT 開發平台用戶端進行 AWS IoT 連線的時候會用到。 下載完成之後,點擊 “啟用”,使這個安全憑證生效。 接著還需要下載 AWS IoT 的根憑證,點擊 “CA 下載” 連結,以開啟另一個瀏覽頁面。 點 CA Certificates for Service Authentication 連結,系統會跳到 AWS IoT root CA 的下載頁面。 請選擇第一個根憑證,RSA 2048 bit key,按滑鼠右鍵,另存連結,存到檔案 “AmazonRootCA1.pem”。 下載完成之後,回到剛剛的頁面。 接下來,點擊 “連接政策”,進行 policy 設定。 點擊 “建立新政策”以建立一個新的 policy。 先輸入 policy 名稱。 選擇 “進階模式”,直接編輯 policy 內容。 在Effect 敘述輸入 Allow,允許操作。 在 Action 敘述輸入 “I:*”,接受所有的 IoT 命令。 在 Resource 敘述輸入 “*”, 允許取用 resource。 按 “建立” 建立新的 Policy。 在左側選單,重新點擊 “管理”→ “實物”,選擇 my-IoT thing,回到 my-IoT 頁面。 再次點擊 “安全”,然後選擇剛才建立的憑證。 在憑證頁面左側的選單選擇 “政策”。目前 Policies 還是空的。 打開右上角的 “動作”下拉選單,選擇 “連接政策”。 在 Policy 列表裡面,會出現剛才新建立的 Policy。打勾選取,然後按 “連接 “,完成 policy 的附加。 這時候 Policies 頁面就會出現我們所選擇的 Policy 了。到這邊已經建立好了雲端的 IoT Thing。接下來,要在 NuMaker NUC980 IoT 板上建立用戶端 IoT 應用。 請連接網址 tls.mbed.org/download 以下載 mbedTLS library。 點擊連結 mbed TLS 2.16.3(Apache) 進行下載儲存。 接下來要將把下載的 mbedTLS library 複製到 NUC980 Linux 開發環境下;先解壓 mbedTLS library後,用 git 下載 AWS 的 SDK。 git clone https://github.com/aws/aws-iot-device-sdk-embedded-C 下載完成之後,先刪除他在 external lib 目錄下的 mbedTLS 目錄,這是個空目錄。 將先前下載解壓後的 mbedTLS 目錄移動到 external lib 目錄下就可以直接編譯 AWS SDK 的範例了。 進到 AWS SDK 的 samples 目錄下的 Linux 目錄下可以看到 5 個 範例。要使用的範例是最底下這個 subscribe_publish_sample。 進到這個範例的目錄下。 有三個檔案,需要作一些修改。 首先修改 makefile,將 compiler linker 由 gcc,改為 NUC980 Linux toolchain 的 compiler linker。 51. 往底下找到 CRYPTO_LIB_DIR,修改路徑,將 crypto 刪除,這樣 makefile 就完成修改了。 (~00:25) 52. 接著是 header file,修改MQTT HOST 連結路徑,先前我們在 IoT thing 的 “互動” 頁面所複製 的 HTTPS 連結,將它貼到這裡。(~00:46) 53. CLIENT ID 請任意取一個名稱,不要與其他用戶端名稱重複即可。(~00:55) 54. MY THING NAME 要用前面建立的 IoT Thing 的名稱: my-IoT。(~01:02) 55. 底下的 ROOT CA file name,IoT Certificate file name,以及 IoT private key filename。 56. 前面在建立 IoT Thing 安全憑證過程中,有下載了 Root CA 及 IoT 安全憑證幾個檔案,請將 檔案名稱填寫到這裡。 最後是修改 點 C,系統會將範例程式執行檔放到 root file system 的 usr/bin 目錄下,並將憑證檔案放到 usr/certs 目錄下。 這裡請將憑證指定目錄改為 相對路徑的 ../certs。 接著打 make 直接進行編譯。 編譯需要幾分鐘的時間,影片跳過了編譯部分。 接下來,將編譯好的應用程序複製到 rootfs 的 /usr/bin 目錄下。 然後將根憑證及 IoT 安全憑證檔案複製到 rootfs 的 /usr/certs 目錄下。這裡已經事先複製好了。完成後到 BSP Linux 目錄下,編譯 kernel。 將 kernel 上傳到 IoT 開發板上面執行。 下 ifconfig + udhcpc 指令連接網絡。 由於憑證有時效性問題,需要修改系統時間,以免因為憑證過期導致無法連接。 進到 usr/bin 目錄下,執行 AWS用戶端範例程序。 可以看到用戶端已經成功連接 AWS 雲端。這個範例會不斷地發佈並且接收訊息。 - 更多產品資訊,請至新唐科技網站 https://bit.ly/3hVdcmC 購買管道:https://direct.nuvoton.com/tw/numaker-nuc980-iiot 聯絡我們: SalesSupport@nuvoton.com
Watch time - 4:59
Secure Smart Metering Communication Reference Design Hi everybody, today we are going to introduce a reference design of Smart-Metering communication card based on NuMicro M2351 Series microcontroller. You can find useful security features based on the Arm Cortex-M23 CPU core with Nuvoton’s in-house technology integration. The auto-metering is an infrastructure for automatic, remotely, wire or wireless meter data reading. It’s highly possible to be intervened if there is no security mechanism. That is a very typical IoT security issue in the IoT era. In many countries, there are a lot of Auto-Metering Infrastructure (AMI) projects being undertaken by main electricity power companies worldwide. Most projects start from upgrading the communication modem cards as the first step rather than retiring the meters. The modem card can play as a gateway to monitor the incorrect device operation and data transmission security. Issues of modem card security are covering: First, a limited performance due to crypto computation efficiency Second, speed limitation due to interface choice The third, cost burden due to extra hardware modules for different communication protocols Nuvoton’s reference design of Secure Smart Meter Communication is an end-to-end security solution for AMI. With the collaboration with SPI-Korea, the solution incorporates a lot of advantages such as TrustZone security for firmware, a range of interfaces for device communication, secure over-the-air firmware update, and remote management. With the complete hardware specification of M2351, a security software company, SPI-Korea, can easily implement their secure AMI solution for modem card which connects meters and cloud servers. M2351 also contributes the crypto acceleration during the cryptographic computing in order to save CPU time for different communication protocol modules by its powerful hardware functionalities during message transmission outside of a microcontroller unit. SPI-Korea has developed a range of Armv8-M TrustZone based technologies. Her expertise covers Boot Manager, Key Manager, and Device Manager, which is very useful for microcontroller security and certainly shows the stability of a microcontroller device. Also, they are certified by Korea Electricity Company. We hope this successful experience can be further adopted in other areas worldwide because it’s a secure, accurate and environmentally safe solution for AMI. This slide is a picture for SPI-Korea AMI modem card design. NuMicro Family microcontrollers can be utilized for designs of auto-metering infrastructure devices. We start from AMI modem card and we are confident to support meters of any next-generation of AMI. We now integrate M23-based microcontroller with M4-based or Arm9-based microcontroller as a proposal for next-generation modem card of Korea AMI and we hope to provide high-performing cost-effective solution for all AMI devices in the future. - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC contact us: SalesSupport@nuvoton.com
Product  Learning  Watch time - 7:17
.Why FIDO Authentication .Security Device for Personal Identity .USB Dongles Usage .M2351 USB FIDO Key SDK .Support Capacitive Fingerprint Sensors .M2351 USB FIDO Key with TrustZone .Values Brought by M2351 .Collaborative Software Development .An Open Platform with Content Protection .Leading Market Position for Software Protection For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC #Product #Learning #Basic #en 0:00 簡介 0:28 Why FIDO Authentication 1:19 Security Device for Personal Identity 2:01 USB Dongles Usage 2:29 M2351 USB FIDO Key SDK 3:36 M2351 USB FIDO Key with TrustZone 4:07 Values Brought by M2351 4:55 Collaborative Software Development (2) 6:10 An Open Platform with Content Protection
Product  Learning  Watch time - 4:26
NUC980 Series Microprocessor is a solution designed for industrial control and industrial IoT applications, such as gateway, serial server, remote control unit, plug and play data collector and IoT development platforms. NUC980 series embedded with an ARM9 core supports Linux, FreeRTOS and Non-OS Board Supporting Package. By using MCP technology, NUC980 series supports up to 128 MB DRAM. Not only can NUC980 simplify your hardware design, but help your product time to market. A less-layered PCB and a reduced PCB size can lower the BOM cost. NUC980 supports 2 High Speed and 6 Full Speed USB Host controllers that can be used for a replaceable module due to the plug and play feature of USB interface. Other interfaces include 10 UART, 4 I2C, 3 SPI, 4 CAN BUS, and 2 Camera sensor interface. Designers can use these interfaces to collect or convert the data needed. NUC980 features AES, RSA, SHA and ECC hardware crypto accelerator for CPU offloading. This crypto engine can be applied at data transfer, identification, and key exchange.Nuvoton also provides IoT protocols like HTTP, HTTPS, MQTT, CoAP, openSSL to help customers accomplish a security IoT platform easily. Nuvoton NUC980 adopts MCP technology supporting up to 128 MB DRAM. Developers can design a secure IoT product fast and convenient with the help of the hardware crypto engine. Next, I will introduce related development platforms. NuMaker NUC980 Serial Server Board is suitable for applications like serial server or serial to Ethernet gateways. This develop board includes 2 10/100 Ethernet ports, 8 UART ports, 1 MicroSD Slot, 2 USB ports and 16MB SPI NOR Flash. NuMaker NUC980 USB developer board is suitable for data collection applications. This board includes 1 10/100 Ethernet port, 8 USB ports, 5 UART ports, and 128 MB NAND Flash. NuMaker NUC980 Industrial IOT developer board is suitable for IOT applications. This board includes 1 10/100 Ethernet Port, 2 USB ports, microphone input, earphone output, 128 MB SPI NAND Flash and an Arduino Compatible interface. - For more information, please visit Nuvoton Technology Website: https://bit.ly/3hVdcmC buy now: http://direct.nuvoton.com/arm9-mpus/ contact us: SalesSupport@nuvoton.com #Product #Learning #Basic #en
This website uses cookies to ensure you get the best experience on our website. Learn more
OK