
KM101LR03/04/05 Series

Oct 30, 2020 Rev 1.10 (3170502-011KE)

K
M

1
01L

R
0

3
/04

/0
5 S

e
rie

s A
pplication

 N
o

te

8-bit Microcontroller

KM101LR03/04/05 Series
Application Note

for
ReRAM Memory Rewriting

The information described in this document is the exclusive intellectual property of

Nuvoton Technology Corporation Japan and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing document only for reference purposes of
KM101LR03/04/05 Series based system design.

Nuvoton assumes no responsibility for errors or omissions.
All data and specifications are subject to change without notice.

For additional information or question, please contact Nuvoton Technology Corporation Japan.

www.nuvoton.co.jp

3 KM101LR05D ReRAM Memory Rewriting Application Note

About this document

■ Composition of this document

This document describes the software of the ReRAM microcomputer KM101LR05D.
Chapter 1 provides an overview of the software.
Chapter 2 describes the software processing contents.

■ Configuration as a manual
 The description in this manual consists of a Chapter, Text, and Example program. The layout and definition of each part is as
below.

■ List of manuals related to KM101LR05D

 Manuals related to KM101LR05D are shown as below.

 “KM101LR05D/04D/03D/02D LSI manual”

 “KM101LR05D Application Note for Peripheral Circuit Control”

 “KM101LR05D ReRAM Memory Rewriting Application Note” (This document)

4 KM101LR05D ReRAM Memory Rewriting Application Note

Contents

About this document ... 3

Contents .. 4

Chapter1 Overview ... 5

1.1 Purpose of document 5

1.2 Evaluation board block diagram 5

1.3 Software configuration 7

1.3.1 Functions of the microcomputer used by the software 7

1.3.2 Software configuration diagram .. 7

1.3.3 Memory allocation .. 8

1.4 Development environment 9

1.4.1 File structure and function list .. 10

1.4.2 Target setting .. 11

1.4.3 Compiler option ... 12

1.4.4 Development environment ... 13

Chapter 2 Software processing content .. 14

2.1 System layer .. 14

2.1.1 Startup process（Startup.asm） ... 14

2.1.1.1 Interrupt vector settings ... 14

2.1.1.2 Stack pointer setting ... 15

2.1.1.3 RAM initialization .. 15

2.2 Application layer ... 16

2.2.1 main processing (main.c) ... 16

2.3 Driver layer ... 17

2.3.1 Rewrite library (rer_wdat.c) .. 17

Revision history ... 18

5 KM101LR05D ReRAM Memory Rewriting Application Note

Chapter1 Overview

1.1 Purpose of document

 This document describes the sample program that rewrites the ReRAM memory data area built into the
KM101LR05D.

1.2 Evaluation board block diagram

 The composition of the evaluation board is as follows.

Fig 1.1 Overall view of the evaluation board

6 KM101LR05D ReRAM Memory Rewriting Application Note

●Expansion terminal connector layout

Fig 1.2 Expansion terminal connector “CN2”layout

7 KM101LR05D ReRAM Memory Rewriting Application Note

1.3 Software configuration

The software configuration of the sample software is described.

1.3.1 Functions of the microcomputer used by the software

Function By application Interrupt Interrupt

Level

Remarks

Operating clock Built-in high-speed oscillation - - 10MHz±2%

General purpose port For LED lighting - - -

1.3.2 Software configuration diagram

The software configuration consists of three layers: system layer, application layer, and driver layer.

Fig 1.3 Software configuration diagram

System layer Startup

Application layer Main

Driver layer pReRAM_set_data

8 KM101LR05D ReRAM Memory Rewriting Application Note

1.3.3 Memory allocation

The memory layout of the sample program is as follows.
The startup address and interrupt vector address settings are located from 0x4000, and other programs
are located from 0x4900.

Fig 1.4 Memory layout

9 KM101LR05D ReRAM Memory Rewriting Application Note

1.4 Development environment

This section describes how to build a development environment using "Debug Factory Builder".
Download and install "Debug Factory Builder" from the following URL.

 https://b2bsol.panasonic.biz/semi-spt/

Fig 1.5 Debug Factory Builder startup screen

https://b2bsol.panasonic.biz/semi-spt/

10 KM101LR05D ReRAM Memory Rewriting Application Note

1.4.1 File structure and function list

The sample software has the following file / folder structure, and double-clicking ReRAM_Sample.df5 will
start the project.

Fig 1.6 File structure

ReRAM_memwrite_sample_05D
├─prj
│ └─ReRAM_Sample.df5

├─build (store make results)

└─src

├─Start1.asm (Sample program startup assembler)

├─Test1.c (Sample program body (main function))

├─rer_wdat.c (ReRAM data area rewriting library body)

├─rer_type.h (ReRAM rewriting library external declarations file)

├─rer_extn.h (ReRAM rewriting library constant definition file)

└─rer_defs.h (ReRAM rewriting library type declaration file)

11 KM101LR05D ReRAM Memory Rewriting Application Note

1.4.2 Target setting

“Debug (D)” ⇒ Set from the “Target setting(F)”.

“Product type (P)” ： 101LR05D

“Type (T)” ： Select “Starter kit”

 Select "srKM101LR05D.txt" in the src folder in the "Special Register Definition file (E)".

Fig 0.1 Target setting

12 KM101LR05D ReRAM Memory Rewriting Application Note

1.4.3 Compiler option

Make (M) ⇒ Set in the "Compiler option (O)".

When developing software, it is necessary to change "Compiler option (O)", add folders, or add optimization
options, when using the standard library.

Fig 0.2 Compiler option

13 KM101LR05D ReRAM Memory Rewriting Application Note

1.4.4 Development environment

Make (M) ⇒ Set in the "Environment settings (E)".
Set when changing the compiler, outputting the object file, converting the file to HEX format, etc.

Fig 0.3 Environment settings

14 KM101LR05D ReRAM Memory Rewriting Application Note

Chapter 2 Software processing content

2.1 System layer

2.1.1 Startup process（Startup.asm）

 The processing performed in the startup process is as follows.

 ・Interrupt vector settings

 ・Stack pointer setting

 ・RAM initialization
 After the above process is completed, branch to "main".

2.1.1.1 Interrupt vector settings

Reset start
 Processing starts from address 0x4000. (Branch to "Reset" processing.)

_STEXT SECTION ；

 da A(Reset) ；0：reset vector address

Maskable interrupt
Processing according to each interrupt vector is started from each interrupt vector located at addresses 0x4008 to
0x4078. (The function placed in each interrupt is executed.)

 da A(NoIRQ) ；0x4008：IRQ0：Reserved

 da A(NoIRQ) ；0x400c：IRQ1：Reserved

 da A(NoIRQ) ；0x4010：IRQ2：Reserved

 da A(NoIRQ) ；0x4014：IRQ3：Reserved

 da A(NoIRQ) ；0x4018：IRQ4：Reserved

 da A(NoIRQ) ；0x401c：IRQ5：Reserved

 da A(NoIRQ) ；0x4020：IRQ6：Reserved

 da A(NoIRQ) ；0x4024：IRQ7：Reserved

 da A(NoIRQ) ；0x4028：TM0ICR：Reserved

 da A(_vTIM_SysTimIrq) ；0x402c：TM1ICR

 da A(NoIRQ) ；0x4030：TM2ICR：Reserved

 --abridgement--

15 KM101LR05D ReRAM Memory Rewriting Application Note

2.1.1.2 Stack pointer setting

When reset start, the stack pointer is initialized.
Because RAM area of the microcomputer is of 0x0000 ~ 0x0FFF (4KB), and 0x1000 is set in the SP register.

Reset：

movw 0x1000,A0 ；initialization of stack pointer

movw A0,SP ；

2.1.1.3 RAM initialization

Startup.asm initializes the RAM that has not been the setting of the initial value.

；initialization of static variables

movw _BSS,A0 ；set start address of _BSS domain to A0 register

sub D0,D0 ；D0 = 0

clear1：

mov D0,(A0)

addw 0x1,A0

cmpw _BSSEND,A0 ；Is it the last of a RAM domain?

blt clear1 ；if _BSSEND > A0, jump to clear1

；Initialization of static variable with default value

raminit：

movw _ROMDATA,A0

movw _DATA,A1

cmpw _GROMDATA,A0

beq next1

init1： ；ROMDATA(A0) -> DATA(A1)

mov (A0),D0

mov D0,(A1)

addw 0x1,A0

addw 0x1,A1

cmpw _GROMDATA,A0

bne init1

next1：

movw _GROMDATA,A0

movw _GDATA,A1

cmpw _TEXT,A0

beq next2

 (略)

Startup.asm initializes only the RAM for the sections defined by default. If the user defines additional sections, it is

necessary to add initialization processing.

16 KM101LR05D ReRAM Memory Rewriting Application Note

2.2 Application layer

2.2.1 main processing (main.c)

The outline of the "main" function is shown. It is called after the initialization process, and it is completed to
initialize and execute each module.

This sample program executes the processing in the following order.

・First, the sample software writes 0xff to the entire ReRAM data area (0x4100 to 0x48ff) in the main function.

・Then, The sample software writes 0xa5,0x5a, 0x55,0x00 from 0x4100 to 4 bytes.

・After the above write process, the sample software will check if 0xa5,0x5a, 0x55,0x00 are correctly written
from 0x4100 to 0x4102.

・As a result of the above confirmation, if it is written correctly, the sample software will blink the LED-D5
(green LED) mounted on the AM13L-STK2.

・As a result of the above confirmation, if it is not written correctly, the sample software will blink the LED-D4
(orange LED) mounted on AM13L-STK2.

17 KM101LR05D ReRAM Memory Rewriting Application Note

2.3 Driver layer

2.3.1 Rewrite library (rer_wdat.c)

This section describes the library function when rewriting ReRAM.
The sample software uses an internal operating voltage of 1.8V and an operating clock of the built-in high-speed clock
when rewriting ReRAM.

Interface function

・This environment is provided as a sample of KM101LR05D built-in ReRAM rewriting.

When actually using it, it is necessary to change it according to the environment.

・The ReRAM area that can be written by this ReRAM rewrite library API is the data area (0x4100 to 0x48ff).

Rewriting of the code area is not supported.

・When using the ReRAM rewrite library, it uses a 16-byte stack. Therefore, allow 16 bytes for the stack.

Function name ： pReRAM_set_data

Argument ：U32 dst_adrs , U16 src_adrs , U16 length

Return value ：Error code

0 (RC_OK) : If the process is successful

1 (RC_FALSE_ADRS) : If the address and size are

incorrect

3 (RC_FALSE_LIB) : Failure to ReRAM writing

process

※RC_: Constants are defined in rer_extn.h

Function ：Rewriting Re-RAM

This function writes from dst_adrs to the ReRAM data area for the length bytes.

When using this function, specify dst_adrs in the range of 0x4100 to 0x48ff with an
even address, and specify the length with an even number.

Also, specify the address where the data you want to write is stored in src_adrs.

Example：

This example writes 0x55,0xaa, 0xa5,0x5a data to a ReRAM data area of 0x4100
to 4 bytes.

U8 ret, data[4];

data[0] = 0x55; data[1] = 0xaa; data[2] = 0xa5; data[3] = 0x5a;

ret = pReRAM_set_data(0x4100, (U16)&data[0], 4);

if (ret != RC_OK) {

/* In case of error */
:

}

18 KM101LR05D ReRAM Memory Rewriting Application Note

Revision history
Details of revision from Ver.1.0 to Ver.1.1 in this manual is shown below.
According to the details of revision, "Definition" of the table below is classified into seven groups.
Revision concerning descriptions in this Manual:
Writing error correction / Description change / Description addition / Description deletion
Revision concerning specifications:
Specification change / Specification addition / Specification deletion

Page Definition
Details of revision

Ver1.0 Ver1.1

Cover
Description

addition
--- Addition of information

P2
Description

deletion
Deletion of information ---

Last page
Description

addition
--- Addition of Important Notice

Inquiries

If you have questions regarding technical information on this manual, please visit the following URL.

 Nuvoton Technology Corporation Japan

URL: https://www.nuvoton.co.jp/en/contact/

KM101LR05D
ReRAM Memory Rewriting

Application Note

・Microcomputer Home Page

 https://www.nuvoton.co.jp/en/products/

October 30, 2020 1st Edition 1st Printing

Issued by

Nuvoton Technology Corporation Japan

© Nuvoton Technology Corporation Japan 2020

https://www.nuvoton.co.jp/en/contact/
https://www.nuvoton.co.jp/en/products/

KM101LR03/04/05 Series

Oct 30, 2020 Rev 1.10 (3170502-011KE)

K
M

1
01L

R
0

3
/04

/0
5 S

e
rie

s A
pplication

 N
o

te

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment,
any malfunction or failure of which may cause loss of human life, bodily injury or severe
property damage. Such applications are deemed, “Insecure Usage”.

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic
energy control instruments, airplane or spaceship instruments, the control or operation of
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all
types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the
damages and liabilities thus incurred by Nuvoton.

	About this document
	Contents
	Chapter1 Overview
	1.1 Purpose of document
	1.2 Evaluation board block diagram
	1.3 Software configuration
	1.3.1 Functions of the microcomputer used by the software
	1.3.2 Software configuration diagram
	1.3.3 Memory allocation

	1.4 Development environment
	1.4.1 File structure and function list
	1.4.2 Target setting
	1.4.3 Compiler option
	1.4.4 Development environment

	Chapter 2 Software processing content
	2.1 System layer
	2.1.1 Startup process（Startup.asm）
	2.1.1.1 Interrupt vector settings
	2.1.1.2 Stack pointer setting
	2.1.1.3 RAM initialization

	2.2 Application layer
	2.2.1 main processing (main.c)

	2.3 Driver layer
	2.3.1 Rewrite library (rer_wdat.c)

	Revision history

