NUVYOTON KM101LR03/04/05 Series
=

8-bit Microcontroller

KM101LR03/04/05 Series
Application Note
for
ReRAM Memory Rewriting

The information described in this document is the exclusive intellectual property of
Nuvoton Technology Corporation Japan and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing document only for reference purposes of
KM101LR03/04/05 Series based system design.
Nuvoton assumes no responsibility for errors or omissions.
All data and specifications are subject to change without notice.

For additional information or question, please contact Nuvoton Technology Corporation Japan.
www.nuvoton.co.jp

Oct 30, 2020 Rev 1.10 (3170502-011KE)

About this document

B Composition of this document

This document describes the software of the ReRAM microcomputer KM101LR05D.
Chapter 1 provides an overview of the software.

Chapter 2 describes the software processing contents.

B Configuration as a manual

The description in this manual consists of a Chapter, Text, and Example program. The layout and definition of each part is as
below.

(1)Chapter
{ Z)H eader * .Chapter 2 Software processing content
- =
{3)Sub header +2.1 System layer
= 214 Startup process (Startup.asm)
(4)Text e o

_

(5)Example program

Adte + completed, beanch 1o “mais”
2.1.1.1 Interrupt vector seftings
2 staet
Pljccisisg ants B addy (H peha
V

B List of manuals related to KM101LRO5D
Manuals related to KM101LRO5D are shown as below.
e “KM101LRO5D/04D/03D/02D LSI manual”

e “KM101LRO5D Application Note for Peripheral Circuit Control”
e “KM101LR0O5D ReRAM Memory Rewriting Application Note” (This document)

KM101LR05D ReRAM Memory Rewriting Application Note

Contents

ADOUL this OCUMEBNT....ceueiii et e e e e ea e ean 3
(@00 0} 11=] 1 K- 4
(@ oo} (=] o R O V7T V=LY PO 5
1.1 Purpose of document 5
1.2 Evaluation board block diagram............................ o
1.3 Software configuration)/
1.3.1 Functions of the microcomputer used by the software............. 7
1.3.2 Software configuration diagram.ttt i 7
1.3.3 Memory allocation ... e e 8
1.4 Development environment, 9
1.4.1 File structure and function List......... .. 10
1.4.2 Target Setting. ... e e e e e e e e 11
1.4.3 Compiler Option. ... e e e e e e e e e e e e 12
1.4.4 Development enVIFONMENT . ..o vttt ittt e 13
Chapter 2 Software processing Contenteeeeiiiviiiiiiiiiiiiiiiieeeeeeeee e, 14
2.1 System layer. 14
2.1.1 Startup process (StartuUp.aSM)ouiiiiiiiiiei 14
2.1.1.1 Interrupt vector SettingS . ..ot 14
2.1.1.2 Stack POINter SettImng . .ttt e e e e e e 15
2.1.1.3 RAM 1nitializationt e e e e e 15
2.2 Application layer. 16
2.2.1 main processing (MAIN.C). .. ou ittt ettt ettt et 16
2.3 Driver layer 17
2.3.1 Rewrite library (rer_Wdat.C).coinini ittt 17
VI T (o] a W a1 o] VAPPSR 18

KM101LR05D ReRAM Memory Rewriting Application Note 4

Chapterl Overview

1.1 Purpose of document

This document describes the sample program that rewrites the ReRAM memory data area built into the
KM101LRO5D.

1.2 Evaluation board block diagram

The composition of the evaluation board is as follows.

Expansion terminal connector (CN1) USB connector (CN1)

-
= TR

O i WHHD g

sl i o=
! - » B o

LU

frm——

N 70
L KM101LRO5D (IC1) L Green LED (D5)
Expansion terminal connector (CN2) Orange LED (D4)

Fig 1.1 Overall view of the evaluation board

KM101LR05D ReRAM Memory Rewriting Application Note

eExpansion terminal connector layout

CN3 | CN3 | CIN3 (CN3 | CN3 | CN3 | CW3 | CN3 | CN3 | CN3 | CN3 | CN3
15 14 13 12 11 10 9 7] 5 4
CN3 | CN3 | CIN3 CN3 | CN3
15 17 16 3 2
CN3 | CN3 CN3
20 19 1
CN3 | CN3
22 21
CN3 | CN3
4| 23
CHN2 | CN2
26 25
CN2 | CN2
24 | 23
CN2 | CN2
22 21
CN2 | CN2 CN2
20 19 1
CN2 | CN2 | CIN2 CN2 | CN2
18 17 16 3 2
CN2 | CN2 | CIWN2 | CN2 | CMN2 | CN2 | CWN2 | CN2 | CN2 | CN2 | CN2 | CN2
15 14 13 12 11 10 g 7] 5 4

ChH2 [1 YBLUS ChHa [1 A0

CHz2 | 2 YBLUS ChH3 | 2 P11

CH2 | 3 VDD ChH3 | 3 P12

G2 | 4 GHND ChH3 | 4 GHND

CH2 | B VDD CH3 | B P13

CH2 | 6 NRST CH3 | 6 VREFF

G2 | 7 WLGCA ChH3 | 7 P22

CH2 | 8 VG2 ChH3 | 8 SDAZE

CH2 | 8 WVG3 ChH3 | 8 GHND

CH2 [10 GHND ChH3 [10 SCLZE

G2 [11 P77 CHa (11 P25

ChH2 [12 P7d ChH3 (12 FAD1 A

ChH2 [13 P75 ChH3 (13 THD1 &

ChH2 [14) ChH3 [14 P31

CH2 [18 GHND CH3 [18 GHND

CH2 [16 P&? CH3 [16 Paz

CH2 [17 SETOA ChH3 (17 P45

ChH2 (18 SBO0& ChH3 [18 P46

ChH2 [19 SEI0A ChH3 [19 P&0

Gz | 20 P&3 CM3 | 20 P47

CNZ | 21 P&2 CMN3 | 21 P&2

CHz | 22 Pa1 CM3 | 22 P&1

CMz | 23 P&d CM3 | 23 P&4

Gz | 24 P&? CM3 | 24 P&3

G2 | 25 L]

CMZ | 26 P&5

Fig 1.2 Expansion terminal connector “CN2”layout

KM101LR05D ReRAM Memory Rewriting Application Note

1.3 Software configuration

The software configuration of the sample software is described.

1.3.1 Functions of the microcomputer used by the software

Function By application Interrupt Interrupt
Level
Operating clock Built-in high-speed oscillation - - 10MHz*+2%
General purpose port For LED lighting - - -

1.3.2 Software configuration diagram

The software configuration consists of three layers: system layer, application layer, and driver layer.

System layer Startup
Application layer Main
Driver layer pReRAM set_data

Fig 1.3 Software configuration diagram

KM101LR05D ReRAM Memory Rewriting Application Note

1.3.3 Memory al location

The memory layout of the sample program is as follows.
The startup address and interrupt vector address settings are located from 0x4000, and other programs
are located from 0x4900.

3 3 3 e
ZSGBI 0x00000 0 am short addressng area Builtin
00010 RAM
* Data il 4kB
Ox01004
16kB
00300
! 2565‘ ox03F0d Special register area
4 [0x0400(L
1288 Interruptvectortable
Bank0
4 Ox0408
648 Subroutine vectortable
00400
Operation code
48kB
Ox04104 Data
2kB
DxDA49D! Builtin
ROM
64 kB
3
Fy Fy
01000
Operation code/
Tabledata
Ox13FFH
Bank1 64kB
Ox1FFFH]

Fig 1.4 Memory layout

KM101LR05D ReRAM Memory Rewriting Application Note 8

1.4 Development environment

This section describes how to build a development environment using "Debug Factory Builder".
Download and install "Debug Factory Builder" from the following URL.

https://b2bsol.panasonic.biz/semi-spt/

M DebueFactory Builder for MN103S ~ MN1035FL7 Sample [PC = 4000600F 1 [SimTime = 0.00s (Rate = 1:6) 1 [RunTime = 0.04s]

7D WEE® BREQ FRW MIW FHIO SO Y-AD ALTH
OSEB |2 [i 1R | F-| » 1B =EGl #He ADONEIDIDNDODD-BDERIDON (GEE HEECrs=23@
B REEOEACNE@Q@q («= |7 ©
[F0925F - MNI03SFL7 Sanple X| 3BPETS - MNIOISFLT Sanple X [LIAR - MNIOISFLT Sample x
5y b /2ol — WAIN.C:73: TinerOrv Start(TINER W00, Wsinkpp Tnerira): /8 A4 7110 RS W/ 00 : 00000191 (1)
! Sl ® 01 : 40005000 (1079782304)
[} Samplex(C¥usr¥P2T 2 S¥MNIOIS — »_inerlra al 02 : 00000000 (0)
M OB CO3A080004 erdrv_Start . [1.4 03 : 00000000 (0)
& _b =274 C:78: while(eT A0 1 000027FC (10238)
241401 erlraflag),d) Al 000027FC (10238)
@] mainc 4000 e 0,d) a2 3 00000000 (0)
i) srMN103SFLZh €304 bre 40006024 _maint2d + 00000000 (0)
@) startupas a_ 40006018 Jmmirt1B : dooosoor (107o7se4ts)
g clocke Qonogoon ¢ b
i) clockh + 00000000 (
@) rac 0006088 (1
g mh‘ o mane | o starupas | é“
seriale 1 &l 1----
3 lh 1 - 2012/06/04 ¥ 2
mfe““ R A A M PR ——
gﬂ("m: 1 [veid nain(void)
imer. 4 < 5
5[wigt i L= RS .
giﬁ""" H IV b4 -NNIGISFLT Sanple x
@) porth Maindop_Tnit ()2 [(uchar JsTinerIreFles = [800000114] "N 0 (0x0)
0 ep_Init(); 7 (uchar)gSeriallntFlag = [200000115] "¥0° 0 (0x0)
@] flasshe Adchop_Init():
&0 flashh [00008040 00 CPUM
) flashh »
@) ext.opere
a‘]_]ex(yquh o pite
] &dch /% 20ns A TEBARIES #/
@) adce s whi le(e
@) flsshowitec § "3
@] flash wwiteh E sTimerlreFlag { 2 JEmA)T W
1] adc domos 38 #/
1] adc.demoh Serialbr. (SERIAL_1, eSendBuff, eRecvBuff, SERIAL_BUF);
 dey
) ey o . L shile(gSeriallntFlag == FALSE): [8 WNBABBSET it/
@ F159877 10 2) PIRET = R LR W
@ DI o for(i = 03 1 < SERIALBUF; i+)
SendBuff [i1+4 WA DPYAD b 0
/8 I35
Flashipe_Haind
/o 3436 */
ExtOperie.
il /8 MOTIRDEST
o : i Adchep Main();
103 |}
1
1
18 | /¢l gbriet 4
10 % {15, 2 FILOTEHEET Do O=HEH -MN103SFLT Sanple X
10 Soaran & Cuchar)i = [900002FFB) "W0° 0 (0x0)
11 n
< > ” e
v
=N N < 5
MN103SFL7 Samole X
-
il
05 recoznition falled.
O-FZET
v CPUN
> v
RIRFZR awk
8:1 @A SHS/CRMF BEAIME EEG16

Fig 1.5 Debug Factory Builder startup screen

KM101LR05D ReRAM Memory Rewriting Application Note

https://b2bsol.panasonic.biz/semi-spt/

1.4.1 File structure and function list

The sample software has the following file / folder structure, and double-clicking ReRAM_Sample.df5 will
start the project.

ReRAM_memwrite_sample_05D

r

pliReRAM_SampIe.df5

build (store make results)

Src
|—Start1 .asm (Sample program startup assembler)
|—Test1.c (Sample program body (main function))
|—rer_wdat.c (ReRAM data area rewriting library body)
|—rer_type.h (ReRAM rewriting library external declarations file)
|—rer_extn.h (ReRAM rewriting library constant definition file)
Lrer defs.h (ReRAM rewriting library type declaration file)

Fig 1.6 File structure

KM101LR05D ReRAM Memory Rewriting Application Note

10

1.4.2 Target setting

“Debug (D)” = Set from the “Target setting(F)".

“Product type (P)”

101LRO5SD

“Type (T)” : Select “Starter kit”
Select "srKM101LRO5D.txt" in the src folder in the "Special Register Definition file (E)".

Options - ReRAM_Sample

=) Target Setting
General
Starter kit
Flash memory setti

Product type(P) 101LROSD
Type(T) Starter Kit
00000100

Stack pointer initial value(S)

Use special register definition file symbols(U)

Special Register Definition file(E) C#lUsers¥ %¥Documents¥ E—‘ | |
User setting(R)
Comment(C)
oK Cancel Apply Help

Fig 0.1 Target setting

KM101LR05D ReRAM Memory Rewriting Application Note

11

1.4.3 Compiler option

Make (M) = Set in the "Compiler option (O)".

When developing software, it is necessary to change "Compiler option (0)",

options, when using the standard library.

add folders, or add optimization

Options - ReRAM_Sample

=)- Compile - -
i e — [=-€ Compile control options
= OOutput file option

i~ Assembler | | L. --(® Not specifying output file option{c)
L. Linker OfGenerate an assembler file at compiling(S)

----- .0 Output preprocessor result file at compiling(P)

----- ..(O0utput aszemble list file at assembling(L)
DOomplle cantral option

= DGenerated code contral option

mﬁﬁﬁﬁﬁﬁuﬁﬁﬁm

[(JOutput #line directives during preprocessor processing (foutput-line-directive)

Generate char type as unsigned char type (funsigned-char)

Use in-line assembler (fenable-asm)

Place string literal in readable/writable section (fwritable-string)

Place const-declared area in readable/writable section (fwritable-const)
Support comments beginning with // (fc9x-comment)

Optimizes the control expression for iteration statement(floop-cond-opt)
Generate code that handles the enumeration type as the smallest integer type th
fissien variables that has static storage duration and are initialized to 0 explicit]
Generates the code of the floating point comparison in accordance with IEEE (fie
Do not replace the subroutine call {(JSR) into vector-relative subroutine call (Qa:
Disable certain extensions and modifications to the language specifications so a

= DOptlmlzatlon options
----- --(® Do not perform optimization

L 4

Ihclude path(D

C¥Program Files (x86)¥Panasonic¥DF Builder 5% BuiltihnGG

Macrol M)

Warnings to be suppressed(W)

Gautions to be suppressediC)

Options(0)

Cancel

Apply Help

Fig 0.2 Compiler option

KM101LR05D ReRAM Memory Rewriting Application Note

12

1.4.4 Development environment

Make (M) = Set in the "Environment settings (E)".
Set when changing the compiler, outputting the object file, converting the file to HEX format, etc.

Options - ReRAM_Sample

-} Environment settings
Make method
Make settings
Language tool

File conversion

Make method selection

(® Use DebugFactory Builder built-=in make tool{U)
O Use existing make file(S)
(O Use batch file(E)

(O Do not perform make(D)

Cancel

Apply

Help

Fig 0.3 Environment settings

KM101LR05D ReRAM Memory Rewriting Application Note

13

Chapter 2 Software processing content

2.1 System layer

2.1.1 Startup process (Startup.asm)

The processing performed in the startup process is as follows.
* Interrupt vector settings
* Stack pointer setting
* RAM initialization

After the above process is completed, branch to "main".

2.1.1.1 Interrupt vector settings

Reset start
Processing starts from address 0x4000. (Branch to "Reset" processing.)

_STEXT SECTION

da A(Reset) ; 0 : reset vector address

Maskable interrupt
Processing according to each interrupt vector is started from each interrupt vector located at addresses 0x4008 to
0x4078. (The function placed in each interrupt is executed.)

da A(NolRQ) ; 0x4008 : IRQO : Reserved
da A(NolRQ) ; 0x400c : IRQ1 : Reserved
da A(NolIRQ) ; 0x4010 : IRQ2 : Reserved
da A(NolIRQ) ; 0x4014 : IRQ3 : Reserved
da A(NolRQ) ; 0x4018 : IRQ4 : Reserved
da A(NolRQ) ; 0x401c : IRQ5 : Reserved
da A(NolRQ) ; 0x4020 : IRQ6 : Reserved
da A(NolIRQ) ; 0x4024 : IRQ7 : Reserved
da A(NolRQ) ; 0x4028 : TMOICR : Reserved
da A(_VTIM_SysTimlrq) ; 0x402c : TM1ICR

da A(NolIRQ) ; 0x4030 : TM2ICR : Reserved

--abridgement--

KM101LR05D ReRAM Memory Rewriting Application Note

2.1.1.2 Stack pointer setting

When reset start, the stack pointer is initialized.
Because RAM area of the microcomputer is of 0x0000 ~ OxOFFF (4KB), and 0x1000 is set in the SP register.

Reset :
movw 0x1000,A0 ; initialization of stack pointer

movw AO0,SP

2.1.1.3 RAM initialization

Startup.asm initializes the RAM that has not been the setting of the initial value.

; initialization of static variables
movw _BSS,A0 ; set start address of _BSS domain to AO register
sub DO0,DO ;D0=0

clearl :
mov DO,(A0)
addw 0x1,A0
cmpw _BSSEND,A0 ; Is it the last of a RAM domain?
blt clearl ; if _BSSEND > AQ, jump to clearl

; Initialization of static variable with default value

raminit :
movw _ROMDATA,A0
movw _DATAA1
cmpw _GROMDATA,A0
beq nextl

initl : ; ROMDATA(AO) -> DATA(AL)
mov (A0),DO
mov DO,(A1)
addw 0x1,A0
addw 0x1,A1
cmpw _GROMDATA,A0
bne initl

nextl :
movw _GROMDATA,A0
movw _GDATAAL
cmpw _TEXT,A0
beq next2

(%)

Startup.asm initializes only the RAM for the sections defined by default. If the user defines additional sections, it is

necessary to add initialization processing.

KM101LR05D ReRAM Memory Rewriting Application Note

15

2.2 Application layer

2.2.1 main processing (main.c)

The outline of the "main" function is shown. It is called after the initialization process, and it is completed to
initialize and execute each module.

This sample program executes the processing in the following order.

* First, the sample software writes Oxff to the entire ReRAM data area (0x4100 to 0x48ff) in the main function.

* Then, The sample software writes 0xa5,0x5a, 0x55,0x00 from 0x4100 to 4 bytes.

+ After the above write process, the sample software will check if 0xa5,0x5a, 0x55,0x00 are correctly written
from 0x4100 to 0x4102.

* As a result of the above confirmation, if it is written correctly, the sample software will blink the LED-D5
(green LED) mounted on the AM13L-STK2.

* As a result of the above confirmation, if it is not written correctly, the sample software will blink the LED-D4
(orange LED) mounted on AM13L-STK2.

KM101LR05D ReRAM Memory Rewriting Application Note 16

2.3 Driver layer

2.3.1 Rewrite library (rer_wdat.c)

This section describes the library function when rewriting ReRAM.

The sample software uses an internal operating voltage of 1.8V and an operating clock of the built-in high-speed clock
when rewriting ReRAM.

Interface function

Function name : pReRAM_set data
Argument : U32 dst_adrs, U16 src_adrs , U16 length
Return value : Error code

0 (RC_OK) : If the process is successful

1 (RC_FALSE_ADRS) : If the address and size are
incorrect

3 (RC_FALSE_LIB) : Failure to ReRAM writing
process

P¢RC_: Constants are defined in rer_extn.h
Function : Rewriting Re-RAM

This function writes from dst_adrs to the ReRAM data area for the length bytes.

When using this function, specify dst_adrs in the range of 0x4100 to 0x48ff with an
even address, and specify the length with an even number.

Also, specify the address where the data you want to write is stored in src_adrs.
Example :

This example writes 0x55,0xaa, Oxa5,0x5a data to a ReRAM data area of 0x4100
to 4 bytes.

U8 ret, data[4];
data[0] = 0x55; data[1] = Oxaa; data[2] = Oxa5; data[3] = 0x5a;
ret = pPReRAM_set_data(0x4100, (U16)&data[0], 4);
if (ret 1= RC_OK) {
/* In case of error */

* This environment is provided as a sample of KM101LRO5D built-in ReRAM rewriting.
When actually using it, it is necessary to change it according to the environment.

* The ReRAM area that can be written by this ReRAM rewrite library APl is the data area (0x4100 to 0x48ff).
Rewriting of the code area is not supported.

* When using the ReRAM rewrite library, it uses a 16-byte stack. Therefore, allow 16 bytes for the stack.

KM101LR05D ReRAM Memory Rewriting Application Note 17

Revision history

Details of revision from Ver.1.0 to Ver.1.1 in this manual is shown below.

According to the details of revision, "Definition" of the table below is classified into seven groups.
Revision concerning descriptions in this Manual:
Writing error correction / Description change / Description addition / Description deletion
Revision concerning specifications:
Specification change / Specification addition / Specification deletion

Page

Definition

Details of revision

Ver1.0

Veril.1

Cover

Description
addition

Addition of information

P2

Description
deletion

Deletion of information

Last page

Description
addition

Addition of Important Notice

KM101LR05D ReRAM Memory Rewriting Application Note

18

Inquiries

If you have questions regarding technical information on this manual, please visit the following URL.

Nuvoton Technology Corporation Japan

URL: https://www.nuvoton.co.jp/en/contact/

= Microcomputer Home Page

https://www.nuvoton.co.jp/en/products/

KM101LRO5D
ReRAM Memory Rewriting
Application Note

October 30, 2020 1st Edition 1st Printing

Issued by
Nuvoton Technology Corporation Japan

© Nuvoton Technology Corporation Japan 2020

https://www.nuvoton.co.jp/en/contact/
https://www.nuvoton.co.jp/en/products/

NUVYOTON KM101LR03/04/05 Series
=

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment,
any malfunction or failure of which may cause loss of human life, bodily injury or severe
property damage. Such applications are deemed, “Insecure Usage”.

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic
energy control instruments, airplane or spaceship instruments, the control or operation of
dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all
types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay
claims to Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the
damages and liabilities thus incurred by Nuvoton.

Flease note that all data and specifications are subject to change without notice.
All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.

Oct 30, 2020 Rev 1.10 (3170502-011KE)

	About this document
	Contents
	Chapter1 Overview
	1.1 Purpose of document
	1.2 Evaluation board block diagram
	1.3 Software configuration
	1.3.1 Functions of the microcomputer used by the software
	1.3.2 Software configuration diagram
	1.3.3 Memory allocation

	1.4 Development environment
	1.4.1 File structure and function list
	1.4.2 Target setting
	1.4.3 Compiler option
	1.4.4 Development environment

	Chapter 2 Software processing content
	2.1 System layer
	2.1.1 Startup process（Startup.asm）
	2.1.1.1 Interrupt vector settings
	2.1.1.2 Stack pointer setting
	2.1.1.3 RAM initialization

	2.2 Application layer
	2.2.1 main processing (main.c)

	2.3 Driver layer
	2.3.1 Rewrite library (rer_wdat.c)

	Revision history

