

Jun. 21, 2021 Page 1 of 18 Rev 1.01

N9H20 NAND Loader

Document Information

Abstract Introduce the steps to build and launch NAND Loader for the N9H20
series microprocessor (MPU).

Apply to N9H20 series

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of microcontroller and microprocessor based system
design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

N9H20 NAND Loader Reference Guide

Jun. 21, 2021 Page 2 of 18 Rev 1.01

N9H20 NAND Loader

Table of Contents

1 INTRODUCTION .. 3

2 NAND LOADER BSP DIRECTORY STRUCTURE .. 4
2.1 Loaders\NANDLoader ... 4
2.2 Loaders\Binary ... 4

3 NAND LOADER SOURCE CODE .. 5
3.1 Development Environment... 5
3.2 Project Structure .. 5
3.3 System Initialization .. 6
3.4 NAND Flash Initialization .. 7
3.5 User Defined Feature .. 8
3.6 Build NAND Loader Project ... 10

4 DOWNLOAD AND RUN .. 12
4.1 Download NAND Loader Binary to NAND Flash .. 12
4.2 Run NAND Loader ... 13

5 SUPPORTING RESOURCES .. 16

Jun. 21, 2021 Page 3 of 18 Rev 1.01

N9H20 NAND Loader

1 Introduction

The NAND loader is a firmware stored at the NAND Flash chip for booting purpose. It will set
the system clock, initialize the relevant modules, and then load the next firmware to DRAM to
execute.

The NAND loader supports the following features:

 Initialize more modules such as SPU, RTC, and so on.

 Load Logo image to DRAM if it existed at NAND Flash chip.

 Load next firmware to DRAM if it existed at NAND Flash chip.

 Execute next firmware. Normally, it should be NVT loader.

Nuvoton provides NAND loader source code within the N9H20 series microprocessor (MPU)
BSP. There are three NAND loader projects, which can meet the part numbers of three different
DRAM sizes.

 N9H20K5 with 32 MB DRAM

 N9H20K3 with 8 MB DRAM

 N9H20K1 with 2 MB DRAM

Jun. 21, 2021 Page 4 of 18 Rev 1.01

N9H20 NAND Loader

2 NAND Loader BSP Directory Structure

This chapter introduces the NAND loader related files and directories in the N9H20 BSP.

2.1 Loaders\NANDLoader

GCC\ The GCC project files for the NAND loader.

KEIL\ The KEIL project files for the NAND loader.

USER_DEFINE\ The sample codes supports user defined feature.

NandLoader.c The main function for the NAND loader.

NandLoader_N9H20K5.scf The scatter file for the N9H20K5 NAND loader

NandLoader_N9H20K3.scf The scatter file for the N9H20K3 NAND loader

NandLoader_N9H20K1.scf The scatter file for the N9H20K1 NAND loader

NandDrv.c NAND Flash driver of N9H20.

Other files System driver of N9H20.

2.2 Loaders\Binary

N9H20K5_NANDLoader_xxx.bin The binary file of the N9H20K5 NAND loader for different
project targets.

N9H20K3_NANDLoader_xxx.bin The binary file of the N9H20K3 NAND loader for different
project targets.

N9H20K1_NANDLoader_xxx.bin The binary file of the N9H20K1 NAND loader for different
project targets.

Jun. 21, 2021 Page 5 of 18 Rev 1.01

N9H20 NAND Loader

3 NAND Loader Source Code

Complete source codes are included in the N9H20 BSP Loaders\NANDLoader directory:

3.1 Development Environment

Keil IDE and Eclipse are used as Non-OS BSP development environment, which uses J-Link
ICE or ULINK2 ICE (optional) for debugging. This document uses Keil IDE to describe the
project structure. To support ARM9, MDK Plus or Professional edition shall be used.

Note that Keil IDE and ICE need to be purchased from vendor sources.

Figure 3-1 Keil MDK License Chart

3.2 Project Structure

The NAND loader project includes one main function file and some driver files of N9H20. It
doesn’t link any driver library in order to shrink the binary code size.

Please note that the binary code size of the NAND loader MUST less than (page size * (page
number per block - 2)) of the NAND Flash chip on board.

Jun. 21, 2021 Page 6 of 18 Rev 1.01

N9H20 NAND Loader

Figure 3-2 NAND Loader Project Tree on Keil MDK

The NAND loader project includes some targets that can be used in different situations.

 N9H20K5_NANDLoader_192MHz: Set system core clock to 192MHz. This is the official

standard target.

 N9H20K5_NANDLoader_192MHz_Logo: Set system core clock to 192MHz and support

user defined feature. Please refer to section 3.5 for further information.

 N9H20K5_NANDLoader_120MHz: Set system core clock to 120MHz.

 N9H20K5_NANDLoader_96MHz: Set system core clock to 96MHz.

3.3 System Initialization

The system initialization code is located in main function, including system code clock setting,

Jun. 21, 2021 Page 7 of 18 Rev 1.01

N9H20 NAND Loader

SPU setting, and UART debug port setting. It also initializes some necessary peripherals during
the boot process.

int main()

{

 NVT_NAND_INFO_T image;

 int count, i;

 /* Clear Boot Code Header in SRAM to avoid booting fail issue */

 outp32(0xFF000000, 0);

 spuDacOn(2);

 /* PLL clock setting */

 initClock();

 uart.uiFreq = sysGetExternalClock()*1000; /*Use external clock*/

 uart.uiBaudrate = 115200;

 uart.uiDataBits = WB_DATA_BITS_8;

 uart.uiStopBits = WB_STOP_BITS_1;

 uart.uiParity = WB_PARITY_NONE;

 uart.uiRxTriggerLevel = LEVEL_1_BYTE;

 sysInitializeUART(&uart);

 sysprintf("N9H20 Nand Boot Loader entry (%s).\n", DATE_CODE);

 sysGetSystemClock(&eSrcClk, &u32PllKHz, &u32SysKHz, &u32CpuKHz, &u32HclkKHz,
&u32ApbKHz);

 sysprintf("System clock = %dKHz\nAHB clock = %dKHz\nREG_SDTIME = 0x%08X\n",

 u32SysKHz, u32HclkKHz, inp32(REG_SDTIME));

 /* Omit some source code in document. */

}

3.4 NAND Flash Initialization

One of the major tasks of the NAND loader is to copy the next firmware on the NAND Flash to
DRAM for execution. To initialize the NAND Flash driver, both fmiInitDevice() and sicSMInit()
must be called in source code.

 /* Initial DMAC and NAND interface */

 fmiInitDevice();

 sicSMInit();

 memset((char *)&image, 0, sizeof(NVT_NAND_INFO_T));

Jun. 21, 2021 Page 8 of 18 Rev 1.01

N9H20 NAND Loader

 /* read physical block 0 - image information */

 for (i=0; i<4; i++)

 {

 if (!sicSMpread(0, i, pSM0->uPagePerBlock-2, imagebuf))

 {

 if (((*(pImageList+0)) == 0x574255aa) && ((*(pImageList+3)) == 0x57425963))

 {

 sysprintf("Get image information from block 0x%x ..\n", i);

 break;

 }

 }

 }

3.5 User Defined Feature

The NAND loader allows the user to execute user defined functions before the NAND loader
executes the next firmware. For example, the NAND loader can display a Logo on the LCD
panel as soon as possible after booting.

Please select project target “N9H20K5_NANDLoader_192MHz_Logo” to enable this feature.

Figure 3-3 The NAND loader project target for user defined feature

Jun. 21, 2021 Page 9 of 18 Rev 1.01

N9H20 NAND Loader

Figure 3-4 The NAND loader project definition for user defined feature

Within main() function, the user_define_func() is called to execute user defined function before
load next firmware.

#ifdef __USER_DEFINE_FUNC

 //--- call user define function before jump to next application.

 user_define_func();

#endif

 /* load execution file */

 pImageList = pImageList+4;

 for (i=0; i<count; i++)

 {

 if (((*(pImageList) >> 16) & 0xffff) == 1) // execute

 {

 image.startBlock = *(pImageList + 1) & 0xffff;

 image.endBlock = (*(pImageList + 1) & 0xffff0000) >> 16;

 image.executeAddr = *(pImageList + 2);

 image.fileLen = *(pImageList + 3);

 MoveData(&image, TRUE);

 break;

 }

Jun. 21, 2021 Page 10 of 18 Rev 1.01

N9H20 NAND Loader

 /* pointer to next image */

 pImageList = pImageList+12;

 }

Within source code file NANDLoader\USER_DEFINE\user_define_func.c, the function
user_define_func() can be implemented to do the user defined function.

#ifdef __USER_DEFINE_FUNC

#include "user_define_func.h"

/*---*/

/* The entry point of User Define Function that called by NandLoader. */

/*---*/

void user_define_func()

{

 /* Do something here for user defined function */

}

#else

/*---*/

/* The entry point of User Define Function that called by NandLoader. */

/*---*/

void user_define_func()

{

 //--- Keep empty if user define nothing for User Define Function.

}

#endif // end of #ifdef __USER_DEFINE_FUNC

3.6 Build NAND Loader Project

Normally, the NAND loader doesn’t need to modify. If the NAND loader is modified, clicking the
Rebuild icon as shown below or press F7 function key to rebuilt it in Keil MDK.

Figure 3-5 Shortcut Icon to Rebuild the NAND Loader on Keil MDK

Jun. 21, 2021 Page 11 of 18 Rev 1.01

N9H20 NAND Loader

The binary file of NAND loader will be copied to the Loaders\Binary folder with the file name
N9H20K5_NANDLoader_xxx.bin. The “xxx” is depend on the project target. For the
N9H20K5_NANDLoader_192MHz project target, the binay file name is
N9H20K5_NANDLoader_192MHz.bin.

Please note that the binary code size of the NAND loader MUST less than (page size * (page
number per block - 2)) of the NAND Flash chip on board.

Jun. 21, 2021 Page 12 of 18 Rev 1.01

N9H20 NAND Loader

4 Download and Run

4.1 Download NAND Loader Binary to NAND Flash

The NAND loader binary on NAND Flash can be programmed by the tool TurboWriter and here
are the steps. Further information about TurboWriter can be found at BSP
Tools/PC_Tools/TurboWriter Tool User Guide.pdf.

1. Power off device.

2. Plug in USB cable to PC/NB.

3. Power on device under Recovery mode.

4. Run TurboWriter for N9H20 version on PC/NB.

5. Wait for the TurboWriter message to change to “Mass Storage Connected !”. If not,

press the “Re-Connect” button to reconnect the device.

6. Select “NAND” on the option “Please choose type”.

7. Select NAND loader binary file on the option “Image Name”.

8. Select “System Image” on the option “Image Type”.

9. Press “Burn” button to burn the NAND loader binary into NAND Flash.

10. After burning completed, check the NAND loader information in the left table.

Jun. 21, 2021 Page 13 of 18 Rev 1.01

N9H20 NAND Loader

Figure 4-1 Programmed NAND Loader by TurboWriter

11. Remove USB device safely.

12. Plug out USB cable from PC/NB.

13. Reset the device under Normal mode.

4.2 Run NAND Loader

N9H20 has built-in 16K bytes IBR (Internal Booting ROM) where is the boot loader to initialize
chip basically when power on, and then try to find out the next stage loader from different type
of storage. It could be SD card, NAND Flash, SPI Flash, or USB storage. The booting sequence
by the IBR as Figure 4-2.

Jun. 21, 2021 Page 14 of 18 Rev 1.01

N9H20 NAND Loader

Figure 4-2 IBR Booting Sequence after Power On

The IBR will execute the NAND loader if SD loader on SD card 0 is invalid.

Jun. 21, 2021 Page 15 of 18 Rev 1.01

N9H20 NAND Loader

Figure 4-3 The NAND Loader Runs on N9H20

Jun. 21, 2021 Page 16 of 18 Rev 1.01

N9H20 NAND Loader

5 Supporting Resources

The N9H20 system related issues can be posted in Nuvoton’s forum:

 ARM7/9 forum at: http://forum.nuvoton.com/viewforum.php?f=12.

Jun. 21, 2021 Page 17 of 18 Rev 1.01

N9H20 NAND Loader

Revision History

Date Revision Description

2021.6.21 1.01 1. Modify document structure.

2018.5.4 1.00 1. Initially issued.

Jun. 21, 2021 Page 18 of 18 Rev 1.01

N9H20 NAND Loader

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction
or failure of which may cause loss of human life, bodily injury or severe property damage. Such
applications are deemed, “Insecure Usage”.

 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other
applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

