

Jun. 8, 2021 Page 1 of 25 Rev 1.01

N9H26 SpiWriter

Document Information

Abstract Introduce the steps to build and launch SpiWriter for the N9H20
series microprocessor (MPU).

Apply to N9H20 series

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of microcontroller and microprocessor based system
design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

N9H20 SpiWriter User Guide

Jun. 8, 2021 Page 2 of 25 Rev 1.01

N9H26 SpiWriter

Table of Contents

1 INTRODUCTION .. 3

2 SPIWRITER BSP DIRECTORY STRUCTURE .. 5
2.1 Tools\MassProduction_Tools\SpiWriter .. 5
2.2 Tools\MassProduction_Tools\SpiWriter\Src ... 5
2.3 Tools\MassProduction_Tools\SpiWriter\Ini .. 5
2.4 Binary file .. 6

3 SPIWRITER SOURCE CODE .. 7
3.1 Development Environment... 7
3.2 Project Structure .. 7
3.3 Build SpiWriter Project ... 9

4 SETTINGS .. 10
4.1 SD Card 0 .. 10
4.2 SpiWriter.ini .. 12

4.2.1 Raw Data Mode File Name .. 14
4.2.2 SpiLoader File Name ... 15
4.2.3 Logo File Name .. 15
4.2.4 Execute File Name .. 16
4.2.5 Data Verify .. 16
4.2.6 Chip Erase .. 17
4.2.7 Sound Play .. 17
4.2.8 Sound Play Volume ... 17
4.2.9 Flow Status Sound File Name ... 18
4.2.10 GPIO Flow Status ... 18
4.2.11 User Image File name ... 19

4.3 TurboWriter.ini ... 20

5 DEMO .. 21
5.1 Operation ... 21
5.2 Test Sample .. 22

6 SUPPORTING RESOURCES .. 23

Jun. 8, 2021 Page 3 of 25 Rev 1.01

N9H26 SpiWriter

1 Introduction

SpiWriter is the firmware stored in the SD card, which is used to write the necessary firmware
to the SPI Flash for mass production. After the SpiWriter writes the necessary firmware, the
device should become a complete product.

The SpiWriter can write following firmware to the SPI Flash.

 SPI loader

 Logo image

 Execute image

 User image

Figure 1 and Figure 2 describe the working environment and workflow of SpiWriter.

Figure 1 Prepare SD Card for SpiWriter

Jun. 8, 2021 Page 4 of 25 Rev 1.01

N9H26 SpiWriter

Figure 2 Execute SpiWriter to Copy Firmware to SPI Flash

Nuvoton provides SpiWriter source code within the N9H20 series microprocessor (MPU) BSP.

Jun. 8, 2021 Page 5 of 25 Rev 1.01

N9H26 SpiWriter

2 SpiWriter BSP Directory Structure

This chapter introduces the SpiWriter related files and directories in the N9H20 BSP.

2.1 Tools\MassProduction_Tools\SpiWriter

Doc\ The document of the SpiWriter.

Ini\ The sample for the SpiWriter initial file.

Src\ The source code of the SpiWriter.

PCM_Pattern\ The audio file of the SpiWriter.

2.2 Tools\MassProduction_Tools\SpiWriter\Src

GCC\ The GCC project files for the SpiWriter.

KEIL\ The KEIL project files for the SpiWriter.

Writer.c The main function for the SpiWriter.

Writer.h The header file for the SpiWriter.

ProcessIni.c The function to process SpiWriter.ini initial file.

ProcessOptionalIni.c The function to process TurboWriter.ini initial file.

DrawFont.c The functions to draw font on panel.

pcm.h The header file for the audio function.

playsound.c The functions to play sound.

spiflash.c Special SPI Flash driver for the SpiWriter.

Rootkey.c Root key Generator for authentication Flash

2.3 Tools\MassProduction_Tools\SpiWriter\Ini

SpiWriter.ini The sample initial file for SpiWriter.

Jun. 8, 2021 Page 6 of 25 Rev 1.01

N9H26 SpiWriter

2.4 Binary file

N9H20Kx_SpiWriter_xxx.bin The binary file of the SpiWriter.

Jun. 8, 2021 Page 7 of 25 Rev 1.01

N9H26 SpiWriter

3 SpiWriter Source Code

Complete source code is included in the N9H20 BSP Tools\MassProduction_Tools\SpiWriter
directory:

3.1 Development Environment

Keil IDE and Eclipse are used as Non-OS BSP development environment, which uses J-Link
ICE or ULINK2 ICE (optional) for debugging. This document uses Keil IDE to describe the
project structure. To support ARM9, MDK Plus or Professional edition shall be used.

Note that Keil IDE and ICE need to be purchased from vendor sources.

Figure 3 Keil MDK License Chart

3.2 Project Structure

The SpiWriter project includes one main function file and some driver files of N9H20.

Jun. 8, 2021 Page 8 of 25 Rev 1.01

N9H26 SpiWriter

Figure 4 SPI Loader Project Tree on Keil MDK

The SpiWriter project includes some targets that can be used in different situations.

 N9H20Kx_QVGA: Initialize VPOST for QVGA panel. This is the official standard target.

 N9H20Kx_WQVGA: Initialize VPOST for WQVGA panel. This is the official standard

target.

 N9H20Kx_VGA: Initialize VPOST for VGA panel. This is the official standard target.

 N9H20Kx_WVGA: Initialize VPOST for WVGA panel. This is the official standard target.

 N9H20Kx_NoLCM: Only show the writing result by UART.

Jun. 8, 2021 Page 9 of 25 Rev 1.01

N9H26 SpiWriter

3.3 Build SpiWriter Project

Normally, the SpiWriter doesn’t need to modify. If the SpiWriter is modified, clicking the Rebuild
icon as shown below or press F7 function key to rebuilt it in Keil MDK.

Figure 5 Shortcut Icon to Rebuild the SpiWriter on Keil MDK

The binary file of SpiWriter will be created with the file name N9H20Kx_SpiWriter_xxx.bin. The
“xxx” is depend on the project target. For the N9H20K5_QVGA project target, the binay file
name is N9H20K5_SpiWriter_QVGA.bin.

Jun. 8, 2021 Page 10 of 25 Rev 1.01

N9H26 SpiWriter

4 Settings

4.1 SD Card 0

The SD card 0 must reserve some space to store the SDLoader and SpiWriter before usage.
The procedure is as below steps:

1. Launch TurboWriter in recovery mode and set the system Reserved Area Size if this SD

card does not do it before.

2. Burn the SDLoader binary file – N9H20K5_SDLoader_192MHz.bin as system image.

3. Burn the SpiWriter binary file – N9H20K5_SpiWriter_QVGA.bin as execute image with

“Image execute address” 0.

Figure 6 Burn SpiWriter

4. Reserve System area 2 MB and Enable SD format.

These two files are burned in System reserved area and unable to read from card reader.

Jun. 8, 2021 Page 11 of 25 Rev 1.01

N9H26 SpiWriter

Figure 7 Set System Reserved Area Size and Format SD Card

Put this SD card to another card reader and copy SpiWriter.ini and related files that want

to burn to SPI Flash from this SD card.

This SD card content structure is as below figure. The root directory contains the

SpiWriter.ini (must), SpiLoader binary file/Raw data Image file (must), Logo binary file

(option), execute binary file (option). It also provides some option in SpiWriter.ini for user.

Further information about file setting can be found at section 4.2 SpiWriter.ini.

Jun. 8, 2021 Page 12 of 25 Rev 1.01

N9H26 SpiWriter

Figure 8 Files in SD card

4.2 SpiWriter.ini

The INI file means SpiWriter.ini file that provides user a flexible way to change program setting
without modifying the source code of SpiWriter.bin. The file describes the file properties user
wants to write to SPI Flash in the SD Card. The SpiWriter.ini file provides some sections as
below):

[Raw Data Mode File Name]

//Format:File name

//If SpiWriter gets the file name, it ignores other files and only write the file.

//RawDataImage.bin

[SpiLoader File Name]

//Format:File name, execute address

N9H20K5_SpiLoader_GPM1006D0.bin, 0x900000

[Logo File Name]

// Format:File name, Start Block (0 is decided by writer), execute address

Logo.dat, 0x0, 0x500000

[Execute File Name]

// Format:File name, Start Block (0 is decided by writer), execute address

conprog.bin, 0x0, 0x0000000

[Data Verify]

// 1 to verify data, 0 to not to verify.

1

Jun. 8, 2021 Page 13 of 25 Rev 1.01

N9H26 SpiWriter

[Chip Erase]

// 1 to erase whole SPI Flash, 0 to erase the sector which will be used.

0

[Sound Play]

// 1 to enable sound play, 0 to disable sound play.

1

[Sound Play Volume]

// Maximum is 63

32

[Write Root]

//Index is from 1 to 4, 0 to disable Write Root Key

0

[Flow Status Sound File Name - Start]

//StartBurn.pcm

[Flow Status Sound File Name - Pass]

//BurnComplete.pcm

[Flow Status Sound File Name - Fail]

//BurnFail.pcm

// Format:GPIO Pin, Active Level, Example:GPA6, 1

[GPIO Flow Status - Start]

[GPIO Flow Status - Pass]

[GPIO Flow Status - Fail]

// Format for User Image:File name, Start Block (0 is decided by writer)

// Ex.Image0.bin, 0x46 (Start block is 70)

// Maximum User Image Files is 18.

[User Image File name]

Image0.bin, 0x0

[User Image File name]

Jun. 8, 2021 Page 14 of 25 Rev 1.01

N9H26 SpiWriter

Image1.bin, 0x0

[User Image File name]

Image2.bin, 0x0

[User Image File name]

Image3.bin, 0x0

[User Image File name]

Image4.bin, 0x0

Due to its limited parsing ability of SpiWriter, there are some constraints in SpiWriter.ini as
below:

 No space is allowed to precede the option for each line.

 Only “//” comment is allowed at the beginning of each line

 String in “[]” is not allowed to changed.

 Only “[SpiLoader File Name]” is necessary. The other sections are optional.

If the logo file is not necessary for the SpiWriter, below two methods are to skip burning
Logo.dat into the target SPI Flash.

[Logo File Name]

//Logo.dat, 0x0, 0x500000

Or

[Logo File Name]

It also allows changing the file name for burning. Below sample changes the file name from
N9H20K5_SpiLoader_GPM1006D0.bin to Nuvoton.bin for “SpiLoader File Name” section.

[SpiLoader File Name]

Nuvoton.bin, 0x900000

4.2.1 Raw Data Mode File Name

The format for this setting is:

 [Raw Data Mode File Name]

Jun. 8, 2021 Page 15 of 25 Rev 1.01

N9H26 SpiWriter

 File name

User can modify the file name by this setting. For example,

[Raw Data Mode File Name]

//Format:File name

//If SpiWriter gets the file name, it ignores other files and only write the file.

RawDataImage.bin

4.2.2 SpiLoader File Name

The format for this setting is:

 [SpiLoader File Name]

 File name, execute address

User can modify loader file name and execute address by this setting. For example, Loader
execute address is 0x900000

[SpiLoader File Name]

//Format:File name, execute address

N9H20K5_SpiLoader_GPM1006D0.bin, 0x900000

4.2.3 Logo File Name

The format for this setting is:

 [Logo File Name]

 File name, start block, execute address

User can modify logo file name, SPI Flash start block, and execute address by this setting. If
user want to burn logo binary file right after the previous image, user needs to set the start block
to 0. For example, Logo execute address is 0x500000

[Logo File Name]

// Format:File name, Start Block (0 is decided by writer), execute address

Logo.dat, 0x0, 0x500000

For example, Logo execute address is 0x500000 and start block is 2.

Jun. 8, 2021 Page 16 of 25 Rev 1.01

N9H26 SpiWriter

[Logo File Name]

// Format:File name, Start Block (0 is decided by writer), execute address

Logo.dat, 0x2, 0x500000

4.2.4 Execute File Name

The format for this setting is:

 [Execute File Name]

 File name, start block, execute address

User can modify logo file name, SPI Flash start block, and execute address by this setting. If
user wants to burn execute binary file right after the previous image, user needs to set the start
block to 0. For example, Burn execute image – demo.bin right after the previous image and
execute address is 0x100000

[Execute File Name]

// Format:File name, Start Block (0 is decided by writer), execute address

demo.bin, 0x0, 0x1000000

For example, Burn execute image – conprog.bin from block 9 and execute image is
0x00000000

[Execute File Name]

// Format:File name, Start Block (0 is decided by writer), execute address

conprog.bin, 0x9, 0x0000000

4.2.5 Data Verify

The format for this setting is:

[Data Verify]

0/1

User can enable or disable Data verify operation by setting. Disable Data verify operation can
speed up the SPI writing operation. (If there is no such setting, the default setting is disabled).
For example, Disable Data verify operation.

[Data Verify]

Jun. 8, 2021 Page 17 of 25 Rev 1.01

N9H26 SpiWriter

// 1 to verify data, 0 to not to verify.

0

4.2.6 Chip Erase

The format for this setting is:

[Chip Erase]

0/1

User can enable or disable Chip Erase operation by setting. If Chip Erase Operation is disabled,
SpiWriter will do sector erase to erase the spi sectors that will be wrote. (If there is no such
setting, the default setting is disabled). For example, Disable Chip Erasey operation.

[Chip Erase]

// 1 to erase whole SPI Flash, 0 to erase the sector which will be used.

0

4.2.7 Sound Play

The format for this setting is:

[Sound Play]

0/1

SpiWriter can play PCM data when Burn Start/Burn Pass/Bun Fail and it has three built-in PCM
data. User can enable or disable Sound Play operation by setting. (If there is no such setting,
the default setting is disabled). For example, Enable Sound Play operation.

[Sound Play]

// 1 to enable sound play, 0 to disable sound play.

1

4.2.8 Sound Play Volume

The format for this setting is:

[Sound Play Volume]

0/1

SpiWriter can control Sound Play operation Volume by setting. The minimum value is 0 and
maximum is 63. (If there is such setting, the default setting is 31). For example, Set Sound Play
operation Volume to maximum Volume

Jun. 8, 2021 Page 18 of 25 Rev 1.01

N9H26 SpiWriter

[Sound Play Volume]

// Maximum is 63

63

4.2.9 Flow Status Sound File Name

The format for this settings are:

[Flow Status Sound File Name - Start]

File name

[Flow Status Sound File Name - Pass]

File name

[Flow Status Sound File Name - Fail]

File name

SpiWriter allows user to use their own PCM data when Burn Start/Burn Pass/Bun Fail. User
sets the PCM file name for Burn Start/Burn Pass/Bun Fail stage by setting. (If there is no such
setting, it will play default PCM data when Sound Play is enabled). For example, Enable Sound
Play operation.

[Flow Status Sound File Name - Start]

StartBurn.pcm

[Flow Status Sound File Name - Pass]

BurnComplete.pcm

[Flow Status Sound File Name - Fail]

BurnFail.pcm

4.2.10 GPIO Flow Status

The format for this settings are:

[GPIO Flow Status - Start]

GPIO pin, Active Level

[GPIO Flow Status - Pass]

Jun. 8, 2021 Page 19 of 25 Rev 1.01

N9H26 SpiWriter

GPIO pin, Active Level

[GPIO Flow Status - Fail]

GPIO pin, Active Level

SpiWriter allow user to control GPIO pin for status check when Burn Start/Burn Pass/Bun Fail.
SpiWriter will set the pin function setting for the setting and set the GPIO output level to inactive
level after getting the setting. User can select GPIO pin and active level by this setting. (If threre
is no such setting, the default setting is disabled). For example, Set GPB11/GPA6/GPA7 for
Status Check

// Format:GPIO Pin, Active Level, Example:GPA6, 1

[GPIO Flow Status - Start]

GPB11, 0

[GPIO Flow Status - Pass]

GPA6, 1

[GPIO Flow Status - Fail]

GPA7, 1

4.2.11 User Image File name

The format for this setting is:

[User Image File name]

File name, start block

User can set User image file name and SPI Flash start block by this setting. SpiLoader allow
user to set 18 User image files. If user wants to burn binary file right after the previous image,
user needs to set the start block to 0. For example, Burn 4 User Image files, and set the start
block to 0x46, 0x4B, 0x4D, and 0x52 for them.

// Format for User Image:File name, Start Block (0 is decided by writer)

// Ex.Image0.bin, 0x46 (Start block is 70)

// Maximum User Image Files is 18.

[User Image File name]

Image0.bin, 0x46

Jun. 8, 2021 Page 20 of 25 Rev 1.01

N9H26 SpiWriter

[User Image File name]

Image1.bin, 0x4B

[User Image File name]

Image2.bin, 0x4D

[User Image File name]

Image3.bin, 0x52

4.3 TurboWriter.ini

SpiWriter supports the same function as Turbowriter to provide writing some user configuration
setting in the boot code header to adjust the setting of N9H20. Please use the same
TurboWriter.ini file that used by Turbowriter for SpiWriter. Please obtain the TurboWriter.ini file
from the TurboWriter folder for the target N9H20 platform. The TurboWriter.ini file provides
some sections for N9H20K5 as below:

 [ADDRESS]

 ADDRESS = 00900000

[CLOCK_SKEW]

 DQSODS = 00001010

 CKDQSDS = 00888800

[N9H20 USER_DEFINE]

 B0003010 = 00000005

Jun. 8, 2021 Page 21 of 25 Rev 1.01

N9H26 SpiWriter

5 Demo

5.1 Operation

When the SD card 0 is prepared successfully and booting from Normal mode, it will show the
target SD card burning status on the panel as below:

Figure 9 SpiWriter Display message

It can divide into several parts:

 Version Number: show this version number.

 Final Status: show the final operation status. If there is any fail items in the operation

sequence, the final Status will be “FAIL”.

 Operation Sequence: show the current operation progress.

 Current Operation: show more detail information for current operation. For example, it

fails for some function, the code will show the return code for this.

 The flash and Fail operation Information: shows SPI Flash size and Fail operation status.

Operation Sequence

Current Operation

Version Number Final Status

SPI Flash Information

Jun. 8, 2021 Page 22 of 25 Rev 1.01

N9H26 SpiWriter

Figure 10 SpiWriter Fail Case

5.2 Test Sample

Here is the result of SpiWriter.ini in section 4.2

Figure 11 SpiWriter Result

Jun. 8, 2021 Page 23 of 25 Rev 1.01

N9H26 SpiWriter

6 Supporting Resources

The N9H20 system related issues can be posted in Nuvoton’s forum:

 ARM7/9 forum at: http://forum.nuvoton.com/viewforum.php?f=12.

Jun. 8, 2021 Page 24 of 25 Rev 1.01

N9H26 SpiWriter

Revision History

Date Revision Description

2021.6.8 1.01 1. Modify document structure.

2013.8.5 1.00 1. Initially issued.

Jun. 8, 2021 Page 25 of 25 Rev 1.01

N9H26 SpiWriter

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction
or failure of which may cause loss of human life, bodily injury or severe property damage. Such
applications are deemed, “Insecure Usage”.

 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other
applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

