

Aug. 14, 2018 Page 1 of 312 Rev 1.02

NUC970/N9H30

Document Information

Abstract This document introduces the control sequence of NUC970/N9H30 family
peripherals.

Apply to NUC970 and N9H30 family.

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

NUC970/N9H30 Family Programming Guide

http://www.nuvoton.com/

Aug. 14, 2018 Page 2 of 312 Rev 1.02

NUC970/N9H30

Table of Contents

1 SYSTEM MANAGER .. 12

1.1 Overview .. 12

1.2 Register Map ... 12

1.3 Functional Description.. 13

 Multiple Function Control .. 13 1.3.1

 Low Voltage Detect / Reset .. 14 1.3.2

 USB ID Detection ... 14 1.3.3

2 CLOCK CONTROLLER ... 15

2.1 Overview .. 15

2.2 Features ... 15

2.3 Block Diagram .. 15

2.4 Register Map ... 17

2.5 Functional Description.. 17

 Module Clock On/Off ... 17 2.5.1

 Clock Divider ... 18 2.5.2

 PLL Setting .. 18 2.5.3

3 ANALOG TO DIGITAL CONVERTER (ADC) ... 20

3.1 Overview .. 20

3.2 Features ... 20

3.3 Block Diagram .. 20

3.4 Register Map ... 21

3.5 Functional Description.. 22

 Basic Configuration .. 22 3.5.1

 ADC Transfer Function.. 22 3.5.2

 Normal Detection ... 23 3.5.3

 Battery Voltage Detection ... 24 3.5.4

 Key Pad Scan ... 25 3.5.5

 4-wire and 5-wire Touch Screen .. 27 3.5.6

 4-wire Pressure Measurement ... 29 3.5.7

4 ADVANCED INTERRUPT CONTROLLER (AIC) .. 31

4.1 Overview .. 31

Aug. 14, 2018 Page 3 of 312 Rev 1.02

NUC970/N9H30

4.2 Features ... 31

4.3 Block Diagram .. 32

4.4 Register Map ... 32

4.5 Functional Description.. 33

 Interrupt channel configuration .. 33 4.5.1

 Interrupt Masking ... 34 4.5.2

 Interrupt Clearing and Setting .. 34 4.5.3

 Software Priority Scheme ... 35 4.5.4

 Hardware Priority Scheme .. 36 4.5.5

 Interrupt Sources .. 37 4.5.6

5 CAN .. 40

5.1 Overview .. 40

5.2 Features ... 40

5.3 Block Diagram .. 40

5.4 Register Map ... 41

5.5 Functional Description.. 43

 CAN5.5.1 Protocol .. 43

 CAN Baud Rate Setting .. 43 5.5.2

 CAN Module Register .. 46 5.5.3

 Transfer CAN Message ... 47 5.5.4

 Receive CAN Message ... 49 5.5.5

 Wakeup Function ... 50 5.5.6

6 CRYPTOGRAPHIC ACCELERATOR ... 51

6.1 Overview .. 51

6.2 Features ... 51

6.3 Block Diagram .. 52

6.4 Register Map ... 52

6.5 Functional Description.. 57

 Data Access .. 58 6.5.1

 Channel Expansion .. 59 6.5.2

 PRNG ... 59 6.5.3

 AES .. 60 6.5.4

 DES/TDES .. 61 6.5.5

 SHA .. 63 6.5.6

7 EXTERNAL BUS INTERFACE (EBI) .. 66

7.1 Overview .. 66

7.2 Features ... 66

7.3 Block Diagram .. 66

Aug. 14, 2018 Page 4 of 312 Rev 1.02

NUC970/N9H30

7.4 Register Map ... 67

7.5 Functional Description.. 67

 Basic Configuration .. 67 7.5.1

 Memory Space and Control .. 67 7.5.2

8 ETHERNET MAC CONTROLLER (EMAC) ... 69

8.1 Overview .. 69

8.2 Features ... 69

8.3 Block Diagram .. 69

8.4 Register Map ... 70

8.5 Functional Description.. 72

 PHY Control .. 72 8.5.1

 CAM Configuration ... 74 8.5.2

 Control Frame ... 74 8.5.3

 Wake on Lan (WoL) ... 75 8.5.4

 Packet Receive... 75 8.5.5

 Packet Transmit ... 80 8.5.6

 Network Timing... 86 8.5.7

 Error Handling... 90 8.5.8

9 ENHANCED TIMER CONTROLLER (ETMR) .. 91

9.1 Overview .. 91

9.2 Features ... 91

9.3 Block Diagram .. 91

9.4 Register Map ... 91

9.5 Functional Description.. 92

 Timer Initialization .. 92 9.5.1

 Timer Capture Initialization ... 92 9.5.2

 Interrupt Handling ... 93 9.5.3

 Timer Frequency .. 93 9.5.4

 One-Shot Mode .. 94 9.5.5

 Periodic Mode ... 94 9.5.6

 Toggle Mode ... 95 9.5.7

 Continuous Mode ... 95 9.5.8

 Free Counting Mode .. 96 9.5.9

 Trigger Counting Mode .. 97 9.5.10

 Counter Reset Mode .. 98 9.5.11

 Capture Debounce ... 99 9.5.12

10 FLASH MEMORY INTERFACE ... 100

10.1 Overview .. 100

10.2 Features ... 100

Aug. 14, 2018 Page 5 of 312 Rev 1.02

NUC970/N9H30

10.3 Block Diagram .. 100

10.4 Register Map ... 101

10.5 Functional Description.. 103

 DMA and FMI Global Control ..103 10.5.1

 NAND Flash...103 10.5.2

 eMMC ...107 10.5.3

11 GENERAL DMA CONTROLLER (GDMA) ... 112

11.1 Overview .. 112

11.2 Features ... 112

11.3 Block Diagram .. 112

11.4 Register Map ... 113

11.5 Functional Description.. 114

 Non-Descriptor Functional Descriptions..114 11.5.1

 Descriptor Functional Descriptions ..118 11.5.2

12 2D GRAPHIC ENGINE (GE2D) .. 122

12.1 Overview .. 122

12.2 Features ... 122

12.3 Block Diagram .. 123

12.4 Register Map ... 123

12.5 Function Description ... 124

 2D Graphic Engine Initialization ...124 12.5.1

 Ternary Raster Operations (ROP) ...126 12.5.2

 Bit Block Transfer (BitBLT) ..127 12.5.3

 Bresenham Line Drawing ..131 12.5.4

 α Blending ..135 12.5.5

 Clipping ..136 12.5.6

 Rotation ..137 12.5.7

 Scale Up/Down ...138 12.5.8

13 GENERAL-PURPOSE INPUT/OUTPUT (GPIO) .. 141

13.1 Overview .. 141

13.2 Features ... 141

13.3 Block Diagram .. 141

13.4 Register Map ... 142

13.5 Functional Description.. 146

 Multiple function pin Configuration ...146 13.5.1

 GPIO Output Mode ...147 13.5.2

 GPIO Input Mode ..147 13.5.3

 GPIO Interrupt ...148 13.5.4

Aug. 14, 2018 Page 6 of 312 Rev 1.02

NUC970/N9H30

14 I2C .. 150

14.1 Overview .. 150

14.2 Features ... 150

14.3 Function Block ... 150

14.4 Register Map ... 151

14.5 Function Description ... 151

 I
2
C Protocol..151 14.5.1

 Data Transmission Continuously ...152 14.5.2

 Interrupt ..152 14.5.3

 Software Mode ..152 14.5.4

 I
2
C Operation Using CMDR Register...153 14.5.5

 I
2
C EEPROM Operation Example ..154 14.5.6

15 I2S ... 156

15.1 Overview .. 156

15.2 Features ... 156

15.3 Function Block ... 156

15.4 Register Map ... 157

15.5 Functional Description.. 158

 I
2
S Master/Slave Mode ..158 15.5.1

 I
2
S Source Clock Configuration ..158 15.5.2

 I
2
S Calculation and Configuration of Clock ...159 15.5.3

 DMA ..159 15.5.4

 Sequence of DMA Data ...161 15.5.5

 Interface Selection ..161 15.5.6

 PCM Interface ...162 15.5.7

 Data Split ...163 15.5.8

16 JPEG CODEC .. 164

16.1 Overview .. 164

16.2 Feature ... 164

16.3 Block Diagram .. 164

16.4 Register Map ... 165

16.5 Functional Description.. 167

 Memory Access ..167 16.5.1

 JPEG Encoding ...169 16.5.2

 Normal Encoding ..169 16.5.3

 Encoding Scaling up ..170 16.5.4

 JPEG Decoding ..173 16.5.5

Aug. 14, 2018 Page 7 of 312 Rev 1.02

NUC970/N9H30

17 KEYPAD INTERFACE ... ERROR! BOOKMARK NOT DEFINED.

17.1 Overview ... Error! Bookmark not defined.

17.2 Features .. Error! Bookmark not defined.

17.3 Block Diagram ... Error! Bookmark not defined.

17.4 Register Map .. Error! Bookmark not defined.

17.5 Functional Description... Error! Bookmark not defined.

 Keypad Controller Configuration ... Error! Bookmark not defined. 17.5.1

 Wake UP Function .. Error! Bookmark not defined. 17.5.2

18 LCD DISPLAY INTERFACE CONTROLLER (LCM) .. 181

18.1 Overview .. 181

18.2 Features ... 181

18.3 Block Diagram .. 182

18.4 Register Map ... 182

18.5 Functional Description.. 183

 LCD Configuration Flow ..183 18.5.1

 LCD Controller Initialization and Configuration ..186 18.5.2

 Configure OSD Controller ...188 18.5.3

 Hardware Cursor ..189 18.5.4

19 MTP CONTROLLER .. 191

19.1 Overview .. 191

19.2 Features ... 191

19.3 Block Diagram .. 191

19.4 Register Map ... 192

19.5 Functional Description.. 193

 Use MTP Controller ..193 19.5.1

 MTP Key ..193 19.5.2

 User Defined Data ..194 19.5.3

 MTP Enable ...195 19.5.4

 Program MTP Key ..195 19.5.5

 Lock MTP Key ...196 19.5.6

 MTP Key for AES Encrypt/Decrypt ..197 19.5.7

 MTP Key for SHA/HMAC Comparison ..198 19.5.8

20 PULSE WIDTH MODULATION (PWM) ... 199

20.1 Overview .. 199

20.2 Features ... 199

20.3 Block Diagram .. 199

Aug. 14, 2018 Page 8 of 312 Rev 1.02

NUC970/N9H30

20.4 Register Map ... 200

20.5 Functional Description.. 201

 PWM Timer Operation ...201 20.5.1

 PWM double buffer ...202 20.5.2

 Periodic and One-Shot Operation ..203 20.5.3

 Dead-Zone Generator ..203 20.5.4

 PWM Timer Start Procedure ...204 20.5.5

 PWM Timer Stop Procedure ...205 20.5.6

21 REAL TIME CLOCK (RTC) ... 206

21.1 Overview .. 206

21.2 Features ... 206

21.3 Block Diagram .. 206

21.4 Register Map ... 207

21.5 Functional Description.. 208

 RTC Initiation...208 21.5.1

 RTC write enable ..208 21.5.2

 12/24 hour Time scale selection...209 21.5.3

 Set Calendar and Time ..209 21.5.4

 Set Calendar and Time Alarm (Absolute) ...210 21.5.5

 Set Time Alarm (Relative) ...211 21.5.6

 Set wake-up function..212 21.5.7

 Set tick interrupt ..214 21.5.8

 System Power Control Flow ..215 21.5.9

 Frequency Compensation: ..220 21.5.10

22 SMART CARD HOST INTERFACE (SC) .. 222

22.1 Overview .. 222

22.2 Features ... 222

22.3 Block Diagram .. 222

22.4 Register Map ... 223

22.5 Functional Description.. 224

 Activation (Cold Reset) ..225 22.5.1

 Warm Reset...226 22.5.2

 Deactivation ...228 22.5.3

 Data Format...228 22.5.4

 Data Transfer ..229 22.5.5

 Error Signal and Character Repetition ..230 22.5.6

 Internal Time-out Counter ...231 22.5.7

 Smartcard Insert/Remove Detection ...232 22.5.8

 Miscellaneous Transmission Settings ...233 22.5.9

 UART Mode ...233 22.5.10

23 SECURE DIGITAL HOST CONTROLLER (SDH) .. 235

Aug. 14, 2018 Page 9 of 312 Rev 1.02

NUC970/N9H30

23.1 Overview .. 235

23.2 Features ... 235

23.3 Block Diagram .. 235

23.4 Register Map ... 236

23.5 Functional Description.. 236

 Global Control ...238 23.5.1

 Send Command ..239 23.5.2

 Get Response ...239 23.5.3

 Read SD Card ...240 23.5.4

 Write SD Card ...240 23.5.5

24 SPI ... 242

24.1 Overview .. 242

24.2 Features ... 242

24.3 Function Block ... 242

24.4 Register Map ... 242

24.5 Function Description ... 243

 Slave Selection ...243 24.5.1

 Automatic Slave Select ..244 24.5.2

 Dual / Quad Mode ..244 24.5.3

 Burst Mode ..247 24.5.4

 SPI Interrupt ..247 24.5.5

 SPI Programming Example ...247 24.5.6

25 TIMER CONTROLLER.. 249

25.1 Overview .. 249

25.2 Features ... 249

25.3 Block Diagram .. 249

25.4 Register Map ... 250

25.5 Functional Description.. 250

 Timer Initialization ...250 25.5.1

 Interrupt Handling ...251 25.5.2

 Timeout Frequency ..251 25.5.3

 One-shot Mode ...252 25.5.4

 Periodic Mode ...252 25.5.5

 Continuous Mode ...252 25.5.6

26 UART .. 254

26.1 Overview .. 254

26.2 Features ... 256

Aug. 14, 2018 Page 10 of 312 Rev 1.02

NUC970/N9H30

26.3 Block Diagram .. 256

26.4 Register Map ... 257

26.5 Functional Description.. 258

 Initializations ..258 26.5.1

 IrDA Mode ..259 26.5.2

 RS485 Function Mode ...260 26.5.3

 LIN (Local Interconnection Network) Mode ..262 26.5.4

27 USB 2.0 DEVICE CONTROLLER ... 264

27.1 Overview .. 264

27.2 Features ... 264

27.3 Block Diagram .. 264

27.4 Register Map ... 265

27.5 Functional Description.. 269

 Initialize ..270 27.5.1

 Interrupt Service Routine ...271 27.5.2

 Standard Request ...271 27.5.3

 Set Address Request ...271 27.5.4

 Get Descriptor ...272 27.5.5

 IN Transmission ..273 27.5.6

 OUT Transmission ...273 27.5.7

28 USB HOST CONTROLLER ... 275

28.1 Overview .. 275

28.2 Features ... 275

28.3 Block Diagram .. 275

 Basic Configuration ..276 28.3.1

 EHCI Controller ...276 28.3.2

 OHCI Controller ..277 28.3.3

28.4 Register Map ... 278

28.5 Functional Description.. 281

 Initialization ..281 28.5.1

 Root Hub Port Routing Logic ..281 28.5.2

 OHCI ...281 28.5.3

 EHCI ...289 28.5.4

29 CAPTURE SENSOR INTERFACE CONTROLLER .. 298

29.1 Overview .. 298

29.2 Features ... 298

29.3 Block Diagram .. 298

29.4 Register Map ... 298

Aug. 14, 2018 Page 11 of 312 Rev 1.02

NUC970/N9H30

29.5 Functional Description.. 299

 Basic Configuration ..299 29.5.1

 Image Capture Flow Chart ..300 29.5.2

 Polarity and Input Data Order ...300 29.5.3

 Sensor Data Input Order ...301 29.5.4

 Input and Output Data Format ..301 29.5.5

 Downscale Factor ...301 29.5.6

 Cropping Window and Start Position ...302 29.5.7

 One Shutter Mode (Single Frame) ...302 29.5.8

 Motion detection ...302 29.5.9

30 WATCHDOG TIMER (WDT) .. 304

30.1 Overview .. 304

30.2 Features ... 304

30.3 Block Diagram .. 304

30.4 Register Map ... 304

30.5 Functional Description.. 305

 WDT Configuration ...305 30.5.1

 WDT Wakeup ..306 30.5.2

31 WINDOW WATCHDOG TIMER (WWDT) ... 307

31.1 Overview .. 307

31.2 Features ... 307

31.3 Block Diagram .. 307

31.4 Register Map ... 307

31.5 Function Description ... 308

 Timeout Setting ...308 31.5.1

 WWDT Interrupt ..309 31.5.2

 System Reset ..309 31.5.3

 WWDT Window Setting Limitations ...309 31.5.4

Aug. 14, 2018 Page 12 of 312 Rev 1.02

NUC970/N9H30

1 System Manager

1.1 Overview

The system management describes following information and functions.

 System Resets

 System Memory Map

 System management registers for Product Identifier (PDID), Power-On Setting, System

Wake-Up, Reset Control for on-chip controllers/peripherals, and multi-function pin control.

 System Control registers

1.2 Register Map

R: read only, W: write only, R/W: both read and write

Register Offset R/W Description Reset Value

SYS_BA = 0xB000_0000

SYS_PDID SYS_BA+0x000 R Product Identifier Register 0x0X30_D008
[1]

SYS_PWRON SYS_BA+0x004 R/W Power-On Setting Register Undefined
[2]

SYS_ARBCON SYS_BA+0x008 R/W Arbitration Control Register 0x0000_0000

SYS_LVRDCR SYS_BA+0x020 R/W Low Voltage Reset & Detect Control Register 0x0000_0001

SYS_MISCFCR SYS_BA+0x030 R/W Miscellaneous Function Control Register 0x0000_0200

SYS_MISCIER SYS_BA+0x040 R/W Miscellaneous Interrupt Enable Register 0x0000_0000

SYS_MISCISR SYS_BA+0x044 R/W Miscellaneous Interrupt Status Register 0x0001_0000

SYS_WKUPSER SYS_BA+0x058 R/W System Wakeup Source Enable Register 0x0000_0000

SYS_WKUPSSR SYS_BA+0x05C R/W System Wakeup Source Status Register 0x0000_0000

SYS_AHBIPRST SYS_BA+0x060 R/W AHB IP Reset Control Register 0x0000_0000

SYS_APBIPRST0 SYS_BA_0x064 R/W APB IP Reset Control Register 0 0x0000_0000

SYS_APBIPRST1 SYS_BA_0x068 R/W APB IP Reset Control Register 1 0x0000_0000

SYS_RSTSTS SYS_BA_0x06C R/W Reset Source Active Status Register 0x0000_0007

SYS_GPA_MFPL SYS_BA+0x070 R/W GPIOA Low Byte Multiple Function Control Register 0x0000_0000

SYS_GPA_MFPH SYS_BA+0x074 R/W GPIOA High Byte Multiple Function Control Register 0x0000_0000

SYS_GPB_MFPL SYS_BA+0x078 R/W GPIOB Low Byte Multiple Function Control Register 0x0000_0000

SYS_GPB_MFPH SYS_BA+0x07C R/W GPIOB High Byte Multiple Function Control Register 0x0000_0000

Aug. 14, 2018 Page 13 of 312 Rev 1.02

NUC970/N9H30

SYS_GPC_MFPL SYS_BA+0x080 R/W GPIOC Low Byte Multiple Function Control Register 0x0000_0000

SYS_GPC_MFPH SYS_BA+0x084 R/W GPIOC High Byte Multiple Function Control Register 0x0000_0000

SYS_GPD_MFPL SYS_BA+0x088 R/W GPIOD Low Byte Multiple Function Control Register 0x0000_0000

SYS_GPD_MFPH SYS_BA+0x08C R/W GPIOD High Byte Multiple Function Control Register 0x0000_0000

SYS_GPE_MFPL SYS_BA+0x090 R/W GPIOE Low Byte Multiple Function Control Register 0x0000_0000

SYS_GPE_MFPH SYS_BA+0x094 R/W GPIOE High Byte Multiple Function Control Register 0x0000_0000

SYS_GPF_MFPL SYS_BA+0x098 R/W GPIOF Low Byte Multiple Function Control Register 0x0000_0000

SYS_GPF_MFPH SYS_BA+0x09C R/W GPIOF High Byte Multiple Function Control Register 0x0000_0000

SYS_GPG_MFPL SYS_BA+0x0A0 R/W GPIOG Low Byte Multiple Function Control Register 0x0000_0000

SYS_GPG_MFPH SYS_BA+0x0A4 R/W GPIOG High Byte Multiple Function Control Register 0x0000_0000

SYS_GPH_MFPL SYS_BA+0x0A8 R/W GPIOH Low Byte Multiple Function Control Register 0x0000_0000

SYS_GPH_MFPH SYS_BA+0x0AC R/W GPIOH High Byte Multiple Function Control Register 0x0000_0000

SYS_GPI_MFPL SYS_BA+0x0B0 R/W GPIOI low Byte Multiple Function Control Register 0x0000_0000

SYS_GPI_MFPH SYS_BA+0x0B4 R/W GPIOI High Byte Multiple Function Control Register 0x0000_0000

SYS_GPJ_MFPL SYS_BA+0x0B8 R/W GPIOJ low Byte Multiple Function Control Register Undefined
[2]

SYS_DDR_DSCTL SYS_BA+0x0F0 R/W DDR I/O Driving Strength Control Register 0x0000_0000

SYS_PORDISCR SYS_BA+0x100 R/W Power-On-Reset Disable Control Register 0x0000_00XX

SYS_ICEDBGCR SYS_BA+0x104 R/W ICE Debug Interface Control Register 0x0000_0001

SYS_REGWPCTL SYS_BA+0x1FC R/W Register Write-Protection Control Register 0x0000_0000

Note: [1] Dependents on part number.

Note: [2] Dependents on power-on setting.

1.3 Functional Description

 Multiple Function Control 1.3.1

Each Module should set the multiple function control before starting it. Such as SPI0, user

should set the GPB6〜9 for SPI0 before starting it. GPB6 is for SPI0_SS0, GPIO7 is for

SPI0_CLK, GPIO8 is for SPI0_DATAO, and GPIO9 is for SPI0_DATAI. Therefore, fill
0xBB000000 into SYS_GPB_MFPL register and 0xBB to SYS_GPB_MFPH register to do this
setting. (For each pin’s setting, please reference NUC970/N9H30 Technical Reference
Manual).

Aug. 14, 2018 Page 14 of 312 Rev 1.02

NUC970/N9H30

 Low Voltage Detect / Reset 1.3.2

When voltage is lower than 2.6V or 2.8V, SYS_MISCISR register LVD_IS bit will be set. If the
interrupt is enabled, the interrupt will occur. When the voltage rises from 2.3V to 2.4V, the
system will reset.

Low voltage reset or detection, please follow the steps below.

1. Set SYS_LVRDCR register LVD_SEL bit to select the detect voltage – 2.6V or 2.8V.

2. Detect. Enable SYS_LVRDCR register LVD_EN bit.

3. Detect and reset. Enable SYS_LVRDCR register LVD_EN and LVR_EN bit.

4. Active interrupt. Enable SYS_MISCIER register LVD_EN bit.

5. Confirm interrupt status. Checking SYS_MISCISR register LVD_IS bit.

6. Clear SYS_MISCISR register LVD_IS bit.

7. Repeat steps 2〜6.

 USB ID Detection 1.3.3

USB Host and USB Device share one port. When A-type cable (Host) plug in, user can detect
it and run the Host program. Otherwise, when B-type cable (Device) plug in, user can run the
Device program.

The steps as below:

1. Enable SYS_MISCIER register USBIDC_IEN bit.

2. Cable plug in, interrupt occurred, checking SYS_MISCISR register USBIDC_IS bit.

3. Checking SYS_MISCISR register USB0_IDS bit. 1 is USB Host connect; 0 is USB
Device connect.

4. Clear SYS_MISCISR register USBIDC_IS bit.

5. Repeat steps 2〜4.

Aug. 14, 2018 Page 15 of 312 Rev 1.02

NUC970/N9H30

2 Clock Controller

2.1 Overview

The clock controller generates all clocks for Video, Audio, CPU, system bus and all
functionalities. This chip includes two PLL modules. The clock source for each pheripherals
comes from the PLL or from the external crystal input directly. For each clock there is a bit on
the CLKEN register to control the clock ON or OFF individually, and the divider setting is in
the CLK_DIVCTL register. The register can also be used to control the clock enable or
disable for power control.

2.2 Features

 Supports two PLLs, up to 500 MHz, for high performance system operation.

 External 12 MHz high speed crystal input for precise timing operation.

 External 32.768 kHz low speed crystal input for RTC function and low speed clock
source.

2.3 Block Diagram

Aug. 14, 2018 Page 16 of 312 Rev 1.02

NUC970/N9H30

APLL

UPLL

XT1_IN

APLLFout

UPLLFout

APLL
1to8

UPLL
1to8

SYS_SW_DIV

SYS_CLK

ADivCLK[7:0]

UDivCLK[7:0]

SYSTEM_N[3:0],
SYSTEM_S[4:0]

DRAM (CLK_HCLKEN[10])
DDR_CLK

÷ 2 DRAM_CLK

÷ 1 or ÷ 2

CPU (CLK_HCLKEN[0])

CPU_HCLK Clock Generator

CPUCLK

HCLK1 (CLK_HCLKEN[2])

HCLK (CLK_HCLKEN[1])

÷ 2 HCLK

HCLKsramSRAM (CLK_HCLKEN[8])

HCLK2

÷
(HCLK234_N+1) HCLK1 (CLK_HCLKEN[2]) |

HCLK3 (CLK_HCLKEN[3]) |
HCLK4 (CLK_HCLKEN[4])

HCLK3
HCLK3 (CLK_HCLKEN[3])

HCLKemac1EMAC1 (CLK_HCLKEN[17])

HCLKusbhUSBH (CLK_HCLKEN[18])

HCLKusbdUSBD (CLK_HCLKEN[19])

HCLKfmiFMI (CLK_HCLKEN[20])

HCLKnandNAND (CLK_HCLKEN[21])

HCLKcryptoCRYPTO (CLK_HCLKEN[23])

÷ (JPG_N+1)

HCLKjpegJPEG (CLK_HCLKEN[29])

ECLKjpeg

÷ (GE2D_N+1)

HCLKge2dGE2D (CLK_HCLKEN[28])

ECLKge2d

HCLK4
HCLK4 (CLK_HCLKEN[4])

HCLKemac0EMAC0 (CLK_HCLKEN[16])

HCLKsdhSDH (CLK_HCLKEN[30])

HCLKi2sI2S (CLK_HCLKEN[24])

HCLKlcdLCD (CLK_HCLKEN[25])

HCLKvcapVCAP (CLK_HCLKEN[26])

÷ 2

HCLK1

GDMA (CLK_HCLKEN[12])HCLKgdma

EBI (CLK_HCLKEN[9])HCLKebi

TIC (CLK_HCLKEN[7])HCLKtic

÷ (APB_N+1)

PCLK (CLK_HCLKEN[5])PCLK

UART0 (CLK_PCLKEN0[16])PCLKuart0

UART1 (CLK_PCLKEN0[17])PCLKuart1

PCLKuart2

UART3 (CLK_PCLKEN0[19])PCLKuart3

UART2 (CLK_PCLKEN0[18])

UART4 (CLK_PCLKEN0[20])PCLKuart4

UART5 (CLK_PCLKEN0[21])PCLKuart5

PCLKuart6

UART7 (CLK_PCLKEN0[23])PCLKuart7

UART6 (CLK_PCLKEN0[22])

UART8 (CLK_PCLKEN0[24])PCLKuart8

PCLKuart9

UART10 (CLK_PCLKEN0[26])PCLKuart10

UART9 (CLK_PCLKEN0[25])

PCLKwdt

WWDT (CLK_PCLKEN0[1])PCLKwwdt

WDT (CLK_PCLKEN0[0])

PCLKgpio GPIO (CLK_PCLKEN0[3])

PCLKrtc
RTC (CLK_PCLKEN0[2])

PCLKetimer0ETIMER0 (CLK_PCLKEN0[4])

PCLKetimer1ETIMER1 (CLK_PCLKEN0[5])

PCLKetimer2ETIMER2 (CLK_PCLKEN0[6])

PCLKetimer3ETIMER3 (CLK_PCLKEN0[7])

PCLKtimer0TIMER0 (CLK_PCLKEN0[8])

PCLKtimer1TIMER1 (CLK_PCLKEN0[9])

PCLKtimer2TIMER2 (CLK_PCLKEN0[10])

PCLKtimer3TIMER3 (CLK_PCLKEN0[11])

TIMER4 (CLK_PCLKEN0[12]) PCLKtimer4

PCLKi2c0I2C0 (CLK_PCLKEN1[0])

PCLKi2c1I2C1 (CLK_PCLKEN1[1])

PCLKspi0SPI0 (CLK_PCLKEN1[4])

PCLKspi1SPI1 (CLK_PCLKEN1[5])

PCLKcan0CAN0 (CLK_PCLKEN1[8])

CAN1 (CLK_PCLKEN1[9]) PCLKcan1

SMC0 (CLK_PCLKEN1[12])PCLKsmc0

PCLKsmc1

ADC (CLK_PCLKEN1[24])PCLKadc

SMC1 (CLK_PCLKEN1[13])

PCLKkpi

MTPC (CLK_PCLKEN1[26])PCLKmtp

KPI (CLK_PCLKEN1[25])

PCLKpwm PWM (CLK_PCLKEN1[27])

Aug. 14, 2018 Page 17 of 312 Rev 1.02

NUC970/N9H30

2.4 Register Map
R: read only, W: write only, R/W: both read and write

Register Address R/W Description Reset Value

CLK_BA = 0xB000_0200

CLK_PMCON CLK_BA+0x00 R/W Power Management Control Register 0xFFFF_FF03

CLK_HCLKEN CLK_BA+0x10 R/W AHB IP Clock Enable Control Register 0x0000_0527

CLK_PCLKEN0 CLK_BA+0x18 R/W APB IP Clock Enable Control Register 0 0x0000_0000

CLK_PCLKEN1 CLK_BA+0x1C R/W APB IP Clock Enable Control Register 1 0x0000_0000

CLK_DIVCTL0 CLK_BA+0x20 R/W Clock Divider Control Register 0 0x0100_00XX

CLK_DIVCTL1 CLK_BA+0x24 R/W Clock Divider Control Register 1 0x0000_0000

CLK_DIVCTL2 CLK_BA+0x28 R/W Clock Divider Control Register 2 0x0000_0000

CLK_DIVCTL3 CLK_BA+0x2C R/W Clock Divider Control Register 3 0x0000_0000

CLK_DIVCTL4 CLK_BA+0x30 R/W Clock Divider Control Register 4 0x0000_0000

CLK_DIVCTL5 CLK_BA+0x34 R/W Clock Divider Control Register 5 0x0000_0000

CLK_DIVCTL6 CLK_BA+0x38 R/W Clock Divider Control Register 6 0x0000_0000

CLK_DIVCTL7 CLK_BA+0x3C R/W Clock Divider Control Register 7 0x0000_0000

CLK_DIVCTL8 CLK_BA+0x40 R/W Clock Divider Control Register 8 0x0000_0500

CLK_DIVCTL9 CLK_BA+0x44 R/W Clock Divider Control Register 9 0x0000_0000

CLK_APLLCON CLK_BA+0x60 R/W APLL Control Register 0x1000_0015

CLK_UPLLCON CLK_BA+0x64 R/W UPLL Control Register 0xX000_0015

CLK_PLLSTBCNTR CLK_BA+0x80 R/W PLL Stable Counter and Test Clock Control Register 0x0000_1800

2.5 Functional Description

 Module Clock On/Off 2.5.1

Each module of NUC970/N9H30 has independent clock control. Before read/write registers,
the module clock should be enabled first. Clock On/Off setting is in CLK_HCLKEN,
CLK_PCLKEN0 and CLK_PCLKEN1 registers. Module of AHB bus should use
CLK_HCLKEN register. And module of APB bus should use CLK_PCLKEN0 or
CLK_PCLKEN1 register.

In NAND case, NAND is controlled by AHB bus FMI module. To enable NAND should set FMI
and NAND. That is set the CLK_HCLKEN register FMI and NAND bit. In UART0 case, before
print message from UART0, enable UART0 clock first. That is set the CLK_PCLKEN0 register
UART0 bit.

Aug. 14, 2018 Page 18 of 312 Rev 1.02

NUC970/N9H30

 Clock Divider 2.5.2

The module which can connect external device has its own clock frequency divider to provide
the correct clock output. Each frequency divider in addition to set the divisor, user can also
select the clock source. Use an external SD card for example: clock source is UPLL, SD card
needs 300 KHz for card identification mode, 50 MHz for data transfer mode. If UPLL is
300MHz, the divider setting is as follow:

1. SDH clock divider register is CLKDIV9, user should control SDH_N, SDH_S and
SDH_SDIV.

2. Set the SDH clock source is UPLL, this means fill the 11b to SDH_S bit.

3. Initialize the frequency to 300 KHz – first UPLL (300 MHz) divides by 5 becomes 60 MHz,
and then divides by 200 becomes 300KHz. SDH_SDIV fill 4 and SDH_N fill 199 is for this
setting.

4. Data transfer frequency to 50MHz – UPLL (300 MHz) divides by 6 becomes 50MHz.
SDH_SDIV fill 0 and SDH_N fill 5 is for this setting.

 PLL Setting 2.5.3

NUC970/N9H30 PLL default setting is 264MHz. PLL frequency adjustment needs to meet the
following formula.

N Fpfd Range

1 d

2 d

3 d

4 d

5 d

6 d

7 ~ 8 d

9 ~ 10 d

11 ~ 40 d

Aug. 14, 2018 Page 19 of 312 Rev 1.02

NUC970/N9H30

41 ~ 128 d

Aug. 14, 2018 Page 20 of 312 Rev 1.02

NUC970/N9H30

3 Analog to Digital Converter (ADC)

3.1 Overview

The NUC970/N9H30 family contains one 12-bit Successive Approximation Register analog-
to-digital converter (SAR A/D converter) with eight input channels. The A/D converter
supports two operation modes: 4-wire or 5-wire mode. The ADC is especially suitable to act
as touch screen controller. Battery voltage detection could be easily accomplished by the
SAR ADC. It has keypad interrupt signal generator.

3.2 Features

 Resolution: 12-bit resolution.

 DNL: +/-1.5 LSB, INL: +/-3 LSB.

 Dual Data Rates: 1MSPS/200KSPS.

 Analog Input Range: VREF to AGND, could be rail-to-rail.

 Analog Supply: 2.7-3.6V.

 Digital Supply: 1.2V.

 8 Single-Ended Analog inputs.

 Compatible with 4-wire or 5-wire Touch Screen Interface.

 Touch Pressure Measurement for 4-wire touch screen application.

 Direct Battery Measurement.

 Keypad Interrupt Generator.

 Auto Power Down.

 Low Power Consumption: 4850uW(@1MSPS) / 2170uW(@200KSPS), < 1uA

3.3 Block Diagram

Aug. 14, 2018 Page 21 of 312 Rev 1.02

NUC970/N9H30

8-1 CH MUX

4-1 REF MUX

4-1 REF MUX

Data Buffer

Control
Register

ADC
Control

Interface

APB
Bus

KEYPAD

Resistor
divider &

switch

Bandgap

Internal
SAR ADC

Internal
SAR ADC

INT_TCINT_TC

AVDD33AVDD33
VREFVREF

BUFBUF
2.5V2.5V

PULLUPPULLUPXP_ENXP_EN

XPXP

YPYP

YP_ENYP_EN

PULLUPPULLUP

VSENSEVSENSE

XM_ENXM_EN

YM_ENYM_EN

XMXM
YMYM

1212

33

AGND33AGND33

INT_KPINT_KP

AGND33AGND33

A_2A_2

A_2, VHSA_2, VHS

VBTVBT

3.4 Register Map

R: read only, W: write only, R/W: both read and write.

Register Offset R/W Description Reset Value

ADC Base Address:

ADC_BA = 0xB800_A000

ADCON ADC_BA+0x00 R/W ADC Control 0x0000_0000

ADC_CONF ADC_BA+0x04 R/W ADC Configure 0x0000_0000

ADC_IER ADC_BA+0x08 R/W ADC Interrupt Enable Register 0x0000_0000

ADC_ISR ADC_BA+0x0C R/W ADC Interrupt Status Register 0x0000_0000

ADC_WKISR ADC_BA+0x10 R ADC Wake Up Interrupt Status Register 0x0000_0000

ADC_XYDATA ADC_BA+0x20 R ADC Touch X,Y Position Data 0x0000_0000

ADC_ZDATA ADC_BA+0x24 R ADC Touch Z Pressure Data 0x0000_0000

ADC_DATA ADC_BA+0x28 R ADC Normal Conversion Data 0x0000_0000

ADC_VBATDATA ADC_BA+0x2C R ADC Battery Detection Data 0x0000_0000

ADC_KPDATA ADC_BA+0x30 R ADC Key Pad Data 0x0000_0000

Aug. 14, 2018 Page 22 of 312 Rev 1.02

NUC970/N9H30

ADC_SELFDATA ADC_BA+0x34 R ADC Self-Test Data 0x0000_0000

ADC_XYSORT0 ADC_BA+0x1F4 R ADC Touch XY Position Mean Value Sort 0 0x0000_0000

ADC_XYSORT1 ADC_BA+0x1F8 R ADC Touch XY Position Mean Value Sort 1 0x0000_0000

ADC_XYSORT2 ADC_BA+0x1FC R ADC Touch XY Position Mean Value Sort 2 0x0000_0000

ADC_XYSORT3 ADC_BA+0x200 R ADC Touch XY Position Mean Value Sort 3 0x0000_0000

ADC_ZSORT0 ADC_BA+0x204 R ADC Touch Z Pressure Mean Value Sort 0 0x0000_0000

ADC_ZSORT1 ADC_BA+0x208 R ADC Touch Z Pressure Mean Value Sort 1 0x0000_0000

ADC_ZSORT2 ADC_BA+0x20C R ADC Touch Z Pressure Mean Value Sort 2 0x0000_0000

ADC_ZSORT3 ADC_BA+0x210 R ADC Touch Z Pressure Mean Value Sort 3 0x0000_0000

MTMULCK ADC_BA+0x220 W ADC Manual Test Mode Unlock 0x0000_0000

MTCONF ADC_BA+0x224 R/W ADC Manual Test Mode Configure 0x0000_0000

MTCON ADC_BA+0x228 R/W ADC Manual Test Mode Control 0x0000_0000

ADCAII ADC_BA+0x22C R ADC Analog Interface Information 0x0000_0000

ADCAIIRLT ADC_BA+0x230 R ADC Analog Interface Information Result 0xXXXX_XXXX

3.5 Functional Description

 Basic Configuration 3.5.1

The ADC peripheral clock can be enabled in ADC (PCLKEN1[24]). The ADC engine clock
source is selected by ADC_S (CLKDIV7[23:16]) and ADC engine clock divider is determined
by ADC_N (CLKDIV7[31:24]).

 ADC Transfer Function 3.5.2

The ADC output coding is offset in binary, 1LSB=VREF/4096, the transfer characteristic is
shown in the following graph:

Aug. 14, 2018 Page 23 of 312 Rev 1.02

NUC970/N9H30

ADC_OUTADC_OUT

ANALOG INPUTANALOG INPUT

00 1
LSB

1
LSB

2
LSB

2
LSB

3
LSB

3
LSB

4
LSB

4
LSB

5
LSB

5
LSB

6
LSB

6
LSB

4
0

9
3

LSB
4

0
9

3
LSB

4
0

9
4

LSB
4

0
9

4
LSB

4
0

9
5

LSB
4

0
9

5
LSB

4
0

9
6

LSB
4

0
9

6
LSB

0000 0000 00010000 0000 0001

0000 0000 00100000 0000 0010

0000 0000 00110000 0000 0011

0000 0000 01000000 0000 0100

0000 0000 00000000 0000 0000

1111 1111 11001111 1111 1100

1111 1111 11011111 1111 1101

1111 1111 11101111 1111 1110

1111 1111 11111111 1111 1111

 Normal Detection 3.5.3

In normal mode, A/D conversion is performed only once on the specified single channel.
Demonstration of a normal detection software program as follows.

char c,num;

unsigned int data,n;

unsigned int d1,d2,val=0;

rREG_CTL |= ADC_CTL_ADEN;

printf("select channel 0:VBT(A0), 1:VHS(A1), 2:A2, 3:A3, 4:YM(A4), 5:YP(A5), 6:XM(A6),
7:XP(A7)\n");

num=getchar();

switch(num)

{

 case '0': val=0; break;

 case '1': val=1; break;

 case '2': val=2; break;

 case '3': val=3; break;

 case '4': val=4; break;

 case '5': val=5; break;

 case '6': val=6; break;

 case '7': val=7; break;

Aug. 14, 2018 Page 24 of 312 Rev 1.02

NUC970/N9H30

}

rREG_CONF |= ADC_CONF_NACEN | val<<3 | (3<<6) | (1<<22);

rREG_ISR = ADC_ISR_MF | ADC_ISR_NACF;

/* narmal_test interrupt mode */

rREG_IER |= ADC_IER_MIEN;

do{

 complete = 0;

 rREG_CTL |= ADC_CTL_MST;

 UART_printf("Waiting for Normal mode Interrupt\n");

 while(!(rREG_ISR & ADC_ISR_MF));

 rREG_ISR = ADC_ISR_MF; //Clear MF flag

 if(rREG_ISR & ADC_ISR_NACF)

 {

 data=rREG_DATA;

 n=(33*data*100)>>12;

 d1=n/1000;

 d2=n%1000;

 printf("DATA=0x%08x,voltage=%d.%dv\n",data,d1,d2);

 }

 else

 UART_printf("interrupt error\n");

}while(1);

 Battery Voltage Detection 3.5.4

Take VBT as input, and select internal buffer’s output as the reference. For ADC configure
register VBAT_EN (ADC_CONF[8]) should be set to 1.

Core ADCCore ADC
0.125v to 1.375v0.125v to 1.375v

7.5k7.5k

2.5k2.5k

VBTVBT

Battery
0.5v to 5.5v

Battery
0.5v to 5.5v

Aug. 14, 2018 Page 25 of 312 Rev 1.02

NUC970/N9H30

Demonstrations of a battery voltage detection software program as follows:

unsigned int n,vbadata;

int d1,d2;

rREG_CTL |= ADC_CTL_ADEN | ADC_CTL_VBGEN;

rREG_CONF|= ADC_CONF_VBATEN;

rREG_ISR |= ADC_ISR_MF | ADC_ISR_VBF;

/* menu complete enable */

rREG_IER |= ADC_IER_MIEN;

do{

 complete = 0;

 rREG_CTL |= ADC_CTL_MST;

 printf("Waiting for bettrey Interrupt A0<inputer pin>\n");

 while(!(rREG_ISR & ADC_ISR_MF));

 rREG_ISR = ADC_ISR_MF; //Clear MF flag

 if(rREG_ISR & ADC_ISR_VBF)

 {

 vbadata=rREG_VBADATA;

 n=(25*vbadata*100)>>12;

 d1=n/1000;

 d2=n%1000;

 printf("VBATDATA=0x%08x, voltage=%d.%dv\n",vbadata,d1,d2);

 rREG_ISR = ADC_ISR_VBF; //clear VBF flag

 }

 else

 printf("interrupt error\n");

}while(1);

 Key Pad Scan 3.5.5

Take A_2 as input, and select AVDD33 and AGND33 as the reference. For ADC configure
register KPC_EN (ADC_CONF[9]) should be set to 1.

Aug. 14, 2018 Page 26 of 312 Rev 1.02

NUC970/N9H30

Key PadKey Pad

AVDD33AVDD33

ADC

Res1Res1

A_2A_2

Res2Res2

On boardOn board

If a user applies the Keypad using this structure and meanwhile, he/she needs the interrupt
generator, lease make sure Res ≤ K ohm and Res < .6*Res . Moreover, a . u ca is
recommended at A_ on board. I a user doesn’t need the interru t generator, lease ignore
the requirement for Res1 and Res2.

Demonstration of a key pay scan software program as follows:

rREG_CTL |= ADC_CTL_ADEN | ADC_CTL_PKWPEN;

rREG_CONF = ADC_CONF_KPCEN ;

rREG_ISR |= 0x0000FFFF;

rREG_IER |= ADC_IER_KPEIEN;

rREG_CONF |= ADC_CONF_KPCEN;

rREG_ISR = ADC_ISR_MF | ADC_ISR_KPCF;

/* keypad interrupt mode */

rREG_IER |= ADC_IER_MIEN;

do{

 while(!(rREG_ISR & ADC_ISR_KPEF)); // Waiting for Interrupt

 rREG_ISR = ADC_ISR_KPEF; //Clear KPEF flag

 rREG_CTL |= ADC_CTL_MST;

 while(!(rREG_ISR & ADC_ISR_MF));

 rREG_ISR = ADC_ISR_MF; //Clear MF flag

 if(rREG_ISR & ADC_ISR_KPCF)

 {

 rREG_ISR = ADC_ISR_KPCF; //Clear KPCF flag

 printf("interrupt correct REG_KPDATA=0x%08x\n",rREG_KPDATA);

 rREG_IER |= ADC_IER_KPUEIEN;

Aug. 14, 2018 Page 27 of 312 Rev 1.02

NUC970/N9H30

 while(!(rREG_ISR & ADC_ISR_KPUEF));

 rREG_ISR = ADC_ISR_KPUEF; //Clear KPUEF flag

 rREG_IER &= ~ADC_IER_KPUEIEN;

 }

 else

 printf("interrupt error\n");

}while(1);

 4-wire and 5-wire Touch Screen 3.5.6

The touch screen control logic and the switch could control the 4-wire and 5-wire type touch
screen. For ADC configure register T_EN (ADC_CONF[0]) should be set to 1. ADC control
register WMSWCH (ADCON[16]) (Wire Mode Switch) for 5-wire/4-wire configuration. The
following figures show the interface for 4-wire, 5-wire touch screen respectively.

Note that, the four switches to bias XP, XM, YP, YM have conduction resistance under 5 ohm.
And the pull up PMOS have 200K ohm typically.

ADC

XPXP

XMXM

YPYP

YMYM

4-wire Touch Screen4-wire Touch Screen

Aug. 14, 2018 Page 28 of 312 Rev 1.02

NUC970/N9H30

ADC

5-wire Touch Screen5-wire Touch Screen
XPXP

Bottom PlateBottom Plate YPYP

VSENSEVSENSE

XMXM

YMYM

Top PlateTop Plate

Demonstration of a 4-wire touch screen software program as follows:

unsigned short x, y,i;

rREG_CTL |= ADC_CTL_ADEN ;

rREG_CONF |= ADC_CONF_TEN | ADC_CONF_DISTMAVEN;

rREG_IER |= ADC_IER_PEDEIEN ;

rREG_ISR = ADC_ISR_TF | ADC_ISR_MF;

/* touch_xy_test interrupt mode */

rREG_IER |= ADC_IER_MIEN;

do{

 rREG_CTL |= ADC_CTL_MST;

 printf("Waiting for Interrupt\n");

 while(!(rREG_ISR & ADC_ISR_MF));

 rREG_ISR = ADC_ISR_MF; //Clear MF flag

 if(rREG_ISR & ADC_ISR_TF)

 printf("interrupt correct\n");

 else

 printf("interrupt error\n");

 rREG_ISR = ADC_ISR_TF; //Clear TF flag

 x = rREG_XYDATA & 0xFFF;

 y = (rREG_XYDATA >> 16) & 0xFFF;

 printf("x = %08x, y = %08x\n", x,y);

Aug. 14, 2018 Page 29 of 312 Rev 1.02

NUC970/N9H30

}while(1);

 4-wire Pressure Measurement 3.5.7

To distinguish pen or finger touch, the pressure of the touch needs to be determined. The IP
provides two solutions. The first method requires knowing the X-plate resistance,
measurement of the X-Position, and two additional cross-panel measurements (Z1 and Z2) of
the touch screen. Use the following Equation to calculate the touch resistance:

The second method requires knowing both the X-plate and Y-plate resistance, measurement
of X-Position and Y-Position, and Z1. Use the following Equation to calculate the touch
resistance:

(

)

For ADC configure register Z_EN (ADC_CONF[1]) should be set to 1. When Z_EN
(ADC_CONF[1]) in ADC_FM register is set; the touch pressure measure Z will be stored in
this ADC_ZDATA register.

Demonstration of a 4-wire pressure measurement software program as follows:

unsigned short x, y, z1, z2;

rREG_CTL |= ADC_CTL_ADEN ;

rREG_CONF|=ADC_CONF_TEN|ADC_CONF_DISTMAVEN|ADC_CONF_ZEN|ADC_CONF_DISZMAVEN;

rREG_ISR = ADC_ISR_MF | ADC_ISR_TF | ADC_ISR_ZF;

/* touch_xy_test interrupt mode */

rREG_IER |= ADC_IER_MIEN;

do{

 rREG_CTL |= ADC_CTL_MST;

 printf("Waiting for Interrupt\n");

 while(!(rREG_ISR & ADC_ISR_MF));

 rREG_ISR = ADC_ISR_MF; //Clear MF flag

 if((rREG_ISR&(ADC_ISR_TF|ADC_ISR_ZF))== (ADC_ISR_TF|ADC_ISR_ZF))

 printf("interrupt correct\n");

 else

 printf("interrupt error\n");

 x = rREG_XYDATA & 0xFFF;

 y = (rREG_XYDATA >> 16) & 0xFFF;

 z1 = rREG_ZDATA & 0xFFF;

 z2 = (rREG_ZDATA >> 16) & 0xFFF;

Aug. 14, 2018 Page 30 of 312 Rev 1.02

NUC970/N9H30

 printf("x = %d, y = %d,z1 = %d, z2 = %d\n", x,y,z1,z2);

 }while(1);

Aug. 14, 2018 Page 31 of 312 Rev 1.02

NUC970/N9H30

4 Advanced Interrupt Controller (AIC)

4.1 Overview

An interrupt temporarily changes the sequence of program execution to react to a particular
event such as power failure, watchdog timer timeout, transmit/receive request from Ethernet
MAC Controller, and so on. The CPU processor provides two modes of interrupt, the Fast
Interrupt (FIQ) mode for critical session and the Interrupt (IRQ) mode for general purpose.
The IRQ request is occurred when the nIRQ input is asserted. Similarly, the FIQ request is
occurred when the nFIQ input is asserted. The FIQ has privilege over the IRQ and can
preempt an ongoing IRQ. It is possible to ignore the FIQ and the IRQ by setting the F and I
bits in the current program status register (CPSR).

The Advanced Interrupt Controller (AIC) is capable of processing the interrupt requests up to
64 different sources. Currently, 61 interrupt sources are defined. Each interrupt source is
uniquely assigned to an interrupt channel. For example, the watchdog timer interrupt is
assigned to channel 1. The AIC implements a proprietary eight-level priority scheme that
categories the available 61 interrupt sources into eight priority levels. Interrupt sources within
the priority level 0 is the highest priority and the priority level 7 is the lowest. In order to make
this scheme work properly, a certain priority level must be specified to each interrupt source
during power-on initialization; otherwise, the system shall behave unexpectedly. Within each
priority level, interrupt source that is positioned in a lower channel has a higher priority.
Interrupt source that is active, enabled, and positioned in the lowest channel with priority level
0 is promoted to the FIQ. Interrupt sources within the priority levels other than 0 are routed to
the IRQ. The IRQ can be preempted by the occurrence of the FIQ. Interrupt nesting is
performed automatically by the AIC.

Though interrupt sources originated from the chip itself are intrinsically high-level sensitive,
the AIC can be configured as either low-level sensitive, high-level sensitive, negative-edge
triggered, or positive-edge triggered to each interrupt source.

4.2 Features

 AMBA APB bus interface

 External interrupts can be programmed as either edge-triggered or level-sensitive

 External interrupts can be programmed as either low-active or high-active

 Flags to reflect the status of each interrupt source

 Individual mask for each interrupt source

 Support proprietary 8-level interrupt scheme to employ the priority scheme.

 Priority methodology is adopted to allow for interrupt daisy-chaining

 Automatically masking out the lower priority interrupt during interrupt nesting

 Automatically clearing the interrupt flag when the external interrupt source is

Aug. 14, 2018 Page 32 of 312 Rev 1.02

NUC970/N9H30

programmed to be edge-triggered

4.3 Block Diagram

AIC_CTRL

Recorder
(AIC_IREC)

Encoder
(AIC_
IENC)

status

mask rstatus status

nIRQ

PRIOR

POLARTRIG astatus

Rd_IPER

EOS

Vector
Generator

(AIC_
IVEC)

prior_status

VECTOR

nFIQ

APB
bus

CLREDG

IRQ

OIRQ

Wr_IPER

NUMBER

4.4 Register Map
R: read only, W: write only, R/W: both read and write.

Register Address R/W Description Reset Value

AIC_BA = 0xB800_2000

 AIC_SCR1 AIC_BA+0x000 R/W Source Control Register 1 0x4747_4747

 AIC_SCR2 AIC_BA+0x004 R/W Source Control Register 2 0x4747_4747

 AIC_SCR3 AIC_BA+0x008 R/W Source Control Register 3 0x4747_4747

 AIC_SCR4 AIC_BA+0x00C R/W Source Control Register 4 0x4747_4747

 AIC_SCR5 AIC_BA+0x010 R/W Source Control Register 5 0x4747_4747

 AIC_SCR6 AIC_BA+0x014 R/W Source Control Register 6 0x4747_4747

 AIC_SCR7 AIC_BA+0x018 R/W Source Control Register 7 0x4747_4747

 AIC_SCR8 AIC_BA+0x01C R/W Source Control Register 8 0x4747_4747

 AIC_SCR9 AIC_BA+0x020 R/W Source Control Register 9 0x4747_4747

 AIC_SCR10 AIC_BA+0x024 R/W Source Control Register 10 0x4747_4747

 AIC_SCR11 AIC_BA+0x028 R/W Source Control Register 11 0x4747_4747

 AIC_SCR12 AIC_BA+0x02C R/W Source Control Register 12 0x4747_4747

Aug. 14, 2018 Page 33 of 312 Rev 1.02

NUC970/N9H30

 AIC_SCR13 AIC_BA+0x030 R/W Source Control Register 13 0x4747_4747

 AIC_SCR14 AIC_BA+0x034 R/W Source Control Register 14 0x4747_4747

 AIC_SCR15 AIC_BA+0x038 R/W Source Control Register 15 0x4747_4747

 AIC_SCR16 AIC_BA+0x03C R/W Source Control Register 16 0x0000_0047

 AIC_IRSR AIC_BA+0x100 R Interrupt Raw Status Register 0x0000_0000

 AIC_IRSRH AIC_BA+0x104 R Interrupt Raw Status Register (High) 0x0000_0000

 AIC_IASR AIC_BA+0x108 R Interrupt Active Status Register 0x0000_0000

 AIC_IASRH AIC_BA+0x10C R Interrupt Active Status Register (High) 0x0000_0000

 AIC_ISR AIC_BA+0x110 R Interrupt Status Register 0x0000_0000

 AIC_ISRH AIC_BA+0x114 R Interrupt Status Register (High) 0x0000_0000

 AIC_IPER AIC_BA+0x118 R Interrupt Priority Encoding Register 0x0000_0000

 AIC_ISNR AIC_BA+0x120 R Interrupt Source Number Register 0x0000_0000

 AIC_OISR AIC_BA+0x124 R Output Interrupt Status Register 0x0000_0000

 AIC_IMR AIC_BA+0x128 R Interrupt Mask Register 0x0000_0000

 AIC_IMRH AIC_BA+0x12C R Interrupt Mask Register (High) 0x0000_0000

 AIC_MECR AIC_BA+0x130 W Mask Enable Command Register Undefined

 AIC_MECRH AIC_BA+0x134 W Mask Enable Command Register (High) Undefined

 AIC_MDCR AIC_BA+0x138 W Mask Disable Command Register Undefined

 AIC_MDCRH AIC_BA+0x13C W Mask Disable Command Register (High) Undefined

 AIC_SSCR AIC_BA+0x140 W Source Set Command Register Undefined

 AIC_SSCRH AIC_BA+0x144 W Source Set Command Register (High) Undefined

 AIC_SCCR AIC_BA+0x148 W Source Clear Command Register Undefined

 AIC_SCCRH AIC_BA+0x14C W Source Clear Command Register (High) Undefined

 AIC_EOSCR AIC_BA+0x150 W End of Service Command Register Undefined

4.5 Functional Description

 Interrupt channel configuration 4.5.1

Each interrupt channel has an independent source control register to set its type and priority.
The interrupt type of all NUC970/N9H30 Series MCU internal peripherals is positive-level
triggered. This shouldn’t be changed during normal o eration. The device driver must set the
pertinent interrupt type according to the external devices. The priority level of each interrupt
channel is completely decided by the interrupted device. After power-on or reset, all the
channels are assigned to priority level 0~7 by AIC. The following figure shows the content of
source control register.

Aug. 14, 2018 Page 34 of 312 Rev 1.02

NUC970/N9H30

3

1

3

0

2

9

2

8

2

7

2

6

2

5

2

4

2

3

2

2

2

1

2

0

1

9

1

8

1

7

1

6

1

5

1

4

1

3

1

2

1

1

1

0
9 8 7 6 5 4 3 2 1 0

Type
Reserve

d
Priority

Type [7:6] Interrupt Type

Low Level Sensitive

High-Level Sensitive

Negitive-Edge

Triggered
Positive-Edge

Triggered

0 0

0 1

1 0

1 1

Type
Reserve

d
PriorityType

Reserve

d
PriorityType

Reserve

d
Priority

 Interrupt Masking 4.5.2

The NUC970/N9H30 Series MCU AIC provides a set of registers to mask individual interrupt
channel. The Mask Enable Command Register (AIC_MECR) is used to enable interrupt. Write
1 to a bit of MECR will enable the corresponding interrupt channel. Oppositely, the Mask
Disable Command Register (AIC_MDCR) is used to disable the interrupt. Write 1 to a bit of
MDCR will disable the corresponding interrupt channel. Write 0 to a bit of AIC_MECR or
AIC_MDCR has no effect. Therefore, the device driver can arbitrarily change these two
registers without kee ing their original values. I it’s necessary, the device driver can read the
Interrupt Mask Register (AIC_IMR) to know whether the interrupt channel is enabled or
disabled. If the interrupt channel is enabled, its corresponding bit is read as 1, otherwise 0.

 Interrupt Clearing and Setting 4.5.3

 or the interru t channels that are level sensitive, the device driver doesn’t need to write the
Source Clear Command Register (AIC_SCCR) or End of Service Command Register
(AIC_EOSCR) to clear any AIC status. As soon as the device’s interru t status has been was
cleared, the AIC de-asserts the interrupt request. For the interrupt channels that are edge-
triggered, the device driver must clear AIC status to de-assert the interrupt request. To clear
AIC status, the device driver may either write Source Clear Command Register (AIC_SCCR)
or End of Service Command Register (AIC_EOSCR). Write 1 to a bit of AIC_SCCR will clear
the corresponding interrupt. The usage of AIC_EOSCR will be discussed in the section
Hardware Priority Scheme.

The register Source Set Command Register (AIC_SSCR) is used to active an interrupt
channel when it is programmed to edge-triggered. Write 1 to a bit of AIC_SSCR will set the
corresponding interrupt. This feature is useful in auto-testing or software debugging.

Aug. 14, 2018 Page 35 of 312 Rev 1.02

NUC970/N9H30

 Software Priority Scheme 4.5.4

The AIC provides an Interrupt Status Register (AIC_ISR) to identify the interrupt sources. If an
interrupt channel is both active and enabled, its corresponding bit in AIC_ISR is set as 1. The
interrupt handler of FIQ or IRQ can get the interrupt sources by reading AIC_ISR. And the
service sequence is completely decided by software algorithm.

Generally, there’s a unction table to kee the interru t service routines o internal eri herals
and external devices. When the interrupt is recognized by CPU core, the FIQ or IRQ
exception handler is executed firstly. Then it will call the proper interrupt service routine
according to the AIC_ISR content. The following figure demonstrates a sequential priority
scheme where channel 1 has the highest priority and channel 17 18 has the lowest priority.

Start

Read AIC_ISR

Mask = 0x00001

AIC_ISR &

Mask != 0 ?

Call the corresponding

Interupt Service

Routine

Mask <<= 1;

Mask ==

0x40000 ?

End

Y

Y

N

__irq void sysIrqHandler()

{

Aug. 14, 2018 Page 36 of 312 Rev 1.02

NUC970/N9H30

 UINT32 volatile _mISR, _mISRH, i;

 _mISR = inpw(REG_AIC_ISR);

 _mISRH = inpw(REG_AIC_ISRH);

 for (i = 1; i <= 31; i++)

 if (_mISR & (1 << i))

 (*sysIrqHandlerTable[i])();

 for (i = 32; i <= WB_MAX_INT_SOURCE; i++)

 if (_mISRH & (1 << (i-32)))

 (*sysIrqHandlerTable[i])();

}

 Hardware Priority Scheme 4.5.5

The AIC implements a proprietary 8-level priority scheme. To use this mechanism, the proper
AIC_SCRx should be programmed before enable the interrupt channels. Similarly, the FIQ or
IRQ exception handler is executed firstly when the interrupt is recognized. The exception
handler and interrupt service routine should follow certain rules to let this mechanism work
correctly. The rules are listed below.

1. Reads IRQ Priority Encoding Register (AIC_IPER) to get the Vector (IRQ Channel x 4),

and at this mean time, the AIC_ISNR will be loaded by the current interrupt channel

number, the Vector (IRQ Channel Number x 4) represents the interrupt channel number

that is active, enabled, and has the highest priority, multiplied by 4, then stored on the

AIC_IPER. The data (Vector) got from AIC_IPER is convenient for the following interrupt

service route address calculation. Enabled, and has the highest priority.

2. Branch to the corresponding interrupt service routine by adding Vector to the base of

interrupt service routine table.

3. Write any value to AIC_EOSCR to finish the interrupt.

The priority level of the interrupt channel that is active and enabled is treated as current
priority level. It is pushed into the Priority Encoder when AIC_IPER is read. In the same time,
the AIC_ISNR was loaded by the current encoded interrupt channel number. This prevents
AIC from asserting an interrupt request if the following active and enabled interrupt has lower
priority level. Therefore, the interrupt service routine must write AIC_EOSCR to pop the
current priority level from priority Encoder to let AIC service the interrupt channel with lower
priority. This hardware priority control is helpful to implement a nesting interrupt system.

__irq void sysIrqHandler()

{

 UINT32 volatile _mISNR;

Aug. 14, 2018 Page 37 of 312 Rev 1.02

NUC970/N9H30

 _mISNR = inpw(REG_AIC_ISNR);

 (*sysIrqHandlerTable[_mISNR])();

 outpw(REG_AIC_EOSCR, 1);

}

It is very important that ISR must write AIC_EOSCR to restore to normal interrupt state once it
read the AIC_IPER. Otherwise, the next interrupt may not be serviced correctly

 Interrupt Sources 4.5.6

Priority Name Mode Source

1 (Highest)
WDT_INT,

Positive Level

Watch Dog Timer Interrupt

2 WWDT_INT Positive Level Windowed-WDT Interrupt

3 LVD_INT Positive Level Low Voltage Detect Interrupt

4 External Interrupt 0 Positive Level External Interrupt 0

5 External Interrupt 1 Positive Level External Interrupt 1

6 External Interrupt 2 Positive Level External Interrupt 2

7 External Interrupt 3 Positive Level External Interrupt 3

8 External Interrupt 4 Positive Level External Interrupt 4

9 External Interrupt 5 Positive Level External Interrupt 5

10 External Interrupt 6 Positive Level External Interrupt 6

11 External Interrupt 7 Positive Level External Interrupt 7

12 ACTL_INT Positive Level Audio Controller Interrupt

13 LCD_INT Positive Level LCD Controller Interrupt

14 CAP_INT Positive Level Sensor Interface Controller Interrupt

15 RTC_INT Positive Level RTC Interrupt

16 TMR0_INT Positive Level Timer 0 Interrupt

17 TMR1_INT Positive Level Timer 1 Interrupt

18 ADC_INT Positive Level ADC Interrupt

19 EMC0_RX_INT Positive Level EMC 0 RX Interrupt

20 EMC1_RX_INT Positive Level EMC 1 RX Interrupt

21 EMC0_TX_INT Positive Level EMC 0 TX Interrupt

22 EMC1_TX_INT Positive Level EMC 1 TX Interrupt

23 EHCI_INT Positive Level USB 2.0 Host Controller Interrupt

24 OHCI_INT Positive Level USB 1.1 Host Controller Interrupt

25 GDMA0_INT Positive Level GDMA Channel 0 Interrupt

26 GDMA1_INT Positive Level GDMA Channel 1 Interrupt

Aug. 14, 2018 Page 38 of 312 Rev 1.02

NUC970/N9H30

27 SDH_INT Positive Level SD/SDIO Host Interrupt

28 SIC_INT Positive Level SIC Interrupt

29 UDC_INT Positive Level USB Device Controller Interrupt

30 TMR2_INT Positive Level Timer 2 Interrupt

31 TMR3_INT Positive Level Timer 3 Interrupt

32 TMR4_INT Positive Level Timer 4 Interrupt

33 JPEG_INT Positive Level JPEG Engine Interrupt

34 GE2D_INT Positive Level 2D Graphic Engine Interrupt

35 CRYPTO_INT Positive Level CRYPTO Engine Interrupt

36 UART0_INT Positive Level UART 0 Interrupt

37 UART1_INT Positive Level UART 1 Interrupt

38 UART2_INT Positive Level UART 2 Interrupt

39 UART4_INT Positive Level UART 4 Interrupt

40 UART6_INT Positive Level UART 6 Interrupt

41 UART8_INT Positive Level UART 8 Interrupt

42 UART10_INT Positive Level UART 10 Interrupt

43 UART3_INT Positive Level UART 3 Interrupt

44 UART5_INT Positive Level UART 5 Interrupt

45 UART7_INT Positive Level UART 7 Interrupt

46 UART9_INT Positive Level UART 9 Interrupt

47 ETMR0_INT Positive Level Enhanced Timer 0 Interrupt

48 ETMR1_INT Positive Level Enhanced Timer 1 Interrupt

49 ETMR2_INT Positive Level Enhanced Timer 2 Interrupt

50 ETMR3_INT Positive Level Enhanced Timer 3 Interrupt

51 USI0_INT Positive Level USI 0 Interrupt

52 USI1_INT Positive Level USI 1 Interrupt

53 I2C0_INT Positive Level I2C 0 Interrupt

54 I2C1_INT Positive Level I2C 1 Interrupt

55 SMC0_INT Positive Level SmartCard 0 Interrupt

56 SMC1_INT Positive Level SmartCard 1 Interrupt

57 GPIO_INT Positive Level GPIO Interrupt

58 CAN0_INT Positive Level CAN 0 Interrupt

59 CAN1_INT Positive Level CAN 1 Interrupt

60 PWM_INT Positive Level PWM Interrupt

61 KPI_INT Positive Level KPI Interrupt

Aug. 14, 2018 Page 39 of 312 Rev 1.02

NUC970/N9H30

Aug. 14, 2018 Page 40 of 312 Rev 1.02

NUC970/N9H30

5 CAN

5.1 Overview

The C_CAN consists of the CAN Core, Message RAM, Message Handler, Control Registers
and Module Interface. The CAN Core performs communication according to the CAN protocol
version 2.0 part A and B. The bit rate can be programmed to values up to 1MBit/s. For the
connection to the physical layer, additional transceiver hardware is required.

For communication on a CAN network, individual Message Objects are configured. The
Message Objects and Identifier Masks for acceptance filtering of received messages are
stored in the Message RAM. All functions concerning the handling of messages are
implemented in the Message Handler. These functions include acceptance filtering, the
transfer of messages between the CAN Core and the Message RAM, and the handling of
transmission requests as well as the generation of the module interrupt.

The register set of the C_CAN can be accessed directly by the software through the module
interface. These registers are used to control/configure the CAN Core and the Message
Handler and to access the Message RAM.

5.2 Features

 Supports CAN protocol version 2.0 part A and B

 Bit rates up to 1 MBit/s

 32 Message Objects

 Each Message Object has its own identifier mask

 Programmable FIFO mode (concatenation of Message Objects)

 Maskable interrupt

 Disabled Automatic Re-transmission mode for Time Triggered CAN applications

 Programmable loop-back mode for self-test operation

 16-bit module interfaces to the AMBA APB bus

 Supports wake-up function

5.3 Block Diagram

The C_CAN interfaces with the AMBA APB bus. The following figure shows the block diagram
of the C_CAN.

 CAN Core

CAN Protocol Controller and Rx/Tx Shift Register for serial/parallel conversion of messages.

Aug. 14, 2018 Page 41 of 312 Rev 1.02

NUC970/N9H30

 Message RAM

Stores Message Objects and Identifier Masks

 Registers

All registers used to control and to configure the C_CAN.

 Message Handler

State Machine that controls the data transfer between the Rx/Tx Shift Register of the CAN
Core and the Message RAM as well as the generation of interrupts as programmed in the
Control and Configuration Registers.

 Module Interface

C_CAN interfaces to the AMBA APB 16-bit bus from ARM.

5.4 Register Map

Register Offset R/W Description Reset Value

Aug. 14, 2018 Page 42 of 312 Rev 1.02

NUC970/N9H30

CAN0_BA = 0xB800_0000

CAN1_BA = 0xB800_4000

CAN_CON CANx_BA+0x00 R/W Control Register 0x0000_0001

CAN_STATUS CANx_BA+0x04 R/W Status Register 0x0000_0000

CAN_ERR CANx_BA+0x08 R Error Counter 0x0000_0000

CAN_BTIME CANx_BA+0x0C R/W Bit Timing Register 0x0000_2301

CAN_IIDR CANx_BA+0x10 R Interrupt Identifier Register 0x0000_0000

CAN_TEST CANx_BA+0x14 R/W Test Register *(1)

CAN_BRPE CANx_BA+0x18 R/W BRP Extension Register 0x0000_0000

CAN_IF1_CREQ

CAN_IF2_CREQ

CANx_BA+0x20

CANx_BA+0x80
R/W IFn (*2) Command Request Registers 0x0000_0001

CAN_IF1_CMASK

CAN_IF2_CMASK

CANx_BA+0x24

CANx_BA+0x84
R/W IFn Command Mask Registers 0x0000_0000

CAN_IF1_MASK1

CAN_IF2_MASK1

CANx_BA+0x28

CANx_BA+0x88
R/W IFn Mask 1 Register 0x0000_FFFF

CAN_IF1_MASK2

CAN_IF2_MASK2

CANx_BA+0x2C

CANx_BA+0x8C
R/W IFn Mask 2 Register 0x0000_FFFF

CAN_IF1_ARB1

CAN_IF2_ARB1

CANx_BA+0x30

CANx_BA+0x90
R/W IFn Arbitration 1 Register 0x0000_0000

CAN_IF1_ARB2

CAN_IF2_ARB2

CANx_BA+0x34

CANx_BA+0x94
R/W IFn Arbitration 2 Register 0x0000_0000

CAN_IF1_MCON

CAN_IF2_MCON

CANx_BA+0x38

CANx_BA+0x98
R/W IFn Message Control Registers 0x0000_0000

CAN_IF1_DAT_An/

CAN_IF1_DAT_Bn/

CAN_IF2_DAT_An/

CAN_IF2_DAT_Bn/

CANx_BA+0x3C~40

CANx_BA+0x44~48

CANx_BA+0x9C~A0

CANx_BA+0xA4~A8

R/W

IFn Data An (*3) and Data Bn (*3) Registers

eg: CAN_IF1_DAT_A1 = CAN_BA+0x3Ch

 CAN_IF1_DAT_A2 = CAN_BA+0x40h

0x0000_0000

CAN_TXREQ1

CAN_TXREQ2

CANx_BA+0x100

CANx_BA+0x104
R Transmission Request Registers 1 & 2 0x0000_0000

CAN_NDAT1

CAN_NDAT2

CANx_BA+0x120

CANx_BA+0x124
R New Data Registers 1 & 2 0x0000_0000

CAN_IPND1

CAN_IPND2

CANx_BA+0x140

CANx_BA+0x144
R Interrupt Pending Registers 1 & 2 0x0000_0000

CAN_MVLD1

CAN_MVLD2

CANx_BA+0x160

CANx_BA+0x164
R Message Valid Registers 1 & 2 0x0000_0000

CAN_WU_EN CANx_BA+0x168 R/W Wake-up Function Enable 0x0000_0000

CAN_WU_STATUS CANx_BA+0x16C R/W Wake-up Function Status 0x0000_0000

Aug. 14, 2018 Page 43 of 312 Rev 1.02

NUC970/N9H30

5.5 Functional Description

 CAN5.5.1 Protocol

The CAN Data Frame format consist SOF, Arbitration Field, Control Field, Data Field, CRC
field, ACK Field and EOF.

Each field describe as follow:

 SOF: Start of Frame

 Arbitration Field: Any potential bus conflicts are resolved by bitwise arbitration

 Control Field: Include 4 bits Data Length Code and 2 bits Reserved Bits

 Data Field: Containing from zero to eight bytes

 CRC Field: Containing a fifteen bit cyclic redundancy check code

 ACK Field: An empty slot which will be filled by every node that receives the frame it
does NOT say that the node you intended the data for got it, just that at least one node
on the whole network got it

 EOF: End of Frame

 CAN Baud Rate Setting 5.5.2

CAN supports bit rates in the range of lower than 1 Kbit/s up to 1000 Kbit/s .

CAN transfer rate f_speed can be show：

⁄ , where tNBT is bit time.

According to the CAN specification, the bit time is divided into four segments (see the
following figure). The Synchronization Segment, the Propagation Time Segment, the Phase

Buffer Segment 1 and the Phase Buffer Segment 2：

 The Synchronization Segment, Sync_Seg, is that part of the bit time where edges of the

Aug. 14, 2018 Page 44 of 312 Rev 1.02

NUC970/N9H30

CAN bus level are expected to occur. The distance between an edge that occurs outside
of Sync_Seg, and the Sync_Seg is called the phase error of that edge.

 The Propagation Time Segment, Prop_Seg, is intended to compensate for the physical
delay times within the CAN network.

 The Phase Buffer Segments Phase_Seg1 and Phase_Seg2 surround the Sample Point.
The (Re-)Synchronization Jump Width (SJW) defines how far a re-synchronization may
move the Sample Point inside the limits defined by the Phase Buffer Segments to
compensate for edge phase errors.

Nominal CAN Bit Time

Sync_ Seg Prop_Seg Phase_Seg1 Phase_Seg2

1 Time Quantum(tq)

 Sample Point

The length of the bit time is [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] *tq

The bit time may consist of 4 to 25 time quanta.

The length of the time quantum tq is

⁄

BRP: Baud Rate PreScaler Value

 : System Clock

Aug. 14, 2018 Page 45 of 312 Rev 1.02

NUC970/N9H30

In these bit timing registers of CAN controller

 (
)

TSEG1, TSEG2 are the control bit of register CAN_BTIME.

According above describe, we can find the baud-rate function：

⁄

⁄

()

⁄

⁄ ⁄

 ⁄

fAPB_CLK : System clock

TSEG1, TSEG2 and BPR are the control bit filed of register CAN_BITME

For Example:

If CAN bus baud-rate is 1000kbps, CPU APB clock is 75 MHz，we can set TSEG1 =6,

TSEG2 =6, BPR =4. The speed is :

 ⁄

Aug. 14, 2018 Page 46 of 312 Rev 1.02

NUC970/N9H30

 ⁄

We also can set TSEG1 =7, TSEG2 =5, other parameter not change, the CAN speed will
keep on 1000 kbps, but the sample point will be changed.

 CAN Module Register 5.5.3

CAN module register address base is CAN0_BA=0xB800_0000，There are three modules of

CAN registers: CAN Protocol Related Registers, Message Interface Registers and Message
Handler Registers. These registers address base show as follow:

Register Module Offset Register name

CAN Protocol Related Registers 0x00 ~ 0x18

CAN_CON CAN_STATUS

CAN_ERR CAN_BTIME

CAN_IIDR CAN_TEST

CAN_BRPE

Message Interface Registers 0x20 ~ 0xA8

CAN_IFn_CREQ* CAN_IFn_CMASK*

CAN_IFn_MASK1* CAN_IFn_MASK2*

CAN_IFn_ARB1* CAN_IFn_ARB2*

CAN_IFn_MCON* CAN_IFn_DAT_An*

CAN_IFn_DAT_Bn*

Message Handler Registers 0x100 ~ 0x164
CAN_TXREQn* CAN_NDATn*

CAN_IPNDn* CAN_MVLD1n*

 *： n=1或2

 CAN Protocol Related Registers

These registers are related to the CAN protocol controller in the CAN Core. They control the
operating modes and the configuration of the CAN bit timing and provide status information.

 Message Interface Register Sets

There are two sets of Interface Registers which are used to control the CPU access to the
Message RAM. The Interface Registers avoid conflicts between CPU access to the Message
RAM and CAN message reception and transmission by buffering the data to be transferred.

 Message Handler Registers

All Message Handler registers are read-only. Their contents (TxRqst, NewDat, IntPnd, and
MsgVal bits of each Message Object and the Interrupt Identifier) are status information
provided by the Message Handler FSM.

Aug. 14, 2018 Page 47 of 312 Rev 1.02

NUC970/N9H30

These registers relationship show in follow figure:

APB BUS

Interface Command

Registers

IF1 Command Request

IF1 Command Mask

IF2 Command Request

IF2 Command Mask

IF1 MASK1,2

IF1 Aritration1/2

IF1 Message CTRL

IF1 DATA A 1/2

IF1 DATA B 1/2

IF2 MASK1/2

IF2 Aritration 1/2

IF2 Message CTRL

IF2 DATA A 1/2

IF2 DATA B 1/2

Message Buffer

Registers

Message RAM

Message Object 1

Message Object 2

.

.

Message Object 32

Message Handler

Transmission Request 1/2

New Data 1/2

Interrupt Pending 1/2

Message Valid 1/2

CAN Core /

Shift Registers

CAN BUS

Write Transfer

Read Transfer

Transmit

Receive

Transmit a

message object

Transmit a

CAN frame

The configuration of the Message Objects in the Message RAM will (with the exception of the
bits MsgVal, NewDat, IntPnd, and TxRqst) not affected by resetting the chip. All the Message
Objects must be initialized by the CPU or they must be not valid (MsgVal = ‘ ’) and the bit
timing must be configured before the CPU clears the Init bit in the CAN Control Register.

The configuration of a Message Object is done by programming Mask, Arbitration, Control
and Data field of one of the two interfaces register sets to the desired values. By writing to the
corresponding IFx Command Request Register, the IFx Message Buffer Registers are loaded
into the addressed Message Object in the Message RAM.

When the Init bit in the CAN Control Register is cleared, the CAN Protocol Controller state
machine of the CAN_Core and the Message Handler State Machine control the C_CAN’s
internal data flow. Received messages that pass the acceptance filtering are stored into the
Message RAM, messages with ending transmission request are loaded into the CAN_Core’s
Shift Register and are transmitted via the CAN bus.

The CPU reads received messages and updates messages to be transmitted via the IFx
Interface Registers. Depending on the configuration, the CPU is interrupted on certain CAN
message and CAN error events.

 Transfer CAN Message 5.5.4

The C_CAN Module includes two Modes: Normal Mode and Basic Mode.

Aug. 14, 2018 Page 48 of 312 Rev 1.02

NUC970/N9H30

In Basic mode:

The C_CAN module runs without the Message RAM. The IF1 Registers are used as Transmit
Buffer. The IF2 Registers are used as Receive Buffer. After the reception of a message the
contents of the shift register is stored into the IF2 Registers.

In Basic Mode, the transmit message flow as below figure:

We can follow below steps to transfer a message to CAN bus:

1. Set CAN bus Baud rate.

2. Enter Basic Mode: Set bit TEST(CAN_CON[7]) and bit BASIC(CAN_TEST[2])

3. Set transmit message to IF1 registers.

4. Set bit BUSY(CAN_CREQ[15]) to start transfer message. This bit will be auto-cleared

when finish transmitting.

When use Basic Mode, please care following status:

 Make sure CAN Module enter Test Mode

 Make sure the bit BUSY(CAN_CREQ[15]) is set “1”.

Aug. 14, 2018 Page 49 of 312 Rev 1.02

NUC970/N9H30

 Receive CAN Message 5.5.5

There two method to receive CAN message: one is polling the bit NEWDAT
(CAN_IFn_MCON[15]) the other is use Rx interrupt. The received message will be store to
IF2 registers.

Following figure means the flow of polling bitNEWDAT(CAN_IFn_MCON[15]):

In Basci Mode, use polling mode to receive message flow as below:

1. Set CAN bus Baud rate.

2. Enter Basic Mode: Set bit TEST(CAN_CON[7]) and bit BASIC(CAN_TEST[2])

3. Polling bit NEWDAT(CAN_IF2_MCON[15]) until this bit be set “1”

Aug. 14, 2018 Page 50 of 312 Rev 1.02

NUC970/N9H30

4. Read CAN_IF2 registers can get received message.

Following figure shows the flow that use RX_OK interrupt to receive message:

In Basic Mode, use RX_OK interrupt to receive message flow as follow:

1. Set CAN bus Baud rate.

2. Enter Basic Mode: Set bit TEST(CAN_CON[7]) and bit BASIC(CAN_TEST[2])

3. Enable interrupt and status change interrupt: Set bit IE(CAN_CON[1]) and bit

SIE(CAN_CON[2]).

4. Wait interrupt happened. If bit RX_OK(CAN_STATUS[4]) is “1”, means CAN module

receive a message. Read IF2 registers can get this message.

 Wakeup Function 5.5.6

Set bit WAKEUP_EN(CAN_WU_EN[0]) can enable wakeup function. And User can wake-up
system when there is a falling edge in the CAN_Rx pin.

Aug. 14, 2018 Page 51 of 312 Rev 1.02

NUC970/N9H30

6 Cryptographic Accelerator (NUC970 only)

6.1 Overview

The Crypto (Cryptographic Accelerator) includes a secure pseudo random number generator
(PRNG) core and supports AES, DES/TDES, SHA and HMAC algorithms.

The PRNG core supports 64 bits, 128 bits, 192 bits, and 256 bits random number generation.

The AES accelerator is an implementation fully compliant with the AES (Advance Encryption
Standard) encryption and decryption algorithm. The AES accelerator supports ECB, CBC,
CFB, OFB, CTR, CBC-CS1, CBC-CS2, and CBC-CS3 mode.

The DES/TDES accelerator is an implementation fully compliant with the DES and Triple DES
encryption/decryption algorithm. The DES/TDES accelerator supports ECB, CBC, CFB, OFB,
and CTR mode.

The SHA accelerator is an implementation fully compliant with the SHA-160, SHA-224, SHA-
256, SHA-384, and SHA-512 and corresponding HMAC algorithms

6.2 Features

 PRNG

 Supports 64 bits, 128 bits , 192 bits, and 256 bits random number generation

 AES

 Supports FIPS NIST 197

 Supports SP800-38A and addendum

 Supports 128, 192, and 256 bits key

 Supports both encryption and decryption

 Supports ECB, CBC, CFB, OFB , CTR, CBC-CS1, CBC-CS2, and CBC-CS3 mode

 Supports external key (AES key from MTP)

 DES

 Supports FIPS 46-3

 Supports both encryption and decryption

 Supports ECB, CBC, CFB, OFB, and CTR mode

 TDES

 Supports FIPS NIST 800-67

 Implemented according to the X9.52 standard

Aug. 14, 2018 Page 52 of 312 Rev 1.02

NUC970/N9H30

 Supports two keys or three keys mode

 Supports both encryption and decryption

 Supports ECB, CBC, CFB, OFB, and CTR mode

 SHA

 Supports FIPS NIST 180, 180-2

 Supports SHA-160, SHA-224, SHA-256, SHA-384, and SHA-512

 HMAC

 Supports FIPS NIST 180, 180-2

 Supports HMAC-SHA-160, HMAC-SHA-224, HMAC-SHA-256, HMAC-SHA-384, and
HMAC-SHA-512

6.3 Block Diagram

6.4 Register Map

Register Offset R/W Description Reset Value

Aug. 14, 2018 Page 53 of 312 Rev 1.02

NUC970/N9H30

CRYPTO Base Address:

CRYP_BA = 0xB000_C000

CRPT_INTEN CRYP_BA+0x000 R/W Crypto Interrupt Enable Control Register 0x0000_0000

CRPT_INTSTS CRYP_BA+0x004 R/W Crypto Interrupt Flag 0x0000_0000

CRPT_PRNG_CTL CRYP_BA+0x008 R/W PRNG Control Register 0x0000_0000

CRPT_PRNG_SEED CRYP_BA+0x00C W Seed for PRNG Undefined

CRPT_PRNG_KEY0 CRYP_BA+0x010 R PRNG Generated Key0 Undefined

CRPT_PRNG_KEY1 CRYP_BA+0x014 R PRNG Generated Key1 Undefined

CRPT_PRNG_KEY2 CRYP_BA+0x018 R PRNG Generated Key2 Undefined

CRPT_PRNG_KEY3 CRYP_BA+0x01C R PRNG Generated Key3 Undefined

CRPT_PRNG_KEY4 CRYP_BA+0x020 R PRNG Generated Key4 Undefined

CRPT_PRNG_KEY5 CRYP_BA+0x024 R PRNG Generated Key5 Undefined

CRPT_PRNG_KEY6 CRYP_BA+0x028 R PRNG Generated Key6 Undefined

CRPT_PRNG_KEY7 CRYP_BA+0x02C R PRNG Generated Key7 Undefined

CRPT_AES_FDBCK0
CRYP_BA+0x050

R AES Engine Output Feedback Data after Cryptographic
Operation

0x0000_0000

CRPT_AES_FDBCK1
CRYP_BA+0x054

R AES Engine Output Feedback Data after Cryptographic
Operation

0x0000_0000

CRPT_AES_FDBCK2
CRYP_BA+0x058

R AES Engine Output Feedback Data after Cryptographic
Operation

0x0000_0000

CRPT_AES_FDBCK3
CRYP_BA+0x05C

R AES Engine Output Feedback Data after Cryptographic
Operation

0x0000_0000

CRPT_TDES_FDBCKH
CRYP_BA+0x060

R TDES/DES Engine Output Feedback High Word Data
after Cryptographic Operation

0x0000_0000

CRPT_TDES_FDBCKL
CRYP_BA+0x064

R TDES/DES Engine Output Feedback Low Word Data
after Cryptographic Operation

0x0000_0000

CRPT_AES_CTL CRYP_BA+0x100 R/W AES Control Register 0x0000_0000

CRPT_AES_STS CRYP_BA+0x104 R AES Engine Flag 0x0001_0100

CRPT_AES_DATIN CRYP_BA+0x108 R/W AES Engine Data Input Port Register 0x0000_0000

CRPT_AES_DATOUT CRYP_BA+0x10C R AES Engine Data Output Port Register 0x0000_0000

CRPT_AES0_KEY0 CRYP_BA+0x110 R/W AES Key Word 0 Register for Channel 0 0x0000_0000

CRPT_AES0_KEY1 CRYP_BA+0x114 R/W AES Key Word 1 Register for Channel 0 0x0000_0000

CRPT_AES0_KEY2 CRYP_BA+0x118 R/W AES Key Word 2 Register for Channel 0 0x0000_0000

CRPT_AES0_KEY3 CRYP_BA+0x11C R/W AES Key Word 3 Register for Channel 0 0x0000_0000

CRPT_AES0_KEY4 CRYP_BA+0x120 R/W AES Key Word 4 Register for Channel 0 0x0000_0000

CRPT_AES0_KEY5 CRYP_BA+0x124 R/W AES Key Word 5 Register for Channel 0 0x0000_0000

CRPT_AES0_KEY6 CRYP_BA+0x128 R/W AES Key Word 6 Register for Channel 0 0x0000_0000

CRPT_AES0_KEY7 CRYP_BA+0x12C R/W AES Key Word 7 Register for Channel 0 0x0000_0000

CRPT_AES0_IV0 CRYP_BA+0x130 R/W AES Initial Vector Word 0 Register for Channel 0 0x0000_0000

Aug. 14, 2018 Page 54 of 312 Rev 1.02

NUC970/N9H30

CRPT_AES0_IV1 CRYP_BA+0x134 R/W AES Initial Vector Word 1 Register for Channel 0 0x0000_0000

CRPT_AES0_IV2 CRYP_BA+0x138 R/W AES Initial Vector Word 2 Register for Channel 0 0x0000_0000

CRPT_AES0_IV3 CRYP_BA+0x13C R/W AES Initial Vector Word 3 Register for Channel 0 0x0000_0000

CRPT_AES0_SADDR CRYP_BA+0x140 R/W AES DMA Source Address Register for Channel 0 0x0000_0000

CRPT_AES0_DADDR CRYP_BA+0x144 R/W AES DMA Destination Address Register for Channel 0 0x0000_0000

CRPT_AES0_CNT CRYP_BA+0x148 R/W AES Byte Count Register for Channel 0 0x0000_0000

CRPT_AES1_KEY0 CRYP_BA+0x14C R/W AES Key Word 0 Register for Channel 1 0x0000_0000

CRPT_AES1_KEY1 CRYP_BA+0x150 R/W AES Key Word 1 Register for Channel 1 0x0000_0000

CRPT_AES1_KEY2 CRYP_BA+0x154 R/W AES Key Word 2 Register for Channel 1 0x0000_0000

CRPT_AES1_KEY3 CRYP_BA+0x158 R/W AES Key Word 3 Register for Channel 1 0x0000_0000

CRPT_AES1_KEY4 CRYP_BA+0x15C R/W AES Key Word 4 Register for Channel 1 0x0000_0000

CRPT_AES1_KEY5 CRYP_BA+0x160 R/W AES Key Word 5 Register for Channel 1 0x0000_0000

CRPT_AES1_KEY6 CRYP_BA+0x164 R/W AES Key Word 6 Register for Channel 1 0x0000_0000

CRPT_AES1_KEY7 CRYP_BA+0x168 R/W AES Key Word 7 Register for Channel 1 0x0000_0000

CRPT_AES1_IV0 CRYP_BA+0x16C R/W AES Initial Vector Word 0 Register for Channel 1 0x0000_0000

CRPT_AES1_IV1 CRYP_BA+0x170 R/W AES Initial Vector Word 1 Register for Channel 1 0x0000_0000

CRPT_AES1_IV2 CRYP_BA+0x174 R/W AES Initial Vector Word 2 Register for Channel 1 0x0000_0000

CRPT_AES1_IV3 CRYP_BA+0x178 R/W AES Initial Vector Word 3 Register for Channel 1 0x0000_0000

CRPT_AES1_SADDR CRYP_BA+0x17C R/W AES DMA Source Address Register for Channel 1 0x0000_0000

CRPT_AES1_DADDR CRYP_BA+0x180 R/W AES DMA Destination Address Register for Channel 1 0x0000_0000

CRPT_AES1_CNT CRYP_BA+0x184 R/W AES Byte Count Register for Channel 1 0x0000_0000

CRPT_AES2_KEY0 CRYP_BA+0x188 R/W AES Key Word 0 Register for Channel 2 0x0000_0000

CRPT_AES2_KEY1 CRYP_BA+0x18C R/W AES Key Word 1 Register for Channel 2 0x0000_0000

CRPT_AES2_KEY2 CRYP_BA+0x190 R/W AES Key Word 2 Register for Channel 2 0x0000_0000

CRPT_AES2_KEY3 CRYP_BA+0x194 R/W AES Key Word 3 Register for Channel 2 0x0000_0000

CRPT_AES2_KEY4 CRYP_BA+0x198 R/W AES Key Word 4 Register for Channel 2 0x0000_0000

CRPT_AES2_KEY5 CRYP_BA+0x19C R/W AES Key Word 5 Register for Channel 2 0x0000_0000

CRPT_AES2_KEY6 CRYP_BA+0x1A0 R/W AES Key Word 6 Register for Channel 2 0x0000_0000

CRPT_AES2_KEY7 CRYP_BA+0x1A4 R/W AES Key Word 7 Register for Channel 2 0x0000_0000

CRPT_AES2_IV0 CRYP_BA+0x1A8 R/W AES Initial Vector Word 0 Register for Channel 2 0x0000_0000

CRPT_AES2_IV1 CRYP_BA+0x1AC R/W AES Initial Vector Word 1 Register for Channel 2 0x0000_0000

CRPT_AES2_IV2 CRYP_BA+0x1B0 R/W AES Initial Vector Word 2 Register for Channel 2 0x0000_0000

CRPT_AES2_IV3 CRYP_BA+0x1B4 R/W AES Initial Vector Word 3 Register for Channel 2 0x0000_0000

CRPT_AES2_SADDR CRYP_BA+0x1B8 R/W AES DMA Source Address Register for Channel 2 0x0000_0000

CRPT_AES2_DADDR CRYP_BA+0x1BC R/W AES DMA Destination Address Register for Channel 2 0x0000_0000

Aug. 14, 2018 Page 55 of 312 Rev 1.02

NUC970/N9H30

CRPT_AES2_CNT CRYP_BA+0x1C0 R/W AES Byte Count Register for Channel 2 0x0000_0000

CRPT_AES3_KEY0 CRYP_BA+0x1C4 R/W AES Key Word 0 Register for Channel 3 0x0000_0000

CRPT_AES3_KEY1 CRYP_BA+0x1C8 R/W AES Key Word 1 Register for Channel 3 0x0000_0000

CRPT_AES3_KEY2 CRYP_BA+0x1CC R/W AES Key Word 2 Register for Channel 3 0x0000_0000

CRPT_AES3_KEY3 CRYP_BA+0x1D0 R/W AES Key Word 3 Register for Channel 3 0x0000_0000

CRPT_AES3_KEY4 CRYP_BA+0x1D4 R/W AES Key Word 4 Register for Channel 3 0x0000_0000

CRPT_AES3_KEY5 CRYP_BA+0x1D8 R/W AES Key Word 5 Register for Channel 3 0x0000_0000

CRPT_AES3_KEY6 CRYP_BA+0x1DC R/W AES Key Word 6 Register for Channel 3 0x0000_0000

CRPT_AES3_KEY7 CRYP_BA+0x1E0 R/W AES Key Word 7 Register for Channel 3 0x0000_0000

CRPT_AES3_IV0 CRYP_BA+0x1E4 R/W AES Initial Vector Word 0 Register for Channel 3 0x0000_0000

CRPT_AES3_IV1 CRYP_BA+0x1E8 R/W AES Initial Vector Word 1 Register for Channel 3 0x0000_0000

CRPT_AES3_IV2 CRYP_BA+0x1EC R/W AES Initial Vector Word 2 Register for Channel 3 0x0000_0000

CRPT_AES3_IV3 CRYP_BA+0x1F0 R/W AES Initial Vector Word 3 Register for Channel 3 0x0000_0000

CRPT_AES3_SADDR CRYP_BA+0x1F4 R/W AES DMA Source Address Register for Channel 3 0x0000_0000

CRPT_AES3_DADDR CRYP_BA+0x1F8 R/W AES DMA Destination Address Register for Channel 3 0x0000_0000

CRPT_AES3_CNT CRYP_BA+0x1FC R/W AES Byte Count Register for Channel 3 0x0000_0000

CRPT_TDES_CTL CRYP_BA+0x200 R/W TDES/DES Control Register 0x0000_0000

CRPT_TDES_STS CRYP_BA+0x204 R TDES/DES Engine Flag 0x0001_0100

CRPT_TDES0_KEY1H CRYP_BA+0x208 R/W TDES/DES Key 1 High Word Register for Channel 0 0x0000_0000

CRPT_TDES0_KEY1L CRYP_BA+0x20C R/W TDES/DES Key 1 Low Word Register for Channel 0 0x0000_0000

CRPT_TDES0_KEY2H CRYP_BA+0x210 R/W TDES Key 2 High Word Register for Channel 0 0x0000_0000

CRPT_TDES0_KEY2L CRYP_BA+0x214 R/W TDES Key 2 Low Word Register for Channel 0 0x0000_0000

CRPT_TDES0_KEY3H CRYP_BA+0x218 R/W TDES Key 3 High Word Register for Channel 0 0x0000_0000

CRPT_TDES0_KEY3L CRYP_BA+0x21C R/W TDES Key 3 Low Word Register for Channel 0 0x0000_0000

CRPT_TDES0_IVH
CRYP_BA+0x220

R/W TDES/DES Initial Vector High Word Register for
Channel 0

0x0000_0000

CRPT_TDES0_IVL
CRYP_BA+0x224

R/W TDES/DES Initial Vector Low Word Register for
Channel 0

0x0000_0000

CRPT_TDES0_SADDR
CRYP_BA+0x228

R/W TDES/DES DMA Source Address Register for Channel
0

0x0000_0000

CRPT_TDES0_DADDR
CRYP_BA+0x22C

R/W TDES/DES DMA Destination Address Register for
Channel 0

0x0000_0000

CRPT_TDES0_CNT CRYP_BA+0x230 R/W TDES/DES Byte Count Register for Channel 0 0x0000_0000

CRPT_TDES_DATIN CRYP_BA+0x234 R/W TDES/DES Engine Input data Word Register 0x0000_0000

CRPT_TDES_DATOUT CRYP_BA+0x238 R TDES/DES Engine Output data Word Register 0x0000_0000

CRPT_TDES1_KEY1H CRYP_BA+0x248 R/W TDES/DES Key 1 High Word Register for Channel 1 0x0000_0000

CRPT_TDES1_KEY1L CRYP_BA+0x24C R/W TDES/DES Key 1 Low Word Register for Channel 1 0x0000_0000

Aug. 14, 2018 Page 56 of 312 Rev 1.02

NUC970/N9H30

CRPT_TDES1_KEY2H CRYP_BA+0x250 R/W TDES Key 2 High Word Register for Channel 1 0x0000_0000

CRPT_TDES1_KEY2L CRYP_BA+0x254 R/W TDES Key 2 Low Word Register for Channel 1 0x0000_0000

CRPT_TDES1_KEY3H CRYP_BA+0x258 R/W TDES Key 3 High Word Register for Channel 1 0x0000_0000

CRPT_TDES1_KEY3L CRYP_BA+0x25C R/W TDES Key 3 Low Word Register for Channel 1 0x0000_0000

CRPT_TDES1_IVH
CRYP_BA+0x260

R/W TDES/DES Initial Vector High Word Register for
Channel 1

0x0000_0000

CRPT_TDES1_IVL
CRYP_BA+0x264

R/W TDES/DES Initial Vector Low Word Register for
Channel 1

0x0000_0000

CRPT_TDES1_SADDR
CRYP_BA+0x268

R/W TDES/DES DMA Source Address Register for Channel
1

0x0000_0000

CRPT_TDES1_DADDR
CRYP_BA+0x26C

R/W TDES/DES DMA Destination Address Register for
Channel 1

0x0000_0000

CRPT_TDES1_CNT CRYP_BA+0x270 R/W TDES/DES Byte Count Register for Channel 1 0x0000_0000

CRPT_TDES2_KEY1H CRYP_BA+0x288 R/W TDES/DES Key 1 High Word Register for Channel 2 0x0000_0000

CRPT_TDES2_KEY1L CRYP_BA+0x28C R/W TDES/DES Key 1 Low Word Register for Channel 2 0x0000_0000

CRPT_TDES2_KEY2H CRYP_BA+0x290 R/W TDES Key 2 High Word Register for Channel 2 0x0000_0000

CRPT_TDES2_KEY2L CRYP_BA+0x294 R/W TDES Key 2 Low Word Register for Channel 2 0x0000_0000

CRPT_TDES2_KEY3H CRYP_BA+0x298 R/W TDES Key 3 High Word Register for Channel 2 0x0000_0000

CRPT_TDES2_KEY3L CRYP_BA+0x29C R/W TDES Key 3 Low Word Register for Channel 2 0x0000_0000

CRPT_TDES2_IVH
CRYP_BA+0x2A0

R/W TDES/DES Initial Vector High Word Register for
Channel 2

0x0000_0000

CRPT_TDES2_IVL
CRYP_BA+0x2A4

R/W TDES/DES Initial Vector Low Word Register for
Channel 2

0x0000_0000

CRPT_TDES2_SADDR
CRYP_BA+0x2A8

R/W TDES/DES DMA Source Address Register for Channel
2

0x0000_0000

CRPT_TDES2_DADDR
CRYP_BA+0x2AC

R/W TDES/DES DMA Destination Address Register for
Channel 2

0x0000_0000

CRPT_TDES2_CNT CRYP_BA+0x2B0 R/W TDES/DES Byte Count Register for Channel 2 0x0000_0000

CRPT_TDES3_KEY1H CRYP_BA+0x2C8 R/W TDES/DES Key 1 High Word Register for Channel 3 0x0000_0000

CRPT_TDES3_KEY1L CRYP_BA+0x2CC R/W TDES/DES Key 1 Low Word Register for Channel 3 0x0000_0000

CRPT_TDES3_KEY2H CRYP_BA+0x2D0 R/W TDES Key 2 High Word Register for Channel 3 0x0000_0000

CRPT_TDES3_KEY2L CRYP_BA+0x2D4 R/W TDES Key 2 Low Word Register for Channel 3 0x0000_0000

CRPT_TDES3_KEY3H CRYP_BA+0x2D8 R/W TDES Key 3 High Word Register for Channel 3 0x0000_0000

CRPT_TDES3_KEY3L CRYP_BA+0x2DC R/W TDES Key 3 Low Word Register for Channel 3 0x0000_0000

CRPT_TDES3_IVH
CRYP_BA+0x2E0

R/W TDES/DES Initial Vector High Word Register for
Channel 3

0x0000_0000

CRPT_TDES3_IVL
CRYP_BA+0x2E4

R/W TDES/DES Initial Vector Low Word Register for
Channel 3

0x0000_0000

CRPT_TDES3_SADDR
CRYP_BA+0x2E8

R/W TDES/DES DMA Source Address Register for Channel
3

0x0000_0000

Aug. 14, 2018 Page 57 of 312 Rev 1.02

NUC970/N9H30

CRPT_TDES3_DADDR
CRYP_BA+0x2EC

R/W TDES/DES DMA Destination Address Register for
Channel 3

0x0000_0000

CRPT_TDES3_CNT CRYP_BA+0x2F0 R/W TDES/DES Byte Count Register for Channel 3 0x0000_0000

CRPT_HMAC_CTL CRYP_BA+0x300 R/W SHA/HMAC Control Register 0x0000_0000

CRPT_HMAC_STS CRYP_BA+0x304 R SHA/HMAC Status Flag 0x0000_0000

CRPT_HMAC_DGST0 CRYP_BA+0x308 R SHA/HMAC Digest Message 0 0x0000_0000

CRPT_HMAC_DGST1 CRYP_BA+0x30C R SHA/HMAC Digest Message 1 0x0000_0000

CRPT_HMAC_DGST2 CRYP_BA+0x310 R SHA/HMAC Digest Message 2 0x0000_0000

CRPT_HMAC_DGST3 CRYP_BA+0x314 R SHA/HMAC Digest Message 3 0x0000_0000

CRPT_HMAC_DGST4 CRYP_BA+0x318 R SHA/HMAC Digest Message 4 0x0000_0000

CRPT_HMAC_DGST5 CRYP_BA+0x31C R SHA/HMAC Digest Message 5 0x0000_0000

CRPT_HMAC_DGST6 CRYP_BA+0x320 R SHA/HMAC Digest Message 6 0x0000_0000

CRPT_HMAC_DGST7 CRYP_BA+0x324 R SHA/HMAC Digest Message 7 0x0000_0000

CRPT_HMAC_DGST8 CRYP_BA+0x328 R SHA/HMAC Digest Message 8 0x0000_0000

CRPT_HMAC_DGST9 CRYP_BA+0x32C R SHA/HMAC Digest Message 9 0x0000_0000

CRPT_HMAC_DGST10 CRYP_BA+0x330 R SHA/HMAC Digest Message 10 0x0000_0000

CRPT_HMAC_DGST11 CRYP_BA+0x334 R SHA/HMAC Digest Message 11 0x0000_0000

CRPT_HMAC_DGST12 CRYP_BA+0x338 R SHA/HMAC Digest Message 12 0x0000_0000

CRPT_HMAC_DGST13 CRYP_BA+0x33C R SHA/HMAC Digest Message 13 0x0000_0000

CRPT_HMAC_DGST14 CRYP_BA+0x340 R SHA/HMAC Digest Message 14 0x0000_0000

CRPT_HMAC_DGST15 CRYP_BA+0x344 R SHA/HMAC Digest Message 15 0x0000_0000

CRPT_HMAC_KEYCNT CRYP_BA+0x348 R/W SHA/HMAC Key Byte Count 0x0000_0000

CRPT_HMAC_SADDR CRYP_BA+0x34C R/W SHA/HMAC DMA Source Address Register 0x0000_0000

CRPT_HMAC_DMACNT CRYP_BA+0x350 R/W SHA/HMAC Byte Count Register 0x0000_0000

CRPT_HMAC_DATIN
CRYP_BA+0x354

R/W SHA/HMAC Engine Non-DMA Mode Data Input Port
Register

0x0000_0000

6.5 Functional Description

The cryptographic accelerator includes a secure pseudo random number generator (PRNG)
core and supports AES, DES/TDES, SHA, and HMAC algorithms. The accelerator can be
used in different data security applications, such as secure communications that need
cryptographic protection and integrity.

The PRNG core supports 64 bits, 128 bits, 192 bits, and 256 bits random number generation
configured by KEYSZ.

The AES accelerator is a fully compliant implementation of the AES (Advance Encryption
Standard) encryption and decryption algorithm. The AES accelerator supports ECB, CBC,
CFB, OFB, CTR, CBC-CS1, CBC-CS2, and CBC-CS3 mode. The AES accelerator provides

Aug. 14, 2018 Page 58 of 312 Rev 1.02

NUC970/N9H30

the DMA function to reduce the CPU intervention, and supports three burst lengths, sixteen-
words, eight-words, and four-words.

The DES/TDES accelerator is a fully compliant implementation of the DES and Triple DES
encryption/decryption algorithm. The DES/TDES accelerator supports ECB, CBC, CFB, OFB,
and CTR mode. The DES/TDES accelerator also supports the DMA function to reduce the
CPU intervention. Only two burst lengths, four words and eight words, are supported.

The SHA/HMAC accelerator is a fully compliant implementation of the SHA-160, SHA-224,
SHA-256, SHA-384, SHA-512, and corresponding HMAC algorithm. The SHA/HMAC
accelerator also supports the DMA function to reduce the CPU intervention. It supports three
burst lengths, sixteen-words, eight-words, and four-words.

 Data Access 6.5.1

The cryptographic accelerator supports the following features to enhance the performance:

1. DMA mode: Once DMA source address register, destination address register, and byte

count register are configured by CPU, moving data from and to accelerator is done by

DMA logic totally. This mode can off-load the loading from the CPU. The cryptographic

accelerator embeds four hardware DMA channels for AES engine, four hardware DMA

channels for DES/TDES engine, and one hardware DMA channel for SHA/HMAC engine.

2. DMA Cascade mode: In the case that the data SRAM resource is tight, or another

peripheral is scheduled to switch, the data source or sink needs an update, while the

setting for the accelerator operation is planned to be kept. In this mode, software can

update DMA source address register, destination address register, and byte count

register during a cascade operation, without finishing the accelerator operation.

3. Non-DMA mode: In the case that the input data is small in size, DMA mode is not

preferred. This mode can reduce the processing time for the accelerator, since no DMA

related register needs a configuration, and no latency in DMA logic is introduced. Input

data was feeding to cryptographic engine via writing to data input register.

4. Channel Expansion mode: In this mode, several virtual channels in one of four DMA

channels are feasible in AES or DES/TDES mode. The total channel number can exceed

the limit of four DMA channels. The intermediate data from feedback registers

(CRPT_AES_FDBCKx, CRPT_TDES_FDBCKH, and CRPT_TDES_FDBCKL) should be

stored temporarily in data SRAM. And switch to another configuration setting of

accelerator operation that includes operational mode, encryption/decryption, key, key

size, IV, and other parameters. Once switching back, the intermediate data from

feedback registers should be written to initial vectors (CRPT_AESn_IVx,

CRPY_TDESx_IVH, and CRPT_TDESx_IVL) for the accelerator to continue the

Aug. 14, 2018 Page 59 of 312 Rev 1.02

NUC970/N9H30

operation with the original configuration setting. Note that, in ECB mode, there is no need

to move the intermediate data from feedback registers to IV.

 Channel Expansion 6.5.2

AES and DES/TDES accelerator each supports four DMA channels. However, the extended
virtual channel on either DMA channel is feasible if the user requires more than four
cryptographic channels. By recording the feedback register and the current DMA channel’s
cryptographic settings, including control registers, key, and initial vectors, driver can create a
snapshot of a physical cryptographic channel. Once a snapshot is created, this physical
channel can be migrated to service other encrypt/decrypt requests. Driver can later recover
the cryptographic channel by writing that snapshot back to control registers. Driver can create
a lot of snapshots of cryptographic channel. In this way, number of cryptographic channel is
not limited by four physical channels. The user can have as many cryptographic channels as
memory is enough.

 PRNG 6.5.3

The PRNG block diagram is depicted below. The core supports 64 bits, 128 bits, 192 bits, and
256 bits random number generation configured by KEYSZ(CRPT_PRNG_CTL[3:2]).

PRNG_START

PRNG_SEED_RELOAD

PRNG_SEED PRNG
PRNG0

~

PRNG7

PRNG_BUSY

PRNG_KEY_SIZE

Program steps to get the pseudo random number are depicted below:

1. Check BUSY(CRPT_PRNG_CTL[8]) until it comes to 0.

Aug. 14, 2018 Page 60 of 312 Rev 1.02

NUC970/N9H30

2. Initialize PRNG parameters. Select key size by KEYSZ (CRPT_PRNG_CTL[3:2]), and

write a random seed to CRPT_PRNG _SEED. Note that CRPT_PRNG_SEED should be

initialized since it’s not initialized as the chi owers u .

3. Write setting value to PRNG control register CRPT_PRNG_CTL. At the same, set

START(CRPT_PRNG_CTL[0]) as 1 to trigger PRNG.

4. Check BUSY(CRPT_PRNG_CTL[8]) until it comes to 0, or waits for the PRNG done

interrupt (must enable the corresponding interrupt enable register). User can then get the

output random numbers from CRPT_PRNG_KEY0 ~ CRPT_PRNG_KEY7 registers.

5. User can repeat step 3~4 to get a sequence of random numbers.

 AES 6.5.4

The Advanced Encryption Standard (AES) is a specification for the encryption of electronic
data established by the U.S. National Institute of Standards and Technology (NIST) in 2001.
NUC970 AES accelerator is fully compliant with AES standards.

Users can refer to the following steps to learn how to use NUC970 AES accelerator.

6.5.4.1 AES DMA Mode Operating Flow

1. Write 1 to AESIEN (CRPT_INTEN[0]) to enable AES interrupt.

2. Select an available channel from four AES channels.

3. Program AES key to registers CRPT_AESn_KEY0 ~ CRPT_AESn_KEY7 (where n is the

selected channel number). If user wants to use MTP key as AES key, just write 1 to

EXTKEY(CRPT_AES_CTL[4]) instead of writing CRPT_AESn_KEY0 ~

CRPT_AESn_KEY7 registers.

4. Program initial vectors to registers CRPT_AESn_IV0 ~ CRPT_AESn_IV3. If user selects

AES ECB mode, there’s no need to write initial vectors.

5. Write DMA source address to register CRPT_AESn_SADDR and write DMA destination

address to register CRPT_AESn_DADDR respectively. If CPU data cache is enabled, the

DMA address must be located in a non-cacheable address area.

6. Write DMA byte count to register CRPT_AESn_CNT.

7. Configure AES control register CRPT_AES_CTL for channel selection,

encryption/decryption, operational mode, DMA mode, key size, and DMA input/output

swap.

8. Write input data to DMA source address. The byte count of data must be the same as

selected DMA byte count.

9. Write 1 to START(CRPT_AES_CTL[0]) to start AES encryption/decryption.

Aug. 14, 2018 Page 61 of 312 Rev 1.02

NUC970/N9H30

10. Waits for the AES interrupt flag AESIF (CRPT_INTSTS[0]) be set.

11. Read output data from DMA destination address. The byte count of output data is the

same as selected DMA byte count.

12. Repeat step 8 to step 11 until all data processed.

6.5.4.2 AES Non-DMA Mode Operating Flow

1. Write 1 to AESIEN (CRPT_INTEN[0]) to enable AES interrupt.

2. Select an available channel from four AES channels.

3. Program AES key to registers CRPT_AESn_KEY0 ~ CRPT_AESn_KEY7 (where n is the

selected channel number). If user wants to use MTP key as AES key, just write 1 to

EXTKEY(CRPT_AES_CTL[4]) instead of writing CRPT_AESn_KEY0 ~

CRPT_AESn_KEY7 registers.

4. Program initial vectors to registers CRPT_AESn_IV0 ~ CRPT_AESn_IV3. If user selects

AES ECB mode, there’s no need to write initial vectors.

5. Configure AES control register CRPT_AES_CTL for channel selection,

encryption/decryption, operational mode, DMA mode, and key size.

6. Write 1 to START(CRPT_AES_CTL[0]) to start AES encryption/decryption.

7. If INBUFFULL(CRPT_AES_STS[9]) bit is 0, write an input data word to

CRPT_AES_DATIN register.

8. If OUTBUFEMPTY(CRPT_AES_STS[16]) bit is 0, read an output data word from

CRPT_AES_DATOUT register.

9. Repeat steps 7~8 until there’s 4 words read from CRPT_AES_DATOUT register.

10. Write 1 to DMALAST(CRPT_AES_CTL[5]). It means the completion of an AES block.

11. Repeat steps 7~10, until all encrypt/decrypt data are processed.

 DES/TDES 6.5.5

FIPS 46-3 specifies two cryptographic algorithms, the Data Encryption Standard (DES) and
the Triple Data Encryption Algorithm (TDEA). The cryptographic accelerator supports FIPS
46-3, both encryption and decryption, and ECB, CBC, CFB, OFB and CTR modes.

Users can refer to the following steps to learn how to use NUC970 DES/TDES accelerator.

6.5.5.1 DES/TDES DMA Mode Operating Flow

1. Write 1 to TDESIEN (CRPT_INTEN[8]) to enable DES/TDES interrupt.

2. Select an available channel from four DES/TDES channels.

Aug. 14, 2018 Page 62 of 312 Rev 1.02

NUC970/N9H30

3. Program DES/TDES key to registers CRPT_TDESn_KEY1H, CRPT_TDESn_KEY1L,

CRPT_TDESn_KEY2H, CRPT_TDESn_KEY2L, CRPT_TDESn_KEY3H, and

CRPT_TDESn_KEY3L (where n is the selected channel number).

4. Program initial vectors to registers CRPT_TDESn_IVH and CRPT_TDESn_IVL. If user

selects AES ECB mode, there’s no need to write initial vectors.

5. Write DMA source address to register CRPT_TDESn_SADDR and write DMA destination

address to register CRPT_TDESn_DADDR respectively. If CPU data cache is enabled,

the DMA address must be located in a non-cacheable address area.

6. Write DMA byte count to register CRPT_TDESn_CNT.

7. Configure DES/TDES control register CRPT_TDES_CTL for channel selection,

encryption/decryption, operational mode, DMA mode, key size, and DMA input/output

swap.

8. Write input data to DMA source address. The byte count of data must be the same as

selected DMA byte count.

9. Write 1 to START(CRPT_TDES_CTL[0]) to start DES/TDES encryption/decryption.

10. Waits for the DES/TDES interrupt flag TDESIF (CRPT_INTSTS[8]) be set.

11. Read output data from DMA destination address. The byte count of output data is the

same as selected DMA byte count.

12. Repeat step 8 to step 11 until all data processed.

6.5.5.2 DES/TDES Non-DMA Mode Operating Flow

1. Write 1 to TDESIEN (CRPT_INTEN[8]) to enable DES/TDES interrupt.

2. Select an available channel from four DES/TDES channels.

3. Program DES/TDES key to registers CRPT_TDESn_KEY1H, CRPT_TDESn_KEY1L,

CRPT_TDESn_KEY2H, CRPT_TDESn_KEY2L, CRPT_TDESn_KEY3H, and

CRPT_TDESn_KEY3L (where n is the selected channel number).

4. Program initial vectors to registers CRPT_TDESn_IVH and CRPT_TDESn_IVL. If user

selects AES ECB mode, there’s no need to write initial vectors.

5. Configure DES/TDES control register CRPT_TDES_CTL for channel selection,

encryption/decryption, operational mode, DMA mode, and key size.

6. Write 1 to START(CRPT_TDES_CTL[0]) to start DES/TDES encryption/decryption.

7. If INBUFFULL(CRPT_TDES_STS[9]) bit is 0, write an input data word to

CRPT_TDES_DATIN register.

8. If OUTBUFEMPTY(CRPT_TDES_STS[16]) bit is 0, read an output data word from

CRPT_TDES_DATOUT register.

Aug. 14, 2018 Page 63 of 312 Rev 1.02

NUC970/N9H30

9. Repeat steps 7~8 until there’s 2 words read from CRPT_TDES_DATOUT register.

10. Write 1 to DMALAST(CRPT_TDES_CTL[5]). It means the completion of an DES/TDES

block.

11. Repeat steps 7~10, until all encrypt/decrypt data are processed.

 SHA 6.5.6

The Secure Hash Algorithm is a family of cryptographic hash functions published by the
National Institute of Standards and Technology (NIST) as a U.S. Federal Information
Processing Standard (FIPS).

Users can refer to the following steps to learn how to use NUC970 DES/TDES accelerator.

6.5.6.1 SHA DMA Mode Operating Flow

1. Write 1 to HMACIEN(CRPT_INTEN[24]) to enable SHA/HMAC interrupt.

2. Configure SHA/HMAC control register CRPT_HMAC_CTL for SHA/HMAC engine

input/output data swap, DMA mode, and SHA operation mode. Clear

HMACEN(CRPT_HMAC_CTL[4]) to select SHA mode.

3. Program DMA source address to register CRPT_HMAC_SADDR.

4. Program DMA byte count to register CRPT_HMAC_DMACNT.

5. Write input data to DMA source address with selected DMA byte count.

6. Write 1 to START(CRPT_HMAC_CTL[0]) to start SHA encryption.

7. Waits for the SHA interrupt flag HMACIF(CRPT_INTSTS[24]) be set.

8. Read output digest (SHA160: CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST4, SHA224:

CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST6, SHA256: CRPT_HMAC_DGST0 ~

CRPT_HMAC_DGST7, SHA384: CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST11,

SHA512: CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST15).

6.5.6.2 SHA Non-DMA Mode Operating Flow

1. Configure SHA/HMAC control register CRPT_HMAC_CTL for SHA/HMAC engine

input/output data swap, DMA mode, and SHA operation mode. Clear

HMACEN(CRPT_HMAC_CTL[4]) to select SHA mode.

2. Write 1 to START(CRPT_HMAC_CTL[0]) to start SHA encryption.

3. If it's the last input word, set DMALAST(CRPT_HMAC_CTL[5]).

4. Write 1 to START(CRPT_HMAC_CTL[0]) to start SHA encryption.

5. Waits for the SHA data input request DATINREQ(CRPT_HMAC_STS[16]) be set.

Aug. 14, 2018 Page 64 of 312 Rev 1.02

NUC970/N9H30

6. Write one word of input data to CRPT_HMAC_DATIN.

7. Repeat step 2 to 5 until all input words are written into SHA engine.

8. Waits for the BUSY (CRPT_HMAC_STS[0]) be cleared.

9. Read output digest (SHA160: CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST4, SHA224:

CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST6, SHA256: CRPT_HMAC_DGST0 ~

CRPT_HMAC_DGST7, SHA384: CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST11,

SHA512: CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST15).

6.5.6.3 SHA DMA Mode Operating Flow

1. Write 1 to HMACIEN(CRPT_INTEN[24]) to enable SHA/HMAC interrupt.

2. Configure SHA/HMAC control register CRPT_HMAC_CTL for SHA/HMAC engine

input/output data swap, DMA mode, and SHA operation mode. Clear

HMACEN(CRPT_HMAC_CTL[4]) to select SHA mode.

3. Program DMA source address to register CRPT_HMAC_SADDR.

4. Program DMA byte count to register CRPT_HMAC_DMACNT.

5. Write input data to DMA source address with selected DMA byte count.

6. Write 1 to START(CRPT_HMAC_CTL[0]) to start HMAC encryption.

7. Waits for the HMAC interrupt flag HMACIF(CRPT_INTSTS[24]) be set.

8. Read output digest (HMAC-SHA160: CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST4,

HMAC-SHA224: CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST6, HMAC-SHA256:

CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST7, HMAC-SHA384:

CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST11, HMAC-SHA512:

CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST15).

6.5.6.4 SHA Non-DMA Mode Operating Flow

1. Configure SHA/HMAC control register CRPT_HMAC_CTL for SHA/HMAC engine

input/output data swap, DMA mode, and SHA operation mode. Set

HMACEN(CRPT_HMAC_CTL[4]) as 1 to select HMAC mode.

2. If it's the last input word, set DMALAST(CRPT_HMAC_CTL[5]).

3. Write 1 to START(CRPT_HMAC_CTL[0]) to start HMAC encryption.

4. Waits for the HMAC data input request DATINREQ(CRPT_HMAC_STS[16]) be set.

5. Write one word of input data to CRPT_HMAC_DATIN.

6. Repeat step 2 to 5 until all input words are written into SHA engine.

7. Waits for the BUSY (CRPT_HMAC_STS[0]) be cleared.

Aug. 14, 2018 Page 65 of 312 Rev 1.02

NUC970/N9H30

8. Read output digest (HMAC-SHA160: CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST4,

HMAC-SHA224: CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST6, HMAC-SHA256:

CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST7, HMAC-SHA384:

CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST11, HMAC-SHA512:

CRPT_HMAC_DGST0 ~ CRPT_HMAC_DGST15).

Aug. 14, 2018 Page 66 of 312 Rev 1.02

NUC970/N9H30

7 External Bus Interface (EBI)

7.1 Overview

This chip supports External Bus Interface (EBI), which controls the access to the external
memory (SRAM) and External I/O devices. The EBI has up to 5 chip select signals to select
different devices with 10-bit address bus. It supports 8-bit and 16-bit external data bus width
for each bank

7.2 Features

 Support SRAM and external I/O devices.

 Support 8/16-bit data bus width.

 Support 80 and 68 mode interface signals.

 Support up to 5 chip selects for SRAM and external I/O devices.

 Support programmable access cycle.

 Support four 32-bit write buffers.

7.3 Block Diagram

A
H

B
 B

u
s

EBI

Register

Controller

EBI

State

Machine

EBI

Address Hit

And

Request

Control

EBI Data Buffer

EBI

Output

Controller

EBI_DATA[15:0]

EBI_nCS[4:0]

EBI_nWE

EBI_nOE

EBI_nWAIT

EBI_nBE[1:0]

EBI_ADDR[9:0]

Aug. 14, 2018 Page 67 of 312 Rev 1.02

NUC970/N9H30

7.4 Register Map
R: read only, W: write only, R/W: both read and write.

Register Offset R/W Description Reset Value

(EBI_BA=0xB000_1000)

EBI_CTL EBI_BA+0x000 R/W EBI Control Register 0x0001_0001

EBI_BNKCTL0 EBI_BA+0x018 R/W External Bus Bank 0 Control Register 0x0000_0000

EBI_BNKCTL1 EBI_BA+0x01C R/W External Bus Bank 1 Control Register 0x0000_0000

EBI_BNKCTL2 EBI_BA+0x020 R/W External Bus Bank 2 Control Register 0x0000_0000

EBI_BNKCTL3 EBI_BA+0x024 R/W External Bus Bank 3 Control Register 0x0000_0000

EBI_BNKCTL4 EBI_BA+0x028 R/W External Bus Bank 4 Control Register 0x0000_0000

7.5 Functional Description

 Basic Configuration 7.5.1

Before using External Bus Interface, it’s necessary to configure related pins as the EBI
function and enable EBI’s clock. For EBI related pin configuration, please refer to the register
SYS_MFP_GPDH, SYS_MFP_GPHL, SYS_MFP_GPHH, SYS_MFP_GPIL and
SYS_MFP_GPIH to know how to configure related pins as the EBI function. To enable EBI’s
clock for operation, please set EBI (CLK_HCLKEN[9]) high.

 Memory Space and Control 7.5.2

In this chip, two system memory spaces, 1st memory space is from 0x20000000 to
0x2FFFFFFF and the other memory space is from 0xA0000000 to 0xAFFFFFFF, are defined
to EBI. By programming BASADDR (EBI_BNKCTLx[31:19], x is 0, 1, 2, 3 and 4)
appropriately, user could map external device to these two system memory spaces. When
system request address hit the EBI’s memory space, the corresponding EBI chip select assert
and EBI state machine operates. The BASADDR (EBI_BNKCTLx [31:19]) of each external I/O
bank is calculated as “BASADDR” base ointer << . User can set M68Ex (EBI_CTL[23:19] ,
x is 0, 1, 2, 3 and 4) and EXBEx (EBI_CTL[28:24] , x is 0, 1, 2, 3 and 4) to defines how the
pins EBI_nBE1, EBI_nBE0 and EBI_nWE are used when external bus bank accessed. Refer
to the table shown below for detail information:

EXBE0 M68E0 Description

0 0 Pin EBI_nBE1 and EBI_nBE0 used as byte write strobe signal.

1 0 Pin EBI_nBE1 and EBI_nBE0 used as byte enable signals while EBI_nWE used as write
strobe signal to external device.

0 1 EBI_nCS0 pin is the enable signal, EBI_nWE used as read/write strobe signal

1 1 Reserved

Demonstrate how to map an external SRAM to 0x20000000 memory spaces, as follows:

Aug. 14, 2018 Page 68 of 312 Rev 1.02

NUC970/N9H30

unsigned int value,bank = 0;

unsigned int BASEADDR=0x20000000;

unsigned int SIZE=1; //512K

unsigned int DBWD=2; //16bit

/* External Bus Bank 4 Byte Enable for EBI_BNKCTL0 */

rEBI_CTL |= (0x1<<(bank+24));

/* Set timing, base address and sram size */

rEBI_BNKCTL0 = (unsigned int)((BASEADDR<<1) |

 (SIZE << 16) |

 (DBWD << 0) |

 (6<<11 /*tACC*/) |

 (3<<2 /*tCos*/));

Aug. 14, 2018 Page 69 of 312 Rev 1.02

NUC970/N9H30

8 Ethernet MAC Controller (EMAC)

8.1 Overview

NUC970/N9H30 provides 2 Ethernet MAC Controller (EMAC) for Network application.

The Ethernet MAC controller consists of IEEE 802.3/Ethernet protocol engine with internal
CAM function for recognizing Ethernet MAC addresses; Transmit-FIFO, Receive-FIFO,
TX/RX state machine controller, time stamping engine for IEEE 1588, Magic Packet parsing
engine and status controller.

The EMAC supports RMII (Reduced MII) interface to connect with external Ethernet PHY.

8.2 Features

 Supports IEEE Std. 802.3 CSMA/CD protocol

 Supports Ethernet frame time stamping for IEEE Std. 1588 – 2002 protocol

 Supports both half and full duplex for 10 Mbps or 100 Mbps operation

 Supports RMII interface

 Supports MII Management function to control external Ethernet PHY

 Supports pause and remote pause function for flow control

 Supports long frame (more than 1518 bytes) and short frame (less than 64 bytes)
reception

 Supports 16 entries CAM function for Ethernet MAC address recognition

 Supports Magic Packet recognition to wake system up from power-down mode

 Supports 256 bytes transmit FIFO and 256 bytes receive FIFO

 Supports DMA function

8.3 Block Diagram

Aug. 14, 2018 Page 70 of 312 Rev 1.02

NUC970/N9H30

AHB Bus Master
AHB Bus

Slave

Register

Files

MII Management

State Machine

MDCMDIO

TXDMA

State Machine

RXDMA

State Machine

TXFIFORXFIFO
TXFIFO

Control

CSMA/CD

(RXMAC, TXMAC)

MII2RMII

Arbiter

RXFIFO

Control

Flow Control

AHB

Station Management InterfaceRMII

MAC

Address

Register

Magic Packet

Engine

IEEE 1588

PTP Engine

8.4 Register Map

Register Offset R/W Description Reset Value

EMAC0_BA = 0xB000_2000

EMAC0_BA = 0xB000_3000

EMAC_CAMCMR EMAC_BA+0x000 R/W CAM Command Register 0x0000_0000

EMAC_CAMEN EMAC_BA+0x004 R/W CAM Enable Register 0x0000_0000

EMAC_CAM0M EMAC_BA+0x008 R/W CAM0 Most Significant Word Register 0x0000_0000

EMAC_CAM0L EMAC_BA+0x00C R/W CAM0 Least Significant Word Register 0x0000_0000

EMAC_CAM1M EMAC_BA+0x010 R/W CAM1 Most Significant Word Register 0x0000_0000

EMAC_CAM1L EMAC_BA+0x014 R/W CAM1 Least Significant Word Register 0x0000_0000

EMAC_CAM2M EMAC_BA+0x018 R/W CAM2 Most Significant Word Register 0x0000_0000

EMAC_CAM2L EMAC_BA+0x01C R/W CAM2 Least Significant Word Register 0x0000_0000

Aug. 14, 2018 Page 71 of 312 Rev 1.02

NUC970/N9H30

EMAC_CAM3M EMAC_BA+0x020 R/W CAM3 Most Significant Word Register 0x0000_0000

EMAC_CAM3L EMAC_BA+0x024 R/W CAM3 Least Significant Word Register 0x0000_0000

EMAC_CAM4M EMAC_BA+0x028 R/W CAM4 Most Significant Word Register 0x0000_0000

EMAC_CAM4L EMAC_BA+0x02C R/W CAM4 Least Significant Word Register 0x0000_0000

EMAC_CAM5M EMAC_BA+0x030 R/W CAM5 Most Significant Word Register 0x0000_0000

EMAC_CAM5L EMAC_BA+0x034 R/W CAM5 Least Significant Word Register 0x0000_0000

EMAC_CAM6M EMAC_BA+0x038 R/W CAM6 Most Significant Word Register 0x0000_0000

EMAC_CAM6L EMAC_BA+0x03C R/W CAM6 Least Significant Word Register 0x0000_0000

EMAC_CAM7M EMAC_BA+0x040 R/W CAM7 Most Significant Word Register 0x0000_0000

EMAC_CAM7L EMAC_BA+0x044 R/W CAM7 Least Significant Word Register 0x0000_0000

EMAC_CAM8M EMAC_BA+0x048 R/W CAM8 Most Significant Word Register 0x0000_0000

EMAC_CAM8L EMAC_BA+0x04C R/W CAM8 Least Significant Word Register 0x0000_0000

EMAC_CAM9M EMAC_BA+0x050 R/W CAM9 Most Significant Word Register 0x0000_0000

EMAC_CAM9L EMAC_BA+0x054 R/W CAM9 Least Significant Word Register 0x0000_0000

EMAC_CAM10M EMAC_BA+0x058 R/W CAM10 Most Significant Word Register 0x0000_0000

EMAC_CAM10L EMAC_BA+0x05C R/W CAM10 Least Significant Word Register 0x0000_0000

EMAC_CAM11M EMAC_BA+0x060 R/W CAM11 Most Significant Word Register 0x0000_0000

EMAC_CAM11L EMAC_BA+0x064 R/W CAM11 Least Significant Word Register 0x0000_0000

EMAC_CAM12M EMAC_BA+0x068 R/W CAM12 Most Significant Word Register 0x0000_0000

EMAC_CAM12L EMAC_BA+0x06C R/W CAM12 Least Significant Word Register 0x0000_0000

EMAC_CAM13M EMAC_BA+0x070 R/W CAM13 Most Significant Word Register 0x0000_0000

EMAC_CAM13L EMAC_BA+0x074 R/W CAM13 Least Significant Word Register 0x0000_0000

EMAC_CAM14M EMAC_BA+0x078 R/W CAM14 Most Significant Word Register 0x0000_0000

EMAC_CAM14L EMAC_BA+0x07C R/W CAM14 Least Significant Word Register 0x0000_0000

EMAC_CAM15M EMAC_BA+0x080 R/W CAM15 Most Significant Word Register 0x0000_0000

EMAC_CAM15L EMAC_BA+0x084 R/W CAM15 Least Significant Word Register 0x0000_0000

EMAC_TXDLSA EMAC_BA+0x088 R/W Transmit Descriptor Link List Start Address Register 0xFFFF_FFFC

EMAC_RXDLSA EMAC_BA+0x08C R/W Receive Descriptor Link List Start Address Register 0xFFFF_FFFC

EMAC_MCMDR EMAC_BA+0x090 R/W MAC Command Register 0x0040_0000

EMAC_MIID EMAC_BA+0x094 R/W MII Management Data Register 0x0000_0000

EMAC_MIIDA EMAC_BA+0x098 R/W MII Management Control and Address Register 0x0000_0000

Aug. 14, 2018 Page 72 of 312 Rev 1.02

NUC970/N9H30

EMAC_FFTCR EMAC_BA+0x09C R/W FIFO Threshold Control Register 0x0000_0000

EMAC_TSDR EMAC_BA+0x0A0 W Transmit Start Demand Register Undefined

EMAC_RSDR EMAC_BA+0x0A4 W Receive Start Demand Register Undefined

EMAC_DMARFC EMAC_BA+0x0A8 R/W Maximum Receive Frame Control Register 0x0000_0800

EMAC_MIEN EMAC_BA+0x0AC R/W MAC Interrupt Enable Register 0x0000_0000

EMAC_MISTA EMAC_BA+0x0B0 R/W MAC Interrupt Status Register 0x0000_0000

EMAC_MGSTA EMAC_BA+0x0B4 R/W MAC General Status Register 0x0000_0000

EMAC_MPCNT EMAC_BA+0x0B8 R/W Missed Packet Count Register 0x0000_7FFF

EMAC_MRPC EMAC_BA+0x0BC R MAC Receive Pause Count Register 0x0000_0000

EMAC_DMARFS EMAC_BA+0x0C8 R/W DMA Receive Frame Status Register 0x0000_0000

EMAC_CTXDSA EMAC_BA+0x0CC R Current Transmit Descriptor Start Address Reg. 0x0000_0000

EMAC_CTXBSA EMAC_BA+0x0D0 R Current Transmit Buffer Start Address Register 0x0000_0000

EMAC_CRXDSA EMAC_BA+0x0D4 R Current Receive Descriptor Start Address Reg. 0x0000_0000

EMAC_CRXBSA EMAC_BA+0x0D8 R Current Receive Buffer Start Address Register 0x0000_0000

EMAC_TSCTL EMAC_BA+0x100 R/W Time Stamp Control Register 0x0000_0000

EMAC_TSSEC EMAC_BA+0x110 R Time Stamp Counter Second Register 0x0000_0000

EMAC_TSSUBSEC EMAC_BA+0x114 R Time Stamp Counter Sub Second Register 0x0000_0000

EMAC_TSINC EMAC_BA+0x118 R/W Time Stamp Increment Register 0x0000_0000

EMAC_TSADDEND EMAC_BA+0x11C R/W Time Stamp Addend Register 0x0000_0000

EMAC_UPDSEC EMAC_BA+0x120 R/W Time Stamp Update Second Register 0x0000_0000

EMAC_UPDSUBSE
C

EMAC_BA+0x124 R/W Time Stamp Update Sub Second Register 0x0000_0000

EMAC_ALMSEC EMAC_BA+0x128 R/W Time Stamp Alarm Second Register 0x0000_0000

EMAC_ALMSUBSE
C

EMAC_BA+0x12C R/W Time Stamp Alarm Sub Second Register 0x0000_0000

8.5 Functional Description

 PHY Control 8.5.1

Ethernet MAC controllers read and write PHY internal registers to communicate with PHY via
EMAC_MDC and EMAC_MDIO pins. EMAC_MDC clock rate is AHB clock divide by
MDCLK_N (CLK_DIVCTL8) + 1. The maximum clock setting depends on PHY’s datasheet.
EMAC_MDC starts output clock after MDCON (EMAC_MIIDA[19]) set 1. This clock is only

Aug. 14, 2018 Page 73 of 312 Rev 1.02

NUC970/N9H30

used or access PHY’s registers, and not used or acket transmit or receive. So it could be
stopped while not accessing PHY registers.

Both PHY’s address and PHY’s register address must be known to access PHY registers.
PHY address may be configurable depends on PHY’s ower-on setting circuit. Taking IC Plus
IP101G PHY as example, its PHY address is configured by the pull-up or pull-down state of
PHY_AD0, PHY_AD1, PHY_AD2, PHY_AD3 pins. IEEE 802.3 defines some base PHY
registers and most PHYs support these registers, so different PHYs could share a driver
sometimes.

Besides these basic registers, PHYs usually has their proprietary registers as well, but the
definition of these registers is veries between each PHYs. Please check PHYs’ technical
document for the meaning of these proprietary registers.

Below list the steps to read PHY internal registers:

1. Fill PHY address in PHYAD (EMAC_MIIDA[12:8]) and PHY register address in PHYRAD

(EMAC_MIIDA[4:0]).

2. Set both BUSY (EMAC_MIIDA[17]) bit and MDCON (EMAC_MIIDA[18]) bit to 1 to send

out read command.

3. Poll BUSY bit until it clear to 0.

4. Read the PHY register value from EMAC_MIID register.

unsigned int mdio_read(unsigned int reg, unsigned int addr)

{

 EMAC_MIIDA = reg | (addr << 8) | BUSY | MDCON;

 while(EMAC_MIIDA & BUSY);

 return EMAC_MIID;

}

And below are the steps to write PHY internal registers:

1. Fill the value to program into EMAC_MIID register.

2. Fill PHY address in PHYAD and PHY register address in PHYRAD.

3. Set WRITE (EMAC_MIIDA[16]), BUSY, and MDCON bits to 1. This will trigger EMAC

send write command to PHY.

4. Poll BUSY bit, this bit alto clear to 0 after write complete.

unsigned int mdio_write(unsigned int reg, unsigned int addr, unsigned int data)

{

 EMAC_MIID = data;

 EMAC_MIIDA = reg | (addr << 8) | BUSY | MDCON | WRITE;

 while(EMAC_MIIDA & BUSY);

}

Aug. 14, 2018 Page 74 of 312 Rev 1.02

NUC970/N9H30

The main purpose of reading PHY registers is to get the network operating mode and speed.
PHY starts Auto-Negotiation (AN) after network cable properly connected to decide to working
in full duplex mode or half duplex mode, and also the speed, 10Mbps or 100Mbps. Driver
need to check the value o PHY register, Auto-Negotiation Link Partner Base Page Ability to
decide link partner ability and then set OPMOD (EMAC_MCMDR[20]) and FDPU
(EMAC_MCMDR[18]) accordingly. EMAC and PHY must have the same operating mode
setting to transmit and receive packet correctly.

 CAM Configuration 8.5.2

CAM is used for Ethernet MAC address comparison, avoiding EMAC received all Ethernet
packets including those destined to other machines and drag down system performance.
NUC970/N9H30 built-in 16 set of CAMs. Among them, 13 (CAM0~CAM12) are actually used
for address comparison. And the reset 3 sets (CAM13~CAM15) are reserved for sending
control frame. ECMP (EMAC_CAMCMR[4]), the main switch needs to be set 1 to enable
CAM function. And fill the compared MAC address to one of the entries in CAM0~CAM12. For
example, if the Ethernet MAC address is 00:00:00:59:16:88, and then EMAC_CAM0M should
filled with 0x00000059 and EMAC_CAM0L will with 0x1688000000. And last, set
CAM0EN(EMAC_CAMEN[0]) to 1 and enable CAM0.

To receive broadcast packets, drivers could ether use one of the CAM entries and set
EMAC_CAMxM and EMAC_CAMxL to 0xFFFFFFFF, 0xFFFF0000 respectively, enable
CAMxEN to receive broadcast packets. Or simply set ABP (EMAC_CAMCMR[2]) bit to 1.

To receive multicast packets, drivers could ether use one of the CAM entries and set
EMAC_CAMxM, EMAC_CAMxL to the mapping MAC address of the multicast IP address,
enable CAMxEN to receive specific multicast packets. Or set AMP (EMAC_CAMCMR[1]) to 1
to receive all multicast packets.

Driver could put NUC970/N9H30 Ethernet MAC into Promiscuous Mode by setting AUP
(EMAC_CAMCMR[0]), AMP (EMAC_CAMCMR[1]), and ABP (EMAC_CAMCMR[2]) to 1.
Under this mode, all Ethernet packets will be received.

 Control Frame 8.5.3

IEEE 802.3 defines control frame used for flow control. NUC970/N9H30 supports transmit
and receive pause frame for flow control. NUC970/N9H30 will receive pause frame after ACP
(EMAC_MCMDR[3]) set 1. After received pause frame, EMAC will temporarily postpone
packet transmission for a designated duration. During this period, PAU(EMAC_MGSTA[12])
will be set 1 automatically, and clear to 0 automatically afterwards 0. While received pause
frame CFR (EMAC_MISTA[14]) will be set to 1. At the meantime, interrupt will be triggered if
CFRIEN (EMAC_MIEN[14]) is 1.

To transmit control frame, fill the MAC address 01:80:C2:00:00:01 into EMAC_CAM13M and
EMAC_CAM13L registers, fill local MAC address into EMAC_CAM14M and EMAC_CAM14L
registers. Fill 0x88080001 into EMAC_CAM15M, and fill pause duration into
OPERAND(EMAC_CAM15L[31:24]). Pause time uses 512 but time as unit. Finally, set SDPZ

Aug. 14, 2018 Page 75 of 312 Rev 1.02

NUC970/N9H30

(EMAC_MCMDR[16]) to 1 to send this pause frame. SPDZ automatically clears to 0 after
transmit complete.

Note: Pause frame could only be used in full-duplex mode.

 Wake on Lan (WoL) 8.5.4

NUC970/N9H30 supports Wake on Lan feature. System could wake up from power-down
state after received magic packet. Magic packet format is defined in AMD’s white paper,
Magic Packet Technology. It contains6 continuous 0xFFs anyplace in the packet follow by 16
duplications of local MAC address. While both MGPWAKE(EMCA_MCMDR[6]) and WOLIEN
(EMAC_MIEN[15]) set 1, EMAC will wake up system from power-down mode after received a
magic packet its duplicated MAC address matched the address in CAM0, and set MGPR
(EMAC_MISTA[15]) to 1. Software can clear MGPR by writing 1 to it.

 Packet Receive 8.5.5

EMAC use a link-list structure named as descriptors to receive Ethernet packets. Driver
needs to prepare RX descriptors in advance before enabled receive function. After CAM
decides a packet needs to be received, packet will be received to a memory space describes
in the descriptor. The status and length of received packet is recorded in the descriptor. And
then EMAC will use next descriptor in the link list to receive next packet. So Rx descriptor is
where CPU and EMAC used to exchange the information of received packets.

Each descriptor occupied 4 words. All descriptors form a link list. Figure below shows the
structure of RX descriptor. The MSB of RXDES0, RXDES0[31] shows the current owner of
this descriptor. Descriptor owner is EMAC while set 1, this means EMAC will put received
packet to the address points by RXDES1, put received packet length in RXDES0 [15:0], and
store received packet status to RXDES0 [30:16]. After packet received complete, EMAC
automatically clears RXDES0[31] to 0, means the owner of this descriptor now switch to CPU.
And EMAC will follow the link in RXDES3 to fetch next descriptor. If the owner of next
descriptor is 0, then all Rx descriptor are unavailable. EMAC will stop its RX state machine
until Rx descriptors’ ownership given back to EMAC and RX state machine restart.

01531

Reserved

Receive Frame Buffer Starting Address / Time Stamp Least Significant 32-Bit

Receive Frame Status Receive Frame Byte Count

Next RxDMA Descriptor Starting Address / Time Stamp Most Significant 32-Bit

O

W

N
RXDES 0

RXDES 1

RXDES 2

RXDES 3

If network timestamp enabled, RXDES1 and RXDES3 will be used to store packet receive

Aug. 14, 2018 Page 76 of 312 Rev 1.02

NUC970/N9H30

time for user level application calculate network time. So after packet received, driver needs
to restore the pointer value in RXDES1, RXDES3 before set RXDES0[31] to 1. This also
means driver needs to find some memory space to backup these pointers.

After driver initialized RX descriptors, it needs to fill the starting address of first descriptor into
register EMAC_RXDLSA to notify EMAC where the descriptors are. EMAC RX state machine
will start working and receive packet after driver set RXON(EMAC_MCMDR[0]) to 1, and write
any value into register EMAC_RSDR. Following figure shows the RX descriptor initial flow.

Allocate word aligned non-cacheable

memory for Rx Buffer Descriptors

Write the physical address of first Rx descriptor to

register EMAC_RXDLSA.

Set ownership of every descriptor to EMC

Allocate non-cacheable buffers to store incoming

packets for every descriptor, and write the buffer

starting physical address to RXDES1 of each

descriptor

Set the physical address of next descriptor to

RXDES3. Last descriptor should fill this field with

the starting address of first descriptor.

Start

End

In the sample code below, it also reserved two unsigned integer to back up the initial value of

Aug. 14, 2018 Page 77 of 312 Rev 1.02

NUC970/N9H30

RXDES1 and RXDES3. So the driver can restore the setting after they are overwritten by time
stamp.

typedef struct _emac_descriptor

{

 unsigned int rxdes0;

 unsigned int rxdes1;

 unsigned int rxdes2;

 unsigned int rxdes3;

 // for backup descriptor fields over written by time stamp

 unsigned int backup0;

 unsigned int backup1;

} rx_descriptor;

#define RX_DESC_SIZE 4 // Number of Rx Descriptors

#define RX_BUF_SIZE 1518 // MAX Ethernet packet size

rx_descriptor rx_desc[RX_DESC_SIZE];

unsigned char rx_buf[RX_DESC_SIZE][RX_BUF_SIZE];

void rx_desc_init(void)

{

 unsigned int i;

 for(i = 0; i < RX_DESC_SIZE; i++) {

 rx_desc[i].rxdes0 = (1 << 31);

 rx_desc[i].rxdes1 = (unsigned int)(&rx_buf[i][0]);

 rx_desc[i].backup0 = rx_desc[i].rxdes1;

 rx_desc[i].rxdes2 = 0;

 rx_desc[i].rxdes3 = (unsigned int)&rx_desc[(i + 1) % RX_DESC_SIZE];

 rx_desc[i].backup1 = rx_desc[i].rxdes3;

 }

 // Set Frame descriptor's base address.

 EMAC_RXDLSA = (unsigned int)&rx_desc[0];

}

Driver can detect packet arrival using ether polling or interrupt mode. In polling mode, driver
can detect packet received by checking if RXGD (EMAC_MISTA[4]) is set 1. At least one
packet is received using Rx descriptor if RXGD is 1. To use interrupt mode, driver needs to

Aug. 14, 2018 Page 78 of 312 Rev 1.02

NUC970/N9H30

set both RXGDIEN (EMAC_MIEN[4]) and RXIEN(EMAC_MIEN[0]) to 1. EMAC will trigger
interrupt whenever new packet received and also set both RXGD and
RXINTR(EMAC_MISTA[0]) to 1. RXGD and RXINTEN can both write 1 to clear them. Flow
chart below shows what driver should do after RXGD set 1. If driver is working in interrupt
mode, this is what driver should do in the interrupt handler.

Check EMAC_MISTA

Bus Error ?

RXGD ?

Copy the received data to buffer

provided by upper protocol layer

Restore RXDES1 and RXDES3 if time stamp is enabled.

Change ownership bits to EMAC

Follow the link in RXDES3 to next descriptor

Rx S/W Descriptor pointer the

same with EMAC_CRXDSA

Write EMAC_RSDR

CPU ?

Check the ownership bit (RXDES0[31]) on the last processed Rx Descriptor

Get Rx Status (RXDES0[30:16]) from the status field of Rx Descriptor.

Exit Rx ISR

Y

Y

Y

Error handling

Error handling

Y

N

N

Enter Rx ISR

N

Aug. 14, 2018 Page 79 of 312 Rev 1.02

NUC970/N9H30

Below is an interrupt handler sample supports time stamp function. If time stamping is not
enabled, the codes to restore descriptor pointers could be omitted.

void RX_IRQHandler(void)

{

 rx_descriptor *desc;

 unsigned int status, len, reg;

 reg = EMAC_MISTA;

 // Get last Rx Descriptor

 desc = (rx_descriptor *)current_rx_desc;

 do {

 if(EMAC0->CRXDSA == (unsigned int)desc)

 break;

 if((desc->rxdes0 | (1<<31)) == (1<<31)) { // ownership=CPU

 status = (desc->rxdes0 >> 16) & 0xffff;

 // If Rx frame is good, then process received frame

 if(status & RXFD_RXGD) {

 len = desc->rxdes0 & 0xffff;

 recv_pkt(desc->backup0, len);

 } else {

 // error handling

 }

 } else

 break;

 if(status & RTSAS) {

 // store time stamp

 log_time_stamp(desc->rxdes1, desc->rxdes3);

 }

 // restore descriptor link list

 desc->rxdes1 = desc->backup0;

 desc->rxdes3 = desc->backup1;

 // Change ownership to EMAC for next use

 desc->rxdes0 |= (1 << 31);

 // Get Next Frame Descriptor pointer to process

Aug. 14, 2018 Page 80 of 312 Rev 1.02

NUC970/N9H30

 desc = (mac_descriptor *)desc->rxdes3;

 } while (1);

 // store last processed descriptor. Next interrupt needs it

 current_rx_desc = (unsigned int)desc;

 // Trigger Rx

 EMAC_RDSR = 0;

 // Clear Rx related interrupt status

 EMAC_MISTA = reg & 0x0000ffff;

}

 Packet Transmit 8.5.6

The same with packet receiving, EMAC also needs descriptors to transmit Ethernet packets.
Driver needs to prepare Tx descriptor in advance. When receive a command to send out a
packet from protocol stack, driver put the packet to where a pointer in descriptor points to, set
the packet length in descriptor, and then trigger EMAC to transmit the packet. After transmit
complete EMAC will use next descriptor to transmit packet. So Tx descriptor is where CPU
and EMAC used to exchange the information of transmitted packets

Each descriptor occupied 4 words. All descriptors form a link list. Figure below shows the
structure of RX descriptor. The MSB of TXDES0, TXDES0[31] shows the current owner of
this descriptor. If this bit set 1, EMAC will transmit the packet points to by TXDES1 for total
TXDES2[15:0] bytes. After transmit complete, no matter success or failed, the result will be
stored in RXDES2 [30:16] and TXDES0[31] will be cleared to 0, which means the packet is
processed. EMAC then will follow the pointer stored in TXDES3 to fetch next Tx descriptor. If
the TXDES0[31] of next descriptor is 0, it means all transmit packets are processed, no more
packet need to be send. In this case, EMAC will halt it transmit state machine. But if
TXDES0[31] is 1, EMAC will repeat the transmit procedure list above.

01531

Transmit Frame Buffer Starting Address / Time Stamp Least Significant 32-Bit

P

Next TxDMA Descriptor Starting Address / Time Stamp Most Significant 32-Bit

O

W

N
TXDES 0

TXDES 1

TXDES 2

TXDES 3

1

C

2

I

3

TReserved

Transmit Frame Status Transmit Frame Byte Count

If network timestamp enabled, TXDES1 and TXDES3 will be used to store packet transmit

Aug. 14, 2018 Page 81 of 312 Rev 1.02

NUC970/N9H30

time for user level application calculate network time. So after packet transmitted, driver
needs to restore the pointer value in TXDES1, TXDES3 before set TXDES0[31] to 1. This
also means driver needs to find some memory space to backup these pointers.

After driver initialized TX descriptors, it needs to fill the starting address of first descriptor into
register EMAC_TXDLSA to notify EMAC where the descriptors are. EMAC TX state machine
will start working and start transmit packet packet after driver set TXON(EMAC_MCMDR[8])
to 1, and write any value into register EMAC_TSDR. Following figure shows the TX descriptor
initial flow.

Allocate word aligned non-cacheable

memory for Tx Buffer Descriptors

Write the physical address of first Tx descriptor to

Register EMAC_TXDLSA.

Set ownership of every descriptor to CPU

Allocate non-cacheable buffers for

every descriptor, and write the buffer starting

physical address to TXDES1 of each descriptor

(Optional, can set the buffer before actual transfer)

Set the physical address of next descriptor to

TXDES3. Last descriptor should fill this field with

the starting address of first descriptor.

Start

End

Set T, I,C, and P bit of each descriptor (Optional

here but must be set before packet send out)

Aug. 14, 2018 Page 82 of 312 Rev 1.02

NUC970/N9H30

In the TX descriptor initialize sample code below, it reserved the space for backup TXDES1
and TXDES3 initial value, so driver can restore them after overwritten by time stamp.

typedef struct _emac_descriptor

{

 unsigned int txdes0;

 unsigned int txdes1;

 unsigned int txdes2;

 unsigned int txdes3;

 // for backup descriptor fields over written by time stamp

 unsigned int backup0;

 unsigned int backup1;

} tx_descriptor;

#define TX_DESC_SIZE 4 // Number of Tx Descriptors

tx_descriptor tx_desc[TX_DESC_SIZE];

void tx_desc_init(void)

{

 unsigned int i;

 for(i = 0; i < TX_DESC_SIZE; i++) {

 tx_desc[i].txdes0 = (1 << 31);

 tx_desc[i].txdes1 = 0;

 tx_desc[i].backup0 = tx_desc[i].txdes1;

 tx_desc[i].txdes2 = 0;

 tx_desc[i].txdes3 = (unsigned int)&tx_desc[(i + 1) % TX_DESC_SIZE];

 tx_desc[i].backup1 = tx_desc[i].rxdes3;

 }

 // Set Frame descriptor's base address.

 EMAC_TXDLSA = (unsigned int)&tx_desc[0];

}

Except the descriptor setting mentions previously, TXDES0[3:0] also needs to be configured
to send a packet. TTSEN(TXDES0[3]) is used to enable time stamp function. If this bit set to
1, the network time after transmit complete will be recorded in TXDES1 and TXDES3.
INTEN(TXDES0[2]) used to configure if interrupt should be triggered after transmit this
packet. EMAC only triggers interrupt if this bit is 1 and the setting in EMAC_MISTA enabled
transmit interrupt. CRCAPP(TXDES0[1]) controls if EMAC calculate the CRC for transmitted

Aug. 14, 2018 Page 83 of 312 Rev 1.02

NUC970/N9H30

packet or not. This bit should set to 1 in normal operation. Minimum Ethernet packet size is 60
bytes (without 4 bytes CRC). EMAC will help to pad packet to 60 bytes if the packet length is
shorter than 60 bytes if PADEN (TXDES0[1]) is set to 1. This bit should set to 1 during normal
operation. Following flow chart shows the network transmit procedure with time stamping
enabled.

Get a Tx Buffer Descriptor from Tx Software Buffer

Descriptor Pointer

Check ownership bits, CPU ?
Run out of Descriptors,

Exception Handling

Set TXDES1 with the physical starting address to the

packet to be transfer

Set T, I, C, P bits if needed

Set length of the packet to TXDES2[15:0]

Set TXDES0[31] to 1

Set TXON bit of MCMDR register if it is not set

Write TSDR register with any value

N

Y

Aug. 14, 2018 Page 84 of 312 Rev 1.02

NUC970/N9H30

Below is a sample code shows the procedure to send a packet.

int send_pkt(unsigned char *data, unsigned int size)

{

 tx_descriptor *desc;

 unsigned int status;

 // Get Tx frame descriptor & data pointer

 desc = (tx_descriptor *)next_tx_desc;

 status = desc->txdes0;

 // Check ownership, return if owner is EMAC

 if(status & (1 << 31))

 return -1;

 // Fill data pointer

 desc->txdes1 = (unsigned int)(data);

 // Set TX Frame flag & Length Field

 desc->txdes0 |= (P | C | I | T);

 desc->txdes2 = size;

 // Cheange ownership to DMA

 desc->txdes0 |= (1 << 31);

 // Find next Tx descriptor, do it here before time stamp update pointers

 next_tx_desc = desc->txdes3;

 // Trigger TX

 EMAC_TDSR = 0;

 Return 0;

}

Network transmit result could be checked by polling mode or interrupt mode. In polling mode,
driver checks TXCP (EMAC_MISTA[18]) bit. Whenever this bit set 1, at least one packet was
transmitted, no matter success or not. In interrupt mode, both TXCPIEN (EMAC_MIEN[18])
and TXIEN(EMAC_MIEN[16]) needs to be set 1. Whenever packet transmit complete, EMAC
wills trigger interrupt, and set both TXCP and TXINTR(EMAC_MISTA[16]) to 1. These two
bits, TXCP and TXINTR could be cleared by writing 1 to them. Following figure shows what
driver should do after TXCP set 1. In interrupt mode, these are what interrupt handler should
do.

Aug. 14, 2018 Page 85 of 312 Rev 1.02

NUC970/N9H30

Check status of EMAC_MISTA

Bus Error ? Error handling

Get TXDES2[31:16] status from

last processed Tx descriptor

TXCP bit set ?

Restore TXDES1 and TXDES3 if

time stamp enabled.

Follow TXDES3 to next Tx

descriptor

Error handling

Enter Tx ISR

End of Tx ISR

N

Y

N

Y

Tx S/W pointer equals to

register EMAC_CTXDSA?

Y

N

Below is an interrupt handler sample that supports time stamping function.

void TX_IRQHandler(void)

{

 tx_descriptor *desc;

 unsigned int status, reg;

 unsigned int last_tx_desc;

 reg = EMAC0->MISTA;

Aug. 14, 2018 Page 86 of 312 Rev 1.02

NUC970/N9H30

 // Time stamp alarm interrupt

 if(reg & MISTA_TSALS) {

 // Do something here

 }

 // Clear Tx related interrupt flags

 EMAC0->MISTA = reg & 0xffff0000;

 last_tx_desc = EMAC_CTXDSA;

 desc = current_tx_desc;

 while (last_tx_desc != (unsigned int)desc) {

 // we have packet to process

 status = desc->txdes2 >> 16;

 if (status & TXCP) {

 // Success.

 } else {

 // Failed, error handling

 }

 if(status & TTSAS) {

 // process time stamp

 log_time_stamp(desc->txdes1, desc->txdes3);

 }

 // restore descriptor link list and data pointer

 desc->txdes1 = desc->backup0;

 desc->txdes3 = desc->backup1;

 // find next Tx descriptor

 desc = (mac_descriptor *)desc->txdes3;

 }

 // store last processed descriptor. Next interrupt needs it

 current_tx_desc = (unsigned int)desc;

}

 Network Timing 8.5.7

To support more accurate IEEE1588 network timing on NUC970/N9H30, both EMAC built in
time stamping module. The time stamping module could record the exact packet received and

Aug. 14, 2018 Page 87 of 312 Rev 1.02

NUC970/N9H30

transmitted time and reduces the bias error if time stamp get by software in interrupt handler.
The time stamping modules update their time every EMAC clock. So it is 150MHz at most,
which is the finest clock in this system. Time stamp modules supports two update methods,
fine update and cores update, which is configurable by TSMODE (EMAC_TSCTL[2]) bit.
Clear 0 to select cores update, set 1 to select fine update.

NUC970/N9H30 uses second and sub-second as time unit in time stamp module. Current
time increased 1 second every time sub-second overflows. In cores update mode, current
sub-second value increased by the value stored in register EMAC_TSINC on every EMAC
clock tick.

Taking EMAC clock frequency 150MHz as example to calculate the relative registers setting
here. Since the clock rate is 150MHz, sub-second file should overflow every 150M clock tick
to increase the second field. Sub-second register use 31 bits to store sub-second, so
EMAC_TSINC should fill with (231) / 150M = 14.31 ~= 14 = 0x0E, this is the sub-second value
should increase on every EMAC clock tick. But if 0x0E is used, clock bias will be 0.31/14 =
2.2% which is impractical to use. So it is not recommend using cores update while EMAC
clock is 150MHz.

In fine update mode, an internal 32-bit counter will add the value stored in register
EMAC_TSADDNED on every EMAC clock tick. When this counter overflows, sub-second
value will increase the value stored in register EMAC_TSINC. So find update mode is more
accurate than cores update mode.

Here use EMAC clock frequency 150MHz as condition to calculate time stamp registers
setting in fine update mode. Assuming we want to increase EMAC_TSINC value every 100ns,
so sub-second needs to overflow after added for 107 times, so EMAC_TSINC needs to fill in
231 / 107 = 214.71 ~= 215 = 0xD7. The actual overflow frequency is not exact 107 Hz as
expected but 231 / 215 Hz. So needs to fill EMAC_TSADDNED with a value that makes
counter overflow at the frequency of 231 / 215 Hz to make timing accurate. This means value
fill to EMAC_TSADDNED has to be 232 * (231 / 215) / 150M = 285996032.15 ~= 285996032 =
0x110BF400. In this case, the bias error is 5.26 * 10-10, which is much better comparing with
cores update. It is recommended using fine update mode for timing update.

Based on the calculation above, the setting of EMAC_TSINC and EMAC_TSADDEND while
EMAC clock is 150MHz listed below. (Different from cores update mode, the setting is not the
only valid value. But different EMAC_TSINC needs to use different EMAC_TSADDNED
value):

EMAC_TSINC = 0xD7;

EMAC_TSADDEND = 0x110BF400;

Following figure shows network timestamp update block diagram.

Aug. 14, 2018 Page 88 of 312 Rev 1.02

NUC970/N9H30

Time Stamp Addend Register

(EMAC_TSADDNED)

Accumulator

+

Overflow

01

TSMODE

(EMAC_TSCTL[2])

1'b1

Time Stamp Counter Sub Second

Register (EMAC_TSSUBSEC)
Increase

+

Time Stamp Increment Register

(EMAC_TSINC)

Increase
Time Stamp Counter Second Register

(EMAC_TSSEC)

32-bit

32-bit

+

1'b1

In sub-second operation, every overflow (bit 31 becomes 1) means 1 second elapsed. In
other words, every 231 sub-second is 1 second or 109 nanoseconds. The functions below
show how to convert between sub-second and nanosecond using the calculation above.

static unsigned int subsec2nsec(unsigned int subsec)

{

 // 2^31 subsec == 10^9 ns

 unsigned long long i;

 i = 1000000000ll * subsec;

 i >>= 31;

 return(i);

}

static unsigned int nsec2subsec(unsigned int nsec)

{

 // 10^9 ns = 2^31 subsec

 unsigned long long i;

 i = (1ll << 31) * nsec;

 i /= 1000000000;

 return(i);

}

Steps toward network timestamp initialization listed below:

Aug. 14, 2018 Page 89 of 312 Rev 1.02

NUC970/N9H30

1. Set TSEN(EMAC_TSCTL[0]) to 1, enable network timestamp circuit.

2. Fill initial second and sub-second value into EMAC_TSSEC and EMAC_TSSUBSEC

registers

3. Configure EMAC_TSINC register, and configure EMAC_TSADDEND to use fine update

mode.

4. Set TSIEN (EMAC_TSCTL[1]) 1 to start network timestamp counting, to use fine update,

set TSMODE (EMAC_TSCTL[2]) to 1 too.

According to IEEE 1588 specification, when a device has multiple network interfaces, they
must share the same clock source. So if timestamp modules on both NUC970/N9H30’s
EMACs are enabled, driver must set PTP_SRC (EMAC_MCMDR[7]) of EMAC1 to 1, this will
let EMAC1 use EMAC0’s timestam module instead o using its own timestam module.

Software can read current network time via registers. Current network time is store in tow 32-
bit registers, EMAC_TSSEC and EMAC_TSSUBSEC. There is a circuit to avoid the situation
that sub-second overflow while reading sub-second register. While read EMAC_TSSUBSEC
register, the current second value will be locked in EMAC_TSSEC register at the same time,
to avoid software uses incorrect time value for operation. Below is a sample code for reading
current time value:

unsigned int s, subs;

// Read sub second first.

subs = EMAC_TSSUBSEC;

s = EMAC_TSSEC;

printf("current time is %d second %d nano-second\n", s, subsec2nsec(subs));

Software can adjust current network time after time stamp module initialized. To maintain
accurate timing, network time adjust current time using a offset value. For example, if current
time is 3 second too fast, the adjust method does not require a read-modify-write. The
executing time of software also needs to take into consideration and it could be affected by
some factors. This unpredictable brings error to current time, and has bad impact to PTP
which requires precise timing. The time stamp module can add or subtract an offset from
current time. Second level offset fills into register EMAC_UPDSEC, sub-second level offset
fills into EMAC_UPDSUBSEC[30:0]. If this is positive offset, EMAC_UPDSUBSEC[31] keep
0, on the contrary set EMAC_UPDSUBSEC[31] to 1 for negative offset. After both
EMAC_UPDSEC and EMAC_UPDSUBSEC fill with proper offset setting, set
TSUPDATE(EMAC_TSCTL[3]) to 1 to trigger time stamp module to update network time. This
bit auto clears to 0 after update complete.

Time stamp module also has alarm feature. Alarm trigger time fills in EMAC_ALMSEC and
EMAC_ALMSUBSEC registers. They store the alarm trigger second and sub-second
respectively. After alarm time configured, set TSALMEN (EMAC_TSCTL[5]) to 1 to enable
alarm function. If TSALMIEN (EMAC_MIEN[28]) is 1, an interrupt will be triggered when alarm

Aug. 14, 2018 Page 90 of 312 Rev 1.02

NUC970/N9H30

occurs and TSALS(EMAC_MISTA[28]) will be set 1. Software can write 1 to clear this bit.
Note: This interrupt is designed as a Tx interrupt, and needs to be processed in Tx interrupt
handler instead of Rx interrupt handler.

 Error Handling 8.5.8

Some status bits in EMAC_MISTA register reflect status error during normal operation.
Following table lists error status and the solutions.

Error Bit Name Bit Number Status Description Solution

TXBERR 24 Transmit bus error Check driver. This error flag can only be triggered when EMAC follows
incorrect pointer TX descriptor in to fetch data.

TDU 23 Transmit description
unavailable

Do not need to take action. This flag means no more packets need to be
sent.

TXABT 21 Transmit abort Probably caused by heavy network loading.

TXEMP 17 Transmit FIFO unavailable If this flag set frequently, set TXTHD(EMAC_FFTCR[9:8]) to a higher
trigger level.

RXBERR 11 Receive bus error Check driver. This error flag can only be triggered when EMAC follows
incorrect pointer RX descriptor in to fetch data.

RDU 10 Receive description
unavailable

This flag set 1 because software cannot process received packets in RX
descriptor thus EMAC has no more free descriptor to receive further
incoming packets.

To trigger EMAC RX state machine to receive packet after RDU state
occurred, software needs to receive all received packets, set ownership
of RX descriptors to EMAC, and write any value into EMAC_RSDR.

Packet comes in too fast before driver can process them, or RX interrupt
blocked too long and could not get a chance to execute before RX
descriptors runs out can both trigger this state.

RP 6 Received short packet (< 64
bytes)

Simply drop this packet. Does not occur during normal operation unless
ARP (EMAC_MCMDR[2]) set 1.

ALIE 5 Alignment error Should not occur during normal operation. Please check RMII related
circuit on PCB board or try another Ethernet cable if this flag set
frequently.

PTLE 3 Received long packet (> 1518
bytes)

Simply drop this packet. Does not occur during normal operation unless
ALP (EMAC_MCMDR[1]) set 1.

RXOV 2 Receive FIFO overflow If this flag set frequently, set RXTHD(EMAC_FFTCR[1:0]) to a higher
trigger level.

CRCE 1 CRC error Simply drop this packet. Does not occur during normal operation unless
AEP (EMAC_MCMDR[4]) set 1.

Aug. 14, 2018 Page 91 of 312 Rev 1.02

NUC970/N9H30

9 Enhanced Timer Controller (ETMR)

9.1 Overview

This chip is equipped with four enhance timer modules including ETIMER0, ETIMER1,
ETIMER2 and ETIMER3, which allow user to easily implement a counting scheme or timing
control for applications. The timer can perform functions like frequency measurement, event
counting, interval measurement, clock generation, delay timing, and so on. The timer can
generate an interrupt signal upon timeout, or provide the current value of count during
operation.

9.2 Features

 Independent Clock Enable Control for each Timer (ECLKetmr0, ECLKetmr1, ECLKetmr2
and ECLKetmr3)

 Time-out period = (Period of timer clock input) * (8-bit pre-scale counter + 1) * (24-bit
TCMP)

 Counting cycle time = (1 / ECLKetmr) * (2^8) * (2^24)

 Internal 8-bit pre-scale counter

 Internal 24-bit up counter is readable through TDR (Timer Data Register)

 Supports One-shot, Periodic, Output Toggle and Continuous Counting Operation mode

 Supports external pin capture for interval measurement

 Supports external pin capture for timer counter reset

9.3 Block Diagram

24-bit
Up-Counter

TMRx_DR[23:0] TMRx_CMPR[23:0]

+

-

=

Q

Q
SET

CLR

D

TMRx_ISR.
TRM_IS

TMRx_INT

~TMRx_CTL.TCAP_MODE TMRx_IER.TMR_IE

TMRx_TCAP[23:0]

TMRx_CTL.
TCAP_EDGE = 2'b00

TMRx_CTL.
TCAP_EDGE = 2'b01

TMRx_CTL.
TCAP_EDGE =
2'b10

TMRx_CTL.
TCAP_MODE

Reset
Counter

TCapture_x

8-bit
Prescale

Q

Q
SET

CLR

D

TMRx_ISR.
TCAP_IS

TMRx_IER.TCAP_IE

Counting
Enable

0

1

TMRx_CTL.EVENT_EDGE

EXT_TMRx

TMRx_CTL.TMR_EN

TMRx_CTL.
TCAP_EDGE = 2'b11

TMRx_CLK

Q

Q
SET

CLR

D

Toggle

0

1

“0” TMRx_TOGGLE

TMRx_CTL.MODE_SEL=0x2

Where x = 0, 1, 2, 3

9.4 Register Map

Aug. 14, 2018 Page 92 of 312 Rev 1.02

NUC970/N9H30

Register Offset R/W Description Reset Value

ETMR Base Address:

ETMR0_BA = 0x4001_0000

ETMR1_BA = 0x4001_0100

ETMR2_BA = 0x4011_0000

ETMR3_BA = 0x4011_0100

ETMR_CTL

x=0,1,2,3
ETMRx_BA+0x000 R/W Enhance Timer n Control Register 0x0000_0000

ETMR_PRECNT

x=0,1,2,3
ETMRx_BA+0x004 R/W Enhance Timer n Pre-Scale Counter Register 0x0000_0000

ETMR_CMPR

x=0,1,2,3
ETMRx_BA+0x008 R/W Enhance Timer n Compare Register 0x0000_0000

ETMR_IER

x=0,1,2,3
ETMRx_BA+0x00C R/W Enhance Timer n Interrupt Enable Register 0x0000_0000

ETMR_ISR

x=0,1,2,3
ETMRx_BA+0x010 R/W Enhance Timer n Interrupt Status Register 0x0000_0000

ETMR_DR

x=0,1,2,3
ETMRx_BA+0x014 R Enhance Timer n Data Register 0x0000_0000

ETMR_TCAP

x=0,1,2,3
ETMRx_BA+0x018 R Enhance Timer n Capture Data Register 0x0000_0000

9.5 Functional Description

Enhanced timer supports one-shot, periodic, toggle out, and continuous operation mode. And
it also supports external capture functions to measure input signal frequency or reset counter.

 Timer Initialization 9.5.1

Below list the procedure to initialize timer counter and start counting:

1. Stop timer counting by clear ETMR_EN (ETMRx_CTL[0]) to 0.

2. Configure MODE_SEL (ETMR_CTL[5:4]) to set operating mode.

3. Set ETMR_IE (ETMRx_IER[0]) to 1 for enable interrupt, otherwise clear to 0.

4. Set prescaler in PRESCALE_CNT (ETMRx_PRECNT[7:0]).

5. Set timer compare value in ETMR_CMP (ETMRx_CMPR[24:0]).

6. Set ETMR_EN (ETMRx_CTL[0]) 1 to enable timer counting.

 Timer Capture Initialization 9.5.2

Below list the procedure to initialize timer capture mode:

Aug. 14, 2018 Page 93 of 312 Rev 1.02

NUC970/N9H30

1. Stop timer by clear both ETMR_EN (ETMRx_CTL[0]) and TCAP_EN (ETMRx_CTL[16])

to 0.

2. Configure MODE_SEL (ETMRx_CTL[5:4]) to set operating mode.

3. Set TCAP_IE (ETMRx_IER[1]) 1 to enable capture interrupt, otherwise clear to 0.

4. Configure TCAP_MODE(ETMRx_CTL[17]) and CAP_CNT_MOD to select capture mode.

5. Configure TCAP_EDGE to select capture trigger condition.

6. To enable capture debounce, set TCAP_DEB_EN(ETMRx_CTL[22]) to 1, Otherwise

clear to 0.

7. Set prescaler in PRESCALE_CNT (ETMRx_PRECNT[7:0])

8. Set timer compare value in ETMR_CMP (ETMRx_CMPR[24:0])

9. Set TCAP_EN (ETMRx_CTL[16]) 1 to enable capture mode.

10. Set ETMR EN (ETMRx_CTL[0]) 1 to enable counter.

Note: MODE_SEL setting is ignored in trigger counting mode. This setting only affect timer
operating mode in free counting mode and counter reset mode.

 Interrupt Handling 9.5.3

Every timer has individual interrupt source and interrupt could be ether timeout interrupt or
capture interrupt. While timeout interrupt triggers, ETMR_IS(ETMRx_ISR[0]) will be set 1.
While capture interrupt triggers, TCAP_IS(ETMRx_ISR[1]) will be set 1. These two bits could
be cleared by write 1 to them.

If new capture event occurs before TCAP_IS cleared in capture mode, NCAP_DET_STS
(ETMRx_ISR[5]) will be set 1. This bit will be cleared after when TCAP_IS cleared.

 Timer Frequency 9.5.4

Fulmar below can be used to calculate timer timeout frequency:

Frequency = TMRx_CLK / ((PRESCALE + 1) * TCMP)

Where TMRx_CLK is the timer clock source frequency. Could be HXT (12MHz external
frequency), PCLK, PCLK/4029, or LXT (32.768kHz external crystal). PRESCALE prescaler
defined in PRESCALE_CNT (ETMRx_PRECNT[7:0]), TCMP timer compare value defined in
ETMR_CMP (ETMRx_CMPR[24:0]). Following table shows some example of timer setting to
generate 1Hz, 10Hz, 100Hz, and 1000Hz frequency.

Timer Frequency Timer Clock Source PRESCALE_CNT (ETMRx_PRECNT[7:0]) ETMR_CMP (ETMRx_CMPR[24:0])

1Hz LXT 0 0x8000

10Hz HXT 0 0x124F80

10Hz HXT 9 0x1D4C0

Aug. 14, 2018 Page 94 of 312 Rev 1.02

NUC970/N9H30

100Hz HXT 9 0x2EE0

100Hz HXT 19 0x1770

1000Hz PCLK (75MHz) 4 0x3A98

1000Hz HXT 9 0x4B0

 One-Shot Mode 9.5.5

If the timer is operated in One-shot mode (MODE_SEL[1:0] is 00) and ETMR_EN
(ETMRx_CTL[0] timer counter enable bit) is set to 1, the timer counter starts up counting.
Once the timer counter value (ETMRx_DR value) reaches timer compare register
(ETMRx_CMPR) value, the ETMR_IS (ETMRx_ISR[0] timer interrupt status) will set to 1. If
ETMR_IE (ETMRx_IER[0] timer interrupt enable bit) is set to 1 then the interrupt signal is
generated and sent to AIC to inform CPU for indicating that the timer counting overflow
happens. If ETMR_IE (ETMRx_IER[0] timer interrupt enable bit) is set to 0, no interrupt signal
is generated.

In this operating mode, once the timer counter value (ETMRx_DR value) reaches timer
compare register (ETMRx_CMPR) value, ETMR_IS (ETMRx_ISR[0] timer interrupt status) will
set to 1, timer counting operation stops and the timer counter value (ETMRx_DR value) goes
back to counting initial value then ETMR_EN (ETMRx_CTL[0] timer counter enable bit) is
cleared to 0 by timer controller automatically. That is to say, timer operates timer counting and
compares with ETMRx_CMPR value function only one time after programming the timer
compare register (ETMRx_CMPR) value and ETMR_EN (ETMRx_CTL[0] timer counter
enable bit) is set to 1. So, this operating mode is called One-Shot mode.

 Periodic Mode 9.5.6

If the timer is operated in Periodic mode (MODE_SEL[1:0] is 01) and ETMR_EN
(ETMRx_CTL[0] timer counter enable bit) is set to 1, the timer counter starts up counting.
Once the timer counter value (ETMRx_DR value) reaches timer compare register
(ETMRx_CMPR) value, the ETMR_IS (ETMRx_ISR[0] timer interrupt status) will set to 1. If
ETMR_IE (ETMRx_IER[0] timer interrupt enable bit) is set to 1 then the interrupt signal is
generated and sent to AIC to inform CPU for indicating that the timer counting overflow
happens. If ETMR_IE (ETMRx_IER[0] timer interrupt enable bit) is set to 0, no interrupt signal
is generated.

In this operating mode, once the timer counter value (ETMRx_DR value) reaches timer
compare register (ETMRx_CMPR) value, ETMR_IS (ETMRx_ISR[0] timer interrupt status) will
set to 1, the timer counter value (ETMRx_DR value) goes back to counting initial value and
ETMR_EN (ETMRx_CTL[0] timer counter enable bit) is kept at 1 (counting enable
continuously) and timer counter operates up counting again. If ETMR_IS (ETMRx_ISR[0]
timer interrupt status) is cleared by software, once the timer counter value (ETMRx_DR value)
reaches timer compare register (ETMRx_CMPR) value again, ETMR_IS (ETMRx_ISR[0]

Aug. 14, 2018 Page 95 of 312 Rev 1.02

NUC970/N9H30

timer interrupt status) will set to 1 also. That is to say, timer operates timer counting and
compares with ETMRx_CMPR value function periodically. The timer counting operation does
not stop until the ETMR_EN (ETMRx_CTL[0] timer counter enable bit) is set to 0. The
interrupt signal is also generated periodically. So, this operating mode is called Periodic
mode.

 Toggle Mode 9.5.7

If the timer is operated in Toggle mode (MODE_SEL[1:0] is 10) and ETMR_EN
(ETMRx_CTL[0] timer counter enable bit) is set to 1, the timer counter starts up counting.
Once the timer counter value (ETMRx_DR value) reaches timer compare register
(ETMRx_CMPR) value, the ETMR_IS (ETMRx_ISR[0] timer interrupt status) will set to 1. If
ETMR_IE (ETMRx_IER[0] timer interrupt enable bit) is set to 1 then the interrupt signal is
generated and sent to AIC to inform CPU for indicating that the timer counting overflow
happens. If ETMR_IE (ETMRx_IER[0] timer interrupt enable bit) is set to 0, no interrupt signal
is generated.

In this operating mode, once the timer counter value (ETMRx_DR value) reaches timer
compare register (ETMRx_CMPR) value, ETMR_IS (ETMRx_ISR[0] timer interrupt status)
and toggle out signal will set to 1, the timer counter value (ETMRx_DR value) goes back to
counting initial value and ETMR_EN (ETMRx_CTL[0] timer counter enable bit) is still kept at 1
(counting enable continuously), and timer counter operates up counting again. When the
timer counter value (ETMRx_DR value) reaches timer compare register value again, toggle
out signal is set to 0, and ETMR_IS (ETMRx_ISR[0] timer interrupt status) will set to 1 also.
The timer counting operation does not stop until the ETMR_EN (ETMRx_CTL[0] timer counter
enable bit) is set to 0. Thus, the toggle output signal changes back and forth with 50% duty
cycle. So, this operating mode is called Toggle mode.

 Continuous Mode 9.5.8

If the timer is operated in Continuous Counting mode (MODE_SEL[1:0] is 11) and ETMR_EN
(ETMRx_CTL[0] timer counter enable bit) is set to 1, the timer counter starts up counting.
Once the timer counter value (ETMRx_DR value) reaches timer compare register
(ETMRx_CMPR) value, the ETMR_IS (ETMRx_ISR[0] timer interrupt status) will set to 1. If
ETMR_IE (ETMRx_IER[0] timer counter enable bit) is set to 1 then the interrupt signal is
generated and sent to AIC to inform CPU for indicating that the timer counting overflow
happens. If ETMR_IE (ETMRx_IER[0] timer counter enable bit) is set to 0, no interrupt signal
is generated.

In this operating mode, once the timer counter value (ETMRx_DR value) reaches timer
compare register (ETMRx_CMPR) value, ETMR_IS (ETMRx_ISR[0] timer interrupt status) will
set to 1 and ETMR_EN (ETMRx_CTL[0] timer counter enable bit) is kept at 1 (counting
enable continuously) and timer counter continuous counting without reload the timer counter
value (ETMRx_DR value) to counting initial value. User can change different timer compare
register (ETMRx_CMPR) value immediately without disabling timer counter and restarting
timer counter counting.

For example, the timer compare register (ETMRx_CMPR) value is set as 80, first. (The timer
compare register (ETMRx_CMPR) should be less than 224 and be greater than 1). Once the

Aug. 14, 2018 Page 96 of 312 Rev 1.02

NUC970/N9H30

timer counter value (ETMRx_DR value) reaches to 80, ETMR_IS (ETMRx_ISR[0] timer
interrupt status) will set to 1 and ETMR_EN (ETMRx_CTL[0] timer counter enable bit) is still
kept at 1 (counting enable continuously). Next, user clears the ETMR_IS (ETMRx_ISR[0]
timer interrupt status) and reprograms timer compare register (ETMRx_CMPR) value as 200,
then ETMR_IS (ETMRx_ISR[0] timer interrupt status) will set to 1 again when timer counter
value (ETMRx_DR value) reaches to 200. At last, user clears ETMR_IS (ETMRx_ISR[0] timer
interrupt status) and reprograms timer compare register (ETMRx_CMPR) value as 500, then
ETMR_IS (ETMRx_ISR[0] timer interrupt status) will set to 1 again when timer counter value
(ETMRx_DR value) reaches to 500. In this mode, when the timer counter value (ETMRx_DR
value) continues counting up to 224 -1, then recount up from 0 continuously. The timer counter
value (ETMRx_DR value) is always keeping up counting even if ETMR_IS (ETMRx_ISR[0]
timer interrupt status) is 1. Therefore, this operation mode is called as Continuous Counting
mode.

Following figure shows an enhanced timer continuous mode sample.

ETMRx_D

R = 0

Set

ETMRx_CMP

R = 80

ETMRx_DR = 80

and ETMR_IS = 1

Clear ETMR_IS

as 0 and Set

ETMRx_CMPR

 = 200

ETMRx_DR from 2
24

-1 to 0

ETMRx_DR

= 100

ETMRx_DR

= 200

ETMRx_DR

= 300

ETMRx_DR

= 400

ETMRx_DR

= 500

ETMRx_DR

= 2
24

-1

ETMRx_DR = 200

and ETMR_IS = 1

Clear ETMR_IS

as 0 and Set

ETMRx_CMPR

 = 500

ETMRx_DR = 500

and ETMR_IS = 1

Clear ETMR_IS

as 0 and Set

ETMRx_CMPR

 = 80

 Free Counting Mode 9.5.9

In this mode, timer monitors the capture pin toggle event to save current counter value. If both
TCAP_MODE (ETMRx_CTL[17]) and CAP_CNT_MOD (ETMRX_CTL[20]) is 0, timer is
working in free counting mode. 24 up counter keeps counting, when the external pin toggle
state matches the setting in TCAP_EDGE (ETMRx_CTL[19:18]), current 24 up counter value
will be stored in TMRn_TCAP register. At the mean time, if TCAP_IE (ETMRx_IER[1]) is 1,
TCAP_IS(ETMR_ISR[1]) will set 1 and trigger interrupt.

In free counting mode, when TCAP_EDGE is 0, falling edge on TMx_CAP triggers capture
event. When TCAP_EDGE is 1, rising edge on TMx_CAP triggers capture event. And both
falling and rising edge trigger capture event if TCAP_EDGE is ether 2 or 3, TMx_CAP.
Following figure is timing diagram of free counting mode.

Aug. 14, 2018 Page 97 of 312 Rev 1.02

NUC970/N9H30

5 6 7 8 9 10 11 12 13 14 15

XX 6 10 13

ETMR Counter

TCAP_IS

ETMRx_TCAP

NCAP_DET_STS

TMx_CAP
(TCAP_EDGE=0x03)

Clear by software Clear by software

 Trigger Counting Mode 9.5.10

In this mode, timer monitors the capture pin toggle event to start/stop timer counter and save
captured value. If TCAP_MODE (ETMRx_CTL[17]) is 0 and CAP_CNT_MOD
(ETMRx_CTL[20]) is 1, counter will work in trigger counting mode. 24 up counting counter will
keep 0. Until external capture pin toggle state matches TCAP_EDGE (ETMRx_CTL[19:18])
first trigger condition, 24 counter starts counting. And timer counter stops counting and store
current counter value to ETMRx_TCAP register. When the external capture pin toggle state
matches the second trigger condition set in TCAP_EDGE. If TCAP_IE (ETMRx_IER[1]) is 1,
TCAP_IS(ETMR_ISR[1]) will be set 1 and triggers interrupt.

In trigger counting mode, if TCAP_EDGE is 0, first falling edge on TMx_CAP starts timer up
counting, second falling edge stops timer counter. If TCAP_EDGE is 1, first rising edge on
TMx_CAP starts timer up counting, second rising edge stops timer counter. If TCAP_EDGE is
2, falling edge on TMx_CAP starts timer counter, and rising edge stops counter. If
TCAP_EDGE is 3, rising edge on TMx_CAP starts timer counter, and falling edge stops
counter.

Aug. 14, 2018 Page 98 of 312 Rev 1.02

NUC970/N9H30

 Counter Reset Mode 9.5.11

In this mode, timer monitors the capture pin toggle event to reset timer counter. The timer
value before reset will not be saved.

External capture toggle pin will be used to reset timer counter if TCAP_MODE
(ETMRx_CTL[17]) is 1. In this mode, while external capture pin toggle status matches the
setting in TCAP_EDGE (ETMRx_CTL[19:18]), timer counter will be reset an keep up
counting. If TCAP_IE (ETMRx_IER[1]) is 1, TCAP_IS(ETMRx_ISR[1]) will be set 1 and
trigger interrupt.

In counter reset mode, if TCAP_EDGE is 0, falling edge on TMx_CAP pin will reset timer
counter. Rising edge on TMx_CAP reset counter if TCAP_EDGE is 1, TMx_CAP. Both rising
and falling edge reset timer counter if TCAP_EDGE if 2 or 3, TMx_CAP. Following figure
illustrate the reset timer mode operation.

5 6 0 1 2 0 1 2 3 0 1ETMR Counter

TCAP_IS

TMx_CAP
(TCAP_EDGE=0x03)

Clear by software
Clear by software Clear by software

Aug. 14, 2018 Page 99 of 312 Rev 1.02

NUC970/N9H30

 Capture Debounce 9.5.12

Timer capture supports debounce function for detecting capture pin toggle. Timer can use
ether original signal or debounced signal to detect capture pin status. Default state of
debounce circuit is disabled. And only will be enabled if both TCAP_DEB_EN
(ETMRx_CTL[22]) and TCAP_EN (ETMRX_CTL[16]) are set 1. So if capture pin level is 1,
and TCAP_EDGE (ETMRx_CTL[19:18]) configured to detect rising level and debounce circuit
enabled, a false rising event will be detected. This will means the value in ETMRx_TCAP is
incorrect on first capture interrupt. To avoid using this wrong value for frequency calculation, it
is recommended to ignore first capture data that maybe incorrect capture value.

Aug. 14, 2018 Page 100 of 312 Rev 1.02

NUC970/N9H30

10 Flash Memory Interface

10.1 Overview

The Flash Memory Interface (FMI) of this Chip has DMA unit and FMI unit. The DMA unit
provides a DMA (Direct Memory Access) function for FMI to exchange data between system
memory (ex. SDRAM) and shared buffer (128 bytes), and the FMI unit control the interface of
eMMC or NAND flash. The interface controller can support eMMC and NAND-type flash and
the FMI is cooperated with DMAC to provide a fast data transfer between system memory
and cards.

10.2 Features

 Support single DMA channel and address in non-word boundary

 Support hardware Scatter-Gather function

 Support 128Bytes shared buffer for data exchange between system memory and flash
device. (Separate into two 64 bytes ping pong FIFO)

 Support eMMC Flash device

 Supports SLC and MLC NAND type Flash

 Adjustable NAND page sizes. (512B+spare area, 2048B+spare area, 4096B+spare area
and 8192B+spare area)

 Support up to 4bit/8bit/12bit/15bit/24bit hardware ECC calculation circuit to protect data
communication

 Support programmable NAND timing cycle

10.3 Block Diagram

Aug. 14, 2018 Page 101 of 312 Rev 1.02

NUC970/N9H30

10.4 Register Map
R: read only, W: write only, R/W: both read and write

Register Offset R/W Description Reset Value

FMI_BA = 0xB000_D000

FMI_BUFFERn

n = 0, 1..31
FMI_BA+0x000+0x4*n R/W

FMI Embedded Buffer Word n

N = 0, 1..31
0x0000_0000

FMI_DMACTL FMI_BA+0x400 R/W FMI DMA Control Register 0x0000_0000

FMI_DMASA FMI_BA+0x408 R/W FMI DMA Transfer Starting Address Register 0x0000_0000

FMI_DMABCNT FMI_BA+0x40C R FMI DMA Transfer Byte Count Register 0x0000_0000

FMI_DMAINTEN FMI_BA+0x410 R/W FMI DMA Interrupt Enable Register 0x0000_0001

FMI_DMAINTSTS FMI_BA+0x414 R/W FMI DMA Interrupt Enable Register 0x0000_0000

FMI_CTL FMI_BA+0x800 R/W FMI Control and Status Register 0x0000_0000

FMI_INTEN FMI_BA+0x804 R/W FMI Interrupt Enable Register 0x0000_0001

FMI_INTSTS FMI_BA+0x808 R/W FMI Interrupt Status Register 0x0000_0000

FMI_EMMCCTL FMI_BA+0x820 R/W eMMC Control Register 0x0101_0000

FMI_EMMCCMD FMI_BA+0x824 R/W eMMC Command Argument Register 0x0000_0000

FMI_EMMCINTEN FMI_BA+0x828 R/W eMMC Interrupt Enable Register 0x0000_0000

A
H

B
 I
n

te
rf

a
c

e

Bus

Interface

Unit

Control, Status

Register

DMA

Controller

NAND Flash

Controller

eMMC

Controller

FIFO

eMMC_CLK

eMMC_CMD

eMMC_DATA[7:0]

NAND_nCS0

NAND_nWP

NAND_ALE

NAND_CLE

NAND_nWE

NAND_nRE

NAND_RDY

NAND_DATA[7:0]

Aug. 14, 2018 Page 102 of 312 Rev 1.02

NUC970/N9H30

FMI_EMMCINTSTS FMI_BA+0x82C R/W eMMC Interrupt Status Register 0x00XX_008C

FMI_EMMCRESP0 FMI_BA+0x830 R eMMC Receiving Response Token Register 0 0x0000_0000

FMI_EMMCRESP1 FMI_BA+0x834 R eMMC Receiving Response Token Register 1 0x0000_0000

FMI_EMMCBLEN FMI_BA+0x838 R/W eMMC Block Length Register 0x0000_01FF

FMI_EMMCTOUT FMI_BA+0x83C R/W eMMC Response/Data-in Time-out Register 0x0000_0000

FMI_NANDCTL FMI_BA+0x8A0 R/W NAND Flash Control Register 0x1E88_0090

FMI_NANDTMCTL FMI_BA+0x8A4 R/W NAND Flash Timing Control Register 0x0001_0105

FMI_NANDINTEN FMI_BA+0x8A8 R/W NAND Flash Interrupt Enable Register 0x0000_0000

FMI_NANDINTSTS FMI_BA+0x8AC R/W NAND Flash Interrupt Status Register 0x00XX_0000

FMI_NANDCMD FMI_BA+0x8B0 W NAND Flash Command Port Register N/A

FMI_NANDADDR FMI_BA+0x8B4 W NAND Flash Address Port Register N/A

FMI_NANDDATA FMI_BA+0x8B8 R/W NAND Flash Data Port Register N/A

FMI_NANDRACTL FMI_BA+0x8BC R/W NAND Flash Redundant Area Control Register 0x0000_0000

FMI_NANDECTL FMI_BA+0x8C0 R/W NAND Flash Extend Control Register 0x0000_0000

FMI_NANDECCES0 FMI_BA+0x8D0 R NAND Flash ECC Error Status 0 Register 0x0000_0000

FMI_NANDECCES1 FMI_BA+0x8D4 R NAND Flash ECC Error Status 1 Register 0x0000_0000

FMI_NANDECCES2 FMI_BA+0x8D8 R NAND Flash ECC Error Status 2 Register 0x0000_0000

FMI_NANDECCES3 FMI_BA+0x8DC R NAND Flash ECC Error Status 3 Register 0x0000_0000

FMI_NANDPROTA0 FMI_BA+0x8E0 R/W NAND Flash Protect Region End Address 0 Register 0x0000_0000

FMI_NANDPROTA1 FMI_BA+0x8E4 R/W NAND Flash Protect Region End Address 1 Register 0x0000_0000

FMI_NANDECCEA0 FMI_BA+0x900 R NAND Flash ECC Error Byte Address 0 Register 0x0000_0000

FMI_NANDECCEA1 FMI_BA+0x904 R NAND Flash ECC Error Byte Address 1 Register 0x0000_0000

FMI_NANDECCEA2 FMI_BA+0x908 R NAND Flash ECC Error Byte Address 2 Register 0x0000_0000

FMI_NANDECCEA3 FMI_BA+0x90C R NAND Flash ECC Error Byte Address 3 Register 0x0000_0000

FMI_NANDECCEA4 FMI_BA+0x910 R NAND Flash ECC Error Byte Address 4 Register 0x0000_0000

FMI_NANDECCEA5 FMI_BA+0x914 R NAND Flash ECC Error Byte Address 5 Register 0x0000_0000

FMI_NANDECCEA6 FMI_BA+0x918 R NAND Flash ECC Error Byte Address 6 Register 0x0000_0000

FMI_NANDECCEA7 FMI_BA+0x91C R NAND Flash ECC Error Byte Address 7 Register 0x0000_0000

FMI_NANDECCEA8 FMI_BA+0x920 R NAND Flash ECC Error Byte Address 8 Register 0x0000_0000

FMI_NANDECCEA9 FMI_BA+0x924 R NAND Flash ECC Error Byte Address 9 Register 0x0000_0000

FMI_NANDECCEA10 FMI_BA+0x928 R NAND Flash ECC Error Byte Address 10 Register 0x0000_0000

FMI_NANDECCEA11 FMI_BA+0x92C R NAND Flash ECC Error Byte Address 11 Register 0x0000_0000

FMI_NANDECCED0 FMI_BA+0x960 R NAND Flash ECC Error Data Register 0 0x8080_8080

FMI_NANDECCED1 FMI_BA+0x964 R NAND Flash ECC Error Data Register 1 0x8080_8080

FMI_NANDECCED2 FMI_BA+0x968 R NAND Flash ECC Error Data Register 2 0x8080_8080

Aug. 14, 2018 Page 103 of 312 Rev 1.02

NUC970/N9H30

FMI_NANDECCED3 FMI_BA+0x96C R NAND Flash ECC Error Data Register 3 0x8080_8080

FMI_NANDECCED4 FMI_BA+0x970 R NAND Flash ECC Error Data Register 4 0x8080_8080

FMI_NANDECCED5 FMI_BA+0x974 R NAND Flash ECC Error Data Register 5 0x8080_8080

FMI_NANDRAn

n = 0, 1..117
FMI_BA+0xA00+0x4*n R/W

NAND Flash Redundant Area Word n

n = 0, 1..117
Undefined

10.5 Functional Description

Flash Memory Interface (FMI) has DMA unit and FMI unit. The FMI unit has NAND controller
and eMMC controller. The following sections will separate to describe each process steps.

 DMA and FMI Global Control 10.5.1

DMA controller provides a direct memory access function. User only needs to fill the starting
address and enable it, and DMAC can handle the data transmission automatically. DMA
controller has a 128 bytes share buffer – separate to two 64 bytes ping pong FIFO. It can use
the ping pong mechanism to provide multi-block transfer. When FMI is idle, the share buffer
can be accessed directly by software.

FMI interface supports eMMC flash and NAND-type flash. FMI and DMAC provide fast data
transfer between system memory and the card. Since DMAC only a single channel, which
means that only one interface can be activated at the same time. eMMC and NAND are not
co-exist.

To enable FMI and DMAC, please follow the steps below:

1. Set FMI_DMACTL register DMACEN bit and SW_RST bit.

2. Polling FMI_DMACTL register SW_RST bit until it was cleared.

3. Set FMI_CTL register SW_RST bit.

4. Polling FMI_CTL register SW_RST bit until it was cleared.

 NAND Flash 10.5.2

FMI provides NAND-type flash memory access interface. This NAND-type flash memory
controller provides all the necessary signals. User can easily generate the signals based on
device specification. (Such as command port, address port and data port). It supports four
different page size, 512 bytes, 2048 bytes, 4096 bytes and 8192 bytes. For different NAND,
user needs to adjust the timing parameters (FMI_NANDTMCTL register) to meet the NAND
flash memory device specification. Periodic to adjust the timing parameters can also improve
the performance of data transmission.

NAND-type flash memory controller provides a BCH error correction algorithm. This ECC

Aug. 14, 2018 Page 104 of 312 Rev 1.02

NUC970/N9H30

calculation circuit supports up to 4-bit, 8-bit, 12-bit, 15-bit or 24-bit error. User can check the
error from reading FMI_NANDINTSTS register ECC_FLD_IF bit, and also can get the error
information from reading FMI_NANDECCESn register. If needs doing correction, user should
read the FMI_NANDECCEAx and FMI_NANDECCEDx register to correct it.

About the device detail programming rule, please reference "Software Driver of SmartMedia",
"SmartMedia Electrical Specifications", "SmartMedia Physical Format Specifications" and
"SmartMedia Logical Format Specifications".

10.5.2.1 NAND Initialize

To initial NAND controller, please follow the steps below:

1. Set CLK_HCLKEN register FMI and NAND bit.

2. Select the multiple function pin. NAND has two set: GPC0~14 and GPI1~15.

(1) GPC: Set the value 0x55555 into SYS_GPC_MFPL register, and 0x05555555 into
SYS_GPC_MFPH register.

(2) GPI: Set the value 0x55555550 into SYS_GPI_MFPL register, and 0x55555555 into
SYS_GPI_MFPH register.

3. Set FMI_CTL register NAND_EN bit to enable NAND function.

4. Set FMI_NANDECTL register WP bit to disable NAND-type flash memory write-protect.

5. Set FMI_NANDCTL register CS0 or CS1 bit to select NAND chip select.

10.5.2.2 Reset NAND-type Flash

Reset NAND-type flash memory, please follow the steps below:

1. Send “RESET” command 0xFF to FMI_NANDCMD register.

2. Polling RB＃. Check FMI_NANDINTSTS register RB0_IF bit until it was set. And then

clear FMI_NANDINTSTS register RB0_IF bit.

10.5.2.3 Identify NAND-type Flash

Identify NAND-type flash, please follow the steps below:

1. Send “Read ID” command 0x90 to FMI_NANDCMD register.

2. FMI_NANDADDR register ADDRESS bit fill address 0x00, and set EOA bit.

3. Get the ID from FMI_NANDDATA register.

4. Get the NAND page size, ECC correct information from ID. And then set the
FMI_NANDCTL register PSIZE and BCH_TSEL bit.

5. Set the redundant area depend on ID or specification. FMI_NANDRACTL register
RA128EN bit.

Aug. 14, 2018 Page 105 of 312 Rev 1.02

NUC970/N9H30

10.5.2.4 Erase NAND-type Flash

Erase NAND-type flash, please follow the steps below:

1. Send “Block Erase” command 0x60 to FMI_NANDCMD register.

2. Fill the row address from low to high into FMI_NANDADDR register. Please reference the
figure below.

3. Set FMI_NANDADDR register EOA bit.

4. Send “Erase” command 0xD0 to FMI_NANDCMD register.

5. Polling RB＃. Check the FMI_NANDINTSTS register RB0_IF bit until it was set. And then

clear FMI_NANDINTSTS register RB0_IF bit.

6. Send “Read Status” command 0x70 to FMI_NANDCMD register.

7. Get the status from FMI_NANDDATA register, and check the bit 0. 1: Fail; 0: Pass.

Address Cycle D7 D6 D5 D4 D3 D2 D1 D0

1
st
 Cycle A7 A6 A5 A4 A3 A2 A1 A0

Column Address

2
nd

 Cycle L L A13 A12 A11 A10 A9 A8

3
rd

 Cycle A21 A20 A19 A18 A17 A16 A15 A14
Row Address

Page address: A14~A21

Block Address: A22 ~

L: must be "Low"

4
th

 Cycle A29 A28 A27 A26 A25 A24 A23 A22

5
th

 Cycle L L L L A33 A32 A31 A30

10.5.2.5 Write NAND-type Flash

NAND-type flash page write access, please follow the steps below:

1. Fill target address to FMI_DMASA register.

2. Fill 0x0000FFFF to FMI_NANDRA0 register. It means this page was used.

3. Send “Serial Input” command 0x80 to FMI_NANDCMD register.

4. Fill column address from low to high into FMI_NANDADDR register. The column address
usually fills 0, start from one page.

5. Fill row address from low to high into FMI_NANDADDR register.

6. Set FMI_NANDADDR register EOA bit.

7. Clear FMI_NANDINTSTS register DMA_IF, ECC_FLD_IF, PROT_REGION_WR_IF bit.

8. Set FMI_NANDCTL register REDUN_AUTO_WEN bit to enable auto-write redundant
area.

9. Set FMI_NANDCTL register DWR_EN bit to enable DMA output data to NAND.

Aug. 14, 2018 Page 106 of 312 Rev 1.02

NUC970/N9H30

10. Polling DWR_EN bit until it was cleared. Or polling FMI_NANDINTSTS register DMA_IF
bit.

11. Send “Program” command 0x10 to FMI_NANDCMD register.

12. Polling RB＃. Check FMI_NANDINTSTS register RB0_IFbit until it was set. And then

clear FMI_NANDINTSTS register RB0_IF bit.

13. Send “Read Status” command 0x70 to FMI_NANDCMD register.

14. Get the status from FMI_NANDDATA register, and check the bit 0. 1: Fail; 0: Pass.

10.5.2.6 Read NAND-type Flash

Before NAND-type flash page read, user should read the redundant area first. NAND
controller needs the redundant area ECC parity bytes for error correction. All page read
access, please follow the steps below:

1. Get redundant area size from FMI_NANDRACTL register RA128EN bit.

2. Send “Read” command 0x00 to FMI_NANDCMD register.

3. Fill column address from low to high into FMI_NANDADDR register.

4. Fill row address from low to high into FMI_NANDADDR register.

5. Set FMI_NANDADDR register EOA bit.

6. Send “Read Data” command 0x30 to FMI_NANDCMD register.

7. Polling RB＃. Check FMI_NANDINTSTS register RB0_IF bit until it was set. And then

clear FMI_NANDINTSTS register RB0_IF bit.

8. There are two ways to write redundant area data into FMI_NANDRAn register:

(1) Hardware Read: Set FMI_NANDCTL register REDUN_REN bit. Polling
REDUN_REN bit until it was cleared.

(2) Software Read: According to the size of redundant area, read out one by one by
FMI_NANDDATA register.

9. Read data. Repeat step 2 ~ 7. The column address should be 0 for each page starting.

10. Fill target address to FMI_DMASA register.

11. Clear FMI_NANDINTSTS register DMA_IF and ECC_FLD_IF bit.

12. Set FMI_NANDCTL register DRD_EN bit to enable DMA to get NAND data.

13. Polling DRD_EN bit until it was cleared. Or polling FMI_NANDINTSTS register DMA_IF
bit.

14. If FMI_NANDINTSTS register ECC_FLD_IF bit was set, it means that data error. User
should active error correction. (Refer to the error correction step for more detail).

Aug. 14, 2018 Page 107 of 312 Rev 1.02

NUC970/N9H30

10.5.2.7 NAND-type Flash ECC Correction

BCH error correction algorithm can correct up to 4-bit, 8-bit, 12-bit, 15-bit or 24-bit errors. In
addition to 24-bit computing unit is 1024 bytes, others are 512 bytes.

NAND-type flash memory error correction, please follow the steps below:

1. Read FMI_NANDECCESn register Fx_STAT bit to check whether the error can be
corrected.

2. If errors can be corrected, read FMI_NANDECCESn register Fx_ECNT bit to get the
number of errors.

3. According to the page size and BCH algorithm to calculate the correct region. Get the
legal FMI_NANDECCEDn and FMI_NANDECCEAn register.

4. Reads FMI_NANDECCEDn register to get incorrect data. Then get the wrong data
address according to FMI_NANDECCEAn register and obtain input data. These two data
do XOR. The result is the correct data.

 eMMC 10.5.3

FMI provides an eMMC device interface. This eMMC controller supports 1-bit / 4-bit bus
width. The controller can generates all types command and response. The response content
will save at FMI_EMMCRESP0 and FMI_EMMCRESP1 register. About output frequency to
eMMC device, user should control the CLKDIV3 register. Detailed procedural rules relating to
the device, please refer to “JEDEC Standard No. 84-A441” and the manufactures eMMC
datasheet.

eMMC Card Identification Mode:

Aug. 14, 2018 Page 108 of 312 Rev 1.02

NUC970/N9H30

eMMC Data Transfer Mode：

10.5.3.1 eMMC Initialize

eMMC initialize, please follow the steps below:

Power On

Idle State

CMD15

CMD2

CMD1

Identification

State

Ready State

Inactive State

CMD3

Stand-by State

Device Busy

CMD0 with

Arg = 0

Card-Identification Mode

Data Transfer Mode

Host cannot use

Sector access Mode

(>2GB Devices)

Stand-by State

Receive data

State

Disconnect State
Programming

State

Transfer State

Sending data

State

CMD7

CMD12
CMD7

CMD7

CMD12
CMD17,18,21,30,53

,56,8,31

CMD16,23,35,36

CMD24,25,26,27,42,56

CMD6,28,29,38

CMD4,9,10,39

CMD7

Operation complete

Operation

Complete

CMD24,25

Aug. 14, 2018 Page 109 of 312 Rev 1.02

NUC970/N9H30

1. Set CLK_HCLKEN register FMI, NAND and eMMC bit.

2. Select multiple function pin. eMMC has two set. GPC0〜5和GPI5〜10。

 GPC: Set the value 0x00666666 to SYS_GPC_MFPL register.

 GPI: Set the value 0x66600000 to SYS_GPI_MFPL register, and 0x666 to
SYS_GPI_MFPH register.

3. Set FMI_CTL register eMMC_EN bit to enable eMMC.

4. Set FMI_EMMCCTL register SW_RST bit.

5. Polling FMI_EMMCCTL register SW_RST bit until it was cleared.

6. Set eMMC initial output frequency to 300 KHz, and 1-bit bus for eMMC interface.

7. Set FMI_EMMCCTL register CLK74_OE bit.

8. Polling FMI_EMMCCTL register CLK74_OE bit until it was cleared.

9. According to devices programming rule to send command to eMMC.

10. When device get into Data Transfer Mode, the output frequency can set to suitable clock.
Such as 25MHz. And the bus width is 4-bit mode.

10.5.3.2 Send Command

Send command to eMMC, please follow the steps below:

1. Set the argument to FMI_EMMCCMD register.

2. Set command to FMI_EMMCCTL register CMD_CODE bit.

3. Set FMI_EMMCCTL register CO_EN bit to enable command out.

4. Polling FMI_EMMCCTL register CO_EN bit until it was cleared.

10.5.3.3 Get Response

Get response from eMMC, please follow the steps below:

1. Set FMI_EMMCCTL register RI_EN bit to enable response in.

2. Polling FMI_EMMCCTL register RI_EN bit until it was cleared.

3. Check FMI_EMMCINTSTS register CRC7 bit.

4. Get the response from FMI_EMMCRESP0 and FMI_EMMCRESP1 register.

10.5.3.4 Read eMMC

eMMC read access, please follow the steps below:

1. Send CMD7 to enter transfer state.

2. Set FMI_EMMCCTL register CLK8_OE bit to output 8 clock cycles. Check
FMI_EMMCINTSTS register DAT0 bit. Repeat step 2 until eMMC is ready.

Aug. 14, 2018 Page 110 of 312 Rev 1.02

NUC970/N9H30

3. Set block size to FMI_EMMCBLEN register. Such as 0x1FF is for 512 bytes.

4. Set the read starting sector address to FMI_EMMCCMD register.

5. Set the data target address to FMI_DMASA register.

6. Check the read sector count. If the count is greater than 255, user should separate it. Set
the sector count to FMI_EMMCCTL register BLK_CNT bit. (255 is the limitation).

7. Send CMD18 for multiple read. (Set 18 to FMI_EMMCCTL register CMD_CODE bit).

8. Set FMI_EMMCCTL register CO_EN, RI_EN and DI_EN bit to enable command out,
response in and data in.

9. Polling DI_EN bit until it was cleared. Or waiting the interrupt (FMI_EMMCINTSTS
register BLKD_IF bit).

10. Check FMI_EMMCINTSTS register CRC7 and CRC16 bit.

11. Send CMD12 to stop transfer.

12. Set FMI_EMMCCTL register CLK8_OE bit to output 8 clock cycles. Check
FMI_EMMCINTSTS register DAT0 bit. Repeat step 12 until eMMC is ready.

13. Send CMD7 to idle state.

10.5.3.5 Write eMMC

eMMC write access, please follow the steps below:

1. Send CMD7 to enter transfer state.

2. Set FMI_EMMCCTL register CLK8_OE bit to output 8 clock cycles.Check
FMI_EMMCINTSTS register DAT0 bit. Repeat step 2 until eMMC is ready.

3. Set block size to FMI_EMMCBLEN register. Such as 0x1FF is for 512 bytes.

4. Set the write starting sector address to FMI_EMMCCMD register.

5. Set the data source address to FMI_DMASA register.

6. Check the write sector count. If the count is greater than 255, user should separate it. Set
the sector count to FMI_EMMCCTL register BLK_CNT bit. (255 is the limitation).

7. Set CMD25 for multiple write. (Set 25 to FMI_EMMCCTL register CMD_CODE bit).

8. Set FMI_EMMCCTL register CO_EN, RI_EN and DO_EN bit to enable command out,
response in and data out.

9. Polling DO_EN bit until it was cleared. Or waiting the interrupt (FMI_EMMCINTSTS
register BLKD_IF bit).

10. Check FMI_EMMCINTSTS register CRC_IF bit. If CRC error occurred, the state machine
should software reset. (Set FMI_EMMCCTL register SW_RST bit).

11. Send CMD12 to stop transfer.

12. Set FMI_EMMCCTL register CLK8_OE bit to output 8 clock cycles. Check
FMI_EMMCINTSTS register DAT0 bit. Repeat step 12 until eMMC is ready.

Aug. 14, 2018 Page 111 of 312 Rev 1.02

NUC970/N9H30

13. Send CMD7 to Idle state.

Aug. 14, 2018 Page 112 of 312 Rev 1.02

NUC970/N9H30

11 General DMA Controller (GDMA)

11.1 Overview

The chip has a two-channel general DMA controller with or without descriptor fetch operation,
called the GDMA. The two-channel GDMA performs the memory-to-memory data transfers
without the CPU intervention:

The on-chip GDMA can be started by the software. Software can also be used to restart the
GDMA operation after it has been stopped. The CPU can recognize the completion of a
GDMA operation by software polling or when it receives an internal GDMA interrupt. The
GDMA controller can increment source or destination address, decrement them as well, and
conduct 8-bit (byte), 16-bit (half-word), or 32-bit (word) data transfers.

11.2 Features

 AMBA AHB compliant

 Descriptor and Non-Descriptor based function

 Supports 8-data burst mode to boost performance

 Provides support for external GDMA device

 Demand mode speeds up external GDMA operations

11.3 Block Diagram

AHB Bus

Master/Slave Wrapper

Control

Registers

Buffer 0

(8 X 32 bit)

DMA

Controller

Channel 0

DMA

Controller

Channel 1

Buffer 1

(8 X 32 bit)

Aug. 14, 2018 Page 113 of 312 Rev 1.02

NUC970/N9H30

11.4 Register Map
R: read only, W: write only, R/W: both read and write.

Register Address R/W Description Reset Value

GDMA_BA = 0xB000_4000

Channel 0

GDMA_CTL0 GDMA_BA+0x000 R/W Channel 0 Control Register 0x0000_0000

GDMA_SRCBA0 GDMA_BA+0x004 R/W Channel 0 Source Base Address Register 0x0000_0000

GDMA_DSTBA0 GDMA_BA+0x008 R/W Channel 0 Destination Base Address Register 0x0000_0000

GDMA_TCNT0 GDMA_BA+0x00C R/W Channel 0 Transfer Count Register 0x0000_0000

Memory

Next Descriptor Address 0

Source Address 0

Destination Address 0

Command Information 0

Next Descriptor Address 1

Source Address 1

Destination Address 1

Command Information 1

Next Descriptor Address 2

Source Address 2

.

.

.

Next Descriptor Address x

Source Address x

Destination Address x

Command Information x

GDMA_DADRx[31:4] + 0x00

Ordering

Programming by

software

GDMA_DADRx[31:4] + 0x10

GDMA_DADRx[31:4] + 0x10

GDMA_DADRx

GDMA Fetch Descriptor

Single Channel Descriptor

Internal Descriptor Register

GDMA_SRCBx

GDMA_DSTBx

GDMA_TCNTx

GDMA_CTLx

GDMA

A Descriptor list

finished

Bit[31:18]

Bit[17:0]

Bit[31:0]

Bit[31:0]

Bit[31:0]

GDMA_DADRx[31:4] + 0x04

GDMA_DADRx[31:4] + 0x08

GDMA_DADRx[31:4] + 0x0C

GDMA_DADRx[31:4] + 0x00

GDMA_DADRx[31:4] + 0x04

GDMA_DADRx[31:4] + 0x08

GDMA_DADRx[31:4] + 0x0C

GDMA_DADRx[31:4] + 0x00

GDMA_DADRx[31:4] + 0x04

GDMA_DADRx[31:4] + 0x00

GDMA_DADRx[31:4] + 0x04

GDMA_DADRx[31:4] + 0x08

GDMA_DADRx[31:4] + 0x0C

Aug. 14, 2018 Page 114 of 312 Rev 1.02

NUC970/N9H30

GDMA_CSRCA0 GDMA_BA+0x010 R Channel 0 Current Source Address Register 0x0000_0000

GDMA_CDSTA0 GDMA_BA+0x014 R
Channel 0 Current Destination Address
Register

0x0000_0000

GDMA_CTCNT0 GDMA_BA+0x018 R Channel 0 Current Transfer Count Register 0x0000_0000

GDMA_DADR0 GDMA_BA+0x01C R/W Channel 0 Descriptor Address Register 0x0000_0004

Channel 1

GDMA_CTL1 GDMA_BA+0x020 R/W Channel 1 Control Register 0x0000_0000

GDMA_SRCBA1 GDMA_BA+0x024 R/W Channel 1 Source Base Address Register 0x0000_0000

GDMA_DSTBA1 GDMA_BA+0x028 R/W Channel 1 Destination Base Address Register 0x0000_0000

GDMA_TCNT1 GDMA_BA+0x02C R/W Channel 1 Transfer Count Register 0x0000_0000

GDMA_CSRCA1 GDMA_BA+0x030 R Channel 1 Current Source Address Register 0x0000_0000

GDMA_CDSTA1 GDMA_BA+0x034 R
Channel 1 Current Destination Address
Register

0x0000_0000

GDMA_CTCNT1 GDMA_BA+0x038 R Channel 1 Current Transfer Count Register 0x0000_0000

GDMA_DADR1 GDMA_BA+0x03C R/W Channel 1 Descriptor Address Register 0x0000_0004

GDMA_BUFFER0 GDMA_BA+0x080 R GDMA Internal Buffer Word 0 Register 0x0000_0000

GDMA_BUFFER1 GDMA_BA+0x084 R GDMA Internal Buffer Word 1 Register 0x0000_0000

GDMA_BUFFER2 GDMA_BA+0x088 R GDMA Internal Buffer Word 2 Register 0x0000_0000

GDMA_BUFFER3 GDMA_BA+0x08C R GDMA Internal Buffer Word 3 Register 0x0000_0000

GDMA_BUFFER4 GDMA_BA+0x090 R GDMA Internal Buffer Word 4 Register 0x0000_0000

GDMA_BUFFER5 GDMA_BA+0x094 R GDMA Internal Buffer Word 5 Register 0x0000_0000

GDMA_BUFFER6 GDMA_BA+0x098 R GDMA Internal Buffer Word 6 Register 0x0000_0000

GDMA_BUFFER7 GDMA_BA+0x09C R GDMA Internal Buffer Word 7 Register 0x0000_0000

GDMA_INTS GDMA_BA+0x0A0 R/W GDMA Interrupt Control and Status Register 0x0000_0000

11.5 Functional Description

 Non-Descriptor Functional Descriptions 11.5.1

11.5.1.1 GDMA Configuration

Each GDMA channel has one control register, one descriptor address register, two base
address registers and one transfer count register. These registers should be correctly
programmed before the data transfer starts. The most important one is the control register
(GDMA_CTL). It is used to control the transfer behavior of the GDMA operation, such as the
transfer mode and transfer width. The following figure lists the content of GDMA_CTL of non-
descriptor fetches mode. The detail description of each bit-field can be found in data sheet.

31 30 29 28 27 26 25 24

Aug. 14, 2018 Page 115 of 312 Rev 1.02

NUC970/N9H30

The source base address register (GDMA_SRCB) is used to set the base address of source
data. The destination base address register (GDMA_DSTB) is used to set the starting
address where the source data to be stored. The number of the GDMA transfer is set by
programming the transfer count register (GDMA_TCNT). The following figure shows the
programming flow for GDMA non-descriptor operation

Start

Set destination address

Set transfer count

Set control register

Should be at the nature boundary of TWS

24-bit (maximum is 16M-1), each count represents:

i. 8 bits when 8-bit transfer.

ii. 16 bits when 16-bit transfer.

iii. 32 bits when 32-bit transfer.

iv. 8*8, 16*8, or 32*8 bits when burst mode enabled.The mode (software), direction,

fixing, bust, bus lock, transfer

width, block mode, and demand

mode are set here.

Clear [TCF]

Transfer complete ?

End

Clean control register

Set source address

If the SOFTREQ was not self-clean in the

previous GDMA transfer, it should be cleaned

before next GDMA transfer request.

Should be at the nature boundary of TWS

Yes

No

Set interrupt register

RESERVED

23 22 21 20 19 18 17 16

RESERVED SABNDERR DABNDERR RESERVED AUTOIEN RESERVED BLOCK SOFTREQ

15 14 13 12 11 10 9 8

RESERVED TWS SBMS RESERVED

7 6 5 4 3 2 1 0

SAFIX DAFIX SADIR DADIR GDMAMS BME GDMAEN

Aug. 14, 2018 Page 116 of 312 Rev 1.02

NUC970/N9H30

11.5.1.2 Transfer Count

The value in register GDMA_TCNT is the transfer count, not the byte count. Normally, the
number of final transferred bytes is calculated by the following equation.

Transferred bytes = [GDMAx_TCNT] * Transfer width /* burst mode is disabled */

For example, supposes that [GDMA_TCNT] = 16 and the transfer width is half-word (16-bit).
The number of transferred bytes should be 16 * 2 = 32. But if the burst mode is enabled, the
above equation will be changed as below.

Transferred bytes = [GDMAx_TCNT] * Transfer width * 8 /* burst mode is enabled */

In case of burst mode is enabled, the transferred bytes of the above example should be 16 * 2
* 8 = 256.

11.5.1.3 Transfer Termination

When GDMA finishes the transfer, it will set the bit [TCF] of register GDMA_INTCS and
generate an interrupt request if the interrupt is enabled. The device driver can either poll the
bit [TCF] or wait the GDMA interrupt occurs to know the transfer is completed. Note that the
device driver must clear bit [TCF] to clear this interrupt request to let the next GDMA
operation to continue

11.5.1.4 Fixed Address

Generally the GDMA continually increase or decrease the source and destination address
during data transfer. The GDMA controller provides another feature to support the fixed
source/destination address to perform data transfer between system memory and external
device. To do a Memory-to-I/O transfer, the bit DAFIX(GDMA_CTL[6]) should be set. In case
of I/O-to-Memory transfer, the bit SAFIX(GDMA_CTL[7]) should be set

11.5.1.5 Block Mode Transfer

When GDMA is programmed to block mode SBMS (GDMAx_CTL[11]) = 1, it needs only one
request to transfer all the data. When receiving the bit SOFTREQ is set, the GDMA begins to
transfer data. After the numbers of data specified on register GDMAx_TCNT have been
transferred, the GDMA set the bit TCxF and generates an interrupt if it is enabled. Then the
GDMA stops until next request is received.

11.5.1.6 GDMA operation started by software

The GDMA can be configured as software mode to perform memory-to-memory transfer. In
this mode, the transfer operation starts as soon as the setting of the GDMA control registers
are set, the setting of source address, destination address, and transfer count should be
programmed in advanced. The programming method of software mode is listed below:

Aug. 14, 2018 Page 117 of 312 Rev 1.02

NUC970/N9H30

1. Set the GDMA to software mode GDMAMS (GDMAx_CTL[3:2])=0x0.

2. Set source base address (GDMAx_SRCB), destination base Address (GDMAx_DSTB)

and transfer Count (GDMAx_TCNT).

3. Set SOFTREQ (GDMAx_CTL[16])=1

4. Set SGDMAEN (GDMAx_CTL[0])=1 to start.

In software mode, bit SOFTREQ and GDMAEN are self-cleared. The GDMA controller
automatically clears these bits a ter trans er com leted. However, GDMAEN won’t be sel -
clear if AUTOIEN bit is set. Hence, the driver only needs to set bit SOFTREQ to start next
data trans er. I the GDMA didn’t com lete this trans er, it will cause the GDMA transfer error
bit to be set, and the SO TREQ won’t be sel -cleared. In this case, the SOFTREQ bit should
be cleared before next software GDMA request.

It should be note that the source and destination base address must be in the right alignment
according to its transfer width. For example, if the transfer width is 32-bit, the source and
destination base address should be word-alignment. If each one is not aligned, the GDMA will
read from and write to wrong addresses and the alignment error flags, SABNDERR and
DABNDERR, will be set.

Shows an example code for software GDMA non-descriptor transfer.

#define BASE 0xB0004000

#define GDMA_CTL0 (BASE)

#define GDMA_SRCB0 (BASE+0x04)

#define GDMA_DSTB0 (BASE+0x08)

#define GDMA_TCNT0 (BASE+0x0C)

#define GDMA_INTCS (BASE+0xA0)

void main(void)

{
 //Clear GDMA_CTL0 register

*((volatile int *) GDMA_CTL0)=0x0;

//Set source base address

*((volatile int *) GDMA_SRCB0)= 0xc2000000;

//Set destination base address

 *((volatile int *) GDMA_DSTB0)= 0Xc2001000;

 //Set transfer count

 *((volatile int *) GDMA_TCNT0)=0x10;

 //Enable GDMA operation

 *((volatile int *) GDMA_CTL0)=0x12001;

Aug. 14, 2018 Page 118 of 312 Rev 1.02

NUC970/N9H30

 //Waitting for GDMA transfer finish

 while(!(*((volatile int *)GDMA_INCS) & 0x100);

 //Clear interrupt flag

*((volatile int *)GDMA_INTCS=0x100;

}

 Descriptor Functional Descriptions 11.5.2

11.5.2.1 GDMA Configuration

Each GDMA channel has one control register, one descriptor address register, two base
address registers and one transfer count register. Program should prepare the descriptor lists
before the data transfer starts. And then control the descriptor address register to enable the
descriptor based function. Figure 5-6 lists the content of GDMA_CTL register of descriptor
fetches mode and GDMA_DADR register. The detail description of each bit-field can be found
in data sheet. The folling figure shows the programming flow for GDMA descriptor operation

31 30 29 28 27 26 25 24

RESERVED

23 22 21 20 19 18 17 16

RESERVED SABNDERR DABNDERR RESERVED BLOCK SOFTREQ

15 14 13 12 11 10 9 8

RESERVED TWS RESERVED D_INTS RESERVED

7 6 5 4 3 2 1 0

SAFIX DAFIX SADIR DADIR GDMAMS BME GDMAEN

31 30 29 28 27 26 25 24

Descriptor Address [31:24]

23 22 21 20 19 18 17 16

Descriptor Address [23:16]

15 14 13 12 11 10 9 8

Descriptor Address [15:8]

7 6 5 4 3 2 1 0

Descriptor Address [7:4] RUN NON_DSPTRMODE ORDEN RESET

Aug. 14, 2018 Page 119 of 312 Rev 1.02

NUC970/N9H30

Start

Set Descriptor register

The descriptor address, ORDEN,

RUN and NON_DSPTRMODE

are set here.

Clear [TCF]

Transfer complete ?

End

Clean control register

If the SOFTREQ was not self-clean in the

previous GDMA transfer, it should be cleaned

before next GDMA transfer request.

Yes

No

Next descriptor address, source address, destination

address and command information are set here.

The command information includes the bit[17:0] of

GDMA_CTL and GDMA_TCNT. The maximum

transfer count is 16K-1 (14bits).

Prepare descriptor lists

Set interrupt register

11.5.2.2 GDMA operation started by software

The GDMA can be configured as software mode to perform memory-to-memory transfer. In
this mode, the transfer operation starts as soon as the setting of the GDMA descriptor register
is set, the descriptor lists should be programmed in advanced. The descriptor list of software
mode is described below:

1. Prepare the next descriptor address for GDMA_DADR register. If the ORDEN bit of

GDMA_DADR register is set, the next descriptor address of descriptor list is

unnecessarily. Otherwise, the next descriptor address should be filled in descriptor list.

The RUN bit should be set in descriptor lists except the last one. On the last descriptor

list, the RUN and ORDEN bit should be cleared and the NON_DSPRTMODE should be

set.

Aug. 14, 2018 Page 120 of 312 Rev 1.02

NUC970/N9H30

2. Set source base address (GDMAx_SRCB), destination base Address (GDMAx_DSTB)

and transfer Count (GDMAx_TCNT).

3. Prepare the command information. The first fourteen bits ([31:18]) of the MSB of the

command information will be written back to the GDMAx_TCNT register and the others

bits ([17:0]) will be written back to the GDMAx_CTL register.

In software mode, bit SOFTREQ and GDMAEN are self-cleared. The GDMA controller
automatically clears these bits a ter trans er com leted. However, GDMAEN won’t be sel -
clear if AUTOIEN bit is set. Hence, the driver only needs to set bit SOFTREQ of the command
in ormation within each descri tor list. I the GDMA didn’t com lete this trans er, it will cause
the GDMA trans er error bit to be set, and the SO TREQ won’t be sel -cleared. In this case,
the SOFTREQ bit should be cleared before next software GDMA request.

It should be note that the source and destination base address must be in the right alignment
according to its transfer width. For example, if the transfer width is 32-bit, the source and
destination base address should be word-alignment. If each one is not aligned, the GDMA will
read from and write to wrong addresses and the alignment error flags, SABNDERR and
DABNDERR, will be set.

Shows an example code for software GDMA Descriptor transfer

#define BASE 0xB0004000

#define GDMA_DADR0 (BASE+0x1C)

#define GDMA_INCS (BASE+0xA0)

typedef struct_dma_desc

{

 unsigned int nextDescAddr;

 unsigned int srcBufAddr;

 unsigned int dstBufAddr;

 unsigned int comInfo;

}GDMA_DESC;

void main(void)

{

 unsigned int listaddr=0x100000,i;

 GDMA_DESC *descp0 =(GDMA_DESC *)listaddr;

 for(i=0;i<10;i++)

 {

 descp0->nextDescAddr=0x0A;

 descp0->srcBufAddr = 0x200000+(0x10*4*i);

 descp0->dstbufAddr = 0x300000+(0x10*4*i);

 descp0->cominfo = 0x412401;

 descp0++;

Aug. 14, 2018 Page 121 of 312 Rev 1.02

NUC970/N9H30

 }

 descp0--;

 descp0->nextdescAddr=0x04;

 *((volatile unsigned int *)GDMA_DADR0) = listaddr | 0x0A;

 while(!(*((volatile unsigned int *)GDMA_INTCS)&0x100));

 *((volatile unsigned int *)GDMA_INCS)=0x100;

}

Aug. 14, 2018 Page 122 of 312 Rev 1.02

NUC970/N9H30

12 2D Graphic Engine (GE2D)

12.1 Overview

A 32-bit 2D Graphics Engine (GE2D) is specially designed to improve the performance of
graphic processing. It can accelerate the operation of individual GUI functions such as
BitBLTs and Bresenham Line Draw to operate at all pixel depths including 8/16/32 bit-per-
pixel.

A pixel is the smallest addressable screen element as defined in Microsoft Windows, and
lines and pictures are made up by a variety of pixels. GE2D is used to speed up graphic
performance in pixel data moving and line drawing, as well as to accelerate almost all
computer graphic Boolean operations by eliminating the CPU overhead. Meanwhile, the
functions of rotation and scaling down are implemented for some special applications. In
image scaling down function, both programmable horizontal and vertical N/M scaling down
factors are provided for resizing the image. For the 2D rotation, it can rotate left or right 45, 90
or 180 degrees, and also supports the flip/flop, mirror or up-side-down pictures.

12.2 Features

 Support 2D Bit Block Transfer (BitBLT) functions defined in Microsoft GDI

 Support Host BLT

 Support Pattern BLT

 Support Color/Font Expanding BLT

 Support Transparent BLT

 Support Tile BLT

 Support Block Move BLT

 Support Copy File BLT

 Support Color/Font Expansion

 Support Rectangle Fill

 Support RGB332/RGB565/RGB888 data format.

 Support fore/background colors and all Microsoft 256 ternary raster-operation codes

(ROP)

 Support both inside and outside clipping function

 Support alpha-blending for source/destination picture overlaying

 Support fast Bresenham line drawing algorithm to draw solid/textured line

 Support rectangular border and frame drawing

 Support picture re-sizing

 Support down-scaling from 1/255 to 254/255

 Support up-scaling from 1 to 1.996 (1+254/255)

 Support object rotation with different degree

 Support L45 (45 degree left rotation) and L90 (90 degree left rotation)

Aug. 14, 2018 Page 123 of 312 Rev 1.02

NUC970/N9H30

 Support R45 (45 degree right rotation) and R90 (90 degree right rotation)

 Support M180 (mirror/flop)

 Support F180 (up-side-down (flip) and X180 (180 degree rotation)

12.3 Block Diagram

Graphic

Command

ROP Control

Example: Host -> Graphics Engine -> Display Memory

Display Memory

AHB

Host

FIFO

TRANSP

/CLIP

Line Drawing

ROT

INPUT

DATA

12.4 Register Map

Register Address R/W Description Reset Value

GE2D_BA = 0xB000_B000

GE2D_TRG GE2D_BA+0x000 R/W Graphic Engine Trigger Control Register 0x0000_0000

GE2D_XYSORG GE2D_BA+0x004 R/W
Graphic Engine XY Mode Source Origin Starting Address
Register

0x0000_0000

GE2D_TCNTVHSF GE2D_BA+0x008 R/W
Graphic Engine Tile Count or Vertical/Horizontal Scale
Factor Register

0x0000_0000

GE2D_XYRRP GE2D_BA+0x00C R/W
Graphic Engine XY Mode Rotate Reference Pixel
Coordinate Register

0x0000_0000

GE2D_INTSTS GE2D_BA+0x010 R/W Graphic Engine Interrupt Status Register 0x0000_0000

GE2D_PATSA GE2D_BA+0x014 R/W
Graphic Engine Pattern Location Starting Address
Register

0x0000_0000

GE2D_BETSC GE2D_BA+0x018 R/W
Graphic Engine Bresenham Error Term Stepping
Constant Register

0x0000_0000

GE2D_BIEPC GE2D_BA+0x01C R/W
Graphic Engine Bresenham Initial Error Term, Pixel Count
Register

0x0000_0000

GE2D_CTL GE2D_BA+0x020 R/W Graphic Engine Control Register 0x0000_0000

GE2D_BGCOLR GE2D_BA+0x024 R/W Graphic Engine Background Color Register 0x0000_0000

GE2D_FGCOLR GE2D_BA+0x028 R/W Graphic Engine Foreground Color Register 0x0000_0000

Aug. 14, 2018 Page 124 of 312 Rev 1.02

NUC970/N9H30

GE2D_TRNSCOLR GE2D_BA+0x02C R/W Graphic Engine Transparency Color Register 0x0000_0000

GE2D_TCMSK GE2D_BA+0x030 R/W Graphic Engine Transparency Color Mask Register 0x0000_0000

GE2D_XYDORG GE2D_BA+0x034 R/W
Graphic Engine XY Mode Display Memory Origin Starting
Register

0x0000_0000

GE2D_SDPITCH GE2D_BA+0x038 R/W Graphic Engine Source/Destination Pitch Register 0x0000_0000

GE2D_SRCSPA GE2D_BA+0x03C R/W Graphic Engine Source Start Pixel/Address Register 0x0000_0000

GE2D_DSTSPA GE2D_BA+0x040 R/W Graphic Engine Destination Start Pixel/Address Register 0x0000_0000

GE2D_RTGLSZ GE2D_BA+0x044 R/W Graphic Engine Rectangle Size Register 0x0000_0000

GE2D_CLPBTL GE2D_BA+0x048 R/W Graphic Engine Clipping Boundary Top/Left Register 0x0000_0000

GE2D_CLPBBR GE2D_BA+0x04C R/W Graphic Engine Clipping Boundary Bottom/Right Register 0x0000_0000

GE2D_PTNA GE2D_BA+0x050 R/W Graphic Engine Pattern Group A Register 0x0000_0000

GE2D_PTNB GE2D_BA+0x054 R/W Graphic Engine Pattern Group B Register 0x0000_0000

GE2D_WRPLNMSK GE2D_BA+0x058 R/W Graphic Engine Write Plane Mask Register 0x0000_0000

GE2D_MISCTL GE2D_BA+0x05C R/W Graphic Engine Miscellaneous Control Register 0x0000_0000

GE2D_GEHBDW0 GE2D_BA+0x060 R/W Graphic Engine HostBLT Data Port 0 Register 0x0000_0000

GE2D_GEHBDW1 GE2D_BA+0x064 R/W Graphic Engine HostBLT Data Port 1 Register 0x0000_0000

GE2D_GEHBDW2 GE2D_BA+0x068 R/W Graphic Engine HostBLT Data Port 2 Register 0x0000_0000

GE2D_GEHBDW3 GE2D_BA+0x06C R/W Graphic Engine HostBLT Data Port 3 Register 0x0000_0000

GE2D_GEHBDW4 GE2D_BA+0x070 R/W Graphic Engine HostBLT Data Port 4 Register 0x0000_0000

GE2D_GEHBDW5 GE2D_BA+0x074 R/W Graphic Engine HostBLT Data Port 5 Register 0x0000_0000

GE2D_GEHBDW6 GE2D_BA+0x078 R/W Graphic Engine HostBLT Data Port 6 Register 0x0000_0000

GE2D_GEHBDW7 GE2D_BA+0x07C R/W Graphic Engine HostBLT Data Port 7 Register 0x0000_0000

12.5 Function Description

 2D Graphic Engine Initialization 12.5.1

2-D GE provides the acceleration in computer graphics processing. The processing makes
the images show on the screen display device correctly. Therefore, 2-D GE also concerns
about the information of screen display device, such as the width of screen and height of
screen. The information relates to the operations that 2-D GE uses it to set the state of certain
registers. The information must be right to let 2-D GE get the correct datum and handle it in
display memory normally.

The initialization of 2-D Graphic Engine contains the following steps:

1. Set global variables, including bit-per-pixel, width of screen and height of screen.

2. Allocate the space of display and pattern memory. The size of allocation of display

memory is calculated according to bit-per-pixel, width of screen and height of screen and

Aug. 14, 2018 Page 125 of 312 Rev 1.02

NUC970/N9H30

memory address aligned to 64K bytes memory boundary. In the default, the XY mode

source memory origin starting address of GE2D_GEXYSORG register is set with display

memory address and then source memory origin starting address should be 64K bytes

boundary.

The pattern size is 8x8 pixels. Therefore, the allocated memory size of pattern that 8x8

multiplied by bit-per-pixel into eight. The pattern memory address must be programmed

on an M-byte boundary. M=8x8xBPP/8 bytes, where BPP=8/16/32.

3. Enable the 2-D GE clock, GE2D(CLK_HCLKEN[28]).

4. Setting GE2DIF(GE2D_INTSTS[0]) bit is zero in order to clear interrupt. And setting

GE2IEN(GE2D_CTL[17]) bit is zero in order to disable the interrupt.

5. Set the pattern location address into the register GE2D_PATSA. In the default, setting

the XY mode source and destination memory origin starting address take the display

memory address. And set the bits Write Plane Mask of GE2D_WRPLNMSK register to

enable writing to the corresponding bit plane.

6. Set the BPP(GE2D_MISCTL[5:4]) bits to let GE know how to get the byte count correctly.

Note that BitBLT type is according to 2D_GEC control bits setting.

A sample code initiates 2-D GE when essential datum input from caller function. The initial
process is given below.

GFX_BPP = bpp; // bit per pixel

GFX_WIDTH = width; // width of screen

GFX_HEIGHT = height; // height of screen

GFX_PITCH = (GFX_WIDTH*(GFX_BPP/8));

GFX_SIZE = (GFX_HEIGHT*GFX_PITCH);

GFX_START_ADDR = (void *)malloc(GFX_SIZE+65536); // allocate memory for display

GFX_START_ADDR = (void *)shift_pointer((int)GFX_START_ADDR, 65536); // align 64K bytes

GFX_PAT_ADDR = (void *)malloc((8*8*(GFX_BPP/8))*2); // allocate memory for pattern

GFX_PAT_ADDR = (void *)shift_pointer((int)GFX_PAT_ADDR, (8*8*(GFX_BPP/8))*2); // align
appropriate bytes

CLK_HCLKEN |= (0x1 << 28); // enable 2D clock

GE2D_INTSTS |= 0x1; // clear interrupt flag

G2DE_CTL = 0; // disable interrupt

GE2D_PATSA = GFX_PAT_ADDR; //pattern source address

GE2D_SRCSPA = GFX_START_ADDR; //display source address

GE2D_DSTSPA = GFX_START_ADDR; //display destination address

GE2D_WRPLNMSK = 0x00ffffff;

Aug. 14, 2018 Page 126 of 312 Rev 1.02

NUC970/N9H30

GE2D_MISCTL = GE2D_MISCTL & ~(0x3 << 4) | bpp; // bpp

 Ternary Raster Operations (ROP) 12.5.2

The 2-D GE supports all Microsoft 256 ternary raster-operation codes. The ternary raster-
operation codes are used by the BitBLT functions. Ternary raster-operation codes define how
BitBLT combines the bits in a source bitmap with the bits in a pattern map or the bits in the
destination bitmap. Each raster-operation code represents a Boolean operation in which the
values of the pixels in the source, the selected brush, and the destination are combined.

The most commonly used raster operations have been given special names. The table shows
that 15 raster-operations codes have the common names.

Boolean function Common name

0x00 BLACKNESS

0x11 NOTSRCERASE

0x33 NOTSRCCOPY

0x44 SRCERASE

0x55 DSTINVERT

0x5A PATINVERT

0x66 SRCINVERT

0x88 SRCAND

0xBB MERGEPAINT

0xC0 MERGECOPY

0xCC SRCOPY

0xEE SRCPAINT

0xF0 PATCOPY

0xFB PATPAINT

0xFF WHITENESS

Raster operation is always active during BitBLT and must be loaded with appropriate value.
Programmer should set the ROP(GE2D_CTL[31:24]) to fill with appropriate value.

The following figure are basic operations of ROP.

Aug. 14, 2018 Page 127 of 312 Rev 1.02

NUC970/N9H30

 Bit Block Transfer (BitBLT) 12.5.3

The BitBLT function performs a bit-block transfer of the image data corresponding to a
rectangle of pixels from the specified source context into the display memory. And BitBLT is
the operation that accelerates the transfers of data between regions of display memory, or
between system memory and display memory. The BitBLT engine operates on three pixel
maps (operands): source, pattern, and destination, with all 256 possible raster operations
(ROP). The graphic engine can support several kinds of BitBLT including HostBLT, Pattern
BLT, Color/Font Expanding BLT, Transparent BLT, Color/Font Expansion, and Rectangle Fill,
etc.

The source map data may reside in display memory or system memory, both can be color or

monochrome. The 88 pattern map data may reside in display memory when it is color data,
or may come from internal pattern register when it is monochrome data. The destination map
data must reside in display memory. The resultant destination data generated by the engine is
normally written back to the display memory, or it may be read back by the CPU.

The following figure is the flow of BitBLT.

Aug. 14, 2018 Page 128 of 312 Rev 1.02

NUC970/N9H30

Set X/Y mode start
address register

Start

GE2D_XYDORG[27:0]

28-bit X/Y mode origin starting address (byte unit)

Set source/destination
pitch regsiter

GE2D_SDPITCH

[28:16] Destination Pitch

[12:0] Source Pitch

Set source/destination
start XY addressing

register

GE2D_SRCSPA

[26:16] Source Start Y

[12:0] Source Start X

Set width/height
register

GE2D_RTGLSZ

[26:16] Height

[12:0] Width

Set control register

GE2D_CTL

[31:24] ROP

[23:22] CMD

[17] GE2DIEN

[16] ADDRMD

...

Enable 2D controller
GE2D_TRG

[0] Go

Check interrupt
GE2D_INTSTS

[0] GE2DIF, if set means that interrupt occurs.

Clear interrupt flag
GE2D_INTSTS

[0] GE2DIF, write one to clear.

End

The flowchart indicates that programmer could design the common BitBLT function with these
essential registers. In the flowchart, it illustrates the behavior of actions and explains which
registers are used. In the fact, before setting control register, the order of steps could be
changed. Because of starting 2-D GE, it refers to the information according to GE control
register (2D_CTL).

The implementation of BitBLT function almost uses the X/Y addressing mode. In X/Y
addressing mode, all source start X, destination start X, and dimension X are expressed in
pixels. Source pitch and destination pitch are the same in X/Y addressing by pixels. In
addition to BitBLT direction, the BitBLT direction indicates the direction in which the X/Y
address is stepped across the rectangle. It also defines the starting corner of the transfer.
This is significant if the destination rectangle overlaps the source rectangle. One must be
certain that the operation progresses so that the source area is not overwritten prior to being
used. BitBLT direction is controlled as shown in the following diagram.

Aug. 14, 2018 Page 129 of 312 Rev 1.02

NUC970/N9H30

Drawing direction has relationship with starting address of destination, the following shows
the easy method to decide the direction. (S is source address, D is destination address)

The example blow explains that an image is drawn by BitBLT in display memory, which
source and destination data is the same from the display memory. A BitBLt operation includes
the following steps:

1. Set the bits X/Y source origin starting address of 2DGE_XYSORG register to specify the

starting address of display memory.

Set the bits X/Y display origin starting address of 2DGE_XYDORG register to specify the

starting address of display memory

00

10

01

11

BitBLT Area

if((srcx > dstx) && (srcy > dsty)) direction = b’000; //(right-down)

if((srcx > dstx) && (srcy < dsty)) direction = b’100; //(right-up)

if((srcx < dstx) && (srcy > dsty)) direction = b’010; //(left-down)

if((srcx < dstx) && (srcy < dsty)) direction = b’110; //(left-up)

(srcx= source x starting address，srcy= source y starting address)

(dstx= destination x starting address，dsty= destination y starting address)

Aug. 14, 2018 Page 130 of 312 Rev 1.02

NUC970/N9H30

2. Set the basic control value, 0xCC4300, means that CC of raster-operation is source copy,

set the CMD(GE2D_CTL[23:22]) bits to start BitBLT acceleration up, set the

GE2DIEN(GE2D_CTL[17]) bit to enable interrupt and set the ADDRMD(GE2D_CTL[16])

to make X/Y addressing mode. To estimate the BitBLT direction and set the

DRAWDIR(GE2D_CTL[3:1]) bits to determine the BitBLT directions.

3. Set the bits Destination Pitch and Source Pitch of GE2D_SDPITCH register to specify the

pitch in X/Y addressing mode by pixels.

4. Set the bits Source Start X and Source Start Y of GE2D_SRCSPA register to specify the

source start X/Y in pixels.

Set the bits Destination Start X and Destination Start Y of GE2D_DSTSPA register to

specify the destination start X/Y in pixels.

5. Set the bits Dimension X and Dimension Y ofGE2D_RTGLSZ register to specify the

width and height of rectangle in X/Y addressing by pixels.

6. Set the value of variable cmd32 into GE2D_CTL register.

7. Set the GO(GE2D_TRG[0]) bit to trigger 2-D GE acceleration.

8. Check the GE2DIF(GE2D_INTSTS[0]) bit to confirm the drawing is done.

9. Write one to the GE2DIF(GE2D_INTSTS) bit for clearing GE2DIF if drawing is done.

The example code is given blow.

GE2D_SRCSPA = GFX_START_ADDR; //display source address

GE2D_DSTSPA = GFX_START_ADDR; //display destination address

u32cmd = 0xCC430000;

// drawing direction

if (srcx > destx) { //+X

if (srcy > desty) { //+Y

 direction = PP; // direction is 000

 } else { //-Y

 u32cmd |= 0x08; // direction is 100

 srcy = srcy + height - 1;

 desty = desty + height - 1;

 }

 }

else { //-X

 if (srcy > desty) { //+Y

 u32cmd |= 0x04; // direction is 010

 srcx = srcx + width - 1;

 destx = destx + width - 1;

Aug. 14, 2018 Page 131 of 312 Rev 1.02

NUC970/N9H30

 } else { //-Y

 u32cmd |= 0xc; // direction is 110

 srcx = srcx + width - 1;

 destx = destx + width - 1;

 srcy = srcy + height - 1;

 desty = desty + height - 1;

 }

}

GE2D_CTL = u32cmd;

pitch = GFX_WIDTH << 16 | GFX_WIDTH; // set source/destination pitch

GE2D_SDPITCH = pitch;

src_start = srcy << 16 | srcx; // set XY source starting address

GE2D_SRCSPA = src_start;

dest_start = desty << 16 | destx; // set XT destination starting address

GE2D_DSTSPA = dest_start;

dimension = height << 16 | width; // set width and height

GE2D_RTGLSZ = dimension;

GE2D_CTL = cmd32;

GE2D_TRG = 1; // enable 2D

while ((GE2D_INTSTS & 0x01)==0); // wait for finish

GE2D_INTSTS = 1; // clear interrupt flag

 Bresenham Line Drawing 12.5.4

The Bresenham line drawing is an algorithm that determines which points should be plotted in
order to form a close approximation to a straight line between two given points. This algorithm
uses only integer addition, subtraction and bit shifting all of which are very cheap operations
in computer architectures. Hence, there is efficient and fast reaction in Bresenham line
drawing.

The Bresenham line drawing algorithm is used to draw a pixel wide solid or textured line from
screen coordinates x1, y1 to x2, y2. To draw a solid line, the foreground color is used to
specify color of the line. To draw a textured line, a 16-bit line style pattern is used to specify
the pattern of line, with all ones in the style being expanded to a pixel of foreground color and
all zeros being either expanded to a pixel of background color or transparent. The 16-bit line
style pattern (LNEPTN/ABLDFCT) is in 2DGE_MISCTL[31:16] register.

The Bresenham line drawing algorithm operates with all parameters normalized to the first

Aug. 14, 2018 Page 132 of 312 Rev 1.02

NUC970/N9H30

octant. A 3-bit octant code is specified as shown in the following left figure. The second data
point has been assumed to be in the first octant with respect to first data point. If the second
data point is located at another octant, an (a, b) coordinate system is again chosen with origin
at the first data point, but with the axes oriented individually for each octant. As shown in the
following right figure. Thus it could be seen, the Bresenham line drawing could handle the
multiple slopes. All the vectors from x1, y1 to x2, y2 that there are eight regions and
Bresenham line drawing algorithm could work in only one of them.

Two points decide a octant and direction at the same time. The following shows the easy
method to decide a octant and direction

In order to avoid drawing the endpoints of poly-lines twice, this chip provides a function that
inhibits the drawing of the last pixel of the line, and this function is provided for the
Bresenham Line Draw. The Bresenham Line Draw operation may be either a draw operation,
or mere a move operation. On completion of the Bresenham Line Draw operation, destination

if((x2 > x1) && (y2 > y1)) direction = b’001;

if((x2 > x1) && (y2 < y1)) direction = b’011;

if((x2 < x1) && (y2 > y1)) direction = b’101;

if((x2 < x1) && (y2 < y1)) direction = b’111;

(x1,y1)

y1 < y2

x2 < x1 x1 < x2

(x2,y2)

x1 < x2 x2 < x1

y1 < y2

y2 < y1 y2 < y1

100 000

110

111 011

001 101

010

+X

+Y

a

+X

+Y

b

b

a

a

b

a

b b

a

a

b

a

b
b

a

Aug. 14, 2018 Page 133 of 312 Rev 1.02

NUC970/N9H30

start X, Y normally points at the last pixel of the line by setting Auto Destination Update to be
1. It may also points at the original position of the line when Auto Destination Update is 0.
Note that the Bresenham Line Draw operation is available only in X/Y addressing mode.

The example provides the function of drawing solid line blow.

1. Find out the octant code according to two given points. Set the basic control value,

0x008B0000 plus octant code, this value means that set the CMD(GE2D_CTL[23:22])

bits to start Bresenham Line Draw acceleration, set the BLNMD(GE2D_CTL[19]) bit to

make Bresenham Line Draw, set the GE2DIEN(GE2D_CTL[17]) bit to enable interrupt

and set the bit ADDR_MD to do X/Y addressing mode.

2. Set the bits Diagonal Error Increment and Axial Error Increment of GE2D_BETSC

register to specify the constant to be added to the error term for diagonal and axial

stepping. The initial value of Diagonal Error Increment is (2 * (delta Y – delta X)) after

normalization to first octant. The initial value of Axial Error Increment is (2 * delta Y) after

normalization to first octant.

Set the bits Initial Error Term and Line Pixel Count Major -1 of GE2D_BIEPC register to

specify the initial error term and the pixel count of major axis. The initial value of Initial

Error Term is (2 * (delta Y) – delta X) after normalization to first octant.

3. Set the Foreground Color of GE2D_FGCOLR register to specify the foreground color.

4. Set the bits X/Y Origin Starting Address of GE2D_XYDORG register to specify the

starting address of display memory.

5. Set the bits Destination Pitch of GE2D_SDPITCH register to specify the destination pitch

in X/Y addressing by pixels.

6. Set the bits Destination Start X and Destination Start Y of GE2D_DSTSPA register to

specify the destination start X/Y in pixels.

7. Set the value of variable cmd32 into 2D_CTL register.

8. Set the GO(GE2D_TRG[0]) bit to trigger 2-D GE acceleration.

9. Check the GE2DIF(GE2D_INTSTS[0]) bit to confirm the drawing is done.

10. Write one to the GE2DIF(GE2D_INTSTS) bit for clearing GE2DIF if drawing is done.

The following is an example of drawing a solid line.

/* octant code of line drawing */

/* #define XpYpXl (0<<1) */

/* #define XpYpYl (1<<1) */

/* #define XpYmXl (2<<1) */

/* #define XpYmYl (3<<1) */

/* #define XmYpXl (4<<1) */

/* #define XmYpYl (5<<1) */

/* #define XmYmXl (6<<1) */

Aug. 14, 2018 Page 134 of 312 Rev 1.02

NUC970/N9H30

/* #define XmYmYl (7<<1) */

// Calculate quadrant

abs_X = ABS(x2-x1); //absolute value

abs_Y = ABS(y2-y1); //absolute value

if (abs_X > abs_Y) { // X major

max = abs_X;

min = abs_Y;

step_constant = (((2*(min-max))) << 16) | (2*min);

initial_error = (((2*(min)-max)) << 16) | (max);

if (x2 > x1) { // +X direction

 if (y2 > y1) // +Y direction

 direction_code = XpYpXl;

 else // -Y direction

 direction_code = XpYmXl;

} else { // -X direction

 if (y2 > y1) // +Y direction

 direction_code = XmYpXl;

 else // -Y direction

 direction_code = XmYmXl;

}

} else { // Y major

 max = abs_Y;

 min = abs_X;

 step_constant = (((2*(min-max))) << 16) | (2*min);

 initial_error = (((2*(min)-max)) << 16) | (max);

 if (x2 > x1) { // +X direction

 if (y2 > y1) // +Y direction

 direction_code = XpYpYl;

 else // -Y direction

 direction_code = XpYmYl;

 } else { // -X direction

 if (y2 > y1) // +Y direction

 direction_code = XmYpYl;

 else // -Y direction

 direction_code = XmYmYl;

 }

Aug. 14, 2018 Page 135 of 312 Rev 1.02

NUC970/N9H30

}

GE2D_BETSC = step_constant; // set error term stepping constant

GE2D_BIEPC = initial_error; // set initial error, pixel count major -1

cmd32 = 0x008b0000 | direction_code;

GE2D_BGCOLR = make_color(color); // set background color

GE2D_SRCSPA = GFX_START_ADDR; // set source starting address

dest_pitch = GFX_WIDTH << 16; // set display pitch

2DGE_SDPITCH = dest_pitch;

dest_start = y1 << 16 | x1;

2DGE_DSTSPA = dest_start; // set destination starting address

GE2D_CTL = cmd32;

GE2D_TRG = 1; // enable 2D

while ((GE2D_INTSTS & 0x01)==0); // wait for finish

GE2D_INTSTS = 1; // clear interrupt flag

 α Blending 12.5.5

In computer graphics, the combining of the alpha channel is in an image in order to show
translucency. The alpha channel is an additional eight bits used with each pixel in a 32-bit
graphics system that can represent 256 levels of translucency. Black and white represent
opaque and fully transparent, while various gray levels represent levels of translucency.

In order to accomplish the function of alpha blending, programmer would properly program
the two 8-bit alpha blending factors Ks and Kd in Miscellaneous Control register. Ks indicate
the 8-bit alpha value of source stream, and Kd indicates the 8-bit alpha value of destination
stream respectively. Note that Ks adding to Kd would be smaller than is equal to 256. Which
the alpha blending factor is smaller, it expresses the image more translucency. Oppositely,
alpha blending factor is bigger, expressing the image more opaque. The blending equation is:
[Ps x Ks + Pd x Kd]/256, where Ps means the source stream pixels and Pd means the
destination stream ixels. Note that the al ha blending unction can’t be used in pattern BLT.

The behavior of alpha blending is executed by the requirement. The action of alpha blending
includes setting and decision. First, before doing the function of alpha blending, programmer
would know the information about alpha blending factors. This information is stored to set the
alpha mode.

The following figure is an example of alpha blending.

Aug. 14, 2018 Page 136 of 312 Rev 1.02

NUC970/N9H30

The action of alpha blending about the decision contains the following steps:

1. Alpha blending source Ks and destination Kd fill in the ABLDFCT(GE2D_MISCTL[31:16])

bit.

2. Set APABLDEN(GE2D_CTL[21]) bit to enable alpha blending function.

A sample code explains that this is inserted in display processing. The code is shown blow.

data32 = GE2D_MISCTL & 0x0000ffff;

alpha = ((_AlphaKs << 8) | _AlphaKd); // fill with alpha blending factors

data32 |= (alpha << 16);

GE2D_MISCTL = data32;

cmd32 |= 0x00200000; // enable alpha blending

GE2D_CTL = cmd32;

 Clipping 12.5.6

The clipping function supports clipped drawing writes inside or outside of any rectangular
region in display memory during Graphics Engine operation. This chip supports both
rectangle clipping for BitBLTs and line clipping for Bresenham Line. When enabled, the
clipping function simply masks writes within or outside of the clipping window. Note that the
clipping function is available only in X/Y addressing mode. The clipping area is assigned by
up-left point (x1,y1) and right-down point (x2,y2).

The following figure shows clipping in inside and outside of the pattern.

Aug. 14, 2018 Page 137 of 312 Rev 1.02

NUC970/N9H30

insideoutside

The action of clipping function contains the following steps:

1. Set the CLPEN(GE2D_CTL[9]) bit to enable the clipping. And set the

CLPEN(GE2D_CTL[9]) bit to clip outside of rectangle if the outside clip flag is set.

Otherwise, the pixels inside the clipping rectangle are drawn

2. The top and left limit coordinates fill in the 11-bit clipping boundary top and left bits of

GE2D_CLPBTL register respectively. The bottom and right limit coordinates fill in the 11-

bit clipping boundary bottom and right bits of GE2D_CLPBBR register respectively.

A sample code explains that this is inserted in display processing. The code is shown blow.

cmd32 |= 0x00000200; // enable clipping

if (_OutsideClip)

cmd32 |= 0x00000100; // clip outside

GE2D_CTL = cmd32;

_ClipTL = ((y1 << 16) | x1);

_ClipBR = ((y2 << 16) | x2);

GE2D_CLBPTL = _ClipTL;

GE2D_CLPBBR = _ClipBR;

 Rotation 12.5.7

In the 2-D GE, one of main function is to support the rotation acceleration in any rectangular
region in display memory during GE operation. For the 2-D GE rotation, it can rotate left or
right 45, 90 or 180 degrees, and it also supports the flip/flop, mirror or up-side-down images.

The graphic engine rotation control operates with all parameters with reference to the first
octant (octant 0). A 3-bit octant code is specified as shown in following figure.

Aug. 14, 2018 Page 138 of 312 Rev 1.02

NUC970/N9H30

About rotation function, here provides an example that 2-D GE acquires a rectangular region
in display memory, and then 2-D GE also draws the rectangular region which been acquired
in display memory with the drawing directions. Obviously, the rotation function that most main
different point is involved the drawing directions in the DRAWDIR(GE2D_CTL[3:1]) bits.

GE2D_SRCSPA = GFX_START_ADDR; // display source starting address

GE2D_DSTSPA = GFX_START_ADDR; // display destination starting address

pitch = GFX_WIDTH << 16 | GFX_WIDTH; // set display pitch

GE2D_SDPITCH = pitch;

src_start = srcy << 16 | srcx; // set X/Y source start address

GE2D_SRCSPA = src_start;

dest_start = desty << 16 | destx; // set X/Y destination start address

GE2D_DSTSPA = dest_start;

dimension = height << 16 | width; // set width and height

GE2D_RTGLSZ = dimension;

u32cmd = 0xCC030000 | (direction << 1); //set the drawing direction

GE2D_CTL = cmd32;

GE2D_TRG = 1; // enable 2D

while ((GE2D_INTSTS & 0x01)==0); // wait for finish

GE2D_INTSTS = 1; // clear interrupt flag

 Scale Up/Down 12.5.8

One of main function is scaling capability in the 2-D GE. And this function is to support scaling
up/down in any rectangular region in display memory. In image scale up/down function, both
programmable horizontal and vertical N/M scaling up/down factors are provided for resizing
the image. In order to scale up (1+N/M) or scale down (N/M), the value of N must be equal or

+X

+Y

000
Scale Down

001
R45

111
Mirror

110
X180

011
L90

101
R90

100
Up-Side-Down

010
L45

Aug. 14, 2018 Page 139 of 312 Rev 1.02

NUC970/N9H30

less than M. Scale up supports for 1.0 ~ 1.996.

The following figure is an effect of scale up/down.

Source Buffer

Destination Buffer

Scale up

Scale down

The following is an example that an image could be scaled up/down in display memory. The
source data is from display memory.

GE2D_SRCSPA = GFX_START_ADDR; // display source starting address

GE2D_DSTSPA = GFX_START_ADDR; // display destination starting address

pitch = GFX_WIDTH << 16 | GFX_WIDTH; // set display pitch

GE2D_SDPITCH = pitch;

src_start = srcy << 16 | srcx; // set X/Y source start address

GE2D_SRCSPA = src_start;

dest_start = desty << 16 | destx; // set X/Y destination start address

GE2D_DSTSPA = dest_start;

dimension = height << 16 | width; // set width and height

GE2D_RTGLSZ = dimension;

stretch_ctl = (vsfN << 24) | (vsfM << 16) | (hsfN << 8) | hsfM; // set vertical and
horizontal scaling factor

GE2D_TCNTVHSF = stretch_ctl;

u32cmd = 0xCC030000;

GE2D_CTL = cmd32;

Aug. 14, 2018 Page 140 of 312 Rev 1.02

NUC970/N9H30

GE2D_TRG = 1; // enable 2D

while ((GE2D_INTSTS & 0x01)==0); // wait for finish

GE2D_INTSTS = 1; // clear interrupt flag

Aug. 14, 2018 Page 141 of 312 Rev 1.02

NUC970/N9H30

13 General-Purpose Input/Output (GPIO)

13.1 Overview

The NUC970/N9H30 series have up to 148 General-Purpose I/O (GPIO) pins and can be
shared with other function pins depending on the chip configuration. These 148 pins are
arranged in 10 ports named as PA, PB, PC, PD, PE, PF, PG, PH, PI and PJ. PA, PB, PD, PE,
PF, PG, PH and PI have 16 pins on port, PC has 15 pins on port and PJ has 5 pins on port.
Each of the 148 I/O pins is independent and can be easily configured by user to meet various
system configurations and design requirements. After reset, all 148 I/O pins are configured in
General-Purpose I/O Input mode.

When any of the 148 I/O pins used as a General-Purpose I/O, its I/O type can be configured
by user individually as Input or Output mode. In Input mode, the input buffer type could be
selected as CMOS input buffer or Schmitt trigger input buffer. Each I/O pin also equips a pull-

up resistor (45 k ~ 82 k) and a pull-down resistor (37 k ~ 91 k). The enable of pull-
up/pull-down resistor is controllable.

13.2 Features

 Support input and output mode.

 Support CMOS and Schmitt trigger input buffer.

 Support controllable pull-up and pull-down resistor.

 Support both edge and level interrupt.

 Support de-bounce circuit to filter the noise.

13.3 Block Diagram

Aug. 14, 2018 Page 142 of 312 Rev 1.02

NUC970/N9H30

A
P

B
 B

u
s

PA[15:0]

PA[15:0]

Control Register

PB[15:0]

Control Register

PC[14:0]

Control Register

PD[15:0]

Control Register

PE[15:0]

Control Register

PF[15:0]

Control Register

PG[15:0]

Control Register

PH[15:0]

Control Register

PI[15:0]

Control Register

PJ[4:0]

Control Register

De-bounce Control Register

Control Registers

Interrupt,

Wake-up Event

Detector

PB[15:0]

PC[14:0]

PD[15:0]

PE[15:0]

PF[15:0]

PG[15:0]

PI[15:0]

PJ[4:0]

PH[15:0]

GPIO_INT

13.4 Register Map
R: read only, W: write only, R/W: both read and write.

Register Address R/W Description Reset Value

GPIO_BA = 0xB800_3000

GPIOA_DIR GPIO_BA+0x000 R/W GPIO Port A Direction Control Register 0x0000_0000

GPIOA_DATAOUT GPIO_BA+0x004 R/W GPIO Port A Data Output Register 0x0000_0000

GPIOA_DATAIN GPIO_BA+0x008 R GPIO Port A Data Input Register 0xxxxx_xxxx

GPIOA_IMD GPIO_BA+0x00C R/W GPIO Port A Interrupt Mode Register 0x0000_0000

GPIOA_IREN GPIO_BA+0x010 R/W GPIO Port A Interrupt Rising-Edge or
Level-High Enable Register

0x0000_0000

GPIOA_IFEN GPIO_BA+0x014 R/W GPIO Port A Interrupt Falling-Edge or
Level-Low Enable Register

0x0000_0000

GPIOA_ISR GPIO_BA+0x018 R/W GPIO Port A Interrupt Status Register 0xxxxx_xxxx

GPIOA_DBEN GPIO_BA+0x01C R/W GPIO Port A De-bounce Enable Register 0x0000_0000

GPIOA_PUEN GPIO_BA+0x020 R/W GPIO Port A Pull-Up Enable Register 0x0000_0000

GPIOA_PDEN GPIO_BA+0x024 R/W GPIO Port A Pull-Down Enable Register 0x0000_0000

GPIOA_ICEN GPIO_BA+0x028 R/W GPIO Port A CMOS Input Enable Register 0x0000_0000

GPIOA_ISEN GPIO_BA+0x02C R/W GPIO Port A Schmitt-Trigger Input Enable
Register

0x0000_0000

GPIOB_DIR GPIO_BA+0x040 R/W GPIO Port B Direction Control Register 0x0000_0000

GPIOB_DATAOUT GPIO_BA+0x044 R/W GPIO Port B Data Output Register 0x0000_0000

Aug. 14, 2018 Page 143 of 312 Rev 1.02

NUC970/N9H30

GPIOB_DATAIN GPIO_BA+0x048 R GPIO Port B Data Input Register 0xxxxx_xxxx

GPIOB_IMD GPIO_BA+0x04C R/W GPIO Port B Interrupt Mode Register 0x0000_0000

GPIOB_IREN GPIO_BA+0x050 R/W GPIO Port B Interrupt Rising-Edge or
Level-High Enable Register

0x0000_0000

GPIOB_IFEN GPIO_BA+0x054 R/W GPIO Port B Interrupt Falling-Edge or
Level-Low Enable Register

0x0000_0000

GPIOB_ISR GPIO_BA+0x058 R/W GPIO Port B Interrupt Status Register 0xxxxx_xxxx

GPIOB_DBEN GPIO_BA+0x05C R/W GPIO Port B De-bounce Enable Register 0x0000_0000

GPIOB_PUEN GPIO_BA+0x060 R/W GPIO Port B Pull-Up Enable Register 0x0000_0000

GPIOB_PDEN GPIO_BA+0x064 R/W GPIO Port B Pull-Down Enable Register 0x0000_0000

GPIOB_ICEN GPIO_BA+0x068 R/W GPIO Port B CMOS Input Enable Register 0x0000_0000

GPIOB_ISEN GPIO_BA+0x06C R/W GPIO Port B Schmitt-Trigger Input Enable
Register

0x0000_0000

GPIOC_DIR GPIO_BA+0x080 R/W GPIO Port C Direction Control Register 0x0000_0000

GPIOC_DATAOUT GPIO_BA+0x084 R/W GPIO Port C Data Output Register 0x0000_0000

GPIOC_DATAIN GPIO_BA+0x088 R GPIO Port C Data Input Register 0xxxxx_xxxx

GPIOC_IMD GPIO_BA+0x08C R/W GPIO Port C Interrupt Mode Register 0x0000_0000

GPIOC_IREN GPIO_BA+0x090 R/W GPIO Port C Interrupt Rising-Edge or
Level-High Enable Register

0x0000_0000

GPIOC_IFEN GPIO_BA+0x094 R/W GPIO Port C Interrupt Falling-Edge or
Level-Low Enable Register

0x0000_0000

GPIOC_ISR GPIO_BA+0x098 R/W GPIO Port C Interrupt Status Register 0xxxxx_xxxx

GPIOC_DBEN GPIO_BA+0x09C R/W GPIO Port C De-bounce Enable Register 0x0000_0000

GPIOC_PUEN GPIO_BA+0x0A0 R/W GPIO Port C Pull-Up Enable Register 0x0000_0000

GPIOC_PDEN GPIO_BA+0x0A4 R/W GPIO Port C Pull-Down Enable Register 0x0000_0000

GPIOC_ICEN GPIO_BA+0x0A8 R/W GPIO Port C CMOS Input Enable Register 0x0000_0000

GPIOC_ISEN GPIO_BA+0x0AC R/W GPIO Port C Schmitt-Trigger Input Enable
Register

0x0000_0000

GPIOD_DIR GPIO_BA+0x0C0 R/W GPIO Port D Direction Control Register 0x0000_0000

GPIOD_DATAOUT GPIO_BA+0x0C4 R/W GPIO Port D Data Output Register 0x0000_0000

GPIOD_DATAIN GPIO_BA+0x0C8 R GPIO Port D Data Input Register 0xxxxx_xxxx

GPIOD_IMD GPIO_BA+0x0CC R/W GPIO Port D Interrupt Mode Register 0x0000_0000

GPIOD_IREN GPIO_BA+0x0D0 R/W GPIO Port D Interrupt Rising-Edge or
Level-High Enable Register

0x0000_0000

GPIOD_IFEN GPIO_BA+0x0D4 R/W GPIO Port D Interrupt Falling-Edge or
Level-Low Enable Register

0x0000_0000

GPIOD_ISR GPIO_BA+0x0D8 R/W GPIO Port D Interrupt Status Register 0xxxxx_xxxx

GPIOD_DBEN GPIO_BA+0x0DC R/W GPIO Port D De-bounce Enable Register 0x0000_0000

GPIOD_PUEN GPIO_BA+0x0E0 R/W GPIO Port D Pull-Up Enable Register 0x0000_0000

Aug. 14, 2018 Page 144 of 312 Rev 1.02

NUC970/N9H30

GPIOD_PDEN GPIO_BA+0x0E4 R/W GPIO Port D Pull-Down Enable Register 0x0000_0000

GPIOD_ICEN GPIO_BA+0x0E8 R/W GPIO Port D CMOS Input Enable Register 0x0000_0000

GPIOD_ISEN GPIO_BA+0x0EC R/W GPIO Port D Schmitt-Trigger Input Enable
Register

0x0000_0000

GPIOE_DIR GPIO_BA+0x100 R/W GPIO Port E Direction Control Register 0x0000_0000

GPIOE_DATAOUT GPIO_BA+0x104 R/W GPIO Port E Data Output Register 0x0000_0000

GPIOE_DATAIN GPIO_BA+0x108 R GPIO Port E Data Input Register 0xxxxx_xxxx

GPIOE_IMD GPIO_BA+0x10C R/W GPIO Port E Interrupt Mode Register 0x0000_0000

GPIOE_IREN GPIO_BA+0x110 R/W GPIO Port E Interrupt Rising-Edge or
Level-High Enable Register

0x0000_0000

GPIOE_IFEN GPIO_BA+0x114 R/W GPIO Port E Interrupt Falling-Edge or
Level-Low Enable Register

0x0000_0000

GPIOE_ISR GPIO_BA+0x118 R/W GPIO Port E Interrupt Status Register 0xxxxx_xxxx

GPIOE_DBEN GPIO_BA+0x11C R/W GPIO Port E De-bounce Enable Register 0x0000_0000

GPIOE_PUEN GPIO_BA+0x120 R/W GPIO Port E Pull-Up Enable Register 0x0000_0000

GPIOE_PDEN GPIO_BA+0x124 R/W GPIO Port E Pull-Down Enable Register 0x0000_0000

GPIOE_ICEN GPIO_BA+0x128 R/W GPIO Port E CMOS Input Enable Register 0x0000_0000

GPIOE_ISEN GPIO_BA+0x12C R/W GPIO Port E Schmitt-Trigger Input Enable
Register

0x0000_0000

GPIOF_DIR GPIO_BA+0x140 R/W GPIO Port F Direction Control Register 0x0000_0000

GPIOF_DATAOUT GPIO_BA+0x144 R/W GPIO Port F Data Output Register 0x0000_0000

GPIOF_DATAIN GPIO_BA+0x148 R GPIO Port F Data Input Register 0xxxxx_xxxx

GPIOF_IMD GPIO_BA+0x14C R/W GPIO Port F Interrupt Mode Register 0x0000_0000

GPIOF_IREN GPIO_BA+0x150 R/W GPIO Port F Interrupt Rising-Edge or
Level-High Enable Register

0x0000_0000

GPIOF_IFEN GPIO_BA+0x154 R/W GPIO Port F Interrupt Falling-Edge or
Level-Low Enable Register

0x0000_0000

GPIOF_ISR GPIO_BA+0x158 R/W GPIO Port F Interrupt Status Register 0xxxxx_xxxx

GPIOF_DBEN GPIO_BA+0x15C R/W GPIO Port F De-bounce Enable Register 0x0000_0000

GPIOF_PUEN GPIO_BA+0x160 R/W GPIO Port F Pull-Up Enable Register 0x0000_0000

GPIOF_PDEN GPIO_BA+0x164 R/W GPIO Port F Pull-Down Enable Register 0x0000_0000

GPIOF_ICEN GPIO_BA+0x168 R/W GPIO Port F CMOS Input Enable Register 0x0000_0000

GPIOF_ISEN GPIO_BA+0x16C R/W GPIO Port F Schmitt-Trigger Input Enable
Register

0x0000_0000

GPIOG_DIR GPIO_BA+0x180 R/W GPIO Port G Direction Control Register 0x0000_0000

GPIOG_DATAOUT GPIO_BA+0x184 R/W GPIO Port G Data Output Register 0x0000_0000

GPIOG_DATAIN GPIO_BA+0x188 R GPIO Port G Data Input Register 0xxxxx_xxxx

GPIOG_IMD GPIO_BA+0x18C R/W GPIO Port G Interrupt Mode Register 0x0000_0000

Aug. 14, 2018 Page 145 of 312 Rev 1.02

NUC970/N9H30

GPIOG_IREN GPIO_BA+0x190 R/W GPIO Port G Interrupt Rising-Edge or
Level-High Enable Register

0x0000_0000

GPIOG_IFEN GPIO_BA+0x194 R/W GPIO Port G Interrupt Falling-Edge or
Level-Low Enable Register

0x0000_0000

GPIOG_ISR GPIO_BA+0x198 R/W GPIO Port G Interrupt Status Register 0xxxxx_xxxx

GPIOG_DBEN GPIO_BA+0x19C R/W GPIO Port G De-bounce Enable Register 0x0000_0000

GPIOG_PUEN GPIO_BA+0x1A0 R/W GPIO Port G Pull-Up Enable Register 0x0000_0000

GPIOG_PDEN GPIO_BA+0x1A4 R/W GPIO Port G Pull-Down Enable Register 0x0000_0000

GPIOG_ICEN GPIO_BA+0x1A8 R/W GPIO Port G CMOS Input Enable Register 0x0000_0000

GPIOG_ISEN GPIO_BA+0x1AC R/W GPIO Port G Schmitt-Trigger Input Enable
Register

0x0000_0000

GPIOH_DIR GPIO_BA+0x1C0 R/W GPIO Port H Direction Control Register 0x0000_0000

GPIOH_DATAOUT GPIO_BA+0x1C4 R/W GPIO Port H Data Output Register 0x0000_0000

GPIOH_DATAIN GPIO_BA+0x1C8 R GPIO Port H Data Input Register 0xxxxx_xxxx

GPIOH_IMD GPIO_BA+0x1CC R/W GPIO Port H Interrupt Mode Register 0x0000_0000

GPIOH_IREN GPIO_BA+0x1D0 R/W GPIO Port H Interrupt Rising-Edge or
Level-High Enable Register

0x0000_0000

GPIOH_IFEN GPIO_BA+0x1D4 R/W GPIO Port H Interrupt Falling-Edge or
Level-Low Enable Register

0x0000_0000

GPIOH_ISR GPIO_BA+0x1D8 R/W GPIO Port H Interrupt Status Register 0xxxxx_xxxx

GPIOH_DBEN GPIO_BA+0x1DC R/W GPIO Port H De-bounce Enable Register 0x0000_0000

GPIOH_PUEN GPIO_BA+0x1E0 R/W GPIO Port H Pull-Up Enable Register 0x0000_0000

GPIOH_PDEN GPIO_BA+0x1E4 R/W GPIO Port H Pull-Down Enable Register 0x0000_0000

GPIOH_ICEN GPIO_BA+0x1E8 R/W GPIO Port H CMOS Input Enable Register 0x0000_0000

GPIOH_ISEN GPIO_BA+0x1EC R/W GPIO Port H Schmitt-Trigger Input Enable
Register

0x0000_0000

GPIOI_DIR GPIO_BA+0x200 R/W GPIO Port I Direction Control Register 0x0000_0000

GPIOI_DATAOUT GPIO_BA+0x204 R/W GPIO Port I Data Output Register 0x0000_0000

GPIOI_DATAIN GPIO_BA+0x208 R GPIO Port I Data Input Register 0xxxxx_xxxx

GPIOI_IMD GPIO_BA+0x20C R/W GPIO Port I Interrupt Mode Register 0x0000_0000

GPIOI_IREN GPIO_BA+0x210 R/W GPIO Port I Interrupt Rising-Edge or Level-
High Enable Register

0x0000_0000

GPIOI_IFEN GPIO_BA+0x214 R/W GPIO Port I Interrupt Falling-Edge or Level-
Low Enable Register

0x0000_0000

GPIOI_ISR GPIO_BA+0x218 R/W GPIO Port I Interrupt Status Register 0xxxxx_xxxx

GPIOI_DBEN GPIO_BA+0x21C R/W GPIO Port I De-bounce Enable Register 0x0000_0000

GPIOI_PUEN GPIO_BA+0x220 R/W GPIO Port I Pull-Up Enable Register 0x0000_0000

GPIOI_PDEN GPIO_BA+0x224 R/W GPIO Port I Pull-Down Enable Register 0x0000_0000

GPIOI_ICEN GPIO_BA+0x228 R/W GPIO Port I CMOS Input Enable Register 0x0000_0000

Aug. 14, 2018 Page 146 of 312 Rev 1.02

NUC970/N9H30

GPIOI_ISEN GPIO_BA+0x22C R/W GPIO Port I Schmitt-Trigger Input Enable
Register

0x0000_0000

GPIOJ_DIR GPIO_BA+0x240 R/W GPIO Port J Direction Control Register 0x0000_0000

GPIOJ_DATAOUT GPIO_BA+0x244 R/W GPIO Port J Data Output Register 0x0000_0000

GPIOJ_DATAIN GPIO_BA+0x248 R GPIO Port J Data Input Register 0xxxxx_xxxx

GPIOJ_IMD GPIO_BA+0x24C R/W GPIO Port J Interrupt Mode Register 0x0000_0000

GPIOJ_IREN GPIO_BA+0x250 R/W GPIO Port J Interrupt Rising-Edge or Level-
High Enable Register

0x0000_0000

GPIOJ_IFEN GPIO_BA+0x254 R/W GPIO Port J Interrupt Falling-Edge or
Level-Low Enable Register

0x0000_0000

GPIOJ_ISR GPIO_BA+0x258 R/W GPIO Port J Interrupt Status Register 0xxxxx_xxxx

GPIOJ_DBEN GPIO_BA+0x25C R/W GPIO Port J De-bounce Enable Register 0x0000_0000

GPIOJ_PUEN GPIO_BA+0x260 R/W GPIO Port J Pull-Up Enable Register 0x0000_0000

GPIOJ_PDEN GPIO_BA+0x264 R/W GPIO Port J Pull-Down Enable Register 0x0000_0000

GPIOJ_ICEN GPIO_BA+0x268 R/W GPIO Port J CMOS Input Enable Register 0x0000_0000

GPIOJ_ISEN GPIO_BA+0x26C R/W GPIO Port J Schmitt-Trigger Input Enable
Register

0x0000_0000

GPIO_DBNCECON GPIO_BA+0x3F0 R/W GPIO Debounce Control Register 0x0000_0020

GPIO_ISR GPIO_BA+0x3FC R GPIO Port Interrupt Status Register 0x0000_0000

13.5 Functional Description

 Multiple function pin Configuration 13.5.1

To configure pin Px.n as a General-Purpose I/O, set the corresponding field of register
SYS_GPA_MFPL, SYS_GPA_MFPH, SYS_GPB_MFPL, SYS_GPB_MFPH,
SYS_GPC_MFPL, SYS_GPC_MFPH, SYS_GPD_MFPL, SYS_GPD_MFPH,
SYS_GPE_MFPL, SYS_GPE_MFPH, SYS_GPF_MFPL, SYS_GPF_MFPH,
SYS_GPG_MFPL, SYS_GPG_MFPH, SYS_GPH_MFPL, SYS_GPH_MFPH,
SYS_GPI_MFPL, SYS_GPI_MFPH and SYS_GPJ_MFPL to 0.

For example, if user want to configure pin PA.0 as a General-Purpose I/O, it’s necessary to
set MFP_GPA0 (SYS_GPA_MFPL[4:7]) to 0.

int value;

// Read SYS_GPA_MFPL register value

value = inpw(SYS_GPA_MFPL);

// Set PA.1 as I/O pin

value = value & (~0x000000F0);

// Save the setting to SYS_GPA_MFPL register

outpw(SYS_GPA_MFPL, value);

Aug. 14, 2018 Page 147 of 312 Rev 1.02

NUC970/N9H30

 GPIO Output Mode 13.5.2

Before the system use the GPIO pin as output pin, program need to configure the GPIO
direction register (GPIOx_DIR). The configuration sequence is described as follows

1. Set Multiple function pin to GPIO purpose according to the above method of multiple

function configuration.

2. Set the GPIOx_DIR Px.n value as 1(output mode).

A sample code set GPIOC[0] as GPIO output mode, then change the output between high
and low is given below:

// Set GPIOC[0] as I/O pin by SYS_GPC_MFPL register

outpw(SYS_GPC_MFPL, inpw(SYS_GPC_MFPL) & (~0x0000000F));

// Set GPIOC[0] as output mode by GPIOC_DIR register

outpw(GPIOC_DIR, inpw(GPIOC_DIR) | 0x00000001);

// Set GPIOC[0] output 1 by GPIOC_DATAOUT

outpw(GPIOC_DATAOUT, inpw(GPIOC_DATAOUT) | 0x00000001);

// Set GPIOC[0] output 0 by GPIOC_DATAOUT

outpw(GPIOC_DATAOUT, inpw(GPIOC_DATAOUT) & (~0x00000001));

 GPIO Input Mode 13.5.3

Before the system use the GPIO pin as output pin, program need to configure the GPIO
direction register (GPIOx_DIR). The configuration sequence is described as follows

1. Set multiple function pin to GPIO purpose according to the above method of multiple

function configurations.

2. Set the GPIOx_DIR Px.n value as 0(input mode).

A sample code set GPIOC[0] as GPIO input mode, then get the input value is given below:

int GPIO_CFG=0;

int value=0;

// Set GPIOC[0] as I/O pin by SYS_GPC_MFPL register

outpw(SYS_GPC_MFPL, inpw(SYS_GPC_MFPL) & (~0x0000000F));

// Set GPIOC[0] as output mode by GPIOC_DIR register

outpw(GPIOC_DIR, inpw(GPIOC_DIR) & (~0x00000001));

// Get GPIOC[0] input value by GPIOC_DATAIN register

Aug. 14, 2018 Page 148 of 312 Rev 1.02

NUC970/N9H30

value = inpw(GPIOC_DATAIN) & 0x00000001;

if(value)

 printf(“GPIOC[0] input value is 1.”);

else

 printf(“GPIOC[0] input value is 0.”);

 GPIO Interrupt 13.5.4

The GPIO pin all supported interrupt, program need to configure the GPIO direction
register(GPIOx_DIR) and the GPIO interrupt register(GPIOx_IMD, GPIOx_IREN,
GPIO_IFEN).

1. Set multiple function pin to GPIO purpose according to the above method of multiple

function configurations.

2. Set the GPIOx_DIR Px.n value as 0(input mode).

3. Set the GPIOx_IMD value as 0(Edge trigger interrupt) or 1(Level trigger interrupt).

4. Set the GPIO_IREN value as 0(Rising disable) or 1(Rising enable).

5. Set the GPIO_IFEN value as 0(Falling disable) or 1(Falling enable).

In addition to these steps, It is also necessary to clear the corresponding interrupt source
register GPIOx_ISR after interrupt occurs.

A sample code set GPIOC[0] as GPIO input mode, then get interrupt flag when change input
value. As below:

int GPIO_CFG=0;

int value=0;

// Set GPIOC[0] as I/O pin by SYS_GPC_MFPL register

outpw(SYS_GPC_MFPL, inpw(SYS_GPC_MFPL) & (~0x0000000F));

// Set GPIOC[0] as output mode by GPIOC_DIR register

outpw(GPIOC_DIR, inpw(GPIOC_DIR) & (~0x00000001));

// Set GPIOC[0] as rising-edge trigger interrupt by GPIOC_IMD

outpw(GPIOC_IMD, inpw(GPIOC_IMD) & (~0x00000001));

// Set GPIOC[0] as rising-edge enable by GPIOC_IREN

outpw(GPIOC_IREN, inpw(GPIOC_IREN) & 0x00000001);

// Set GPIOC[0] as falling-edge disable by GPIOC_IFEN

outpw(GPIOC_IFEN, inpw(GPIOC_IFEN) & (~0x00000001));

// Waitting for GPIOC[0] rising-edge interrupt by GPIOC_ISR

Aug. 14, 2018 Page 149 of 312 Rev 1.02

NUC970/N9H30

while(!(inpw(GPIOC_ISR)& 0x1));

// Clear GPIOC[0] interrupt flag by GPIOC_ISR

outpw(GPIOC_ISR, 0x1);

Aug. 14, 2018 Page 150 of 312 Rev 1.02

NUC970/N9H30

14 I
2
C

14.1 Overview

I²C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data
exchange between devices. The I²C standard is a true multi-master bus including collision
detection and arbitration that prevents data corruption if two or more masters attempt to
control the bus simultaneously.

Serial, 8-bit oriented bi-directional data transfers can be up to 100 KBit/s in Standard-mode,
400 KBit/s in the Fast-mode, or 3.4 Mbit/s in the High-speed mode. Only 100kbps and
400kbps modes are supported directly in this chip.

Data transfer is synchronized to SCL signal between a Master and a Slave with byte-by-byte
basis. Each data byte is 8 bits long. There is one SCL clock pulse for each data bit with the
MSB being transmitted first. An acknowledge bit follows each transferred byte. Each bit is
sampled during the high period of SCL; therefore, the SDA line may be changed only during
the low period of SCL and must be held stable during the high period of SCL. A transition on
the SDA line while SCL is high is interpreted as a command (START or STOP).

14.2 Features

 Compatible with Philips I²C standard, support master mode

 Supports 7 bit addressing mode

 Multi Master Operation

 Arbitration lost interrupt, with automatic transfer cancellation.

 Provide multi-byte transmit operation, up to 4 bytes can be transmitted in a single transfer

 Software programmable acknowledge bit

 Bus busy detection

 Clock stretching and wait state generation

14.3 Function Block

Aug. 14, 2018 Page 151 of 312 Rev 1.02

NUC970/N9H30

scl_pad_o/scl_padoen_o

sda_pad_o/sda_padoen_o

sdo_pad_o/sdo_padoen_o

i2c_int_o

pclk

preset_n

paddr

pwrite

psel

penable

pwdata

pben

prdata

scl_pad_i
sda_pad_i

sdo_pad_i
I/O

Decoder
Registers

A
M

B
A

 A
P

B
 I

nt
er

fa
ce

Clock
Prescale

I2C
Core Logic

14.4 Register Map

Register Offset R/W/C Description Reset Value

I
2
C Port0 : I2C_BA = 0xB800_6000

I
2
C Port1 : I2C_BA = 0xB800_6100

CSR I2C_BA+0x00 R/W Control and Status Register 0x0000_0000

DIVIDER I2C_BA+0x04 R/W Clock Prescale Register 0x0000_0000

CMDR I2C_BA+0x08 R/W Command Register 0x0000_0000

SWR I2C_BA+0x0C R/W Software Mode Control Register 0x0000_003F

RxR I2C_BA+0x10 R Data Receive Register 0x0000_0000

TxR I2C_BA+0x14 R/W Data Transmit Register 0x0000_0000

14.5 Function Description

 I2C Protocol 14.5.1

The following figure shows the typical I²C protocol. Normally, a standard communication
consists of four parts:

1. START or Repeated START signal generation

2. Slave address transfer

Aug. 14, 2018 Page 152 of 312 Rev 1.02

NUC970/N9H30

3. Data transfer

4. STOP signal generation

SCL

SDA

S

or

Sr

MSB

ACK

P

or

Sr

P

Sr
LSB MSB LSB

1 2 7 8 9 1 2 3 - 7 8 9

A6 A5 A4 - A1 A0 R/W D7 D6 D5 - D1 D0 NACK
ACK

 Data Transmission Continuously 14.5.2

For the data transmission, the I²C core used 32-bit transmit buffer and provide multi-byte
transmit function. Set CSR[Tx_NUM] to a value that you want to transmit. I²C core will always
issue a transfer from the highest byte first. For example, if CSR[Tx_NUM] = 0x3, Tx[31:24] will
be transmitted first, then Tx[23:16], and so on.

CSR |= (0x3 << 4); //Four bytes transmission, data sequence is 0x12, 0x34, 0x56, 0x78

u32Data = 0x12 << 24;

u32Data |= (0x34 << 16);

u32Data |= (0x56 << 8);

u32Data |= 0x78;

TxR = u32Data; //Write 4 bytes in TX register

 Interrupt 14.5.3

The interrupt flag IF(CSR [2]) bit will be set to 1 after I²C controller finished transmit or
receive. If interrupt enable bit IE(CSR[1]) is also set to 1 and interrupt will occur. IF bit can be
cleared by writing 1 to itself.

CSR |= 0x2; //Enable Interrupt

I2C_AL(CSR[9]) flag will be set to 1 if I²C arbitration lost error happens. If IE bit is also set to
1, interrupt will also happen. At this time, software needs to send STOP command to release
bus and unfinished job needs to restart.

 Software Mode 14.5.4

Function block is shown below,

Aug. 14, 2018 Page 153 of 312 Rev 1.02

NUC970/N9H30

SCW

I2C core logic

SW_EN

scl_padoen_o sda_padoen_o

1 10 0

SDW

To use I²C software control mode, need to set I2C_EN(CSR[0]) to 0. And software can
configure SCW(SWR[0]) bit, SDW(SWR[1]) bit and pull I²C SCL or SDA pin high or low.

Software also can know the status of pins by reading SCR(SWR[3]) bit or SDR(SWR[4]) bit.

CSR &= ~0x1; //Disable hardware I
2
C function

//START

SWR |= 0x3; //SCL=high, SDA=high

sleep();

SWR &= ~0x2; //SCL=high, SDA=low

sleep();

SWR &= ~0x1; // SCL=low, SDA=low

sleep();

…

 I2C Operation Using CMDR Register 14.5.5

CMDR is used to control I²C START/STOP ，READ/WRITE ，ACK/NACK command.

Control flow is list below:

1. Write data to Tx(TxR[7:0]) register

2. Set START(CMDR[4])bit and WRITE (CMDR[1]) bit

3. Wait for interrupt

4. Check ACK or NACK and set STOP(CMDR[3]) bit

5. Wait for interrupt

6. Finish

TxR = 0x12; //Slave address

CMDR |= (0x1 << 4) | (0x1 << 1); //Enable I
2
C WRITE

while(CSR & (0x1 << 8)); //Polling I
2
C status

if(!CMDR & 0x1)

Aug. 14, 2018 Page 154 of 312 Rev 1.02

NUC970/N9H30

printf(“Transfer error!!\n”);

CMMDR |= (0x1 << 3); //Set STOP bit, stop operation

while(CSR & (0x1 << 8)); //Polling I
2
C status

 I2C EEPROM Operation Example 14.5.6

Random Read:

Example code：

CSR &= ~(0x3 << 4); //Tx_NUM=0

CSR |= 0x1; //Enable hardware I
2
C function

TxR = 0x50; //24LC64 slave address / write

CMDR = (0x1 << 4) | (0x1 << 1); //Set START and WRITE bit

while(CSR & (0x1 << 8)); //Polling I
2
C status

if(!CMDR & 0x1)

 printf(“Transfer error!!\n”);

TxR = 0x00; //High byte address

CMDR |= (0x1 << 1); //Set WRITE bit

while(CSR & (0x1 << 8)); //Polling I
2
C status

if(!CMDR & 0x1)

 printf(“Transfer error!!\n”);

TxR = 0x01; //Low byte address

CMDR |= (0x1 << 1); //Set WRITE bit

while(CSR & (0x1 << 8)); //Polling I
2
C status

if(!CMDR & 0x1)

 printf(“Transfer error!!\n”);

TxR = 0x51; //24LC64 slave address / read

CMDR |= (0x1 << 4) | (0x1 << 1); //Set START and WRITE bit (repeat START)

while(CSR & (0x1 << 8)); //Polling I
2
C status

if(!CMDR & 0x1)

 printf(“Transfer error!!\n”);

Aug. 14, 2018 Page 155 of 312 Rev 1.02

NUC970/N9H30

CMDR |= (0x1 << 3) | (0x1 << 2) | (0x1 << 2); //Set STOP, READ, ACK bit

u32data = RxR; //Read data back

Aug. 14, 2018 Page 156 of 312 Rev 1.02

NUC970/N9H30

15 I
2
S

15.1 Overview

The I²S controller consists of I²S and PCM protocols to interface with external audio CODEC.
The I²S and PCM interface supports 8, 16, 18, 20 and 24-bit left/right precision in record and
playback. When operating in 18/20/24-bit precision, each left/right-channel sample is stored in
a 32-bit word. Each left/right-channel sample has 24/20/18 MSB bits of valid data and other
LSB bits are the padding zeros. When operating in 16-bit precision, right-channel sample is
stored in MSB of a 32-bit word and left-channel sample is stored in LSB of a 32-bit word.

15.2 Features

 Support I²S interface record and playback

 Left/right channel

 8, 16, 20, 24-bit data precision

 Support mater and slave mod

 Support PCM interface record and playback

 Two slots

 Support 8,16,18, 20,24-bit data precision

 Support master mode

 Support two addresses for left/right channel data and different slots

 Use DMA to playback and record data, with interrupt

15.3 Function Block

Aug. 14, 2018 Page 157 of 312 Rev 1.02

NUC970/N9H30

AHB Bus Master AHB Bus Slave

Record
FIFO

RFIFO
Control

DMA
Control

Play FIFO
PFIFO

Control
Control
Register

I2S PCM

MUX

AHB Bus

Audio Interface

15.4 Register Map

Register Offset R/W Description Reset Value

I
2
S Base Address:

I2S_BA = 0xB000_9000

I2S_GLBCON I2S_BA+0x000 R/W I2S Global Control Register 0x0000_0000

I2S_RESET I2S_BA+0x004 R/W I2S Sub Block Reset Control Register 0x0000_0000

I2S_RDESB I2S_BA+0x008 R/W I2S Record DMA Destination Base Address Register 0x0000_0000

I2S_RDES_LENGTH I2S_BA+0x00C R/W I2S Record DMA Destination Length Register 0x0000_0000

I2S_RDESC I2S_BA+0x010 R I2S Record DMA Destination Current Address Register 0x0000_0000

I2S_PDESB I2S_BA+0x014 R/W I2S Play DMA Destination Base Address Register 0x0000_0000

I2S_PDES_LENGTH I2S_BA+0x018 R/W I2S Play DMA Destination Length Register 0x0000_0000

I2S_PDESC I2S_BA+0x01C R I2S Play DMA Destination Current Address Register 0x0000_0000

I2S_RSR I2S_BA+0x020 R/W I2S Record Status Register 0x0000_0000

I2S_PSR I2S_BA+0x024 R/W I2S Play Status Register 0x0000_0000

Aug. 14, 2018 Page 158 of 312 Rev 1.02

NUC970/N9H30

I2S_CON I2S_BA+0x028 R/W I2S Control Register 0x0000_0000

I2S_COUNTER I2S_BA+0x02C R/W I2S Play DMA Down Counter Register 0xFFFF_FFFF

I2S_PCMCON I2S_BA+0x030 R/W I2S PCM Mode Control Register 0x0000_0000

I2S_PCMS1ST I2S_BA+0x034 R/W I2S PCM Mode Slot 1 Start Register 0x0000_0000

I2S_PCMS2ST I2S_BA+0x038 R/W I2S PCM Mode Slot 2 Start Register 0x0000_0000

I2S_RDESB2 I2S_BA+0x040 R/W I2S Record DMA Destination Base Address 2 Register 0x0000_0000

I2S_PDESB2 I2S_BA+0x044 R/W I2S Play DMA Destination Base Address 2 Register 0x0000_0000

15.5 Functional Description

 I2S Master/Slave Mode 15.5.1

To use slave mode, user can set SLAVE(I2S_CON[20]) bit to 1 otherwise set 1 to be as
master mode.

Note that slave only can be chosen when use I²S interface and only use master mode if PCM
interface is used.

Master mode connection between controller and audio codec:

Audio
Controller

Audio
Codec

MCLK

BCLK

WS

DOUT

DIN

Slave mode connection between controller and audio codec:

Audio
Controller

Audio
Codec

MCLK

BCLK

WS

DOUT

DIN

 I2S Source Clock Configuration 15.5.2

Software can choose APLL, UPLL or external crystal as source clock of I²S by configuring

Aug. 14, 2018 Page 159 of 312 Rev 1.02

NUC970/N9H30

I2S_S(CLK_DIVCTL1[20:19]).

APLLFout

I2S_SDIV
(CLK_DIVCTL1[18:16])

I2S_N
(CLK_DIVCTL1[31:24])

I2S_SrcCLK ECLKI
2

S

I2S
(CLK_HCLKEN[24])

ACLKOut

UCLKout

CLK_SW4
(4-to-1)
(MUX)

CLK_DIVn
(÷ (I2S_N+1))

UPLLFout

I2S_S
(CLK_DIVCTL1[20:19])

XT1_IN

CLK_DIVn
(÷ (I2S_SDIV+1))

CLK_DIVn
(÷ (I2S_SDIV+1))

CLK_DIVCTL1 = (CLK_DIVCTL1 & ~(0x3 << 19)) | 0x2; //I2S source clock is APLL

 I2S Calculation and Configuration of Clock 15.5.3

The clocks in I²S need to be configured are MCLK and BCLK. Only MCLK needs to be
configured when using I2S slave mode.

In general, to get the accurate clock, suggest using PLL and set speed to 12.288MHz,
16.934MHz or 11.285MHz.

The following is an example to let user know how to get 48 kHz sampling rate when 16-bit
data and stereo channel are used.

If audio codec supports 256x sampling rate, the calculation of MCLK is as below:

MCLK = 256 * 48000 =11288000 Hz = 12.288MHz

And if use 16-bit data width and stereo channel, the calculation of BCLK is as below:

BCLK = 48000 * 16 * 2 = 1536000 Hz = 1.536MHz

So the divider PSR(I2S_CON[19:16]) is 12.288/12.288 - 1 = 1 - 1 = 0

And BCLK_DIV(I2S_CON[7:5]) is (12.288/1.536)/2-1 = 8/2-1 = 3

I2S_CON = I2S_CON & ~(0xF << 16); //PRS=0

I2S_CON = I2S_CON & ~(0x1 << 4); //MCLK comes from divide PLL by PRS

I2S_CON = (I2S_CON & ~(0x1 << 5)) | 0x3; //BCLK_DIV=3

 DMA 15.5.4

I²S use DMA to implement playing and recording. The description of DMA operation and

Aug. 14, 2018 Page 160 of 312 Rev 1.02

NUC970/N9H30

configuration list as below:

 Play and record DMA base address (I2S_RDESB and I2S_PDESB). All the play and

record data will be put in the address, in general, this space is somewhere in RAM which

is continuous and non-cacheable.

 DMA length register (I2S_RDES_LENGTH and I2S_PDES_LENGTH), is the total length

of DMA space.

 DMA current address register (I2S_RDESC and I2S_PDESC) will show the current DMA

address which is playing or recording. Software can use this to determine how much

buffer can be use at this time.

 Software can decide when (1/2, 1/4 or 1/8 of DMA length) interrupt will occur by

configuring R_DMA_IRQ_SEL(I2S_GLBCON[15:14]),

P_DMA_IRQ_SEL(I2S_CON[13:12]) and enabling DMA_IRQ_EN(I2S_GLBCON[21]) or

P_DMA_IRQ_EN(I2S_GLBCON[20]) bit.

DMA configuration example list as below:

I2S_PDESB = 0x80001000; //Assign play base address

I2S_PDES_LENGTH = 2*1024; //DMA length is 2048 bytes

I2S_CON = (I2S_CON & ~(0x3 << 12)) | (0x1 << 12); //Interrupt will occur when DMA reach
1/2 of DMA length

I2S_CON |= (0x1 << 20); //Enable interrupt

 DMA section number: Software can read P_DMA_RIA_SN(I2S_PSR[7:5]) or

R_DMA_RIA_SN(I2S_RSR[7:5]) bit to know which DMA section that DMA is playing or

recording. If the value read from P_DMA_RIA_SN is 2 and P_DMA_IRQ_SEL is b’11,

that means that DMA is playing at the 2/8 section.

 DMA down counter: Software can read down counter register(I2S_COUNTER) to know

how much data had been played or recorded. When DMA transfers one data and down

counter register will decrease one until it becomes zero. When down counter value

becomes zero, software can enable IRQ_DMA_CNTER_EN(I2S_GLBCON[4]) bit to let

interrupt happen.

I2S_COUNTER = 0x1000; //Set down count value to x1000

…

while(I2S_COUNTER>0x30); //Test if the value is smaller than 0x30

…

 Zero crossing detection: When playing the audio by I²S function, the output data comes

from the memory by DMA. However, it may result some pop noise if the playing gain

level is changed by user at any time. Because, the output data is not zero, and the output

data cross the gain change will generate a sharp pop noise. Therefore, the zero crossing

Aug. 14, 2018 Page 161 of 312 Rev 1.02

NUC970/N9H30

function will help to reduce this situation. Software can enable this function by setting

DMA_DATA_ZERO_EN(I2S_RESET[3])to 1 and also interrupt can be enabled by setting

IRQ_DMA_DATA_ZERO_EN(I2S_GLBCON[3]) to 1.

 Sequence of DMA Data 15.5.5

When use I²S 18, 20, 24-bits, each data stored in DMA buffer will all use 32-bit width.

Take I²S 16-bit as an example:

Dual channels(Stereo)：

Base Address DMA Buffer

0x1000 Left channel – LSB byte

0x1001 Left channel – MSB byte

0x1002 Right channel – LSB byte

0x1003 Right channel – MSB byte

0x1004 Left channel – LSB byte

0x1005 Left channel – MSB byte

0x1006 Right channel – LSB byte

0x1007 Right channel – MSB byte

… …

Single channel(Mono)：

Base Address DMA Buffer

0x1000 Left channel – LSB byte

0x1001 Left channel – MSB byte

0x1002 Left channel – LSB byte

0x1003 Left channel – MSB byte

0x1004 Left channel – LSB byte

0x1005 Left channel – MSB byte

0x1006 Left channel – LSB byte

0x1007 Left channel – MSB byte

… …

 Interface Selection 15.5.6

Software can choose I²S or PCM interface by setting BLOCK_EN(I2S_GLBCON[0]) bit.

Aug. 14, 2018 Page 162 of 312 Rev 1.02

NUC970/N9H30

I2S_GLBCON = (I2S_GLBCON & ~0x3) | 0x2; //Choose PCM interface

 PCM Interface 15.5.7

The following figure is PCM timing wave form,

SLOT1

BCLK

FS

DI / DO

SLOT

position
0 1 2 7 8

MSB LSB

16

SLOT2

17 23

MSB LSB

FS_PERIOD -1

0

SLOT1_x_START SLOT2_x_START

SLOT1_O_START (ACTL_PCMS1ST[25:16]) = 1,

SLOT2_O_START (ACTL_PCMS2ST[25:16]) = 16, BCLKP (ACTL_PCMCON[0]) = 0

And arguments that software can configure are:

1. Bit number between two FS – FS_PERIOD(I2S_PCMCON[25:16]).

2. Bit number between SLOT1_x_START or SLOT2_x_START and FS – I2S_PCMS1ST or
I2S_PCMS2ST.

Take 8KHz sampling rate and data width is 32-bit for example. If two slots are used and
assume clock speed of source clock is 24.576MHz.

//BCLK=24.576MHz/48 = 512k

I2S_PCMCON = I2S_PCMCON | (23<<8));

//FS_PERIOD = 32+32

I2S_PCMCON = (63<<16) | 0; //FS= 512/64=8k, //BCLKP = 0

//SLOT1_O_START = 1

//SLOT1_I_START = 1

I2S_PCMS1ST = 0x00010001;

//SLOT2_O_START = 33

//SLOT2_I_START = 33

I2S_PCMS2ST = 0x00210021;

Aug. 14, 2018 Page 163 of 312 Rev 1.02

NUC970/N9H30

 Data Split 15.5.8

Data split function can put the continuous data into different DMA buffer by channel or slot.
Software can process these data in single buffer address easier than two different addresses.

Software needs to set the second DMA base address register (I2S_RDESB2 and
I2S_PDESB2). The data in first DMA address which specified by I2S_RDESB and
I2S_PDESB register is I²S left channel or PCM slot1. The data in second DMA address is I²S
right channel or PCM slot2.

To reach the target mentions before, software can set SPLIT_DATA(I2S_RESET[20]) bit to 1
to enable this function. After enabling data split function, layout of data stored in buffer will like
the following table (take I²S interface for example).

Base address-1 DMA Buffer

0x1000 Left channel – LSB byte

0x1001 Left channel – MSB byte

0x1002 Left channel – LSB byte

0x1003 Left channel – MSB byte

0x1004 Left channel – LSB byte

0x1005 Left channel – MSB byte

0x1006 Left channel – LSB byte

0x1007 Left channel – MSB byte

… …

Base address-2 DMA Buffer

0x2000 Right channel – LSB byte

0x2001 Right channel – MSB byte

0x2002 Right channel – LSB byte

0x2003 Right channel – MSB byte

0x2004 Right channel – LSB byte

0x2005 Right channel – MSB byte

0x2006 Right channel – LSB byte

0x2007 Right channel – MSB byte

… …

Aug. 14, 2018 Page 164 of 312 Rev 1.02

NUC970/N9H30

16 JPEG Codec

16.1 Overview

The JPEG Codec supports Baseline Sequential Mode JPEG still image compression and
decompression that is fully compliant with ISO/IEC International Standard 10918-1 (T.81).

16.2 Feature

 Support to encode interleaved YCbCr 4:2:2/4:2:0 and gray-level (Y only) format image

 Support to decode interleaved YCbCr 4:4:4/4:2:2/4:2:0/4:1:1 and gray-level (Y only)

format image

 Support to decode YCbCr 4:2:2 transpose format

 The encoded JPEG bit-stream format is fully compatible with JFIF and EXIF standards

 Support Capture and JPEG hardware on-the-fly access mode for encode

 Support JPEG and Playback hardware on-the-fly access mode for decode

 Support software input/output on-the-fly access mode for both encode and decode

 Support arbitrary width and height image encode and decode

 Support three programmable quantization-tables

 Support standard default Huffman-table and programmable Huffman-table for decode

 Support arbitrarily 1X~8X image up-scaling function for encode mode

 Support down-scaling function for encode and decode modes

 Support specified window decode mode

 Support quantization-table adjustment for bit-rate and quality control in encode mode

 Support rotate function in encode mode

16.3 Block Diagram

Aug. 14, 2018 Page 165 of 312 Rev 1.02

NUC970/N9H30

IRAM

8x64

ORAM

16x32

VLE

QTAB

64x8x3

ZRAM

64x12x2

Quant

IQuant

DCT/

IDCT

TRAM

72x15

VLD

P
re

-/
P

o
s
t-

P
ro

c
e
s
s
in

g
H

o
s
t

In
te

rf
a
c
e

Common

Encode

Decode

JPEG Codec

HTAB

352x8

A
H

B
_
S

la
v
e
_
B

iu
A

H
B

_
M

a
s
te

r_
B

iu

from Capture

to Playback

16.4 Register Map
R : Read only, W : Write only, R/W : Both read and write, C : Only value 0 can be written

Register Address R/W/C Description Reset Value

JPG_BA = 0xB000_A000

JMCR JPG_BA + 000 R/W JPEG Engine Mode Control Register 0x0000_0000

JHEADER JPG_BA + 004 R/W JPEG Encode Header Control Register 0x0000_0000

JITCR JPG_BA + 008 R/W JPEG Image Type Control Register 0x0000_0000

RESERVED JPG_BA + 00C R/W Reserved 0x0000_0000

JPRIQC JPG_BA + 010 R/W JPEG Encode Primary Q-Table Control Register 0x0000_00F4

JTHBQC JPG_BA + 014 R/W JPEG Encode Thumbnail Q-Table Control Register 0x0000_00F4

JPRIWH JPG_BA + 018 R/W JPEG Primary Width/Height Register 0x0000_0000

JTHBWH JPG_BA + 01C R/W
 JPEG Encode Thumbnail Width/Height Register(For Planar
Format Only)

0x0000_0000

JPRST JPG_BA + 020 R/W JPEG Encode Primary Restart Interval Register 0x0000_0004

JTRST JPG_BA + 024 R/W JPEG Encode Thumbnail Restart Interval Register 0x0000_0004

JDECWH JPG_BA + 028 R JPEG Decode Image Width/Height Register 0x0000_0000

JINTCR JPG_BA + 02C R/W JPEG Interrupt Control and Status Register 0x0020_0000

RESERVED
JPG_BA + 034~

JPG_BA + 038
R/W Reserved 0x0000_0000

Aug. 14, 2018 Page 166 of 312 Rev 1.02

NUC970/N9H30

JDOWFBS JPG_BA + 03C R/W Decoding Output Wait Frame Buffer Size 0xFFFF_FFFF

JTEST JPG_BA + 040 R/W JPEG Test Control Register 0x0000_0000

JWINDEC0 JPG_BA + 044 R/W JPEG Window Decode Mode Control Register 0 0x0000_0000

JWINDEC1 JPG_BA + 048 R/W JPEG Window Decode Mode Control Register 1 0x0000_0000

JWINDEC2 JPG_BA + 04C R/W JPEG Window Decode Mode Control Register 2 0x0000_0000

JMACR JPG_BA + 050 R/W JPEG Memory Address Mode Control Register 0x0000_0000

JPSCALU JPG_BA + 054 R/W JPEG Primary Scaling-Up Control Register 0x0000_0000

JPSCALD JPG_BA + 058 R/W JPEG Primary Scaling-Down Control Register 0x0000_0000

JTSCALD JPG_BA + 05C R/W JPEG Thumbnail Scaling-Down Control Register 0x0000_0000

JDBCR JPG_BA + 060 R/W JPEG Dual-Buffer Control Register 0x0000_0000

RESERVED
JPG_BA + 064 ~

JPG_BA + 06C
R/W Reserved 0x0000_0000

JRESERVE JPG_BA + 070 R/W Primary Encode Bit-stream Reserved Size Register 0x0000_0000

JOFFSET JPG_BA + 074 R/W Address Offset Between Primary/Thumbnail Register 0x0000_0000

JFSTRIDE JPG_BA + 078 R/W JPEG Encode Bit-stream Frame Stride Register 0x0000_0000

JYADDR0 JPG_BA + 07C R/W
 Y Component or Packet Format Frame Buffer-0 Start
Address Register,

0x0000_0000

JUADDR0 JPG_BA + 080 R/W U Component Frame Buffer-0 Start Address Register 0x0000_0000

JVADDR0 JPG_BA + 084 R/W V Component Frame Buffer-0 Start Address Register 0x0000_0000

JYADDR1 JPG_BA + 088 R/W
 Y Component or Packet Format Frame Buffer-1 Start
Address Register

0x0000_0000

JUADDR1 JPG_BA + 08C R/W U Component Frame Buffer-1 Start Address Register 0x0000_0000

JVADDR1 JPG_BA + 090 R/W V Component Frame Buffer-1 Start Address Register 0x0000_0000

JYSTRIDE JPG_BA + 094 R/W Y Component Frame Buffer Stride Register 0x0000_0000

JUSTRIDE JPG_BA + 098 R/W U Component Frame Buffer Stride Register 0x0000_0000

JVSTRIDE JPG_BA + 09C R/W V Component Frame Buffer Stride Register 0x0000_0000

JIOADDR0 JPG_BA + 0A0 R/W Bit-stream Frame Buffer-0 Start Address Register 0x0000_0000

JIOADDR1 JPG_BA + 0A4 R/W Bit-stream Frame Buffer-1 Start Address Register 0x0000_0000

JPRI_SIZE JPG_BA + 0A8 R JPEG Encode Primary Bit-stream Size Register 0x0000_0000

JTHB_SIZE JPG_BA + 0AC R JPEG Encode Thumbnail Bit-stream Size Register 0x0000_0000

JUPRAT JPG_BA + 0B0 R/W
 JPEG Planar Format Encode Up-Scale Ratio and Packet
Format Decode Down-Scale Ratio

0x0000_0000

JBSFIFO JPG_BA + 0B4 R/W JPEG Bit-stream FIFO Control Register 0x0000_0032

JSRCH JPG_BA + 0B8 R/W JPEG Encode Source Image Height 0x0000_0FFF

RESERVED
JPG_BA + 0BC ~

JPG_BA + 0FC
R/W Reserved 0x0000_0000

JQTAB0
JPG_BA + 100 ~

JPG_BA + 13F
R/W JPEG Quantization-Table 0 0x0000_0000

Aug. 14, 2018 Page 167 of 312 Rev 1.02

NUC970/N9H30

JQTAB1
JPG_BA + 140 ~

JPG_BA + 17F
R/W JPEG Quantization-Table 1 0x0000_0000

JQTAB2
JPG_BA + 180 ~

JPG_BA + 1BF
R/W JPEG Quantization-Table 2 0x0000_0000

RESERVED
JPG_BA + 1C8 ~

JPG_BA + 1FC
R/W Reserved 0x0000_0000

16.5 Functional Description

 Memory Access 16.5.1

Following figure shows the encode mode to access the source data which are from sensor
normally and stored on the RAM.

Line 1

Line 2

Line 3

Line 4

Line 5

Line 1

Line 2

Line 3

Line 4

Line 5

Stride

Stride

Stride

Stride

Frame Memory

Image to encode

Starting address

Following figure shows the decode mode to output the decoded raw data on the RAM.

Aug. 14, 2018 Page 168 of 312 Rev 1.02

NUC970/N9H30

Line 1

Line 2

Line 3

Line 4

Line 5

Line 1

Line 2

Line 3

Line 4

Line 5

Stride

Stride

Stride

Stride

Frame Memory

Decoded Image (Raw data)

Starting address

User can use stride function to output decoded image to any position on the Display Frame
Buffer for Display. Following figure shows the decode mode with stride to output the decoded
raw data on the Display Frame Buffer.

Line 1

Line 2

Line 3

Line 4

Line 5

Decoded Image (Raw data)

Line 1

Line 2

Line 3

Line 4

Line 5

Stride

Display Frame Buffer Memory

Aug. 14, 2018 Page 169 of 312 Rev 1.02

NUC970/N9H30

 JPEG Encoding 16.5.2

16.5.2.1 Reset Jpeg Engine

The JPEG engine supports to encode/decode JPEG bit-stream. Before trigger Jpeg engine to
decode or encode jpeg bit-stream, remember to reset Jpeg engine by set JMCR[1] = 1,then
JMCR[1] = 0 first. Otherwise, the result may be wrong.

16.5.2.2 Quantization Table

 Quantization Table Order

The Quantization table for the register order is different from the order in bit-stream.

For example, the Quantization table is as following table:

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

The JPEG Quantization table 0 is written in the order 0, 1, 5, 6, 14, 15, 27, 28 …… 63.
However, the Quantization table in bit-stream is in the zig-zag order 0, 1, 2, 3, 4, 5…..63.

 Write Quantization Table

Before writing the JPEG Quantization table, be sure that the Quantization-Table Busy Status
equal to 0 (JMCR[2] =0). If writing JPEG Quantization-table (JPB_BA+0x100 ~ 0x17F) when
JMCR[2] =1, the writing may be fail.

 Normal Encoding 16.5.3

The setting sequence of encode process will be:

1. Reset JPEG engine

2. Write Quantization tables

3. Set input frame buffer start address

Aug. 14, 2018 Page 170 of 312 Rev 1.02

NUC970/N9H30

 Planar format : Y/U/V start address (JYADDR0 / JUADDR0 / JVADDR0)

 Packet format : data start address (JYADDR0)

4. Set output bit-stream target address. (JIOADDR0)

5. Set Encode Image Dimension Property

 Set encode primary image width/height (JPRIWH)

 Set image height to Encode Source Image Height (JSRCH)

6. Set Encode Image Raw data property

 Planar format

 Y/U/V buffer stride (JYSTRIDE / JUSTRIDE / JVSTRIDE)

 Packet format

 buffer stride (JYSTRIDE is image width and, JUSTRIDE/JVSTRIDE is image

width/2

7. Set Encode mode and format

 Set encode mode. (JMCR[7] =1)

 Encode Primary image (JMCR[5])

 Encode Thumbnail image (JMCR[4])

 Encode format (JMCR[3])

 YUV422

 YUV420

8. Set Encode header (JHEADER)

9. Enable interrupt for Encode (JINTCR)

 Encode complete interrupt (ENC_INTE)

10. Trigger for Encode (JINTCR)

 Set JMCR[0] to 1, then clear to 0.

11. Wait for Encode Complete Interrupt

 Encoding Scaling up 16.5.4

Encode Scaling up ratio

The Width and Height are the original picture, Upscale_Width and Upscale_Height are the
scaling-up picture:

X ratio = ((Upscale_Width – 1) / (Width – 1)) * 1024

Y ratio = ((Upscale_Height – 1) / (Height - 1)) * 1024

If user wants to enable encode upscale function, user can do the following settings any time
before trigger JPEG engine.

Aug. 14, 2018 Page 171 of 312 Rev 1.02

NUC970/N9H30

1. Set the Scaling up ratio (JUPRAT)

 S_HEIGHT: Image Height Encode Up-scale Ratio

 S_WIDTH: Image Width Encode Up-scale Ratio

2. Enable encode scaling up (JPSCALU[6] = 1)

 8X: Primary Image Up-Scaling For Encode

Due to the source data is packet format, sometimes the final column data may mix with the
first column in next row. User should use larger ratio to avoid it.

Aug. 14, 2018 Page 172 of 312 Rev 1.02

NUC970/N9H30

Start

Set Raw Data Address

Set Encode Image Dimension Property

Set Encode Raw data Property

Set Encode Mode & Encode Format

End

JPRIWH Register

27:16 P_HEIGHT : Primary Encode Image Height

11:0 P_WIDTH : Primary Encode Image Width

JSRCH Register

11:0 JSRCH: Encode Source Image Height

JYSTRIDE / JUSTRIDE / JVSTRIDE Register

Packet Format

JYADDR0 Register

Planar Format

JYADDR0 /JUADDR0 / JVADDR0 Register

Set Bitstream Address JIOADDR0 Register

Reset JPEG Engine
JMCR Register

1 ENG_RST : Soft Reset JPEG Engine

Write Quantization Table REG_JQTABx Register

JMCR Register

7 ENC_DEC : Encode/Decode Mode

5 PRI: Encode Primary Image

4 THB: Encode Thumbnail Image

3 EY422: Encode Image Format (YUV422/YUV420)

Set Encode Header

JHEADER Register

7 P_JFIF: Primary include JFIF Header

6 P_HTAB: Primary include Huffman Header

5 P_QTAB: Primary include Quantization Header

4 P_DRI: Primary include Restart Interval

3 T_JFIF: Thumbnail include JFIF Header

2 T_HTAB: Thumbnail include Huffman Header

1 T_QTAB: Thumbnail include Quantization Header

0 T_DRI: Thumbnail include Restart Interval

Enable Interrupt for Encode
JINTCR Register

3 ENC_INTE: Encode Complete Interrupt

Trigger JPEG Engine
JMCR Register

0 JPG_EN: JPEG Engine Operation Control

Set Encode Upscale function

JPSCALU Register

6 8X: Primary Image Up-Scaling For Encode

JUPRAT Register

29:16 S_HEIGHT: Image Height Encode Up-scale Ratio

13:0 S_WIDTH: Image Width Encode Up-scale Ratio

Wait for Encode Complete Interrupt

Aug. 14, 2018 Page 173 of 312 Rev 1.02

NUC970/N9H30

 JPEG Decoding 16.5.5

16.5.5.1 Normal Decode

The Decode operation sequence can be divided two parts:

1. Reset JPEG engine

2. Set input bit-stream start address. (JIOADDR0)

3. Set Output YUV frame buffer address.

 Planar format

 Y/U/V start address (JYADDR0 / JUADDR0 / JVADDR0)

 Packet format

 Data start address (JYADDR0).

YUV frame buffer address must be set before trigger JPEG engine for planar

format.

YUV frame buffer address can be set before starting to output raw data for

packet format.

4. Set Decode mode and Output format

 Set decode mode (JMCR[7] = 0)

 Set decode primary or thumbnail image (JITCR[4])

 Enable Header Decode Complete Stop (JITCR[5])

 Enable Programmable Huffman Table function for Decode (JITCR[0])

 Set output format (JITCR[16:13])

 Planar format

 Packet format:

RGB888/RGB565/RGB555/YUV422/RGB555R1/RGB555R2/RGB565R1/RGB5

65R2

5. Enable interrupt for decode (JINTCR)

 Set DEC_INTE to 1

 Set DHE_INTE to 1

 Set DER_INTE to 1

6. Trigger for Encode (JINTCR)

 Set JMCR[0] to 1, then clear to 0

7. Wait for Header Decode Complete interrupt

Aug. 14, 2018 Page 174 of 312 Rev 1.02

NUC970/N9H30

Start

Set Raw Data Address

End

Packet Format

JYADDR0 Register

Planar Format

JYADDR0 /JUADDR0 / JVADDR0 Register

Set Bitstream Address JIOADDR0 Register

Reset JPEG Engine
JMCR Register

1 ENG_RST : Soft Reset JPEG Engine

Trigger JPEG Engine

Set Decode Mode & Decode Format

JMCR Register

7 ENC_DEC : Encode/Decode Mode

JITCR Register

16:13 ARGB888/PLANAR_ON/ORDER/RGB555565: Output format

5 DHEND: Header Decode Complete Stop Enable

4 DTHB: Decode Thumbnail Image Only

0 PDHTAB: Programmable Huffman Table for Decode

Enable Interrupt for Decode

JINTCR Register

6 DHE_INTE: JPEG Header Decode End Wait

2 DEC_INTE: Decode Complete

1 DER_INTE: Decode Error

JMCR Register

0 JPG_EN: JPEG Engine Operation Control

Wait for Header Decode Complete

Interrupt

After getting the header decode complete interrupt, user can get YUV color format
(JITCR[10:8]) and Image Width/Height (JDECWH).

Image Decode Flow as Follow:

1. Set decode image width/height (JPRIWH)

 The value of width must adjust for JPEG format or set to the output stride.

2. Set the output data property (Packet format only)

 Change output address (JYADDR0)

 Output offset value to JYSTRIDE . If stride function is disabled, Stride is equal to

width, the value of offset is 0.

3. Clear the header decode end wait interrupt to resume the decode operation

Aug. 14, 2018 Page 175 of 312 Rev 1.02

NUC970/N9H30

4. Wait for Decode complete interrupt

Start

Decode Flow – Part 2

End

Get JPEG color format & Image size

Change Output data address (Packet Only)

Enable Output Wait function (Packet Only)

Enable Window Decode function

Resume the decode operation

Decode Flow – Part 1

Set Bitstream & Output data address

Enable Input Wait function

Enable Output Wait function (Packet Only)

Enable Window Decode function

Output Wait Interrupt Routines

Wait for Decode Complete Interrupt

Clear the header decode end wait interrupt

Wait for Header Decode Complete Interrupt

Deal with Decode Output Wait buffer control (Packet Only)

Deal with Decode Input Wait buffer control

Deal with Decode Input Wait buffer control

16.5.5.2 Decoding Scaling down

Decoding Scaling down ratio

Width and Height are for the original picture and Downscale_Width, Downscale_Height is for
the picture after scaling-down

X ratio = (Downscale_Width / (Width – 1)) * 8192

Y ratio = (Downscale_Height / (Height – 1)) * 8192

For example, the setting of downscaling 18000 x 18000 pixels to 640 x 480 pixels as follow:

 Horizontal factor = 640 / 18000 * 8192 = 291

 Vertical factor = 480 / 18000 * 8192 = 218

Aug. 14, 2018 Page 176 of 312 Rev 1.02

NUC970/N9H30

The ratio is as following equation for planar format: Width, Height is for the original picture
and Downscale_Width, Downscale_Height is for the picture after scaling-down. (If the ratio is
larger than 8192, please set it to 8192.)

X ratio = Width / Downscale_Width / 2 – 1 (0≦X ratio≦15)

Y ratio = Height – Downscale_Height (0≦Y ratio≦63)

If user wants to enable decode down scale function, user can do the following settings any
time before clearing the header decode end wait interrupt (starting to output data):

1. Set the Scaling down ratio

 Packet format (JUPRAT)

 Planar format (JPSCALD)

2. Enable decode scaling down (JPSCALD[15] = 1)

16.5.5.3 Window Decode

The JPEG decoder supports specified window decode mode. This function allows user to
specify a sub-window region within the whole image to be decoded as shown in the following
figure. Only the specified window region image will be decoded and stored to frame memory.
This function can be enabled by setting register bit WIN_DEC, and the window region can be
specified in registers JWINDEC0~JWINDEC2.

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

(0,3) (1,3) (2,3) (3,3)

Full Image (Raw data)
Stride

Display Frame Buffer Memory

(0,4) (1,4) (2,4) (3,4)

(0,5) (1,5) (2,5) (3,5)

(4,0) (5,0)

(4,1) (5,1)

(4,2) (5,2)

(4,3) (5,3)

(4,4) (5,4)

(4,5) (5,5)

(x,y)

MCU

(1,1) (2,1) (3,1)

(1,2) (2,2) (3,2)

(1,3) (2,3) (3,3)

[Note 1]. The minimum window decode unit is 16x16.

[Note 2]. The image region to be decoded must exists.

If user wants to enable decode down scale function, user can do the following settings any
time before clearing the header decode end wait interrupt (starting to output data):

Aug. 14, 2018 Page 177 of 312 Rev 1.02

NUC970/N9H30

1. Set the region window of and End MCU

 Start coordinate in MCU to JWINDEC0

 End coordinate in MCU to JWINDEC1

 Decode Stride to JWINDEC2

16.5.5.4 Decode Stride Function (Packet Format Only)

Before clearing Header Decode End interrupt, the value of stride must be set to JPRIWH
instead of original width. Offset is the difference between Stride and Image width
(JYSTRIDE). If Offset is 0, the decoded raw data is continuous.

Stride
Line 1

Line 2

Line 3

Line 4

Line 5

Line 1

Line 2

Line 3

Line 4

Line 5

Stride

Stride

Stride

Frame Memory

Decoded Image (Raw data)

Starting address

Offset

Offset

Offset

Offset

16.5.5.5 Software Decode Input Wait

When the JPEG is in decoding mode, the input source is the JPEG bit-stream written by host.
The bit-stream buffer size is in 2K unit dual-buffer manner. The total buffer size is decided by
the BSF_SEL of JMACR. If the buffer-size is 2KB (BSF_SEL=1), host need to fill 1KB bit-
stream into one of the half buffer region before resuming JPEG operation when an input-wait
interrupt is generated.

1. JPEG engine decodes the data in Buffer 0 and S/W fills the data into Buffer 1.

Aug. 14, 2018 Page 178 of 312 Rev 1.02

NUC970/N9H30

Raw Data

DRAM

JPEG
Decoder

Bitstream
Buffer 0

Bitstream
Buffer 1

H/W Decode BistreamJPEG
Bitstream

JPEG File

S/W Fill Bitstream

2. JPEG engine decodes the data in Buffer 1 and S/W fills the data into Buffer 0.

Raw Data

DRAM

JPEG
Decoder

Bitstream
Buffer 0

Bitstream
Buffer 1

H/W Decode Bistream
JPEG

Bitstream

JPEG File

S/W Fill Bitstream

3. Iterate Step 1 & 2 until getting Decode Complete interrupt.

16.5.5.6 Decode Output Wait

When there is not enough continuous space to store the decode output raw data, JPEG
engine support a function to output data partially. User can get the whole data by assigning
several output data address and size settings. Using this function, user can get the JPEG
decoded image that larger than the available continuous memory space.

If user wants to enable decode output wait function, user can do the following settings any
time before clearing the header decode end wait interrupt (starting to output data).

Extra setting before clearing the Header Decode end wait interrupt is as follows:

1. Set Output Wait address & size

Aug. 14, 2018 Page 179 of 312 Rev 1.02

NUC970/N9H30

 Address: JYADDR0

 Set decoded output data size: JDOWFBS

 Unit is Word.

 Must multiple of MCU line data size

2. Set interrupt enable for decode output wait (JINTCR)

 Set DOW_INTE to 1 (Decoding Output Wait Interrupt Enable)

3. Trigger Decode Output Wait

 Set Dec_Scatter_Gather (JITCR[18]) to 1

[Note1] Dec_Scatter_Gather only be clear

 When output size is equal to the value of JDOWFBS

 IP Reset.

[Note2] If Dec_Scatter_Gather is set, user can set JDOWFBS to 0xFFFFFFFF to let
JPEG engine to ignore the Decode Output wait function.

16.5.5.7 Decode Output wait service routine

1. Wait for the Decode Output interrupt (DOW_INTS)

 It represents the buffer is full.

 User can get the data size that set to JDOWFBS from the address set to JYADDR0.

2. Clear the Decode Output interrupt status (DOW_INTS)

3. Set Next Output Wait address & size

 Address: JYADDR0

 Set decoded output data size: JDOWFBS

 Unit is Word.

 Must multiple of MCU line data size

4. Trigger Decode Output Wait

 Set Dec_Scatter_Gather (JITCR[18]) to 1

5. Go to Step 1 till getting the decode complete interrupt.

Aug. 14, 2018 Page 180 of 312 Rev 1.02

NUC970/N9H30

Raw Data 0

Physical Memory

Raw Data 1

Raw Data 3

Raw Data 2

Address 0

JYADDR0

Size 0

JDOWFBS

Trigger 0

Address 1

JYADDR0

Size 1

JDOWFBS

Trigger 1

Address 2

JYADDR0

Size 2

JDOWFBS

Trigger 2

Address 3

JYADDR0

Size 3

JDOWFBS

Trigger 3

Raw Data

Storage / Logical Memory

JPEG Engine Writing S/W Writing

Aug. 14, 2018 Page 181 of 312 Rev 1.02

NUC970/N9H30

17 LCD Display Interface Controller (LCM)

17.1 Overview

The main purpose of Display Controller is used to display the video/image data to LCD device
or connect with external TV-encoder. The video/image data source may come from the image
sensor, JPEG decoder and the OSD pattern which have been stored in system memory
(SDRAM). The input data format of the display controller can be packet YUV422, packet
YUV444, packet RGB444, packet RGB565, packet RGB666, and packet RGB888. The OSD
(On Screen Display) function supports packet YUV422 and 8/16/24-bit direct-color mode. The
LCD controller supports both sync-type and MPU-type LCDM. This LCD Controller is a bus
master and can transfer display data from system memory (SDRAM) without CPU
intervention.

17.2 Features

 In ut data ormat

 YUV , YUV

 RGB , RGB 6 , RGB666, RGB

 Out ut ormat

 YUV , YUV

 RGB , RGB 6 , RGB666, RGB

 In ut size: Maximum size * 6

 Image resize

 Horizontal u -scaling ~ X in ractional ste s

 Vertical u -scaling ~ X in ractional ste s

 Convert ull range YUV to CCIR6

 Windowing su ort or three OSD gra hic or text overlay

 Su ort CCIR-6 6 (with header), CCIR-6 (with hsync and vsync) / 6-bit YUV data

out ut ormat to connect with external TV encoder

 Su ort both sync-ty e and MPU-ty e LCM (with v-sync or not)

 Su ort the /9/ 6/ / -bit data out ut to connect with /6 series MPU ty e LCM

module

The LCD Controller includes the following main functions：

 Video ost- rocessing

 Dis lay & overlay control

 Video out ut control

 Hardware cursor control

Aug. 14, 2018 Page 182 of 312 Rev 1.02

NUC970/N9H30

17.3 Block Diagram

17.4 Register Map

Register Offset R/W Description Reset Value

LCM Base Address:

LCM_BA = 0xB000_8000

DCCS LCM_BA + 0x00 R/W Display Controller Control and Status Register 0x0000_0000

DEVICE_CTRL LCM_BA + 0x04 R/W Display Output Device Control Register 0x0000_00E0

MPULCD_CMD LCM_BA + 0x08 R/W MPU-Interface LCD Write Command Register 0x0000_0000

INT_CS LCM_BA + 0x0C R/W Interrupt Control/Status Register 0x0000_0000

CRTC_SIZE LCM_BA + 0x10 R/W CRTC Display Size Register 0x0000_0000

VPOST Block Diagram

AHB Interface

Bus Interface Unit

Display Interface

AHB

VA_DBE

OSD_DBE

AHB Slave

Video Up-
Scaling

VA_FIFO

Bus Master

AHB Master

Digital Display Output

CRTC

Window
Key

OSD_FIFO

OSD Up-
scaling

Overlay

Mux

Synthesis

Display Engine

YUV=>
RGB

TV
Encoder

LCM

IO

Aug. 14, 2018 Page 183 of 312 Rev 1.02

NUC970/N9H30

CRTC_DEND LCM_BA + 0x14 R/W CRTC Display Enable End Register 0x0000_0000

CRTC_HR LCM_BA + 0x18 R/W CRTC Internal Horizontal Retrace Timing Register 0x0000_0000

CRTC_HSYNC LCM_BA + 0x1C R/W CRTC Horizontal Sync Timing Register 0x0000_0000

CRTC_VR LCM_BA + 0x20 R/W CRTC Internal Vertical Retrace Timing Register 0x0000_0000

VA_BADDR0 LCM_BA + 0x24 R/W Video Stream Frame Buffer-0 Starting Address Register 0x0000_0000

VA_BADDR1 LCM_BA + 0x28 R/W Video Stream Frame Buffer-1 Starting Address Register 0x0000_0000

VA_FBCTRL LCM_BA + 0x2C R/W Video Stream Frame Buffer Control Register 0x0000_0000

VA_SCALE LCM_BA + 0x30 R/W Video Stream Scaling Control Register 0x0000_0000

VA_TEST LCM_BA + 0x34 R/W Test Mode Control Register 0x0000_0000

VA_WIN LCM_BA + 0x38 R/W Video Stream Active Window Coordinates Register 0x0001_07FF

VA_STUFF LCM_BA + 0x3C R/W Video Stream Stuff Register 0x0000_0000

OSD_WINS LCM_BA + 0x40 R/W OSD Window Starting Coordinates Register 0x0000_0000

OSD_WINE LCM_BA + 0x44 R/W OSD Window Ending Coordinates Register 0x0000_0000

OSD_BADDR LCM_BA + 0x48 R/W OSD Stream Frame Buffer Starting Address Register 0x0000_0000

OSD_FBCTRL LCM_BA + 0x4C R/W OSD Stream Frame Buffer Control Register 0x0000_0000

OSD_OVERLAY LCM_BA + 0x50 R/W OSD Overlay Control Register 0x0000_0000

OSD_CKEY LCM_BA + 0x54 R/W OSD Overlay Color-Key Pattern Register 0x0000_0000

OSD_CMASK LCM_BA + 0x58 R/W OSD Overlay Color-Key Mask Register 0x0000_0000

OSD_SKIP1 LCM_BA + 0x5C R/W OSD Window Skip1 Register 0x0000_0000

OSD_SKIP2 LCM_BA + 0x60 R/W OSD Window Skip2 Register 0x0000_0000

OSD_SCALE LCM_BA + 0x64 R/W OSD Scaling Control Register 0x0000_0000

MPU_VSYNC LCM_BA + 0x68 R/W MPU Vsync Control Register 0x0000_0000

HC_CTRL LCM_BA + 0x6C R/W Hardware Cursor Control Register 0x0000_0000

HC_POS LCM_BA + 0x70 R/W Hardware Cursor Position Register 0x0000_0000

HC_WBCTRL LCM_BA + 0x74 R/W Hardware Cursor Window Buffer Control Register 0x0000_0000

HC_BADDR LCM_BA + 0x78 R/W Hardware Cursor Memory Base Address Register 0x0000_0000

HC_COLOR0 LCM_BA + 0x7C R/W Hardware Cursor Color RAM 0 Register 0x0000_0000

HC_COLOR1 LCM_BA + 0x80 R/W Hardware Cursor Color RAM 1 Register 0x0000_0000

HC_COLOR2 LCM_BA + 0x84 R/W Hardware Cursor Color RAM 2 Register 0x0000_0000

HC_COLOR3 LCM_BA + 0x88 R/W Hardware Cursor Color RAM 3 Register 0x0000_0000

17.5 Functional Description

 LCD Configuration Flow 17.5.1

Software control flow will be introduced in this section. Please follow the steps descripted

Aug. 14, 2018 Page 184 of 312 Rev 1.02

NUC970/N9H30

below to avoid unpredicted situation.

Configure Video:

Initialization

(DCCS)

Start

Configure LCD Controller

(DEV_CTRL)

Configure Display Buffer

(BADDR0 , FBCTRL)

Configure LCD Controller Timing Generator

Configure Video Scale Factor

(VA_SCALE)

Start Trigger Video of LCD

(DCCS)

A

(CRTC_SIZE, CRTC_DEND, CRTC_HR, CRTC_HYNC, CRTC_VR)

Configure OSD:

Aug. 14, 2018 Page 185 of 312 Rev 1.02

NUC970/N9H30

Use OSD?

Yes

Configure OSD Source Buffer

(DCCS, OSD_BADDR)

A

Configure OSD Display Location

OSD_WINS,OSD_WINE)

Configure OSD Overlay

OSD_OVERLAY

Enable OSD

(DCCS)

No

NoConfigure OSD Scale

DCCS, OSD_SCALE

(

()

()

OSD Scale?

Configure hardware cursor:

Aug. 14, 2018 Page 186 of 312 Rev 1.02

NUC970/N9H30

Use

hardware

cursor ?

Yes

Configure hardware

cursor

A

Enable hardware cursor

(DCCS)

Configure hardware

cursor position

HC_POSITION

No

(HC_CTRL, HC_WBCTRL, HC_BADDR, HC_COLORX)

()

 LCD Controller Initialization and Configuration 17.5.2

Initialization and configuration flow:

1. Configure necessary global registers. (Ex. LCD clock register, multi-function pins and

global registers.)

2. Reset LCD controller.

3. Allocate frame buffer according to display resolution - VA_BADDR0，VA_FBCTRL.

4. Configure continuous display mode or single display mode according to application

SINGLE(DCCS[7].

5. Select input source format VA_SRC(DCCS[10:8]).

6. Configure LCD related register according to type of LCM module (DEVICE_CTRL).

7. Configure timing generator (CRTC_SIZE, CRTC_DEND, CRTC_HR, CRTC_HSYNC,

CRTC_VR). Vertical, horizontal timing maps to video display waveform illustrate as the

following figure:

Aug. 14, 2018 Page 187 of 312 Rev 1.02

NUC970/N9H30

HSYNC

BCLK

HRS(CRTC_HR[10:0])

HTT(CRTC_SIZE[10:0])

HRE(CRTC_HR[26:16])

Front Porch DATA Back Porch

HDEND(CRTC_DEND[10:0])

HSYNC_S(CRTC_HSYNC[10:0])

HSYNC_E(CRTC_HSYNC[26:16])

VSYNC

HSYNC

VRS(CRTC_VR[10:0])

VRE(CRTC_VR[26:16])

Front Porch DATA Back Porch

VDEND(CRTC_DEND[26:16])

VTT(CRTC_SIZE[26:16])

1. Configure video scale factor (VA_SCALE).

2. Enable LCD controller VA_EN(DCCS[1]) and DISP_OUT_EN(DCCS[3])。

The following is an example for 320*240 display resolution,

//Configure LCD source clock and clock speed

APLLCON = 0xc0004018;

CLKDIV1 = (CLKDIV1 & ~0x1f) | 0x12); //Use APLL and output 50MHz clock

//Switch LCD multi-function pins

MFP_GPG_L = (MFP_GPG_L & ~0xFF000000) | 0x22000000; //GPG6(CLK), GPG7(HSYNC)

Aug. 14, 2018 Page 188 of 312 Rev 1.02

NUC970/N9H30

MFP_GPG_H = (MFP_GPG_H & ~0xFF) | 0x22; //GPG8(VSYNC), GPG9(DEN)

//Configure LCD data pins – 16-bits

MFP_GPA_L = 0x22222222; //GPA0 ~ GPA7 (DATA0~7)

MFP_GPA_H = 0x22222222; //GPA8 ~ GPA15 (DATA8~15)

//Reset LCD

SYS_AHBIPRST |= (0x1 << 9);

SYS_AHBIPRST &= ~(0x1 << 9);

VA_BADDR0 = 0x80001000;

VA_FBCTRL = (VA_FBCTRL & ~(0x07FF07FF)) | (320/2 << 16) | (320/2);

DCCS = DCCS & ~(0x7 << 8) | 0x4; //Select RGB565 format

//Configure sync high color type and width of data bus is 16/18-bits

DEVICE_CTRL = 0;

DEVICE_CTRL |= (0x1 << 26) | (0x2 << 24) | (0x6 << 5) | (0x1 << 19);

//Configure timing registers

CRTC_SIZE = 0x00F40150; //CRTC_SIZE

CRTC_DEND = 0x00F00140; //CRTC_DEND

CRTC_HR = 0x01450141; //CRTC_HR

CRTC_HSYNC = 0x014F014D; //CRTC_HSYNC

CRTC_VR = 0x00F300F2; //CRTC_VR

DCCS |= 0xA; //Enable LCD

 Configure OSD Controller 17.5.3

Follow the below steps to enable OSD and overlay on the video layer, illustrate as the
following figure.

Aug. 14, 2018 Page 189 of 312 Rev 1.02

NUC970/N9H30

1. Configure OSD input source format OSD_SRC(DCCS[14:12]).

2. Configure OSD source buffer address and frame buffer operation (OSD_BADDR,

OSD_FBCTRL).

3. Configure OSD position.(OSD_WIN_S, OSD_WIN_E).

4. Enable color key (OSD_OVERLAY[8]), configure display effect of overlay area

(OSD_OVERLAY[3：0]). Overlay display condition is list as following table.

Color-Key Match OCR1 OCR0 Display

0 X X X Video

1 0 X 0 Video

1 0 X 1 OSD

1 0 X 2 Video+OSD

1 1 0 X Video

1 1 1 X OSD

1 1 2 X Video+OSD

Note: ”Match” means OSD data matches with the value of color key.

5. Enable blinking function by setting BLI_ON(OSD_OVERLAY[9]) bit and

BLINK_VCNT(OSD_OVERLAY[23:16]) bit.

 Hardware Cursor 17.5.4

The following steps can enable hardware cursor function.

1. Configure cursor mode (1 - 4 color) and X/Y position. (HC_CTRL)

2. Configure cursor buffer related registers. (HC_WBCTRL，HC_BADDR)

3. Modify hardware cursor position. (HC_POS)

The following figure shows relationship between cursor position and display buffer.

OSD 2

OSD_skip1_sy

OSD_skip1_ey

OSD_skip2_sy

OSD_skip2_ey

(OSD_win_sx,OSD_win_sy)

(OSD_win_ex,OSD_win_ey)

VA

OSD1

OSD 3

OSD 2

OSD_skip1_sy

OSD_skip1_ey

OSD_skip2_sy

OSD_skip2_ey

(OSD_win_sx,OSD_win_sy)

(OSD_win_ex,OSD_win_ey)

VA

OSD1

OSD 3

Aug. 14, 2018 Page 190 of 312 Rev 1.02

NUC970/N9H30

HC_Y

HC_TIP_Y

HC_TIP_XHC_Y

(0,0)

Display
Buffer

Hardware Cursor
Buffer

(x,y)

Aug. 14, 2018 Page 191 of 312 Rev 1.02

NUC970/N9H30

18 MTP Controller (NUC970 only)

18.1 Overview

The MTP (Multi-Time Programmable) controller performs an easy way to use and program
the 256-bit Key for IP Security Engine. There is a MTP EPROM in this chip, and it can be
programmed 15 times. User can program 256-bit key and 8-bit user defined fields each time.
The 256-bit key is program-only, and only can be used by IP Security Engine. User can use
the 8-bit user defined field for special purpose. The MTP also supports a LOCK function to
protect the content of programmed key and user defined field.

18.2 Features

 Support MTP EPROM programming

 256-bit Key and 8-bit user defined data field.

 Up to 15 times programming.

 Support LOCK function.

 Support MTP key for AES encryption and decryption.

 Support MTP key for SHA comparison.

18.3 Block Diagram

Aug. 14, 2018 Page 192 of 312 Rev 1.02

NUC970/N9H30

MTP Control Logics

APB_BIU_REGS

APB BUS

MTP Macro
Cryptographic

Accelerator

 MTP Controller Block Diagram

18.4 Register Map
R: read only, W: write only, R/W: both read and write

Register Offset R/W Description Reset Value

MTP_BA = 0xB800C000

MTP_KEYEN MTP_BA+0x00 R/W Key Enable Register 0x0000_0000

MTP_USERDATA MTP_BA+0x0c R/W MTP User Defined Data Register 0x0000_0000

MTP_KEY0 MTP_BA+0x10 W MTP KEY 0 Register 0x0000_0000

MTP_KEY1 MTP_BA+0x14 W MTP KEY 1 Register 0x0000_0000

MTP_KEY2 MTP_BA+0x18 W MTP KEY 2 Register 0x0000_0000

MTP_KEY3 MTP_BA+0x1c W MTP KEY 3 Register 0x0000_0000

Aug. 14, 2018 Page 193 of 312 Rev 1.02

NUC970/N9H30

MTP_KEY4 MTP_BA+0x20 W MTP KEY 4 Register 0x0000_0000

MTP_KEY5 MTP_BA+0x24 W MTP KEY 5 Register 0x0000_0000

MTP_KEY6 MTP_BA+0x28 W MTP KEY 6 Register 0x0000_0000

MTP_KEY7 MTP_BA+0x2c W MTP KEY 7 Register 0x0000_0000

MTP_PCYCLE MTP_BA+0x30 R/W MTP Program Cycle Program Count Register 0x0000_60AE

MTP_CTL MTP_BA+0x34 R/W MTP Control Register 0x0000_0000

MTP_PSTART MTP_BA+0x38 R/W MTP Program Start Register 0x0000_0000

MTP_STATUS MTP_BA+0x40 R MTP Status Register 0x0000_0000

MTP_REGLCTL MTP_BA+0x50 R/W MTP Register Write-Protection Control Register 0x0000_0000

18.5 Functional Description

 Use MTP Controller 18.5.1

MTP controller interface is connected to APB bus. User must enable
MTPC(CLK_PCLKEN1[26]) bit to operate MTP controller.

MTP registers are write-protected. Before starting operate MTP controller, user must unlock it
first. By programming three continuous words 0x59, 0x16, and 0x88 to MTP_REGLCTL
register can unlock MTP registers. At any time, program 0x1 to
REGLCTL[0](MTP_REGLCTL[0]) can re-enable the write-protection of MTP registers.

 MTP Key 18.5.2

NUC970 provides a 256 bits width MTP key function. Following the MTP programming flow,
user can program a MTP key into the MTP controller internal EPROM. This EPROM supports
up-to 15 times programming opportunities.

Each time to program a new MTP key will also invalidate the existing MTP key. Only the last
programmed MTP key is effective. That is, the new MTP key always overwrites the old MTP
key. At any time, NUC970 system can have only one MTP key or no MTP. After executing the
MTP key enable flow, user can learn the remaining times of program opportunity by reading
PRGCNT(MTP_STATUS[19:16]). The available time is (15 – PRGCNT). If PRGCNT is 15, it
means this NUC9 chi ’s MTP has been rogrammed u to times and cannot be
programmed any more.

After executing the MTP enable flow, user can learn MTP key status via reading MTP control
registers. If the NUC970 chip has never been programmed with any MTP key, user can
observe both MTPEN(MTP_STATUS[0]) bit and NONPRG(MTP_STATUS[2]) are 1. At this
time, user can execute MTP key program flow to program a new MTP key.

Aug. 14, 2018 Page 194 of 312 Rev 1.02

NUC970/N9H30

After executing the MTP enable flow, if both MTPEN(MTP_STATUS[0]) bit and
KEYVALID(MTP_STATUS[]) bit are , there’s exist a valid MTP key. At this time, user can
employ the MTP key for AES encrypt/decrypt key or SHA comparison. If
LOCKED(MTP_STATUS[3]) bit is 0 and PRGCNT(MTP_STATUS[19:16]) is smaller than 15,
user is allowed to program a new MTP key.

 User Defined Data 18.5.3

In addition to the 256 bits size MTP key itself, MTP controller also provides User Defined Data
size which size is 8 bits. User Defined Data is used to identify the purpose of MTP key. When
programming MTP key, User Defined Data will be programmed at the same time. On
executing MTP key program flow, in addition to program a 256 bits key to MTP_KEY0 ~
MTP_KEY7 registers, user must also program an 8 bits User Defined Data to
MTP_USERDATA register.

Users can determine the significance of this User Defined Data represented themselves. By
interpreting User Defined Data, MTP key user can learn the purpose of MTP key and
determine it can use the MTP key or not.

However, NUC970 IBR(Internal Boot ROM) program reads User Defined Data to determine
whether to execute AES decrypt or SHA comparison on loading the program code in
NAND/SPI/eMMC. To prevent from IBR mislead by User Defined Data, user must not to use
those bits meaningful to IBR.

IBR interprets only bit[2:0] of User Defined Data. IBR defines User Defined Data as the
following table:

MTP_USERDATA Description

Bit
7

Bit
6

Bit
5

Bit
4

Bit
3

Bit
2

Bit
1

Bit
0

x x x x x 1 0 1 IBR uses MTP key as AES decrypt key. IBR will execute AES decrypt operation on program code in boot
flash and load the decrypted code to system memory for running.

x x x x x 1 1 0 IBR will execute SHA calculation on program code in boot flash. Then, IBR compares the SHA calculation
result with MTP key. If key matched, IBR will load the program code to system memory for running. If not
matched, IBR will halt there.

x x x x x 0 x x IBR ignores the MTP key.

X：don’t care

Supposed user set the bit 2 of User Defined Data as 1, IBR will think of the MTP key is used
for boot code AES decryption or boot code SHA validation. This will result in IBR false decrypt
boot code or halt on boot code validation error. So, if user wants to define his own User
Defined Data, always set bit 2 as 0 can safely passed IBR.

Aug. 14, 2018 Page 195 of 312 Rev 1.02

NUC970/N9H30

 MTP Enable 18.5.4

To perform any operations on MTP key, MTP key must be enabled first. To employ MTP key
for AES encrypt/decrypt or SHA comparison, MTP key must also be enabled first. The MTP
enable flow is listed in the flowing steps:

1. Set MTPC(CLK_PCLKEN1[26]) bit as 1 to enable MTP controller clock.

2. Program three contiguous words 0x59, 0x16, and 0x88 to MTP_REGLCTL. Confirm

REGLCTL (MTP_REGLCTL [0]) to 1, it indicates that you can write MTP register.

3. Writing 1 to KEYEN(MTP_KEYEN[0]) bit.

4. Check MTPEN(MTP_STATUS [0]) bit until it is set to 1.

5. If NONPRG (MTP_STATUS [2]) is 1, indicating that this chi ’s MTP has not yet been

 rogrammed. MTP has been enabled success ully now. It’s allowed to rogram a MTP

key. Please note that due to MTP has never been programmed yet, if use MTP key to

perform AES decryption or SHA comparison at this time, there will be unexpected errors.

6. If KEYVALID (MTP_STATUS [2]) is 1, indicating that MTP is enabled. You can use MTP

key to perform AES decryption or SHA comparison. If LOCKED (MTP_STATUS [3]) is 0,

then the user can also program a new MTP key or lock MTP key at this time. If LOCKED

(MTP_STATUS [3]) is 1, it means the chip MTP key is locked, no longer allowed to

perform MTP key programming or locked procedure.

 Program MTP Key 18.5.5

Before programming a MTP key, the MTP key must have been enabled. The MTP enable
procedure is described in section 18.5.4. Once MTP enable procedure success, check
MTP_STATUS register. You cannot program a MTP Key in the following conditions:

 LOCKED(MTP_STATUS[3]) bit is 1: Indicates chip MTP key is locked, no longer allowed

to perform MTP key programming.

 PRGCNT(MTP_STATUS[19:16]) is equal to 15: Indicated the MTP programming times

has reach up-limit. No longer allowed to perform MTP key programming.

In addition to above two cases, once MTP is enabled, the user can perform key programming
procedure for MT. The programming procedure is as follows:

1. Write 0x2 to MODE(MTP_CTL[1:0]).

2. Based on the current frequency of PCLK, write a PCLK clock count to MTP_PCYCLE

register. The corresponding time of this PCLK clock count must be longer than 330us.

Aug. 14, 2018 Page 196 of 312 Rev 1.02

NUC970/N9H30

For example, if PCLK frequency is 75 MHz, the time per clock will be 13.333 ns. We can

come out the clock count o us is by “ us / . ns = ns / . ns

= ”. In this case, the user must write a clock count larger than to

MTP_PCYCLE register to meet the MTP key programming time requirement.

3. Program the 256 bits MTP key to MTP_KEY0 ~ MTP_KEY7. If this MTP key is used for

AES key, there’s a key rotation rule must be noted. The rotation rule o AES ur ose

MTP key is determined by the current boot mode (boot from NAND, SPI, or eMMC).

Refer to section 18.5.7 for detailed descriptions.

4. Write the User Defined Data to MTP_USERDAT. (refer to section 19.5.3)

5. Write 0x1 to PSTART(MTP_PSTART[0]) and then check PSTART(MTP_PSTART[0])

until it was cleared as 0 by MTP controller.

6. Check PRGFAIL(MTP_STATUS[4]) bit. This bit 0 represents MTP key be successfully

programmed. A none-zero bit indicates MTP key programming failed.

 Lock MTP Key 18.5.6

After rogrammed the MTP key, i it’s con irmed this key will never be changed, the user can
consider of locking this MTP key. Locking MTP key is for security purposes. Once the MTP
key is locked, MTP controller will not allow future MTP key programming operations on this
chip. This mechanism is to prevent MTP key be overwritten occasionally or be hacked.

Consider about MTP can be programmed 15 times, if MTP key is not locked, then the
attacker will likely overwrite this MTP key by programming a new MTP key. Therefore, for
sa ety sake, it’s best to lock MTP key.

Im ort attention should be noted. Once the MTP key is success ully rogrammed, there’s no
way to unlock the MTP key. Even the chip producer cannot unlock it.

Before perform MTP key lock procedure, MTP key must be enabled first. Refer to section
19.5.3 for MTP key enable procedure. MTP locked operating procedures are as follows:

1. Write 0x3 to MODE(MTP_CTL[1:0]).

2. Based on the current frequency of PCLK, write a PCLK clock count to MTP_PCYCLE

register. The corresponding time of this PCLK clock count must be longer than 330us.

For example, if PCLK frequency is 75 MHz, the time per clock will be 13.333 ns. We can

come out the clock count o us is by “ us / . ns = 30000ns / 13.333ns

= ”. In this case, the user must write a clock count larger than to

MTP_PCYCLE register to meet the MTP key programming time requirement.

3. Write 0x1 to PSTART(MTP_PSTART[0]) and then check PSTART(MTP_PSTART[0])

until it was cleared as 0 by MTP controller.

Aug. 14, 2018 Page 197 of 312 Rev 1.02

NUC970/N9H30

4. Check if LOCKED(MTP_STATUS[3]), KEYVALID(MTP_STATUS[1]), and

MTPEN(MTP_STATUS[0]) are all set as 1, which means MTP key is locked successfully.

 MTP Key for AES Encrypt/Decrypt 18.5.7

MTP key can be read by Cryptographic Accelerator hardware, and can be used as AES
encrypt/decrypt keys. Before using MTP key for AES encrypt/decrypt, the user must enable
MTP key first. Cryptographic Accelerator hardware will not get correct MTP key if MTP key is
not enabled.

If user wants to use MTP key for AES encrypt/decrypt, just set EXTKEY(CRPT_AES_CTL[4])
as 1 on performing AES encrypt/decrypt operation. If EXTKEY (CRPT_AES_CTL [4]) is 1, the
AES accelerator will retrieve AES encrypt/decrypt keys from MTP key, instead of from
CRPT_AESn_KEYx registers.

Only AES or SHA / HMAC hardware accelerator is allowed to retrieve MTP key. There’s no
any other ways to retrieve MTP key. This is for MTP key security purpose.

Special attention is must, AES accelerator does not retrieve MTP key in sequential. When
retrieving MTP key, AES accelerator rotates the MTP key depending on the current boot
mode. The key retrieving rule is listed in the following table:

AES Key Boot from NAND Boot from SPI Boot from eMMC Boot from USB

KEY 0 MTP_KEY 4 MTP_KEY 6 MTP_KEY 2 MTP_KEY 0

KEY 1 MTP_KEY 5 MTP_KEY 7 MTP_KEY 3 MTP_KEY 1

KEY 2 MTP_KEY 6 MTP_KEY 0 MTP_KEY 4 MTP_KEY 2

KEY 3 MTP_KEY 7 MTP_KEY 1 MTP_KEY 5 MTP_KEY 3

KEY 4 MTP_KEY 0 MTP_KEY 2 MTP_KEY 6 MTP_KEY 4

KEY 5 MTP_KEY 1 MTP_KEY 3 MTP_KEY 7 MTP_KEY 5

KEY 6 MTP_KEY 2 MTP_KEY 4 MTP_KEY 0 MTP_KEY 6

KEY 7 MTP_KEY 3 MTP_KEY 5 MTP_KEY 1 MTP_KEY 7

This key rotation rule is for security purpose. Suppose the user wants to publish a firmware
and makes it be booted from NAND flash with AES encrypted. The user must first encrypt this
firmware with AES and program the encrypted firmware to NAND flash. The user then
program the AES key to MTP key in order KEY4, KEY5, KEY6, KEY7, KEY0, KEY1, KEY2,
KEY3. Thus, when booting from NAND flash, NUC970 IBR(Internal Boot ROM) can
successfully decrypt the firmware image and load to system memory. Should the encrypted
firmware be programmed to NOR flash and booting from it, IBR will decrypt out a wrong
image due to incorrect AES key.

Aug. 14, 2018 Page 198 of 312 Rev 1.02

NUC970/N9H30

 MTP Key for SHA/HMAC Comparison 18.5.8

MTP key can be read by SHA/HMAC accelerator hardware for SHA/HMAC calculation output
comparison. Using MTP key for SHA/HMAC comparison, the user must first enable MTP key.
If MTP key is not enabled, SHA/HMAC accelerator will get wrong MTP key and will get
comparison failed.

To use MTP key SHA/HMAC comparison, the user just set CMPEN(CRPT_HMAC_CTL[15])
as 1 on performing SHA/HMAC calculation. If CMPEN(CRPT_HMAC_CTL[15]) is 1, after
SHA/HMAC calculation done, SHA/HMAC accelerator will automatically retrieve MTP key
and compare it with SHA/HMAC output digest. If MTP key is matched with SHA/HMAC output
digest, SHA/HMAC accelerator sets CMPSTS(CRTP_HMAC_STS[15]) as 1. Otherwise, it
clears CMPSTS(CRTP_HMAC_STS[15]) as 0.

Di erent rom “MTP key or AES decry t”, in case o “MTP key or AES com arison”,
SHA/HMAC accelerator does not rotate MTP key by different boot mode. It always compares
MTP key with SHA/HMAC output digest in sequential.

Aug. 14, 2018 Page 199 of 312 Rev 1.02

NUC970/N9H30

19 Pulse Width Modulation (PWM)

19.1 Overview

This chip has one PWM controller, and it has 4 independent PWM outputs, CH0~CH3, or as 2
complementary PWM pairs, (CH0, CH1), (CH2, CH3) with 2 programmable dead-zone
generators. Each PWM pair has one Prescaler, one clock divider, two clock selectors, two 16-
bit PWM counters, two 16-bit comparators, and one Dead-Zone generator. They are all driven
by APB system clock (PCLK) in chip. Each PWM channel can be used as a timer and issue
interrupt independently.

Two channels PWM Timers in one pair share the same prescaler. The Clock divider provides
each PWM channel with 5 divided clock sources (1, 1/2, 1/4, 1/8, 1/16). Each channel
receives its own clock signal from clock divider which receives clock from 8-bit prescaler. The
16-bit down-counter in each channel receive clock signal from clock selector and can be used
to handle one PWM period. The 16-bit comparator compares PWM counter value with
threshold value in register CMR (PWM_CMR[15:0]) loaded previously to generate PWM duty
cycle. The clock signal from clock divider is called PWM clock. Dead-Zone generator utilize
PWM clock as clock source. Once Dead-Zone generator is enabled, two outputs of the
corresponding PWM channel pair will be replaced by the output of Dead Zone generator. The
Dead-Zone generator is used to control off-chip power device.

To prevent PWM driving output pin with unsteady waveform, 16-bit down-counter and 16-bit
comparator are implemented with double buffering feature. User can feel free to write data to
counter buffer register and comparator buffer register without generating glitch. When 16-bit
down-counter reaches zero, the interrupt request is generated to inform CPU that time is up.
When counter reaches zero, if counter is set as periodic mode, it is reloaded automatically
and start to generate next cycle. User can set PWM counter as one-shot mode instead of
periodic mode. If counter is set as one-shot mode, counter will stop and generate one
interrupt request when it reaches zero. The value of comparator is used for pulse width
modulation. The counter control logic changes the output level when down-counter value
matches the value of compare register.

19.2 Features

 4 PWM channels with a 16-bit down counter and an interrupt each.

 2 complementary PWM pairs, (CH0, CH1), (CH2, CH3), with a programmable dead-zone
generator each.

 Internal 8-bit prescaler and a clock divider for each PWM paired channel.

 Independent clock source selection for each PWM channel.

 Internal 16-bit down counter and 16-bit comparator for each independent PWM channel.

 PWM down-counter supports One-shot or Periodic mode.

19.3 Block Diagram

Aug. 14, 2018 Page 200 of 312 Rev 1.02

NUC970/N9H30

1

1/2

1/4

1/8

1/16

PCLK
8-bit

Prescaler

Control

logic

5
-1

 M
u

x
5

-1
 M

u
x

PWM1_CNR

Control

logic

PWM0_CLK

PWM1_CMR

PWM0_CNR PWM0_CMR

Dead-Zone

Generator 0 DZEN01

(PWM_PCR[4])

DZEN01

(PWM_PCR[4])

CH0_INV
(PWM_PCR[2])

CH1_INV
(PWM_PCR[10])

1

1

0

0

1

0

1

0

CLKSEL1
(PWM_CSR[6:4])

CLKSEL0
(PWM_CSR[2:0])

19.4 Register Map

Register Offset R/W Description Reset Value

PWM Base Address:

PWM_BA = 0xB800_7000

PWM_PPR PWM_BA+0x000 R/W PWM Pre-scale Register 0000_0000

PWM_CSR PWM_BA+0x004 R/W PWM Clock Select Register 0000_0000

PWM_PCR PWM_BA+0x008 R/W PWM Control Register 0000_0000

PWM0_CNR PWM_BA+0x00C R/W PWM Counter Register 0 0000_0000

PWM0_CMR PWM_BA+0x010 R/W PWM Comparator Register 0 0000_0000

PWM0_PDR PWM_BA+0x014 R PWM Data Register 0 0000_0000

PWM1_CNR PWM_BA+0x018 R/W PWM Counter Register 1 0000_0000

PWM1_CMR PWM_BA+0x01C R/W PWM Comparator Register 1 0000_0000

PWM1_PDR PWM_BA+0x020 R PWM Data Register 1 0000_0000

PWM2_CNR PWM_BA+0x024 R/W PWM Counter Register 2 0000_0000

PWM2_CMR PWM_BA+0x028 R/W PWM Comparator Register 2 0000_0000

PWM2_PDR PWM_BA+0x02C R PWM Data Register 2 0000_0000

PWM3_CNR PWM_BA+0x030 R/W PWM Counter Register 3 0000_0000

Aug. 14, 2018 Page 201 of 312 Rev 1.02

NUC970/N9H30

PWM3_CMR PWM_BA+0x034 R/W PWM Comparator Register 3 0000_0000

PWM3_PDR PWM_BA+0x038 R PWM Data Register 3 0000_0000

PWM_PIER PWM_BA+0x03C R/W PWM Timer Interrupt Enable Register 0000_0000

PWM_PIIR PWM_BA+0x040 R/W PWM Timer Interrupt Indication Register 0000_0000

19.5 Functional Description

 PWM Timer Operation 19.5.1

The PWM period and duty control are decided by register PWMx_CNR and PWMx_CMR
registers.. The PWM-timer timing operation is shown in following figure. The pulse width

modulation follows the formula below:

PWM frequency = PWM_CLK / ((prescale + 1) * (clock divider)) / (CNR + 1)

PWM duty ratio = (CMR + 1) / (CNR + 1)

When CMR >= CNR: PWM output is always high. When CMR < CNR: PWM outputs low for
(CNR - CMR) PWM clocks, and PWM outputs high for (CMR + 1) PWM clocks. If CMR = 0,
then PWM output low for CNR PWM clocks and output high for 1 PWM clock..

+

-

CMR+1

CNR

PWM Timer

Comparator

Output CNR

CMR

Update

new CMR

Start

Initialize

PWM

PWM

Ouput

CMR+1CNR+1

Following waveform illustrate the operation of PWM. Whenever the current counter equals to
compare register or reaches 0, output level toggles.

Aug. 14, 2018 Page 202 of 312 Rev 1.02

NUC970/N9H30

Comparator

(CMR) 1 0

PWM

down- counter 3 3 2 1 0 4 3 2 1 0 4

PWM- Timer

output

1

CMR = 1

CNR = 3

Auto reload = 1

(CH0MOD=1)

Set CH0EN = 1

(PWM-Timer starts running)

CMR= 0

CNR= 4

Auto- load

(S/W write new value)

Auto- load

(Write initial setting)

(H/W update value) (PIIR0 is set by H/W)
(PIIR0 is set by H/W)

 PWM double buffer 19.5.2

The PWM timers have double buffering function; the reload value is updated at the start of
next period without affecting current timer operation. The PWM counter value can be written
into CNR (PWM_CNR[15:0]).

PWM

Waveform

write a nonzero number to

prescaler & setup clock

dividor

Start

Write

CN= 150

CM=50

151

51

200

50

Write

CN= 199

CM=49

Write

CN= 99

CM=0

100

1

Write

CN= 0

CM=XX

Stop

Following figure is an example of using double buffer feature.

Aug. 14, 2018 Page 203 of 312 Rev 1.02

NUC970/N9H30

Modulate PWM controller ouput duty ratio (CN = 150)

Write

CM=100

Write

CM=50

Write

CM=0

1 PWM cycle = 151 1 PWM cycle = 151 1 PWM cycle = 151

101 51 1

 Periodic and One-Shot Operation 19.5.3

The CHxMOD bits defines PWM operation in Periodic or One-shot mode If CHxMOD is set to
one (periodic mode), the controller loads CNR (PWM_CNR[15:0]) to PWM counter when
PWM counter reaches zero. If CNR is set to zero, PWM counter will be halt when PWM
counter counts to zero.

In one-shot mode (CHxMOD=0), the corresponding channel will output only one cycle of duty
waveform and then PWM counter will be stopped if no further corresponding duty register
updated. When PWM counter is running, updating corresponding duty register will engage the
next

 Dead-Zone Generator 19.5.4

PWM implements Dead Zone generator. They are built for power device protection. This
 unction generates a rogrammable time ga called “Dead-Zone” to delay PWM rising out ut,
and it is in order to prevent damage for the power switch devices that connected to the PWM
output pins. User can program Dead-Zone counter to determine the Dead Zone interval.
Following figure shows Dead-Zone operation.

Aug. 14, 2018 Page 204 of 312 Rev 1.02

NUC970/N9H30

PWM- Timer

Output 0/2

PWM- Timer

Inversed output

1/3

Dead- Zone

Generator

output 0/2

Dead- Zone

Generator

output 1/3

Dead zone interval

 PWM Timer Start Procedure 19.5.5

Take PWM channel 0 for example, and the following procedure is for starting a PWM.

1. Setup clock selector CLKSEL0 (PWM_CSR[2:0]).

2. Setup prescaler PRESCALE (PWM_PPR[7:0]).

3. Setup inverter on/off CH0INV (PWM_PCR[2]).

4. Setup dead zone generator on/off DZEN01 (PWM_PCR[4]), also set dead-zone interval
in DZL01 (PWM_PPR[23:16]) if dead-zone enabled.

5. Setup CH0MOD (PWM_PCR[3]) to select operation mode.

6. Setup interrupt enable register PIER0 (PWM_PIER[0])

7. Setup the corresponding GPI/O pins to PWM function

8. Enable PWM down-counter by set CH0EN((PWM_PCR[0])) to 1.

9. Setup PWM comparator register CMR (PWM_CMR[15:0]) and PWM counter register
CNR

(PWM_CNR[15:0]) for setting PWM period and duty length

Step1~8 may be execute in other order without affect the behavior of PWM timer. Below is a
sample setting PWM0 frequency to 1000Hz and 40% duty ratio.

// Assume PWM clock source, PCLK, is 75 MHz.

PWM->PPR = 74; // so now PWM clock is 75MHz / (74 + 1) = 1MHz

PWM->CSR = 4; // Prescale output divide by 1

PWM->PCR = 9; // Enable PWM0 in periodic mode

// 1M / 1000 = 1000

// 1000 * 40% = 400

PWM->CMR = (400 - 1);

Aug. 14, 2018 Page 205 of 312 Rev 1.02

NUC970/N9H30

PWM->CNR = (1000 - 1);

 PWM Timer Stop Procedure 19.5.6

There are two methods to stop PWM timer, here using channel 0 as example.

Method 1:

Set 16-bit down counter CNR (PWM_CNR[15:0]) as 0. When interrupt request happen or
polling interrupt bit PIIR0(PWM_PIIR[0]) until set 1, disable PWM Timer by setting CH0EN = 0
(PWM_PCR[0] = 0). (Recommended).

Method 2:

Disable PWM Timer by setting CH0EN = 0 (Not recommended)

Method 2 is not recommended because clear CH0EN will stop PWM output immediately and
cause a abruptly change in PWM duty ration. This may damage the motor connected with
PWM.

Aug. 14, 2018 Page 206 of 312 Rev 1.02

NUC970/N9H30

20 Real Time Clock (RTC)

20.1 Overview

Real Time Clock (RTC) block can operate with independent power supply (RTC_VDD) while

the system power is off. The clock source of RTC controller is from an external 32.768 kHz

low-speed crystal. The RTC controller provides the real time clock and calendar information.

The data format of RTC time and calendar message are all expressed in BCD (Binary Coded

Decimal) format. The RTC also provide frequency compensation mechanism for 32.768 kHz

clock source

20.2 Features

 Supports real time counter and calendar counter for RTC time and calendar check.

 Supports time (hour, minute, second) and calendar (year, month, day) alarm and alarm

mask settings

 Selectable 12-hour or 24-hour time scale

 Supports Leap Year indication

 Supports Day of the Week counter

 Supports frequency compensation mechanism for 32.768 kHz clock source

 All time and calendar message expressed in BCD format

 Supports periodic RTC Time Tick interrupt with 8 period interval options 1/128, 1/64, 1/32,

1/16, 1/8, 1/4, 1/2 and 1 second

 Supports RTC Time Tick and Alarm match interrupt

 Supports chip wake-up from Idle or Power-down mode while alarm or relative alarm

interrupt is generated

 Su orts 6 bytes s are registers to store user‟s im ortant information

 Supports power on/off control mechanism to control system core power

20.3 Block Diagram

The block diagram of Real Time Clock depicted is as following:

Aug. 14, 2018 Page 207 of 312 Rev 1.02

NUC970/N9H30

2^15 clock divider

1 Hz

Alarm interrupt generator

Time counter Calendar counter

Time alarm

counter

Calendar alarm

counter

Day of the week

counter

1 Day

FCR

Compensate frequency

by software

Tick interrupt

generator

XTALIN

XTALOUT

Alarm

interrupt

Tick

interrupt

APB

interface

psel

penable

pwrite

pwdata

paddr

pclk

prdata

Select one Tick

period

20.4 Register Map
R : Read only, W : Write only, R/W : Both read and write, C : Only value 0 can be written

Register Address R/W Description Reset Value

RTC_BA = 0xB800_4000

RTC_INIT RTC_BA+0x000 R/W RTC Initiation Register Undefined

RTC_RWEN RTC_BA+0x004 R/W RTC Access Enable Register 0x0000_0000

RTC_FREQADJ RTC_BA+0x008 R/W RTC Frequency Compensation Register 0x0000_0700

RTC_TIME RTC_BA+0x00C R/W RTC Time Counter Register 0x0000_0000

RTC_CAL RTC_BA+0x010 R/W RTC Calendar Counter Register 0x0005_0101

RTC_TIMEFMT RTC_BA+0x014 R/W RTC Time Format Selection Register 0x0000_0001

RTC_WEEKDAY RTC_BA+0x018 R/W RTC Day of the Week Register 0x0000_0006

RTC_TALM RTC_BA+0x01C R/W RTC Time Alarm Register 0x0000_0000

RTC_CALM RTC_BA+0x020 R/W RTC Calendar Alarm Register 0x0000_0000

RTC_LEAPYEAR RTC_BA+0x024 R RTC Leap year Indicator Register 0x0000_0000

RTC_INTEN RTC_BA+0x028 R/W RTC Interrupt Enable Register 0x0000_0000

RTC_INTSTS RTC_BA+0x02C R/C RTC Interrupt Status Register 0x0000_0000

Aug. 14, 2018 Page 208 of 312 Rev 1.02

NUC970/N9H30

RTC_TICK RTC_BA+0x030 R/W RTC Time Tick Register 0x0000_0000

RTC_PWRCTL RTC_BA+0x034 R/W RTC Power Control Register 0x0000_7000

RTC_PWRCNT RTC_BA+0x038 R RTC Power Control Counter Register 0x0000_0000

RTC_SPR0 ~

RTC_SPR15

RTC_BA+0x040 ~

RTC_BA+0x07C

R/W RTC Spare Register 0 ~ 15 0x0000_0000

20.5 Functional Description

 RTC Initiation 20.5.1

When RTC block is power on, programmer has to write a number (0xa5eb1357) to RTC_INIT
to reset all logic. RTC_INIT act as hardware reset circuit. Once RTC_INIT has been set as
0xa5eb1357, user cannot reload any other value.

 RTC write enable 20.5.2

Register RTC_RWEN bit 15~0 is RTC read /write password. It is used to avoid signal
interference from system during system power off. RTC_RWEN bit 15~0 has to be set as
0xa965 before user want to write new data into all registers besides RTC_INIT. If user set
RTC_RWEN as 0xa965, RWENF will be raised high. Then user can feel free to write data into
register. RWENF will keep high for a short period (about 24ms) and it will be pull low by
internal state machine automatically. User can disable RTC clock (CLK_PCLKEN0[2]) to
reduce the Power Consumption.

RTC_TALM, RTC_CALM, RTC_TIME and RTC_CAL are all BCD counter, but
RTC_FREQADJ is not a BCD counter.

Programmer must be aware that the RTC block does not check whether the loaded value is
reasonable. For example, Load RTC_CAL as 201a (year), 13 (month), 00 (day), or RTC_CAL
does not match with RTC_WEEKDAY, etc.

Reset Status:

Register Value Description

RTC_RWEN 0 RTC register read/write disable

RTC_CAL 05 , 1 ,1 2005-1-1

RTC_TIME 00 00 00 00 hour, 00 minute, 00 second

RTC_CALM 00,00,00 2000-0-0

RTC_TALM 00,00,00 00 hour, 00 minute, 00 second

RTC_TIMEFMT 1 24 hour time scale

RTC_WEEKDAY 6 Saturday

Aug. 14, 2018 Page 209 of 312 Rev 1.02

NUC970/N9H30

RTC_INTEN 0
Tick interrupt disable

Alarm interrupt disable

RTC_INTSTS 0
Tick interrupt not occur

Alarm interrupt not occur

RTC_LEAPYEAR 0 This year not leap year

RTC_TICK 0 Time tick enable

 12/24 hour Time scale selection 20.5.3

The 12/24 hour time scale selection decided by 24HEN (RTC_TIMEFMT[0]).

24-hour time scale 12-hour time scale 24-hour time scale 12-hour time scale

00 12(AM12) 12 32(PM12)

01 01(AM01) 13 21(PM01)

02 02(AM02) 14 22(PM02)

03 03(AM03) 15 23(PM03)

04 04(AM04) 16 24(PM04)

05 05(AM05) 17 25(PM05)

06 06(AM06) 18 26(PM06)

07 07(AM07) 19 27(PM07)

08 08(AM08) 20 28(PM08)

09 09(AM09) 21 29(PM09)

10 10(AM10) 22 30(PM10)

11 11(AM11) 23 31(PM11)

 Set Calendar and Time 20.5.4

1. Write 0xa965 to RTC_RWEN means enable RTC access enable/disable password

2. Read register RWENF(RTC_RWEN[16]), RTC is read/write enable i it’s equal to 1.

3. RWENF(RTC_RWEN[16]) will be cleared automatically after 1024 RTC clock

4. Set register 24HEN(RTC_TIMEFMT[0]) bit. (select to 24/12-hour time scale).

5. Set year, month and day to register RTC_CAL

6. Set day of week to register RTC_WEEKDAY

7. Set hour, minute and second to register RTC_TIME

Aug. 14, 2018 Page 210 of 312 Rev 1.02

NUC970/N9H30

RTC Start

Enable register R/W

(RTC_RWEN)

Enable register R/W

completeted

(RTC_RWEN[16] be high?)

No

Set time scale

(RTC_TIMEFMT[0])

Set time, day and calendar

(RTC_TIME,

RTC_WEEKDAY,

RTC_CAL)

End

Yes

 Set Calendar and Time Alarm (Absolute) 20.5.5

1. Set ALMINT(RTC_INTSTS[0]) = 1 to clear alarm interrupt.

2. Set time and calendar same as above step 1-7

3. Set alarm year, month and day to register RTC_CALM.

4. Set alarm hour, minute and second to register RTC_TALM

5. Set the bit ALMIEN(RTC_INTEN[0]) for alarm interrupt enable.

6. Set the bit ALARM_EN(RTC_PWRCTL[3]) for alarm function enable.

Note: Week of Day also the alarm condition

Aug. 14, 2018 Page 211 of 312 Rev 1.02

NUC970/N9H30

RTC Start

Enable register R/W

(RTC_RWEN)

Enable register R/W
completeted

(RTC_RWEN[16] be high?)

No

Set time scale

(RTC_TIMEFMT)

Set time, day and calendar

(RTC_TIME,

RTC_WEEKDAY,

RTC_CAL)

End

Yes

Set alarm interrupt enable

(ALMIEN of

RTC_INTEN[0])

Set alarm time and calendar

(RTC_TALM, RTC_CALM)

Set alarm interrupt enable

(ALARM_EN of

RTC_PWRCTL[3])

 Set Time Alarm (Relative) 20.5.6

1. Set and prepare the RTC_INTSTS of RTC alarm

2. Write 0xA965 to RTC_RWEN means enable RTC access enable password

3. Read register bit RWEN (RTC_RWEN[6]), RTC is read/write enable i it’s equal to .

4. Set the relative time to RELALM_TIME(RTC_PWRCTL[27:16])

5. Maximum relative time is 1800(about 30 minutes)

6. Set the bit RELALMIEN(RTC_INTEN[4]) for alarm interrupt enable.

7. Set the bit REL_ALARM_EN(RTC_PWRCTL[4]) for relative alarm interrupt enable

Note: Please disable relative alarm interrupt enable (RELALMIEN(RTC_INTEN[4])) after the

Aug. 14, 2018 Page 212 of 312 Rev 1.02

NUC970/N9H30

alarm occurs. Otherwise, it will issue interrupt again after 30 minutes

RTC Start

Enable register R/W

(AER)

Enable register R/W

completeted

(bit 16 of AER be high?)

No

Set relative time for alarm

(RELATIVE_TIME)

Disable register R/W

(AER)

End

Yes

Set relative alarm interrupt enable

(REL_ALARM_EN of PWRON)

Set relative alarm interrupt enable

(RAIER of RIER)

 Set wake-up function 20.5.7

The programming procedure listed is as follows:

1. Set and prepare the RTC_INTSTS of RTC wake-up interrupt

2. Set absolute or relative alarm

3. Enable RTC Wakeup enable (WAKEUPIEN(RTC_INTEN[2]))

4. Let system enter power down mode

5. When RTC reach alarm time, system will wake-up system

If user won’t enable wakeup function, please don’t enable the alarm enable bit
(WAKEUPIEN(RTC_INTEN[2])).

Please disable relative alarm interrupt enable (RELALMIEN(RTC_INTEN[4])) after the alarm
occurs. Otherwise, it will issue interrupt again after 30 minutes.

Aug. 14, 2018 Page 213 of 312 Rev 1.02

NUC970/N9H30

RTC Start

Enable register R/W

(RTC_RWEN)

Enable register R/W
completeted

(RTC_RWEN[16] be high?)

No

Set time scale

(RTC_TIMEFMT)

Set time, day and calendar

(RTC_TIME, RTC_WEEKDAY,

RTC_CAL)

Yes

End

Set alarm time and calendar

(RTC_TALM, RTC_CALM)

Enable RTC Wake-up

(WAKEUPIEN(RTC_INTEN[2]))

Set relative time for alarm

(RELALM_TIME)

Set relative alarm interrupt enable

(REL_ALARM_EN(RTC_PWRCTL[4]))

Set relative alarm interrupt enable

(RELALMIEN(RTC_INTEN[4]))

Set alarm interrupt enable

(ALMIEN(RTC_INTEN[0]))

Set alarm interrupt enable

(ALARM_EN(RTC_PWRCTL[3]))

Absolute or Relative Absolute Relative

Enter Power Down Mode

Aug. 14, 2018 Page 214 of 312 Rev 1.02

NUC970/N9H30

 Set tick interrupt 20.5.8

The periodic RTC Time Tick interrupt has 8 period interval options 1/128, 1/64, 1/32, 1/16,
1/8, 1/4, 1/2 and 1 second which are selected by RTC_TICK (RTC_TICK[2:0] Time Tick
Register.

The programming procedure listed is as follows:

1. Set and prepare the RTC_INTSTS of RTC tick interrupt

2. Write 0xA965 to AER means enable RTC access enable password.

3. Read register bit RWEN (RTC_RWEN[6]), RTC is read/write enable i it’s equal to .

4. Set the RTC_TICK[2:0] for tick interrupt happen time interval per second

5. Set the bit TICKIEN(RTC_INTEN[1]) for alarm interrupt enable

RTC Start

Initialize completed

(RTC_INIT[0] be high?)

No

Enable register R/W

(RTC_RWEN)

Yes

Enable register R/W
completeted

(RTC_RWEN[16] be high?)

No

Initialize RTC

(RTC_INIT)

Set tick interrupt

(TICKIEN)

End

Yes

Set tick number

(RTC_TICK[2:0])

Aug. 14, 2018 Page 215 of 312 Rev 1.02

NUC970/N9H30

 System Power Control Flow 20.5.9

20.5.9.1 Set System Power On

User presses the Power Key to make the Power Control Signal, PWCE to high. If
PWR_ON(PWRON[0]) set to 1, the PWCE will keep on when the Power Key is released. If
PWR_ON(PWRON[0]) doesn’t be set to 1, the PWCE will back to low when the Power Key is
released.

The power control flow listed is as follows:

1. Press PWR Key to force the System power on

2. When RTC block is power on, programmer has to write a number 0xA5EB1357 to INIR to

reset all logic RTC

3. Read register bit RTC_INIT[0] if this bit equals to 1 means RTC has been set.

4. Write 0xA965 to RTC_RWEN means enable RTC access enable password

5. Read register bit RWENF(RTC_RWEN[16]), RTC is read/write enable i it’s equal to .

6. RWENF(RTC_RWEN[16]) will be cleared automatically after 1024 RTC clock

7. Set bit PWR_ON(RTC_PWRCTL[0]) to 1 to make system kept power on.

There are two Power key trigger mode:

 1: EDGE TRIGE

 RTC is powered on while power key is pressed longer than programmed duration

and then released

 0: LEVEL TRIGGER

 RTC is powered on while power key is pressed longer programmed duration

Aug. 14, 2018 Page 216 of 312 Rev 1.02

NUC970/N9H30

RTC Start

Enable register R/W

(RTC_RWEN)

Enable register R/W

completeted

(RTC_RWEN[16] be high?)

No

Set Power ON bit to 1

(PWR_ON(RTC_PWRCTL[0]))

End

Yes

User presses the Power Key to make the Power Control Signal, PWCE to high. If PWR_ON
doesn’t be set to , the PWCE will back to low when the Power Key is released

PWRKey

PWCE

PWR_ON

20.5.9.2 Force Power off Flow

If there is another pulse on power key when the PWR_ON bit is set, the system will get an
interrupt signal (PWRSWINT). User can decide to clear the PWR_ON or not. If this bit is
clear, the PWCE will go to low to turn off the core power. If the PWR_ON bit is also kept high,
the PWCE pin will keep in high level. If there is not any pulse on the power key and the
PWR_ON bit is clear by user, the PWCE pin is also set to low at this time.

For hardware power off function, it can be enable and disable in HW_PCLR_EN bit and the
user presses the power button for a few seconds to power off system. The time to press
power the button to power off is configured in PWROFF_TIME(RTC_PWRCTL[23:16])

Aug. 14, 2018 Page 217 of 312 Rev 1.02

NUC970/N9H30

PWROFF_TIME

Setting
Pressed time to power off

PWROFF_TIME

Setting
Pressed time to power off

0 3~4 second 8 11~12 seconds

1 4~5 second 9 12~13 seconds

2 5~6 seconds 10 13~14 seconds

3 6~7 seconds 11 14~15 seconds

4 7~8 seconds 12 15~16 seconds

5 8~9 seconds 13 16~17 seconds

6 9~10 seconds 14 17~18 seconds

7 10~11 seconds 15 18~19 seconds

The RTC supports a hardware power off function to provide the power off flow like Notebook.
The user presses the power button for a few seconds to power off the system. The time to
press power key to power off is counted by hardware. After the time, hardware will set the
PWCE to low and clear the PWR_ON (But HW_PCLR_EN will not be clear). After power off,
user can decide to set the PWR_ON bit to power on system or not when the Power Key is
pressed.

The timing of the hardware power off function is following

Hardware power off system flow:

1. Write 0xA965 to RTC_RWEN means enable RTC access enable password

2. Read register bit RWEN (RTC_RWEN[6]), RTC is read/write enable i it’s equal to

3. RWENF(RTC_RWEN[16]) will be cleared after 1024 RTC clocks

4. Set Power Clear Period (WROFF_TIME(RTC_PWRCTL[15:12])) to set desired time to

pressing Power Key for power off

m seconds

Press Power Key

Power Off Enable Power Off Function

Time

Release Power Key

PWCE

Press Power Key

PWR_ON

HW_PCLR_EN

Aug. 14, 2018 Page 218 of 312 Rev 1.02

NUC970/N9H30

5. Enable Power Clear Period (HW_PCLR_EN(RTC_PWRCTL[2]))

RTC Start

Enable register R/W

(RTC_RWEN)

Enable register R/W
completeted

(RTC_RWEN[16] be high?)

No

Yes

Set Power Clear Period

(PWROFF_TIME)

Enable Power Clear Period

(HW_PCLR_EN)

End

20.5.9.3 Software Power off System

The RTC also supports a software power off function. The user presses the power button for
a few seconds to power off the system. The time to press power key to power off is counted
by user. When the PWR_ON bit is cleared by user, the PWCE outputs low after 116us and
the SW_PCLR bit is cleared when the power key is released. See the timing Figure as
following.

Aug. 14, 2018 Page 219 of 312 Rev 1.02

NUC970/N9H30

Software power off system flow:

1. Write 0xA965 to RTC_RWEN means enable RTC access enable password

2. Read register bit RWENF(RTC_RWEN[16]), RTC is read/write enable i it’s equal to .

3. This bit RWENF(RTC_RWEN[16]) will be cleared automatically after 1024 RTC clock.

4. Clear PWR_ON(RTC_PWRCTL[0]) bit to zero

RTC Start

Enable register R/W

(RTC_PWEN)

Enable register R/W
completeted

(RTC_PWEN[16] be high?)

No

Yes

Clear Power ON bit

(PWR_ON(RTC_PWRCTL[0]))

End

86.8 µs

116 µs

Enable SW Power Off Power Off

Press Power Key

Time

PWC
E

PWR_ON

Release Power Key

SW_PCLR

Aug. 14, 2018 Page 220 of 312 Rev 1.02

NUC970/N9H30

Following is the Power Control Flow:

Input Output Note

X1 X2 X3 Y

PWRKey PWR_ON _RST PWCE

1 0 0 0 RTC powered
only (Default
state)

0 0 X 1 Press key,
Power On

0 1 1 1 keep key & S/W
Set X2, Power
On

1 1 1 1 Left key, Power
keep On

0 1 1 1 Press key, get
INT, intend to
power Off

1 0 1 0 Left key & S/W
clean X2, power
Off or S/W clean
X , don’t need
press key,
power off

X 1 0 1 RST_ active, still
keep power
whenX2=1

PWCE is open drain output

X1, internal pull-up

X2, it is R/W able

There is Interrupt from key be pressed

 Frequency Compensation: 20.5.10

The RTC_FREQADJ allows software to make digital compensation to a clock input. The
frequency of clock input must be in the range from 32776Hz to 32761Hz. User can utilize a
frequency counter to measure RTC clock on one of PH.4 and PI.3 pin during manufacture,
and store the value in Flash memory for retrieval when the product is first power on. Following
are the compensation example:

Frequency counter measurement: 32773.65Hz

Integer part: 32773

Search Following Table:

Integer part of detected RTC_FREQADJ[11:8] Integer part of detected RTC_FREQADJ[11:8]

Aug. 14, 2018 Page 221 of 312 Rev 1.02

NUC970/N9H30

value value

32776 1111 32768 0111

32775 1110 32767 0110

32774 1101 32766 0101

32773 1100 32765 0100

32772 1011 32764 0011

32771 1010 32763 0010

32770 1001 32762 0001

32769 1000 32761 0000

RTC_FREQADJ[11:8](integer part) is 0xC

Fraction part：0.65 * 60 = 39 = 0x27, RTC_FREQADJ[7:0](Fraction part) is 0x27

The register RTC_FREQADJ is 0xC27

Aug. 14, 2018 Page 222 of 312 Rev 1.02

NUC970/N9H30

21 Smart Card Host Interface (SC)

21.1 Overview

The Smart Card Interface controller (SC controller) is based on ISO/IEC 7816-3 standard and
fully compliant with PC/SC Specifications. It also provides status of card insertion/removal.

21.2 Features

 ISO-7816-3 T = 0, T = 1 compliant

 EMV2000 compliant

 Up to two ISO-7816-3 ports

 Separates receive/transmit 4 byte entry FIFO for data payloads

 Programmable transmission clock frequency

 Programmable receiver buffer trigger level

 Programmable guard time selection (11 ETU ~ 267 ETU)

 A 24-bit and two 8-bit timers for Answer to Request (ATR) and waiting times processing

 Supports auto inverse convention function

 Supports transmitter and receiver error retry and error number limiting function

 Supports hardware activation sequence, hardware warm reset sequence and hardware
deactivation sequence process

 Supports hardware auto deactivation sequence when detected the card removal

 Supports UART mode

 Full duplex, asynchronous communications

 Separates receiving / transmitting 4 bytes entry FIFO for data payloads

 Supports programmable baud rate generator for each channel

 Supports programmable receiver buffer trigger level

 Programmable transmitting data delay time between the last stop bit leaving the TX-
FIFO and the de-assertion by setting EGT (SC_EGT[7:0])

 Programmable even, odd or no parity bit generation and detection

 Programmable stop bit, 1- or 2- stop bit generation

21.3 Block Diagram

Aug. 14, 2018 Page 223 of 312 Rev 1.02

NUC970/N9H30

TX_FIFOTX/RX Control UnitRX_FIFO

TX Shift Register

ETU Clock Generator

RX Shift Register
SC_ DATA

SC_ DATA_EN

SC_CD

SC_PWR

APB_BUS

SC_RST

SC_CLK
Card Detect

Card Detect & ETU

Clock Generator &

SC_DATA Direction &

SC_PWR & SC_RST

Control Signal Unit

21.4 Register Map

Register Offset R/W Description Reset Value

SC Base Address:

SC0_BA = 0xB800_5000

SC1_BA = 0xB800_5400

SC_DAT

x = 0,1
SCx_BA+0x00 R/W SC Receiving/Transmit Holding Buffer Register 0xXXXX_XXXX

SC_CTL

x = 0,1
SCx_BA+0x04 R/W SC Control Register 0x0000_0000

SC_ALTCTL

x = 0,1
SCx_BA+0x08 R/W SC Alternate Control Register 0x0000_0000

SC_EGT

x = 0,1
SCx_BA+0x0C R/W SC Extend Guard Time Register 0x0000_0000

SC_RXTOUT

x = 0,1
SCx_BA+0x10 R/W SC Receive Buffer Time-out Register 0x0000_0000

SC_ETUCTL

x = 0,1
SCx_BA+0x14 R/W SC ETU Control Register 0x0000_0173

SC_INTEN

x = 0,1
SCx_BA+0x18 R/W SC Interrupt Enable Control Register 0x0000_0000

SC_INTSTS

x = 0,1
SCx_BA+0x1C R/W SC Interrupt Status Register 0x0000_0002

SC_STATUS

x = 0,1
SCx_BA+0x20 R/W SC Status Register 0x0000_0202

Aug. 14, 2018 Page 224 of 312 Rev 1.02

NUC970/N9H30

SC_PINCTL

x = 0,1
SCx_BA+0x24 R/W SC Pin Control State Register 0x0000_00x0

SC_TMRCTL0

x = 0,1
SCx_BA+0x28 R/W SC Internal Timer Control Register 0 0x0000_0000

SC_TMRCTL1

x = 0,1
SCx_BA+0x2C R/W SC Internal Timer Control Register 1 0x0000_0000

SC_TMRCTL2

x = 0,1
SCx_BA+0x30 R/W SC Internal Timer Control Register 2 0x0000_0000

SC_UARTCTL

x = 0,1
SCx_BA+0x34 R/W SC UART Mode Control Register 0x0000_0000

SC_TMRDAT0

x = 0,1
SCx_BA+0x38 R SC Timer Current Data Register A 0x0000_07FF

SC_TMRDAT1_
2

x = 0,1

SCx_BA+0x3C R SC Timer Current Data Register B 0x0000_7F7F

21.5 Functional Description

This section describes the control of smartcard interface. But the content of ISO7816 and
EMV is not in the scope of this document. A smartcard control flow is shown in the figure
below. It is highly suggested to have basic knowledge of ISO7816 and EVM specification
before develop smartcard driver.

Aug. 14, 2018 Page 225 of 312 Rev 1.02

NUC970/N9H30

Start

End

Init system clock

Receive ATR?

Configure SC function pin

Insert smart card

Activation sequence

Warm reset

Application

Deactivation sequence

Card removal

Card inertion?
NoNo

In specific mode?

Negotiabled transmission
protocol

NoNo

YesYes

YesYes

YesYes

Check parameter ok?
NoNo

YesYes

No

 Activation (Cold Reset) 21.5.1

The Smart Card Interface controller supports hardware activation, warm reset and
deactivation sequence. The activation sequence are shown as follows:

 Set SC_RST to low by programming RSTSTS (SC_PINCTL[18]) to 0.

 Set SC_PWR at high level by programming PWRSTS (SC_PINCTL[18]) to 1 and
SC_DAT at high level (reception mode) by programming DATSTS (SC_PINCTL[16]) to 1.

 Enable SC_CLK clock by programming CLKKEEP (SC_PINCTL[6]) to 1.

 De-assert SC_RST to high by programming RSTSTS (SC_PINCTL[18]) to 1.

The activation sequence can be controlled in two ways. The procedure is shown as follows:

Aug. 14, 2018 Page 226 of 312 Rev 1.02

NUC970/N9H30

Software Timing Control:

Set SC_PINCTL and SC_TMRCTLx (x = 0, 1, 2) to process the activation sequence. SC_PWR,
SC_CLK, SC_RST and SC_DATA pin state can be programmed by SC_PINCTL. The
programming method is shown in Activation description. The activation sequence timing can be
controlled by setting SC_TMRCTLx (x = 0, 1, 2). This programming procedure provides user has
a flexible timing setting for activation sequence

Hardware Timing Control:

Set ACTEN (SC_ALTCTL[3]) to 1 and the interface will perform the activation sequence by
hardware. The SC_PWR to SC_CLK start (T1) and SC_CLK start to SC_RST assert (T2) can be
selected by programming INITSEL(SC_ALTCTL[9:8]). This programming procedure provides user
has a simple setting for activation sequence.

Following is the activation control sequence generated by hardware:

1. Set activation timing by setting INITSEL (SC_ALTCTL[9:8]).

2. TMR0 can be selected by setting TMRSEL (SC_CTL[14:13]) is 01, 10 or 11.

3. Set operation mode OPMODE (SC_TMRCTL0[27:24]) to 0011 and give an Answer to
Request (ATR) value by setting CNT (SC_TMRCTL0[23:0]) register.

4. When hardware de-asserts SC_RST to high, hardware will generator an interrupt INTIF
(SC_INTSTS[8]) to CPU at the same time INITIEN (SC_INTEN[8]) = 1.

5. I the TMR decreases the counter to “ ” (start rom SC_RST de-assert) and the card

does not response ATR before that time, hardware will generate interrupt TMR0IF

(SC_INTSTS[3]) to CPU.

Undefined ATR

Time

T1

Comment

00 85

133

165

165

489

537

569

42060

Unit : SC Clock

T2

T3

T1

01

10

11

T2

Note : The values are measured by chip I/O pin and the real value will depend on system design

SC_PWR

SC_CLK

SC_RST

SC_DATA

INITF set

T1 T2 T3

 SC_CLK Start to SC_RST Assert

SC_PWR to SC_CLK Start

 SC_CLK Start to ATR Appear

INITSEL

 Warm Reset 21.5.2

The warm reset sequence is showed as follows.

1. Set SC_RST to low by programming RSTSTS (SC_PINCTL[18]) to 0.

Aug. 14, 2018 Page 227 of 312 Rev 1.02

NUC970/N9H30

2. Set SC_DAT to high by programming DATSTS (SC_PINCTL[16]) to 1.

3. Set SC_RST to high by programming RSTSTS (SC_PINCTL[18]) to 1.

The warm reset sequence can be controlled in two ways. The procedure is shown as follows.

Software Timing Control:

Set SC_PINCTL and SC_TMRCTLx (x = 0, 1, 2) to process the warm reset sequence.
SC_RST and SC_DATA pin state can be programmed by SC_PINCTL. The warm reset
sequence timing can be controlled by setting SC_TMRCTLx (x = 0, 1, 2). This programming
procedure provides user has a flexible timing setting for warm reset sequence.

Hardware Timing Control:

Set WARSTEN (SC_ALTCTL[4]) to 1 and the interface will perform the warm reset sequence
by hardware. The SC_RST to SC_DATA reception mode (T4) and SC_DATA reception mode
to SC_RST assert (T5) can be selected by programming INITSEL (SC_ALTCTL[9:8]). This
programming procedure provides user has a simple setting for warm reset sequence.

Following is THE warm reset control sequence by hardware:

1. Set warm reset timing by setting INITSEL (SC_ALTCTL[9:8]).

2. Select TMR0 by setting TMRSEL (SC_CTL[14:13]) register (TMRSEL can be set to 01,
10, or 11).

3. Set operation mode OPMODE (SC_TMRCTL0[27:24]) to 0011 and give an Answer to
Request value by setting CNT (SC_TMRCTL0[23:0]) register.

4. SetCNTEN0 (SC_ALTCTL[5]) and WARSTEN (SC_ALTCTL[4]) to start counting.

5. When hardware de-asserts SC_RST to high, hardware will generate an interrupt INTIF
(SC_INTSTS[8]) to CPU at the same time (INITIEN (SC_INTEN[8]) = 1).

6. I the TMR decrease the counter to “ ” (start rom SC_RST) and the card does not
response ATR before that time, hardware will generate interrupt TMR0IF
(SC_INTSTS[3]) to CPU

Undefined
T6

ATR

T4 T5

T4

CommentTime 00

01

10

11

81

129

161

161

483

531

563

42106

T4

Unit : SC Clock
T5

T6

T5

SC_RST

SC_ DATA

INITF set

Note : This value is measured by chip IO pin and the real value will depend on system design

SC_RST to SC_DATA Reception Mode

SC_DATA Reception Mode to SC_RST Assert

SC_CLK Start to ATR Appear

INITSEL

Aug. 14, 2018 Page 228 of 312 Rev 1.02

NUC970/N9H30

 Deactivation 21.5.3

The deactivation sequence is showed as follows:

1. Set SC_RST to low by programming RSTSTS (SC_PINCTL[18]) to 0.

2. Stop SC_CLK by programming CLKKEEP (SC_PINCTL[6]) to 0.

3. Set SC_DATA to state low by programming DATSTS (SC_PINCTL[16]) to 0.

4. Deactivate SC_PWR by programming PWRSTS (SC_PINCTL[18]) to 0.

The deactivation sequence can be controlled in two ways. The procedure is shown as follows.

Software Timing Control:

Set SC_PINCTL and SC_TMRCTL0 to process the deactivation sequence. SC_PWR,
SC_CLK, SC_RST and SC_DATA pin state can be programmed by SC_PINCTL. The
deactivation sequence timing can be controlled by setting SC_TMRCTL0. This programming
procedure provides user has a flexible timing setting for deactivation sequence.

Hardware Timing Control:

DACTEN (SC_ALTCTL[]) to ‘ ’ and the inter ace will er orm the deactivation sequence by
hardware. The Deactivation Trigger to SC_RST low (T7), SMC_RST low to SC_CLK (T8) and
stop SC_CLK to stop SC_PWR (T9) time can be selected by programming INITSEL
(SC_ALTCTL[9:8]). This programming procedure provides user has a simple setting for
deactivation sequence.

The SC controller also supports auto deactivation sequence when the card removal detection
is enabled by setting ADAC_CDEN (SC_ALTCTL[11]).

Undefined

Time Comment

00

01

10

11

97

145

177

177

83 87

131 135

163 167

163 167
Unit: SC Clock

T9T7 T8

T7

T8

T9

T7 T8 T9

SC_PWR

SC_CLK

SC_RST

SC_DATA

INITF set

Deactivation Trigger to SC_RST Low

SMC_RST Low to Stop SC_CLK

Stop SC_CLK to Stop SC_PWR

INITSEL

 Data Format 21.5.4

Basically, the smart card interface acts as a half-duplex asynchronous communication port

Aug. 14, 2018 Page 229 of 312 Rev 1.02

NUC970/N9H30

and its data format is composed of ten consecutive bits, which is show as follows.

Start Pause StartD1

Delay Between Consecutive Characters

D2 D3 D4 D5 D6 D7 D8 P

According to 7816-3, the initial character TS has two possible patterns shown in the following
figure. If the TS pattern is 1100_0000, it is inverse convention. When decoded by inverse
convention, the conveyed byte is equal to 0x3F. If the TS pattern is 1101_1100, it is direct
convention. When decoded by direct convention, the conveyed byte is equal to 0x3B.
Software can set AUTOCEN (SC_CTL[3]) and then the operating convention will be decided
by hardware. Software can also set the CONSEL (SC_CTL[5:4]) register (set to „ ‟ or „ ‟)
to change the operating convention after SC received TS of answer to request (ATR).

If auto convention function is enabled by setting AUTOCEN (SC_CTL[3]) register, the setting
step must be done before Answer to Request state and the first data must be 0x3B or 0x3F.
After hardware received first data and stored it at buffer, the hardware will decided the
convention and change the CONSEL (SC_CTL[5:4]) register automatically. If the first data is
neither 0x3B nor 0x3F, the hardware will generate an interrupt (if ACERRIEN
(SC_INTEN[]) = „ ‟) to CPU.

Start StartD1 P Character T0

Inverse Convention
Start StartP Character T0

Direct Convention

Inverse Convention

Direct Convention

t = 12 ~ 9600 ETU

t = 12 ~ 9600 ETU

D2 D3 D4 D5 D6 D7 D8

D1 D2 D3 D4 D5 D6 D7 D8

0_1101_1100_1 (0x3B)

0_1100_0000_1 (0x3F)

 Data Transfer 21.5.5

Smartcard interface transmit and receive data through SC_DAT register. Driver should write
output data to SC_DAT register, and read received data from SC_DAT.

Both transmit (TX) and receive (RX) has 4 level FIFO. Driver must make sure TX FIFO is not
full (TXFULL (SC_STATUS[10]) is 0) before write any data to SC_DAT. Otherwise
TXOV(SC_STATUS[8]) will be set 1 to indicate TX FIFO overflow. While there’s data
available in RX FIFO, RXEMPTY (SC_STATUS[1]) will be cleared to 0, driver can keep read
SC_DAT until RXEMPTY (SC_STATUS[1]) set 1 again. If RX FILL is FULL and further data
comes in, RXOV(SC_STATUS[0]) will be set 1 to indicate RX FIFO overflow.

Except polling mode, driver can use interrupt to detect the status change of TX/RX FIFO. If

Aug. 14, 2018 Page 230 of 312 Rev 1.02

NUC970/N9H30

TBEIEN (SC_INTEN[1]) set 1, interrupt will be triggered when TX FIFO is empty, and TBEIF
(SC_INTSTS[1]) will be set to 1. Driver can repeatedly write at most 4 bytes data into TX
FIFO until next interrupt. If RDAIEN (SC_INTEN[0]) is 1, interrupt will be triggered if data in
RX FIFO is no less then the interrupt trigger level configured in RXTRGLV (SC_CTL[7:6]) ,
and RDAIF (SC_INTSTS[0]) will be set 1. Driver can keep reading SC_DAT until RXEMPTY
set 1 again. To avoid the situation that data count less than interrupt trigger level and stays in
RX FIFO without trigger interrupt, driver could set a timeout duration to trigger interrupt if
there is data in RX FIFO longer than the duration and does not reach the level to trigger. This
timeout duration is configured in SC_RXTOUT register using ETU as time unit. Except
configure proper value in SC_RXTOUT, RXTOIEN (SC_INTEN[9]) also needs to set 1. Then
smartcard controller will trigger interrupt and set RXTOIF (SC_INTSTS[9]) to 1, to notify driver
there’s data available in RX I O.

 Error Signal and Character Repetition 21.5.6

According to ISO7816-3 T=0 mode description, as shown in following, if the receiver receives
a wrong parity bit, it will pull the SC_DAT to low by 1.5 bit period to inform the transmitter
parity error. Then the transmitter will retransmit the character. The SC interface controller
supports hardware error detection function in receiver and supports hardware re-transmit
function in transmitter. Software can enable re-transmit function by setting TXRTYEN
(SC_CTL[23]). Software can also define the retry (re-transmit) number limitation in TXRTY
(SC_CTL[22:20]). The re-transmit number is up to TXRTY +1 and if the re-transmit number is
equal to TXRTY +1, TXOVERR flag will be set by hardware and if TERRIEN (SC_INTEN [2]),
SC controller will generate a transfer error interrupt to CPU. Software can also define the
received retry number limitation in RXRTY (SC_CTL[18:16]) register. The receiver retry
number is up to RXRTY +1, if the number of received errors by receiver is equal to RXRTY
+1, receiver will receive this error data to buffer and RXOVERR flag will be set by hardware
and if TERRIEN (SC_INTEN[2]), SC controller will generate a transfer error interrupt to CPU.

Start P Stop Start

Start P

Repetition

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10 11 12

Start P Start

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No Parity Error

With Parity Error (Receiver)

With Parity Error (Transmitter)

Re-transmit

Byte (i)

Byte (i)

Byte (i)

Byte (i)

Byte (i+1)

Detect Error Signal

Pull Low and Detect Next Start Bit

4 clocks

Byte (i)
1.5 clocks

While working in T=1 mode, error detection is implementing in upper layer protocol. If transfer
error is detected, an R-Block is sent to notify counterpart an error occurred instead of pull
SC_DAT low. So while working in T=1 mode, both TXRTYEN and RXRTYEN must clear to 0.

Aug. 14, 2018 Page 231 of 312 Rev 1.02

NUC970/N9H30

 Internal Time-out Counter 21.5.7

The smart card interface includes a 24-bit time-out counter (SC_TMR0) and two 8 bit time-out
counters (SC_TMR1, SC_TMR2). These counters help the controller in processing different
real-time interval (ATR, WBT, WWT…). Each counter can be set to start counting once the
trigger enable bit has been written or a START bit has been detected..

The following is the programming flow:

Enable counter by setting TMRSEL (SC_CTL[14:13]). Select operation mode OPMODE
(SC_TMRCTLx[27:24]) and give a count value CNT (SC_TMRCTLx[23:0]) by setting
SC_TMRCTLx register. Set CNTEN0 (SC_ALTCTL[5]), CNTEN1 (SC_ALTCTL[6]) or
CNTEN2 (SC_ALTCTL[7]) is to start counting.

The SC_TMRCTL0, SC_TMRCTL1 and SC_TMRCTL2 timer operation mode are listed in
below table.

Note: Only SC_TMRCTL0 supports mode 0011

OPMODE
(SC_TMRCTLx[2
7:24])

(X=0 ~2)

Operation Description

0000

The down counter started when CNTENx (SC_ALTCTL[7:5]) enabled and ended when counter time-out. The time-out
value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) + 1.

Start Start counting when CNTENx (SC_ALTCTL[7:5]) enabled

End When the down counter equals to 0, hardware will set TMRxIF (SC_INTSTS[5:3]) and clear CNTENx
(SC_ALTCTL[7:5]) automatically.

0001

The down counter started when the first START bit (reception or transmission) detected and ended when counter time-
out. The time-out value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) + 1.

Start Start counting when the first START bit (reception or transmission) detected after CNTENx
(SC_ALTCTL[7:5]) set to 1.

End When the down counter equals to 0, hardware will set TMRxIF (SC_INTSTS[5:3]) and clear CNTENx
(SC_ALTCTL[7:5]) automatically.

0010

The down counter started when the first START bit (reception) detected and ended when counter time-out. The time-out
value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) + 1.

Start Start counting when the first START bit (reception) detected bit after CNTENx (SC_ALTCTL[7:5]) set to
1.

End Start counting when the first START bit (reception) detected bit after CNTENx (SC_ALTCTL[7:5]) set to
1.

0011

The down counter is only used for hardware activation, warm reset sequence to measure ATR timing.

The timing starts when SC_RST de-assertion and ends when ATR response received or time-out.

If the counter decreases to 0 before ATR response received, hardware will generate an interrupt to CPU. The time-out
value will be CNT (SC_TMRCTL0[23:0]) + 1.

Start Start counting when SC_RST de-assertion after CNTEN0 (SC_ALTCTL[5]) set to 1.

It is used for hardware activation, warm reset mode.

End When the down counter equals to 0 before ATR response received, hardware will set TMR0IF
(SC_INTSTS[3]) and clear CNTEN0 (SC_ALTCTL[5]) automatically.

Aug. 14, 2018 Page 232 of 312 Rev 1.02

NUC970/N9H30

When ATR received and down counter does not equal to 0, hardware will clear CNTEN0
(SC_ALTCTL[5]) automatically.

0100

Same as 0000, but when the down counter equals to 0, hardware will set TMRxIF (SC_INTSTS[5:3]) and counter will re-
load the CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) value and re-count until software clears
CNTENx (SC_ALTCTL[7:5]).

When ACTSTSx (SC_ALTCTL[15:13]) = 1, software can change CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0],
SC_TMRCTL2[7:0]) value at any time. When the down counter equals to 0, counter will reload the new value of CNT
(SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) and re-count.

The time-out value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) + 1.

0101

Same as 0001, but when the down counter equals to 0, hardware will set TMRxIF (SC_INTSTS[5:3]) and counter will re-
load the CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) value. When the next START bit is
detected, counter will re-count until software clears CNTENx (SC_ALTCTL[7:5]).

When ACTSTSx (SC_ALTCTL[15:13]) = 1 software can change CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0],
SC_TMRCTL2[7:0]) value at any time. When the down counter equal to 0, it will reload the new value of CNT
(SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) and re-counting.

The time-out value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) + 1.

0110

Same as 0010, but when the down counter equals to 0, it will set TMRxIF (SC_INTSTS[5:3]) and counter will re-load the
CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) value. When the next START bit is detected,
counter will re-count until software clears CNTENx (SC_ALTCTL[7:5]).

When ACTSTSx (SC_ALTCTL[15:13]) = 1, software can change CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0],
SC_TMRCTL2[7:0]) value at any time. When the down counter equals to 0, counter will reload the new value of CNT
(SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) and re-count.

The time-out value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) + 1.

0111

The down counter started when the first START bit (reception or transmission) detected and ended when software
clears CNTENx (SC_ALTCTL[7:5]) bit. If next START bit detected, counter will reload the new value of CNT
(SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) and re-counting.

If the counter decreases to 0 before the next START bit detected, hardware will generate an interrupt to CPU. The time-
out value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) + 1.

Start Start counting when the first START bit detected after CNTENx (SC_ALTCTL[7:5]) set to 1.

End Stop counting after CNTENx (SC_ALTCTL[7:5]) set to 0.

1000

The up counter starts when CNTENx (SC_ALTCTL[7:5]) enabled and ends when CNTENx (SC_ALTCTL[7:5]) disabled.
This count value will be stored in CNTx (SC_TMRDAT0[23:0], SC_TMRDAT1_2[7:0], SC_TMRDAT1_2[15:8]). In this
mode, hardware cannot generate any interrupt to CPU. The real count value will be CNTx (SC_TMRDAT0[23:0],
SC_TMRDAT1_2[7:0], SC_TMRDAT1_2[15:8]) + 1.

Start Start counting after CNTENx (SC_ALTCTL[7:5]) set to 1, and the start count value is 0 (hardware will
ignore CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) value).

End Stop counting after CNTENx (SC_ALTCTL[7:5]) set to 0 and the value stored to CNTx
(SC_TMRDAT0[23:0], SC_TMRDAT1_2[7:0], SC_TMRDAT1_2[15:8]) register

1111

Down counter starts when software set CNTENx (SC_ALTCTL[7:5]) bit or any START bit been detected and ends when
software clears CNTENx (SC_ALTCTL[7:5]) bit. If next START bit detected, counter will reload the new value of CNT
(SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0]) and re-counting.

I the counter decreases to “ ” be ore the next START bit be detected, hardware will generate an interru t to CPU. The
time-out value will be CNT (SC_TMRCTL0[23:0], SC_TMRCTL1[7:0], SC_TMRCTL2[7:0])+1.

Start Start count when the CNTENx (SC_ALTCTL[:]) set to “ ” or any START bit (CNTENx
(SC_ALTCTL[7:5]) must be set) be detected.

End Sto count a ter CNTENx (SC_ALTCTL[:]) set to “ ”.

 Smartcard Insert/Remove Detection 21.5.8

Smartcard interface can detect the presence if smartcard. But to correctly detect the status,

Aug. 14, 2018 Page 233 of 312 Rev 1.02

NUC970/N9H30

CDLV (SC_CTL[26]) must be configured according the card slot in use. When set to 1,
SC_CD high means card inserted, low means card removed. When clear to 0, SC_CD high
means card removed, low means card inserted. Smartcard interface also support four level
de-bounce function which can be configured by CDDBSEL (SC_CTL[25:24]) bits.

Current level of SC_CD pin can be checked by polling CDPINSTS(SC_STATUS) bit. This bit
reflects current level of SC_CD pin regardless of the setting of CDLV bit. During normal
operation, driver could use interrupt to detect card status change. If CDIEN (SC_INTEN[7])
set to 1, every time card presence state change will trigger an interrupt to CPU, and set CDIF
(SC_INTSTS[7]) to 1. In the interrupt service routine, software can check CINSERT
(SC_STATUS[12]) and CREMOVE (SC_STATUS[11]) to know current card detection status.
Writing 1 to them can clear CDIF, CINSERT, and CREMOVE bits

 Miscellaneous Transmission Settings 21.5.9

Here introduce some transmission relative settings

 Elementary Time Unit (ETU)

ETU is the elementary time unit used in smartcard data transmission. And its default value is
372 clocks. After PPS exchange, ETU can change to other value by setting ETURDIV
(SC_ETUCTL[11:0]) . Actual ETU is ETURDIV + 1 clocks.

 Stop Bit

While receiving ATR or working in T=0 mode, NSB(SC_CTL[15]) needs to clear to 0 to make
the interface communicate using 2 stop bits. Only 1 Stop bit is used when working in T=1
mode, so NSB(SC_CTL[15]) needs clear to 0.

 Block Guard Time (BGT)

According to ISO 7816-3, BGT, the minimum delay between transfer from different directions
is 11 ETU while working in T=1 mode. BGT is configured in BGT (SC_CTL[12:8]) bits. If
smartcard sends response within BGT time, and BGTIEN (SC_INTEN[6]) is 1, an interrupt will
be triggered and BGTIF (SC_INTSTS[6]) will be set 1. Write 1 can clear BGTIF bit.

 Extra Guard Time (EGT)

According to ISO 7816-3, if TC1 exist in ATR and does not equal to 255, guard time is 12ETU
+ F/D * N / f = (12 + N). Where N is the EGT. EGT is set in SC_EGT register.

 UART Mode 21.5.10

When the UARTEN (SC_UARTCTL[0]) bit set, the Smart Card Interface controller can also be
used as base UART function. The following is the program example for UART mode. Below is
a programming example:

1. Set UARTEN (SC_UARTCTL[0]) bit to enter UART mode.

2. Do software reset by setting RXRST (SC_ALTCTL[1]) and TXRST (SC_ALTCTL[0]) bit to
ensure that all state machine return idle state.

Aug. 14, 2018 Page 234 of 312 Rev 1.02

NUC970/N9H30

3. ill “ ” to CONSEL (SC_CTL[:]) and AUTOCEN (SC_CTL[]) ield. (In UART mode,
those ields must be “ ”)

4. Select the UART baud rate by setting ETURDIV (SC_ETUCR[11:0]) fields. For example,
if smartcard module clock is 12 MHZ and target baud rate is 115200bps, ETURDIV
should fill with (12000000 / 115200 - 1).

5. Select the data format include data length (by setting WLS (SC_UARTCTL[5:4]), parity
format (by setting OPE (SC_UARTCTL[7]) and PBOFF (SC_UARTCTL[6])) and stop bit
length (by setting NSB (SC_CTL[15]) or EGT (SC_EGT[7:0])).

6. Select the receiver buffer trigger level by setting RXTRGLV (SC_CTL[7:6]) field and
select the receiver buffer time-out value by setting RFTM (SC_RXTOUT[8:0]) field.

7. Write SC_DAT (SC_DAT[7:0]) (TX) register or read the SC_DAT (SC_DAT[7:0]) (RX)
register can perform UART function.

Aug. 14, 2018 Page 235 of 312 Rev 1.02

NUC970/N9H30

22 Secure Digital Host Controller (SDH)

22.1 Overview

The Secure-Digital Card Host Controller (SDH) equips DMAC unit and SD unit. The DMAC
unit provides a DMA (Direct Memory Access) function for SD to exchange data between
system memory and shared buffer (128 bytes), and the SD unit controls the interface of SD /
SDHC / SDIO. The SDH controller supports SD / SDHC / SDIO card and cooperates with
DMAC to provide a fast data transfer between system memory and cards.

22.2 Features

 Supports single DMA channel

 Supports hardware Scatter-Gather functionality

 Supports 128 Bytes shared buffer for data exchange between system memory and cards

 Supports SD, SDHC and SDIO card

22.3 Block Diagram

SD Unit

Engine Clock

HCLK

DMAC

Unit

Register

Decoder

DMAC

Controler

128 Byte

FIFO

FIFO

Interface

SD / SDHC

Controller

Sync. Circuit

GPIO

SD_DAT[3:0]SD_CMDSD_CLK SD_CD

AMBA Wrapper (Master / Slave)

AHB Bus

Aug. 14, 2018 Page 236 of 312 Rev 1.02

NUC970/N9H30

22.4 Register Map
R: read only, W: write only, R/W: both read and write

Register Offset R/W Description Reset Value

SDH_BA = 0xB000_C000

SDH_FB_n

n = 0,1…31
SDH_BA+0x000 + 0x4 * n R/W

SD Host Embedded Buffer Word n

n = , …
0x0000_0000

SDH_DMACTL SDH_BA+0x400 R/W SD Host DMA Control and Status Register 0x0000_0000

SDH_DMASA SDH_BA+0x408 R/W SD Host DMA Transfer Starting Address Register 0x0000_0000

SDH_DMABCNT SDH_BA+0x40C R SD Host DMA Transfer Byte Count Register 0x0000_0000

SDH_DMAINTEN SDH_BA+0x410 R/W SD Host DMA Interrupt Enable Register 0x0000_0001

SDH_DMAINTSTS SDH_BA+0x414 R/W SD Host DMA Interrupt Status Register 0x0000_0000

SDH_GCTL SDH_BA + 0x800 R/W SD Host Global Control and Status Register 0x0000_0000

SDH_GINTEN SDH_BA + 0x804 R/W SD Host Global Interrupt Control Register 0x0000_0001

SDH_GINTSTS SDH_BA + 0x808 R/W SD Host Global Interrupt Status Register 0x0000_0000

SDH_CTL SDH_BA + 0x820 R/W SD Host Control and Status Register 0x0101_0000

SDH_CMD SDH_BA + 0x824 R/W SD Host Command Argument Register 0x0000_0000

SDH_INTEN SDH_BA + 0x828 R/W SD Host Interrupt Enable Register 0x0000_0A00

SDH_INTSTS SDH_BA + 0x82C R/W SD Host Interrupt Status Register 0x000X_008C

SDH_RESP0 SDH_BA + 0x830 R SD Host Receiving Response Token Register 0 0x0000_0000

SDH_RESP1 SDH_BA + 0x834 R SD Host Receiving Response Token Register 1 0x0000_0000

SDH_BLEN SDH_BA + 0x838 R/W SD Host Block Length Register 0x0000_01FF

SDH_TMOUT SDH_BA + 0x83C R/W SD Host Response/Data-in Time-out Register 0x0000_0000

SDH_ECTL SDH_BA + 0x840 R/W SD Host Extend Control Register 0x0000_0003

22.5 Functional Description

The Secure-Digital Card Host Controller (SDH) equips DMAC unit and SD unit. SDH provides
a control interface for SD/SDHC/SDIO/MMC card access. The following sections have more
detail description.

SD Memory Card State Diagram（Card Identification Mode）：

Aug. 14, 2018 Page 237 of 312 Rev 1.02

NUC970/N9H30

SD Memory Card State Diagram（Data Transfer Mode）：

Power On

CMD0

CMD8

ACMD41

with HCS=0

ACMD41 with

HCS=0 or 1

Ver2.00 or later SD

Memory Card

Card with compatible

Voltage range

Ver2.00 or later SD Memory

Card(voltage mismatch) or Ver1.X SD

memory card or not SD memory card

Valid

Response?

Card is

ready?

CCS in

Response?

Card is

ready?

Unusable

Card

Unusable

Card

Not SD

memory Card

Ver1.X Standard

Capacity SD

memory Card

Ver1.X Standard

Capacity SD

memory Card

Ver1.X Standard

Capacity SD

memory Card

CMD2

CMD3

Unusable

Card

Card returns ready

CCS=0

CCS=1

No response

Card returns busy

No response

Card returns ready

Card return response

If host support high capacity,

HCS is set to 1

Card returns busy

Stand-by State

Aug. 14, 2018 Page 238 of 312 Rev 1.02

NUC970/N9H30

 Global Control 22.5.1

DMA Controller provides a Direct Memory Access function. After filling in the starting address
and enables DMA, DMA would handle the data transfer automatically. There is a 128 bytes
shared buffer inside DMA. This 128 bytes buffer is directly accessible when SDH is not in
busy.

This SDH controller provides two SD ports – port0 and port1. Each port can provide 1-bit / 4-
bit data bus mode, card detect function and SDIO interrupt. User should set the output
frequency to SD device by control CLKDIV9 register. About the device detail programming
rule, please reference "SD Memory Card Specifications Part 1" and "The MultiMediaCard

System Specification".

To enable the SDH, please follow the steps below:

1. Set CLK_HCLKEN register SDH bit.

2. Set SDH_DMACTL register DMACEN and DMARST bit.

3. Polling SDH_DMACTL register DMARST bit until it was cleared.

4. Set SDH_GCTL register SDEN and GCTLRST bit.

5. Polling SDH_GCTL register GCTLRST bit until it was cleared.

6. Port 0 only has one set of multiple function pin (GPD0〜7). Fill value 0x66666666 into

SYS_GPD_MFPL register to select Port 0.

7. Port 1 has three set of multiple function pin: GPE2~9, GPH6~13 and GPI5~10, 12~13.

(1) Set value 0x66666600 into SYS_GPE_MFPL register, and 0x66 into

Stand-by State

Receive data

State

Disconnect State
Programming

State

Transfer State

Sending data

State

CMD7

CMD12
CMD7

CMD7

CMD12
CMD6,17,18,30,56

ACMD13,22,51

CMD16,32,33

ACMD6,42,23

CMD24,25,26,27,42,56

CMD28,29,38

CMD4,9,10,3

CMD7

Operation complete

Operation

Complete

Aug. 14, 2018 Page 239 of 312 Rev 1.02

NUC970/N9H30

SYS_GPE_MFPH register to select GPE Port 1.

(2) Set value 0x66000000 into SYS_GPH_MFPL register, and 0x666666 into
SYS_GPH_MFPH register to select GPH Port 1.

(3) Set value 0x44400000 into SYS_GPI_MFPL register, and 0x00440444 into
SYS_GPI_MFPH register to select GPI Port 1.

8. Clear SDH_ECTL register PWROFF0 bit to enable the power control.

9. Set SDH_CTL register SDPORT bit to select SD Port 0 or Port 1.

10. Set SDH_INTEN register CDxSRC bit to select SD card detection source.(DAT3 or
GPIO).

11. Set SDH initial output frequency is 300 KHz, bus width is 1-bit mode for Card
Identification Mode.

12. Set SDH_CTL register CLK74_OE bit.

13. Polling SDH_CTL register CLK74_OE bit until it was cleared.

14. Follow standard programming rule to send command to SD device.

15. When device get into Data Transfer Mode, the output frequency can set to suitable clock.
Such as 25MHz. And the bus width is 4-bit mode.

 Send Command 22.5.2

Send command to SD card, please follow the steps below:

1. Set the argument into SDH_CMD register.

2. Set command into SDH_CTL register CMD_CODE bit.

3. Set SDH_CTL register CO_EN bit to enable the command out.

4. Polling SDH_CTL register CO_EN bit until it was cleared.

 Get Response 22.5.3

Get response from SD card, please follow the steps below:

1. Set SDH_CTL register RI_EN bit to enable response in.

2. Polling SDH_CTL register RI_EN bit until it was cleared.

3. Check SDH_INTSTS register CRC7 bit.

4. Get the response from SDH_RESP0 and SDH_RESP1 register.

Aug. 14, 2018 Page 240 of 312 Rev 1.02

NUC970/N9H30

 Read SD Card 22.5.4

SD card read access, please follow the steps below:

1. Send CMD7 to enter transfer state.

2. Set SDH_CTL register CLK8_OE bit to output 8 clock cycles. Check SDH_INTSTS
register SDDAT0 bit. Repeat step 2 until the SD card is ready.

3. Set block size to SDH_BLEN register. Such as 0x1FF is for 512 bytes.

4. Set the read starting sector address to SDH_CMD register.

5. Set the data target address to SDH_DMASA register.

6. Check the read sector count. If the count is greater than 255, user should separate it. Set
the sector count to SDH_CTL register BLK_CNT bit. (255 is the limitation).

7. Send CMD18 for multiple read. (Set 18 to SDH_CTL register CMD_CODE bit).

8. Set SDH_CTL register CO_EN, RI_EN and DI_EN bit to enable command out, response
in and data in.

9. Polling DI_EN bit until it was cleared. Or waiting the interrupt (SDH_INTSTS register
BLKD_IF bit).

10. Check SDH_INTSTS register CRC7 and CRC16 bit.

11. Send CMD12 to stop transfer.

12. Set SDH_CTL register CLK8_OE bit to output 8 clock cycles. Check SDH_INTSTS
register SDDAT0 bit. Repeat step 12 until the SD card is ready.

13. Send CMD7 to Idle state.

 Write SD Card 22.5.5

SD card write access, please follow the steps below:

1. Send CMD7 to enter transfer state.

2. Set SDH_CTL register CLK8_OE bit to output 8 clock cycles. Check SDH_INTSTS
register SDDAT0 bit. Repeat step 2 until the SD card is ready.

3. Set block size to SDH_BLEN register. Such as 0x1FF is for 512 bytes.

4. Set the write starting sector address to SDH_CMD register.

5. Set the data source address to SDH_DMASA register.

6. Check the write sector count. If the count is greater than 255, user should separate it. Set
the sector count to SDH_CTL register BLK_CNT bit. (255 is the limitation).

7. Send CMD25 for multiple write. (Set 25 to SDH_CTL register CMD_CODE bit).

8. Set SDH_CTL register CO_EN, RI_EN and DO_EN bit to enable command out,
response in and data out.

Aug. 14, 2018 Page 241 of 312 Rev 1.02

NUC970/N9H30

9. Polling DO_EN bit until it was cleared. Or waiting the interrupt (SDH_INTSTS register
BLKD_IF bit).

10. Check SDH_INTSTS register CRC_IF bit. If CRC error occurred, the state machine
should software reset. (Set SDH_CTL register SW_RST bit)

11. Send CMD12 to stop transfer.

12. Set SDH_CTL register CLK8_OE bit to output 8 clock cycles. Check SDH_INTSTS
register SDDAT0 bit. Repeat step 12 until the SD card is ready.

13. Send CMD7 to Idle state.

Aug. 14, 2018 Page 242 of 312 Rev 1.02

NUC970/N9H30

23 SPI

23.1 Overview

The Serial Peri heral Inter ace (SPI) is a synchronous serial data communication rotocol.
Devices communicate in Master/Slave mode with -wire bi-direction inter ace. It is used to
 er orm a serial-to- arallel conversion on data received rom a eri heral device, and a
 arallel-to-serial conversion on data transmitted to a eri heral device.

23.2 Features

 Supports Master mode operation

 Configurable bit length of a transaction from 1 to 32-bit and can be configured as burst
mode, totally128-bit can be transmitted at one time.

 Supports MSB first or LSB first transfer sequenc

 Two slave select lines supported in Master mode

 Support dual / quad mode

23.3 Function Block

mw_sclk_o

mw_int_o

mw_ss_o[1:0]

mw_so_o

mw_si_i

pclk

preset_n

paddr

pwrite

psel

penable

pwdata

pben

prdata

I/O

Decoder

Registers

Clock

Generator

Tx/Rx

Buffer

SPI Core Logic

A
M

B
A

 A
P

B
 I

n
te

r
fa

c
e

23.4 Register Map

Register Offset R/W Description Reset Value

Aug. 14, 2018 Page 243 of 312 Rev 1.02

NUC970/N9H30

SPI_BA = 0xB800_6200

SPI_BA = 0xB800_6300

CNTRL SPI_BA+0x00 R/W Control and Status Register 0x0000_0004

DIVIDER SPI_BA+0x04 R/W Clock Divider Register 0x0000_0000

SSR SPI_BA+0x08 R/W Slave Select Register 0x0000_0000

Reserved SPI_BA+0x0C N/A Reserved N/A

Rx0 SPI_BA+0x10 R Data Receive Register 0 0x0000_0000

Rx1 SPI_BA+0x14 R Data Receive Register 1 0x0000_0000

Rx2 SPI_BA+0x18 R Data Receive Register 2 0x0000_0000

Rx3 SPI_BA+0x1C R Data Receive Register 3 0x0000_0000

Tx0 SPI_BA+0x10 W Data Transmit Register 0 0x0000_0000

Tx1 SPI_BA+0x14 W Data Transmit Register 1 0x0000_0000

Tx2 SPI_BA+0x18 W Data Transmit Register 2 0x0000_0000

Tx3 SPI_BA+0x1C W Data Transmit Register 3 0x0000_0000

23.5 Function Description

 Slave Selection 23.5.1

In Master mode, this SPI controller can drive up to two off-chip slave devices through the
slave select output signals SPISS0 and SPISS1, but it is a time-sharing operation and it can
not operate with two slave devices simultaneously.

SPI Controller

SPICLK

MISO

MOSI

SPISS0

SPISS1

SCLK

MISO

MOSI

SS

Slave 0

SCLK

MISO

MOSI

SS

Slave 1

Configure SSR[0] or SSR[1] can control SS0 or SS1 output data.

SSR |= 0x1; //Enable SS0 output pin

SSR |= 0x2; //Enable SS1 output pin

Aug. 14, 2018 Page 244 of 312 Rev 1.02

NUC970/N9H30

SSR |= 0x3; //Enable SS0 and SS1 output pin at the same time

In master mode, user can configure SS_LVL(SSR[2]) bit to let SS signal to active at high or
low level. The trigger condition is based on type of slave device.

 Automatic Slave Select 23.5.2

In Master mode, if the AUTOSS bit (SSR[3]) is set as 1, the slave select signals will be
generated automatically and output to SPISS0 and SPISS1 ports according to SSR[0] (SSR0)
and SSR[1] (SSR1) whether it is enabled or not. It means that the slave select signals, which
is enabled in SSR[1:0] register is asserted by the SPI controller when the SPI data transfer is
started by setting the GO_BUSY bit (CNTRL[0]) and is de-asserted after the data transfer is
finished.

// Enable automatic slave select function on SS0 pin

SSR |= 0x1; //Enable SS0 output pin

SSR |= (0x1 << 3); //Enable automatic slave select function

 Dual / Quad Mode 23.5.3

SPI controller supports dual IO transmit when DUALM (CNTRL[22]) bit is set to 1.

The following figure is dual output mode:

SPI0_SS

7 6 5 4 3 2 1 0

SPI0_CLK

SPI0_MOSI0

SPI0_MISO0

DUALM

6 4 2 0 6 4 2 0

7 5 3 1 7 5 3 1

6 4 2 0 6 4 2 0

7 5 3 1 7 5 3 1

DIR_2QM

Master output

Slave input

Master input

Slave output

Output

Output

And the following figure is dual input mode:

Aug. 14, 2018 Page 245 of 312 Rev 1.02

NUC970/N9H30

SPI0_SS

7 6 5 4 3 2 1 0

SPI0_CLK

SPI0_MOSI0

SPI0_MISO0

DUALM

6 4 2 0 6 4 2 0

7 5 3 1 7 5 3 1

6 4 2 0 6 4 2 0

7 5 3 1 7 5 3 1

DIR_2QM

Master output

Slave input

Master input

Slave output
Input

Input

DIR_2QM(CNTRL[20]) is defined as the direction of data transmission. When DIR_2QM bit is
set to 1, SPI controller will output data to external device, otherwise when DIR_2QM bit is 0,
SPI controller will get the data from external device.

//Use dual IO function, MOSI/MISO pin output the data

CNTRL |= (0x1 << 22); //Enable dual IO mode

CNTRL |= (0x1 << 20); //Direction is output

TX0 = 0x12;

CNTRL |= 0x1; //Enable SPI controller

SPI controller supports quad IO mode when QUADM(CNTRL[21]) bit is set to 1.

The following figure is quad output mode:

Aug. 14, 2018 Page 246 of 312 Rev 1.02

NUC970/N9H30

SPI0_SS

7 6 5 4 3 2 1 0

SPI0_CLK

SPI0_MOSI0

SPI0_MISO0

QUADM

C 8 4 0 C 8 4 0

D 9 5 1 D 9 5 1

C 8 4 0 C 8 4 0

D 9 5 1 D 9 5 1

DIR_2QM

Master output

Slave input

Master input

Slave output

Output

Output

SPI0_MOSI1

SPI0_MISO1

E A 6 2 E A 6 2

F B 7 3 F B 7 3

E A 6 2 E A 6 2

F B 7 3 F B 7 3

Master output

Slave input

Master input

Slave output

Output

Output

And the following figure is quad input mode:

SPI0_SS

7 6 5 4 3 2 1 0

SPI0_CLK

SPI0_MOSI0

SPI0_MISO0

QUADM

C 8 4 0 C 8 4 0

D 9 5 1 D 9 5 1

C 8 4 0 C 8 4 0

D 9 5 1 D 9 5 1

DIR_2QM

Master output

Slave input

Master input

Slave output

Input

Input

SPI0_MOSI1

SPI0_MISO1

E A 6 2 E A 6 2

F B 7 3 F B 7 3

E A 6 2 E A 6 2

F B 7 3 F B 7 3

Master output

Slave input

Master input

Slave output

Input

Input

DIR_2QM(CNTRL[20]) is defined as the direction of data transmission. When DIR_2QM bit is
set to 1, SPI controller will output data to external device, otherwise when DIR_2QM bit is 0,
SPI controller will get the data from external device.

Aug. 14, 2018 Page 247 of 312 Rev 1.02

NUC970/N9H30

// Use quad IO function, MOSI/MISO pin output the data

CNTRL |= (0x1 << 21); //Enable quad mode

CNTRL |= (0x1 << 20); //Direction is output

TX0 = 0x12;

CNTRL |= 0x1; //Enable SPI controller

 Burst Mode 23.5.4

SPI controller can transfer/receive one to four data at one transfer by configuring
TX_NUM(CNTRL[9:8]).

//Transfer four 8-bit data continuously

CNTRL = (CNTRL & ~(0xf8)) | 0x8 <<3; //Configure 8-bit data width

CNTRL |= (0x3 << 8); //Transfer four data

TX0 = 0x12; //Write the first data

TX1 = 0x34; //Write the second data

TX2 = 0x56; //Write the third data

TX3 = 0x78; //Write the fourth data

CNTRL |= 0x1; //Enable SPI and transfer 0x12, 0x34, 0x56, 0x78 continuously

 SPI Interrupt 23.5.5

The interrupt flag IF(CNTRL[16]) bit will be set to 1 after SPI controller finished transmit or
receive. If interrupt enable bit IE(CNTRL[17]) is also set to 1 and interrupt will occur. IF bit can
be cleared by writing 1 to itself.

CNTRL |= 0x20000; //Enable interrupt

CNTRL |= 0x1; //Enable SPI

while(!spi_isr); //Wait for interrupt

CNTRL |= 0x10000; //Clear IF bit

I IE bit doesn’t be set to , user still can oll GO_BUSY bit to check SPI controller inishes
transmit or not.

CNTRL |= 0x1; //Enable SPI

while(CNTRL & 0x1); //Wait for SPI’s job is done

 SPI Programming Example 23.5.6

Do following actions basically (Should refer to the specification of device for the detailed
steps):

1. Write a divisor into DIVIDER to determine the frequency of serial clock.

2. Write in SSR, set ASS = 0, SS_LVL = 0 and SSR[0] or SSR[1] to 1 to activate the device

you want to access.

3. When transmit (write) data to device:

Aug. 14, 2018 Page 248 of 312 Rev 1.02

NUC970/N9H30

4. Write the data you want to transmit into Tx0[7:0].

5. When receive (read) data from device:

6. Write 0xFFFFFFFF into Tx0.

7. Write in CNTRL, set Rx_NEG = 0, Tx_NEG = 1, Tx_BIT_LEN = 0x08, Tx_NUM = 0x0,

LSB = 0, SLEEP = 0x0 and GO_BUSY = 1 to start the transfer.

Wait for interrupt (if IE = 1) or polling the GO_BUSY bit until it turns to 0.

8. Read out the received data from Rx0.

9. Go to step 3 to continue data transfer or set SSR[0] or SSR[1] to 0 to inactivate the
device

Aug. 14, 2018 Page 249 of 312 Rev 1.02

NUC970/N9H30

24 TIMER CONTROLLER

24.1 Overview

The general timer controller includes five channels, TIMER0, TIMER1, TIMER2, TIMER3, and
TIMER4, which allow user to easily implement a counting scheme or timing control for
applications. The timer can perform functions like frequency measurement, event counting,
interval measurement, pulse generation, delay timing, and so on. The timer possesses
features such as adjustable resolution, programmable counting period, and detailed
information. The timer can generate an interrupt signal upon timeout, or provide the current
value of count during operation.

24.2 Features

 Independent Clock Source for each Timer channel (TMRx_CLK, x= 0, 1, 2, 3, 4).

 Five channels with a 24-bit up counter and an interrupt request each.

 Internal 8-bit pre-scale counter.

 Internal 24-bit up counter is readable through Timer Data Register, TDR
(TMR_DR[23:0]).

 Supports One-shot, Periodic, and Continuous operation mode.

 Time-out period = (Period of timer clock input) * (8-bit pre-scale counter + 1) * (24-bit
TCMP setting value).

 Maximum counting time = (1 / TMRx_CLK) * 256 * 224

24.3 Block Diagram

+

-
=

Timer

wakeup

WAKE_EN
(TMR0_CSR[23])

CRST
(TMR0_CSR[26])

CE (TMR0_CSR[30])

TMR0_CLK

Reset counter

8-bit

Prescale
24-bit up counter

Power-down

24-bit TDR
(TMR0_DR[23:0])

24-bit TCMP
(TMR0_CMPR[23:0])

Reset counter

IE
(TMR0_CSR[29])

Q

Q
SET

CLR

D

TIF
(TMR0_ISR[0])

Q

Q
SET

CLR

D

TWKF
(TMR0_ISR[8])

Interrupt

status

Mode = 11

(TMR0_CSR[28:27])

Aug. 14, 2018 Page 250 of 312 Rev 1.02

NUC970/N9H30

24.4 Register Map

Register Offset R/W Description Reset Value

TMR Base Address:

TMR0_BA = 0xB800_1000

TMR1_BA = 0xB800_1010

TMR2_BA = 0xB800_1020

TMR3_BA = 0xB800_1030

TMR4_BA = 0xB800_1040

TMR0_CSR TMR0_BA+0x000 R/W Timer Control and Status Register 0 0x0000_0005

TMR0_CMPR TMR0_BA+0x004 R/W Timer Compare Register 0 0x0000_0000

TMR0_DR TMR0_BA+0x008 R Timer Data Register 0 0x0000_0000

TMR1_CSR TMR1_BA+0x000 R/W Timer Control and Status Register 1 0x0000_0005

TMR1_CMPR TMR1_BA+0x004 R/W Timer Compare Register 1 0x0000_0000

TMR1_DR TMR1_BA+0x008 R Timer Data Register 1 0x0000_0000

TMR2_CSR TMR2_BA+0x000 R/W Timer Control and Status Register 2 0x0000_0005

TMR2_CMPR TMR2_BA+0x004 R/W Timer Compare Register 2 0x0000_0000

TMR2_DR TMR2_BA+0x008 R Timer Data Register 2 0x0000_0000

TMR3_CSR TMR3_BA+0x000 R/W Timer Control and Status Register 3 0x0000_0005

TMR3_CMPR TMR3_BA+0x004 R/W Timer Compare Register 3 0x0000_0000

TMR3_DR TMR3_BA+0x008 R Timer Data Register 3 0x0000_0000

TMR4_CSR TMR4_BA+0x000 R/W Timer Control and Status Register 4 0x0000_0005

TMR4_CMPR TMR4_BA+0x004 R/W Timer Compare Register 4 0x0000_0000

TMR4_DR TMR4_BA+0x008 R Timer Data Register 4 0x0000_0000

TMR_ISR TMR0_BA+0x060 R/W Timer Interrupt Status Register 0x0000_0000

24.5 Functional Description

 Timer Initialization 24.5.1

Timer can be initialized using following procedure and start timer counting.

1. Clear CE (TMRx_CSR[30]) to 0 to stop timer counting.

2. Set MODE (TMRx_CSR[28:27]) to configure timer operating mode

3. Set IE (TMRx_CSR[29]) to 1 to enabled interrupt, otherwise clear to 0.

Aug. 14, 2018 Page 251 of 312 Rev 1.02

NUC970/N9H30

4. Set prescaler in PRESCALE (TMRx_CSR[7:0])

5. Set timer compare value in TCMP (TMRx_CMPR[24:0])

6. Set CE (TMRx_CSR[30]) 1 to start timer up counting.

 Interrupt Handling 24.5.2

Each timer has individual timeout interrupt source, when timer interrupt triggered,
TMR_ISR[4:0] corresponding bit will be set 1. Bit 0 set 1 means TMR0 interrupt triggered, bit
1 set 1 means TMR1 interru t triggered, bit set means TMR interru t triggered… so on
so forth. Writing 1 to them can clear these bits.

Please note if IE (TMRx_CSR[29]) is cleared to 0 then TMR_ISR relative bits will not set to 1
even timeout event occurs. So if software wants to check timeout event using polling mode,
IE bit still needs to set 1 to check TMR_ISR status. Timer will not trigger as long as timer
interrupt is not enabled in AIC.

 Timeout Frequency 24.5.3

The timeout frequency can be calculated using formula below:

Frequency = TMRx_CLK / ((PRESCALE + 1) * TCMP)

Where TMRx_CLK is the timer clock source frequency, PRESCALE is the prescaler defined
in TMRx_CSR[7:0], TCMP compare value defined in TMRx_CMPR[24:0]. So using external
12MHz crystal as timer clock source, fastest and slowest frequency timer can generate are
12MHz/ ((0 + 1) * 1) and 12MHz/ ((0xFF + 1) * 0xFFFFFF). Following table list some possible
setting for generating 10Hz, 100Hz, 1000Hz timeout frequency while using 12MHz as clock
source.

Frequency PRESCALE (TMRx_CSR[7:0]) TCMP (TMRx_CMPR[24:0])

10Hz 0 0x124F80

10Hz 9 0x1D4C0

100Hz 9 0x2EE0

100Hz 19 0x1770

1000Hz 4 0x960

1000Hz 9 0x4B0

Aug. 14, 2018 Page 252 of 312 Rev 1.02

NUC970/N9H30

 One-shot Mode 24.5.4

If the timer is operated in One-shot mode when MODE (TMRx_CSR[28:27]) is 0x0 and the
timer counter enable bit CE (TMRx_CSR[30]) is set to 1, the timer counter starts up counting.
Once the timer counter value TDR (TMRx_DR[23:0]) reaches timer compare register TCMP
(TMRx_CMPR[23:0]) value, the timer interrupt signal will be asserted. If the timer interrupt
signal is asserted and the timer interrupt enable bit IE (TMRx_CSR[29]) is set to 1, the timer
interrupt flag TIF (TMRx_ISR[0]) will be asserted by hardware and then software can write 1
into TIF (TMRx_ISR[0]) bit to clear it.

In this operating mode, once the timer counter value TDR (TMRx_DR[23:0]) reaches timer
compare register TCMP (TMRx_CMPR[23:0]) value will set the timer interrupt flag TIF
(TMR_ISR[0]) to 1, then timer counting operation stops and the timer counter value TDR
(TMRx_DR[23:0]) goes back to counting initial value then timer counter enable bit CE
(TMRx_CSR[30]) is cleared to 0 by timer controller automatically. That is to say, timer
operates timer counting and compares with TCMP (TMRx_CMPR[23:0]) value function only
one time after programming the timer compare register TCMP (TMRx_CMPR[23:0]) value
and timer counter enable bit CE (TMRx_CSR[30]) is set to 1. So, this operating mode is
called One-shot mode.

 Periodic Mode 24.5.5

If the timer is operated in Periodic mode (MODE (TMRx_CSR[28:27]) is 0x1) and timer
counter enable bit CE (TMRx_CSR[30]) is set to 1, the timer counter starts up counting. Once
the timer counter value (TMRx_DR) reaches timer compare register (TMRx_CMPR) value,
the interrupt signal will be asserted then timer interrupt flag TIF (TMRx_ISR[0]) will set to 1 if
timer interrupt enable bit IE=0 (TMRx_CSR[29]=1). If IE (TMRx_CSR[29]) is set to 0, the timer
interrupt flag TIF (TMRx_ISR[0]) will not be set to 1.

In this operating mode, once the timer counter value TDR (TMRx_DR[23:0]) reaches timer
compare register TCMP (TMRx_CMPR[23:0]) value and IE (TMRx_CSR[29]) set to 1, timer
interrupt flag TIF (TMRx_ISR[0]) will set to 1, the timer counter value TDR (TMRx_DR[23:0])
goes back to counting initial value and timer counter enable bit CE (TMRx_CSR[30]) is kept at
1 (counting enable Periodically) and timer counter operates up counting again. If timer
interrupt flag TIF (TMRx_ISR[0]) is cleared by software, once the timer counter value TDR
(TMRx_DR[23:0]) reaches timer compare register TCMP (TMRx_CMPR[23:0]) value again,
TIF (TMRx_ISR[0]) will set to 1 also. That is to say, timer operates timer counting and
compares with TCMP (TMRx_CMPR[23:0]) value function periodically. The timer counting
operation does not stop until the timer counter enable bit CE (TMRx_CSR[30]) is set to 0. The
interrupt signal is also generated periodically. So, this operating mode is called Periodic
mode.

 Continuous Mode 24.5.6

If the timer is operated in Continuous mode (MODE (TMRx_CSR[28:27]) is 0x3) and timer
counter enable bit CE (TMRx_CSR[30]) is set to 1, the timer counter starts up counting. The
24-bit timer counter in Continuous mode will keep counting until the counting value reaches to
the maximum value (0xFFFFFF), then timer counter value TDR (TMRx_DR[23:0]) will be

Aug. 14, 2018 Page 253 of 312 Rev 1.02

NUC970/N9H30

reset to 0x0 and keep up counting while CE=1 (TMRx_CSR[30]=1).

Once the timer counter value TDR (TMRx_DR[23:0]) is equal to the timer compare register
TCMP (TMRx_CMPR[23:0]) value and timer interrupt enable bit IE (TMRx_CSR[29]) is set to
1, the timer interrupt flag TIF (TMRx_ISR[0]) will set to 1. If IE (TMRx_CSR[29]) is set to 0,
TIF (TMRx_ISR[0]) will not be asserted. In Continuous mode, changing the value of compare
register TCMP (TMRx_CMPR[23:0]) will not affect the current value of TDR
(TMRx_DR[23:0]), but it will clear timer counter value TDR (TMRx_DR[23:0]) to 0x0 in other
operation modes. User can change the compare register TCMP (TMRx_CMPR[23:0]) at any
time and the timer counter will keep up counting continuously to generate the new interrupt
event. So, this operating mode is called Continuous mode.

Following figure shows a Timer continuous mode sample.

TMRx_DR

= 0

Set

TMRx_CMPR

= 80

TMRx_DR = 80

and TIFx = 1

Clear TIFx as

0 and Set

TMRx_CMPR

 = 200

TMRx_DR from 2
24

-1 to 0

TMRx_DR

= 100

TMRx_DR

= 200

TMRx_DR

= 300

TMRx_DR

= 400

TMRx_DR

= 500

TMRx_DR =

2
24

-1

TMRx_DR = 200

and TIFx = 1

Clear TIFx as 0

and Set

TMRx_CMPR

 = 500

TMRx_DR = 500

and TIFx = 1

Clear TIFx as

0 and Set

TMRx_CMPR

 = 80

Aug. 14, 2018 Page 254 of 312 Rev 1.02

NUC970/N9H30

25 UART

25.1 Overview

The Universal Asynchronous Receiver/Transmitter (UART) performs a serial-to-parallel

conversion on data received from the peripheral, and a parallel-to-serial conversion on data

transmitted from the CPU.

Each UART channel supports 7 types of interrupts including (1). transmitter FIFO empty
interrupt (INT_THRE), (2). receiver threshold level reaching interrupt (INT_RDA), (3). line
status interrupt (parity error or framing error or break interrupt) (INT_RLS), (4). receiver buffer
time-out interrupt (INT_TOUT), (5). MODEM/Wake-up status interrupt (INT_MODEM), (6).
Buffer error interrupt (INT_BUF_ERR), and (7). LIN interrupt (INT_LIN).

The UART1/ 2/ 4/ 6/ 8/ 10 is built-in with a 64-byte transmitter FIFO (TX_FIFO) and a 64-byte
receiver FIFO (RX_FIFO) that reduces the number of interrupts presented to the CPU and the
UART0/ 3/ 5/ 7/ 9 are equipped 16-byte transmitter FIFO (TX_FIFO) and 16-byte receiver
FIFO (RX_FIFO). The CPU can read the status of the UART at any time during the operation.
The reported status information includes the type and condition of the transfer operations
being performed by the UART, as well as 4 error conditions (parity error, framing error, break
interrupt and buffer error) probably occur while receiving data.

The UART Controller supports wake-up system function. In power condition, when the
WAKE_CTS_EN(UA_CTL[8]) is set and the toggle of CTSn pin can wake-up the system.

The UART Controller includes a programmable baud rate generator capable of dividing clock
input by dividers to produce the serial clock that transmitter and receiver need.

The baud rate equation is: Baud Rate = UART_CLK / M * [BRD + 2]

where M and BRD are defined in Baud Rate Divider Register (UA_BAUD).

The following tables list the UART baud rate equations in the various conditions and UART
baud rate parameter settings.

Mode DIV_X_EN DIV_X_ONE DIVIDER X BRD Baud Rate Equation

0 Disable 0 Don’t Care A UART_CLK / [16 * (A+2)]

1 Enable 0 B A UART_CLK / [(B+1) * (A+2)] , B must >= 8

2 Enable 1 Don’t care A UART_CLK / (A+2), A must >=9

System Clock = Internal 22.1184 MHz high-speed oscillator

Baud Rate
Mode0 Mode1 Mode2

Parameter Register Parameter Register Parameter Register

921600 x x A=0,B=11 0x2B00_0000 A=22 0x3000_0016

Aug. 14, 2018 Page 255 of 312 Rev 1.02

NUC970/N9H30

460800 A=1 0x0000_0001
A=1,B=15
A=2,B=11

0x2F00_0001

0x2B00_0002
A=46 0x3000_002E

230400 A=4 0x0000_0004
A=4,B=15
A=6,B=11

0x2F00_0004

0x2B00_0006
A=94 0x3000_005E

115200 A=10 0x0000_000A
A=10,B=15
A=14,B=11

0x2F00_000A

0x2B00_000E
A=190 0x3000_00BE

57600 A=22 0x0000_0016
A=22,B=15
A=30,B=11

0x2F00_0016
0x2B00_001E

A=382 0x3000_017E

38400 A=34 0x0000_0022
A=62,B=8
A=46,B=11
A=34,B=15

0x2800_003E
0x2B00_002E
0x2F00_0022

A=574 0x3000_023E

19200 A=70 0x0000_0046
A=126,B=8
A=94,B=11
A=70,B=15

0x2800_007E
0x2B00_005E
0x2F00_0046

A=1150 0x3000_047E

9600 A=142 0x0000_008E
A=254,B=8
A=190,B=11
A=142,B=15

0x2800_00FE

0x2B00_00BE

0x2F00_008E

A=2302 0x3000_08FE

4800 A=286 0x0000_011E
A=510,B=8
A=382,B=11
A=286,B=15

0x2800_01FE

0x2B00_017E

0x2F00_011E

A=4606 0x3000_11FE

The UART controllers support auto-flow control function that uses two low-level signals, CTSn
(clear-to-send) and RTSn (request-to-send) to control the flow of data transfer between the
UART and external devices (ex: Modem). When auto-flow is enabled, the UART is not
allowed to receive data until the UART asserts RTSn (RTSn high) to external device. When
the number of bytes in the RX-FIFO equals the value of RTS_TRI_LEV (UA_FCR [19:16]),
the RTSn is de-asserted. The UART sends data out when UART controller detects CTSn is
asserted (CTSn high) from external device. If a valid asserted CTSn is not detected the UART
controller will not send data out.

The UART controllers also provides Serial IrDA (SIR, Serial Infrared) function (The IrDA mode
is selected by setting the (FUN_SEL(UA_FUN_SEL[2:0]) = 010) to select IrDA function). The
SIR specification defines a short-range infrared asynchronous serial transmission mode with
one start bit, 8 data bits, and 1 stop bit. The maximum data rate is 115.2 Kbps (half duplex).
The IrDA SIR block contains an IrDA SIR Protocol encoder/decoder. The IrDA SIR protocol is
half-duplex only. So it cannot transmit and receive data at the same time. The IrDA SIR
physical layer specifies a minimum 10ms transfer delay between transmission and reception.
This delay feature must be implemented by software.

For the NUC970/N9H30 series, another alternate function of UART controllers is RS-485 9-bit
mode function, and direction control provided by RTS pin to implement the function by
software. The RS-485 mode is selected by setting the (FUN_SEL(UA_FUN_SEL[2:0]) = 011)
to select RS-485 function. The RS-485 driver control is implemented using the RTS control
signal from an asynchronous serial port to enable the RS-485 driver. In RS-485 mode, many
characteristics of the RX and TX are the same as UART.

The alternate function of UART controllers is LIN (Local Interconnect Network) function. The
LIN mode is selected by setting the (FUN_SEL(UA_FUN_SEL[2:0]) = 001) to select LIN

Aug. 14, 2018 Page 256 of 312 Rev 1.02

NUC970/N9H30

mode. In LIN mode, one start bit and 8-bit data format with 1-bit stop bit are required in
accordance with the LIN standard.

25.2 Features

 ull du lex, asynchronous communications

 Se arate receive / transmit 6 / 6 bytes entry I O or data ayloads

 Su orts hardware auto low control/ low control unction (CTS, RTS) and rogrammable

RTS low control trigger level

 Programmable receiver bu er trigger level

 Su orts rogrammable baud-rate generator or each channel individually

 Su orts CTS wake-u unction

 Su orts -bit receiver bu er time-out detection unction

 Programmable transmitting data delay time between the last sto and the next start bit by

setting DLY(UA_TOR[:]) register

 Su orts break error, rame error, arity error and receive / transmit bu er over low

detect unction

 ully rogrammable serial-inter ace characteristics

 Programmable number o data bit, -, 6-, -, -bit character

 Programmable arity bit, even, odd, no arity or stick arity bit generation and detection

 Programmable sto bit, , . , or sto bit generation

 Su orts IrDA SIR unction mode

 Su orts LIN unction mode

 Su orts RS- unction mode

25.3 Block Diagram

Aug. 14, 2018 Page 257 of 312 Rev 1.02

NUC970/N9H30

11

10

01

00

ACLK

XIN

UCLK

UARTn_S

UART 0 _ EN (APBCLK [16])

UART 0 _ CLK

1/(UARTn_N+1)

UART 1 _ EN (APBCLK [17]) UART 1 _ CLK

UART 10 CLK UART 10 EN (APBCLK [26])
Legend :
XIN = 12 MHz external high speed crystal oscillator

(n=0~10)

(n=0~10)

25.4 Register Map
R: read only, W: write only, R/W: both read and write.

Register Offset R/W Description Reset Value

APB_BUS

UART / IrDA / LIN / RS-485 Device or Transceiver

UART_CLK
IrDA Decode

RX Shift Register

RX_FIFOTX_FIFO

TX Shift Register

IrDA Encode

Baud Rate

Generator

Control and Status

Registers

Serial Data InSerial Data Out

Baud OutBaud Out

Status & Control Status & Control

Aug. 14, 2018 Page 258 of 312 Rev 1.02

NUC970/N9H30

UART Base Address :

Channel0 : UART0_BA (Normal Speed) = 0xB800_0000

Channel1 : UART1_BA (High-speed) = 0xB800_0100

Channel2 : UART2_BA (High-speed) = 0xB800_0200

Channel3 : UART3_BA (Normal Speed) = 0xB800_0300

Channel4 : UART4_BA (High-speed) = 0xB800_0400

Channel5 : UART5_BA (Normal Speed) = 0xB800_0500

Channel6 : UART6_BA (High-speed) = 0xB800_0600

Channel7 : UART7_BA (Normal Speed) = 0xB800_0700

Channel8 : UART8_BA (High-speed) = 0xB800_0800

Channel9 : UART9_BA (Normal Speed) = 0xB800_0900

ChannelA : UART10_BA (High-speed) = 0xB800_0A00

UA_RBR UART_BA+0x00 R UART Receive Buffer Register Undefined

UA_THR UART_BA+0x00 W UART Transmit Holding Register Undefined

UA_IER UART_BA+0x04 R/W UART Interrupt Enable Register 0x0000_0000

UA_FCR UART_BA+0x08 R/W UART FIFO Control Register 0x0000_0000

UA_LCR UART_BA+0x0C R/W UART Line Control Register 0x0000_0000

UA_MCR UART_BA+0x10 R/W UART Modem Control Register 0x0000_0000

UA_MSR UART_BA+0x14 R/W UART Modem Status Register 0x0000_0000

UA_FSR UART_BA+0x18 R/W UART FIFO Status Register 0x1040_4000

UA_ISR UART_BA+0x1C R/W UART Interrupt Status Register 0x0000_0002

UA_TOR UART_BA+0x20 R/W UART Time-out Register 0x0000_0000

UA_BAUD UART_BA+0x24 R/W UART Baud Rate Divisor Register 0x0F00_0000

UA_IRCR UART_BA+0x28 R/W UART IrDA Control Register 0x0000_0040

UA_ALT_CSR UART_BA+0x2C R/W UART Alternate Control/Status Register 0x0000_000C

UA_FUN_SEL UART_BA+0x30 R/W UART Function Select Register 0x0000_0000

UA_LIN_CTL UART_BA+0x34 R/W UART LIN Control Register 0x000C_0000

UA_LIN_SR UART_BA+0x38 R/W UART LIN Status Register 0x0000_0000

UA_SC_CTL UART_BA+0x40 R/W UART SC Control Register 0x0000_0000

UA_SC_FSR UART_BA+0x44 R/W UART SC Flag Status Register 0x0000_0000

25.5 Functional Description

 Initializations 25.5.1

Before the transfer operation starts, the serial interface of UART must be programmed. The

Aug. 14, 2018 Page 259 of 312 Rev 1.02

NUC970/N9H30

driver should set the baud rate, parity bit, data bit and stop bit. If the transfer operation is done
triggered by interrupt, the TX, RX and RLS interrupts need to be enabled.

Start

Set Baud Rate

Set parity bit , Data bits, and

Stop bit

Set Rx FIFO Trigger Level

Reset Tx, Rx FIFO

Set Time-Out Register

Enable Tx, Rx, RLS interrupt

End

1. Write BRD, DIVIDER_X, DIV_X_ONE,

 DIV_XEN to decide baud rate

LCR Registers

6 BCB : Break Control Bit

5 SPE : Stick Parity Bit

4 EPE : Even Parity Enable

3 PBE : Parity Bit Enable

2 NSB : Number of "STOP" bit

0 One "STOP" bit

1 1.5 "STOP" bit

1:0 WLS : Word Length Select

00 5 bits

01 6 bits

10 7 bits

11 8 bits

FCR Register

7:6 RFITL : Rx FIFO Interupt Trigger Level

 UART0,3,5,7 UART1,2,4,6,8,10

00xx 1 Byte 0000 1Byte

01xx 4 Bytes 0001 4Bytes

10xx 8 Bytes 0010 8Bytes

11xx 14 Bytes 0011 14Bytes

 0100 30Bytes

 0101 46Bytes

 0110 62Bytes

2 TFR : Tx FIFO Reset

1 RFR : Rx FIFO Reset

IER Register

4 RTO_IEN: Rx Time-out Interrupt Enable

3 MODEM_IEN : Modem Status Interrupt Enable

2 RLS_IEN : Receive Line Status Interrupt Enable

1 THRE_IEN : Transmit Holding Register Empty Interrupt Enable

0 RDA_IEN : Receive Data Available Interrupt Enable .

IER Register

11 TIME_OUT_EN: Time-out counter Enable

TOR Register

7:0 TOIC: Counter for Timeout (unit by baudrate)

 IrDA Mode 25.5.2

The UART Controller provides Serial IrDA (SIR, Serial Infrared) transmit encoder and receive
decoder function. The IrDA_EN(UART_FUN_SEL[2:0] = 010) bit are used to select IrDA
function.

In IrDA O eration mode, the receive I O trigger level must be “ ” by setting
RFITL(UA_FCR[7:4]) = 0000 and the DIV_X_EN(UA_BAUD[29]) bit must be disabled in IrDA
mode operation (Mode 1).

Aug. 14, 2018 Page 260 of 312 Rev 1.02

NUC970/N9H30

Baud Rate = Clock / (16 * BRD), where BRD is Baud Rate Divider in BRD(UA_BAUD[15:0]).

The IrDA SIR Encoder/Decoder provides functionality which converts between UART data
stream and half duplex serial SIR interface.

Programming Sequence Example:

1. Set IrDA_EN(UART_ UN_SEL[:] =) = , to select IrDA unction.

2. Set INV_TX(UA_IRCR[]) = . (Not inverse TX out ut signal)

3. Set INV_RX(UA_IRCR[6]) = . (Inverse RX in ut signal)

4. Setting TX_SELECT (UA_IRCR []) to select hal - tandem as TX or RX.

 TX_SELECT(UA_IRCR[2]) = 1 select TX.

 TX_SELECT(UA_IRCR[2]) = 0 select RX.

 RS485 Function Mode 25.5.3

The UART supports RS-485 9-bit mode function. The RS-485 mode is selected by setting the
FUN_SEL(UA_FUN_SEL[2:0]) to select RS-485 function. The RS-485 driver control is
implemented using the RTS control signal from an asynchronous serial port to enable the RS-
485 driver. In RS-485 mode, many characteristics of the RX and TX are same as UART.

In RS-485 mode, the bit 9 will be configured as address bit. The controller can configuration

of it as an RS-485 addressable slave and the RS-485 master transmitter will identify an

address character by setting the parity (9th bit) to 1.

 or data characters, the bit 9 is set to “ ”. So tware can use UA_LCR register to control the 9-
th bit (When the PBE(UA_LCR[3]), EPE(UA_LCR[4]) and SPE(UA_LCR[5]) are set, the 9-th
bit is transmitted 0 and when PBE and SPE are set and EPE is cleared, the 9-th bit is
transmitted 1).

The Controller support three operation mode that is RS-485 Normal Multi-drop Operation
Mode (NMM), RS-485 Auto Address Detection Operation Mode (AAD) and RS-485 Auto
Direction Control Operation Mode (AUD), software can choose any operation mode by
programming UA_ALT_CSR register, and software can driving the transfer delay time
between the last stop bit leaving the TX-FIFO and the de-assertion of by setting
DLY(UA_TOR [15:8]).

25.5.3.1 RS-485 Normal Multidrop Operation Mode (NMM)

In RS-485 Normal Multi-drop operation mode, software must decide whether receiver will
ignore data be ore an address byte is detected (bit 9 = “ ”).

If software wants to receive any data before address byte detected, the flow is disable

RX_DIS(UA_FCR [8]) then enable RS485_NMM(UA_ALT_CSR[8]) and the receiver will

received any data. If an address byte is detected (bit9 =1), it will generator an interrupt to

CPU and software can decide whether enable or disable receiver to accept the following data

byte by setting RX_DIS.

Aug. 14, 2018 Page 261 of 312 Rev 1.02

NUC970/N9H30

When an address byte be detected (bit 9 = “ ”) by hardware, the address byte data will be

stored in the RX-FIFO. If the receiver is be enabled (RX_DIS(UA_FCR[8]) is low, all received

byte data will be accepted and stored in the RX-FIFO, and if the receiver is disabled

(RX_DIS(UA_FCR[8]) is high, all received byte data will be ignore until the next address byte

be detected.

If software disable receiver by setting (RX_DIS(UA_FCR[8]) bit, when a next address byte be
detected, the controller will clear the RX_DIS bit and the address byte data will be stored in
the RX-FIFO.

Program Sequence Example：

1. Program UN_SEL(UA_ UN_SEL[:]) to select RS- unction.

2. Program the RX_DIS(UA_ CR[]) bit to determine whether to store the received data

be ore an address byte is detected (bit 9 = “ ”).

3. Program the RS _NMM by setting RS _NMM(UA_ALT_CSR[]).

4. When an address byte is detected (bit 9 = “ ”), hardware will set RLS_IS(UA_ISR[]) and

RS _ADD_DET (UA_ SR[]) lag.

5. So tware can decide whether to acce t the ollowing data byte by setting

RX_DIS(UA_ CR[]).

6. Re eat ste and ste .

25.5.3.2 RS-485 Auto Address Detection Operation Mode (AAD)

In RS-485 Auto Address Detection Operation Mode, the receiver will ignore any data until an
address byte is detected (bit9 =1) and the address byte data match the
ADDR_MATCH(UA_ALT_CSR[31:24]) value. The address byte data will be stored in the RX-
FIFO. The all received byte data will be accepted and stored in the RX-FIFO until and
address byte data not match the ADDR_MATCH(UA_ALT_CSR[31:24]) value. In RS-485
AAD mode, don‟t ill any value to RX_DIS(UA_CTL[]) bit.

Program Sequence example：

1. Program UN_SEL(UART_ UN_SEL[:]) to select RS- unction.

2. Program the RS _AAD(UA_ALT_CSR[9]).

3. When an address byte is detected (bit9 = “ ”), hardware will com are the address byte

and the ADDR_MATCH (UA_ALT_CSR[:]) value.

4. I the address byte matches the ADDR_MATCH(UA_ALT_CSR[:]) value, hardware

will set RLS_IS(UART_ISR[]) and RS _ADD_DET (UA_ SR[]). And the receiver

will sorted address byte to I O and acce t the ollowing data trans er and stored data in

 I O until next address byte be detected.

Aug. 14, 2018 Page 262 of 312 Rev 1.02

NUC970/N9H30

5. However i the address byte does not match the ADDR_MATCH(UA_ALT_CSR[:])

value, hardware will ignored the address byte data and ignored the ollowing data

trans er.

6. Res ect ste and ste .

25.5.3.3 RS-485 Auto Direction Mode (AUD)

Another option function of RS-485 controllers is RS-485 auto direction control function. The
RS-485 driver control is implemented using the RTS control signal from an asynchronous
serial port to enable the RS-485 driver. The RTS line is connected to the RS-485 driver
enable such that setting the RTS line to high (logic 1) enables the RS-485 driver. Setting the
RTS line to low (logic 0) puts the driver into the tri-state condition. User can setting
LEV_RTS(UA_MCR[9]) to change the RTS driving level.

 LIN (Local Interconnection Network) Mode 25.5.4

The UART supports LIN function. The LIN mode is selected by setting the
(FUN_SEL(UA_FUN_SEL[2:0]) = 001).

According to the LIN protocol, all information is transmitted packed as frames; a frame consist
(provided by the master task) a header and a response (provided by a slave task). That is any
communication on the LIN bus is started by the master sending a header, followed by the
response. The header (provided by the master task) consists of a break field and sync field
followed by a frame identifier (frame ID). The frame identifier uniquely defines the purpose of
the frame. The slave task appointed for providing the response associated with the frame ID
and the response consists of a data field and a checksum field. The following diagram is the
structure of LIN function mode.

Data 1 Data 2 Data N Check
Sum

Protected
Identifier

Field

Header

Response

space
Response

Inter -

frame

space

Frame

Frame Slot

Synch
Field

Break
Field

LIN Transmission (TX) Program Sequence：

1. Select LIN unction mode by setting UA_ UN_SEL register

2. Select Break iled and Delimiter Length by setting LIN_BK L(UA_LIN_CTL[9: 6]) and

LIN_BS_LEN(UA_LIN_CTL[:]).

Aug. 14, 2018 Page 263 of 312 Rev 1.02

NUC970/N9H30

3. Set LIN_TX_EN(UA_ALT_CSR[]) to start trans er. (When transmitter header ield (it may

be “break” or “break + sync” or “break + sync + rame ID” selected by

LIN_HEAD_SEL(UA_LIN_CTL[:]) ield) trans er o eration inished, this bit will be

cleared automatically).

4. Request sync ield transmission by writing x into UA_THR register.

5. Request header rame ID transmission by writing the rotected identi ier value in the

UA_THR register.

6. Wait or the TE_ LAG(UA_ SR[]) lag

7. Write N bytes data and checksum value to UA_THR register. Re eat ste and ste 6.

LIN Receive (RX) Program Sequence：

1. Select LIN unction mode by setting UA_ UN_SEL register

2. Set LIN_TX_EN(UA_ALT_CSR[]) = to enable LIN RX mode

3. Wait LIN_BKDET_ (UA_LIN_SR[]) lag. (This bit is set by hardware when a break is

detected).

4. Wait or the RDA_I (UA_ISR[]) lag and read back the UA_RBR register

Aug. 14, 2018 Page 264 of 312 Rev 1.02

NUC970/N9H30

26 USB 2.0 Device Controller

26.1 Overview

The USB device controller interfaces the AHB bus and the UTMI bus. The USB controller
contains both the AHB master interface and AHB slave interface. CPU programs the USB
controller registers through the AHB slave interface. For IN or OUT transfer, the USB device
controller needs to write data to memory or read data from memory through the AHB master
interface. The USB device controller is compliant with USB 2.0 specification and it contains 12
configurable endpoints in addition to control endpoint. These endpoints could be configured to
BULK, INTERRUPT or ISO. The USB device controller has a built-in DMA to relieve the load
of CPU.

26.2 Features

 USB Specification reversion 2.0 compliant

 Supports 12 configurable endpoints in addition to Control Endpoint

 Each of the endpoints can be Isochronous, Bulk or Interrupt and either IN or OUT
direction

 Three different operation modes of an in-endpoint － Auto Validation mode, Manual

Validation mode, Fly mode

 Supports DMA operation

 4096 Bytes Configurable RAM used as endpoint buffer

 Supports Endpoint Maximum Packet Size up to 1024 bytes

26.3 Block Diagram

Aug. 14, 2018 Page 265 of 312 Rev 1.02

NUC970/N9H30

USB 2.0
Protocol

controller

4K Buffer

USB
transceiver

UTMI
interface

12-EPs

DMA
registers

Control-
EP

Registers

USB Device Controller

USB_DP

USB_DM

AHB Bus

26.4 Register Map

R: read only, W: write only, R/W: both read and write

Register Offset R/W Description Reset Value

USBD Base Address:

USBD_BA = 0x4001_9000

USBD_GINTSTS USBD_BA+0x000 R Interrupt Status Low Register 0x0000_0000

USBD_GINTEN USBD_BA+0x008 R/W Interrupt Enable Low Register 0x0000_0001

USBD_BUSINTSTS USBD_BA+0x010 R/W USB Bus Interrupt Status Register 0x0000_0000

USBD_BUSINTEN USBD_BA+0x014 R/W USB Bus Interrupt Enable Register 0x0000_0040

USBD_OPER USBD_BA+0x018 R/W USB Operational Register 0x0000_0002

USBD_FRAMECNT USBD_BA+0x01C R USB Frame Count Register 0x0000_0000

USBD_FADDR USBD_BA+0x020 R/W USB Function Address Register 0x0000_0000

USBD_TEST USBD_BA+0x024 R/W USB Test Mode Register 0x0000_0000

USBD_CEPDAT USBD_BA+0x028 R/W Control-Endpoint Data Buffer 0x0000_0000

USBD_CEPCTL USBD_BA+0x02C R/W Control-Endpoint Control and Status 0x0000_0000

USBD_CEPINTEN USBD_BA+0x030 R/W Control-Endpoint Interrupt Enable 0x0000_0000

USBD_CEPINTSTS USBD_BA+0x034 R/W Control-Endpoint Interrupt Status 0x0000_1800

USBD_CEPTXCNT USBD_BA+0x038 R/W Control-Endpoint In-transfer Data Count 0x0000_0000

USBD_CEPRXCNT USBD_BA+0x03C R Control-Endpoint Out-transfer Data Count 0x0000_0000

USBD_CEPDATCNT USBD_BA+0x040 R Control-Endpoint data count 0x0000_0000

USBD_SETUP1_0 USBD_BA+0x044 R Setup1 & Setup0 bytes 0x0000_0000

Aug. 14, 2018 Page 266 of 312 Rev 1.02

NUC970/N9H30

USBD_SETUP3_2 USBD_BA+0x048 R Setup3 & Setup2 Bytes 0x0000_0000

USBD_SETUP5_4 USBD_BA+0x04C R Setup5 & Setup4 Bytes 0x0000_0000

USBD_SETUP7_6 USBD_BA+0x050 R Setup7 & Setup6 Bytes 0x0000_0000

USBD_CEPBUFSTART USBD_BA+0x054 R/W Control Endpoint RAM Start Address Register 0x0000_0000

USBD_CEPBUFEND USBD_BA+0x058 R/W Control Endpoint RAM End Address Register 0x0000_0000

USBD_DMACTL USBD_BA+0x05C R/W DMA Control Status Register 0x0000_0000

USBD_DMACNT USBD_BA+0x060 R/W DMA Count Register 0x0000_0000

USBD_EPADAT USBD_BA+0x064 R/W Endpoint A Data Register 0x0000_0000

USBD_EPAINTSTS USBD_BA+0x068 R/W Endpoint A Interrupt Status Register 0x0000_0003

USBD_EPAINTEN USBD_BA+0x06C R/W Endpoint A Interrupt Enable Register 0x0000_0000

USBD_EPADATCNT USBD_BA+0x070 R Endpoint A Data Available Count Register 0x0000_0000

USBD_EPARSPCTL USBD_BA+0x074 R/W Endpoint A Response Control Register 0x0000_0000

USBD_EPAMPS USBD_BA+0x078 R/W Endpoint A Maximum Packet Size Register 0x0000_0000

USBD_EPATXCNT USBD_BA+0x07C R/W Endpoint A Transfer Count Register 0x0000_0000

USBD_EPACFG USBD_BA+0x080 R/W Endpoint A Configuration Register 0x0000_0012

USBD_EPABUFSTART USBD_BA+0x084 R/W Endpoint A RAM Start Address Register 0x0000_0000

USBD_EPABUFEND USBD_BA+0x088 R/W Endpoint A RAM End Address Register 0x0000_0000

USBD_EPBDAT USBD_BA+0x08C R/W Endpoint B Data Register 0x0000_0000

USBD_EPBINTSTS USBD_BA+0x090 R/W Endpoint B Interrupt Status Register 0x0000_0003

USBD_EPBINTEN USBD_BA+0x094 R/W Endpoint B Interrupt Enable Register 0x0000_0000

USBD_EPBDATCNT USBD_BA+0x098 R Endpoint B Data Available Count Register 0x0000_0000

USBD_EPBRSPCTL USBD_BA+0x09C R/W Endpoint B Response Control Register 0x0000_0000

USBD_EPBMPS USBD_BA+0x0A0 R/W Endpoint B Maximum Packet Size Register 0x0000_0000

USBD_EPBTXCNT USBD_BA+0x0A4 R/W Endpoint B Transfer Count Register 0x0000_0000

USBD_EPBCFG USBD_BA+0x0A8 R/W Endpoint B Configuration Register 0x0000_0022

USBD_EPBBUFSTART USBD_BA+0x0AC R/W Endpoint B RAM Start Address Register 0x0000_0000

USBD_EPBBUFEND USBD_BA+0x0B0 R/W Endpoint B RAM End Address Register 0x0000_0000

USBD_EPCDAT USBD_BA+0x0B4 R/W Endpoint C Data Register 0x0000_0000

USBD_EPCINTSTS USBD_BA+0x0B8 R/W Endpoint C Interrupt Status Register 0x0000_0003

USBD_EPCINTEN USBD_BA+0x0BC R/W Endpoint C Interrupt Enable Register 0x0000_0000

USBD_EPCDATCNT USBD_BA+0x0C0 R Endpoint C Data Available Count Register 0x0000_0000

USBD_EPCRSPCTL USBD_BA+0x0C4 R/W Endpoint C Response Control Register 0x0000_0000

USBD_EPCMPS USBD_BA+0x0C8 R/W Endpoint C Maximum Packet Size Register 0x0000_0000

USBD_EPCTXCNT USBD_BA+0x0CC R/W Endpoint C Transfer Count Register 0x0000_0000

USBD_EPCCFG USBD_BA+0x0D0 R/W Endpoint C Configuration Register 0x0000_0032

Aug. 14, 2018 Page 267 of 312 Rev 1.02

NUC970/N9H30

USBD_EPCBUFSTART USBD_BA+0x0D4 R/W Endpoint C RAM Start Address Register 0x0000_0000

USBD_EPCBUFEND USBD_BA+0x0D8 R/W Endpoint C RAM End Address Register 0x0000_0000

USBD_EPDDAT USBD_BA+0x0DC R/W Endpoint D Data Register 0x0000_0000

USBD_EPDINTSTS USBD_BA+0x0E0 R/W Endpoint D Interrupt Status Register 0x0000_0003

USBD_EPDINTEN USBD_BA+0x0E4 R/W Endpoint D Interrupt Enable Register 0x0000_0000

USBD_EPDDATCNT USBD_BA+0x0E8 R Endpoint D Data Available Count Register 0x0000_0000

USBD_EPDRSPCTL USBD_BA+0x0EC R/W Endpoint D Response Control Register 0x0000_0000

USBD_EPDMPS USBD_BA+0x0F0 R/W Endpoint D Maximum Packet Size Register 0x0000_0000

USBD_EPDTXCNT USBD_BA+0x0F4 R/W Endpoint D Transfer Count Register 0x0000_0000

USBD_EPDCFG USBD_BA+0x0F8 R/W Endpoint D Configuration Register 0x0000_0042

USBD_EPDBUFSTART USBD_BA+0x0FC R/W Endpoint D RAM Start Address Register 0x0000_0000

USBD_EPDBUFEND USBD_BA+0x100 R/W Endpoint D RAM End Address Register 0x0000_0000

USBD_EPEDAT USBD_BA+0x104 R/W Endpoint E Data Register 0x0000_0000

USBD_EPEINTSTS USBD_BA+0x108 R/W Endpoint E Interrupt Status Register 0x0000_0003

USBD_EPEINTEN USBD_BA+0x10C R/W Endpoint E Interrupt Enable Register 0x0000_0000

USBD_EPEDATCNT USBD_BA+0x110 R Endpoint E Data Available Count Register 0x0000_0000

USBD_EPERSPCTL USBD_BA+0x114 R/W Endpoint E Response Control Register 0x0000_0000

USBD_EPEMPS USBD_BA+0x118 R/W Endpoint E Maximum Packet Size Register 0x0000_0000

USBD_EPETXCNT USBD_BA+0x11C R/W Endpoint E Transfer Count Register 0x0000_0000

USBD_EPECFG USBD_BA+0x120 R/W Endpoint E Configuration Register 0x0000_0052

USBD_EPEBUFSTART USBD_BA+0x124 R/W Endpoint E RAM Start Address Register 0x0000_0000

USBD_EPEBUFEND USBD_BA+0x128 R/W Endpoint E RAM End Address Register 0x0000_0000

USBD_EPFDAT USBD_BA+0x12C R/W Endpoint F Data Register 0x0000_0000

USBD_EPFINTSTS USBD_BA+0x130 R/W Endpoint F Interrupt Status Register 0x0000_0003

USBD_EPFINTEN USBD_BA+0x134 R/W Endpoint F Interrupt Enable Register 0x0000_0000

USBD_EPFDATCNT USBD_BA+0x138 R Endpoint F Data Available Count Register 0x0000_0000

USBD_EPFRSPCTL USBD_BA+0x13C R/W Endpoint F Response Control Register 0x0000_0000

USBD_EPFMPS USBD_BA+0x140 R/W Endpoint F Maximum Packet Size Register 0x0000_0000

USBD_EPFTXCNT USBD_BA+0x144 R/W Endpoint F Transfer Count Register 0x0000_0000

USBD_EPFCFG USBD_BA+0x148 R/W Endpoint F Configuration Register 0x0000_0062

USBD_EPFBUFSTART USBD_BA+0x14C R/W Endpoint F RAM Start Address Register 0x0000_0000

USBD_EPFBUFEND USBD_BA+0x150 R/W Endpoint F RAM End Address Register 0x0000_0000

USBD_EPGDAT USBD_BA+0x154 R/W Endpoint G Data Register 0x0000_0000

USBD_EPGINTSTS USBD_BA+0x158 R/W Endpoint G Interrupt Status Register 0x0000_0003

USBD_EPGINTEN USBD_BA+0x15C R/W Endpoint G Interrupt Enable Register 0x0000_0000

Aug. 14, 2018 Page 268 of 312 Rev 1.02

NUC970/N9H30

USBD_EPGDATCNT USBD_BA+0x160 R Endpoint G Data Available Count Register 0x0000_0000

USBD_EPGRSPCTL USBD_BA+0x164 R/W Endpoint G Response Control Register 0x0000_0000

USBD_EPGMPS USBD_BA+0x168 R/W Endpoint G Maximum Packet Size Register 0x0000_0000

USBD_EPGTXCNT USBD_BA+0x16C R/W Endpoint G Transfer Count Register 0x0000_0000

USBD_EPGCFG USBD_BA+0x170 R/W Endpoint G Configuration Register 0x0000_0072

USBD_EPGBUFSTART USBD_BA+0x174 R/W Endpoint G RAM Start Address Register 0x0000_0000

USBD_EPGBUFEND USBD_BA+0x178 R/W Endpoint G RAM End Address Register 0x0000_0000

USBD_EPHDAT USBD_BA+0x17C R/W Endpoint H Data Register 0x0000_0000

USBD_EPHINTSTS USBD_BA+0x180 R/W Endpoint H Interrupt Status Register 0x0000_0003

USBD_EPHINTEN USBD_BA+0x184 R/W Endpoint H Interrupt Enable Register 0x0000_0000

USBD_EPHDATCNT USBD_BA+0x188 R Endpoint H Data Available Count Register 0x0000_0000

USBD_EPHRSPCTL USBD_BA+0x18C R/W Endpoint H Response Control Register 0x0000_0000

USBD_EPHMPS USBD_BA+0x190 R/W Endpoint H Maximum Packet Size Register 0x0000_0000

USBD_EPHTXCNT USBD_BA+0x194 R/W Endpoint H Transfer Count Register 0x0000_0000

USBD_EPHCFG USBD_BA+0x198 R/W Endpoint H Configuration Register 0x0000_0082

USBD_EPHBUFSTART USBD_BA+0x19C R/W Endpoint H RAM Start Address Register 0x0000_0000

USBD_EPHBUFEND USBD_BA+0x1A0 R/W Endpoint H RAM End Address Register 0x0000_0000

USBD_EPIDAT USBD_BA+0x1A4 R/W Endpoint I Data Register 0x0000_0000

USBD_EPIINTSTS USBD_BA+0x1A8 R/W Endpoint I Interrupt Status Register 0x0000_0003

USBD_EPIINTEN USBD_BA+0x1AC R/W Endpoint I Interrupt Enable Register 0x0000_0000

USBD_EPIDATCNT USBD_BA+0x1B0 R Endpoint I Data Available Count Register 0x0000_0000

USBD_EPIRSPCTL USBD_BA+0x1B4 R/W Endpoint I Response Control Register 0x0000_0000

USBD_EPIMPS USBD_BA+0x1B8 R/W Endpoint I Maximum Packet Size Register 0x0000_0000

USBD_EPITXCNT USBD_BA+0x1BC R/W Endpoint I Transfer Count Register 0x0000_0000

USBD_EPICFG USBD_BA+0x1C0 R/W Endpoint I Configuration Register 0x0000_0092

USBD_EPIBUFSTART USBD_BA+0x1C4 R/W Endpoint I RAM Start Address Register 0x0000_0000

USBD_EPIBUFEND USBD_BA+0x1C8 R/W Endpoint I RAM End Address Register 0x0000_0000

USBD_EPJDAT USBD_BA+0x1CC R/W Endpoint J Data Register 0x0000_0000

USBD_EPJINTSTS USBD_BA+0x1D0 R/W Endpoint J Interrupt Status Register 0x0000_0003

USBD_EPJINTEN USBD_BA+0x1D4 R/W Endpoint J Interrupt Enable Register 0x0000_0000

USBD_EPJDATCNT USBD_BA+0x1D8 R Endpoint J Data Available Count Register 0x0000_0000

USBD_EPJRSPCTL USBD_BA+0x1DC R/W Endpoint J Response Control Register 0x0000_0000

USBD_EPJMPS USBD_BA+0x1E0 R/W Endpoint J Maximum Packet Size Register 0x0000_0000

USBD_EPJTXCNT USBD_BA+0x1E4 R/W Endpoint J Transfer Count Register 0x0000_0000

USBD_EPJCFG USBD_BA+0x1E8 R/W Endpoint J Configuration Register 0x0000_00A2

Aug. 14, 2018 Page 269 of 312 Rev 1.02

NUC970/N9H30

USBD_EPJBUFSTART USBD_BA+0x1EC R/W Endpoint J RAM Start Address Register 0x0000_0000

USBD_EPJBUFEND USBD_BA+0x1F0 R/W Endpoint J RAM End Address Register 0x0000_0000

USBD_EPKDAT USBD_BA+0x1F4 R/W Endpoint K Data Register 0x0000_0000

USBD_EPKINTSTS USBD_BA+0x1F8 R/W Endpoint K Interrupt Status Register 0x0000_0003

USBD_EPKINTEN USBD_BA+0x1FC R/W Endpoint K Interrupt Enable Register 0x0000_0000

USBD_EPKDATCNT USBD_BA+0x200 R Endpoint K Data Available Count Register 0x0000_0000

USBD_EPKRSPCTL USBD_BA+0x204 R/W Endpoint K Response Control Register 0x0000_0000

USBD_EPKMPS USBD_BA+0x208 R/W Endpoint K Maximum Packet Size Register 0x0000_0000

USBD_EPKTXCNT USBD_BA+0x20C R/W Endpoint K Transfer Count Register 0x0000_0000

USBD_EPKCFG USBD_BA+0x210 R/W Endpoint K Configuration Register 0x0000_00B2

USBD_EPKBUFSTART USBD_BA+0x214 R/W Endpoint K RAM Start Address Register 0x0000_0000

USBD_EPKBUFEND USBD_BA+0x218 R/W Endpoint K RAM End Address Register 0x0000_0000

USBD_EPLDAT USBD_BA+0x21C R/W Endpoint L Data Register 0x0000_0000

USBD_EPLINTSTS USBD_BA+0x220 R/W Endpoint L Interrupt Status Register 0x0000_0003

USBD_EPLINTEN USBD_BA+0x224 R/W Endpoint L Interrupt Enable Register 0x0000_0000

USBD_EPLDATCNT USBD_BA+0x228 R Endpoint L Data Available Count Register 0x0000_0000

USBD_EPLRSPCTL USBD_BA+0x22C R/W Endpoint L Response Control Register 0x0000_0000

USBD_EPLMPS USBD_BA+0x230 R/W Endpoint L Maximum Packet Size Register 0x0000_0000

USBD_EPLTXCNT USBD_BA+0x234 R/W Endpoint L Transfer Count Register 0x0000_0000

USBD_EPLCFG USBD_BA+0x238 R/W Endpoint L Configuration Register 0x0000_00C2

USBD_EPLBUFSTART USBD_BA+0x23C R/W Endpoint L RAM Start Address Register 0x0000_0000

USBD_EPLBUFEND USBD_BA+0x240 R/W Endpoint L RAM End Address Register 0x0000_0000

USBD_DMAADDR USBD_BA+0x700 R/W AHB DMA Address Register 0x0000_0000

USBD_PHYCTL USBD_BA+0x704 R/W USB PHY Control Register 0x0000_0420

26.5 Functional Description

The USB device controller is compliant with USB 2.0 specification. User can simulates the
device as a mass storage card reader, virtual COM port, etc. Refer to “USB Class
Specification” for more detail.

There are three different modes for IN-transfer operation:

 Auto-Validation Mode – When transfer data length is equal to the maximum packet size,
user can choose this mode. (Such as Bulk pipe transfer).

 Manual-Validation Mode – This mode requires intervention of CPU for each transfer.
When transfer data length is not fixed, user can choose this mode. (Such as Interrupt
pipe transfer).

Aug. 14, 2018 Page 270 of 312 Rev 1.02

NUC970/N9H30

 Fly Mode – This mode is best suited for isochronous data transfer, where the speed of
data transfer is more important than the packet size. (Such as Isochronous pipe transfer).

The following sections will be a USB mass storage device as an example. This device needs
two endpoints – Endpoint A is Bulk IN, Endpoint B is Bulk Out.

 Initialize 26.5.1

USB device controller initialize, please follow the steps below:

1. Set multiple function pin GPH0. Fill 0x7 to SYS_GPH_MFPL register GPH0 bit.

2. Set CLK_HCLKEN register USBD bit.

3. Set USBD_PHYCTL register PHYEN bit to enable USB PHY.

4. Fill 0x8 to USBD_EPAMPS register. Polling USBD_EPAMPS register until read data is
0x8. It means PHY clock stable.

5. Configure endpoint A to Bulk-IN type, endpoint number 1.

(1) Set USBD_EPARSPCTL register MODE bit to 0 to select auto-validation mode.

(2) Fill 512 to USBD_EPAMPS register. It means the maximum packet size is 512
bytes.

(3) Set USBD_EPACFG register EPNUM bit to 1, EPDIR bit to 1, EPTYPE bit to 01b
and EPEN bit to 1.

(4) Fill 0x200 to USBD_EPABUFSTART register. 0x3FF to USBD_EPABUFEND
register. It means this endpoint FIFO length is 512 bytes.

6. Configure endpoint B to Bulk-Out type, endpoint number 2.

(1) Set USBD_EPBINTEN register RXPKIEN bit to enable data receive interrupt.

(2) Set USBD_EPBRSPCTL register MODE bit to 0 to select auto-validation mode.

(3) Fill 512 to USBD_EPBMPS register. It means the maximum packet size is 512
bytes.

(4) Set USBD_EPBCFG register EPNUM bit to 2, EPDIR bit to 0, EPTYPE bit to 01b
and EPEN bit to 1.

(5) Fill 0x400 to USBD_EPBBUFSTART register. 0x5FF to USBD_EPBBUFEND
register. It means this endpoint FIFO length is 512 bytes.

7. Set USBD_GINTEN register USBIEN, CEPIEN, EPAIEN and EPBIEN bit to enable USB
bus, control endpoint, endpoint A and endpoint B interrupt.

8. Set USBD_BUSINTEN register RSTIEN, RESUMEIEN, DMADONEIEN and
VBUSDETIEN bit to enable USB reset, resume, DMA complete and floating detect
interrupt.

9. Set USBD_OPER register HISPDEN bit to enable high speed mode.

10. Clear USBD_FADDR register.

Aug. 14, 2018 Page 271 of 312 Rev 1.02

NUC970/N9H30

11. Configure control endpoint (EP0)

(1) Fill 0x0 to USBD_CEPBUFSTART register. 0x7F to USBD_CEPBUFEND register. It
means this endpoint FIFO length is 128 bytes.

(2) Set USBD_CEPINTEN register SETUPPKIEN and STSDONEIEN bit to enable EP0
setup packet and setup status done interrupt.

12. Polling USBD_PHYCTL register VBUSDET bit until it was set. It means device connect to
host. Set USBD_PHYCTL register DPPUEN bit to clear SE0.

 Interrupt Service Routine 26.5.2

USBD control interrupt processing as follow:

1. Read USBD_GINTSTS register and USBD_GINTEN register to mask. User can get the
interrupt information.

2. Read USBD_BUSINTSTS register and USBD_BUSINTEN register to mask. If match, it
means USB BUS interrupt occurred.

3. Read USBD_CEPINTSTS register and USBD_CEPINTEN register to mask. If match, it
means control endpoint interrupt occurred.

4. Read USBD_EPAINTSTS register and USBD_EPAINTEN register to mask. It match, it
means endpoint A interrupt occurred.

5. Read USBD_EPBINTSTS register and USBD_EPBINTEN register to mask. If match, it
means endpoint B interrupt occurred.

 Standard Request 26.5.3

USBD Controller processes Standard Request:

1. Control endpoint setup packet interrupt occurred.

2. Read USBD_SETUP1_0, USBD_SETUP3_2, USBD_SETUP5_4 and USBD_SETUP7_6
register to get the setup packet information.

3. Analysis of the request. It supports, clear the NAK. (Set USBD_CEPCTL register
NAKCLR bit) and wait the status complete. Otherwise, send STALL to host. (Set
USBD_CEPCTL register STALLEN bit)

 Set Address Request 26.5.4

USBD controller processes the “Set Address” request:

1. Control endpoint setup packet interrupt occurred.

2. Read USBD_SETUP1_0, USBD_SETUP3_2, USBD_SETUP5_4 and USBD_SETUP7_6

Aug. 14, 2018 Page 272 of 312 Rev 1.02

NUC970/N9H30

register to get the setup packet information.

(1) Get bmRequestType from USBD_SETUP1_0 register low byte.

(2) Get bRequest from USBD_SETUP1_0 register high byte.

(3) Get wValue from USBD_SETUP3_2 register.

(4) Get wIndex from USBD_SETUP5_4 register.

(5) Get wLength from USBD_SETUP7_6 register.。

3. Get the address from wValue.

4. Clear NAK (Set USBD_CEPCTL register NAKCLR bit)

5. Set USBD_CEPINTSTS register STSDONEIF bit to 1 to clear status complete interrupt.
Set USBD_CEPINTEN register STSDONEIEN bit to 1 to enable interrupt.

6. Waiting for status complete interrupt occurred.

(1) Set USBD_CEPINTEN register SETUPPKIEN bit to enable setup packet interrupt.

(2) Fill address to USBD_FADDR register.

(3) Set USBD_CEPINTSTS register STSDONEIF bit to 1 to clear status complete
interrupt.

 Get Descriptor 26.5.5

USBD controller processes the “Get Descriptor” request:

1. Control endpoint setup packet interrupt occurred.

2. Read USBD_SETUP1_0, USBD_SETUP3_2, USBD_SETUP5_4 and USBD_SETUP7_6
register to get the setup packet information.

(1) Get bmRequestType from USBD_SETUP1_0 register low byte.

(2) Get bRequest from USBD_SETUP1_0 register high byte.

(3) Get wValue from USBD_SETUP3_2 register.

(4) Get wIndex from USBD_SETUP5_4 register.

(5) Get wLength from USBD_SETUP7_6 register.

3. Get the descriptor type from wValue.

4. Check wLength and descriptor length.

5. Fill 1 to USBD_CEPINTSTS register STSDONEIF and INTKIF bit to clear interrupt. Set
USBD_CEPINTEN register STSDONEIEN and INTKIEN bit to enable interrupt.

6. Waiting for IN-token interrupt occurred.

(1) Fill 1 to USBD_CEPINTSTS register STSDONEIF and TXPKIF bit to clear interrupt.
Set USBD_CEPINTEN register STSDONEIEN and TXPKIEN bit to enable interrupt.

(2) Write descriptor data into USBD_CEPDAT register.

Aug. 14, 2018 Page 273 of 312 Rev 1.02

NUC970/N9H30

(3) Write descriptor length into USBD_CEPTXCNT register to trigger data out.

7. Fill 1 to USBD_CEPINTSTS register INTKIF bit to clear interrupt.

8. Waiting for TX interrupt occurred.

(1) Fill USBD_CEPINTSTS register STSDONEIF and TXPKIF bit to clear interrupt.

(2) Clear NAK (Set USBD_CEPCTL register NAKCLR bit).

(3) Fill 1 to USBD_CEPINTSTS register STSDONEIF bit to clear status complete
interrupt.

(4) Set USBD_CEPINTEN register STSDONEIEN and SETUPPKIEN bit to enable
interrupt.

9. Waiting for status complete interrupt occurred.

(1) Set USBD_CEPINTEN register SETUPPKIEN bit to enable setup packet interrupt.

(2) Fill 1 to USBD_CEPINTSTS register STSDONEIF bit to clear status complete
interrupt.

 IN Transmission 26.5.6

USBD controller handles IN transmission through DMA:

1. Set USBD_DMACTL register DMARD bit to 1 for DMA read. Fill the endpoint number to
USBD_DMACTL register EPNUM bit.

2. Check the transfer length. If transfer length is greater than DMA count, user needs to
separate the transmission.

3. Set USBD_EPxINTEN register TXPKIEN bit to enable the data transmit interrupt.

4. Check whether FIFO empty or not. (USBD_EPxINTSTS register BUFEMPTYIF bit is 1).

5. Set USBD_BUSINTEN register RSTIEN, SUSPENDIEN and DMADONEIEN bit to enable
USB reset, suspend and DMA complete interrupts.

6. Write physical source address to USBD_DMAADDR register.

7. Write transfer count to USBD_DMACNT register.

8. Set SBD_DMACTL register DMAEN bit to trigger DMA.

9. Waiting for DMA complete interrupt occurred.

(1) Set USBD_BUSINTSTS register DMADONEIF bit to clear interrupt.

(2) Check whether last packet is less than maximum packet size. If so, set
USBD_EPxRSPCTL register SHORTTXEN bit to output the last packet.

 OUT Transmission 26.5.7

USBD controller handles OUT transmission through DMA:

Aug. 14, 2018 Page 274 of 312 Rev 1.02

NUC970/N9H30

1. Set USBD_DMACTL register DMARD bit to 0 for DMA write. Fill endpoint number to
USBD_DMACTL register EPNUM bit.

2. Check the transfer length. If transfer length is greater than DMA count, user needs to
separate the transmission.

3. Set USBD_BUSINTEN register RSTIEN, SUSPENDIEN and DMADONEIEN bit to enable
USB reset, suspend and DMA complete interrupts.

4. Write physical target address to USBD_DMAADDR register.

5. Write transfer count to USBD_DMACNT register.

6. Set SBD_DMACTL register DMAEN bit to trigger DMA.

7. Waiting for DMA complete interrupt occurred.

(1) Set USBD_BUSINTSTS register DMADONEIF bit to clear interrupt.

(2) Check whether received length is mass storage CBW or data length.

(3) Set USBD_EPxINTEN register RXPKIEN bit to enable receive packet interrupt.

8. Waiting for received data interrupt occurred. Clear USBD_EPxINTEN register RXPKIEN
bit to disable receive data.

Aug. 14, 2018 Page 275 of 312 Rev 1.02

NUC970/N9H30

27 USB Host Controller

27.1 Overview

The Universal Serial Bus (USB) is a fast, bi-directional, isochronous, low-cost, dynamically
attachable serial interface standard intended for modem, scanners, PDAs, keyboards, mice,
and digital imaging devices. The USB is a 4-wire serial cable bus that supports serial data
exchange between a Host Controller and a network of peripheral devices. The attached
peripherals share USB bandwidth through a host-scheduled, token-based protocol.
Peripherals may be attached, configured, used, and detached, while the host and other
peripherals continue operation (i.e. hot plug and unplug is supported).

The design purpose of USB standard is to achieve a flexible, plug-and-play of the USB device
connectivity network. In any USB connectivity network, there will only be an USB host
controller, but can connect up to 127 USB devices and hubs.

27.2 Features

 Fully compliant with USB Revision 2.0 specification.

 Enhanced Host Controller Interface (EHCI) Revision 1.0 compatible.

 Open Host Controller Interface (OHCI) Revision 1.0 compatible.

 Supports high-speed (480Mbps), full-speed (12Mbps) and low-speed (1.5Mbps) USB

devices.

 Supports Control, Bulk, Interrupt, Isochronous and Split transfers.

 Integrated a port routing logic to route full/low speed device to OHCI controller.

 Built-in DMA for real-time data transfer.

27.3 Block Diagram

Aug. 14, 2018 Page 276 of 312 Rev 1.02

NUC970/N9H30

EHCI Host Controller
USB 1.1 Host Controller

(OHCI)

AHB-2 (System Memory Access)

USB Bus

Port Routing Logic

AHB1 (Register Access)

USB 2.0 Host controller

Port 1 Port 2 Port 1 Port 2

Port 1 Port 2

 Basic Configuration 27.3.1

USB host clock source is derived from PLL and USB PHY. User has to set the PLL related
configurations before USB host enabled. Set the USBH(CLK_HCLKEN[18]) bit to enable USB
host clock and 4-bit pre-scale USB_N(CLK_DIVCTL2[11:8]) to generate proper 48 MHz clock
to USB host. In addition, USB host needs a clock from USB PHY for USB 2.0 high speed
operation. User has to set SUSPEND(USBPCR0[8] and USBPCR1[8]) high to enable USB
PHY. Then, user has to check if

CLKVALID(USBPCR0[11]) is high before starting to use USB host controller.

 EHCI Controller 27.3.2

The EHCI is interfaced with the system through AHB interface. Whenever the CPU wants to
initiate a register read or register write, it uses the AHB slave I/F signals and performs the
necessary operation (register read writes). The CPU acts as a bus master, having initiated
this transfer. At that time, EHCI acts as a target and responds to the transfer initiated by the
system software. For example, if the CPU wants to write into one of the memory mapped
registers of EHCI, it says the address and value to be written into that addressed register.
EHCI targets the register by using that address and fills the register with the value specified

Aug. 14, 2018 Page 277 of 312 Rev 1.02

NUC970/N9H30

by the software. If it is a register read, EHCI gets the value from the addressed register and
puts it on the system bus.

Likewise, when the EHCI wants to perform a data transfer, it acts as a master and initiates a
data transfer. At that time, the system memory acts as a bus target. EHCI, as a master can
perform two types of data transfers, from EHCI to the system memory and from system
memory to the EHCI. When the EHCI wants the data to be moved from the downstream
USB2.0 device to the system memory, it initiates a memory write transfer by accessing the
memory interfacing signals. EHCI writes the control word (write), data and data count to be
moved to the system memory. The memory controller accepts the data and moves it to the
memory. If the data has to be moved from memory to the downstream device, the EHCI issue
a read transfer to system bus. The memory controller gives data through the memory
interfacing signals. EHCI accepts the data and moves them to the downstream device.

 OHCI Controller 27.3.3

27.3.3.1 AHB Interface

The OpenHCI Host Controller is connected to the system by the AHB bus. The design
requires both master and slave bus operations. As a master, the Host Controller is
responsible for running cycles on the AHB bus to access EDs and TDs as well as transferring
data between memory and the local data buffer. As a slave, the Host Controller monitors the
cycles on the AHB bus and determines when to respond to these cycles. Configuration and
non-real-time control access to the Host Controller operational registers are through the AHB
bus slave interface.

27.3.3.2 AHB Master

The master issues the address and data onto the bus when granted.

27.3.3.3 AHB Slave

The configuration of the Host Controller is through the slave interface.

27.3.3.4 List Processing

The List Processor manages the data structures from the Host Controller Driver and
coordinates all activity within the Host Controller.

27.3.3.5 Frame Management

Frame Management is responsible for managing the frame specific tasks required by the USB
specification and the OpenHCI specification. These tasks are:

 Management of the OpenHCI frame specific Operational Registers.

 Operation of the Largest Data Packet Counter.

Aug. 14, 2018 Page 278 of 312 Rev 1.02

NUC970/N9H30

 Performing frame qualifications on USB Transaction requests to the SIE.

 Generate SOF token requests to the SIE.

27.3.3.6 Interrupt Processing

Interrupts are the communication method for HC-initiated communication with the Host
Controller Driver. There are several events that may trigger an interrupt from the Host
Controller. Each specific event sets a specific bit in the HcInterruptStatus register.

27.3.3.7 Host Controller Bus Master

The Host Controller Bus Master is the central block in the data path. The Host Controller Bus
Master coordinates all access to the AHB Interface. There are two sources of bus mastering
within Host Controller: the List Processor and the Data Buffer Engine.

27.3.3.8 Data Buffer

The Data Buffer serves as the data interface between the Bus Master and the SIE. It is a
combination of a 64-byte latched based bi-directional asynchronous FIFO and a single Dword
AHB Holding Register.

27.3.3.9 USB Interface

The USB interface includes the integrated Root Hub with two external ports, Port 1 and Port 2
as well as the Serial Interface Engine (SIE) and USB clock generator. The interface combines
responsibility for executing bus transactions requested by the HC as well as the hub and port
management specified by USB.

27.3.3.10 Series Interface Engine (SIE)

The SIE is responsible for managing all transactions to the USB. It controls the bus protocol,
packet generation/extraction, data parallel-to-serial conversion, CRC coding, bit stuffing, and
NRZI encoding. All transactions on the USB are requested from the List Processor and Frame
Manager.

27.3.3.11 Root Hub

The Root Hub is a collection of ports that are individually controlled and a hub that maintains
control/status over functions common to all ports.

27.4 Register Map

Register Offset R/W Description Reset Value

Aug. 14, 2018 Page 279 of 312 Rev 1.02

NUC970/N9H30

EHCI Registers (EHCI_BA = 0xB000_5000)

EHCVNR EHCI_BA+0x000 R EHCI Version Number Register 0x0095_0020

EHCSPR EHCI_BA+0x004 R EHCI Structural Parameters Register 0x0000_0012

EHCCPR EHCI_BA+0x008 R EHCI Capability Parameters Register 0x0000_0000

UCMDR EHCI_BA+0x020 R/W USB Command Register 0x0008_0000

USTSR EHCI_BA+0x024 R/W USB Status Register 0x0000_1004

UIENR EHCI_BA+0x028 R/W USB Interrupt Enable Register 0x0000_0000

UFINDR EHCI_BA+0x02C R/W USB Frame Index Register 0x0000_0000

UPFLBAR EHCI_BA+0x034 R/W USB Periodic Frame List Base Address Register 0x0000_0000

UCALAR EHCI_BA+0x038 R/W USB Current Asynchronous List Address Register 0x0000_0000

UASSTR EHCI_BA+0x03C R/W USB Asynchronous Schedule Sleep Timer Register 0x0000_0BD6

UCFGR EHCI_BA+0x060 R/W USB Configure Flag Register 0x0000_0000

UPSCR0 EHCI_BA+0x064 R/W USB Port 0 Status and Control Register 0x0000_2000

UPSCR1 EHCI_BA+0x068 R/W USB Port 1 Status and Control Register 0x0000_2000

USBPCR0 EHCI_BA+0x0C4 R/W USB PHY 0 Control Register 0x0000_0060

USBPCR1 EHCI_BA+0x0C8 R/W USB PHY 1 Control Register 0x0000_0020

OHCI Registers (OHCI_BA = 0xB000_7000)

HcRev OHCI_BA+0x000 R Host Controller Revision Register 0x0000_0010

HcControl OHCI_BA+0x004 R/W Host Controller Control Register 0x0000_0000

HcComSts OHCI_BA+0x008 R/W Host Controller Command Status Register 0x0000_0000

HcIntSts OHCI_BA+0x00C R/W Host Controller Interrupt Status Register 0x0000_0000

HcIntEn OHCI_BA+0x010 R/W Host Controller Interrupt Enable Register 0x0000_0000

HcIntDis OHCI_BA+0x014 R/W Host Controller Interrupt Disable Register 0x0000_0000

HcHCCA OHCI_BA+0x018 R/W Host Controller Communication Area Register 0x0000_0000

HcPerCED OHCI_BA+0x01C R/W Host Controller Period Current ED Register 0x0000_0000

HcCtrHED OHCI_BA+0x020 R/W Host Controller Control Head ED Register 0x0000_0000

HcCtrCED OHCI_BA+0x024 R/W Host Controller Control Current ED Register 0x0000_0000

HcBlkHED OHCI_BA+0x028 R/W Host Controller Bulk Head ED Register 0x0000_0000

HcBlkCED OHCI_BA+0x02C R/W Host Controller Bulk Current ED Register 0x0000_0000

HcDoneH OHCI_BA+0x030 R/W Host Controller Done Head Register 0x0000_0000

HcFmIntv OHCI_BA+0x034 R/W Host Controller Frame Interval Register 0x0000_2EDF

HcFmRem OHCI_BA+0x038 R Host Controller Frame Remaining Register 0x0000_0000

HcFNum OHCI_BA+0x03C R Host Controller Frame Number Register 0x0000_0000

HcPerSt OHCI_BA+0x040 R/W Host Controller Periodic Start Register 0x0000_0000

HcLSTH OHCI_BA+0x044 R/W Host Controller Low Speed Threshold Register 0x0000_0628

Aug. 14, 2018 Page 280 of 312 Rev 1.02

NUC970/N9H30

HcRhDeA OHCI_BA+0x048 R/W Host Controller Root Hub Descriptor A Register 0x0100_0002

HcRhDeB OHCI_BA+0x04C R/W Host Controller Root Hub Descriptor B Register 0x0000_0000

HcRhSts OHCI_BA+0x050 R/W Host Controller Root Hub Status Register 0x0000_0000

HcRhPrt1 OHCI_BA+0x054 R/W Host Controller Root Hub Port Status [1] 0x0000_0000

HcRhPrt2 OHCI_BA+0x058 R/W Host Controller Root Hub Port Status [2] 0x0000_0000

OHCI USB Configuration Register

OpModEn OHCI_BA+0x204 R/W USB Operational Mode Enable Register 0X0000_0000

Aug. 14, 2018 Page 281 of 312 Rev 1.02

NUC970/N9H30

27.5 Functional Description

 Initialization 27.5.1

To initialize USB Host Controller, the following operations must be performed correctly:

 Set USBH(CLK_HCLKEN [18]) bit as 1 to enable USB Host Controller clock source.

 Write 0x160 and 0x520 to USBPCR0 and USBPCR1 respectively to enable USB PHY0

and PHY1.

 Configure PE.14 and PE.15 multifunction pins for USBH_PPWR0 and USBH_PPWR1

respectively. NUC970/N9H30 UBS Host Controller uses these two pins to control

external power switch IC, which provides power to USB port 0 and port1.

 Initialize OHCI Host Controller, which services USB 1.1 full-speed and low-speed devices.

 Initialize EHCI Host Controller, which services USB 2.0 high-speed devices.

 Root Hub Port Routing Logic 27.5.2

NUC970/N9H30 series MCU equips EHCI (USB2.0) and OHCI (USB1.1) Host controller. Both
Host Controllers share the two USB ports of root hub. If EHCI is enabled and in the activated
state (UCFGR [0] is set to 1), it will be the default owner EHCI USB port. If EHCI is not
enabled, OHCI will be only owner of root hub ports until EHCI is enabled. The ownership of
root hub ports can be assigned to EHCI or OHCI individually.

EHCI Host Controller is designed for USB 2.0 devices. If an USB 2.0 device was plugged into
the USB port, EHCI Host Controller will perform the standard USB device enumeration
procedure to reset and enable the device. If success, user can perform USB data transfers on
this device. Because EHCI has ownershi o that USB ort, there’s any no ort related status
changes to OHCI. OHCI is totally unaware of the connection of USB 2.0 device.

However, if an USB 1.1 full-speed or low-speed device is plugged into a USB port, EHCI will
fail to reset and enable it. In this case, EHCI driver or hub driver should change the ownership
of that port to OHCI Host Controller. Set PO(UPSCRx [13]) bit as 1 can transfer port
ownership to companion OHCI Host Controller. In the following, OHCI root hub ports will
receive the status change o device connected. And it’s OHCI Host Controller’s turn to reset
and enable the USB device. Once success, user can perform full/low-speed transfer on that
USB device.

When the USB device is connected, OHCI driver cannot transfer port ownership to the EHCI
until device disconnected. Once the USB device is disconnected, the ownership of the port is
automatically returned to the EHCI, and PO(UPSCRx [13]) bit will be cleared by root hub.

 OHCI 27.5.3

NUC970/N9H30 OHCI host controller is fully compliant with the Open Host Controller (OHCI),

Aug. 14, 2018 Page 282 of 312 Rev 1.02

NUC970/N9H30

version 1.0 standard. OHCI drivers running on other platforms can be easily ported to
NUC970/N9H30.

27.5.3.1 Data Structure

In addition to direct access to the OHCI registers, system software interworks with OCHI
controller via the following structured memory blocks:

These data structures are defined by OHCI standard. System software allocates memory
blocks to create these data structures. OHCI Host Controller has the ability to access these
memory blocks by way of DMA transfer. All endpoint descriptors, transfer descriptors, HCCA
and transmission buffers must be set to non-cacheable area. Endpoint descriptors and
transfer descriptors must be aligned with the 32-byte address boundary. Host controller
communication area must be aligned with 256-byte address boundary.

27.5.3.2 Endpoint Descriptor

The OpenHCI Host Controller fulfills USB transfers by classifying Endpoints into four types of
Endpoint Descriptor lists. The Control ED list is pointed by HcControlHeadED register, the
Bulk ED list is pointed by HcBulkHeadED register, the Interrupt ED lists are pointed by
InterruptTable of HCCA, and the Isochronous ED list is linked behind the last 1m interval
Interrupt ED. HCD must create and maintain an ED for each endpoint of a USB device.

For all transfer types, they have the same Endpoint Descriptor format. The common format is
listed below:

 3 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

 1 6 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Dword 0 — MPS F K S D EN FA

Dword 1 TD Queue Tail Pointer (TailP) —

Dword 2 TD Queue Head Pointer (HeadP) 0 C H

Dword 3 Next Endpoint Descriptor (NextED) —

The Control ED list is created by Host Controller Driver (HCD), which should add any new
EDs to the end of the Control ED list. HCD must write the physical address of the first ED of
Control ED list to HcControlHeadED register. Thus, the HC can find the Control ED list and
process all Control EDs. Similarly, all Bulk EDs are placed in the Bulk ED list, which must be
pointed by the HcBulkHeadED register. And it's the responsibility of HCD to maintain Bulk ED
list and link HcBulkHeadED.

Aug. 14, 2018 Page 283 of 312 Rev 1.02

NUC970/N9H30

The Interrupt ED lists are not directly pointed by any Host Controller operation registers,
instead, they are pointed by the InterruptTable of HCCA (Host Controller Communication
Area), which is a memory area created by HCD. In the HCCA, there are 32 entries
InterruptTable with each entry points to an Interrupt ED list. The structure of Interrupt ED lists
will be explained in the HCCA section.

The end of each Interrupt ED list must be linked to the identical 1ms-polling interval Interrupt
ED list, which is also a part of each Interrupt ED list. You may have no any 1ms-polling
interval Interrupt EDs in some of the real scenes. If it was the case, then you will have a
placeholder on the node a 1ms interval Interrupt ED should be inserted. It is also true for 2m,
4m, 8m, 16ms, and 32ms polling interval Interrupt ED lists. In fact, an Interrupt ED list is
composed of these various polling interval Interrupt ED lists.

The Isochronous ED list must be linked to the end of the 1ms-polling interval Interrupt ED list,
that is, the end of any one Interrupt ED list. Host Controller Driver must maintain the Interrupt
ED lists and Isochronous ED list, including the maintenance of HCCA and InterruptTable. The
HCCA is pointed by HcHCCA register. Of course, HCD is responsible for creating HCCA and
writing the physical address of HCCA to HcHCCA

27.5.3.3 Transfer Descriptor

ED is used to describe the characteristics of a specific endpoint. ED itself does not make HC
to start any data transfer on USB bus. OpenHCI employs Transfer Descriptors (TDs) to
describe the details of an USB data transfer. A Transfer Descriptor (TD) is a system memory
data structure that is used by the Host Controller to define a buffer of data that will be moved
to or from an endpoint.

Transfer Descriptors are linked to queues attached to EDs. The ED provides the endpoint
address to/from where the TD data is to be transferred. Host Controller Driver adds TDs to
the queue and Host

Controller removes TDs from the queue. Once the transfer of a TD was completed, Host
Controller removed it from TD queue to the Done Queue.

There are two TD types in OpenHCI, General TD and Isochronous TD. The TD formats are
listed below:

General Transfer Descriptor

 3 2 2 2 2 2 2 2 2 1 1 0 0

 1 8 7 6 5 4 3 1 0 9 8 3 0

Dword 0 CC EC T DI DP R —

Dword 1 Current Buffer Pointer (CBP)

Dword 2 Next TD (NextTD) 0

Dword 3 Buffer end (BE)

Isochronous Transfer Descriptor

Aug. 14, 2018 Page 284 of 312 Rev 1.02

NUC970/N9H30

 3 2 2 2 2 2 2 2 1 1 1 1 0 0 0

 1 8 7 6 4 3 1 0 6 5 2 1 5 4 0

Dword 0 CC – FC DI — SF

Dword 1 Buffer Page 0 (BP0) —

Dword 2 NextTD 0

Dword 3 Buffer End (BE)

Dword 4 Offset1/PSW1 Offset0/PSW0

Dword 5 Offset3/PSW3 Offset2/PSW2

Dword 6 Offset5/PSW5 Offset4/PSW4

Dword 7 Offset7/PSW7 Offset6/PSW6

27.5.3.4 Host Controller Communication Area

The Host Controller Communications Area (HCCA) is a 256-byte structure of system memory,
which is used by HCD to communicate with HC. HCCA must be aligned to 256 bytes address
boundary. This memory block must be set to non-cacheable memory region, because HC
accesses this memory block by DMA transfer. HCD must claim the physical address of HCCA
by writing the physical address to HcHCCA register to notify HC the address of HCCA.

Offset

Size

(bytes)

Name

Description

0 128 HccaInterrruptTable These 32 Dwords are pointers to interrupt EDs.

0x80 2 HccaFrameNumber Contains the current frame number. This value is updated by the
HC before it begins processing the periodic lists for the frame.

0x82 2 HccaPad1 When the HC updates HccaFrameNumber, it sets this word to 0.

 0x84 4 HccaDoneHead

When the HC reaches the end of a frame and its deferred
interrupt register is 0, it writes the current value of its
HcDoneHead to this location and generates an interrupt if
interrupts are enabled. This location is not written by the HC again
until software clears the WD bit in the HcInterruptStatus register.

The LSb of this entry is set to 1 to indicate whether an unmasked
HcInterruptStatus was set when HccaDoneHead was written.

 0x88 116 Reserved Reserved for use by Host Controller.

27.5.3.5 OHCI Initialization

The initialization of Host Controller may contain the following steps:

1. Disable Host Controller interrupts by writing 1 to MIE(HcIntDis[31]).

Aug. 14, 2018 Page 285 of 312 Rev 1.02

NUC970/N9H30

2. Issue a software reset command by writing 1 to HCR(HcComSts[0]) and waiting for 10ms

until the HCR be cleared as 0 by Host Controller.

3. Allocate and create all necessary list structures and memory blocks, including HCCA,

and initialize all driver-maintained lists, including InterruptTable of HCCA (Note that

HCCA must be aligned with 256-bytes address boundary, while EDs and TDs must be

aligned with 32-bytes address boundary).

4. Clear HcCtrHED and HcBlkHED register.

5. Write the physical address of HCCA memory block to HcHCCA register.

6. Write frame interval value (11,999 ± 6) to HcFmIntv register, and write 90% of this frame

interval value (recommended) to HcPerSt register.

7. Write 0x628 to HcLSTH register (0x628 is also the reset default value of HcLSTH

register).

8. Write 1 to BLE(HcControl[5]), CLE(HcControl[4]), IE(HcControl[3]), PLE(HcControl[2]) to

enable Bulk, Control, Interrupt, and Isochronous transfers.

9. Write 10b to HCFS(HcControl[7:6]) to make Host Controller enter operational state.

10. Enable desired interrupts by writing corresponding bits to HcIntEn register and clear

interrupt status of these interrupts by writing corresponding bits to HcIntSts register.

11. Turn on the Root Hub port power by writing 1 to LPSC(HcRhSts[16]) (Note that

NUC970/N9H30 Series MCU USB Root Hub uses global power switching mode)

12. Enable AIC (NUC970/N9H30 Advanced Interrupt Controller) OHCI interrupt. The IRQ

number of OHCI is 24.

27.5.3.6 Interrupt Processing

NUC970/N9H30 Series MCU OHCI Host Controller may raise the following interrupts:

 Scheduling Overrun

 Write Back Done Head

 Start of Frame

 Resume Detected

 Unrecoverable Error

 Frame Number Overflow

 Root Hub Status Change

 Ownership Change

Scheduling Overrun Interrupt

This interrupt is set when the USB schedule for the current frame overruns. The presence of

Aug. 14, 2018 Page 286 of 312 Rev 1.02

NUC970/N9H30

this interrupt means that HCD has scheduled too many transfers. HCD may temporarily stop
one or more endpoints to reduce bandwidth.

Write Back Done Head Interrupt

This interrupt is set after Host Controller has written HcDoneH to HccaDoneHead. On this
interrupt, HCD can obtain the TD done queue by reading HccaDoneHead. HCD may first
reverse the done queue by traveling the done queue, because the TDs were retired in stack
order. Then HCD can start processing on each TD.

Start of Frame Interrupt

This interrupt is set on each start of a frame. Generally, HCD will not enable this interrupt.
This interrupt is generally used to identify the starting of a next frame. For example, if you are
going to remove a TD, you must ensure that the endpoint is not currently processed by Host
Controller. To accomplish this, HCD can temporarily set the sKip bit of its ED and enable Start
of Frame interrupt. In the next coming Start of Frame interrupt, HCD can ensure that the
endpoint is not currently processed by Host Controller, and it can remove the TD.

Resumed Detected Interrupt

This interrupt is set when Host Controller detects that a device on the USB bus is asserting a
resume signal. If Host Controller is in USBSUSPEND state, the resume signal will make Host
Controller automatically enter USBRESUME state.

Unrecoverable Error Interrupt

The Host Controller will raise this interrupt when it detects a system error not related to USB
or an error that cannot be reported in any other way. HCD may try to reset Host Controller in
this case.

Frame Number Overflow Interrupt

The Host Controller will raise this interrupt when the MSB bit of FN(HcFNum[15:0]) toggles
value from 0 to 1 or 1 to 0, and after HcFNum register has been updated. Because the Host
Controller has only 16-bits frame counter, the HCD may want to maintain a wider range frame
counter. If the HCD want to maintain a 32-bits frame counter, it can increase the upper 16-bits
value by each two Frame Number Overflow interrupt.

Root Hub Status Change Interrupt

Once OCIC(HcRhsts[17]), CSC(HcRhPtrx[16]), PESC(HcRhPtrx[17]), or PSSC(HcRhPtrx[20])
is set, the Host Controller would raise this interrupt.

Aug. 14, 2018 Page 287 of 312 Rev 1.02

NUC970/N9H30

Ownership Change Interrupt

Host Controller would raise this interrupt when HCD write 1 to OCR(HcComSts[3]).

27.5.3.7 Done Queue Processing

The Done Queue is built by the Host Controller and referred to by the HcDoneH register. No
matter successful or failed, the retired Transfer Descriptors must be put into the Done Queue
by Host Controller. When Host Controller reaches the end of a frame (1ms) and its internal
deferred interrupt register is 0, it writes the location of Done Queue to HccaDoneHead and
raises a Write Back Done Head interrupt. HCD can take the Done Queue by servicing the
Write Back Done Head interrupt.

Reverse Done Queue

Host Controller queues TDs into the Done Queue by first-in-last-out order. The latest queued
TD is linked at the head of the Done Queue, while the earliest queued TD is linked at the end
of the Done Queue. HCD must reverse the Done Queue before it can start to process the
retired TDs.

Processing Done Queue

Once TDs in Done Queue are reversed into their original order, HCD can start to process
these TDs one by one. For each TD, HCD checks whether the TD was completed with any
errors.

27.5.3.8 Root Hub

The Root Hub is integrated into Host Controller and the control of Root Hub is done by
accessing register files. NUC970/N9H30 OHCI Host Controller has provided several Root
Hub related registers. The HcRhDeA and HcRhDeB registers are informative registers, which
are used to describe the characteristics and capabilities of Root Hub. The HcRhSts register
presents the current status and reflects the change of status of Root Hub. The HcRhPrt[1:2]
register presents the current status and reflects the change of status of a Root Hub port.
NUC970/N9H30 Series MCU OHCI Root Hub has two hub ports, the HcRhPrt[1] and
HcRhPrt[2] are respectively dedicated to port 0 and port 1.

HcRhDeA and HcRhDeB

HcRhDeA and HcRhDeB registers are informative registers, which are used to describe the
characteristics and capabilities of Root Hub. The characteristics and capabilities of
NUC970/N9H30 OHCI Root Hub are listed in the followings:

 Two downstream ports

 Ports are power switched

Aug. 14, 2018 Page 288 of 312 Rev 1.02

NUC970/N9H30

 Power switching mode is global power switch

 Is not a compound device

 Over-current status is reported collectively for all downstream ports

 Power-on-to-power-good-time is 2ms

 Devices attached to any ports are removable

HcRhsts

The HcRhSts register is used to control and monitor the Root Hub status. The Root Hub can
be controlled by the following actions:

 ClearGlobalPower - write 1 to LPS(HcRhSts[0]).

 SetRemoteWakeupEnable - write 1 to LPS(HcRhSts[15]).

 SetGlobalPower - write 1 to LPSC(HcRhSts[16]).

 ClearRemoteWakeupEnable - write 1 to CRWE(HcRhSts[31]).

In addition, HcRhSts register also indicates the following status:

 OCI(HcRhSts[0]) indicates overcurrent condition.

 DRWE(HcRhSts[15]) indicates the remote wakeup status. If this bit is 1, Connect Status

Change is determined as a remote wakeup event

 OCIC(HcRhSts[15]) - This bit was set when the OverCurrentIndicator bit changed

HcRhPrt[1] and HcRhPrt[2]

HcRhPrt[1] and HcRhPrt[2] registers are used to control and monitor the status Root Hub
ports.

HcRhPrt[1] is used to indicate port 1 status and HcRhPrt[2] for port 2 respectively. The lower
word of HcRhPrt is used to reflect the port status, whereas the upper word is used to reflect
the changing of lower word status bits. Some status bits are implemented with special write
behavior. You can do the following actions to control the Root Hub port:

 ClearPortEnable - write 1 to CCS(HcRhPrtx[0]).

 SetPortEnable - write 1 to PES(HcRhPrtx[1]).

 SetPortSuspend - write 1 to PES(HcRhPrtx[2]).

 ClearPortSuspend - write 1 to PES(HcRhPrtx[3]).

 SetPortReset - write 1 to PRS(HcRhPrtx[4]).

You can get the current status of the Root Hub port by reading the following bits:

Aug. 14, 2018 Page 289 of 312 Rev 1.02

NUC970/N9H30

 CCS(HcRhPrtx[0]) indicates the current connect status of the Root Hub port.

 PES(HcRhPrtx[1]) indicates whether the port is enabled.

 PSS(HcRhPrtx[2]) indicates the port is suspended.

 PRS(HcRhPrtx[4]) indicates the Root Hub is asserting reset signal on this port.

 PPS(HcRhPrtx[8]) indicates the port's power state.

 LSDA(HcRhPrtx[9]) indicates a low-speed device is attached to this port.

The following bits indicate the change of status bits. Write '1' to these bits will clear the
events:

 CSC(HcRhPrtx[16]) indicates change of CCS(HcRhPrtx[0]).

 PESC(HcRhPrtx[17]) indicates change of PES(HcRhPrtx[1]).

 PSSC(HcRhPrtx[18]) indicates change of PSS(HcRhPrtx[2]).

 PRSC(HcRhPrtx[20]) indicates change of PRS(HcRhPrtx[4]).

 EHCI 27.5.4

NUC970/N9H30 EHCI host controller is fully compliant with the Enhanced Host Controller
Interface (EHCI), version 1.0 standard. EHCI drivers running on other platforms, can be easily
ported to NUC970/N9H30.

27.5.4.1 Data Structure

Except direct access to Host Controller by registers, Host Controller Driver must maintain the
following memory blocks to communicate with Host Controller:

 Isochronous (High-Speed) Transfer Descriptor (iTD)

 Split Transaction Isochronous Transfer Descriptor (siTD)

 Queue Element Transfer Descriptor (qTD)

 Queue Head

 Periodic Frame Span Traversal Node (FSTN)

27.5.4.2 Isochronous Transfer Descriptor (iTD)

This structure is used only for high-speed isochronous endpoints. All other transfer types
should use queue structures. Isochronous TDs must be aligned on a 32-byte boundary. Note
that siTD must be located in non-cacheable memory.

Aug. 14, 2018 Page 290 of 312 Rev 1.02

NUC970/N9H30

0x00 Next Link Pointer 0 Typ T

0x04 Status Transaction 0 Length ioc PG Transaction 0 Offset

0x08 Status Transaction 1 Length ioc PG Transaction 1 Offset

0x0C Status Transaction 2 Length ioc PG Transaction 2 Offset

0x10 Status Transaction 3 Length ioc PG Transaction 3 Offset

0x14 Status Transaction 4 Length ioc PG Transaction 4 Offset

0x18 Status Transaction 5 Length ioc PG Transaction 5 Offset

0x1C Status Transaction 6 Length ioc PG Transaction 6 Offset

0x20 Status Transaction 7 Length ioc PG Transaction 7 Offset

0x24 Buffer Pointer (Page 0) EndPt R Device Address

0x28 Buffer Pointer (Page 1) I/O Maximum Packet Size

0x2C Buffer Pointer (Page 2) Reserved Mult

0x30 Buffer Pointer (Page 3) Reserved

0x34 Buffer Pointer (Page 4) Reserved

0x38 Buffer Pointer (Page 5) Reserved

0x3C Buffer Pointer (Page 6) Reserved

27.5.4.3 Split Transaction Isochronous Transfer Descriptor (siTD)

All Full-speed isochronous transfers through Transaction Translators are managed using the
siTD data structure. This data structure satisfies the operational requirements for managing
the split transaction protocol. Note that siTD must be located in non-cacheable memory.

0x00 Next Link Pointer 0 Typ T

Aug. 14, 2018 Page 291 of 312 Rev 1.02

NUC970/N9H30

0x04 I/O Port Number R Hub Addr R EndPt R Device Address

0x08 Reserved uFrame C-mask uFrame S-mask

0x0C

0x10 Buffer Pointer (Page 0) Current Offset

0x14 Buffer Pointer (Page 1) Reserved TP T-count

0x18 Back Pointer 0 T

27.5.4.4 Queue Element Transfer Descriptor (qTD)

This data structure is only used with a queue head. This data structure is used for one or
more USB transactions. This data structure is used to transfer up to 20480 (5*4096) bytes.
The structure contains two structure pointers used for queue advancement, a Dword of
transfer state and a five-element array of data buffer pointers. This structure is 32 bytes (or
one 32-byte cache line). This data structure must be physically contiguous.

The buffer associated with this transfer must be virtually contiguous. The buffer may start on
any byte boundary. A separate buffer pointer list element must be used for each physical
page in the buffer, regardless of whether the buffer is physically contiguous.

Note that qTD must be located in non-cacheable memory.

0x00 Next qTD Pointer 0 T

0x04 Alternate Next qTD Pointer 0 T

0x08 dt Total Bytes To Transfer ioc C_Page Cerr PID Code Status

0x0C Buffer Pointer (Page 0) Current Offset

0x10 Buffer Pointer (Page 1) Reserved

0x14 Buffer Pointer (Page 2) Reserved

0x18 Buffer Pointer (Page 3) Reserved

0x1C Buffer Pointer (Page 4) Reserved

Aug. 14, 2018 Page 292 of 312 Rev 1.02

NUC970/N9H30

27.5.4.5 EHCI Initialization

The initialization of EHCI Host Controller may contain the following steps :

1. Write 1 to USBH(CLK_HCLKEN[18]) to enable USB Host clock.

2. Enable PHY 0 by writing 0x160 to USBPCR0 register, and enable PHY 1 by writing

0x120 to USBPCR1 register.

3. Force EHCI to halt state. It can be done by writing 0 to RUN(UCMDR[0]).

4. Write 1 to HCRST(UCMDR[1]) to reset EHCI Host Controller. This bit will be cleared by

Host Controller once reset process completed.

5. Allocated non-cacheable memory for Periodic Frame List, which is an array of 32-bits

pointers. Writing 0x01 (means end-of-list) to all entries of Periodic Frame List. And then

writing the physical address of Periodic Frame List to UPFLBAR register.

6. Enable EHCI interrupts by writing corresponding bits to UIENR register.

7. Allocate main memory to create a dummy Queue Head for the asynchronous ring head.

And writing physical address of the Queue Head to UCALAR register.

8. Write 1 to UCFGR register. This will make the port routing logic to default-route all ports

to EHCI controller.

9. Write 1 to PP(UPSCR[0]) and PP(UPSCR[1]) to enable port power of root hub port 0 and

port1. Once an USB device was connected, the port status register UPSCR0/1 can

reflect it.

27.5.4.6 USB Commands

EHCI driver issues commands to Host Controller by writing commands to UCMDR register.

Run/Stop

Write 1 to RUN(UCMDR[0]) can make Host Controller enter operational state. Host Controller
keeps operating as long as this bit is 1. Once RUN(UCMDR[0]) is cleared to 0, Host
Controller completes the current and any actively pipelined transactions on the USB and then
enter Halted state. HCHalted(USTSR[12]) indicates whether Host Controller has finished its
transactions and has entered Halted state. EHCI driver must not write a one to this field
unless Host Controller is in Halted state, it will yield unexpected results.

Host Controller Reset

Write 1 to HCRST(UCMDR[1]) can reset EHCI Host Controller. The effects of this on Root
Hub registers are similar to a Chip Hardware Reset. HCRST(UCMDR[1]) will be cleared as 0
by Host Controller when the reset process is completed. Writing 0 to HCRST(UCMDR[1])

Aug. 14, 2018 Page 293 of 312 Rev 1.02

NUC970/N9H30

cannot cancel the reset process. If the HCHalted(USTSR[12]) is 0, it’s not legal to write 1 to
HCRST(UCMDR[1]). Attempting to reset an actively running host controller will result in
unexpected errors.

Frame List Size

FLSZ(UCMDR[3:2] indicates size of the frame list. The size the frame list controls which bits
in the Frame Index Register should be used for the Frame List Current index. Values mean:

00b 1024 elements (4096 bytes) Default value

01b 512 elements (2048 bytes)

10b 256 elements (1024 bytes) – for resource-constrained environments

11b Reserved

Periodic Schedule Enable

PSEN(UCMDR[4]) controls whether Host Controller skips processing the Periodic Schedule.
Values mean:

0b Do not process the Periodic Schedule

1b Use the PERIODICLISTBASE register to access the Periodic Schedule.

Asynchronous Schedule Enable

ASEN(UCMDR[5]) controls whether Host Controller skips processing the Asynchronous
Schedule. Values mean:

0b Do not process the Asynchronous Schedule

1b Use the ASYNCLISTADDR register to access the Asynchronous Schedule.

Interrupt on Async Advance Doorbell

IAAD(UCMDR[6]) is used as a doorbell by software to ask Host Controller to issue an
interrupt the next time it advances asynchronous schedule. EHCI driver writes 1
IAAD(UCMDR[6]) to ring the doorbell. It’s illegal to write 1 to IAAD(UCMDR[6]) if
asynchronous schedule is disabled.

Interrupt Threshold Control

ITC(UCMDR[23:16]) determines the maximum rate at which Host Controller will issue
interrupts. The only valid values are defined as the followings. Any other value is illegal.

Value Maximum Interrupt Interval

00h Reserved

Aug. 14, 2018 Page 294 of 312 Rev 1.02

NUC970/N9H30

01h 1 micro-frame

02h 2 micro-frames

04h 4 micro-frames

08h 8 micro-frames (default, equates to 1 ms)

10h 16 micro-frames (2 ms)

20h 32 micro-frames (4 ms)

40h 64 micro-frames (8 ms)

27.5.4.7 Interrupt Status

USB Interrupt (USBINT)

Host Controller sets USBINT(USTSR[0]) to 1 on the completion of a USB transaction, which
implies the retirement of a Transfer Descriptor that had its IOC bit set. Host Controller also
sets USBINT to 1 when a short packet is detected (actual number of bytes received was less
than the expected number of bytes).

USB Error Interrupt (UERRINT)

Host Controller sets UERRINT(USTSR[1]) to 1 when completion of a USB transaction is
caused by errors. If the TD on which the error interrupt occurred also had its IOC bit set, both
UERRINT(USTSR[1]) and USBINT(USTSR[0]) will be set.

Port change Detect (PCD)

Host Controller sets PCD(USTSR[2]) to 1 when any port has a change bit transition from a
zero to a one or a Force Port Resume bit transition from a zero to a one. PCD(USTSR[2]) will
also be set as a result of the Connect Status Change being set to a one after system software
has elinquished ownership of a connected port by writing a one to a port's Port Owner bit.

Frame List Rollover (FLR)

Host Controller sets FLR(USTSR[3]) to a one when the Frame List Index rolls over from its
maximum value to zero. The exact value at which the rollover occurs depends on the frame
list size.

Host System Error (HSERR)

Host Controller sets HSERR(USTSR[4]) to 1 when a serious error occurs during Host
Controller accessing system memory. When this error occurs, the Host Controller clears the
Run(USTSR[0]) to prevent further execution of the scheduled TDs.

Interrupt on Async Advance (IAA)

Aug. 14, 2018 Page 295 of 312 Rev 1.02

NUC970/N9H30

System software can ask Host Controller to issue an interrupt the next time the host controller
advances the asynchronous schedule by writing 1 to IAA(USTSR[5]). This status bit indicates
the assertion of that interrupt source.

HcHalted

HcHalted(USTSR[12]) should be 0 if Run(USTSR[0]) is a one. Host Controller sets
HcHalted(USTSR[12]) to 1 after it has stopped executing as a result of Run(USTSR[0]) being

set to 0, either by software or by Host Controller.

Reclaimation (RCLA)

RECLA(USTSR[13]) is a read-only status bit, which is used to detect an empty asynchronous
schedule.

Periodic Schedule Status (PSS)

PSS(USTSR[14]) indicates the current status of the Periodic Schedule. If PSS is 0, the
Periodic Schedule is disabled. If PSS is 1, the Periodic Schedule is enabled.

Asynchronous Schedule Status

ASS(USTSR[15]) indicates the current real status of Asynchronous Schedule. If ASS is 0,
Asynchronous Schedule is disabled. If ASS is 1, Asynchronous Schedule is enabled.

27.5.4.8 Root Hub

NUC970/N9H30 Series MCU EHCI host controller implements two port registers, UPSCR0
and UPSCR1. NUC970/N9H30 Series MCU EHCI root hub ports has port power control,
software cannot change the state of the port until after it applies power to the port by writing 1
to PP(UPSCR[12]). Software must not attempt to change the state of the port until power is
stable on the port. Host Controller will make port power stable within 20 milliseconds. The root
hub ports control and status bits are listed as the following:

Current Connect Status (CCS)

CCS(UPSCR[0]) indicates the current connect state of the port, and may not correspond
directly to the event that caused the Connect Status Change bit (Bit 1) to be set.

Connect Status Change (CSC)

CSC(UPSCR[1]) indicates a change has occurred in the ort’s Current Connect Status. This
status bit can be cleared by writing 1 to 1.

Aug. 14, 2018 Page 296 of 312 Rev 1.02

NUC970/N9H30

Port Enable/Disable (PE))

Ports can only be enabled by Host Controller as a part of the reset and enable. Software
cannot enable a port by writing a one to PE(UPSCR[2]). Host Controller will only set this bit to
a one when the reset sequence determines that the attached device is a high-speed device.

Ports can be disabled by either a fault condition (disconnect event or other fault condition) or
by host software. Note that the bit status does not change until the port state actually
changes.

When the port is disabled (0b) downstream propagation of data is blocked on this port, except
for reset.

Port Enable/Disable Change (PEC)

For the root hub, PEC(UPSCR[3]) is set to a one only when a port is disabled by Host
Controller. Software can clear PEC(UPSCR[3]) by writing 1 to it.

Over-current Active (OCA)

OCA(UPSCR[4]) indicates port over-current condition. Host Controller updates this it when
port over-current condition changed. OCA is a read-only bit to software.

Over-current Change (OCC)

When there is a change to OCA(UPSCR[4]), Host Controller will set OCC(UPSCR[5]) as 1.

Software can clear OCC(UPSCR[5]) by writing 1 to it.

Force Port Resume (FPR)

Writing 1 to FPR(UPSCR[6]) makes Host Controller drive resume signal on that port. Host
Controller sets this bit to a 1 if a J-to-K transition is detected if the port is in the Suspend state.
When this bit transitions to 1 by J-to-K transition being detected, PCD(USTSR[2]) is also set
to 1 by Host Controller. If software issues FPR, Host Controller will not set PCD(USTSR[2]).

Suspend

Both PE(UPSCR[2]) and SUSPEND(UPSCR[7]) together define the port states as follows:

Bits [Port Enabled, Suspend] Port State

0X Disable

10 Enable

11 Suspend

Aug. 14, 2018 Page 297 of 312 Rev 1.02

NUC970/N9H30

When in suspend state, downstream propagation of data is blocked on this port, except for
port reset. The blocking occurs at the end of the current transaction, if a transaction was in
progress when this bit was written to 1. In the suspend state, the port is sensitive to resume
detection. Note that the bit status does not change until the port is suspended and that there
may be a delay in suspending a port if there is a transaction currently in progress on the USB.

Port Reset (PRST)

When software writes a one to PRST(UPSCR[8]), the bus reset sequence as defined in the
USB Specification Revision 2.0 is started by Host Controller. Software writes 0 to
PRST(UPSCR[8]) to terminate the bus reset sequence after 10ms later. Software must keep
this bit as 1 long enough to ensure the reset sequence, as specified in the USB Specification
Revision 2.0, completes. When software writes this bit to 1, it must also write 0 to the Port
Enable bit.

Note that when software writes 0 to PRST there may be a delay before the bit status changes
to a zero. Host Controller will not clear PRST to 0 until the reset process is completed. If the
port is in high-speed mode after reset completed, Host Controller will automatically enable
this port and set PE(UPSCR[2]) as 1.

Before writing 1 to PRST, software must make sure HCHalted(USTSR[12]) be 0.

Port Power (PP)

Software writes 1 to PP(UPSCR[12]) to turn on the port power, and writes 0 to turn off the port
power. When an over-current condition is detected on a powered port, Host Controller will
force to turn off the port power and clear PP(UPSCR[12]) as 0.

Port Owner (PO)

PO(UPSCR[13]) indicates the port owner is OHCI or EHCI Host Controller. PO(UPSCR[13])
unconditionally goes to 0 when software writes 1 to UCFGR register. PO(UPSCR[13])
unconditionally goes to 1 whenever the UCFGR is cleared.

System software uses PO(UPSCR[13]) to release ownership of the port to OHCI Host
Controller (in the event that the attached device is not a high-speed device). Software writes 1
to PO when the attached device is not a high-speed device.

Aug. 14, 2018 Page 298 of 312 Rev 1.02

NUC970/N9H30

28 Capture Sensor Interface Controller

28.1 Overview

The Image Capture Interface is designed to capture image data from a sensor. After capturing
or fetching image data, it will process the image data, and then FIFO output them into frame
buffer.

28.2 Features

 8-bit RGB565 sensor

 8-bit YUV422 sensor

 Supports CCIR601 YCbCr color range scale to full YUV color range

 Supports 4 packaging format for packet data output: YUYV, Y only, RGB565, RGB555

 Supports YUV422 planar data output

 Supports the CROP function to crop input image to the required size for digital

application.

 Supports the down scaling function to scale input image to the required size for digital

application.

 Supports frame rate control

 Supports field detection and even/odd field skip mechanism

 Supports packet output dual buffer control through hardware buffer controller

 Supports negative/sepia/posterization color effect

 Supports two independent capture interfaces

28.3 Block Diagram

RGB

To

YUV

Color

Effect

Sensor In Frame

Rate

Converter

Sensor Interface

Croping

Packet

Scaling

Down

Planar

Scaling

Down

Motion

Estimation

Package OFIFO DRAM

28.4 Register Map
R: read only, W: write only, R/W: both read and write

Aug. 14, 2018 Page 299 of 312 Rev 1.02

NUC970/N9H30

Register Offset R/W Description Reset Value

Capture Base Address:

CAP_BA = 0xB000_E000

CAP_CTL CAP_BA+0x00 R/W Image Capture Interface Control Register 0x0000_0040

CAP_PAR CAP_BA+0x04 R/W Image Capture Interface Parameter Register 0x0000_0000

CAP_INT CAP_BA+0x08 R/W Image Capture Interface Interrupt Register 0x0000_0000

CAP_POSTERIZE CAP_BA+0x0C R/W YUV Component Posterizing Factor Register 0x0000_0000

CAP_MD CAP_BA+0x10 R/W Motion Detection Register 0x0000_0000

CAP_MDADDR CAP_BA+0x14 R/W Motion Detection Output Address Register 0x0000_0000

CAP_MDYADDR CAP_BA+0x18 R/W Motion Detection Temp Y Output Address Register 0x0000_0000

CAP_SEPIA CAP_BA+0x1C R/W Sepia Effect Control Register 0x0000_0000

CAP_CWSP CAP_BA+0x20 R/W Cropping Window Starting Address Register 0x0000_0000

CAP_CWS CAP_BA+0x24 R/W Cropping Window Size Register 0x0000_0000

CAP_PKTSL CAP_BA+0x28 R/W Packet Scaling Vertical/Horizontal Factor Register (LSB) 0x0000_0000

CAP_PLNSL CAP_BA+0x2C R/W Planar Scaling Vertical/Horizontal Factor Register (LSB) 0x0000_0000

CAP_FRCTL CAP_BA+0x30 R/W Scaling Frame Rate Factor Register 0x0000_0000

CAP_STRIDE CAP_BA+0x34 R/W Frame Output Pixel Stride Width Register 0x0000_0000

CAP_FIFOTH CAP_BA+0x3C R/W FIFO Threshold Register 0x070D_0507

CAP_CMPADDR CAP_BA+0x40 R/W Compare Memory Base Address Register 0xFFFF_FFFC

CAP_PKTSM CAP_BA+0x48 R/W Packet Scaling Vertical/Horizontal Factor Register (MSB) 0x0000_0000

CAP_PLNSM CAP_BA+0x4C R/W Planar Scaling Vertical/Horizontal Factor Register (MSB) 0x0000_0000

CAP_CURADDRP CAP_BA+0x50 R Current Packet System Memory Address Register 0x0000_0000

CAP_CURADDRY CAP_BA+0x54 R Current Planar Y System Memory Address Register 0x0000_0000

CAP_CURADDRU CAP_BA+0x58 R Current Planar U System Memory Address Register 0x0000_0000

CAP_CURVADDR CAP_BA+0x5C R Current Planar V System Memory Address Register 0x0000_0000

CAP_PKTBA0 CAP_BA+0x60 R/W System Memory Packet Base Address 0 Register 0x0000_0000

CAP_PKTBA1 CAP_BA+0x64 R/W System Memory Packet Base Address 1 Register 0x0000_0000

CAP_YBA CAP_BA+0x80 R/W System Memory Planar Y Base Address Register 0x0000_0000

CAP_UBA CAP_BA+0x84 R/W System Memory Planar U Base Address Register 0x0000_0000

CAP_VBA CAP_BA+0x88 R/W System Memory Planar V Base Address Register 0x0000_0000

28.5 Functional Description

 Basic Configuration 28.5.1

The CAP peripheral clock can be enabled in CAP (HCLKEN1[26]). The CAP engine clock

Aug. 14, 2018 Page 300 of 312 Rev 1.02

NUC970/N9H30

source is selected by SENSOR_S (CLKDIV3[23:16]) and CAP engine clock divider is
determined by SENSOR_N (CLKDIV3[27:24])

 Image Capture Flow Chart 28.5.2

Receive data format and format
order

INFMT(CAP_PAR[0])
INDATORD(CAP_PAR[3:2])

Output data to memory format
OUTFMT(CAP_PAR[5:4])

Color effect processing
COLCORCTL(CAP_PAR[12:11])

Scaling frame rate
FRM(CAP_FRCTL[5:0])
FRN(CAP_FRCTL[13:8])

Cropping window starting
address

CWSADDRH(CAP_CWSP[11:0])
CWSADDRV(CAP_CWSP[26:16])

Cropping window size
CWH(CAP_CWS[11:0])

CWW(CAP_CWS[26:16])

Next

Sensor in
Next

Packet scaling down
PKTDSVNL(CAP_PKTDSL[31:24])
PKTDSVML(CAP_PKTDSL[23:16])
PKTDSHNL(CAP_PKTDSL[15:8])
PKTDSHML(CAP_PKTDSL[7:0])

PKTDSVNH(CAP_PKTDSH[31:24])
PKTDSVMH(CAP_PKTDSH[23:16])
PKTDSHNH(CAP_PKTDSH[15:8])
PKTDSHMH(CAP_PKTDSH[7:0])

Planar scaling down
PLNDSVNL(CAP_PLNSL[31:24])
PLNDSVML(CAP_PLNSL[23:16])
PLNDSHNL(CAP_PLNSL[15:8])
PLNDSHML(CAP_PLNSL[7:0])

PLNDSVNLH(CAP_PLNSM[31:24])
PLNDSVMH(CAP_PLNSM[23:16])
PLNDSHNH(CAP_PLNSM[15:8])
PLNDSHMH(CAP_PLNSM[7:0])

Packet Planar

Packet output pixel stride
PKTSTRIDE((CAP_STRIDE(13:0))

Planar output pixel stride
PLNSTRIDE((CAP_STRIDE(29:16)

)

Motion detection
MD, MDADDR and MDYADDR

registers

Packet output enable
PLKEN(CAP_CTL[5])

Image capture interface enable
CAPEN((CAP_CTL[0]))

Planar output enable
PLNEN(CAP_CTL[6])

 Polarity and Input Data Order 28.5.3

Sensor uses three control pins to notify the Video-In engine for a new frame, a new horizontal
line or a new pixel. These pins are VSYNC, HSYNC and PCLK respectively. The polarity of
VSYNC and HSYNC define positive or negative level that is the synchronization period. In
addition, rising or falling edge of PCLK latches the image data. The following figures illustrate
vertical synchronization polarity in high horizontal synchronization polarity, in high and rising
edge latch data.

Aug. 14, 2018 Page 301 of 312 Rev 1.02

NUC970/N9H30

V-Sync

H-Sync

Pixel
Data

H-Sync

Pixel
Data

Pixel
Clock

Invalid data Valid data

 Sensor Data Input Order 28.5.4

Input data order may be U0Y0VY1, Y0U0Y1V0, V0Y0U0Y1 or Y0V0Y1U0 after cropping the
input data.

Y U Y V Y U Y V Y U ...

VYUY

YVYU

UYVY

YUYV

 Input and Output Data Format 28.5.5

Sensor could output YcbCr422, RGB565, Bayer format or JPEG bit-stream. However,
Capture sensor interface only support YcbCr422 and RGB565. The input format depends on
the sensor initial table. Programmer can specify the output format by INFMT(CAP_PAR[0])

Output format depends on the display device or the input data of JPEG encoder. Programmer
can specify the output format by OUTFMT(CAP_PAR[5:4]).

 Downscale Factor 28.5.6

Capture sensor interface controller supports to resize the input data by direct-drop algorithm
(DDA).

For example:

If the dimension of cropping window is equal to 640x480 and target dimension is equal to
352x288.

Aug. 14, 2018 Page 302 of 312 Rev 1.02

NUC970/N9H30

The horizontal downscale factor =

352/640 =(PKTSHNH<<8+PKTSHNL)/(PKTSHMH<<8+PKTSHML)

The vertical downscale factor =

288/480 =(PKTSVNH<<8+PKTSVNL)/(PKTSVMH<<8+PKTSVML)

 Cropping Window and Start Position 28.5.7

The capture interface can select a window from the received image. The size of the window is
specified by the number of pixel clocks (horizontal dimension) and the number of lines
(vertical dimension). The start (left upper corner) coordinates can be specified by the
CAP_CWSP register. The size (vertical dimension in number of lines and horizontal
dimension in number of pixel clocks) can be specified by the CAP_CWS register.

Image

CWADDRV(CAP_CWSP[26:16])

CWSADDRH(CAP_CWSP[11:0])

CWH(CAP_CWS[26:16])

CWW(CAP_CWSP[11:0])

 One Shutter Mode (Single Frame) 28.5.8

In this mode, a single frame is captured. After the SHUTTER (CAP_CTL[16]) bit is set, the
Image Capture interface automatically disables the capture interface after a frame is
captured.

 Motion detection 28.5.9

Capture sensor interface controller supports in-door motion detection. The feature lists as
follows

1. Block size supports 8x8 and 16x16

2. Output motion detection supports 1 bit or 8 bit(1 bit DIFF and 7 bit threshold)

The following figure illustrates how motion detection block works. Motion detection block
separates whole frame into 8x8 or 16x16 blocks. Get the central pixel (4,4) or (8,8) for block
size 8x8 or 16x16. Then compare with previous frame for same position –MDYADDR (the
temporary Y buffer of motion detection). If the difference is over the threshold set 1 to motion
detection output buffer- MDADDR, otherwise set to be 0 to motion detection output buffer-
MDADDR. Output the central pixel to the temporary Y buffer of motion detection. It will be

Aug. 14, 2018 Page 303 of 312 Rev 1.02

NUC970/N9H30

padding 0 if the output stream is not enough one word.

·

The format of motion detection output buffer lists as following.

 One bit mode (Captured Width = 640 for block size 16x16)

b31 b30 b29 b28 b27 b26 b25 b24 XX b1 b0

0 b34 b33 b32b35b36b37b38

Low Word

High Word b39

 1 bit DIFF(MSB) + 7 bit Y Differential (Captured Width = 352 for block size 16x16)

B1 B0B2B3

B1 B0B2B3

B20B2100

XX

Low Word

High Word

Aug. 14, 2018 Page 304 of 312 Rev 1.02

NUC970/N9H30

29 Watchdog Timer (WDT)

29.1 Overview

The purpose of Watchdog Timer (WDT) is to perform a system reset when system runs into
an unknown state. This prevents system from hanging for an infinite period of time. Besides,
this Watchdog Timer supports the function to wake-up system from Idle/Power-down mode.

29.2 Features

 18-bit free running up counter for WDT time-out interval.

 Selectable time-out interval (24~ 218) and the time-out interval is 0.48828125 ms ~ 8 s if
WDT_CLK = 32.768 kHz.

 System kept in reset state for a period of (1 / WDT_CLK) * 63.

 Supports selectable WDT reset delay period, including 1026, 130, 18 or 3 WDT_CLK
reset delay period.

 Supports to force WDT enabled after chip powered on or reset by setting WDTON in
PWRON register.

 Supports WDT time-out wake-up function only if WDT clock source is selected as 32
kHz.

29.3 Block Diagram

18-bit WDT Counter

0 … ... 15.. 4 16 17

000
001

110
111

:
:

WDT_ CLK

Time-
Out

Interval

Period
select

Reset

Delay

Period

Select

Watchdog
Interrupt

Watchdog

Reset

RSTCNT(WDT_CTL[0])

Reset WDT

Counter

WDTEN

(WDT_CTL[7])
Wakeup CPU from

Power - down mode

TOUTSEL

(WDT_CTL[10:8])

IF

(WDT_CTL[3])

INTEN

(WDT_CTL[6])

RSTEN

(WDT_CTL[1]) RSTF

(WDT_CTL[2])

WKEN

(WDT_CTL[4]) WKF

(WDT_CTL[5])

29.4 Register Map

Register Offset R/W Description Reset Value

Aug. 14, 2018 Page 305 of 312 Rev 1.02

NUC970/N9H30

WDT Base Address:

WDT_BA = 0xB800_1800

WDT_CTL WDT_BA+0x00 R/W WDT Control Register 0x0000_0700

WDT_ALTCTL WDT_BA+0x04 R/W WDT Alternative Control Register 0x0000_0000

29.5 Functional Description

 WDT Configuration 29.5.1

Watchdog timer is used to trigger a system reset while the software execute to an abnormal
state, this prevents the system stays in an uncontrollable state for unlimited duration. Besides,
WDT support wakeup function that can wake up CPU from power-down state and right before
CPU enters power-down state, its counter will reset automatically, so the wakeup duration is
predictable. The WDT includes an 18-bit free running up counter with programmable time-out
intervals. Table below shows the WDT time-out interval period selection, Twdt in the table
depends on the peripheral clock source selection through WDT_S(CLK_DIVCTL8[9:8]), it can
be HXT (external high speed 12MHz crystal), 12MHz/128, PCLK/4096, or LXT (external low
speed 32KHz crystal).

TOUTSEL (WDT_CTL[10:8]) Timeout Interval Period WDT_CLK=HXT WDT_CLK=LXT

000 2
4
 * TWDT 1.33 uS 488.28 uS

001 2
6
 * TWDT 5.33 uS 1.95 mS

010 2
8
 * TWDT 21.3 uS 7.81 mS

011 2
10

 * TWDT 85.3 uS 31.25 mS

100 2
12

 * TWDT 341.3 uS 125 mS

101 2
14

 * TWDT 1.37 mS 0.5 S

110 2
16

 * TWDT 5.46 mS 2.0 S

111 2
18

 * TWDT 21.8 mS 8.0 S

Setting WDTEN (WDT_CTL[7]) to 1 will enable the WDT function and the WDT counter to
start counting up. When the WDT up counter reaches the TOUTSEL (WDT_CTL[10:8])
settings, WDT time-out interrupt will occur then WDT time-out interrupt flag IF (WDT_CTL[3])
will be set to 1 immediately, if INTEN(WDT_CTL[6]) is set 1, timeout event will also triggers
interrupt. Software must set RSTCNT (WDT_CTL[0]) bit to reset WDT counter within the reset
delay period which is configured by RSTDSEL (WDT_ALTCTL[1:0]) to prevent system reset.
There are eight time-out interval period can be selected by setting TOUTSEL
(WDT_CTL[10:8]). If RSTEN (WDT_CTL[1]) is 1, and WDT counter is not reset before reset
delay period times out, WDT will set WDTRSTS (SYS_RSTSTS[5]) but and reset CPU. This
reset signal will last for 63 WDT clocks (TRST), and then CPU resets. WDTRSTS flag will not
be cleared by WDT reset signal. User could check the status of this flag to decide if the

Aug. 14, 2018 Page 306 of 312 Rev 1.02

NUC970/N9H30

system source is WDT or not.

Next figure shows the Watchdog Timer Time-out Interval and Reset Period Timing.

TTIS

WDT reset

(low reset)

TRSTD

TRST

TWDT

· TWDT : Watchdog Clock Time Period

· TTIS : Watchdog Time-out Interval Period ((2
4
 ~ 2

18
) * TWDT)

· TRSTD : Watchdog Reset Delay Period

 - Selectable 3/18/130/1026 * TWDT delay period controlled

 by RSTDSEL(WDT_ALTCTL [1:0])

· TRST : Watchdog Reset Period (63 * TWDT)

WDT_CLK

IF = 1

RSTF = 1

(if RSTEN = 1)

IF

RSTF

NOTE: If WDT is not enabled by power-on setting but rather enabled by software after system
boot up, then WDT timeout cannot reset the system successfully.

 WDT Wakeup 29.5.2

If WDT clock source is selected to 32 kHz, system can be waken-up from Power-down mode
while WDT time-out interrupt signal is generated and WKEN (WDT_CTL[4]) enabled. Notice
that user should set XTAL_EN (CLK_PMCON [0]) to enable crystal clock source before
system entries power down mode because the system peripheral clock are disabled when
system is power down mode. In the meanwhile, the WDT (SYS_WKUPSSR[28]) will set to 1
automatically, user can check WDT (SYS_WKUPSSR[28]) status by software to recognize
the system has been waken-up by WDT time-out interrupt or not.

Aug. 14, 2018 Page 307 of 312 Rev 1.02

NUC970/N9H30

30 Window Watchdog Timer (WWDT)

30.1 Overview

The Window Watchdog Timer (WWDT) is used to perform a system reset within a specified
window period to prevent software run to uncontrollable status by any unpredictable condition.

30.2 Features

 6-bit down counter value (CNTDAT) and 6-bit compare value (CMPDAT) to make the
WWDT time-out window period flexible.

 Supports 4-bit value (PSCSEL) to programmable maximum 11-bit prescale counter
period of WWDT counter.

30.3 Block Diagram

6-bit down counter
11-bit

Prescale

6-bit compare value

(CMPDAT)

WWDT_CLK

0x3F

Write

RLDCNT =

0x00005AA5

comparator

CNTDAT = CMPDAT

WWDTIF

(STATUS[0])

CNTDAT > CMPDAT

INTEN

(WWDT_CTL[1])

WWDT

Interrupt

WWDT

Reset

CNTDAT = 0

Write RLDCNT

WWDTRF

(STATUS[1])

PSCSEL

(WWDT_CTL[11:8])

6-bit down

counter value

(CNTDAT)

synchronizer

30.4 Register Map

Register Offset R/W Description Reset Value

WWDT Base Address:

WWDT_BA = 0xB800_1900

WWDT_RLDCN
T

WWDT_BA+0x00 W WWDT Reload Counter Register 0x0000_0000

WWDT_CTL WWDT_BA+0x04 R/W WWDT Control Register 0x003F_0800

WWDT_STATU
S

WWDT_BA+0x08 R/W WWDT Status Register 0x0000_0000

WWDT_CNT WWDT_BA+0x0C R WWDT Counter Value Register 0x0000_003F

Aug. 14, 2018 Page 308 of 312 Rev 1.02

NUC970/N9H30

30.5 Function Description

 Timeout Setting 30.5.1

The WWDT includes a 6-bit down counter with programmable prescale value to define
different WWDT time-out intervals. The clock source of 6-bit WWDT is based on system clock
divide 4096 (PCLK/4096), external 12 MHz oscillator or internal 32 kHz oscillator with a
programmable 11-bitprescale counter value which controlled by PSCSEL
(WWDT_CTL[11:8]). Also, the correlate of PSCSEL (WWDT_CTL[11:8]) and prescale value

are listed in the following table.：

PSCSEL Prescaler Value Max. Timeout Period
Max. Time-out Interval

 WWDT_CLK=HXT

Max. Time-out Interval

 WWDT_CLK=LXT

0000 1 1 * 64 * TWWDT 5.33 uS 1.95 mS

0001 2 2 * 64 * TWWDT 10.66 uS 3.91 mS

0010 4 4 * 64 * TWWDT 21.33 uS 7.81 mS

0011 8 8 * 64 * TWWDT 42.67 uS 15.63 mS

0100 16 16 * 64 * TWWDT 85.33 uS 31.25 mS

0101 32 32 * 64 * TWWDT 170.67 uS 62.50 mS

0110 64 64 * 64 * TWWDT 341.33 uS 125.00 mS

0111 128 128 * 64 * TWWDT 682.67 uS 250.00 mS

1000 192 192 * 64 * TWWDT 1.02 mS 375.00 mS

1001 256 256 * 64 * TWWDT 1.37 mS 500.00 mS

1010 384 384 * 64 * TWWDT 2.05 mS 750.00 mS

1011 512 512 * 64 * TWWDT 2.73 mS 1.00 S

1100 768 768 * 64 * TWWDT 4.10 mS 1.50 S

1101 1024 1024 * 64 * TWWDT 5.46 mS 2.00 S

1110 1536 1536 * 64 * TWWDT 8.19 mS 3.00 S

1111 2048 2048 * 64 * TWWDT 10.09 mS 4.00 S

When the WWDTEN (WWDT_CTL[0]) is set, WWDT down counter will start counting from
0x3F to 0 and cannot be stopped. Software can read current counter value from WWDT_CNT
register.

If WWDT counter reaches 0, WWDT will trigger a system reset. Before WWDT counter
reaches 0, software can write a specific value, 0x00005AA5, to register WWDTRLD to reload
counter to its initial value 0x3F and prevent WWDT reset. This reload can only be set while
counter value is smaller or equal to WINCMP. If software write WWDTRLD will cause system
reset whiel WWDT counter is greater than WINCMP.

Aug. 14, 2018 Page 309 of 312 Rev 1.02

NUC970/N9H30

To prevent program runs to disable WWDT counter counting unexpected, the WWDT_CTL
register can only be written once after chip is powered on or reset. User cannot disable
WWDT counter counting (WWDTEN[0]), change counter prescale period (PSCSEL) or
change window compare value (CMPDAT) while WWDTEN (WWDT_CTL[0]) has been
enabled by user unless chip is reset.

 WWDT Interrupt 30.5.2

During down counting by the WWDT counter, the WWDTIF (WWDT_STATUS[0]) is set to 1
while the WWDT counter value (CNTDAT) is equal to window compare value (CMPDAT) and
WWDTIF can be cleared by user by writing 1 to this bit. If INTEN (WWDT_CTL[1]) is also set
to 1 by user, the WWDT compare match interrupt signal is generated also while WWDTIF is
set to 1 by hardware..

 System Reset 30.5.3

When WWDTIF (WWDT_STATUS[0]) is generated, user must reload WWDT counter value to
0x3F by writing 0x00005AA5 to WWDT_RLDCNT register, and also to prevent WWDT
counter value reached to 0 and generate WWDT reset system signal to info system reset. If
current CNTDAT (WWDT_CNT[5:0]) is larger than CMPDAT (WWDT_CTL[21:16]) and user
writes 0x00005AA5 to the WWDT_RLDCNT register, the WWDT reset system signal will be
generated immediately to cause chip reset also. User can check if WWDT caused system
reset or not be checking WWDTRF (WWDT_STATUS[1]) bit. If this bit is set 1, it means
system was reset by WWDT. Software can write 1 to clear this bit.

Comparator

6-bit compare value
CMPDAT

6-bit down counter
value CNTDAT

from 0x3F to 0x00

Write RLDCNT
0x5AA5 will
reset system

Write RLDCNT
0x5AA5 will

reload CNTDAT
to 0x3F

CNTDAT > CMPDAT
or CNTDAT = 0

CNTDAT <= CMPDAT

 WWDT Window Setting Limitations 30.5.4

When user writes 0x00005AA5 to WWDT_RLDCNT register to reload WWDT counter value
to 0x3F, it needs 3 WWDT clocks to sync the reload command to actually perform reload
action. Notice that if user set PSCSEL (WWDT_CTL[11:8]) to 0000, the counter prescale
value should be as 1, and the CMPDAT (WWDT_CTL[21:16]) must be larger than 2.
Otherwise, writing WWDT_RLDCNT register to reload WWDT counter value to 0x3F is
unavailable, WWDTIF(WWDT_STATUS[0]) is generated, and WWDT reset system event

Aug. 14, 2018 Page 310 of 312 Rev 1.02

NUC970/N9H30

always happened. Following table list the prescale value and CMPDAT setting limitations:

PSCSEL (WWDT_CTL[11:8]) Prescale Value Valid CMPDAT (WWDT_CTL[21:16]) Value

0000 1 0x3 ~ 0x3F

0001 2 0x2 ~ 0x3F

Others Others 0x0 ~ 0x3F

And also, after system enter power-down mode, WWDT stop counting. So it is not possible to
wake up system using WWDT.

Aug. 14, 2018 Page 311 of 312 Rev 1.02

NUC970/N9H30

Revision History

Date Revision Description

2015.7.10 1.00 1. Initially issued.

Aug. 14, 2018 Page 312 of 312 Rev 1.02

NUC970/N9H30

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

	1 System Manager
	1.1 Overview
	1.2 Register Map
	1.3 Functional Description
	1.3.1 Multiple Function Control
	1.3.2 Low Voltage Detect / Reset
	1.3.3 USB ID Detection

	2 Clock Controller
	2.1 Overview
	2.2 Features
	2.3 Block Diagram
	2.4 Register Map
	2.5 Functional Description
	2.5.1 Module Clock On/Off
	2.5.2 Clock Divider
	2.5.3 PLL Setting

	3 Analog to Digital Converter (ADC)
	3.1 Overview
	3.2 Features
	3.3 Block Diagram
	3.4 Register Map
	3.5 Functional Description
	3.5.1 Basic Configuration
	3.5.2 ADC Transfer Function
	3.5.3 Normal Detection
	3.5.4 Battery Voltage Detection
	3.5.5 Key Pad Scan
	3.5.6 4-wire and 5-wire Touch Screen
	3.5.7 4-wire Pressure Measurement

	4 Advanced Interrupt Controller (AIC)
	4.1 Overview
	4.2 Features
	4.3 Block Diagram
	4.4 Register Map
	4.5 Functional Description
	4.5.1 Interrupt channel configuration
	4.5.2 Interrupt Masking
	4.5.3 Interrupt Clearing and Setting
	4.5.4 Software Priority Scheme
	4.5.5 Hardware Priority Scheme
	4.5.6 Interrupt Sources

	5 CAN
	5.1 Overview
	5.2 Features
	5.3 Block Diagram
	5.4 Register Map
	5.5 Functional Description
	5.5.1 CAN Protocol
	5.5.2 CAN Baud Rate Setting
	5.5.3 CAN Module Register
	5.5.4 Transfer CAN Message
	5.5.5 Receive CAN Message
	5.5.6 Wakeup Function

	6 Cryptographic Accelerator (NUC970 only)
	6.1 Overview
	6.2 Features
	6.3 Block Diagram
	6.4 Register Map
	6.5 Functional Description
	6.5.1 Data Access
	6.5.2 Channel Expansion
	6.5.3 PRNG
	6.5.4 AES
	6.5.4.1 AES DMA Mode Operating Flow
	6.5.4.2 AES Non-DMA Mode Operating Flow

	6.5.5 DES/TDES
	6.5.5.1 DES/TDES DMA Mode Operating Flow
	6.5.5.2 DES/TDES Non-DMA Mode Operating Flow

	6.5.6 SHA
	6.5.6.1 SHA DMA Mode Operating Flow
	6.5.6.2 SHA Non-DMA Mode Operating Flow
	6.5.6.3 SHA DMA Mode Operating Flow
	6.5.6.4 SHA Non-DMA Mode Operating Flow

	7 External Bus Interface (EBI)
	7.1 Overview
	7.2 Features
	7.3 Block Diagram
	7.4 Register Map
	7.5 Functional Description
	7.5.1 Basic Configuration
	7.5.2 Memory Space and Control

	8 Ethernet MAC Controller (EMAC)
	8.1 Overview
	8.2 Features
	8.3 Block Diagram
	8.4 Register Map
	8.5 Functional Description
	8.5.1 PHY Control
	8.5.2 CAM Configuration
	8.5.3 Control Frame
	8.5.4 Wake on Lan (WoL)
	8.5.5 Packet Receive
	8.5.6 Packet Transmit
	8.5.7 Network Timing
	8.5.8 Error Handling

	9 Enhanced Timer Controller (ETMR)
	9.1 Overview
	9.2 Features
	9.3 Block Diagram
	9.4 Register Map
	9.5 Functional Description
	9.5.1 Timer Initialization
	9.5.2 Timer Capture Initialization
	9.5.3 Interrupt Handling
	9.5.4 Timer Frequency
	9.5.5 One-Shot Mode
	9.5.6 Periodic Mode
	9.5.7 Toggle Mode
	9.5.8 Continuous Mode
	9.5.9 Free Counting Mode
	9.5.10 Trigger Counting Mode
	9.5.11 Counter Reset Mode
	9.5.12 Capture Debounce

	10 Flash Memory Interface
	10.1 Overview
	10.2 Features
	10.3 Block Diagram
	10.4 Register Map
	10.5 Functional Description
	10.5.1 DMA and FMI Global Control
	10.5.2 NAND Flash
	10.5.2.1 NAND Initialize
	10.5.2.2 Reset NAND-type Flash
	10.5.2.3 Identify NAND-type Flash
	10.5.2.4 Erase NAND-type Flash
	10.5.2.5 Write NAND-type Flash
	10.5.2.6 Read NAND-type Flash
	10.5.2.7 NAND-type Flash ECC Correction

	10.5.3 eMMC
	10.5.3.1 eMMC Initialize
	10.5.3.2 Send Command
	10.5.3.3 Get Response
	10.5.3.4 Read eMMC
	10.5.3.5 Write eMMC

	11 General DMA Controller (GDMA)
	11.1 Overview
	11.2 Features
	11.3 Block Diagram
	11.4 Register Map
	11.5 Functional Description
	11.5.1 Non-Descriptor Functional Descriptions
	11.5.1.1 GDMA Configuration
	11.5.1.2 Transfer Count
	11.5.1.3 Transfer Termination
	11.5.1.4 Fixed Address
	11.5.1.5 Block Mode Transfer
	11.5.1.6 GDMA operation started by software

	11.5.2 Descriptor Functional Descriptions
	11.5.2.1 GDMA Configuration
	11.5.2.2 GDMA operation started by software

	12 2D Graphic Engine (GE2D)
	12.1 Overview
	12.2 Features
	12.3 Block Diagram
	12.4 Register Map
	12.5 Function Description
	12.5.1 2D Graphic Engine Initialization
	12.5.2 Ternary Raster Operations (ROP)
	12.5.3 Bit Block Transfer (BitBLT)
	12.5.4 Bresenham Line Drawing
	12.5.5 α Blending
	12.5.6 Clipping
	12.5.7 Rotation
	12.5.8 Scale Up/Down

	13 General-Purpose Input/Output (GPIO)
	13.1 Overview
	13.2 Features
	13.3 Block Diagram
	13.4 Register Map
	13.5 Functional Description
	13.5.1 Multiple function pin Configuration
	13.5.2 GPIO Output Mode
	13.5.3 GPIO Input Mode
	13.5.4 GPIO Interrupt

	14 I2C
	14.1 Overview
	14.2 Features
	14.3 Function Block
	14.4 Register Map
	14.5 Function Description
	14.5.1 I2C Protocol
	14.5.2 Data Transmission Continuously
	14.5.3 Interrupt
	14.5.4 Software Mode
	14.5.5 I2C Operation Using CMDR Register
	14.5.6 I2C EEPROM Operation Example

	15 I2S
	15.1 Overview
	15.2 Features
	15.3 Function Block
	15.4 Register Map
	15.5 Functional Description
	15.5.1 I2S Master/Slave Mode
	15.5.2 I2S Source Clock Configuration
	15.5.3 I2S Calculation and Configuration of Clock
	15.5.4 DMA
	15.5.5 Sequence of DMA Data
	15.5.6 Interface Selection
	15.5.7 PCM Interface
	15.5.8 Data Split

	16 JPEG Codec
	16.1 Overview
	16.2 Feature
	16.3 Block Diagram
	16.4 Register Map
	16.5 Functional Description
	16.5.1 Memory Access
	16.5.2 JPEG Encoding
	16.5.2.1 Reset Jpeg Engine
	16.5.2.2 Quantization Table

	16.5.3 Normal Encoding
	16.5.4 Encoding Scaling up
	16.5.5 JPEG Decoding
	16.5.5.1 Normal Decode
	16.5.5.2 Decoding Scaling down
	16.5.5.3 Window Decode
	16.5.5.4 Decode Stride Function (Packet Format Only)
	16.5.5.5 Software Decode Input Wait
	16.5.5.6 Decode Output Wait
	16.5.5.7 Decode Output wait service routine

	17 LCD Display Interface Controller (LCM)
	17.1 Overview
	17.2 Features
	17.3 Block Diagram
	17.4 Register Map
	17.5 Functional Description
	17.5.1 LCD Configuration Flow
	17.5.2 LCD Controller Initialization and Configuration
	17.5.3 Configure OSD Controller
	17.5.4 Hardware Cursor

	18 MTP Controller (NUC970 only)
	18.1 Overview
	18.2 Features
	18.3 Block Diagram
	18.4 Register Map
	18.5 Functional Description
	18.5.1 Use MTP Controller
	18.5.2 MTP Key
	18.5.3 User Defined Data
	18.5.4 MTP Enable
	18.5.5 Program MTP Key
	18.5.6 Lock MTP Key
	18.5.7 MTP Key for AES Encrypt/Decrypt
	18.5.8 MTP Key for SHA/HMAC Comparison

	19 Pulse Width Modulation (PWM)
	19.1 Overview
	19.2 Features
	19.3 Block Diagram
	19.4 Register Map
	19.5 Functional Description
	19.5.1 PWM Timer Operation
	19.5.2 PWM double buffer
	19.5.3 Periodic and One-Shot Operation
	19.5.4 Dead-Zone Generator
	19.5.5 PWM Timer Start Procedure
	19.5.6 PWM Timer Stop Procedure

	20 Real Time Clock (RTC)
	20.1 Overview
	20.2 Features
	20.3 Block Diagram
	20.4 Register Map
	20.5 Functional Description
	20.5.1 RTC Initiation
	20.5.2 RTC write enable
	20.5.3 12/24 hour Time scale selection
	20.5.4 Set Calendar and Time
	20.5.5 Set Calendar and Time Alarm (Absolute)
	20.5.6 Set Time Alarm (Relative)
	20.5.7 Set wake-up function
	20.5.8 Set tick interrupt
	20.5.9 System Power Control Flow
	20.5.9.1 Set System Power On
	20.5.9.2 Force Power off Flow
	20.5.9.3 Software Power off System

	20.5.10 Frequency Compensation:

	21 Smart Card Host Interface (SC)
	21.1 Overview
	21.2 Features
	21.3 Block Diagram
	21.4 Register Map
	21.5 Functional Description
	21.5.1 Activation (Cold Reset)
	21.5.2 Warm Reset
	21.5.3 Deactivation
	21.5.4 Data Format
	21.5.5 Data Transfer
	21.5.6 Error Signal and Character Repetition
	21.5.7 Internal Time-out Counter
	21.5.8 Smartcard Insert/Remove Detection
	21.5.9 Miscellaneous Transmission Settings
	21.5.10 UART Mode

	22 Secure Digital Host Controller (SDH)
	22.1 Overview
	22.2 Features
	22.3 Block Diagram
	22.4 Register Map
	22.5 Functional Description
	22.5.1 Global Control
	22.5.2 Send Command
	22.5.3 Get Response
	22.5.4 Read SD Card
	22.5.5 Write SD Card

	23 SPI
	23.1 Overview
	23.2 Features
	23.3 Function Block
	23.4 Register Map
	23.5 Function Description
	23.5.1 Slave Selection
	23.5.2 Automatic Slave Select
	23.5.3 Dual / Quad Mode
	23.5.4 Burst Mode
	23.5.5 SPI Interrupt
	23.5.6 SPI Programming Example

	24 TIMER CONTROLLER
	24.1 Overview
	24.2 Features
	24.3 Block Diagram
	24.4 Register Map
	24.5 Functional Description
	24.5.1 Timer Initialization
	24.5.2 Interrupt Handling
	24.5.3 Timeout Frequency
	24.5.4 One-shot Mode
	24.5.5 Periodic Mode
	24.5.6 Continuous Mode

	25 UART
	25.1 Overview
	25.2 Features
	25.3 Block Diagram
	25.4 Register Map
	25.5 Functional Description
	25.5.1 Initializations
	25.5.2 IrDA Mode
	25.5.3 RS485 Function Mode
	25.5.3.1 RS-485 Normal Multidrop Operation Mode (NMM)
	25.5.3.2 RS-485 Auto Address Detection Operation Mode (AAD)
	25.5.3.3 RS-485 Auto Direction Mode (AUD)

	25.5.4 LIN (Local Interconnection Network) Mode

	26 USB 2.0 Device Controller
	26.1 Overview
	26.2 Features
	26.3 Block Diagram
	26.4 Register Map
	26.5 Functional Description
	26.5.1 Initialize
	26.5.2 Interrupt Service Routine
	26.5.3 Standard Request
	26.5.4 Set Address Request
	26.5.5 Get Descriptor
	26.5.6 IN Transmission
	26.5.7 OUT Transmission

	27 USB Host Controller
	27.1 Overview
	27.2 Features
	27.3 Block Diagram
	27.3.1 Basic Configuration
	27.3.2 EHCI Controller
	27.3.3 OHCI Controller
	27.3.3.1 AHB Interface
	27.3.3.2 AHB Master
	27.3.3.3 AHB Slave
	27.3.3.4 List Processing
	27.3.3.5 Frame Management
	27.3.3.6 Interrupt Processing
	27.3.3.7 Host Controller Bus Master
	27.3.3.8 Data Buffer
	27.3.3.9 USB Interface
	27.3.3.10 Series Interface Engine (SIE)
	27.3.3.11 Root Hub

	27.4 Register Map
	27.5 Functional Description
	27.5.1 Initialization
	27.5.2 Root Hub Port Routing Logic
	27.5.3 OHCI
	27.5.3.1 Data Structure
	27.5.3.2 Endpoint Descriptor
	27.5.3.3 Transfer Descriptor
	27.5.3.4 Host Controller Communication Area
	27.5.3.5 OHCI Initialization
	27.5.3.6 Interrupt Processing
	27.5.3.7 Done Queue Processing
	27.5.3.8 Root Hub

	27.5.4 EHCI
	27.5.4.1 Data Structure
	27.5.4.2 Isochronous Transfer Descriptor (iTD)
	27.5.4.3 Split Transaction Isochronous Transfer Descriptor (siTD)
	27.5.4.4 Queue Element Transfer Descriptor (qTD)
	27.5.4.5 EHCI Initialization
	27.5.4.6 USB Commands
	27.5.4.7 Interrupt Status
	27.5.4.8 Root Hub

	28 Capture Sensor Interface Controller
	28.1 Overview
	28.2 Features
	28.3 Block Diagram
	28.4 Register Map
	28.5 Functional Description
	28.5.1 Basic Configuration
	28.5.2 Image Capture Flow Chart
	28.5.3 Polarity and Input Data Order
	28.5.4 Sensor Data Input Order
	28.5.5 Input and Output Data Format
	28.5.6 Downscale Factor
	28.5.7 Cropping Window and Start Position
	28.5.8 One Shutter Mode (Single Frame)
	28.5.9 Motion detection

	29 Watchdog Timer (WDT)
	29.1 Overview
	29.2 Features
	29.3 Block Diagram
	29.4 Register Map
	29.5 Functional Description
	29.5.1 WDT Configuration
	29.5.2 WDT Wakeup

	30 Window Watchdog Timer (WWDT)
	30.1 Overview
	30.2 Features
	30.3 Block Diagram
	30.4 Register Map
	30.5 Function Description
	30.5.1 Timeout Setting
	30.5.2 WWDT Interrupt
	30.5.3 System Reset
	30.5.4 WWDT Window Setting Limitations

