

Feb. 16, 2024 Page 1 of 15 Rev 1.00

M031 Series

Document Information

Application
This example code uses ADC with PDMA to trigger multiple ADC
channels only once, and each channel can perform multiple A/D
conversions.

BSP Version M031_Series_BSP_CMSIS_V3.05.000

Hardware NuMaker-M032KI V1.0

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller and microprocessor based
system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

ADC Flexible Channel Control

Example Code Introduction for 32-bit NuMicro® Family

http://www.nuvoton.com/

Feb. 16, 2024 Page 2 of 15 Rev 1.00

M031 Series

1. Overview

This example code uses ADC with PDMA to trigger multiple ADC channels only once, and
each channel can perform multiple A/D conversions. All raw data after A/D conversion will be
stored in pre-defined variables. When a round of ADC conversion is completed, the program
can take out the raw data from the variables for post-analysis, such as calculating average
values.

The ADC of the M031 series essentially supports multiple operating modes. Among them,
Continuous Scan mode can trigger multiple ADC channels at one time, but each channel can
only A/D convert once. What we need is to perform A/D conversion multiple times for each
channel. For example, if you want to trigger the conversion of three ADC channels 1, 2, and 3
at one time, and perform two A/D conversions on each channel, then the Continuous Scan
mode can only convert channels 1, 2, 3, 1, 2, 3 in sequence. This is different from the
conversion sequence 1, 1, 2, 2, 3, 3 we need.

This example code uses ADC Continuous Scan mode with PDMA's autonomous data
movement, calculation of movement times, and interrupt function to achieve the requirement
of triggering multiple ADC channels at one time, and each channel can perform multiple A/D
conversions.

In addition, to improve the application scope of the example code, the program structure is
designed to easily specify the ADC channels and conversion sequence. Each ADC channel
can have different conversion times and even different ADC advanced parameters. Details
will be described in subsequent chapters.

1.1 Principle

To achieve the function of triggering multiple ADC channels at one time, and each channel
can perform multiple A/D conversions, you can refer to the flow chart in Figure 1-1. The entire
work is divided into multiple small tasks, as explained below:

Feb. 16, 2024 Page 3 of 15 Rev 1.00

M031 Series

Figure 1-1 Example Code Flow Chart

• An ADC channel can be A/D converted multiple times, and the raw data is stored in the
specified SRAM address.

As shown in step 1 and step 2 of the flow chart, the main program flow only triggers
the ADC once and uses the ADC Continuous Scan mode to convert a single ADC
channel multiple times. Each time the ADC completes the A/D conversion, PDMA
moves the conversion result to SRAM.

• Stop conversion when the A/D conversion reaches the specified number of times and
triggers the PDMA interrupt.

As shown in step 3 of the flow chart, when PDMA transfers data for the specified
number of times, it stops transferring data and triggers a PDMA interrupt.

• Switch to the next ADC channel and restart A/D conversion.

As shown in step 4 of the flow chart, the PDMA interrupt handler can modify both the
PDMA and ADC settings and start converting the next ADC channel.

• When all ADC channels have completed A/D conversion, stop the conversion and
complete one round of work.

As shown in step 5 and step 6 of the flow chart, the program flow returns to the main
program, and the CPU can read the raw data converted by ADC from SRAM for
subsequent processing.

ADC
(Continuous
Scan mode)

PDMA

SRAM

2.1. Trigger
for each

conversion

CPU

1. Trigger the first ADC channel

3. Interrupt when PDMA done

2
.2

.
M

o
v
e
 d

a
ta

 b
y
 P

D
M

A

6. Read data when all ADC channels done

All ADC
channels
done ?

5. Done

4.1. Set
PDMA

for next
channel

PDMA Interrupt
Handler

No

4.2. Set
ADC

for next

channel

Feb. 16, 2024 Page 4 of 15 Rev 1.00

M031 Series

1.2 Demo Result

The setting and actual testing environment of this example code are as follows:

• ADC channel 2 converts 6 times, PB2 is grounded.

• ADC channel 1 converts 4 times, PB1 input voltage is about 1.82 volt.

• ADC channel 3 converts 8 times, PB3 input voltage is VDD, about 3.08 volt.

The execution results are shown in Figure 1-2.

Figure 1-2 Execution Results

Feb. 16, 2024 Page 5 of 15 Rev 1.00

M031 Series

2. Code Description

The main program of this example code will set the system frequency to HIRC, turn on the
PDMA operating frequency, set the ADC operating frequency to HIRC/2, set the GPIO pins
PB1, PB2, and PB3 to ADC channel 1, channel 2, and channel 3 modes, and set the GPIO
Pins PB12 and PB13 as UART0 Rx and UART0 Tx modes. Then the main program calls the
ADC_FunctionTest() function to implement the function of triggering multiple ADC channels at
one time and each channel can perform multiple A/D conversions.

int32_t main(void)
{
 /* Init System, IP clock and multi-function I/O. */
 SYS_Init();

 /* Init UART0 for printf */
 UART0_Init();

 printf("System clock rate: %d Hz\n", SystemCoreClock);

 /* ADC function test */
 ADC_FunctionTest();

 /* Disable ADC IP clock */
 CLK_DisableModuleClock(ADC_MODULE);

 /* Disable PDMA IP clock */
 CLK_DisableModuleClock(PDMA_MODULE);

 printf("Exit ADC example code\n\n");

 while (1);
}

Before explaining the ADC operation code, the following will first introduce how to set the
ADC conversion channel and conversion times.

This example code defines a struct data type ADC_CONF_T to store related ADC parameters.
Each component of ADC_CONF_T can specify an ADC channel and the number of
conversions of this ADC channel. In addition, ADC_CONF_T can also freely add other ADC
advanced parameters to provide the possibility of expanding program functions. For example,
this example code adds the extended sampling time of the ADC channel to allow the program
to use different extended sampling times on different ADC channels.

Based on the data type ADC_CONF_F, this example code defines a global array variable
g_ADC_Conf. The program will execute each ADC channel in the array sequentially until all
ADC channels have been converted. Therefore, according to the setting value of
g_ADC_Conf, the execution flow of this example code is: one trigger in main program flow
can convert ADC channel 2 six times, convert ADC channel 1 four times, and convert ADC
channel 3 eight times. If you modify the values in the array, you can easily specify the ADC
channels, A/D conversion sequence, and the number of A/D conversions.

Feb. 16, 2024 Page 6 of 15 Rev 1.00

M031 Series

#define ADC_MAX_CH (3) /* The total number of channels to convert */
#define ADC_MAX_CONV_NUM (8) /* The max number in ADC_CONF_T.number */

typedef struct
{
 uint32_t channel; /* The specific ADC channel to convert */
 uint32_t number; /* The number of A/D conversion for this channel */
 uint32_t extend; /* The ADC extend sample time for this channel */
} ADC_CONF_T;

volatile ADC_CONF_T g_ADC_Conf[ADC_MAX_CH] =
{
 {2, 6, 10}, /* Convert channel 2 6 times with extend sample time 10 ADC clocks */
 {1, 4, 0}, /* Convert channel 1 4 times with extend sample time 0 ADC clock */
 {3, 8, 20} /* Convert channel 3 8 times with extend sample time 20 ADC clocks */
};

To store the raw data converted by ADC in SRAM, this example code also defines another
global two-dimensional array variable gu32_ADC_RawData [ADC_MAX_CH]
[ADC_MAX_CONV_NUM + 1]. The constant ADC_MAX_CH should be defined as the total
number of ADC channels to be converted, which is 3 in this example code. The constant
ADC_MAX_CONV_NUM should be defined as the maximum value of all conversion times,
which is 8 in this example code.

It should be noted that the array size must be ADC_MAX_CONV_NUM plus 1. This is
because the conversion value of the previous round of ADC channels will remain during the
switching of ADC channels. The first raw data obtained by PDMA belongs to the old ADC
channel and cannot be used. Thus, an extra location is defined to store this residual value.
This residual value should be ignored when analyzing the data later.

In addition, a global variable gu32_ADC_Index must be defined as the index value of the
g_ADC_Conf array and gu32_ADC_RawData array. It represents which setting value or raw
data is currently being processed.

/* The raw data of ADC conversion result */
/* Because the first conversion result may be the remaining data from
 the previous ADC channel, an extra location is declared to store it,
 but it is not actually used. */
volatile uint16_t gu32_ADC_RawData[ADC_MAX_CH][ADC_MAX_CONV_NUM + 1] = {0};

/* The index of g_ADC_Conf[] and gu32_ADC_RawData[] */
volatile uint32_t gu32_ADC_Index = 0;

Feb. 16, 2024 Page 7 of 15 Rev 1.00

M031 Series

Please refer to Figure 2-1 for the specific relationship between the variables in SRAM.

Figure 2-1 Data Structure in SRAM

Next, the ADC operation code will be explained below.

As shown in the code below, the array index value gu32_ADC_Index must first be set to 0 to
let the ADC and PDMA know that the A/D conversion must be performed according to the first
ADC setting value. Next, initialize PDMA which will be explained in detail in the next
paragraph. Then specify the ADC to use Continuous Scan mode to convert the first channel,
enable the linkage between ADC and PDMA, trigger ADC to start A/D conversion, and then
wait for PDMA to complete the task. After PDMA completes the task, it obtains the ADC raw
data from the gu32_ADC_RawData array variable and calculates their average value. This
completes one round of work. A complete round of work only uses the ADC trigger function
ADC_START_CONV() once.

/*--*/
/* Main workflow for example code */
/*--*/
void ADC_FunctionTest(void)
{
 volatile uint32_t ADC_RawData_Sum[ADC_MAX_CH];
 volatile uint32_t index, number;

 /* Select the ADC configuration for the first element of g_ADC_Conf[] */
 gu32_ADC_Index = 0;

 /* Init PDMA to move data from ADC to SRAM */
 PDMA_Init();

 /* Enable ADC converter */
 ADC_POWER_ON(ADC);

 /* Wait for ADC internal power ready */
 CLK_SysTickDelay(10000);

 /* Set input mode as Single-end, and operation mode as Continuous Scan mode */

SRAMchannel number extend

2 6 10

1 4 0

3 8 20

g_ADC_Conf [0]

g_ADC_Conf [1]

g_ADC_Conf [2]

[x][0]

N/A

N/A

N/A

gu32_ADC_RawData [0][y]

gu32_ADC_RawData [1][y]

gu32_ADC_RawData [2][y]

[x][1]

data

data

data

[x][2]

data

data

data

[x][3]

data

data

data

[x][4]

data

data

data

[x][5]

data

N/A

data

[x][6]

data

N/A

data

[x][7]

N/A

N/A

data

[x][8]

N/A

N/A

data

gu32_ADC_Index

=0

=0

Feb. 16, 2024 Page 8 of 15 Rev 1.00

M031 Series

 ADC_Open(ADC, ADC_ADCR_DIFFEN_SINGLE_END, ADC_ADCR_ADMD_CONTINUOUS, (uint32_t)NULL);

 /* Select ADC input channel */
 ADC_SET_INPUT_CHANNEL(ADC, BIT0 << g_ADC_Conf[gu32_ADC_Index].channel);

 /* Set extend sampling time */
 ADC_SetExtendSampleTime(ADC, (uint32_t)NULL, g_ADC_Conf[gu32_ADC_Index].extend);

 /* ADC enable PDMA transfer */
 ADC_ENABLE_PDMA(ADC);

 gu32_PDMA_Status = PDMA_STATUS_IDLE_BUSY;

 /* Start ADC conversion */
 printf("Start ADC conversion ...\n");
 ADC_START_CONV(ADC);

 /* Wait for PDMA to complete its work */
 /* gu32_PDMA_Status will be set at PDMA_IRQHandler function */
 while (gu32_PDMA_Status == PDMA_STATUS_IDLE_BUSY);

 /* Check transfer result */
 if (gu32_PDMA_Status == PDMA_STATUS_DONE)
 {
 printf("PDMA trasnfer done !\n");
 }
 else if (gu32_PDMA_Status == PDMA_STATUS_ABORT)
 {
 printf("PDMA trasnfer abort !!\n");
 }

 /* Clear gu32_PDMA_Status software flag */
 gu32_PDMA_Status = PDMA_STATUS_IDLE_BUSY;

 /* Stop ADC conversion */
 ADC_STOP_CONV(ADC);

 /* Disable PDMA function of ADC */
 ADC_DISABLE_PDMA(ADC);
 NVIC_DisableIRQ(PDMA_IRQn);

 /* Calculate average and print ADC result except first sampling data result that
 belongs to previous channel */
 for (index = 0; index < ADC_MAX_CH; index++)
 {
 printf("Conversion result of channel %d ...\n", g_ADC_Conf[index].channel);
 ADC_RawData_Sum[index] = 0;

 for (number = 1; number < g_ADC_Conf[index].number + 1; number++)
 {
 ADC_RawData_Sum[index] += gu32_ADC_RawData[index][number];
 printf("\t#%d: \t\t0x%03X (%d)\n", number,
 gu32_ADC_RawData[index][number], gu32_ADC_RawData[index][number]);
 }

 printf("\tAverage: \t0x%03X (%d)\n\n",

Feb. 16, 2024 Page 9 of 15 Rev 1.00

M031 Series

 ADC_RawData_Sum[index] / g_ADC_Conf[index].number,
 ADC_RawData_Sum[index] / g_ADC_Conf[index].number);
 }
}

The PDMA is initialized to use PDMA channel 1 to move data from ADC to the
gu32_ADC_RawData array variable (g_ADC_Conf[gu32_ADC_Index].number + 1) times,
allowing ADC to trigger PDMA, and then enable the PDMA interrupt function. The number
moved by PDMA also needs to be increased by 1. The reason is the same as mentioned
before, which is to process the residual value of the previous ADC channel.

/*--*/
/* Configure PDMA for parameters that must be reloaded every round */
/*--*/
void ReloadPDMA(void)
{
 /* Set source address as ADC data register (no increment) and destination address as
 gu32_ADC_RawData[] array (increment) */
 PDMA_SetTransferAddr(PDMA, PDMA_CHANNEL, (uint32_t)&ADC->ADPDMA, PDMA_SAR_FIX,
 (uint32_t)gu32_ADC_RawData[gu32_ADC_Index], PDMA_DAR_INC);

 /* Transfer width is half word (16 bit) and transfer count is
 g_ADC_Conf[gu32_ADC_Index].number+1. */
 /* One more conversion is because the first conversion result belongs to the previous
 channel */
 PDMA_SetTransferCnt(PDMA, PDMA_CHANNEL, PDMA_WIDTH_16,
 g_ADC_Conf[gu32_ADC_Index].number + 1);

 /* Select PDMA request source as ADC RX */
 PDMA_SetTransferMode(PDMA, PDMA_CHANNEL, PDMA_ADC_RX, FALSE, 0);
}

/*--*/
/* Configure PDMA peripheral mode from ADC to memory */
/*--*/
void PDMA_Init(void)
{
 /* Open PDMA Channel based on PDMA_CHANNEL setting*/
 PDMA_Open(PDMA, BIT0 << PDMA_CHANNEL);

 /* Configure PDMA for parameters that must be reloaded every round */
 ReloadPDMA();

 /* Set PDMA as single request type for ADC */
 PDMA_SetBurstType(PDMA, PDMA_CHANNEL, PDMA_REQ_SINGLE, 0);

 /* Enable PDMA interrupt */
 PDMA_EnableInt(PDMA, PDMA_CHANNEL, PDMA_INT_TRANS_DONE);
 NVIC_EnableIRQ(PDMA_IRQn);
}

When PDMA completes the work of an ADC channel, an interrupt must be triggered to
execute the PDMA interrupt handler to switch the ADC channel. In addition to routine clearing
the interrupt flag, the PDMA interrupt handler also needs to determine whether all ADC
channels have been converted. If all ADC channels have been converted, the PDMA interrupt

Feb. 16, 2024 Page 10 of 15 Rev 1.00

M031 Series

handler can end the round of work and return the program control to the main program; if
there are other ADC channels that need to be converted, the PDMA interrupt handler needs
to reset the PDMA and ADC for the next ADC channel and trigger the ADC conversion
directly without going back to the main program to do additional ADC triggering.

/*--*/
/* PDMA interrupt handler to set ADC and PDMA for next round */
/*--*/
void PDMA_IRQHandler(void)
{
 uint32_t status;

 status = PDMA_GET_INT_STATUS(PDMA);

 if (status & PDMA_INTSTS_ABTIF_Msk) /* PDMA abort */
 {
 if (PDMA_GET_ABORT_STS(PDMA) & (PDMA_ABTSTS_ABTIF0_Msk << PDMA_CHANNEL))
 {
 gu32_PDMA_Status = PDMA_STATUS_ABORT;
 }

 PDMA_CLR_ABORT_FLAG(PDMA, (PDMA_ABTSTS_ABTIF0_Msk << PDMA_CHANNEL));
 }
 else if (status & PDMA_INTSTS_TDIF_Msk) /* PDMA done */
 {
 if (PDMA_GET_TD_STS(PDMA) & (PDMA_TDSTS_TDIF0_Msk << PDMA_CHANNEL))
 {
 if (gu32_ADC_Index == (ADC_MAX_CH - 1))
 {
 /* All ADC channels done. Stop PDMA and trigger PDMA interrupt. */
 gu32_PDMA_Status = PDMA_STATUS_DONE;
 }
 else
 {
 ADC_STOP_CONV(ADC);
 /* Next ADC channel */
 gu32_ADC_Index++;
 /* Select ADC input channel */
 ADC_SET_INPUT_CHANNEL(ADC, BIT0 << g_ADC_Conf[gu32_ADC_Index].channel);
 /* Set extend sampling time */
 ADC_SetExtendSampleTime(ADC, (uint32_t)NULL,
 g_ADC_Conf[gu32_ADC_Index].extend);
 /* Set PDMA for new ADC channel */
 ReloadPDMA();
 ADC_START_CONV(ADC);
 }
 }

 PDMA_CLR_TD_FLAG(PDMA, (PDMA_TDSTS_TDIF0_Msk << PDMA_CHANNEL));
 }
 else
 {
 printf("Error: Unknown PDMA interrupt !!\n");
 }
}

Feb. 16, 2024 Page 11 of 15 Rev 1.00

M031 Series

3. Software and Hardware Requirements

3.1 Software Requirements

• BSP version:

- M031_Series_BSP_CMSIS_V3.05.000.

• IDE version:

- Keil uVision V4.74.

3.2 Hardware Requirements

• Circuit components:

- NuMaker-M032KI V1.0.

Feb. 16, 2024 Page 12 of 15 Rev 1.00

M031 Series

4. Directory Information

The directory structure is shown below.

 EC_M031_ADC_Flexible_Channel_Control_V1.00

 Library Sample code header and source files.

 CMSIS Cortex® Microcontroller Software Interface
Standard (CMSIS) by Arm® Corp.

 Device CMSIS compliant device header file.

 StdDriver All peripheral driver header and source files.

 SampleCode

 ExampleCode

 Project Source file of example code.

Figure 4-1 Directory Structure

Feb. 16, 2024 Page 13 of 15 Rev 1.00

M031 Series

5. Example Code Execution

1. Browse the sample code folder as described in the Directory Information section and
double-click M031_ADC_Flexible_Channel_Control.uvproj.

2. Enter Keil compile mode.

• Build.

• Download.

• Start / Stop debug session.

3. Enter debug mode.

• Run.

Feb. 16, 2024 Page 14 of 15 Rev 1.00

M031 Series

6. Revision History

Date Revision Description

2024.02.16 1.00 Initial version.

Feb. 16, 2024 Page 15 of 15 Rev 1.00

M031 Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

