

Dec. 01, 2023 Page 1 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

Document Information

Application
This example code demonstrates gesture sensing using the M258
series microcontroller (MCU) to drive the STK3420 sensor via I²C.

BSP Version M251_M252_M254_M256_M258_Series_BSP_CMSIS_V3.00.005

Hardware NuMaker-M258KE V1.2

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller and microprocessor based
system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Using M258 to Drive STK3420 Sensor

Example Code Introduction for 32-bit NuMicro® Family

http://www.nuvoton.com/

Dec. 01, 2023 Page 2 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

1. Overview

As touchless control devices and interactive technology become increasingly widespread, light
sensing, distance sensing, and gesture recognition technologies are progressively playing
crucial roles in microcontroller application domain. Light sensing that detects light intensity is
used in environmental monitoring, lighting systems, etc. Distance sensing accurately measures
the distance between objects and sensors, widely applicable in automation and robotics.
Gesture recognition allows devices to identify human gestures, applicable in interactive
technology, smart home devices, etc.

This example code utilizes Sensortek's “Proximity with Ambient Light Sensor” chip - STK3420,
demonstrating how to get gesture values from this sensor using the I²C protocol.

1.1 Principle

The STK3420 sensor integrates a photodiode, ADC, and a built-in 940nm infrared LED, utilizing
a noise cancellation scheme to mitigate environmental infrared interference. The STK3420’s
internal block diagram is shown in Figure 1-1. It is operated by using its photodiode to
distinguish object movements; when combined with software algorithms, it accurately detects
3D gestures (up/down/left/right/far/near). However, this example code only identifies
up/down/left/right gestures.

For external communication, it interfaces via I²C, with the STK3420's address set as a 7-bit
value of 0x58. All operations are accessed (Wrote/Read) via instructions to registers. The
register map is shown in Figure 1-2, while the settings and values configured in this example
code are described in Table 1-1. For further detailed configurations, please refer to the
STK3420’s Datasheet.

Figure 1-1 Block Diagram of STK3420

Dec. 01, 2023 Page 3 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

Figure 1-2 STK3420 Register List

Dec. 01, 2023 Page 4 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

Reg Addr Reg Name Value Description

0x1d PS/GSCTRL2 0xf3 Enable EWNS gesture detection and PS
intelligent persistence.

0x5 WAIT1_PSGS 0x6 Set waiting state period.

(6+1)*780 us = 5.46 ms

0x1 PS/GSCTRL1 0x2 Set gesture refreshing time to 390 us, and PS
persistence times to 1.

0x95 Analog Gain 0x90
To perform gesture well, the analog gain should
be set to 2 times, and the register value is 0x90.
Note: This register is not mentioned in Datasheet.

0x3 LEDCTRL 0xc0 Set LED current sink to 150 mA.

0x94 MISC1 0x35 Set LED current control (LED_DIV2) to 1.

0x2 ALSCTRL1 0x2 Set ALS persistence times to 1, ALS gain to 1,
and ALS refreshing time to 50 ms.

0x0 STATE 0x4 Enable PS/GS waiting state.

Table 1-1 Register Setting and Description

The STK3420 utilizes a 128-byte FIFO to store 16 sets of gesture values. Each set of gesture
data comprises output data of E/W/N/S within each ADC conversion cycle. As shown in Figure
1-3, the FIFO data can be accessed by reading the DATA_GSE/W/N/S registers. Once these
values are obtained, they are processed using Sensortek's library, allowing for precise gesture
identification.

Figure 1-3 Register for Gesture Data

Note: The images in this document are sourced from the STK3420’s Datasheet.

Dec. 01, 2023 Page 5 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

1.2 Demo Result

The compilation and programming results of this example code are shown in Figure 1-4.

Figure 1-4 Compilation and Programming Results

Dec. 01, 2023 Page 6 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

2. Code Description

The main program is entered through main.c and consists of four parts as follows:

 Clock initialization and pin definition: SYS_Init

 Peripheral initialization and open: UART0_Init, I2C0_Init

 Register setting for STK3420: STK3420_start

 Gesture calculation: read DATA_GSE/W/N/S register, STK_Gesture.lib

For the detailed register settings, please refer to Table 1-1 and STK3420’s Datasheet.

void STK3420_start(void)
{
 I2C_WriteByteOneReg(I2C0, STK342X_SLAVE_ADDR, 0x80, 0x00);
 CLK_SysTickDelay(20000); // wait STK3420 IC Reset

 I2C_ReadByteOneReg(I2C0, STK342X_SLAVE_ADDR, 0x3E, &PID);
 printf("pid = %x\n", PID);
 //enable EWNS gesture detection and PS intelligent persistence
 I2C_WriteByteOneReg(I2C0, STK342X_SLAVE_ADDR, 0x1d, 0xf3);
 //set wait state period (6+1)*780 us = 5.46 ms
 I2C_WriteByteOneReg(I2C0, STK342X_SLAVE_ADDR, 0x5, 0x6);
 //set gesture refresh time to 390 us, PS persistence setting to 1 times
 I2C_WriteByteOneReg(I2C0, STK342X_SLAVE_ADDR, 0x1, 0x2);
 I2C_WriteByteOneReg(I2C0, STK342X_SLAVE_ADDR, 0x95, 0x90);//set analog gain
 //set LED current sink to 150mA
 I2C_WriteByteOneReg(I2C0, STK342X_SLAVE_ADDR, 0x3, 0xc0);
 I2C_WriteByteOneReg(I2C0, STK342X_SLAVE_ADDR, 0x94, 0x35);//set LED_DIV2 to 1
 /*ALS setting: set ALS persistence to 1 times, ALS gain to 1,

and ALS refresh time to 50 ms*/
 I2C_WriteByteOneReg(I2C0, STK342X_SLAVE_ADDR, 0x2, 0x2);
 I2C_WriteByteOneReg(I2C0, STK342X_SLAVE_ADDR, 0x0, 0x4);//enable PS/GS wait state
 memset(&xtGes, 0, sizeof(tfGesture));
 Gesture_Init(&xtGes);
}

After system initialization and sensor activation settings, the system enters a loop to read the
E/W/N/S values stored in the FIFO. These values are then processed through algorithms within
the Stk_Gesture.lib, which leads to precise result of the gesture direction.

int32_t main(void)
{
 int i = 0;
 /* Unlock protected registers */
 SYS_UnlockReg();

 /* Init System, IP clock and multi-function I/O */
 SYS_Init();

 /* Init UART0 for printf */
 UART0_Init();

Dec. 01, 2023 Page 7 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

 /* Lock protected registers */
 SYS_LockReg();

 printf("+-------------------------+\n");
 printf("| STK3420 Sample Code |\n");
 printf("+-------------------------+\n");

 printf("The I/O connection for I2C0:\n");
 printf("I2C0_SDA(PB.4), I2C0_SCL(PB.5)\n");

 /* Init I2C0 */
 I2C0_Init();

 STK3420_start();

 while(1) {
 uint8_t fifo_cnt = 0;
 uint8_t ges_data[8];
 uint16_t gse = 0;
 uint16_t gsw = 0;
 uint16_t gsn = 0;
 uint16_t gss = 0;

 // Read FIFO Frame Cnt
 I2C_ReadByteOneReg(I2C0, STK342X_SLAVE_ADDR, 0x1E, &fifo_cnt);

 if(fifo_cnt) {
 for(i = 0; i < (fifo_cnt & 0x1F); i++) {
 // Read FIFO Data
 I2C_ReadMultiBytesOneReg(I2C0, STK342X_SLAVE_ADDR, 0x20, ges_data, 8);
 gse = (ges_data[0] << 8 | ges_data[1]);
 gsw = (ges_data[2] << 8 | ges_data[3]);
 gsn = (ges_data[4] << 8 | ges_data[5]);
 gss = (ges_data[6] << 8 | ges_data[7]);
 int act = iGesture_Do(&xtGes, gse, gsw, gss, gsn);
 switch(act) {
 case GESTURE_EVENT_UP:
 printf("Up\n");
 break;
 case GESTURE_EVENT_DOWN:
 printf("Down\n");
 break;
 case GESTURE_EVENT_LEFT:
 printf("Left\n");
 break;
 case GESTURE_EVENT_RIGHT:
 printf("Right\n");
 break;
 default:
 break;
 }
 }
 }

Dec. 01, 2023 Page 8 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

3. Software and Hardware Requirements

3.1 Software Requirements

• BSP version

- M251_M252_M254_M256_M258_Series_BSP_CMSIS_V3.00.005

• IDE version

- Keil uVersion 5.38

3.2 Hardware Requirements

• Circuit components

- NuMaker-M258KE V1.2

• Pin Connect

- Please refer to the Pin description in Table 3-1 and the connection in Figure 3-1.

STK3420 Description M258KE3AE

VDD Power supply for 2.4V to 3.6V. VDD

SDA Data line for I²C interface.
I²C0_SDA

Pin 2 (PB.4)

SCL Serial clock for I²C interface.
I²C0_SCL

Pin 1 (PB.5)

LEDA The anode of the embedded IR LED, connected to power. VDD

GND Ground. VSS

Table 3-1 Pin Description

Figure 3-1 Pin Connect

Dec. 01, 2023 Page 9 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

4. Directory Information

The directory structure is shown below.

 EC_M258_Gesture_Sensor_STK3420_V1.00

 Library Sample code header and source files

 CMSIS Cortex® Microcontroller Software Interface
Standard (CMSIS) by Arm® Corp.

 Device CMSIS compliant device header file

 StdDriver All peripheral driver header and source files

 SampleCode

 ExampleCode

 Project Source file of example code

Figure 4-1 Directory Structure

Dec. 01, 2023 Page 10 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

5. Example Code Execution

1. Browse the sample code folder as described in the Directory Information section and
double-click M258_Gesture_Sensor_STK3420.uvprojx.

2. Enter Keil compile mode.

• Build

• Download

• Start/Stop debug session

3. Enter debug mode.

• Run

Dec. 01, 2023 Page 11 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

6. Revision History

Date Revision Description

2023.12.01 1.00 Initial version.

Dec. 01, 2023 Page 12 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction
or failure of which may cause loss of human life, bodily injury or severe property damage. Such
applications are deemed, “Insecure Usage”.

 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other
applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

