

Jun. 07, 2023 Page 1 of 18 Rev 1.00

M032 Series

Document Information

Application
This example code supports to program files to SPI Flash through
mass storage interface.

BSP Version M032_Series_BSP_CMSIS_V3.05.000

Hardware NuMaker-M032KI V1.0

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller and microprocessor based
system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Using SPI Flash as USB MSC Device

Example Code Introduction for 32-bit NuMicro® Family

http://www.nuvoton.com/

Jun. 07, 2023 Page 2 of 18 Rev 1.00

M032 Series

1. Overview

This example code uses the M032 series microcontroller as a SPI Flash programmer to update
SPI Flash through the USB interface. The M032 connects to the computer via a USB port, plays
a role of a mass storage class device, and connects an external SPI Flash Memory as a medium.
By using mass storage interface, it is not necessary to provide any tool or driver at PC to copy
a bin file to SPI Flash. When the user plugs in the device by USB cable, PC will recognize it as
a mass storage disk and user just needs to copy a “Update.bin” file to the mass storage disk to
do “program file to SPI Flash”. The FAT information is saved to SRAM, and the FAT data will
be lost after reset or power-off. So, in other words, the disk will also be reset to empty after the
example code restarts.

1.1 Principle

In this experiment, the USB Mass Storage Device Class (MSC) Bulk-Only Transfer protocol is
adopted. According to the protocol specification, the flow of data exchange between Host and
Device can be divided into three stages, which are Command Transport (CBW), Data-Out/Data-
In, and Status Transport (CSW). The state switching process is shown in Figure 1-1.

Ready

Command

Transport

(CBW)

Data–Out

(from host)

Data–In

(to host)

Status

Transport

(CSW)

Figure 1-1 Mass Storage Class Command/Data/Status Protocol

The MSC also defines two exclusive category requests, namely Bulk-Only Mass Storage Reset
and Get Max LUN commands. The Bulk-Only Mass Storage Reset command is used to reset
the Device state to Ready, and to inform the device to receive the CBW command; the Get Max
LUN is used to obtain the number of logical units (storage slots) supported by the Device. See
the USB Mass Storage Class Bulk-Only Transport Specification for the detailed information
(https://www.usb.org/sites/default/files/usbmassbulk_10.pdf).

https://www.usb.org/sites/default/files/usbmassbulk_10.pdf

Jun. 07, 2023 Page 3 of 18 Rev 1.00

M032 Series

1.1.1 Command Transport (CBW)

The Command Transport contains a Transaction with the data direction OUT. The Host sends
the data packet with specified command to the Device through the Bulk-Out Endpoint and
encapsulates it in the format of Command Block Wrapper (CBW). The packet format is shown
in Table 1-1. In the CBW packet, the field CBWCB stores the Host's command to access or
control the Device's storage medium. The type of the command determines whether the next
state is Data-In or Data-Out, and the content of the transmitted data. The detailed description
of the instructions can be found in the UFI Command Specification document
(https://www.usb.org/sites/default/files/usbmass-ufi10.pdf).

 bit

Byte
7 6 5 4 3 2 1 0

0-3 dCBWSignature

4-7 dCBWTag

8-11 dCBWDataTransferLength

12 bmCBWFlags

13 Reserved(0) bCBWLUN

14 Reserved(0) bCBWCBLengh

15-30 CBWCB

Table 1-1 Command Block Wrapper (CBW) Packet Format

1.1.2 Data-In/Data-Out

The behavior in the Data-In/Data-Out state is affected by the commands in the CBW. For
example, if the UFI instruction in the CBWCB is WRITE, it means that the Host wants to store
the file to the Device storage medium, and the state is switched to Data-Out. On the other hand,
if the UFI command is READ, indicating that the Host reads the file from the storage of the
Device, then the Device is required to send out the data packet to the Host. At this time, the
state is switched to Data-In. The Data-In/Data-Out stage allows multiple Transactions, and it is
affected by the dCBWDataTransferLength field in CBWCB. By the way, the storage medium of
this experiment uses an external SPI Flash Memory. After receiving the READ or the WRTIE
command, the microcontroller must drive the peripheral SPI to read and program the data to
the specified sector of the SPI Flash.

1.1.3 Status Transport (CSW)

The purpose of the Status Transport is that the Device responds to the Host with the execution
status of the CBW command. It contains a Transaction and the data direction is IN. The data
packet at this stage is encapsulated in the format of Command Status Wrapper (CSW). The
packet format is shown in Table 1-2. Host can read the bCSWStatus field in CSW to determine
whether the Device has an error during the CBW command. The value of bCSWStatus is shown
in Table 1-3.

https://www.usb.org/sites/default/files/usbmass-ufi10.pdf

Jun. 07, 2023 Page 4 of 18 Rev 1.00

M032 Series

 bit

Byte
7 6 5 4 3 2 1 0

0-3 dCSWSignature

4-7 dCSWTag

8-11 dCSWDataResidue

12 bCSWStatus

Table 1-2 Command Status Wrapper (CSW) Packet Format

Value Description

00h Command Passed (“good status”)

01h Command Failed

02h Phase Error

03 and 04h Reserved (Obsolete)

05h to FF Reserved

Table 1-3 Values for bCSWStatus Field

1.1.4 USB Endpoint Configuration

This example requires 4 USB endpoints to be configured as follows:

 Endpoint 0: Control-In

 Endpoint 1: Control-Out

 Endpoint 2: Bulk-In

 Endpoint 3: Bulk-Out

1.1.5 Serial Flash Memory

The example code uses Winbond W25Q32JVSIG SPI Flash as the medium of Mass Storage
Device with a storage capacity of 4 MB. The minimum program size is a Page (256 B), each 16
Pages can be grouped into a Sector (4 KB), and each 256 Pages constitutes a Block (64 KB),
where the Sector is the minimum erase unit. The control of SPI Flash is very simple. The
microcontroller first issues instructions to the SPI Flash through the following command set,
including Read, Program or Erase. Then both of the Master and the Slave will decide the
content and the length of the subsequent data according to the type of the instruction.

Jun. 07, 2023 Page 5 of 18 Rev 1.00

M032 Series

Table 1-4 Winbond SPI Flash Command List

Table 1-4 shows the Winbond W25Q32JVSIG command list. Take the Page Program (02h) and
Read Status Register (05h) instructions as an example; refer to the timing diagrams in Figure
1-2 and Figure 1-3. The Master first sends out a 1-byte instruction 02h, and continues the 24-
bit data write bit. After the address and 256 Bytes of data, the command transfer of the Page
Program is completed. The microcontroller can then use the Read Status Register (05h)
command to ask for the status of the SPI Flash to check if the data has been written. Users can
refer to the Winbond W25Q32JVSIG Datasheet for detailed description for each instruction.

Jun. 07, 2023 Page 6 of 18 Rev 1.00

M032 Series

Figure 1-2 Page Program Command Sequence and Timing

Figure 1-3 Read Status Register Command Sequence and Timing

1.2 Demo Result

1.2.1 Virtual Disk

PC can detect a mass storage class device and Data Flash can export a 3.98 MB disk when
the M032 is plugged into PC’s USB port. The user needs to name the file as Update.bin and
drag or copy-and-paste the file to the disk.

Jun. 07, 2023 Page 7 of 18 Rev 1.00

M032 Series

Figure 1-4 M032 Virtual Disk

1.2.2 Read Data

Copy Update.bin from the disk without buffering and it is the same as the data written to M032.

Figure 1-5 Comparison Result

1.2.3 Copy File without Buffering

1.2.3.1 Windows

Windows command - Xcopy

Xcopy Command

Item Description

/j This option copies files without buffering, a feature useful for very big files.
This option was first available in Windows 7.

Jun. 07, 2023 Page 8 of 18 Rev 1.00

M032 Series

Figure 1-6 Copy File without Buffering by xcopy

1.2.3.2 Linux

Linux command - dd

dd Command

Item Description

iflg=direct direct use direct I/O for data.

Figure 1-7 Copy File without Buffering by dd Command

Jun. 07, 2023 Page 9 of 18 Rev 1.00

M032 Series

2. Code Description

2.1 Virtual Disk Properties

The code for the virtual disk properties is in DataFlashProg.c as follows. It’s the boot sector
data for the virtual disk.

uint8_t u8BootSectorData[512] =
{
 /* Instructions to jump to boot code */
 0xEB, 0x3C, 0x90,
 /* Name string (MSDOS5.0) */
 0x4D, 0x53, 0x44, 0x4F, 0x53, 0x35, 0x2E, 0x30,
 /* Bytes/sector (0x0200 = 512) */
 0x00, 0x02,
 /* Sectors/cluster */
 0x08,
 /* Size of reserved area */
 (RSVD_SEC_CNT & 0xFF), (RSVD_SEC_CNT >> 8),
 /* Number of FATs */
 NUM_FAT,
 /* Byte 17 & 18 (Max. number of root directory entries) */
 (ROOT_ENT_CNT & 0xFF) , (ROOT_ENT_CNT >> 8),
 /* Byte 19 & 20 (Total number of sectors) */
 (SECTOR_CNT & 0xFF), (SECTOR_CNT >> 8),
 /* Media type (removable) */
 0xF8,
 /* Byte 22 & 23 (FAT size) */
 (FAT_SZ & 0xFF), (FAT_SZ >> 8),
 /* Sectors/track */
 0x01, 0x00,
 /* Number of heads */
 0x01, 0x00,
 /* Number of sector before partition */
 0x00, 0x00, 0x00, 0x00,
 /* Total number of sectors */
 0x00, 0x00, 0x00, 0x00,
 /* Drive number */
 0x80,
 /* Unused */
 0x00,
 /* Extended boot signature */
 0x29,
 /* Volume serial number */
 0x2F, 0x44, 0x83, 0x7A,
 /* Volume label - "NO NAME " */
 0x4E, 0x4F, 0x20, 0x4E, 0x41, 0x4D, 0x45, 0x20, 0x20, 0x20, 0x20,
 /* File system type label ("FAT12 ") */
 0x46, 0x41, 0x54, 0x31, 0x32, 0x20, 0x20, 0x20,
 ...
 /* Signature value (0xaa55) */
 0x55, 0xAA
};

Jun. 07, 2023 Page 10 of 18 Rev 1.00

M032 Series

The definition of the virtual disk properties is in DataFlashProg.h and user can modify the
definition of “MB_SIZE” to change the virtual disk size.

#define MB_SIZE 4
#define DISK_SIZE (MB_SIZE*1024 * 1024)
...
#define BYTE_PER_SEC 512
#define ROOT_ENT_CNT 512
#define ROOT_ENT_SEC_CNT ((32 * ROOT_ENT_CNT) / BYTE_PER_SEC)
#define NUM_FAT 2
#define FAT_SEC RSVD_SEC_CNT
#define FAT_SEC_ADDR (RSVD_SEC_CNT * BYTE_PER_SEC)
#define ROOT_SEC_ADDR (FAT_SEC_ADDR + FAT_SZ * NUM_FAT * BYTE_PER_SEC)
#define DATA_SEC_ADDR (ROOT_SEC_ADDR + ROOT_ENT_SEC_CNT * BYTE_PER_SEC)
#define SECTOR_CNT (DISK_SIZE / BYTE_PER_SEC)

2.2 FAT and Flash Program Function

The DataFlashRead() function is used to respond to the FAT table on PC and read the specified
disk address and data length according to the Logic Block Address and
dCBWDataTransferLength field in CBW.

void DataFlashRead(uint32_t addr, uint32_t size, uint32_t buffer)
{
 /* This is low level read function of USB Mass Storage */
 uint32_t * pu32Buf = (uint32_t *)buffer;
 memset((uint8_t *)pu32Buf, 0, STORAGE_BUFFER_SIZE);

 if (addr == 0x00000000)
 {
#ifdef __FAT_INFO__
 if(g_ShowFat && GET_FAT_SZ != 0)
 {
 printf("\n");
 printf("Default FAT_SEC 0x%08X ", FAT_SEC);
 printf("Current FAT_SEC 0x%08X\n", GET_FAT_SEC);
 printf("Default FAT_SZ 0x%08X ",FAT_SZ);
 printf("Current FAT_SZ 0x%08X\n", GET_FAT_SZ);
 printf("Default ROOT_SEC_ADDR 0x%08X ",ROOT_SEC_ADDR);
 printf("Current ROOT_SEC_ADDR 0x%08X\n", GET_ROOT_SEC_ADDR);
 printf("Default DATA_SEC_ADDR 0x%08X ",DATA_SEC_ADDR);
 printf("Current DATA_SEC_ADDR 0x%08X\n", DATA_SEC_ADDR);
 g_ShowFat = 0;
 }
#endif
 USBD_MemCopy((uint8_t *)buffer, u8BootSectorData, sizeof(u8BootSectorData));
 }
 else
 {
 if (addr >= ROOT_SEC_ADDR && addr < DATA_SEC_ADDR) /* Root Directory */
 USBD_MemCopy((uint8_t *)buffer, u8DirData + (addr - ROOT_SEC_ADDR), 512);
 else if (addr >= FAT_SEC_ADDR && addr < ROOT_SEC_ADDR) /* File Allocation Table */
 USBD_MemCopy((uint8_t *)buffer, u8FAT + ((addr - FAT_SEC_ADDR)/* % (FAT_SZ *

BYTE_PER_SEC)*/), 512);
 else if(addr > DATA_SEC_ADDR) /* Data */
 {

Jun. 07, 2023 Page 11 of 18 Rev 1.00

M032 Series

 SpiRead(u32SPI_RAddress, size, (uint32_t)pu32Buf);
 if(u32SPI_RAddress % 0x40000 == 0)
 DbgPrintf("Read from SPI 0x%08X - 0x%08X\n",u32SPI_RAddress, *(uint32_t

*)pu32Buf);
 u32SPI_RAddress+=size;
 }
 }
}

The DataFlashWrite() calls the low-level function SpiWrite() to perform the write operation to
store the file to the specified region of the SPI Flash. After the write operation is completed, it
calls SpiRead() to verify the data stored in SPI Flash.

void DataFlashWrite(uint32_t addr, uint32_t size, uint32_t buffer)
{
 int k,l;
 /* This is low level write function of USB Mass Storage */
 if(addr >= DATA_SEC_ADDR) /* Data */
 {
 if(addr == DATA_SEC_ADDR)
 {
 if(g_UpdateEnable == 0 && g_u8Windows == 0)
 {
 DbgPrintf("OS : Windows\n");
 g_u8Windows = 1;
 }
 }
 if(g_UpdateEnable || (g_u8Windows == 0 && g_u8MACOS == 0))
 {
 if(u32SPI_WAddress == 0)
 {
 if(g_u8Windows == 0 && g_u8MACOS == 0)
 DbgPrintf("OS : Linux\n");
 }

 addr -= DATA_SEC_ADDR;

 SpiWrite(u32SPI_WAddress, STORAGE_BUFFER_SIZE, (uint32_t)buffer);

 SpiRead(u32SPI_WAddress, STORAGE_BUFFER_SIZE, (uint32_t)Storage_Block_Verify);

 if(memcmp((void *)buffer, (void *)Storage_Block_Verify,

STORAGE_BUFFER_SIZE) !=0)
 DbgPrintf("Verify fail 0x%08X\n",u32SPI_WAddress);

 u32SPI_WAddress += STORAGE_BUFFER_SIZE;

 if(u32SPI_WAddress % 0x40000 == 0)
 {
 DbgPrintf("\rData Transferred %d KB",u32SPI_WAddress >> 10);
 if(g_file_size != 0)
 DbgPrintf(" / %d KB",*g_file_size >>10);
 }
 if(g_file_size != 0 && u32SPI_WAddress >= *g_file_size)
 {
 DbgPrintf("\rData Transferred %d KB",u32SPI_WAddress >> 10);

Jun. 07, 2023 Page 12 of 18 Rev 1.00

M032 Series

 if(g_file_size != 0)
 DbgPrintf(" / %d KB",*g_file_size >>10);

 g_TransferDone = 1;
 u32SPI_RAddress = 0;
 g_UpdateEnable = 0;
 DbgPrintf("\nTransferred Done\n");
 }
 }
 else
 {
 uint8_t *pu8Data = (uint8_t *)buffer;

 if(pu8Data[8] == 'M' && pu8Data[9] == 'a' && pu8Data[10] == 'c')
 {
 if(g_u8MACOS == 0)
 {
#if (ENABLE_DEBUG_MSG)
 char *puchar = (char *)(&pu8Data[8]);
#endif
 DbgPrintf("OS : %s\n",puchar);
 g_u8MACOS = 1;
 }
 /* Finder progresses a copy of a file - HFS type code 'brok' & HFS creator

code 'MACS' */
 if(pu8Data[50] == 'b' && pu8Data[51] == 'r' && pu8Data[52] == 'o' &&

pu8Data[53] == 'k' && pu8Data[54] == 'M' && pu8Data[55] == 'A' &&
 pu8Data[56] == 'C' && pu8Data[57] == 'S')
 {
 g_u8MACOS_Update = 1;
 }
 }
 }
 }
 else if (addr == 0x00000000)
 {
 USBD_MemCopy(u8BootSectorData,(uint8_t *) buffer, 512);
#ifdef __FAT_INFO__
 g_ShowFat = 1;
#endif
 }
 else if (addr >= ROOT_SEC_ADDR && addr < DATA_SEC_ADDR) /* Root Directory */
 {
 USBD_MemCopy(u8DirData + (addr - ROOT_SEC_ADDR), (uint8_t *)buffer, 512);

 if((g_UpdateEnable == 0 && g_TransferDone == 0) || ((g_u8MACOS == 1 || g_u8Windows

== 0)&& g_u8ShowFile != 1)) /* Check File name (When Update Function
is not Enabled or MAC OS) */

 {
 for(k =0; k<32; k++) /* Check Root Directory */
 {
 for(l=0; l<FILE_NAME_LENGTH; l++)
 {
 if(u8FileName[l] != 0) /* Need to Check File Name - Character */
 if(u8DirData[k*16+i8FileIndex[l]] != u8FileName[l]) /* Check

File Name */

Jun. 07, 2023 Page 13 of 18 Rev 1.00

M032 Series

 break;
 }

 if(l == FILE_NAME_LENGTH) /* Match */
 {
 g_file_size = (uint32_t *)&u8DirData[k *16 + 60]; /* Get File Size */

 if(*g_file_size == 0)
 {
 g_file_size = 0;
 continue;
 }
 g_UpdateEnable = 1;

 DbgPrintf("\nFile Name:");
 for(l=0; l<FILE_NAME_LENGTH; l++) /* Display the Update File Name */
 {
 if((u8DirData[k *16 + i8FileIndex[l]] != 0) && (u8DirData[k *16 +

i8FileIndex[l]+1] == 0))
 DbgPrintf("%c",u8DirData[k *16 + i8FileIndex[l]]);
 else
 break;
 }

 if(g_u8MACOS == 1 || g_u8Windows == 0)
 {
 g_u8ShowFile = 1;
 }
 DbgPrintf("\nFile Size: %dB\n",*g_file_size);
 if(u32SPI_WAddress >= *g_file_size)
 {
 u32SPI_RAddress = 0;
 g_TransferDone = 1;
 DbgPrintf("\nTransferred Done\n");
 }
 break;
 }
 }
 }
 }
 else if (addr >= FAT_SEC_ADDR && addr < ROOT_SEC_ADDR) /* File Allocation Table */
 USBD_MemCopy(u8FAT + ((addr - FAT_SEC_ADDR) /*% (FAT_SZ * BYTE_PER_SEC)*/),

(uint8_t *)buffer, 512);
}

Jun. 07, 2023 Page 14 of 18 Rev 1.00

M032 Series

3. Software and Hardware Requirements

3.1 Software Requirements

 BSP version

- M032_Series_BSP_CMSIS_V3.05.000

 IDE version

- Keil uVersion 5.28

3.2 Hardware Requirements

 Circuit components

- NuMaker-M032KI V1.0

- Level1-Training

- Micro USB cable

 Pin Connect

NuMaker-M032KI Winbond W25Q32JVSIG
Flash Memory

VCC ↔ VCC

VCC ↔ HOLD (D3) / RESET

VCC ↔ WP (D2)

VSS ↔ VSS

SPI0_SS0 (PA.3) ↔ CS

SPI0_CLK (PA.2) → CLK

SPI0_MISO (PA.1) ← DO

SPI0_MOSI (PA.0) ← DI

USB ↔ PC (USB Host)

 Figure 3-1 Pin Connect

Jun. 07, 2023 Page 15 of 18 Rev 1.00

M032 Series

4. Directory Information

The directory structure is shown below.

 EC_M032_USBD_MSC_SPI_Flash_V1.00

 Library Sample code header and source files

 CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.

 Device CMSIS compliant device header file

 StdDriver All peripheral driver header and source files

 SampleCode

 ExampleCode Source file of example code

Figure 4-1 Directory Structure

Jun. 07, 2023 Page 16 of 18 Rev 1.00

M032 Series

5. Example Code Execution

1. Browse the sample code folder as described in the Directory Information section and
double-click M032_USBD_MSC_SPI_Flash.uvproj.

2. Enter Keil compile mode.

 Build

 Download

 Start/Stop debug session

3. Enter debug mode.

 Run

Jun. 07, 2023 Page 17 of 18 Rev 1.00

M032 Series

6. Revision History

Date Revision Description

2023.06.07 1.00 Initial version.

Jun. 07, 2023 Page 18 of 18 Rev 1.00

M032 Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction
or failure of which may cause loss of human life, bodily injury or severe property damage. Such
applications are deemed, “Insecure Usage”.
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other
applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

