NUvVOoOTOoON M480 Series

I M480 uC/OS_ Il Porting

Example Code Introduction for 32-bit NuMicro® Family

Document Information

This example code is used for porting uC/OS_V2.93 on the M480

AppEEE series microcontroller (MCU).
BSP Version M480_Series_ BSP_CMSIS_V3.05.003
Hardware NuMaker-M483KG V1.1

The information described in this document is the exclusive intellectual property of
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller and microprocessor based
system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Sep. 13, 2022 Page 1 of 14 Rev 1.00


http://www.nuvoton.com/

NUvVOoOTOoON M480 Series

1. Overview

This example code introduces what files should be added in a project if user wants to port
uC/OS_lII on the M480 series microcontroller (MCU).

Three tasks are created. Two tasks transmit data to each other and the third is responsible for
printing messages received from other tasks.

1.1 Principle

uC/OS is used in an application because each task of application code seems to monopolize a
CPU while uC/OS is used in a project. Thus, an application code can be divided into several
tasks which can be written by different software engineers.

When a task is preempted by another task, it seems that CPU is going to execute an interrupt
subroutine, and the CPU will return back to the current task after a while. Each task has an
independent stack. Before task scheduling, each stack of task is initialized as if an interrupt has
just occurred, and CPU registers have been pushed into the stack.

0S_STK *0STaskStkInit(void (*task)(void *p_arg), void*p_arg, O0S_STK*ptos, INT16U opt)
{

0S_STK *p_stk;

(void)opt; /* 'opt' is not used, prevent warning */

p_stk = ptos + 1u;

p_stk = (0S_STK *)((0S_STK)(p_stk) & OXFFFFFFF8u);

/* Load stack pointer

*/

/* Align the stack to 8-bytes. */

/* Registers stacked as if auto-saved on exception */

#if (OS_CPU_ARM_FP_EN > @u) /* FPU auto-saved registers. */
--p_stk;
*(--p_stk) = (0S_STK)@x02000000u; /* FPSCR */

/* Initialize SO©-S15 floating point registers */

*(--p_stk) = (0S_STK)@x41700000u; /* S15  */
*(--p_stk) (0S_STK)0x41600000u; /* S14  */
*(--p_stk) (0S_STK)0x41500000u; /* S13  */
*(--p_stk) (0S_STK)0x41400000u; /¥ S12  */
*(--p_stk) = (0S_STK)@x41300000u; /* S11 */
*(--p_stk) = (0S_STK)@x41200000u; /* s18  */
*(--p_stk) = (0S_STK)@x41100000u; /* S9 */
*(--p_stk) = (0S_STK)0x41000000u; /* S8 */
*(--p_stk) = (0S_STK)@x40EQ0000U; /* S7 */
*(--p_stk) = (0S_STK)0x40C00000u; /* S6 */
*(--p_stk) = (0S_STK)@x40A00000u; /* S5 */
*(--p_stk) = (0S_STK)0x40800000u; /* sS4 */
*(--p_stk) = (0S_STK)@x40400000u; /* S3 */
*(--p_stk) = (0S_STK)0x40000000u; /* S2 */
*(--p_stk) = (0S_STK)@x3F800000u; /* S1 */
*(--p_stk) = (0S_STK)0x00000000u; /* S@ e

#endif
*(--p_stk) = (0S_STK)@x01000000uL ; /* XPSR, T=1 */
*(--p_stk) (0S_STK)task; /* Entry Point */
*(--p_stk) (0S_STK)O0S_TaskReturn; /* R14 (LR) */
*(--p_stk) = (0S_STK)@x12121212uL; /* R12 * /
*(--p stk) = (0S STK)0x03030303uL; /* R3 */

Sep. 13, 2022 Page 2 of 14 Rev 1.00




NnNUvVOoOTON M480 Series
*(--p_stk) = (0S_STK)0x02020202uL ; /* R2 */
*(--p_stk) = (0S_STK)0x01010101uL; /* Rl */
*(--p_stk) = (OS_STK)p_arg; /* RO : argument */
#if (OS_CPU_ARM_FP_EN > @u) /* Initialize S16-S31 floating point registers */
*(--p_stk) = (OS_STK)0Ox41F80000u; /* S31 */
*(--p_stk) = (0OS_STK)0Ox41F00000u; /* S30 */
*(--p_stk) = (0S_STK)0x41E80000u; /* S29 */
*(--p_stk) = (0S_STK)0x41E00000u; /* S28 */
*(--p_stk) = (0S_STK)0x41D80000u; /* S27 */
*(--p_stk) = (0S_STK)0x41D00000uU ; /* S26 */
*(--p_stk) = (0S_STK)0Ox41C80000u; J% 825 =)
*(--p_stk) = (0OS_STK)0x41C00000u; /* S24 */
*(--p_stk) = (0S_STK)0x41B80000U; /* S23 */
*(--p_stk) = (0S_STK)0x41B0000OU; /* S22 */
*(--p_stk) = (0S_STK)0x41A80000u; /* S21 */
*(--p_stk) = (0S_STK)0x41A00000u; /* S20 */
*(--p_stk) = (0S_STK)0x41980000u; /* S19 */
*(--p_stk) = (0S_STK)0x41900000u; /* S18 */
*(--p_stk) = (0S_STK)0x41880000u; /* S17 */
*(--p_stk) = (0S_STK)0x41800000u; /* S16 */
*(--p_stk) = (0S_STK)OXFFFFFFEDuL; /*R14,See Note5 */
#telse
*(--p_stk) = (0S_STK)OxFFFFFFFDuL; /*R14,See Note5 */
#endif
/* Remaining registers saved on process stack */
*(--p_stk) = (0S_STK)@x11111111uL; /* R11 */
*(--p_stk) = (0S_STK)@x10101010uL; /* R10 */
*(--p_stk) = (0S_STK)0@x09090909uL ; /* R9 */
*(--p_stk) = (0S_STK)0x08080808uL ; /* R8 */
*(--p_stk) = (0S_STK)@x07070707uL; /* R7 */
*(--p_stk) = (0S_STK)0@x06060606UL ; /* R6 */
*(--p_stk) = (0S_STK)0@x05050505uL ; /* R5 */
*(--p_stk) = (0S_STK)0x04040404uL ; /* R4 */
return (p_stk);
}

After all tasks are created and their stacks are initialized, CPU starts executing the highest
priority task code as if it just returned from an interrupt subroutine. This is performed in the
functions OSStart(), OSStartHighRdy() and PendSV_Handler.

Tasks are switched in function PendSV_Handler(). The first stack-address of highest-priority
task is read out and written into PSP following the PendSV interrupt subroutine return. Then,
CPU returns back to the highest-priority task code to execute subsequently.

PendSV_Handler

CPSID I

LDR
MSR
DSB
ISB

;Cortex-M4 errata notice. See Note #5
MOV32 R2,0S_KA BASEPRI_Boundary ;SetBASEPRI priority required for exception preemption

R1, [R2]
BASEPRI, R1

Sep. 13, 2022

Page 3 of 14

Rev 1.00




NUvVOoOTOoON M480 Series

CPSIE I
MRS RO, PSP ; PSP is process stack pointer
CBZ RO, 0OS_CPU_PendSVHandler_nosave
IF {FPU} != "SoftVFP"
TST LR, #0x10
IT EQ
VSTMDBEQ RO!, {s16-s31}
ENDIF
STMFD  Re!, {R4-R11,LR} ; Save remaining regs r4-11, R14 on process stack
LDR R5, =0STCBCur 5 OSTCBCur->0STCBStkPtr = SP;
LDR R1, [R5]
STR RO, [R1] ; RO is SP of process being switched out
0S_CPU_PendSVHandler_nosave ; At this point, entire context of process has been saved
PUSH {LR} ; Save LR exc_return value
BL 0STaskSwHook ; Call OSTaskSwHook()
POP {LR}
LDR RO, =0SPrioCur ; OSPrioCur = OSPrioHighRdy;
LDR R1, =0SPrioHighRdy

LDRB  R2, [R1]
STRB  R2, [RO]

LDR R@, =0STCBCur

LDR R1, =0STCBHighRdy ; OSTCBCur = OSTCBHighRdy;

LDR R2, [R1]

STR R2, [Re]

LDR RO, [R2] ; RO is new process SP; SP = OSTCBHighRdy->0OSTCBStkPtr;

LDMFD  R@!, {R4-R11,LR} ; Restore r4-11, R14 from new process stack
IF {FPU} != "SoftVFP"

TST LR, #0x10
IT EQ
VLDMIAEQ R@!, {s16-s31}
ENDIF
MSR PSP, RO ; Load PSP with new process SP
MOV32 R2, #0 ; Restore BASEPRI priority level to ©
CPSID I
MSR BASEPRI, R2
DSB
ISB
CPSIE I
BX LR ; Exception return will restore remaining context
ALIGN ; Removes warning[A1581W]: added <no_padbytes> of padding at <address>
END

Sep. 13, 2022 Page 4 of 14 Rev 1.00




NUvVOoOTOoON M480 Series

The flowchart of PendSV interrupt code is as Figure 1-1. After entering the PendSV interrupt, if
PSP is not equal to 0, it indicates that CPU just jumped from a task. The context of the current
task including SP pointer must be saved prior to getting the context of a new task.

PSP=0 indicates that a task has just scheduled from OSStart(). Therefore, no task is
interrupted. The context of highest-priority task is read out and PSP is pointed to the stack of
highest-priority task. Then, PendSV executes interrupt return, and CPU will execute the
highest-priority task.

PendSYV Interrupt

>

N

Save context of
current task including
stack

-
;
A 4

Let PSP point to stack of
Highest priority task
being ready

v

Return

Figure 1-1 Flowchart of PendSV Interrupt

Sep. 13, 2022 Page 5 of 14 Rev 1.00



NnNUVOTON

1.2 Demo Result

MA480 Series

Task 2 enables yellow LED to flash every 100 or 500 milliseconds according to the data
received from the task 1 and the flashing time is alternatively long and short. Task 3 manages

printer and prints messages received from other tasks as Figure 1-2 .

Task 1:
Task 2:

Task 1:
Task 2:

Task 1:
Task 2:

Time of flash has transmitted.

Accept time of flash

Time of flash has transmitted.

Accept time of flash.

Time of flash has transmitted.

Accept time of flash

Sep. 13, 2022

Figure 1-2 Messages Printed from UART

Page 6 of 14

Rev 1.00



NUvVOoOTOoON M480 Series

2. Code Description

The project architecture is as Figure 2-1. Only necessary files are included in the project.

For copyright reasons, the uC/OS kernel code files are not included in the software package.
Please download uC/OS Kernel code from relevant websites and add it to the project according
to the following directory.

Project

= i Project: M480_UCOSii_Porting
- # UART_TxRxFunction

o & cMmsIs NS

-1 system_M480.c |

| startup_M480.s

=1« Library

CPU Startup code

5B retargete BSP/Library code,
clk.c ‘ relative to M480 series

sys.C

gpio.c
uart.c

”.‘Ooiij:cé MC/OS-II kernel code

os_flag.c

EEEPE

F
+
¥
F

L

os_mbox.c
os_mem.c
os_mutex.c
0s_q.c
0s_sem.c
os_task.c

os_time.c

O O o O I I I = I = A

PEPEPEEEPEPE

os_tmr.c

= ¥ uCOS_Port
7] os_cpu_c.c i }JC/OS'” pOI”[ COde
312 os_dbg.c

_] os_cpu_a.asm

=1 app_hooks.c

=-{&F User IR
3] main.c |

App code

Figure 2-1 Project Architecture

After M480 peripheral initialization, create semaphores, mail-box and queues, and then create
tasks. Executing the function OSStart() will start task scheduling.

int main(void)

{

SYS_UnlockReg();
SYS_Init();
SYS_LockReg();

UART Open(UARTO, 115200);

// Unlock protected registers
// Init System, peripheral clock and multi-function I/O
// Lock protected registers

// Init UARTO for printf

Sep. 13, 2022

Page 7 of 14 Rev 1.00




NUvVOoOTOoON M480 Series

printf("\n\nCPU @ %d Hz\n", SystemCoreClock);
PH->DOUT |= @x30 ;
GPIO SetMode(PH, BIT4 | BITS5, GPIO_MODE_OUTPUT);

0SInit(); // uC/0S initialization.
p_MailBox_1 = OSMboxCreate((void *)@); // create a mail box
pQ_print = 0SQCreate(Print_Message, 10); // create a Q which have 10 messages

OSTaskCreateExt((void(*)(void *))taskl Highest, // create the highest priority task

(void *)o,

(0S_STK *)&taskl stk H[TASK STK SIZE - 1],

(INT8U)TASK1 LEDR_PRIO Highest,

(INT16U)TASK1 LEDR_PRIO_Highest,

(0S_STK *)&taskl stk H[O],

(INT32U)TASK _STK SIZE,

(void *)o,

(INT16U)0S_TASK OPT_STK CHK | OS_TASK OPT_STK CLR |
0S_TASK_OPT_SAVE_FP);

OSTaskCreate((void(*)(void *))task2_LED, // create another task
(void *)e,
(0S_STK *)&task2_stk_led[TASK_STK_SIZE -1],
(INT8U)TASK2_LEDY_PRIO);

OSTaskCreate((void(*)(void *))task3_Print, // create another task
(void *)e,
(0S_STK *)&task3_stk_led[TASK_STK_SIZE -1],
(INT8U)TASK3_PRINT_PRIO);

OSStart(); // Start schedule

while (1) {} ; // This sentence would be never executed.

}

Each task should be a loop of while(1){ }. System function, for instance, OSTimeDaley(),
OSMboxPost() or so, must be called in the loop, thus, the other tasks have time to execute.

The tick-timer MUST be activated in highest-priority tasks. Otherwise, if the SysTick timer

interrupt occurs before the task is scheduled, the system may crash.

Task 1 has the highest priority. Thus, SysTick timer is activated in task 1. In the while(1){ } loop,

data is sent to task 2 every 3 seconds.

void taskl Highest(void *pvParameters)

{ // MUST active tick-timer in highest task

SysTick_Config(SystemCoreClock / OS_TICKS_PER_SEC);

while (1)

{
LED_R_@_LIGHT() ;
0STimeDlyHMSM(@, ©, @, 50); // LED_R light 5@ms
LED_R_1_DARK();

OSTimeDlyHMSM(©, ©, 3, 0); // Delay 3 seconds

if (Mail_Message[@] != 100) Mail Message[@] = 100,
else Mail Message[©@] = 500 ; // time is between 100 and 500ms

Sep. 13, 2022 Page 8 of 14




NUvVOoOTOoON M480 Series

OSMboxPost(p_MailBox_1, Mail Message); // Send message(time) to task2 via mail box
0SQPost(pQ_print, Message Taskl); // Send print message to task3 via Q

}

In task 2, LED flashes according to the time the task 1 sends.

void task2 LED(void *pvParameters)

{
int32_t *ptr ;
int32_t static Time = 300 ;
while (1)
{
ptr = OSMboxAccept(p_MailBox_1); // Check whether there are message in mail box
if (ptr != (void *)0) // Received a mail message
{
Time = *ptr ; // Read out the message in mailbox. To update Time
0SQPost(pQ_print, (int8 t *)Message Task2); // Send print-message to task3
}
0STimeDlyHMSM(@, ©, ©, Time); // Delay time according to message.
LED_Y_TOGGLE() ; // LED_Y toggle(flash)
}
}

In task 3, messages received from other tasks is printed.

void task3_Print(void *pvParameters)

{
uint8_t err ;
uint8_t *ptr ;
while (1)
{
ptr = OSQAccept(pQ_print, &err); // Check whether there are messages in Q
if (ptr == 0)0STimeDlyHMSM(©, ©, ©, 100); // Have no message, wait for 100ms
else // Received a string to print.
{
while (*ptr != 0) // Not the last character of a string.
{
while (UART_IS_TX_FULL(UART®)) ; // If UART FiFo has been full, waiting
UARTO->DAT = *ptr++ ; // write a character into Tx_FiFO
}
}
}
}

Sep. 13, 2022 Page 9 of 14 Rev 1.00




NUvVOoOTOoON M480 Series

3. Software and Hardware Requirements

3.1 Software Requirements

e BSP version
- M480_Series_ BSP_CMSIS_V3.05.003
e |DE version
- Keil uVersion 5.26
3.2 Hardware Requirements

e Circuit components
- NuMaker- M483KG V1.1

Sep. 13, 2022 Page 10 of 14 Rev 1.00



NUvVOoOTOoON M480 Series

4. Directory Information

The directory structure is shown below.

7~ EC_M480 uCOS_Il_Porting_V1.00

I~ Library Sample code header and source files
~ CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.
~ Device CMSIS compliant device header file
I~ StdDriver All peripheral driver header and source files

r— SampleCode
7 ExampleCode  Source file of example code

=~ uCOS_ll Files relative to uC/OS

Figure 4-1 Directory Structure

Sep. 13, 2022 Page 11 of 14 Rev 1.00



NUvVOoOTOoON M480 Series

5. Example Code Execution

Browse the sample code folder as described in the Directory Information section and
double-click M480_uCOS_Il_Porting.uvproj.

Enter Keil compile mode.

e Build
e Download
e Start/Stop debug session

3. Enter debug mode.

e Run

Sep. 13, 2022 Page 12 of 14 Rev 1.00



NUvVOoOTOoON M480 Series

6. Revision History

Date Revision Description

2022.09.13 1.00 Initial version.

Sep. 13, 2022 Page 13 of 14 Rev 1.00



NUvVOoOTOoON M480 Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction
or failure of which may cause loss of human life, bodily injury or severe property damage. Such
applications are deemed, “Insecure Usage”.
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other
applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.
All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.

Sep. 13, 2022 Page 14 of 14 Rev 1.00



