

Jul. 27, 2022 Page 1 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

Document Information

Application
This example code is used for porting UCOSii_V2.93 on the M251
series microcontroller (MCU).

BSP Version M251_M252_M254_M256_M258_Series_BSP_CMSIS_V3.02.003

Hardware NuMaker-M258KE Ver1.1

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller and microprocessor based
system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

M251 UCOSii Porting

Example Code Introduction for 32-bit NuMicro® Family

http://www.nuvoton.com/

Jul. 27, 2022 Page 2 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

1. Overview

This example code introduces what files should be added in a project if user wants to port
UCOSii on the M251 series microcontroller (MCU).

Two tasks are created and data are transmitted to each other in this example project.

1.1 Principle

UC/OS is used in an application because each task of application code seems to monopolize
a CPU while UC/OS is used in a project. Thus, an application code can be divided into several
tasks which can be written by different software engineers.

When a task is preempted by another task, it seems that CPU is going to execute an interrupt
subroutine, and the CPU will return back to the current task after a while. Each task has an
independent stack. Before task scheduling, each stack of task is initialized as if an interrupt has
just occurred, and CPU registers have been pushed into the stack.

S_STK *OSTaskStkInit(void (*task)(void *p_arg), void *p_arg, OS_STK *ptos, INT16U opt)
{
 OS_STK *stk;

 (void)opt; /* 'opt' is not used, prevent warning */
 stk = ptos; /* Load stack pointer */

 /* Registers stacked as if auto-saved on exception */
 (stk) = (INT32U)0x01000000uL; / xPSR */
 (--stk) = (INT32U)task; / Entry Point */
 (--stk) = (INT32U)OS_TaskReturn; / R14 (LR) */
 (--stk) = (INT32U)0x12121212uL; / R12 */
 (--stk) = (INT32U)0x03030303uL; / R3 */
 (--stk) = (INT32U)0x02020202uL; / R2 */
 (--stk) = (INT32U)0x01010101uL; / R1 */
 (--stk) = (INT32U)p_arg; / R0 : argument */

 /* Remaining registers saved on process stack */
 (--stk) = (INT32U)0x07070707uL; / R7 */
 (--stk) = (INT32U)0x06060606uL; / R6 */
 (--stk) = (INT32U)0x05050505uL; / R5 */
 (--stk) = (INT32U)0x04040404uL; / R4 */

 return (stk);
}

After all tasks are created and their stacks are initialized, CPU starts executing the highest
priority task code as if it just returned from an interrupt subroutine. This is performed in the
functions OSStart(), OSStartHighRdy() and PendSV_Handler.

Tasks are switched in function PendSV_Handler(). The first stack-address of highest-priority
task is read out and written into PSP following the PendSV interrupt subroutine return. Then,
CPU returns back to the highest-priority task code to execute subsequently.

Jul. 27, 2022 Page 3 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

PendSV_Handler
 CPSID I ; Prevent interruption during context switch
 MRS R0, PSP ; PSP is process stack pointer

 CMP R0, #0
 BEQ OS_CPU_PendSVHandler_nosave ; equivalent code to CBZ from M3 arch to M0 arch
 ; Except that it does not change the condition code flags

 SUBS R0, R0, #0x10 ; Adjust stack pointer to where memory needs to be stored to
 ; avoid overwriting
 STM R0!, {R4-R7} ; Stores 4 4byte registers, default increments SP after each
 ; storing
 SUBS R0, R0, #0x10 ; STM does not automatically call back the SP to initial
 ; location so we must do this manually
 LDR R1, =OSTCBCur ; OSTCBCur->OSTCBStkPtr = SP;
 LDR R1, [R1]
 STR R0, [R1] ; R0 is SP of process being switched out

 ; At this point, entire context of process has been saved
OS_CPU_PendSVHandler_nosave
 PUSH {R14} ; Save LR exc_return value
 LDR R0, =OSTaskSwHook ; OSTaskSwHook();
 BLX R0
 POP {R0}
 MOV R14, R0

 LDR R0, =OSPrioCur ; OSPrioCur = OSPrioHighRdy;
 LDR R1, =OSPrioHighRdy
 LDRB R2, [R1]
 STRB R2, [R0]

 LDR R0, =OSTCBCur ; OSTCBCur = OSTCBHighRdy;
 LDR R1, =OSTCBHighRdy
 LDR R2, [R1]
 STR R2, [R0]
 LDR R0, [R2] ; R0 is new process SP; SP = OSTCBHighRdy->OSTCBStkPtr;
 LDM R0!, {R4-R7} ; Restore R4-R7 from new process stack
 MSR PSP, R0 ; Load PSP with new process SP
 MOV R0, R14
 MOVS R1, #0x04 ; Immediate move to register
 ORRS R0, R1 ; Ensure exception return uses process stack
 MOV R14, R0
 CPSIE I
 BX LR ; Exception return will restore remaining context

 ALIGN ; Ensures that ARM instructions start on four-byte boundary
 END

Jul. 27, 2022 Page 4 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

The flowchart of PendSV interrupt code is as Figure 1-1. After entering the PendSV interrupt, if
PSP is not equal to 0, it indicates that CPU just jumped from a task. The context of the current
task including SP pointer must be saved prior to getting the context of a new task.

PSP=0 indicates that a task has just scheduled from OSStart(). Therefore, no task is
interrupted. The context of highest-priority task is read out and PSP is pointed to the stack of
highest-priority task. Then, PendSV executes interrupt return, and CPU will execute the
highest-priority task.

Figure 1-1 Flowchart of PendSV Interrupt

1.2 Demo Result

Task 2 enables a LED to flash every several milliseconds according to the interval times the
task 1 transmitted. The flashing time is alternatively long and short.

Jul. 27, 2022 Page 5 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

2. Code Description

The project architecture is as Figure 2-1. Only necessary files are included in the project.

For copyright reasons, the US/OS kernel code files are not included in the software package.
Please download UC/OS Kernel code from relevant websites and add it to the project according
to the following directory.

Figure 2-1 Project Architecture

Jul. 27, 2022 Page 6 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

After M251 peripheral initialization, create semaphores, mail-box and queues, and then create
tasks. Executing the function OSStart() will start task scheduling.

int main(void)
{
 int32_t Cnt32;

 SYS_UnlockReg(); /* Unlock protected registers */
 SYS_Init(); /* Init System, peripheral clock and multi-function I/O */
 SYS_LockReg(); /* Lock protected registers */

 UART0_Init(); /* Init UART0 for printf */
 printf("\n\nCPU @ %u Hz\n", SystemCoreClock);

 OSInit(); // uCOS initialization.
 p_MailBox_1 = OSMboxCreate((void *)0); // create a mail box

 OSTaskCreateExt((void(*)(void *))task1_Highest, // create a task
 (void *)0,
 (OS_STK *)&task1_stk_H[LED_TASK_STK_SIZE - 1],
 (INT8U)TASK1_PRIO_Highest,
 (INT16U)TASK1_PRIO_Highest,
 (OS_STK *)&task1_stk_H[0],
 (INT32U)LED_TASK_STK_SIZE,
 (void *)0,
 (INT16U)OS_TASK_OPT_STK_CHK | OS_TASK_OPT_STK_CLR | OS_TASK_OPT_SAVE_FP);

 OSTaskCreate((void(*)(void *))task2_LED, // create another task
 (void *)0,
 (OS_STK *)&task2_stk_led[LED_TASK_STK_SIZE - 1],
 (INT8U)TASK2_PRIO_LED);

 OSStart(); // Start schedule

 while (1) {} ; // This sentence would be never executed.
}

Each task should be a loop of while(1){ }. System function, for instance, OSTimeDaley(),
OSMboxPost() or so, must be called in the loop, thus, the other tasks have time to execute.

The tick-timer MUST be activated in highest-priority tasks. Otherwise, if the SysTick timer
interrupt occurs before the task is scheduled, the system may crash.

Task 1 has the highest priority. Thus, SysTick timer is activated in task 1. In the while(1){ } loop,
data is sent to task 2 every 3 seconds.

void task1_Highest(void *pvParameters)
{ // MUST active tick-timer in highest task
 SysTick_Config(SystemCoreClock / OS_TICKS_PER_SEC); // active tick-timer

 while (1)
 {

Jul. 27, 2022 Page 7 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

 OSTimeDlyHMSM(0, 0, 3, 0); // Delay 3 seconds

 if (Mail_Message[0] != 100) Mail_Message[0] = 100;
 else Mail_Message[0] = 500 ; // Configure message in mail box

 OSMboxPost(p_MailBox_1, Mail_Message); // Send messgae via mail box
 }
}

In task 2, LED flashes according to the time the task 1 sends.

void task2_LED(void *pvParameters)
{ // MUST active tick-timer in highest task
 int32_t *ptr ;
 int32_t static Time = 300 ;

 while (1)
 {
 ptr =OSMboxAccept(p_MailBox_1); //Check whether there are messages in the mailbox

 if (ptr !=(void*)0) Time = *ptr; //Read out if there is any message in the mailbox

 OSTimeDlyHMSM(0, 0, 0, Time); // Delay time according to message.
 PB14 ^= 1 ; // LED flash
 }
}

Jul. 27, 2022 Page 8 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

3. Software and Hardware Requirements

3.1 Software Requirements

 BSP version

- M251_M252_M254_M256_M258_Series_BSP_CMSIS_V3.02.003

 IDE version

- Keil uVersion 5.26

3.2 Hardware Requirements

 Circuit components

- NuMaker- M258KE Ver1.1

Jul. 27, 2022 Page 9 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

4. Directory Information

The directory structure is shown below.

 EC_ M251_UCOSii_Porting_V1.00

 Library Sample code header and source files

 CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.

 Device CMSIS compliant device header file

 StdDriver All peripheral driver header and source files

 SampleCode

 ExampleCode Source file of example code

 uCOS_II Files relative to uCOS

Figure 4-1 Directory Structure

Jul. 27, 2022 Page 10 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

5. Example Code Execution

1. Browse the sample code folder as described in the Directory Information section and
double-click M251_UCOSii_Porting.uvprojx.

2. Enter Keil compile mode.

 Build

 Download

 Start/Stop debug session

3. Enter debug mode.

 Run

Jul. 27, 2022 Page 11 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

6. Revision History

Date Revision Description

2022.07.27 1.00 Initial version.

Jul. 27, 2022 Page 12 of 12 Rev 1.00

M251/M252/M254/M256/M258 Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction
or failure of which may cause loss of human life, bodily injury or severe property damage. Such
applications are deemed, “Insecure Usage”.
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other
applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

	1. Overview
	1.1 Principle
	1.2 Demo Result

	2. Code Description
	3. Software and Hardware Requirements
	3.1 Software Requirements
	3.2 Hardware Requirements

	4. Directory Information
	5. Example Code Execution
	6. Revision History

