

Dec. 15, 2021 Page 1 of 19 Rev 1.00

M480 Series

Example Code Introduction for 32-bit NuMicro® Family M480 Series

Information

Application

This document describes how to program Keras weight for deep
learning technology to develop car plate recognition, and to help
users to implement the car plate recognition on the NuMicro®
M480 series microcontroller.

BSP Version M480 BSP CMSIS V3.05.001

Hardware NuMaker-IoT-M487 Ver1.2

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller and microprocessor based
system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Car License Plate Recognition Based on Keras

http://www.nuvoton.com/

Dec. 15, 2021 Page 2 of 19 Rev 1.00

M480 Series

1 Overview

The global market of machine learning is flourishing recently with the advancement of
technology. Machine learning refers to an accumulative and autonomous behavior
enhancement from a machine through a series of learning process. The learning process is to
give training data to mathematical data models, and it could be categorized into supervised,
unsupervised and reinforcement learning.

The idea of machine learning can be realized in almost every field; social media features,
product recommendations on the Internet, image recognition, and language translation are all
examples of machine learning. According to Fortune Business Insights, the revenue of global
machine learning market is predicted to grow dramatically to hit USD 117.19 billion by the end
of 2027, with a CAGR of 39.2% compared to the revenue of USD 8.43 billion in 2019.

With DNN (Deep Neural Networks) and CNN (Convolution Neural Networks) that support
machine learning networks, the NuMicro® M487 Ethernet series from Nuvoton, a high
performance and low power microcontroller, is suitable to be used in related applications. The
M487, with operating voltage from 1.8 to 3.6V, is powered by Arm® Cortex® -M4 core with DSP
extension, and can run up to 192 MHz with 175 µA/MHz dynamic low power consumption. The
M487 has up to 2.5 MB Flash memory and 160 KB embedded SRAM, which includes 32 KB
cache to speed up external SPI Flash code execution. Furthermore, it is equipped with 10/100
Mbps Ethernet MAC with RMII and hardware cryptography engine.

One use case of M487 is vehicle license plate recognition. A M480 platform (with M487 on it)
could recognize any vehicle license plate by using its learning neural network algorithms. A
CMOS sensor is required to capture the plate image and it takes around 200 ms to identify the
image. The M487 supports the image resolution of QVGA 320 x 240.

This sample code captures car license plate, using machine learning neural network algorithms
for identification. The Arm® Cortex® -M4 core supports the DSP instruction to speed up
algorithms. The information can be transmitted to a peripheral such as UART on edge device.

Dec. 15, 2021 Page 3 of 19 Rev 1.00

M480 Series

1.1 System Overview

This demo captures license plate, using machine learning neural network algorithms for
identification. The Arm® Cortex® -M4 core supports the DSP instruction to speed up algorithms.
The system architecture is shown in Figure 1-1.

Figure 1-1 System Architecture

1.2 Features

 Hardware/Software driven CMOS sensor

 QVGA: 320*240

 Supports deep neural network and convolutional neural network

 Provides multiple image processing algorithms

1.3 Deep Learning Neural Networks (DNN) Introduction

Machine learning is a branch of Artificial Intelligence (AI). The operation process is to use an
algorithm to train a large amount of data. After the training is completed, a model will be
generated. When there is new data in the future, user can predict the new data using the training
model. Machine learning applications are quite extensive, such as recommendation engines,
targeted advertising, demand forecasting, spam filtering, medical diagnostics, natural
languages processing, search engines, fraud detection, securities analysis, visual identification,
speech recognition, handwriting recognition, and more.

CCAP GPIO

UART

M487

Display

SPI

Dec. 15, 2021 Page 4 of 19 Rev 1.00

M480 Series

Deep learning is a branch of machine learning. It is the fastest growing field of artificial
intelligence. There are several deep learning frameworks, such as Deep Neural Networks
(DNN) and Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), etc..
Actually the answer that the user should use what kind of architectures is not certain. It depends
on the size, nature, acceptable calculating time, the urgency of learning, and what you want to
do with this data. Deep learning is particularly effective in applications such as visual
recognition, speech recognition, natural language processing, and biomedical applications.

Deep learning lets the machine simulate the working mode of the human brain, and thus has
the same learning ability as human beings. However, the human neural network is too
complicated to be simulated. The neurons are divided into multiple levels to simulate the neural
network. The neural network usually has an input layer, an output layer and a number of hidden
layers that can be trained. More than 2 hidden layers can be called Deep Learning.

If users do not have a basic understanding of deep learning, the course of deep learning can
be used to get the most out of this document.

1.3.1 Deep Learning Neural Networks (DNN)

Deep Neural Networks (DNN) is the most basic discriminant model for deep learning. It can be
trained by the backpropagation algorithm. The weights can be updated iteratively by the
gradient descent method:

∆𝑤𝑖𝑗(𝑡 + 1) = ∆𝑤𝑖𝑗(𝑡) + 𝜂
𝜕𝐶

𝜕𝑤𝑖𝑗

𝜂 is the Learning Rate, C is the Loss Function and the choice of the function is related to the
Active Function. For this document as example, in order to solve the problem of Multi-Class
Classification supervised learning, choose Rectified Linear Unit (ReLU) as the activation
function, and use Cross Entropy as the loss function. The definition of cross entropy is as
follows:

𝐶 = −∑𝑑𝑗 log(𝑝𝑗)

𝑗

𝑑𝑗 represents the target probability of output unit 𝑗, 𝑝𝑗 represents the probability output unit 𝑗

after applying the activation function; and the Softmax Function of the output layer is defined
as follows:

𝑝𝑗 =
𝑒𝑥𝑝⁡(𝑥𝑖)

∑ 𝑒𝑥𝑝⁡(𝑥𝑘)𝑘

𝑝𝑗 represents the probability of category 𝑗. 𝑥𝑖 and 𝑥𝑘 are inputs to units 𝑖 and 𝑘, respectively.

The network architecture of the deep neural networks is shown in Figure 1-2.

Dec. 15, 2021 Page 5 of 19 Rev 1.00

M480 Series

Figure 1-2 Architecture of Deep Neural Networks (DNN)

1.4 TensorFlow

TensorFlow is an open source code library provided by Google. Google has many products
that use TensorFlow technology to develop deep learning and machine learning functions
(Figure 1-3), such as Gmail filtering spam, Google voice recognition, Google image recognition,
Google Translate, etc. The introduction to deep learning has described the core of deep
learning and simulate neural networks with tensor (matrix) operations. Accordingly, the main
design of TensorFlow is to maximize the performance of matrix operations and used to develop
on different platforms.

1.4.1 TensorFlow Architecture

The TensorFlow architecture is shown below.

Figure 1-3 TensorFlow Architecture Diagram

The following describes the details of the above architecture diagram, starting from the bottom:

 Processor: TensorFlow can be executed on CPU, GPU, and TPU.

Dec. 15, 2021 Page 6 of 19 Rev 1.00

M480 Series

 CPU: Each computer has a central processing unit (CPU) that can execute

TensorFlow. It is enough to use CPU for this speech recognition system.

 GPU: Graphics processor with thousands of small and high-efficiency cores that

harness the power of parallel computing.

 TPU: The Tensor Processing Unit is a proprietary chip developed by Google's Artificial

Intelligence and has better execution capabilities than the GPU.

 Platform

TensorFlow is a cross-platform capability that can be implemented on current mainstream

platforms. This document uses the Windows 10 operating system.

 TensorFlow Distributed Execution Engine

In deep learning, the most time-consuming is the training of the model, especially the large-

scale deep learning model, which must be trained with a large amount of data. TensorFlow

has the ability of distributed computing, which can perform model training on hundreds of

machines at the same time, greatly shorten the time of model training.

 Low-level APIs

TensorFlow is available in a variety of programming languages and Python has a concise,

easy-to-learn, high-productivity, object-oriented, and functional dynamic language that is

widely used. The deep learning code of this document is also developed by Python.

 High-order APIs

TensorFlow is a relatively low-level deep learning APIs. When designing a model, users

must design the underlying operations such as tensor product and convolution. Therefore,

this document is matched with the high-order API – Keras, which makes developers use

more concise and readable codes to construct a variety of complex deep learning models.

1.4.2 Car License Plate Pre-Trained Model

The parameter weights and biases of deep learning models are usually trained using floating-
point numbers, but the floating-point numbers can be converted into integers during the micro-
controller prediction process without affecting the prediction.

car_weright.h is shown as Figure 1-4.

The parameters of the trained neural network model are quantized into integers, and then the
parameters are put into the code of the M480 series microcontrollers for predictive identification.

Dec. 15, 2021 Page 7 of 19 Rev 1.00

M480 Series

Figure 1-4 car_weights.h

The following is the car license plate recognition model being trained. The program will call this
parameter according to the various network layers required by the nnom library to achieve the
result of the inference.

#include "nnom.h"

/* Neural Network */

#define CONV2D_KERNEL_0 {18, ..., 7, 22}

#define CONV2D_KERNEL_0_SHIFT (4)

#define CONV2D_BIAS_0 {44, 7, 50, 41, -60, 63, -49, -11, 80, 77, 35, -81, -25, -86, 94, -
75}

#define CONV2D_BIAS_0_SHIFT (6)

#define CONV2D_1_KERNEL_0 {1, -4, 8, 1, ..., -37, 19, -2, 5, 19, -5, 19}

#define CONV2D_1_KERNEL_0_SHIFT (9)

#define CONV2D_1_BIAS_0 {-47, -80, -6, -12, -64, -64, -22, -14, -3, 19, -35, -28, -18, -7,
-61, -60, -46, -29, -69, -3, -56, 1, -27, -9, -37, -66, -48, -54, -24, -6, -50, -55}

#define CONV2D_1_BIAS_0_SHIFT (7)

#define CONV2D_2_KERNEL_0 {-7, -27, -4, 11, ..., -17, -28, 3, -8, 1, 7, -25, -2}

#define CONV2D_2_KERNEL_0_SHIFT (9)

#define CONV2D_2_BIAS_0 {-1, -10, -9, -19, -10, 75, -2, 3, -13, 9, 5, -20, -20, 10, -20, -
5, -19, -1, -5, 17, -7, -2, -18, -8, 13, 14, 6, 9, -20, -8, -14, -27, -15, -9, -19, -16, -
6, -11, 16, 3, -9, 1, -16, -7, -13, -37, 22, -17, -7, -19, 43, -15, -7, 21, -26, 8, -10,
1, -15, 28, 34, -3, -24, -8}

#define CONV2D_2_BIAS_0_SHIFT (5)

#define CONV2D_3_KERNEL_0 {-11, -20, -19, 0,...., -8, -9, -11, 3, -9, 5, 9, 3, -18, 16}

#define CONV2D_3_KERNEL_0_SHIFT (8)

#define CONV2D_3_BIAS_0 {-31, -1, -23, 51, -7, -1, -7, -22, -1, 1, 21, 88, 8, 54, 30, 103,
-49, -117, 19, 4, 11, -23, -50, 15, 21, 12, -35, 63, -43, -46, -30, -105, -3, -110, 13,
128, 19, -8, 63, 17, 61, -66, 56, 45, 42, 51, 28, -47, -29, -18, 16, -5, 91, -30, -37, 46,
-37, -73, 8, 23, 8, -66, 5, 2}

#define CONV2D_3_BIAS_0_SHIFT (7)

Dec. 15, 2021 Page 8 of 19 Rev 1.00

M480 Series

#define DENSE_KERNEL_0 {-16, -18, 2, -9, -15, ..., -7, -38, -5, -21, -12, -2, -10, -19,
69, 1}

#define DENSE_KERNEL_0_SHIFT (8)

#define DENSE_BIAS_0 {-16, -10, -17, -56, -11, -17, -40, -54, -69, -24, -30, -16, 16, -44,
-23, -10, -2, -20, -51, -72, 34, -9, 12, -71, -22, 33, -46, -62, 33, -25, 28, -48, -34,
41, 0, 37, 4, -11, 36, -16, -9, 5, -13, 16, -29, -101, -79, 17, -17, 57, -8, -12, 3, -44,
25, -24, 3, -9, -17, 4, -19, -18, 23, -17}

#define DENSE_BIAS_0_SHIFT (11)

#define DENSE_1_KERNEL_0 {-3, -6, 26, -32, -25, ... -56, -26, 27, 25, 4, -53, -46}

#define DENSE_1_KERNEL_0_SHIFT (7)

#define DENSE_1_BIAS_0 {-2, 9, 0, 7, -15, -10, -7, -1, 11, 1, -14, 19, 1, 12, 5, -2, 2, 2,
-12, -14, -5, -2, -4, 18, -15, 9, -4, -1, -9, 0, -3, -13, -2, 8}

#define DENSE_1_BIAS_0_SHIFT (7)

Dec. 15, 2021 Page 9 of 19 Rev 1.00

M480 Series

2 Code Description

This chapter describes how the microcontroller captures the image, and then through the image
pre-processing, and finally puts it into the trained model for identification.

2.1 Image Show and Save Function

First, you can define whether to enable two additional functions from main.c, as follows:

/* Show image on SPI LCD */

#define SHOW_IMAGE

/* Save image to SD Card */

#define SAVE_IMAGE

2.2 Image Capture

This solution uses GPIO software to simulate and capture CCIR601 signals.

/* wait Vsync signal */

if(GPIO_GET_INT_FLAG(PE, BIT0)) {

 GPIO_CLR_INT_FLAG(PE, BIT0|BIT1);

 for(i=0; i < IMAGE_HEIGHT; i++) {

/* wait Hsync signal */

while(!GPIO_GET_INT_FLAG(PE, BIT1));

GPIO_CLR_INT_FLAG(PE, BIT1);

GPIO_CLR_INT_FLAG(PD, BIT8);

for(j=0; j < IMAGE_WIDTH*PIXEL_BYTES; j++)

{

 /* latch data when PCLK is high */

while(!GPIO_GET_INT_FLAG(PD, BIT8));

 GPIO_CLR_INT_FLAG(PD, BIT8);

/* collect image data from GPIO pin status */

 image[i*IMAGE_WIDTH + j] = (PG->PIN >> 8);

}

}

 GPIO_CLR_INT_FLAG(PE, BIT0);

}

If the display function is enabled, you can draw a line on the display to capture the target image,
and see the image captured by the CMOS sensor through the display.

Dec. 15, 2021 Page 10 of 19 Rev 1.00

M480 Series

/* Show image to SPI LCD */

for(i = 0; i < IMAGE_HEIGHT; i++) {

 for(j = 0; j < IMAGE_WIDTH; j++) {

 uint16_t color;

 uint8_t R;

 R = image[i * IMAGE_WIDTH + j];

 color = ((R & 0xF8) << 8) | ((R & 0xFC) << 3) | ((R >> 3));

 LCD_Set_Color(color);

 }

 }

2.3 Image Recognition

For the defined output category, there are 0~9 and A~Z.

/* Output Class */

const uint8_t label_chr[34] = {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B',
'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V',
'W', 'X', 'Y', 'Z'};

Classify nnom_predict for identification:

for(int j = 0 ; j < IMGH ; ++j) {

for(int i = 0 ; i < IMGW ; ++i) {

 nnom_input_data[j*IMGW+i] = int8_t (buf_out[c][j*IMGW+i]/2);

}

}

nnom_predict(model, &predict_label, &predict_prob);

You can print the array label_chr to show the result.

/* identify label function */

predict_label = identify(predict_label, c);

car_plate_result[c] = label_chr[predict_label];

car_plate_prob[c] = predict_prob;

/* show result */

printf("result: %c", label_chr[predict_label]);

printf(" | %.3f ", car_plate_prob[c]);

printf("\r\n");

Dec. 15, 2021 Page 11 of 19 Rev 1.00

M480 Series

2.4 Save Image

User has to define SAVE_IMAGE first to save the image as a BMP file. The code is as follows.

/* Set width and height to save image */

void SaveImage(uint32_t width, uint32_t height, uint8_t *imagedata, uint32_t cnt)

{

 BMP_Header_Init(width, height);

 /* Open bmp file */

 sprintf(Image, "0:\\CMOS%01d.bmp", cnt);

 res = f_open(&file1, Image, FA_CREATE_ALWAYS | FA_WRITE);

 if(res != FR_OK) {

 printf("Open Fingerprint file error!\n");

 return;

 }

 /* Write BMP header*/

 f_write(&file1, &bmp_header, 12, &s1);

 f_lseek(&file1, 14);

 /* Write BMP Infoheader*/

 f_write(&file1, &bmp_Infoheader, 40, &s1);

 /* Write Grayscale Table*/

 f_write(&file1, grayArray, 1024, &s1);

 /* Save image data */

 f_write(&file1, imagedata, width * height, &s1);

 printf("Save Image %d, ", cnt);

 f_close(&file1);

}

Dec. 15, 2021 Page 12 of 19 Rev 1.00

M480 Series

2.5 Demo Result

Connect the USB port to the PC and open the terminal. When you click the button (SW2 on
board), it will print out the result of the identification.

Figure 2-1 Demo Result

Dec. 15, 2021 Page 13 of 19 Rev 1.00

M480 Series

3 Software and Hardware Requirements

3.1 Software Requirements

 BSP version

 M480_BSP_CMSIS_v3.05.001

 IDE version

 Keil uVersion 5.26

3.2 Hardware Requirements

 NuMaker-IoT-M487 Board

NuMaker Brick

Connector

NuMaker Brick

Connector

USB ICE

Connector Simulated

CMOS Sensor

Interface

Reset

ICE Controller

M487JIDAEUSB1.1

OTG

USB2.0

OTG

Headset

SPI Flash

Ethernet PHY

mikroBUS

Ethernet RJ-45

Connector

GPIOs

Buttons
LEDs

9-axis

Sensor Env.

Sensor

Wi-Fi

Module

GND

VCC

Arduino UNO

Interface

GND

VCC

SD Card

Slot

NAU88L25

Codec

Figure 3-1 NuMaker-IoT-M487 Board

Dec. 15, 2021 Page 14 of 19 Rev 1.00

M480 Series

 NuTFT-SPI_320x240 Daughter Board

QVGA

TFT LCD

ButtonsJoystick

Arduino UNO

Interface

Figure 3-2 NuTFT-SPI_320x240 Daughter Board

 Daughter Board Pin Connect

LCM Interface LCM Function
M487 Chip

GPIO GPIO Mode

LCM_SPI_SS LCM SPI chip select PA.11 (SPI2) Output

LCM_SPI_CLK LCM SPI clock PA.10 (SPI2) Output

LCM_SPI_MISO LCM SPI data output PA.9 (SPI2) Input

LCM_SPI_MOSI LCM SPI data input PA.8 (SPI2) Output

LCM_DC LCM command or data PB.2 Output

LCM_RESET LCM reset PB.3 Output

LCM_LED LCM backlight PE.5 Output

Table 3-1 Daughter Board Pin Connect

Dec. 15, 2021 Page 15 of 19 Rev 1.00

M480 Series

 CMOS image sensor module

Figure 3-3 CMOS Image Sensor Module

 CMOS Pin Connect

CMOS Interface CMOS Function
M487 Chip

GPIO GPIO Mode

SDA Serial Data I/O I2C2_SDA (PD.0) Input/Output

SCL I2C serial clock I2C2_SCL (PD.1) Input

MCLK Master clock input BPWM0_CH(PD.12) Input

PCLK Pixel clock PE.0 Output

HSYNC Line valid output PE.1 Output

VSYNC Frame valid output PD.8 Output

D0~D7 Data0~7 output PG.8~PG.15 Output

Table 3-2 CMOS Pin Connect

Dec. 15, 2021 Page 16 of 19 Rev 1.00

M480 Series

4 Directory Information

The directory structure is shown below.

 EC_M480_CarPlateRecognition_V1.00

 Library Sample code header and source files

 Device CMSIS compliant device header file

 StdDriver All peripheral driver header and source files

 SampleCode

 ExampleCode Source file of example code

 ThirdParty

 FatFs

Figure 4-1 Directory Structure

Dec. 15, 2021 Page 17 of 19 Rev 1.00

M480 Series

5 Example Code Execution

1. Browse the sample code folder as described in the Directory Information section and

double-click ML_CarPlate.uvproj.

2. Enter Keil compile mode.

 Build

 Download

 Start/Stop debug session

3. Enter debug mode.

 Run

Dec. 15, 2021 Page 18 of 19 Rev 1.00

M480 Series

6 Revision History

Date Revision Description

2021.12.15 1.00 1. Initially issued.

Dec. 15, 2021 Page 19 of 19 Rev 1.00

M480 Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction
or failure of which may cause loss of human life, bodily injury or severe property damage. Such
applications are deemed, “Insecure Usage”.
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other
applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

