
      

 

May 6, 2021 Page 1 of 14 Rev 1.00 

M261/M262/M263 Series  

 

Example Code Introduction for 32-bit NuMicro® Family 

 

 

 

Information 

Application 
This example code uses M263 I2C to drive TDK CH101 to achieve 
distance measurement function.  

BSP Version M263_Series_BSP_CMSIS_V3.00.003 

Hardware NuMaker-M263KI V1.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

The information described in this document is the exclusive intellectual property of 
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton. 

 

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller and microprocessor based 

system design. Nuvoton assumes no responsibility for errors or omissions. 

All data and specifications are subject to change without notice. 

 

For additional information or questions, please contact: Nuvoton Technology Corporation.  

www.nuvoton.com  

Use M263 I2C to Drive TDK CH101 

) 

http://www.nuvoton.com/


      

 

May 6, 2021 Page 2 of 14 Rev 1.00 

M261/M262/M263 Series  

1 Overview 

This example code uses the M263 I2C to drive CH101 module to achieve distance 

measurement function. The CH101 provides accurate range measurements to target at 

distances up to 1.2m. Unlike other types of ToF rangefinders, such as infrared (IR) sensors, 

the CH101 is not affected by the color or transparency of objects and works in all lighting 

conditions. 

The EV_MOD_CH101-03-01 module of TDK is used in this example. The module board 

incorporates a CH101 Ultrasonic Sensor device with an omnidirectional acoustic housing 

assembly, a capacitor and an FPC/FFC connector, and communicates with main control 

microcontroller (MCU) through I2C interface. This module can perform pitch-catch and pulse-

echo range-finding at distances from 4 cm to 1.2m. 

In this document, the description and information about CH101 on TDK website are quoted. 

1.1 Principle 

The CH101 is an ultrasonic transceiver rangefinder that uses a piezoelectric micromachined 

ultrasonic transducer (PMUT) to send out short pulses of soundwaves into the air. Upon 

hitting an object, these waves reflect back towards the PMUT, causing it to vibrate and 

generate an electrical signal. The time needed for the soundwaves to travel from and back to 

the PMUT, known as the Time-of-Flight (ToF), is measured by the built-in application-specific 

integrated circuit (ASIC). Using the speed of sound (343 m/s at room temperature), the 

system can determine the distance to the object. 

Measuring distance using time of flight: 

 
 
 

C(Speed of Sound of air) = 343 m/s. 
 

  



      

 

May 6, 2021 Page 3 of 14 Rev 1.00 

M261/M262/M263 Series  

The CH101 can be controlled and read through the I2C interface. The block diagram of 

reading and writing is shown below: 

 

Figure 1-1 Reading and Writing Diagram 
 

For more information about the CH101 module, please refer to the datasheet and application 

manual at the following website: 

https://invensense.tdk.com/products/ch101/#documentation 

  

https://invensense.tdk.com/products/ch101/#documentation


      

 

May 6, 2021 Page 4 of 14 Rev 1.00 

M261/M262/M263 Series  

1.2 Demo Result 

The demo result is shown below. 

 

Figure 1-2 Demo Result 
 



      

 

May 6, 2021 Page 5 of 14 Rev 1.00 

M261/M262/M263 Series  

2 Code Description 

Code initializes and finds whether the CH101 module is connected to the evaluation board. 

void chbsp_board_init(ch_group_t *grp_ptr) { 

 

 /* Make local copy of group pointer */ 

 sensor_group_ptr = grp_ptr; 

 

 /* Initialize group descriptor */ 

 grp_ptr->num_ports = CHBSP_MAX_DEVICES; 

 grp_ptr->num_i2c_buses = CHBSP_NUM_I2C_BUSES; 

 grp_ptr->rtc_cal_pulse_ms = CHBSP_RTC_CAL_PULSE_MS; 

  

    /* Unlock protected registers */ 

    SYS_UnlockReg(); 

    /* Init System, IP clock and multi-function I/O. */ 

    SYS_Init(); 

    /* Lock protected registers */ 

    SYS_LockReg(); 

     

    /* Init I2C0 */ 

    I2C0_Init(); 

 

    /* Configure UART0: 921600, 8-bit word, no parity bit, 1 stop bit. */ 

    UART_Open(UART0, 921600); 

     

 ext_int_init(); 

 

 /* Probe I2C bus to find connected sensor(s) */ 

 find_sensors(); 

} 

Software sets the module to CH_MODE_FREERUN mode. The RTC inside the module 
generates a time interval of 100 ms, and informs the M263 through INT pin to read the value of 
the relevant register through I2C. 

/* 

 * handle_data_ready() - get and display data from all sensors 

 * 

 * This routine is called from the main() loop after all sensors have  

 * interrupted. It shows how to read the sensor data once a measurement is  

 * complete.  This routine always reads out the range and amplitude, and  



      

 

May 6, 2021 Page 6 of 14 Rev 1.00 

M261/M262/M263 Series  

 * optionally will read out the amplitude data or raw I/Q for all samples 

 * in the measurement. 

 * 

 * See the comments in app_config.h for information about the amplitude data 

 * and I/Q readout build options. 

 * 

 */ 

static uint8_t handle_data_ready(ch_group_t *grp_ptr) { 

 uint8_t  dev_num; 

 int   num_samples = 0; 

 uint8_t  ret_val = 0; 

 

 /* Read and display data from each connected sensor  

  *   This loop will write the sensor data to this application's "chirp_data" 

  *   array.  Each sensor has a separate chirp_data_t structure in that  

  *   array, so the device number is used as an index. 

  */ 

 

 for (dev_num = 0; dev_num < ch_get_num_ports(grp_ptr); dev_num++) { 

  ch_dev_t *dev_ptr = ch_get_dev_ptr(grp_ptr, dev_num); 

 

  if (ch_sensor_is_connected(dev_ptr)) { 

 

   /* Get measurement results from each connected sensor  

    *   For sensor in transmit/receive mode, report one-way echo  

    *   distance,  For sensor(s) in receive-only mode, report direct  

    *   one-way distance from transmitting sensor  

    */ 

    

   if (ch_get_mode(dev_ptr) == CH_MODE_TRIGGERED_RX_ONLY) { 

    chirp_data[dev_num].range = ch_get_range(dev_ptr,  

              CH_RANGE_DIRECT); 

   } else { 

    chirp_data[dev_num].range = ch_get_range(dev_ptr,  

              CH_RANGE_ECHO_ONE_WAY); 

   } 

 

   if (chirp_data[dev_num].range == CH_NO_TARGET) { 

    /* No target object was detected - no range value */ 

 

    chirp_data[dev_num].amplitude = 0;  /* no updated amplitude */ 



      

 

May 6, 2021 Page 7 of 14 Rev 1.00 

M261/M262/M263 Series  

 

    printf("Port %d:          no target found        ", dev_num); 

 

   } else { 

    /* Target object was successfully detected (range available) */ 

 

     /* Get the new amplitude value - it's only updated if range  

      * was successfully measured.  */ 

    chirp_data[dev_num].amplitude = ch_get_amplitude(dev_ptr); 

 

    printf("Port %d:  Range: %0.1f mm  Amp: %u  ", dev_num,  

      (float) chirp_data[dev_num].range/32.0f, 

         chirp_data[dev_num].amplitude); 

   } 

 

   /* Store number of active samples in this measurement */ 

   num_samples = ch_get_num_samples(dev_ptr); 

   chirp_data[dev_num].num_samples = num_samples; 

 

   /* Optionally read amplitude values for all samples */ 

#ifdef READ_AMPLITUDE_DATA 

   uint16_t  start_sample = 0; 

   ch_get_amplitude_data(dev_ptr, chirp_data[dev_num].amp_data,  

          start_sample, num_samples, CH_IO_MODE_BLOCK); 

 

#ifdef OUTPUT_AMPLITUDE_DATA 

   printf("\n"); 

   for (uint8_t count = 0; count < num_samples; count++) { 

 

    printf("%d\n",  chirp_data[dev_num].amp_data[count]); 

   } 

#endif 

#endif 

 

   /* Optionally read raw I/Q values for all samples */ 

#ifdef READ_IQ_DATA 

   display_iq_data(dev_ptr); 

#endif 

   /* If more than 2 sensors, put each on its own line */ 

   if (num_connected_sensors > 2) { 

    printf("\n"); 



      

 

May 6, 2021 Page 8 of 14 Rev 1.00 

M261/M262/M263 Series  

   } 

  } 

 } 

 printf("\n"); 

  

 return ret_val; 

} 



      

 

May 6, 2021 Page 9 of 14 Rev 1.00 

M261/M262/M263 Series  

3 Software and Hardware Requirements 

3.1 Software Requirements 

⚫ BSP version 

◆ M261_Series_BSP_CMSIS_V3.00.003 

⚫ IDE version 

◆ Keil uVersion 5.33 

3.2 Hardware Requirements 

⚫ Circuit components 

◆ NuMaker-M263KI 

◆ EV_MOD_CH101-03-01 

⚫ Pin Connect 

The hardware uses M263KI I2C interface to connect MOD_CH101 sensor module. 

 

Figure 3-1 Pin Connect 

  



      

 

May 6, 2021 Page 10 of 14 Rev 1.00 

M261/M262/M263 Series  

The operating voltage of CH101 module is 1.8V, so the power supply voltage of NuMaker-

M263KI evaluation board for the M263 must be changed to 1.8V. The resistance of the 

circuit board can be changed to make Nulink2-Me output 1.8V voltage. 

 

Figure 3-2 Power switch 

                                                   



      

 

May 6, 2021 Page 11 of 14 Rev 1.00 

M261/M262/M263 Series  

4 Directory Information 

The directory structure is shown below. 

 EC_ M263_I2C_TDK_CH101_V1.00 

 Library Sample code header and source files 

 CMSIS Cortex® Microcontroller Software Interface Standard 
(CMSIS) by Arm® Corp. 

 Device CMSIS compliant device header file 

 StdDriver All peripheral driver header and source files 

 SampleCode  

 ExampleCode Source file of example code 

 ThirdParty  

 Chirpmicro Chirp SonicLib sensor API 
 

Figure 4-1 Directory Structure 
 

  



      

 

May 6, 2021 Page 12 of 14 Rev 1.00 

M261/M262/M263 Series  

5 Example Code Execution 

1. Browse the sample code folder as described in the Directory Information section and 

double-click M263_I2C_TDK_CH101.uvprojx. 

2. Enter Keil compile mode. 

⚫ Build 

⚫ Download 

⚫ Start/Stop debug session 

3. Enter debug mode. 

⚫ Run 

  



      

 

May 6, 2021 Page 13 of 14 Rev 1.00 

M261/M262/M263 Series  

6 Revision History 

Date Revision Description 

2021.05.06 1.00 1. Initially issued. 

 

  



      

 

May 6, 2021 Page 14 of 14 Rev 1.00 

M261/M262/M263 Series  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Important Notice 
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction 
or failure of which may cause loss of human life, bodily injury or severe property damage. Such 

applications are deemed, “Insecure Usage”.  
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy 
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or 
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other 
applications intended to support or sustain life.   
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to 

Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities 
thus incurred by Nuvoton. 
 

 
 


	1 Overview
	1.1 Principle
	1.2 Demo Result

	2 Code Description
	3 Software and Hardware Requirements
	3.1 Software Requirements
	3.2 Hardware Requirements

	4 Directory Information
	5 Example Code Execution
	6 Revision History

