

Sep. 30, 2019 Page 1 of 12 Rev 1.00

NUC240 Series

Example Code Introduction for 32-bit NuMicro® Family

Information

Application
This code demonstrates how to access EEPROM in Keil RTX
program by multitasking.

BSP Version NUC230_240 Series BSP CMSIS V3.01.001

Hardware
NuEdu-EVB-NUC240 V2.1

NuEdu-Basic01 V2.1

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Access EEPROM in Keil RTX by Multitasking

http://www.nuvoton.com/

Sep. 30, 2019 Page 2 of 12 Rev 1.00

NUC240 Series

1 Function Description

1.1 Introduction

When a microcontroller application has to handle many tasks at the same time, we can use
RTOS (real-time operating system) to help us manage these tasks. In RTOS system, CPU
processing time is divided into a number of time slots. Each time slot processes different task
and the switching between these tasks can be hundred times per second. It appears to that
the application tasks are running simultaneously. When the application becomes more and
more complex, we can use RTOS to help us managing these tasks.
CMSIS-RTOS in Keil MDK (Microcontroller Development Kit) provides a standard API for
RTOS and application layer, includes the Keil free RTOS, RTX (Real-Time eXecutive) kernel.
Once others RTOS can support CMSIS-RTOS, we can port our application to others RTOS
platform easily. This sample code uses RTX kernel, which is provided by Keil CMSIS-MDK, to
create a RTX kernel system, and then access EEPROM.

1.2 Principle

Initialize UART for print message and I2C for accessing EEPROM in the beginning of
program. Create a semaphore, one timer and two threads. The two threads are reading and
writing to EEPROM. One thread writes data and then releases one semaphore token. Another
thread waits the semaphore token and then reads EEPROM data. The periodic timer is
configured to trigger UART to print message.

Create Semaphore

Create Timer

Create threads

System, UART, I2C…

Periodic

Timer

Initial

OS Initial

Write EEPROM

Task 1

Read EEPROM

Task 2

UART Print

Task 3

Sep. 30, 2019 Page 3 of 12 Rev 1.00

NUC240 Series

1.3 Demo Result

Connect NUC240 development board to computer through NuBridge. The UART printing
message shows on computer terminal.

The following figure shows the EEPROM and UART position on NUC240 development board.

UART

EEPROM

Sep. 30, 2019 Page 4 of 12 Rev 1.00

NUC240 Series

2 Code Description

2.1 RTX

Thread
This code has two parallel tasks. Declare function prototype and ID for each task (t_task1 and
t_task2). Use osThreadDef to declare every tasks as threads. It can be used to configure task
priority, too.

/* Thread IDs */

osThreadId t_task1; // Declare a thread ID for task 1 (EEPROM Write)

osThreadId t_task2; // Declare a thread ID for task 2 (EEPROM Read)

/* Function Declaration */

void task1_EEPROMwrite(void const *argument);

void task2_EEPROMread(void const *argument);

/* Thread Definition with function, priority, and stack requirements */

osThreadDef(task1_EEPROMwrite, osPriorityNormal, 1, 0);

osThreadDef(task2_EEPROMread, osPriorityNormal, 1, 0);

In main function, use osThreadCreate function to create new thread for each task and assign
return value to their IDs.

 /* Create task and assign thread IDs */

 t_task1 = osThreadCreate(osThread(task1_EEPROMwrite), NULL);

 t_task2 = osThreadCreate(osThread(task2_EEPROMread), NULL);

Semaphore
Semaphore is used for internal communication between tasks. Declare a semaphore named
Sem_Arrive and declare its ID variable named Sem_Arrive_id.

/* Semaphore ID */

osSemaphoreId Sem_Arrive_id;

/* Semaphore Declaration */

osSemaphoreDef(Sem_Arrive);

Call osSemaphoreCreate function to create new Semaphore in main function and assign the
return value to its ID. The available token number is 1.

 /* Create Semaphore and configure token number */

 Sem_Arrive_id = osSemaphoreCreate(osSemaphore(Sem_Arrive), 1);

Sep. 30, 2019 Page 5 of 12 Rev 1.00

NUC240 Series

Timer
Declare a timer ID named Timer_Delay_id. Define this timer name as Timer_Delay. The
task3_UARTprint function is triggered when the timer is time-out.

/* Timer ID */

osTimerId Timer_Delay_id;

/* osTimer Declaration */

osTimerDef(Timer_Delay, task3_UARTprint);

In main function, Use osTimerCreate function to create a new timer. Configure timer operation
in periodic mode. There is no input parameter and assign the return value to the timer ID. Call
osTimerStart function to start the timer counting. The time is 50ms. Timer will trigger the
execution of task3_UARTprint function.

 /* Create Timer in periodic mode and without argument */

 Timer_Delay_id = osTimerCreate(osTimer(Timer_Delay), osTimerPeriodic, (void *)NULL);

 /* Start Timer with period 50ms */

 osTimerStart(Timer_Delay_id, 50);

In task3_UARTprint function, UART prints the message about execution.

void task3_UARTprint(void const *argument)

{

 /* UART print message */

 printf("task3: Running -----\n");

}

OS Kernel Initialization and Execution
Call osKernelInitialize fuction to start OS Kernel Initialization.

 /* Initialize RTOS */

 osKernelInitialize();

Call osKernelStart function to start OS Kernel execution and begin thread switching.

 /* Start the RTOS */

 osKernelStart();

Sep. 30, 2019 Page 6 of 12 Rev 1.00

NUC240 Series

2.2 EEPROM

Enable I2C, configure multiple function pin, clock, baud rate and interrupt.

 /* Initial I2C */

 I2C_EEPROM_Init();

The first task waits for available semaphore toke, calls I2C_EEPROM_Write function, writes
data and releases one semaphore token.

void task1_EEPROMwrite(void const *argument)

{

 while(1) {

 /* Wait for semaphore token */

 osSemaphoreWait(Sem_Arrive_id, osWaitForever);

 /* Delay 10 msec */

 osDelay(10);

 /* Access EEPROM address from 0~10 */

 u32Addr++;

 if (u32Addr>10)

 u32Addr=0;

 /* Write data */

 printf("task1: Write address=%d, data=%d \n\r",u32Addr,(u32Addr*2+3));

 I2C_EEPROM_Write(u32Addr,(u32Addr*2+3));

 /* Release semaphore token */

 osSemaphoreRelease(Sem_Arrive_id);

 }

}

The second task waits for available semaphore token, calls I2C_EEPROM_Read to read
data, checks data value and releases one semaphore token.

void task2_EEPROMread(void const *argument)

{

 uint32_t u32Data;

 while(1)

 {

 /* Wait for semaphore token */

 osSemaphoreWait(Sem_Arrive_id, osWaitForever);

Sep. 30, 2019 Page 7 of 12 Rev 1.00

NUC240 Series

 /* Read data */

 u32Data = I2C_EEPROM_Read(u32Addr);

 printf("task2: Read address=%d, data=%d \n\r",u32Addr,u32Data);

 /* Check data is correct or not */

 if(u32Data!=(u32Addr*2+3)){

 printf("I2C Byte Write/Read Failed, Data 0x%x\n", u32Data);

 while(1);

 }

 /* Release semaphore token */

 osSemaphoreRelease(Sem_Arrive_id);

 }

}

Sep. 30, 2019 Page 8 of 12 Rev 1.00

NUC240 Series

3 Software and Hardware Environment

 Software Environment

 BSP version

 NUC230_240 Series BSP CMSIS V3.01.001

 IDE version

 Keil uVersion 5.28

 Hardware Environment

 Circuit components

 NuEdu-EVB-NUC240 V2.1

 NuEdu-Basic01 V2.1

 NuBridge

 Diagram

Connect NuEdu-EVB-NUC240 development board with NuEdu-Basic01 board and NuBridge.

VCC

↔

VCC VCC

↔

VCC

 UART0_TXD (PB.1)

UART0_RXD (PB.0)

↔

↔

TX

RX

SCL

SDA

GND

↔

↔

↔

I2C1_SCL (PA.11)

I2C1_SDA (PA.10)

GND GND

↔

GND

NuEdu-Basic01 NuEdu-EVB-NUC240 NuBridge

Sep. 30, 2019 Page 9 of 12 Rev 1.00

NUC240 Series

4 Directory Information

 EC_NUC240_RTX_EEPROM_V1.00

 Library Sample code header and source files

 CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.

 Device CMSIS compliant device header file

 NuEdu Library for NuEdu-SDK-NUC240 board

 StdDriver All peripheral driver header and source files

 SampleCode

 ExampleCode Source file of example code

Sep. 30, 2019 Page 10 of 12 Rev 1.00

NUC240 Series

5 How to Execute Example Code

1. Browsing into sample code folder by Directory Information (section 4) and double click

NUC240_RTX_EEPROM.uvprojx.

2. Enter Keil compile mode

a. Build

b. Download

c. Start/Stop debug session

3. Enter debug mode

a. Run

Sep. 30, 2019 Page 11 of 12 Rev 1.00

NUC240 Series

6 Revision History

Date Revision Description

Sep. 30, 2019 1.00 1. Initially issued.

Sep. 30, 2019 Page 12 of 12 Rev 1.00

NUC240 Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

