

June. 17, 2019 Page 1 of 9 Rev 1.00

M487JIDAE

Example Code Introduction for 32-bit NuMicro® Family

Information

Application EEPROM Access Using Software I2C

BSP Version M480 Series BSP CMSIS V3.03.001

Hardware NuMaker-PFM-M487 Ver 3.0 + M487 Advance Ver 4.0

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

M480 EEPROM Access Using I2C

)

http://www.nuvoton.com/

June. 17, 2019 Page 2 of 9 Rev 1.00

M487JIDAE

1 Function Description

1.1 Introduction

It is possible to use GPIO to emulate I2C function when the system needs more I2C multi-

function pins than M480 can provide. This example code uses GPIO to emulate I2C to access

an EEPROM.

1.2 Principle

There are four phases in an I2C protocol, start, read, write and stop. The sample code is
implemented, the following function to match the I2C protocol
void I2C_start(void) => start stage packet
unsigned char I2C_write(unsigned char data) => data stage packet.
unsigned char I2C_read(unsigned char ack) => data stage packet.
void I2C_stop(void) => stop stage packet
If you want to detail EEPROM, please refer to the EEPROM technical manual for EEPROM
protocol.

1.3 Demo Result

ack=0x0,

ack=0x0,

ack=0x0,

ack=0x0,

ack=0x0,

ack=0x0,

ack=0x0,

ack=0x0,

data=0x55,

June. 17, 2019 Page 3 of 9 Rev 1.00

M487JIDAE

2 Code Description

Initial I2C to access EEPROM
void I2C_init(void)
{
 GPIO_SetMode(PA, BIT10, GPIO_MODE_OPEN_DRAIN);/* I2C_CLK */
 GPIO_SetMode(PA, BIT11, GPIO_MODE_OPEN_DRAIN);/* I2C_DAT */
 I2C_CLK = 1;
 I2C_DAT = 1;
}

Function for Implement I2C start
void I2C_start(void)
{

 /* I2C start sequence is defined as
 * a High to Low Transition on the data
 * line as the CLK pin is high */
 I2C_DAT = 1;
 I2C_CLK = 1;
 CLK_SysTickDelay(I2C_DELAY_TIME);
 I2C_DAT = 0;
 I2C_CLK = 0;
 CLK_SysTickDelay(I2C_DELAY_TIME);
}

Function for Implement I2C stop
void I2C_stop(void)
{
 /* I2C stop sequence is defined as
 * data pin is low, then CLK pin is high,
 * finally data pin is high. */
 I2C_DAT = 0;
 I2C_CLK = 1;
 I2C_DAT = 1;
}

Function for Implement I2C write
unsigned char I2C_write(unsigned char data)
{
 /* An I2C output byte is bits 7-0
 * (MSB to LSB). Shift one bit at a time
 * to the MDO output, and then clock the
 * data to the I2C Slave */
 unsigned char i, temp;
 /* Write to slave */
 for (i = 0; i < 8; i++)
 {
 /* Send data bit */
 if ((data & 0x80) == 0x80)
 I2C_DAT = 1;
 else
 I2C_DAT = 0;

 data <<= 1; /* Shift one bit */
 I2C_CLK = 1; /* SCL: High */
 CLK_SysTickDelay(I2C_DELAY_TIME);
 I2C_CLK = 0; /* SCL: Low */
 CLK_SysTickDelay(I2C_DELAY_TIME);

June. 17, 2019 Page 4 of 9 Rev 1.00

M487JIDAE

 }
 I2C_DAT = 1;
 I2C_CLK = 1; /* SCL: High */
 CLK_SysTickDelay(I2C_DELAY_TIME / 2);
 temp = I2C_DAT; /* Read ACK bit from slave */
 CLK_SysTickDelay(I2C_DELAY_TIME / 2);
 I2C_CLK = 0; /* SCL: Low */
 CLK_SysTickDelay(I2C_DELAY_TIME);
 return temp;
}

Function for Implement I2C read
unsigned char I2C_read(unsigned char send_ack)
{
 unsigned char i, data;
 data = 0x00;
 /* Read from slave */
 for (i = 0; i < 8; i++)
 {
 data <<= 1; /* Shift one bit */
 data |= I2C_DAT; /* Read data bit */
 I2C_CLK = 1; /* SCL: High */
 CLK_SysTickDelay(I2C_DELAY_TIME);
 I2C_CLK = 0; /* SCL: Low */
 CLK_SysTickDelay(I2C_DELAY_TIME);
 }
 /* Send ACK bit to slave */
 I2C_DAT = send_ack;
 I2C_CLK = 1; /* SCL: High */
 CLK_SysTickDelay(I2C_DELAY_TIME);
 I2C_CLK = 0; /* SCL: Low */
 CLK_SysTickDelay(I2C_DELAY_TIME);
 return data;
}

Main function
int main(void)
{
 SYS_Init();
 UART0_Init();
 I2C_init();
 I2C_start();
 printf("ack=0x%x,\n\r", I2C_write(I2C_ADDRESS_w));
 printf("ack=0x%x,\n\r", I2C_write(0x00)); /* eeprom address high */
 printf("ack=0x%x,\n\r", I2C_write(0x00)); /* eeprom address low */
 printf("ack=0x%x,\n\r", I2C_write(0x55)); /* write 0x55 */
 I2C_stop();
 CLK_SysTickDelay(10000); /* delay 10ms */
 I2C_start();
 printf("ack=0x%x,\n\r", I2C_write(I2C_ADDRESS_w));
 printf("ack=0x%x,\n\r", I2C_write(0x00)); /* eeprom address high */
 printf("ack=0x%x,\n\r", I2C_write(0x00)); /* eeprom address low */
 I2C_start();
 printf("ack=0x%x,\n\r", I2C_write(I2C_ADDRESS_r));
 printf("data=0x%x,\n\r", I2C_read(NO_ACK));
 I2C_stop();

 while (1);
}

June. 17, 2019 Page 5 of 9 Rev 1.00

M487JIDAE

3 Software and Hardware Environment

 Software Environment

 BSP version

 M480 Series BSP CMSIS V3.03.001

 IDE version

 Keil uVersion 5.22

 Hardware Environment

 Circuit components

 NuMaker-PFM-M487 + M487 Advance Ver4.0

 Diagram

GND ↔ A0

GND ↔ A1

GND ↔ A2

GND ↔ GND

VCC ↔ VCC

 X WP

PD.1

PD.0

→

↔

SCL

SDA

M480 EEPROM

June. 17, 2019 Page 6 of 9 Rev 1.00

M487JIDAE

4 Directory Information

 EC_M480_EEPROM_Access_Using_Software_I2C_V1.00

 Library Sample code header and source files

 CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.

 Device CMSIS compliant device header file

 StdDriver All peripheral driver header and source files

 SampleCode

 ExampleCode Source file of example code

June. 17, 2019 Page 7 of 9 Rev 1.00

M487JIDAE

5 How to Execute Example Code

1. Browsing into sample code folder by Directory Information (section 4) and double click

GPIO_I2C_EEPROM.uvproj.

2. Enter Keil compile mode

a. Build

b. Download

c. Start/Stop debug session

3. Enter debug mode

a. Run

June. 17, 2019 Page 8 of 9 Rev 1.00

M487JIDAE

6 Revision History

Date Revision Description

June. 17, 2019 1.00 1. Initially issued.

June. 17, 2019 Page 9 of 9 Rev 1.00

M487JIDAE

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

