

Aug 9, 2019 Page 1 of 12 Rev 1.00

Mini51 Series

Example Code Introduction for 32-bit NuMicro® Family

Information

Application Data Flash Simulate EEPROM and Write/Read EEPROM

BSP Version Mini51DE Series BSP CMSIS V3.02.000

Hardware NuTiny-EVB-Mini51_V2.1

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Mini51 EEPROM Emulation Using Data
Flash

http://www.nuvoton.com/

Aug 9, 2019 Page 2 of 12 Rev 1.00

Mini51 Series

1 Function Description

1.1 Introduction

The purpose of Mini51 EEPROM Emulation Using Data Flash is to allocate a Data Flash
region to simulate an EEPROM region, and to provide relative write and read EEPROM
function.

1.2 Principle

The NuMicro® Mini51 Series is equipped on-chip embedded Flash for application.
The limitation of write/read flash operation is the access address must be a 32-bit aligned
address and the data value is a 32-bit data. Each bit data could be written from 1 to 0 and
becomes 1 after erase flash operation completed. The NuMicro® Mini51 Series only supports
the page erase operation, and one page size is 512 bytes.

In accessing EEPROM, write/read operation supports byte address alignment, data length is
one byte, and each bit data can be written 1 or 0 directly.

In this example code, a specific Data Flash region is allocated to simulate as an EEPROM
storage. A SIM_EEPROM_READ function is used to read a 8-bit data from specific EEPROM
address, and a SIM_EEPROM_WRITE function is used to write a 8-bit data on specific
EEPROM address directly.
Figure 1-1 shows the operation flow of example code to perform write EEPROM.

Aug 9, 2019 Page 3 of 12 Rev 1.00

Mini51 Series

 SIM_EEPROM_WRITE

System Init.

Allocate EEPROM
in SetDataFlashBase

Perform write
EEPROM [addr] & [data]

Is SIM_EEPROM_READ([addr])
= 0xFF or [data]?

1. FMC_Read -> u32Data
2. Update new u32Data by [data]
3. FMC_Write -> new u32Data

1. FMC_Read -> u32Data
2. Update new u32Data by [data]
3. Dump one page data -> SRAM[] based on [addr]
4. Perform FMC_Erase based on [addr]
5. Set new u32Data to SRAM[]
6. FMC_Write -> SRAM[]

Yes

No

Figure 1-1 Write EEPROM Operation Flow

Aug 9, 2019 Page 4 of 12 Rev 1.00

Mini51 Series

1.3 Demo Result

The first execution result can be output on UART, baud rate 115200, as shown in Figure 1-2
on PC.

Figure 1-2 Execution Result on UART

Aug 9, 2019 Page 5 of 12 Rev 1.00

Mini51 Series

2 Code Description

Allocate a Data Flash region to simulate EEPROM storage.

int32_t SetDataFlashBase(uint32_t u32DFBA)

{

 uint32_t au32Config[2];

 /* Read current User Configuration */

 if (FMC_ReadConfig(au32Config, 2) < 0)

 {

 printf("\nRead User Config failed!\n");

 return -1;

 }

 /* Just return when Data Flash has been enabled */

 if ((!(au32Config[0] & 0x1)) && (au32Config[1] == u32DFBA))

 return 0;

 /* Enable User Configuration Update */

 FMC_ENABLE_CFG_UPDATE();

 /* Write User Configuration to Enable Data Flash */

 au32Config[0] &= ~0x1;

 au32Config[1] = u32DFBA;

 if(FMC_WriteConfig(au32Config, 2))

 return -1;

 /* Perform chip reset to make new User Config take effect */

 SYS->IPRSTC1 |= SYS_IPRSTC1_CHIP_RST_Msk;

 return 0;

}

Read EEPROM function.

uint8_t SIM_EEPROM_READ(uint32_t address)

{

 uint32_t u32Data;

 u32Data = FMC_Read(((address/4)*4) + EEPROM_BASE);

Aug 9, 2019 Page 6 of 12 Rev 1.00

Mini51 Series

 return ((u32Data>>((address%4)*8)) & 0xFF);

}

Write EEPROM function.

void SIM_EEPROM_WRITE(uint32_t address, uint8_t data)

{

 ……

 if((SIM_EEPROM_READ(address)==0xFF) || (SIM_EEPROM_READ(address)==data))

 {

 /* Original flash data is 0xFF, or data is matched.

 Do not perform flash page erase. */

 /* Read original data */

 u32Data = FMC_Read(((address/4)*4) + EEPROM_BASE);

 /* Assign 32-bit updated data */

 u32Data = ~(0xFF<<((address%4)*8));

 u32Data |= (data<<((address%4)*8));

 /* Write updated data */

 FMC_Write((((address/4)*4) + EEPROM_BASE), u32Data);

 }

 else

 {

 /* Need to update one page flash data. Perform flash page erase is mandatory

 before writing updated data. */

 /* Assign 32-bit updated data */

 u32Data = FMC_Read(((address/4)*4) + EEPROM_BASE);

 u32Data &= ~(0xFF<<((address%4)*8));

 u32Data |= (data<<((address%4)*8));

 /* Dump target page data to SRAM buffer */

 u32Start = (EEPROM_BASE + ((address/FMC_FLASH_PAGE_SIZE)*FMC_FLASH_PAGE_SIZE));

 // page-size alignment

 u32End = (u32Start + FMC_FLASH_PAGE_SIZE);

 pu32DataBuf = (uint32_t *)au32DataBuf;

 for(i=u32Start; i<u32End; i+=4)

 {

 *pu32DataBuf++ = FMC_Read(i);

 }

 /* Erase target page */

 FMC_Erase(EEPROM_BASE+((address/FMC_FLASH_PAGE_SIZE)*FMC_FLASH_PAGE_SIZE));

 /* Set updated data to SRAM buffer */

 au32DataBuf[((address%FMC_FLASH_PAGE_SIZE)/4)] = u32Data;

Aug 9, 2019 Page 7 of 12 Rev 1.00

Mini51 Series

 /* Write target flash data from SRAM buffer */

 pu32DataBuf = (uint32_t *)au32DataBuf;

 for(i=u32Start; i<u32End; i+=4)

 {

 FMC_Write(i, *pu32DataBuf++);

 }

 }

}

Aug 9, 2019 Page 8 of 12 Rev 1.00

Mini51 Series

3 Software and Hardware Environment

 Software Environment

 BSP version

 Mini51DE Series BSP CMSIS V3.02.000

 IDE version

 Keil uVersion 5.26

 Hardware Environment

 Circuit component

 NuTiny–EVB–Mini51 V2.1

 Diagram

Connect UART TX (P0.0) pin to PC UART RX for display the execution result of example

code on PC.

VCC

UART TX (P0.0)

UART RX (P0.1)

GND

Mini51

Aug 9, 2019 Page 9 of 12 Rev 1.00

Mini51 Series

4 Directory Information

 EC_Mini51_EEPROM_Emulation_Using_Data_Flash_V1.00

 Library Sample code header and source files

 CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.

 Device CMSIS compliant device header file

 StdDriver All peripheral driver header and source files

 SampleCode

 ExampleCode Source file of example code

Aug 9, 2019 Page 10 of 12 Rev 1.00

Mini51 Series

5 How to Execute Example Code

1. Browsing into sample code folder by Directory Information (section 4) and double click

Simulate_EEPROM.uvproj.

2. Enter Keil compile mode

a. Build

b. Download

c. Start/Stop debug session

3. Enter debug mode

a. Run

Aug 9, 2019 Page 11 of 12 Rev 1.00

Mini51 Series

6 Revision History

Date Revision Description

Aug 9, 2019 1.00 1. Initially issued.

Aug 9, 2019 Page 12 of 12 Rev 1.00

Mini51 Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

