

Oct. 24, 2019 Page 1 of 11 Rev 1.00

ML51 Series

Example Code Introduction for 8-bit NuMicro® Family

Information

Application
This sample code is based on the SPI and GPIO functions in the
NuMicro ML51 chip to realize the data transmission of the LoRa
module.

BSP Version ML51_BSP_Keil_C51_V1.0.0

Hardware NT-ML51PC V1.1

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

LoRa Module Data Transmission Base On ML51

 Base on ML51

http://www.nuvoton.com/

Oct. 24, 2019 Page 2 of 11 Rev 1.00

ML51 Series

1 Function Description

1.1 Introduction

LoRa (LongRange) is popular used in the Low Power Wide Area Network (LPWAN). LoRa
wireless communication technology was developed by the legal company Cycleo acquired by
Semtech, and cooperated with IBM to develop specifications. Finally, Semtech, Cisco and IBM
were the core companies to form the LoRa Alliance to promote related development, which is
the most industrially supported LPWAN. technology.

LoRa' transmit mode also like Wi-Fi, and anyone can set up a base station to build a network
environment. It has a high transmission bandwidth, and can save data in addition to power-
saving communication capable of one-way transmission, and is suitable for use in some large
smart factories. In addition, in order to meet different purposes, LoRa has three types: Class A,
Class B, and Class C. Class A is used for basic timing transmission, which emphasizes power
saving. Class B adds trigger transmission capability in addition to basic transmission functions,
and Class C provides continuous transmission.

This sample code is based on the SPI and GPIO functions of the NuMicro® ML51 series MCU
to implement data transfer within the LoRa module.

Oct. 24, 2019 Page 3 of 11 Rev 1.00

ML51 Series

1.2 Demo Result

a. TX transmits 0x00, 0x01, 0x02, 0x03, 0x04, following shows data array of TxBuffer

b. RX receive 0x00, 0x01, 0x02, 0x03, 0x04，following shows data array of RxBuffer

Oct. 24, 2019 Page 4 of 11 Rev 1.00

ML51 Series

2 Code Description

Setting #define TX 1 allows ML51 to control the LoRa module to transmit data as TX.

Setting #define TX 0 allows ML51 to control the LoRa module to transmit data as RX.

In the example, BoardInit() and Radio_Init() are called to initialize the hardware such as GPIO
and SPI, and then the LoRa data transmission test is started.

#include <stdio.h>
#include "platform.h"
#include "ML51.h"
#include "Operation.h"
/*---*/
/*Define */
/*---*/
#define TX 1

/*---*/
/*Global variables */
/*---*/
extern unsigned char F_RxStart;
extern unsigned char F_TxStart;

/*---*/
/* Functions. */
/*---*/
int main(void)
{
 BoardInit();
 Radio_Init();
#if TX
 TxStart();
#else
 RX_Init();
#endif

 while (1)
 {
 if (F_RxStart)
 {
 F_RxStart = FALSE;
 RX_Done();
 RxDoneAction();
 RX_Init();
 }
 if (F_TxStart)
 {
 F_TxStart = FALSE;
 TX_Done();
 TxDoneAction();
 TxStart();
 }
 }
}

The LoRa receiver wakes up through the GPIO interrupt, and the module data is processed

Oct. 24, 2019 Page 5 of 11 Rev 1.00

ML51 Series

through the SPI. The initialization steps are as follows:

void SX1276InitIo(void)
{
 /* SPI1 IO define */
 MFP_P32_SPI1_CLK;
 P32_PUSHPULL_MODE;
 MFP_P31_SPI1_MISO;
 P31_INPUT_MODE;
 P31_PULLUP_ENABLE;
 MFP_P30_SPI1_MOSI;
 P30_PUSHPULL_MODE;
 MFP_P33_GPIO; /*setting SS use gpio mode */
 P33_PUSHPULL_MODE;

 /*Init DIO0 */
 MFP_P00_GPIO;
 P00_INPUT_MODE;
 P00_PULLDOWN_ENABLE;
 GPIO_EnableInt(PIT0, RISING, EDGE, Port0, 0); /*set DIO0 use pin interrupt */

void SpiInit(void)
{
 unsigned char u8MasterSlave = SPI_MASTER;
 unsigned char u8SPICLKDIV = 9;
 unsigned char u8SPIMode = SPI_MODE_0;
 unsigned char u8MSBLSB = MSB_FIRST;

 SX1276InitIo();
 set_SPI1SR_DISMODF; /*Mode fault error detection disable*/
 clr_SPI1CR0_SSOE; /*SS pin use as GPIO*/
 SFRS = 0;
 SPI1CR0 = 0;
 SPI1CR0 |= (u8MasterSlave << 4) | (u8SPICLKDIV & 0x03) | (u8SPIMode << 2) | (u8MSBLSB << 5);
 SPI1CR1 = 0 ;
 SPI1CR1 |= (u8SPICLKDIV & 0x0C) << 2;
 set_SPI1CR0_SPIEN;

The LoRa module sends and receives buffers as follows:
void SX1276WriteBuffer(unsigned char addr, unsigned char *buffer, unsigned char size_in)
{
 unsigned char i;

 SPI_SS0_PIN = 0;
 SpiInOut(addr | 0x80);
 for (i = 0; i < size_in; i++)
 {
 SpiInOut(buffer[i]);
 }
 SPI_SS0_PIN = 1;
}

void SX1276ReadBuffer(unsigned char addr, unsigned char *buffer, unsigned char size_in)
{
 unsigned char i;

 SPI_SS0_PIN = 0;

Oct. 24, 2019 Page 6 of 11 Rev 1.00

ML51 Series

 SpiInOut(addr & 0x7F);

 for (i = 0; i < size_in; i++)
 {
 buffer[i] = SpiInOut(0);
 }

 SPI_SS0_PIN = 1;
}

Oct. 24, 2019 Page 7 of 11 Rev 1.00

ML51 Series

3 Hardware and Software Environment

 Software Environment

 BSP Version

 ML51_BSP_Keil_C51_V1.0.0

 IDE Version

 Keil uVersion 4.6 and PK51 Development Kit V9.52

 Hardware Environment

 Circuit components

 NT-ML51PC V1.1 tiny board

 SX1276 LoRa module board

 Diagram

VCC ↔ VCC

(GPIO INPUT)P00 ↔ LORA_DIO0

(GPIO INPUT)P01 ↔ LORA_DIO1

(GPIO INPUT)P02 ↔ LORA_DIO2

(GPIO INPUT)P03 ↔ LORA_DIO3

(GPIO INPUT)P14 ↔ LORA_DIO4

(GPIO INPUT)P15 ↔ LORA_DIO5

(GPIO OUTPUT)P33 ↔ LORA_CS

(SPI CLK)P32 ↔ LORA_CLK

(SPI MISO)P31 ↔ LORA_MISO

(SPI MOSI)P30 ↔ LORA_MOSI

GND ↔ GND

NuTiny-SDK-ML51 V1.1 LoRa Module

Oct. 24, 2019 Page 8 of 11 Rev 1.00

ML51 Series

4 Directory Information

 EC_ML51_LoRa_Control

 Library: Sample code header and source files.

 Device: ML51 device header files.

 Startup: Keil51 startup files

 StdDriver: All peripheral driver header and source files.

 SampleCode

 Example: Source file of example code.

Oct. 24, 2019 Page 9 of 11 Rev 1.00

ML51 Series

5 How to Execute a Sample Code

1. The project can be run in Keil uVision4 PK51 Development Kit V9.52 and above version.

2. Enter the ExampleCode\LoRa_Control\KEIL folder according to the Directory Information
section and double-click LoRa_Control.uvproj to open the project.

3. Enter Keil compiler mode

a. Build

b. Download

c. Enter / Exit Debug Mode

4. When in under Debug mode

a. Free run

Oct. 24, 2019 Page 10 of 11 Rev 1.00

ML51 Series

6 Revision History

Date Revision Description

Oct. 24, 2019 1.00 1. Initially issued.

Oct. 24, 2019 Page 11 of 11 Rev 1.00

ML51 Series

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction
or failure of which may cause loss of human life, bodily injury or severe property damage. Such
applications are deemed, “Insecure Usage”.

 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other
applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

	1 Function Description
	1.1 Introduction
	1.2 Demo Result

	2 Code Description
	3 Hardware and Software Environment
	4 Directory Information
	5 How to Execute a Sample Code
	6 Revision History

