NnuvoToN

NUC230/240 Series

I Software AES

Example Code Introduction for 32-bit NuMicro® Family

Information

Application Implement Advanced Encryption Standard by software.

BSP Version NUC230/240 Series BSP v3.01.002

Hardware NuTiny—EVB-NUC240-LQFP100 V1.0

The information described in this document is the exclusive intellectual property of
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Sep. 9, 2019 Page 1 of 15 Rev 1.00

http://www.nuvoton.com/

NnuvoToN

NUC230/240 Series

1 Function Description

1.1 Introduction

This sample code demonstrates how to implement software AES (Advanced Encryption
Standard) and how AES encryption/decryption works.

1.2 Principle

AES is an algorithm that operates on a 4x4 Byte matrix and consists of four main steps. The
first step is to XOR the data with the key, defined as Add round key. The second step is to
convert each byte of the data into a substitutes bytes through the S-Box (substitute function),
defined as Substitutes bytes. The third step is the action of shifting each row of the matrix,
defined as Shift rows. The fourth step is to perform polynomial multiplication for each straight
line of the matrix and a polynomial, defined as Mix columns. AES encryption and decryption,
the first need to expand the key, the expansion of the action is defined as Key Expansion;
then use the expanded key to perform the encryption and decryption algorithm, which is the
above four steps.

The process of AES encryption is shown in Figure 1-1. Suppose the encryption process has
N Rounds. First, the key is expanded. After the key is expanded, the Add Round key is
executed in the first Round; then Substitutes bytes, Shift rows, Mix columns, and Add round
key are sequentially executed from the second Round to the (N-1) Round. The last Round
executes Substitutes bytes, Shift rows, and Add round key in sequence, which completes the
AES encryption process.

1st Round 2nd ~ (N -1)t Rounds Last Round
Do: Do: Do:
Key Expansion

‘ Sub ByteS }é ‘ Sl Bytes ‘
(The first round key is ‘ J, ‘ \|/
the key itself, the Other —» - Shift Rows - .
round keys are found Add Round Key 1 | ShiftRows |
from the previous round ;
keys.) i LA C eI | Add Round Key |

| Add Round Key |

L

Figure 1-1 AES Encryption

The process of AES decryption is shown in Figure 1-2. Compared with the encrypted
Substitutes bytes, Shift rows, and Mix columns algorithms, the algorithms of Invers substitutes
bytes, Inverse shift rows, and Inverse mix columns are implemented for use in the decryption
process. In the process of decryption, the hypothetical decryption process has N Rounds.
First, do the expansion of the key. After the key is expanded, the Add Round key is executed
in the first Round, then from the (N-1) Round to the second Round, the Inverse shift rows, the

Sep. 9, 2019 Page 2 of 15 Rev 1.00

NnuvoToN

NUC?230/240 Series

Inverse substitutes bytes, the Add round key, and the Inverse mix columns are sequentially
executed. The last round executes Inverse shift rows, Inverse substitutes bytes, and Add

round key in sequence, which completes the AES decryption process.

Key Expansion

(The first round key is
the key itself, the Other
round keys are found
from the previous round
keys.)

1.3 Demo Result

1st Round
Do:

>

Add Round Key

(N -1)th~ 2nd Rounds
Do:

‘ Inv Shift Rows k

L

‘ Inv Sub Bytes ‘

| Add Round Key |

‘ Inv Mix Columns ‘

Last Round
Do:

Inv Shift Rows |

)

gl

L |

Figure 1-2 AES Decryption

Inv Sub Bytes ‘

| Add Round Key |

The execution result can be output on UART, baud rate 115200, as shown in Figure 1-3.

- | — — -

File Edit

encrypt

encrypt:

decrypt

decrypt:

decrypt

decrypt:

encrypt

encrypt:

Sep. 9, 2019

Setup Control

TIME:99& us
SUCCESS!
TIME: 8467 us
SUCCESS!
TIME: 2159 us
SUCCESS!
TIME:29% us

SUCCESS!

Window KanjiCode

Help

Figure 1-3 Execution Result on UART

Page 3 of 15

Rev 1.00

NnuvoToN

NUC230/240 Series

2 Code Description

The function below is the process of key expansion

/* This function produces NB(Nr+l) round keys. The round keys are used in each round to
decrypt the states. */

static void KeyExpansion(void)

{
uint32_t i, j, k;

uint8_t au8Tempa[4]; /* Used for the column/row operations */

/* The first round key is the key itself. */
for (i = @; i < NK; ++i)

{
s_au8RoundKey[(i * 4) + @] = s_pu8Key[(i * 4) + 0];
s_au8RoundKey[(i * 4) + 1] = s_pu8Key[(i * 4) + 1];
s_au8RoundKey[(i * 4) + 2] = s_pu8Key[(i * 4) + 2];
s_au8RoundKey[(i * 4) + 3] = s_pu8Key[(i * 4) + 3];
}

/* All other round keys are found from the previous round keys. */
for (; (1 < (NB * (NR + 1))); ++i)

{
for (j = 0; j < 4; ++j)
{
au8Tempa[j] = s_au8RoundKey[(i - 1) * 4 + j];
}
if (i % NK == Q)
{

/* This function rotates the 4 bytes in a word to the left once. */
/* [a@,al,a2,a3] becomes [al,a2,a3,ad] &/

/* Function RotWord() */

{
k = au8Tempa[@];
au8Tempa[@] = au8Tempa[l];
au8Tempa[l] = au8Tempa[2];
au8Tempa[2] = au8Tempa[3];
au8Tempa[3] = k;

}

Sep. 9, 2019 Page 4 of 15 Rev 1.00

NnuvoToN

NUC230/240 Series

/* SubWord() is a function that takes a four-byte input word and =/
/* applies the S-box to each of the four bytes to produce an output word. */

/* Function Subword() */
{

au8Tempa[@] = GetSBoxValue(au8Tempa[0]);
GetSBoxValue(au8Tempa[1]);
au8Tempa[2] = GetSBoxValue(au8Tempa[2]);

au8Tempa[3] = GetSBoxValue(au8Tempa[3]);

au8Tempa[1]

au8Tempa[@] = au8Tempa[@] ~ s_au8Rcon[i / NK];

}
else if (NK > 6 & i % NK == 4)
{
/* Function Subword() */
{
au8Tempa[@] = GetSBoxValue(au8Tempal[@]);
au8Tempa[1l] = GetSBoxValue(au8Tempa[1l]);
au8Tempa[2] = GetSBoxValue(au8Tempa[2]);
au8Tempa[3] = GetSBoxValue(au8Tempa[3]);
}
}
s_au8RoundKey[i * 4 + @] = s_auB8RoundKey[(i - NK) * 4 + @] ~ au8Tempa[@];
s_au8RoundKey[i * 4 + 1] = s_au8RoundKey[(i - NK) * 4 + 1] ~ au8Tempa[l];
s_au8RoundKey[i * 4 + 2] = s_au8RoundKey[(i - NK) * 4 + 2] ~ au8Tempa[2];
s_au8RoundKey[i * 4 + 3] = s_auB8RoundKey[(i - NK) * 4 + 3] ~ au8Tempa[3];
}
}
The function below is the process of Add round key :
/* This function adds the round key to state. Y
/* The round key is added to the state by an XOR function. Wy
static void AddRoundKey(uint8 t round)
{

uint8_t i, j;
for (1 = ©; i<4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*s_pu8State)[i][j] ~= s_au8RoundKey[round * NB * 4 + i * NB + j];

Sep. 9, 2019 Page 5 of 15 Rev 1.00

NnuvoToN

NUC230/240 Series

}

The function below is the process of encrypting and decrypting Substitute bytes :

/* The SubBytes Function Substitutes the values in the */
/* state matrix with values in an S-box. ¥y

static void SubBytes(void)

{
uint8_t i, j;
for (i = 0; 1 < 4; ++1i)
{
for (j = @; j < 4; ++3)
{
(*s_pu8State)[j][i] = GetSBoxValue((*s_pu8State)[jI[i]);
}
}
}
/* The SubBytes Function Substitutes the values in the w/
/* state matrix with values in an S-box. =/

static void InvSubBytes(void)

{
uint8_t i, j;
for (i = @; i<4; ++i)
{
for (j = 0; j<4; ++j)
{
(*s_pu8State)[j][i] = GetSBoxInvert((*s_pu8State)[jl[i]);
}
}
}

The function below is the process of encrypting and decrypting Shift rows

/* The ShiftRows() function shifts the rows in the state to the left. Y

/* Each row is shifted with different offset. ¥/
/* Offset = Row number. So the first row is not shifted. */
static void ShiftRows(void)

{

uint8_t u8Temp;

/* Rotate first row 1 columns to left */
u8Temp = (*s_pu8State)[0][1];
Sep. 9, 2019 Page 6 of 15 Rev 1.00

NnuvoToN

(*s_pu8State)[0][1]
(*s_pu8State)[1][1]
(*s_pu8State)[2][1]
(*s_pu8State)[3][1]

(*s_pu8State)[1][1];
(*s_pu8State)[2][1];
(*s_pu8State)[3][1];
u8Temp;

/* Rotate second row 2 columns to left */
u8Temp = (*s_pu8State)[0][2];
(*s_pu8State)[0][2] = (*s_pu8State)[2][2];
(*s_pu8State)[2][2] = u8Temp;

u8Temp = (*s_pu8State)[1][2];
(*s_pu8State)[1][2] (*s_pu8sState)[3][2];
(*s_pu8State)[3][2] u8Temp;

/* Rotate third row 3 columns to left */
u8Temp = (*s_pu8State)[0][3];
(*s_pu8State)[0][3] (*s_pu8State)[3][3];
(*s_pu8State)[3][3] (*s_pu8State)[2][3];
(*s_pu8State)[2][3] (*s_pu8State)[1][3];
(*s_pu8State)[1][3] u8Temp;

static void InvShiftRows(void)

{
uint8_t u8Temp;

/* Rotate first row 1 columns to right */
u8Temp = (*s_pu8State)[3][1];
(*s_pu8State)[3][1] (*s_pu8State)[2][1];
(*s_pu8State)[2][1] (*s_pu8State)[1][1];
(*s_pu8State)[1][1] (*s_pu8State)[0][1];
(*s_pu8State)[0][1] u8Temp;

/* Rotate second row 2 columns to right */
u8Temp = (*s_pu8State)[0][2];
(*s_pu8State)[0][2] = (*s_pu8State)[2][2];
(*s_pu8State)[2][2] = u8Temp;

u8Temp = (*s_pu8State)[1][2];
(*s_pu8State)[1][2] (*s_pu8State)[3][2];
(*s_pu8State)[3][2] u8Temp;

Sep. 9, 2019 Page 7 of 15

NUC?230/240 Series

Rev 1.00

NnuvoToN

NUC230/240 Series

/* Rotate third row 3 columns to right */
u8Temp = (*s_pu8State)[0][3];
(*s_pu8State)[0][3] (*s_pu8State)[1][3];
(*s_pu8State)[1][3] (*s_pu8State)[2][3];
(*s_pu8State)[2][3] (*s_pu8State)[3][3];
(*s_pu8State)[3][3] u8Temp;

}

The function below is the process of encrypting and decrypting Mix columns :

/* MixColumns function mixes the columns of the state matrix */
static void MixColumns(void)
{

uint8_t i,

uint8 t u8Tmp, u8Tm, u8t;

for (1 =0; i< 4; ++i)

{

u8t = (*s_pu8State)[i][@];

u8Tmp = (*s_pu8State)[i][@] ~ (*s_pu8State)[i][1] ~ (*s_pu8State)[i][2] ~
(*s_pu8State)[i][3];

u8Tm = (*s_pu8State)[i][@] ~ (*s_pu8State)[i][1];
u8Tm = Xtime(u8Tm);

(*s_pu8State)[i][@] ~= u8Tm ~ u8Tmp;

u8Tm = (*s_pu8State)[i][1] ~ (*s_pu8State)[i][2];
u8Tm = Xtime(u8Tm);

(*s_pu8State)[i][1] ~= u8Tm ~ u8Tmp;

u8Tm = (*s_pu8State)[i][2] ~ (*s_pu8State)[i][3];
u8Tm = Xtime(u8Tm);

(*s_pu8State)[i][2] ~= u8Tm ~ u8Tmp;

u8Tm = (*s_pu8State)[i][3] ~ u8t;

u8Tm = Xtime(u8Tm);
(*s_pu8State)[i][3] ~= u8Tm ~ u8Tmp;
}
}
/* MixColumns function mixes the columns of the state matrix. &/

/* The method used to multiply may be difficult to understand for the inexperienced. */
/* Please use the references to gain more information. &
static void InvMixColumns(void)
{

int i;

uint8_t u8a, u8b, u8c, u8d;

for (i = @; i<4; ++1)

Sep. 9, 2019 Page 8 of 15 Rev 1.00

NnuvoToN

NUC230/240 Series

{
u8a = (*s_pu8State)[i][@];
u8b = (*s_pu8State)[i][1];
u8c = (*s_pu8State)[i][2];
ug8d = (*s_pu8State)[i][3];

(*s_pu8State)[i][0] = Multiply(uB8a, ©x@e) ~ Multiply(u8b, ©xe@b) ~
oxod) A Multiply(u8d, ©x@9);

(*s_pu8State)[i][1] = Multiply(uB8a, ©x@9) ~ Multiply(u8b, ©x0e) ~
Ox0b) ~ Multiply(u8d, oxed);

(*s_pu8State)[i][2] = Multiply(u8a, @x@d) ~ Multiply(u8b, ©x09) *
Ox0e) ~ Multiply(u8d, ©xeb);

(*s_pu8State)[i][3] = Multiply(u8a, ©xeb) ~ Multiply(u8b, @xed) ~
0x09) A Multiply(u8d, ©xee);

}

Multiply(u8c,
Multiply(u8c,
Multiply(u8c,

Multiply(u8c,

The function below is the AES encryption process :

/* Cipher is the main function that encrypts the PlainText. */
static void Cipher(void)

{
uint8_t u8Round = 0;
/* Add the First round key to the state before starting the rounds. */
AddRoundKey (9) ;
/* There will be Nr rounds. WY
/* The first Nr-1 rounds are identical. Y
/* These Nr-1 rounds are executed in the loop below. */
for (u8Round = 1; u8Round < NR; ++u8Round)
{
SubBytes();
ShiftRows();
MixColumns();
AddRoundKey (u8Round) ;
}
/* The last round is given below. =Y
/* The MixColumns function is not here in the last round. */
SubBytes();
ShiftRows();
AddRoundKey (NR) ;
}

Sep. 9, 2019 Page 9 of 15

Rev 1.00

NnuvoToN

NUC230/240 Series

The function below is the AES decryption process :

static void InvCipher(void)

{
uint8_t u8Round = 0;

/* Add the First round key to the state before starting the rounds. */
AddRoundKey (NR) ;

/* There will be Nr rounds. Y
/* The first Nr-1 rounds are identical. =/
/* These Nr-1 rounds are executed in the loop below. */
for (u8Round = NR - 1; u8Round>@; u8Round--)
{

InvShiftRows();

InvSubBytes();

AddRoundKey (u8Round) ;

InvMixColumns();

/* The last round is given below. &
/* The MixColumns function is not here in the last round. */
InvShiftRows();
InvSubBytes();
AddRoundKey (9) ;

Sep. 9, 2019 Page 10 of 15 Rev 1.00

NnuvoToN

3 Software and Hardware Environment

® Software Environment

B BSP version

€ NUC230/240 Series BSP CMSIS v3.01.002

B |IDE version
€ Keil uVersion 5.28

® Hardware Environment

B Circuit components

4 NuTiny—-EVB-NUC240-LQFP100 V1.0

B Diagram

NUC230/240 Series

€ Connect UART TX (PB.1) pin to PC UART RX for display the execution result of

example code on PC.

| UART TX (PB1) |

NuTiny—-EVB-NUC240-
LQFP100 V1.0

UART RX

PC

Sep. 9, 2019

Figure 3-1 NUC240 UART TX and PC UART RX Connection

Page 11 of 15

Rev 1.00

NnuvoToN

NUC230/240 Series

4 Directory Information

7~ EC_NUC240 Software AES V1.00

7 Library Sample code header and source files
7~ CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.
7~ Device CMSIS compliant device header file
I~ StdDriver All peripheral driver header and source files

—~ SampleCode

7~ ExampleCode Source file of example code

Sep. 9, 2019 Page 12 of 15 Rev 1.00

NnuvoToN

NUC230/240 Series

5 How to Execute Example Code

1. Browsing into sample code folder by Directory Information (section 4) and double click

Software_AES.uvproj.
2. Enter Keil compile mode
a. Build
b. Download
c. Start/Stop debug session
3. Enter debug mode

a. Run

Sep. 9, 2019 Page 13 of 15 Rev 1.00

NnuUvoToN

NUC230/240 Series

6 Revision History

Date Revision Description

Sep. 9, 2019 1.00 1. Initially issued.

Sep. 9, 2019 Page 14 of 15 Rev 1.00

NnuvoToN

NUC230/240 Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.
All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.

Sep. 9, 2019 Page 15 of 15 Rev 1.00

