

Sep. 18, 2019 Page 1 of 14 Rev 1.00

NUC230/240 Series

Example Code Introduction for 32-bit NuMicro® Family

Information

Application Use Timer 2 capture function to get IR data

BSP Version NUC230/240 Series BSP CMSIS v3.01.002

Hardware NuTiny–EVB–NUC240–LQFP100 V1.0

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Timer Capture IR

http://www.nuvoton.com/

Sep. 18, 2019 Page 2 of 14 Rev 1.00

NUC230/240 Series

1 Function Description

1.1 Introduction

This example code demonstrates how to use Timer 2 capture function to get an IR data that is
compatible with NEC IR protocol.

1.2 Principle

Figure 1-1 shows the block diagram of this example code, including the NUC240 MCU, IR
Receiver Module and IR Encoder/Transmitter.

NUC240

IR Receiver
 Module

Timer
Capture Pin IRM_OUT

waveform

NEC IR Protocol
Encoder/Transmitter

Figure 1-1 Block Diagram

The NEC Infrared Protocol (NEC IR) features are:

1. Started by a Leader signal and its (9 ms low duration + 4.5 ms high duration)

2. 8-bit Address code, and then 8-bit Address Inverse code

3. 8-bit Command code, and then 8-bit Command Inverse code

4. Last 562.5 us low duration is a Stop signal of this IR transfer

Figure 1-2 shows the NEC IR protocol (NEC_IR) and the output waveform (IRM_OUT) after
the IR Receiver Module receives the signal.

Figure 1-2 NEC IR Protocol and IR Receiver Module Waveform

The value of each bit in the Address/Command is determined by the state and length of the
received waveform (IRM_OUT).

 Logic 0: 562.5 us low duration + 562.5 us high duration, total 1125 us

 Logic 1: 562.5 us low duration + 1687.5 us high duration, total 2250 us

According to the above description and figure, when the IR Receiver Module receives the IR
signal, a falling edge-triggered is generated. As long as the user can capture two consecutive
falling edge-triggered intervals, it is possible to know the incoming signal from this interval.
Therefore, this example code uses the capture function of the NUC240 Timer to get the
consecutive falling edge-triggered interval received by the IR Receiver Module.

Sep. 18, 2019 Page 3 of 14 Rev 1.00

NUC230/240 Series

According to the Figure 1-2 , each part of the NEC IR protocol is described as follows:

 Leader signal interval

 Address code (0x10)

 Address Inverse code (0xEF)

 Command code (0x4F)

 Command Inverse code (0xB0) and Stop signal interval

Sep. 18, 2019 Page 4 of 14 Rev 1.00

NUC230/240 Series

1.3 Demo Result

The execution result can be output on UART, baud rate 115200, as shown in Figure 1-3 on
PC.

Figure 1-3 Execution Result on UART

Sep. 18, 2019 Page 5 of 14 Rev 1.00

NUC230/240 Series

2 Code Description

Declare the variables for storing the falling edge interval and its index in the capturing
operation.

#define IR_FRAME_TOUT (100000) // Received time-out interval: 100 ms

volatile uint32_t gu32IRINRIdx = 0; // To indicate the interval index of IR frame

volatile uint32_t gu32IsIRINRDone = 0; // To indicate an IR frame is completed or not

volatile uint32_t gau32IRINR[33] = {0}; // To save all intervals of IR frame

Implement the TMR2_IRQHandler() for capturing the falling edge interval of PB.2 by Timer 2

capture function.

void TMR2_IRQHandler(void)

{

 uint32_t interval;

 /* To check if receiving IR signal interval has time-out */

 if (TIMER_GetIntFlag(TIMER2) == 1)

 {

 /* IR received has time-out and reset the receive state */

 gu32IRINRIdx = 0;

 gu32IsIRINRDone = 0;

 TIMER_ClearIntFlag(TIMER2);

 return ;

 }

 /* To capture the two falling edge-triggered interval */

 if (TIMER_GetCaptureIntFlag(TIMER2) == 1)

 {

 /* Clear Timer2 capture interrupt flag */

 TIMER_ClearCaptureIntFlag(TIMER2);

 if (PB2 == 0) // capture pin status

 {

 /* Reload TIMER2 counter to 0 */

 TIMER_SET_CMP_VALUE(TIMER2, IR_FRAME_TOUT);

 if (gu32IRINRIdx == 0)

 {

Sep. 18, 2019 Page 6 of 14 Rev 1.00

NUC230/240 Series

 /* It's starting signal to capture the 1st interval - "Leader" */

 gu32IRINRIdx++;

 }

 else

 {

 /* Save to interval to gau32IRINR[] */

 interval = TIMER_GetCaptureData(TIMER2);

 //printf("INR: %d(%d)\n", interval, gu32IRINRIdx);

 gau32IRINR[(gu32IRINRIdx - 1)] = interval;

 gu32IRINRIdx++;

 if (gu32IRINRIdx > 33)

 {

 /* Get a complete IR frame interval data */

 gu32IRINRIdx = 0;

 gu32IsIRINRDone = 1;

 }

 }

 }

 else

 {

 /* Reset the receive state */

 gu32IRINRIdx = 0;

 gu32IsIRINRDone = 0;

 printf("\nERROR: unexpected capture event !!!\n\n");

 }

 }

}

In main.c, the user needs to initialize the Timer 2 capture function and configure a Timer 2
counter with a counter unit is 1 us. After executing TIMER_Start(), the signal interval received
by the IR Receiver Module can be captured in TMR2_IRQHandler().

……

 /* Initial Timer2 default setting */

 TIMER_Open(TIMER2, TIMER_PERIODIC_MODE, 1);

 /* Configure Timer2 setting for external capture function, and one Timer2 counter is 1
us. */

 TIMER_SET_PRESCALE_VALUE(TIMER2, ((SystemCoreClock / 1000000) - 1));

 TIMER_SET_CMP_VALUE(TIMER2, IR_FRAME_TOUT);

Sep. 18, 2019 Page 7 of 14 Rev 1.00

NUC230/240 Series

 TIMER_EnableCapture(TIMER2, TIMER_CAPTURE_FREE_COUNTING_MODE,
TIMER_CAPTURE_FALLING_EDGE);

 TIMER_EnableCaptureInt(TIMER2);

 /* Enable Timer2 NVIC */

 NVIC_EnableIRQ(TMR2_IRQn);

 /* Start Timer2 capture function */

 TIMER_Start(TIMER2);

 ……

After receiving a complete set of IR signal interval data, the meaning of all intervals can be
resolved in the main.c to obtain the actual IR code, including the Address code, Address
Inverse Code, Command Code and Command Inverse Code.

……

 while (1)

 {

 /* In NEC IR protocol, an IR frame format consists of

 [Leader interval] +

 [8-bit Address] + [8-bits Address Inverse] +

 [8-bit Command] + [8-bit Command Inverse] +

 [Stop interval]

 */

 /* Get one IR frame data */

 if (gu32IsIRINRDone)

 {

 /* Check if is valid "Leader" signal, 13 ~ 14 ms*/

 if ((gau32IRINR[0] > 13000) && (gau32IRINR[0] < 14000))

 {

#if 0 // enable for debugging

 for (i = 0; i < 33; i++)

 {

 printf("INR: %d (%d)\n", gau32IRINR[i], i);

 }

 printf("---------------\n\n");

#endif

 /* Parse IR code[0] */

 offset = 1;

Sep. 18, 2019 Page 8 of 14 Rev 1.00

NUC230/240 Series

 for (i = 0; i < 8; i++)

 {

 interval = gau32IRINR[(i + offset)];

 if (interval > 2000)

 au8IRCode[0] |= (1 << i); // get data "1"

 else

 au8IRCode[0] |= (0 << i); // get data "0"

 }

 /* Parse IR code[1] */

 offset += 8;

 for (i = 0; i < 8; i++)

 {

 interval = gau32IRINR[(i + offset)];

 if (interval > 2000)

 au8IRCode[1] |= (1 << i); // get data "1"

 else

 au8IRCode[1] |= (0 << i); // get data "0"

 }

 /* Parse IR code[2] */

 offset += 8;

 for (i = 0; i < 8; i++)

 {

 interval = gau32IRINR[(i + offset)];

 if (interval > 2000)

 au8IRCode[2] |= (1 << i); // get data "1"

 else

 au8IRCode[2] |= (0 << i); // get data "0"

 }

 /* Parse IR code[3] */

 offset += 8;

 for (i = 0; i < 8; i++)

Sep. 18, 2019 Page 9 of 14 Rev 1.00

NUC230/240 Series

 {

 interval = gau32IRINR[(i + offset)];

 if (interval > 2000)

 au8IRCode[3] |= (1 << i); // get data "1"

 else

 au8IRCode[3] |= (0 << i); // get data "0"

 }

 }

 printf("IR Code: 0x%x, 0x%x, 0x%x, 0x%x.\n",

 au8IRCode[0], au8IRCode[1], au8IRCode[2], au8IRCode[3]);

 /* Clear au8IRCode[] data */

 for (i = 0; i < 4; i++)

 au8IRCode[i] = 0x0;

 /* Clear gau32IRINR[] data */

 for (i = 0; i < 33; i++)

 gau32IRINR[i] = 0x0;

 /* Reset the receive state */

 gu32IRINRIdx = 0;

 gu32IsIRINRDone = 0;

 }

 }

Sep. 18, 2019 Page 10 of 14 Rev 1.00

NUC230/240 Series

3 Software and Hardware Environment

 Software Environment

 BSP version

 NUC230/240 Series BSP CMSIS v3.01.002

 IDE version

 Keil uVersion 5.28

 Hardware Environment

 Circuit component

 NuTiny–EVB–NUC240–LQFP100 V1.0

 IR module, IRM-2638

 Diagram

 Connect the IR Receiver Module output signal to the NUC240 Timer 2 capture

pin (PB.2) to capture the IR signal interval.

 Connect UART TX (PB.1) pin to PC UART RX to display the execution result of

example code on PC.

PC
UART RXNuTiny–EVB–NUC240–

LQFP100 V1.0

UART TX (PB.1)

TIMER2

CAP Pin (PB.2)

IR Receiver
 Module

Figure 3-1 Connect NUC240 Pins to IR Module Output and PC UART RX

Sep. 18, 2019 Page 11 of 14 Rev 1.00

NUC230/240 Series

4 Directory Information

 EC_NUC240 _TIMER_Capture_IR_V1.00

 Library Sample code header and source files

 CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.

 Device CMSIS compliant device header file

 StdDriver All peripheral driver header and source files

 SampleCode

 ExampleCode Source file of example code

Sep. 18, 2019 Page 12 of 14 Rev 1.00

NUC230/240 Series

5 How to Execute Example Code

1. Browsing into sample code folder by Directory Information (section 4) and double click

TIMER_Capture_IR.uvproj.

2. Enter Keil compile mode

a. Build

b. Download

c. Start/Stop debug session

3. Enter debug mode

a. Run

Sep. 18, 2019 Page 13 of 14 Rev 1.00

NUC230/240 Series

6 Revision History

Date Revision Description

Sep. 18, 2019 1.00 1. Initially issued.

Sep. 18, 2019 Page 14 of 14 Rev 1.00

NUC230/240 Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

	1 Function Description
	1.1 Introduction
	1.2 Principle
	1.3 Demo Result

	2 Code Description
	3 Software and Hardware Environment
	4 Directory Information
	5 How to Execute Example Code
	6 Revision History

