

Jul 26, 2019 Page 1 of 11 Rev 1.00

NUC230/240 Series

Example Code Introduction for 32-bit NuMicro® Family

Information

Application Write/Read Spare Register

BSP Version NUC230/240 Series BSP CMSIS v3.01.002

Hardware NuTiny–EVB–NUC240 V1.2

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Spare Register Access

http://www.nuvoton.com/

Jul 26, 2019 Page 2 of 11 Rev 1.00

NUC230/240 Series

1 Function Description

1.1 Introduction

This example code demonstrates how to access spare register.

1.2 Principle

The RTC module is equipped with 80 bytes spare registers to store user’s important
information, which are also located in VBAT power domain and retained even if system core
power off.
User needs to initialize the RTC module and enable spare register function before accessing
the spare register.
Figure 1-1 shows the operation flow of example code to access spare register.

System Init.

Is RTC initialized?

1. Read original spare register
2. Write new sparer register data
3. Read out to verify new data

[Initialize RTC]
1. Initialize RTC module
2. Enable spare register
 function

Yes

No

The default data are all 0 from [Initialize RTC];
Otherwise, should be retained after MCU reset.

Figure 1-1 Operation Flow

Jul 26, 2019 Page 3 of 11 Rev 1.00

NUC230/240 Series

1.3 Demo Result

The first execution result can be output on UART, baud rate 115200, as shown in Figure 1-2
on PC.

Figure 1-2 Execution Result at First Initialize RTC

Jul 26, 2019 Page 4 of 11 Rev 1.00

NUC230/240 Series

Figure 1-3 shows the second execute result and unnecessary to initialize RTC module again
for access spare register after MCU reset.

Figure 1-3 Execution Result after MCU Reset

Jul 26, 2019 Page 5 of 11 Rev 1.00

NUC230/240 Series

2 Code Description

Initialize and enable RTC module.

 /* Check if RTC module has initialized or not */

 if(RTC->INIR == RTC_INIR_ACTIVE_Msk)

 {

 printf("RTC module has been initialized.\n\n");

 }

 else

 {

 i = (SystemCoreClock / 10);

 /* Initialize RTC module */

 while(1)

 {

 RTC->INIR = RTC_INIT_KEY;

 if(RTC->INIR == RTC_INIR_ACTIVE_Msk)

 break;

 if(i-- == 0)

 {

 printf("\nInitialize RTC fail.\n\n");

 while(1) {}

 }

 }

 printf("Initialize RTC module done.\n\n");

 /* Enable spare register */

 RTC_EnableSpareRegister();

 }

Read original spare register data and assign an initial data for writing new spare register data.

 /* Read original spare register data */

 printf("Read original spare register are:\n");

 for(i=0; i<20; i++)

 {

 RTC_WaitAccessEnable();

 u32SPRData = RTC_READ_SPARE_REGISTER(i);

 printf(" SPARE_REGISTER[%2d] = %d.\n", i, u32SPRData);

 }

 RTC_WaitAccessEnable();

Jul 26, 2019 Page 6 of 11 Rev 1.00

NUC230/240 Series

 u32InitData = (((RTC_READ_SPARE_REGISTER(0)/100) + 1) * 100);

 if(u32InitData > 900)

 u32InitData = 0;

Write new spare register data and read out to verify.

 /* Write new spare register data */

 printf("\n");

 printf("Write new spare registe are:\n");

 for(i=0; i<20; i++)

 {

 RTC_WaitAccessEnable();

 RTC_WRITE_SPARE_REGISTER(i, (i+u32InitData));

 }

 /* Verify spare register data */

 for(i=0; i<20; i++)

 {

 RTC_WaitAccessEnable();

 u32SPRData = RTC_READ_SPARE_REGISTER(i);

 if(u32SPRData != (i+u32InitData))

 {

 printf(" SPARE_REGISTER[%2d] = %d.\n", i, u32SPRData);

 printf(" Get spare register Fail!! \n");

 while(1) {}

 }

 else

 {

 printf(" SPARE_REGISTER[%2d] = %d.\n", i, u32SPRData);

 }

 }

Jul 26, 2019 Page 7 of 11 Rev 1.00

NUC230/240 Series

3 Software and Hardware Environment

 Software Environment

 BSP version

 NUC230/240 Series BSP CMSIS v3.01.002

 IDE version

 Keil uVersion 5.28

 Hardware Environment

 Circuit component

 NuTiny–EVB–NUC240 V1.2

 Diagram

 Connect UART TX (PB.1) pin to PC UART RX for display the execution result of

example code on PC.

PC

UART RX

NuTiny–EVB–NUC240

V1.2

UART TX (PB.1)

Figure 3-1 NUC240 UART TX and PC UART RX Connection

Jul 26, 2019 Page 8 of 11 Rev 1.00

NUC230/240 Series

4 Directory Information

 EC_NUC240_SpareRegister_Access_V1.00

 Library Sample code header and source files

 CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.

 Device CMSIS compliant device header file

 StdDriver All peripheral driver header and source files

 SampleCode

 ExampleCode Source file of example code

Jul 26, 2019 Page 9 of 11 Rev 1.00

NUC230/240 Series

5 How to Execute Example Code

1. Browsing into sample code folder by Directory Information (section 4) and double click

SpareRegister_Access.uvproj.

2. Enter Keil compile mode

a. Build

b. Download

c. Start/Stop debug session

3. Enter debug mode

a. Run

Jul 26, 2019 Page 10 of 11 Rev 1.00

NUC230/240 Series

6 Revision History

Date Revision Description

Jul 26, 2019 1.00 1. Initially issued.

Jul 26, 2019 Page 11 of 11 Rev 1.00

NUC230/240 Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

	1 Function Description
	1.1 Introduction
	1.2 Principle
	1.3 Demo Result

	2 Code Description
	3 Software and Hardware Environment
	4 Directory Information
	5 How to Execute Example Code
	6 Revision History

