
      

 

Jul. 16, 2019 Page 1 of 11 Rev 1.00 

M051 Series 

 

Example Code Introduction for 32-bit NuMicro®  Family 

 

 

 

Information 

Application 
Example code for determining whether IO is switched by checking 
a custom UID 

BSP Version M051 Series BSP CMSIS v3.01.001 

Hardware NuTiny–EVB–M051_V3.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

The information described in this document is the exclusive intellectual property of 
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton. 

 

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design. 
Nuvoton assumes no responsibility for errors or omissions. 

All data and specifications are subject to change without notice. 

 

For additional information or questions, please contact: Nuvoton Technology Corporation.  

www.nuvoton.com  

IO switching example with UID advanced 
protection 

http://www.nuvoton.com/


      

 

Jul. 16, 2019 Page 2 of 11 Rev 1.00 

M051 Series 

1 Function Description 

1.1 Introduction 

The Nuvoton M051 series microprocessor provides a UID (Unique Identifier). The developer 
can determine whether the application continues to execute by identifying the correctness of 
the UID and ensuring that the product is not copied. Simple UID recognition security seems to 
be insufficient, so it will provide an example of custom recognition complexity. Developers can 
perform custom operations based on the UID of the microprocessor and use the calculated 
UID to identify better security. 

1.2 Principle 

In order to facilitate the development, the wafer UID can be directly read and calculated, and 
then the application is merged and then written into the wafer. This example is divided into 
three blocks. Please refer to Figure 1-1. The following sections will explain each block: 
 

1. NuLink.exe: A simple tool provided by Nuvoton, which must be used with NuLink ICE, 

where NuLink.exe is used for UID reading and burning into modified applications. 

 

2. TCDEF.exe: Compiled by Visual C++, provides a UID that is read back by NuLink after a 

custom operation, and merges with the application bin file generated by Keil. 

 

3. APROM.bin: The developer application project must contain the UID area after the 

operation is reserved, and how to identify the UID judgment program after the operation. 

 
In order to facilitate the operation, regarding the above process, the batch file will be used to 
integrate the process. If the developer has completed the UID custom operation and how to 
identify the UID custom operation program, the batch file can be directly operated. 
 



      

 

Jul. 16, 2019 Page 3 of 11 Rev 1.00 

M051 Series 

 
Figure 1-1  Introduction of the example flow 

 
The UID read from the chip is used to perform the custom operation. Then it will be stored in 
the APROM reserved position. The APROM reserved position is the same as the definition of 
TCDEF.exe in the example code, as shown in Figure 1-2. 
 

 
 

Figure 1-2 Changed UID storage address after custom operation 
 

This example customizes the partial reservation of the operation, provides the entire process 
method, and finally compares the wafer UID and the UID stored in the APROM. 

 

 

1.3 Demo Result 

1. Execute IO_Toggle_With_UID_Protect.bat and display the command line window as 

shown in Figure 1-3 below. After completing the burn-in, press any key to end the 

command line window, and the chip will re-execute the custom UID application. 

 



      

 

Jul. 16, 2019 Page 4 of 11 Rev 1.00 

M051 Series 

 
Figure 1-3 Batch file execution result 

 

2. The comparison wafer UID is the same as the UID after the custom operation, and 

the wafer will continue to be toggled by PB13. 

 

 
Figure 1-4 Example output by UART output 



      

 

Jul. 16, 2019 Page 5 of 11 Rev 1.00 

M051 Series 

2 Code Description 

2.1 Batch file - IO_Toggle_With_UID_Protect.bat 

Delete log.txt and NU_UID.txt file 

Del .\Exc\log.txt 
Del .\Exc\NU_UID.txt 

Read chip UID and save to NU_UID.txt file 

NuLink.exe -r UID >> .\..\Exc\NU_UID.txt 

Execute TCDEF.exe. 

.\Visual_C\Debug\TCDEF.exe 

Chip erase. 

NuLink.exe -e ALL >> .\..\Exc\log.txt 

Programming MODAPROM.bin and verification. 

NuLink.exe -w APROM .\..\Exc\MODAPROM.bin >> .\..\Exc\log.txt 
NuLink.exe -v APROM .\..\Exc\MODAPROM.bin >> .\..\Exc\log.txt 

Write Config0 and save to log.txt 

NuLink.exe -w CFG0 0xFFFFFFFF >> .\..\Exc\log.txt 
NuLink.exe -r CFG0 >> .\..\Exc\log.txt 

Chip reset. 
NuLink.exe -reset 

 

2.2 TCDEF.exe  

Start address and offset of changed UID stored. 
#define APROMUIDADD                 0x2000  //Store UID change data start address of APROM 
#define UIDOFFSET                   0x100   //Store UID change data offset of APROM    

Custom operation UID function. 
void changUIDData() 
{ 
    int i = 0; 
    for (i = 0; i < 12; i++); 
    /************* User change UID implement ***************/ 
} 

 

2.3 KEIL – Example code 

Custom UID storage location retention and definition must be the same as TCDEF.exe 
definition. 
#define UID_START_ADDR              0x00002000   // UID start address of APROM 
#define UID_ADDR_OFFSET             0x100        // UID address offset of APROM 
 
__attribute__((at(UID_START_ADDR + UID_ADDR_OFFSET))) static const uint32_t 
gau32UIDAddr[4]= {2,2,2}; 

 
Determine whether the UID of the chip is the same as the UID after the custom operation. If 
there is a custom operation, you need to add how to interpret the custom UID. 



      

 

Jul. 16, 2019 Page 6 of 11 Rev 1.00 

M051 Series 

/************* User change UID compare implement ***************/ 
/* Compare original UID and change UID */ 
if((au32mcuUID[0] == au32modfiyUID[0]) && (au32mcuUID[1] == au32modfiyUID[1]) && 

(au32mcuUID[2] == au32modfiyUID[2])) 
    { 
        printf("=> Match UID, MCU toggle PB13...\n"); 
        while(1) 
        { 
            Delay_count(500); 
            P35 = 0; 
            Delay_count(500); 
            P35 = 1; 
        } 
    } 

 



      

 

Jul. 16, 2019 Page 7 of 11 Rev 1.00 

M051 Series 

3 Software and Hardware Environment 

 Software Environment 

 BSP version 

 M051 Series BSP CMSIS v3.01.001 

  IDE version 

 Keil uVersion 5.24 

 Visual C++ version 

 Microsoft Visual C++ 2008 

 NuLink.exe version 

 Nuvoton NuLink Command Tool v2.06.6871 

 Hardware Environment 

 Circuit components 

 NuTiny–EVB–M051_V3.0 



      

 

Jul. 16, 2019 Page 8 of 11 Rev 1.00 

M051 Series 

4 Directory Information 

 EC_M051_IO_Toggle_With_UID_Protect 

 Library Sample code header and source files 

 CMSIS Cortex®  Microcontroller Software Interface 
Standard (CMSIS) by Arm®  Corp. 

 Device CMSIS compliant device header file 

 StdDriver All peripheral driver header and source files 

 SampleCode  

 ExampleCode Source file of example code 

 IO_Toggle_With_UID_

Protect 

 

 KEIL Example files of KEIL project. 

 Exc Temporary and log files. 

 NuLink Nuvoton NuLink tools. 

 Visual_C Visual C++ project for UID changed. 

  



      

 

Jul. 16, 2019 Page 9 of 11 Rev 1.00 

M051 Series 

5 How to Execute Example Code 

1. Browsing into sample code folder by Directory Information (section 4) and double click 

IO_Toggle_With_UID_Protect.uvproj. 

2. Enter Keil compile mode 

a. Build 

3. Execute IO_Toggle_With_UID_Protect.bat 

a. Checking that the MCU and NuLink are properly connected to the PC. 

b. UID custom operate and program application. 

c. Chip reset to execute application. 

  



      

 

Jul. 16, 2019 Page 10 of 11 Rev 1.00 

M051 Series 

6 Revision History 

Date Revision Description 

Jul. 16, 2019 1.00 1. Initially issued. 

 

  



      

 

Jul. 16, 2019 Page 11 of 11 Rev 1.00 

M051 Series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Important Notice 
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any 
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. 
Such applications are deemed, “Insecure Usage”.  
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy 
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or 
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and 
other applications intended to support or sustain life.   
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to 
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities 
thus incurred by Nuvoton. 
 

 
 


