

Oct. 1, 2019 Page 1 of 12 Rev 1.00

NUC240 Series

Example Code Introduction for 32-bit NuMicro®Family

Information

Application
This sample code uses NUC240 to drive ENC28J60 to achieve
uIP/httpd function

BSP Version NUC240BSP_v3.00.001

Hardware NuTiny-SDK-NUC240V

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

NUC240 ENC28J60 Driver for uIP/HTTP

Oct. 1, 2019 Page 2 of 12 Rev 1.00

NUC240 Series

1 Function Description

1.1 Introduction

This sample code uses NUC240 to drive ENC28J60 though SPI interface to achieve uIP/httpd
function

1.2 Principle

The uIP implementation the TCP/IP network protocol stack, the ENC28J60 adopts IEEE802.3
as an Ethernet controller and the interface is SPI, so we can combine the uIP, ENC28J60 with
NUC240 for web services application.

1.3 Demo result

Ethernet setup

Oct. 1, 2019 Page 3 of 12 Rev 1.00

NUC240 Series

IP address setting

IE to connect web services

Oct. 1, 2019 Page 4 of 12 Rev 1.00

NUC240 Series

2 CodeDescription

Initialize ENC28J60：

int32_t ENC28J60_Init(unsigned char * macaddr)

{

 unsigned int retry=0;

 ENC28J60_Reset();

ENC28J60_Write_Op(ENC28J60_SOFT_RESET,0,ENC28J60_SOFT_RESET);

.

}

uIP initialize and IP address setup：

int simple_server(void)

{

 unsigned int plen;

 unsigned int dat_p;

 unsigned char i = 0;

 unsigned char cmd_pos = 0;

 unsigned char cmd;

 unsigned char payloadlen = 0;

 char str[30];

 char cmdval;

 /*initialize enc28j60*/

 ENC28J60_Init(mymac);

 str[0]=(char)ENC28J60_Get_EREVID();

 init_ip_arp_udp_tcp(mymac, myip, mywwwport);

}

Oct. 1, 2019 Page 5 of 12 Rev 1.00

NUC240 Series

ENC28J60 transmit data：

void ENC28J60_Packet_Send(unsigned int len, unsigned char *packet)

{

 // Set the write pointer to start of transmit buffer area

 ENC28J60_Write(EWRPTL, TXSTART_INIT & 0xFF);

 ENC28J60_Write(EWRPTH, TXSTART_INIT >> 8);

 // Set the TXND pointer to correspond to the packet size given

 ENC28J60_Write(ETXNDL, (TXSTART_INIT + len) & 0xFF);

 ENC28J60_Write(ETXNDH, (TXSTART_INIT + len) >> 8);

 // write per-packet control byte (0x00 means use macon3 settings)

 ENC28J60_Write_Op(ENC28J60_WRITE_BUF_MEM, 0, 0x00);

 //printf("len:%d\r\n",len);

 // send the contents of the transmit buffer onto the network

 ENC28J60_Write_Buf(len, packet);

 ENC28J60_Write_Op(ENC28J60_BIT_FIELD_SET, ECON1, ECON1_TXRTS);

 // Reset the transmit logic problem. See Rev. B4 Silicon Errata point 12.

 if ((ENC28J60_Read(EIR)&EIR_TXERIF))

 ENC28J60_Write_Op(ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_TXRTS);

}

ENC28J60 recive data：

unsigned int ENC28J60_Packet_Receive(unsigned int maxlen, unsigned char *packet)

{

 unsigned int rxstat;

 unsigned int len;

 // check if a packet has been received and buffered

 if (ENC28J60_Read(EPKTCNT) == 0)

 return 0;

 // Set the read pointer to the start of the received packet

 ENC28J60_Write(ERDPTL, (NextPacketPtr));

 ENC28J60_Write(ERDPTH, (NextPacketPtr) >> 8);

 // read the next packet pointer

 NextPacketPtr = ENC28J60_Read_Op(ENC28J60_READ_BUF_MEM, 0);

 NextPacketPtr |= ENC28J60_Read_Op(ENC28J60_READ_BUF_MEM, 0) << 8;

Oct. 1, 2019 Page 6 of 12 Rev 1.00

NUC240 Series

 // read the packet length (see datasheet page 43)

 len = ENC28J60_Read_Op(ENC28J60_READ_BUF_MEM, 0);

 len |= ENC28J60_Read_Op(ENC28J60_READ_BUF_MEM, 0) << 8;

 len -= 4; //remove the CRC count

 // read the receive status (see datasheet page 43)

 rxstat = ENC28J60_Read_Op(ENC28J60_READ_BUF_MEM, 0);

 rxstat |= ENC28J60_Read_Op(ENC28J60_READ_BUF_MEM, 0) << 8;

 // limit retrieve length

 if (len > maxlen - 1)

 len = maxlen - 1;

 // check CRC and symbol errors (see datasheet page 44, table 7-3):

 // The ERXFCON.CRCEN is set by default. Normally we should not

 // need to check this.

 if ((rxstat & 0x80) == 0)

 len = 0; // invalid

 else

 ENC28J60_Read_Buf(len, packet); // copy the packet from the receive buffer

 // Move the RX read pointer to the start of the next received packet

 // This frees the memory we just read out

 ENC28J60_Write(ERXRDPTL, (NextPacketPtr));

 ENC28J60_Write(ERXRDPTH, (NextPacketPtr) >> 8);

 // decrement the packet counter indicate we are done with this packet

 ENC28J60_Write_Op(ENC28J60_BIT_FIELD_SET, ECON2, ECON2_PKTDEC);

 return (len);

}

Data process:

//init the ethernet/ip layer:

while (1)

 {

 // get the next new packet:

 plen = ENC28J60_Packet_Receive(BUFFER_SIZE, buf);

 /*plen will ne unequal to zero if there is a valid packet (without crc error) */

 if (plen == 0)

 {

 continue;

 }

 // arp is broadcast if unknown but a host may also

Oct. 1, 2019 Page 7 of 12 Rev 1.00

NUC240 Series

 // verify the mac address by sending it to

 // a unicast address.

 if (eth_type_is_arp_and_my_ip(buf, plen))

 {

 make_arp_answer_from_request(buf);

 continue;

 }

Oct. 1, 2019 Page 8 of 12 Rev 1.00

NUC240 Series

3 Software and Hardware Environment

 Software Environment
 BSP Version

 NUC240BSP_v3.00.001

 IDE Version
 Keil uVersion 5.2

 Hardware Environment
 Circuit Components

 NuTiny-SDK-NUC240

 ENC28J60

 Diagram

NUC240driver ENC28J60 though SPI interface.

VDD ↔ VDD I/O

SPI2_SS(PD.0) ↔ SS

SPI0_CLK(PD.1) ↔ CLK

SPI0_MOSI0(PD.3) ↔ SI

SPI0_MISO0(PD.2) ↔ SO

GND ↔ GND

GND ↔ GND

NUC240 ENC28J60

Oct. 1, 2019 Page 9 of 12 Rev 1.00

NUC240 Series

4 Directory Information

 EC_NUC240_SPI_ENC28J60_uIP_HTTP _V1.00

 Library Sample code header and source files

 CMSIS Cortex® Microcontroller Software Interface
Standard (CMSIS) V4.5.0 definitions by ARM®
Corp.

 Device CMSIS compliant device header file

 StdDriver All peripheral driver header and source files

 SampleCode

 ExampleCode Source file of example code

Oct. 1, 2019 Page 10 of 12 Rev 1.00

NUC240 Series

5 How to Execute Example Code

1. According to Directory Information enter the KEIL folder in path “ExampleCode”, double
click “NUC240_SPI_ENC28J60_uIP_HTTP.uvproj”

2. Enter the compilation mode interface

a. Compilation

b. Download code to Flash

c. Enter/leave debugging mode

3. Enter the debugging mode interface

a. Execution code

Oct. 1, 2019 Page 11 of 12 Rev 1.00

NUC240 Series

6 Revision History

Date Revision Description

Oct. 1, 2019 1.00 1. Initially issued.

Oct. 1, 2019 Page 12 of 12 Rev 1.00

NUC240 Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

