

NuMicro[®] Family

Arm[®] Cortex[®]-M0-based Microcontroller

M0A21/M0A23 Series Technical Reference Manual

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro[®] microcontroller and microprocessor based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

TABLE OF CONTENTS

1	GENERAL DESCRIPTION	17
2	FEATURES	
3	PARTS INFORMATION	26
	3.1 Package Type	
	3.2 NuMicro® M0A21/M0A23 Series Selection Guide	
	3.2.1 NuMicro [®] M0A21 Series	27
	3.2.2 NuMicro [®] M0A23 Series	
	3.2.3 NuMicro [®] M0A21/M0A23 Selection Code	28
4	PIN CONFIGURATION	29
	4.1 Pin Configuration	
	4.1.1 M0A21 Series Pin Diagram	29
	4.1.2 M0A21 Series Function Pin Table	
	4.1.3 M0A23 Series Pin Diagram	
	4.1.4 M0A23 Series Function Pin Table	
	4.2 Pin Description	
	4.2.1 M0A21/M0A23 Series Pin Description	44
	4.2.2 M0A21/M0A23 Series Multi-function Summary Table	
	4.2.3 M0A21/M0A23 Series Multi-function Summary Table Sorted by GPIO	
5	BLOCK DIAGRAM	98
•		
6	FUNCTIONAL DESCRIPTION	
-		99
-	FUNCTIONAL DESCRIPTION	99
-	FUNCTIONAL DESCRIPTION. 6.1 Arm [®] Cortex [®] -M0 Core 6.2 System Manager.	99
-	FUNCTIONAL DESCRIPTION. 6.1 Arm [®] Cortex [®] -M0 Core 6.2 System Manager. 6.2.1 Overview.	99
-	FUNCTIONAL DESCRIPTION. 6.1 Arm® Cortex®-M0 Core 6.2 System Manager. 6.2.1 Overview. 6.2.2 System Reset.	99 99 101 101 101
-	FUNCTIONAL DESCRIPTION. 6.1 Arm [®] Cortex [®] -M0 Core 6.2 System Manager. 6.2.1 Overview.	
-	FUNCTIONAL DESCRIPTION. 6.1 Arm® Cortex®-M0 Core 6.2 System Manager. 6.2.1 Overview. 6.2.2 System Reset. 6.2.3 System Power Distribution.	
-	FUNCTIONAL DESCRIPTION. 6.1 Arm® Cortex®-M0 Core 6.2 System Manager. 6.2.1 Overview. 6.2.2 System Reset. 6.2.3 System Power Distribution. 6.2.4 Power Modes and Wake-up Sources.	
-	FUNCTIONAL DESCRIPTION. 6.1 Arm® Cortex®-M0 Core 6.2 System Manager. 6.2.1 Overview. 6.2.2 System Reset. 6.2.3 System Power Distribution. 6.2.4 Power Modes and Wake-up Sources. 6.2.5 System Memory Map. 6.2.6 SRAM Memory Orginization . 6.2.7 Chip Bus Matrix	
-	FUNCTIONAL DESCRIPTION. 6.1 Arm® Cortex®-M0 Core 6.2 System Manager. 6.2.1 Overview. 6.2.2 System Reset. 6.2.3 System Power Distribution. 6.2.4 Power Modes and Wake-up Sources. 6.2.5 System Memory Map. 6.2.6 SRAM Memory Orginization 6.2.7 Chip Bus Matrix 6.2.8 IRC Auto Trim.	
-	FUNCTIONAL DESCRIPTION. 6.1 Arm® Cortex®-M0 Core 6.2 System Manager. 6.2 Overview 6.2.1 Overview. 6.2.2 System Reset. 6.2.3 System Power Distribution 6.2.4 Power Modes and Wake-up Sources 6.2.5 System Memory Map 6.2.6 SRAM Memory Orginization 6.2.7 Chip Bus Matrix 6.2.8 IRC Auto Trim. 6.2.9 Register Lock Control	
-	FUNCTIONAL DESCRIPTION. 6.1 Arm® Cortex®-M0 Core 6.2 System Manager. 6.2 Overview 6.2.1 Overview. 6.2.2 System Reset. 6.2.3 System Power Distribution 6.2.4 Power Modes and Wake-up Sources. 6.2.5 System Memory Map. 6.2.6 SRAM Memory Orginization 6.2.7 Chip Bus Matrix 6.2.8 IRC Auto Trim. 6.2.9 Register Lock Control 6.2.10UART0_TXD/USCI0_DAT0 Modulation with PWM	
-	FUNCTIONAL DESCRIPTION. 6.1 Arm® Cortex®-M0 Core 6.2 System Manager. 6.2.1 Overview. 6.2.2 System Reset. 6.2.3 System Power Distribution. 6.2.4 Power Modes and Wake-up Sources. 6.2.5 System Memory Map. 6.2.6 SRAM Memory Orginization 6.2.7 Chip Bus Matrix 6.2.8 IRC Auto Trim. 6.2.9 Register Lock Control 6.2.10UART0_TXD/USCI0_DAT0 Modulation with PWM. 6.2.11 Register Map.	
-	FUNCTIONAL DESCRIPTION	

6.3.1	Overview	
6.3.2	Clock Generator	
6.3.3	System Clock and SysTick Clock	
6.3.4	Peripherals Clock	
6.3.5	Power-down Mode Clock	
6.3.6	Clock Output	
6.3.7	Register Map	
6.3.8	Register Description	
6.4 Flasl	h Memory Controller (FMC)	206
6.4.1	Overview	
6.4.2	Features	206
6.4.3	Block Diagram	
6.4.4	Functional Description	208
6.4.5	Register Map	225
6.4.6	Register Description	226
6.5 Gen	eral Purpose I/O (GPIO)	235
6.5.1	Overview	235
6.5.2	Features	235
6.5.3	Block Diagram	236
6.5.4	Basic Configuration	236
6.5.5	Functional Description	236
6.5.6	Register Map	241
6.5.7	Register Description	243
6.6 PDN	IA Controller (PDMA)	257
6.6.1	Overview	
6.6.2	Features	257
6.6.3	Block Diagram	257
6.6.4	Basic Configuration	257
6.6.5	Functional Description	258
6.6.6	Register Map	
6.6.7	Register Description	
6.7 Time	er Controller (TMR)	292
6.7.1	Overview	
6.7.2	Features	
6.7.4	Block Diagram	
6.7.5	Basic Configuration	294
6.7.6	Functional Description	295
6.7.7	Register Map	
6.7.8	Register Description	
6.8 Wate	chdog Timer (WDT)	315
6.8.1	Overview	

6.8.2 Features	
6.8.3 Block Diagram	
6.8.4 Basic Configuration	
6.8.5 Functional Description	
6.8.6 Register Map	
6.8.7 Register Description	
6.9 Window Watchdog Timer (WWDT)	324
6.9.1 Overview	
6.9.2 Features	
6.9.3 Block Diagram	
6.9.4 Basic Configuration	
6.9.5 Functional Description	
6.9.6 Register Map	329
6.9.7 Register Description	
6.10 PWM Generator and Capture Timer (PWM)	335
6.10.10verview	
6.10.2Features	
6.10.3Block Diagram	
6.10.4Basic Configuration	
6.10.5Functional Description	
6.10.6Register Map	
6.10.7Register Description	
6.11 UART Interface Controller (UART)	414
6.11.1 Overview	
6.11.2 Features	
6.11.3 Block Diagram	
6.11.4 Basic Configuration	
6.11.5 Functional Description	
6.11.6 Register Map	
6.11.7 Register Description	
6.12 USCI - Universal Serial Control Interface Controller (USCI)	
6.12.10verview	
6.12.2Features	
6.12.3Block Diagram	
6.12.4Functional Description	
6.13 USCI – UART Mode	
6.13.10verview	
6.13.2Features	
6.13.3Block Diagram	
6.13.4Basic Configuration	
6.13.5Functional Description	

6.13.6Register Map	505
6.13.7Register Description	506
6.14 USCI - SPI Mode	527
6.14.1Overview	527
6.14.2Features	527
6.14.3Block Diagram	528
6.14.4Basic Configuration	528
6.14.5Functional Description	529
6.14.6Register Map	541
6.14.7Register Description	543
6.15 USCI - I ² C Mode	565
6.15.1Overview	565
6.15.2Features	565
6.15.3Block Diagram	566
6.15.4Basic Configuration	566
6.15.5START or Repeated START Signal	567
6.15.6Register Map	585
6.15.7Register Description	586
6.16 Controller Area Network (CAN)	605
6.16.1Overview	605
6.16.2Features	605
6.16.3Block Diagram	605
6.16.4Basic Configuration	606
6.16.5Functional Description	
6.16.6Test Mode	
6.16.7 CAN Communications	
6.16.8Register Map	
6.16.9Register Description	
6.17 CRC Controller (CRC)	665
6.17.10verview	665
6.17.2Features	665
6.17.3Block Diagram	665
6.17.4Basic Configuration	665
6.17.5Functional Description	666
6.17.6Register Map	
6.17.7Register Description	669
6.18 Hardware Divider (HDIV)	674
6.18.1Overview	674
6.18.2Features	674
6.18.3Basic Configuration	
6.18.4Functional Description	674

	6.18.5Register Map	675
	6.18.6Register Description	676
	6.19 Analog-to-Digital Converter (ADC)	
	6.19.1Overview	681
	6.19.2Features	681
	6.19.3Block Diagram	682
	6.19.4Basic Configuration	682
	6.19.5Functional Description	682
	6.19.6Register Map	
	6.19.7Register Description	
	6.20 Digital to Analog Converter (DAC)	
	6.20.1Overview	706
	6.20.2Features	706
	6.20.3Block Diagram	706
	6.20.4Basic Configuration	
	6.20.5Functional Description	
	6.20.6Register Map	
	6.20.7 Register Description	
	6.21 Analog Comparator Controller (ACMP)	
	6.21.1Overview	
	6.21.2Features	
	6.21.3Block Diagram	
	6.21.4 Basic Configuration	
	6.21.5Functional Description	
	6.21.6Register Map	
	6.21.7 Register Description 6.22 Peripherals Interconnection	
	6.22.10verview	
	6.22.2Peripherals Interconnect Matrix Table	
7	6.22.3 Functional Description	
1	APPLICATION CIRCUIT	
	7.1 Power Supply Scheme	
	7.2 Peripheral Application Scheme	737
8	ELECTRICAL CHARACTERISTICS	738
9	PACKAGE DIMENSIONS	739
	9.1 SSOP 20 (5.3x7.2x1.75 mm)	739
	9.2 TSSOP 28 (4.4x9.7x1.0 mm)	
10	0 ABBREVIATIONS	741
	10.1 Abbreviations	741

11 REVISION HISTORY74	3
-----------------------	---

LIST OF FIGURES

Figure 4.1-1 M0A21 Series SSOP 20-pin Diagram	29
Figure 4.1-2 M0A21 Series TSSOP 28-pin Diagram	30
Figure 4.1-3 M0A23 Series SSOP 20-pin Diagram	38
Figure 4.1-4 M0A23 Series TSSOP 28-pin Diagram	39
Figure 4.2-1 NuMicro [®] M0A21/M0A23 Block Diagram	98
Figure 6.1-1 Functional Block Diagram	99
Figure 6.2-1 System Reset Sources	102
Figure 6.2-2 nRESET Reset Waveform	104
Figure 6.2-3 nRESET Reset Mode Enable Control Waveform	104
Figure 6.2-4 Power-on Reset (POR) Waveform	105
Figure 6.2-5 Low Voltage Reset (LVR) Waveform	105
Figure 6.2-6 Brown-out Detector (BOD) Waveform	106
Figure 6.2-7 NuMicro® M0A21/M0A23 Power Distribution Diagram	107
Figure 6.2-8 Power Mode State Machine	109
Figure 6.2-9 SRAM Memory Organization	113
Figure 6.2-10 NuMicro® M0A21/M0A23 Bus Matrix Diagram	114
Figure 6.3-1 Clock Generator Global View Diagram	181
Figure 6.3-2 Clock Generator Block Diagram	182
Figure 6.3-3 System Clock Block Diagram	183
Figure 6.3-4 HXT Stop Protect Procedure	184
Figure 6.3-5 SysTick Clock Control Block Diagram	184
Figure 6.3-6 Clock Output Block Diagram	185
Figure 6.4-116/32 KB Flash Memory Control Block Diagram	207
Figure 6.4-2 Data Flash Shared with APROM	208
Figure 6.4-3 16/32 Kbytes Flash Memory Map	214
Figure 6.4-4 16/32 Kbytes Flash System Memory Map with IAP Mode	215
Figure 6.4-5 LDROM with IAP Mode	216
Figure 6.4-6 APROM with IAP Mode	216
Figure 6.4-7 16/32 Kbytes Flash System Memory Map without IAP Mode	217
Figure 6.4-8 Boot Source Selection	218
Figure 6.4-9 ISP Procedure Example	220
Figure 6.4-10 Example for Accelerating Interrupt by VECMAP	221
Figure 6.4-11 ISP 32-bit Programming Procedure	222
Figure 6.4-12 CRC-32 Checksum Calculation	223
Figure 6.4-13 CRC-32 Checksum Calculation Flow	224
Figure 6.5-1 GPIO Controller Block Diagram	236

Figure 6.5-2 Input Mode
Figure 6.5-3 Push-Pull Output
Figure 6.5-4 Open-Drain Output
Figure 6.5-5 Quasi-Bidirectional I/O Mode238
Figure 6.5-6 GPIO Rising Edge Trigger Interrupt 239
Figure 6.5-7 GPIO Falling Edge Trigger Interrupt 240
Figure 6.6-1 PDMA Controller Block Diagram
Figure 6.6-2 Descriptor Table Entry Structure
Figure 6.6-3 Basic Mode Finite State Machine 259
Figure 6.6-4 Descriptor Table Link List Structure 260
Figure 6.6-5 Scatter-Gather Mode Finite State Machine
Figure 6.6-6 Example of Single Transfer Type and Burst Transfer Type in Basic Mode
Figure 6.6-7 Example of PDMA Channel 0 Time-out Counter Operation
Figure 6.7-1 Timer Controller Block Diagram 293
Figure 6.7-2 Clock Source of Timer Controller
Figure 6.7-3 Continuous Counting Mode 296
Figure 6.7-4 External Capture Mode
Figure 6.7-5 Reset Counter Mode 298
Figure 6.7-6 Internal Timer Trigger 299
Figure 6.7-7 Inter-Timer Trigger Capture Timing 300
Figure 6.8-1 Watchdog Timer Block Diagram
Figure 6.8-2 Watchdog Timer Clock Control
Figure 6.8-3 Watchdog Timer Time-out Interval and Reset Period Timing
Figure 6.9-1 WWDT Block Diagram 324
Figure 6.9-2 WWDT Clock Control 324
Figure 6.9-3 WWDT Reset and Reload Behavior 326
Figure 6.9-4 WWDT Reload Counter When CNTDAT > CMPDAT
Figure 6.9-5 WWDT Reload Counter When WWDT_CNT < WINCMP
Figure 6.9-6 WWDT Interrupt and Reset Signals
Figure 6.10-1 PWM Generator Overview Block Diagram
Figure 6.10-2 PWM System Clock Source Control
Figure 6.10-3 PWM Clock Source Control
Figure 6.10-4 PWM Independent Mode Architecture Diagram
Figure 6.10-5 PWM Complementary Mode Architecture Diagram
Figure 6.10-6 PWM0_CH0 Prescaler Waveform in Up Counter Type 342
Figure 6.10-7 PWMx Counter Waveform When Setting Clear Counter
Figure 6.10-8 PWM Up Counter Type

Figure 6.10-9 PWM Down Counter Type	343
Figure 6.10-10 PWM Up-Down Counter Type	344
Figure 6.10-11 PWM Compared point Events in Up-Down Counter Type	345
Figure 6.10-12 PWM Double Buffering Illustration	346
Figure 6.10-13 Period Loading in Up-Count Mode	346
Figure 6.10-14 Immediately Loading in Up-Count Mode	347
Figure 6.10-15 Center Loading in Up-Down-Count Mode	348
Figure 6.10-16 PWM Pulse Generation	349
Figure 6.10-17 PWM 0% to 100% Pulse Generation	349
Figure 6.10-18 PWM Independent Mode Waveform	350
Figure 6.10-19 PWM Complementary Mode Waveform	351
Figure 6.10-20 PWMx_CH0 Output Control in Independent Mode	351
Figure 6.10-21 PWMx_CH0 and PWMx_CH1 Output Control in Complementary Mode	352
Figure 6.10-22 Dead-Time Insertion	352
Figure 6.10-23 Illustration of Mask Control Waveform	353
Figure 6.10-24 Brake Noise Filter Block Diagram	353
Figure 6.10-25 Brake Block Diagram for PWMx_CH0 and PWMx_CH1 Pair	354
Figure 6.10-26 Edge Detector Waveform for PWMx_CH0 and PWMx_CH1 Pair	355
Figure 6.10-27 Level Detector Waveform for PWMx_CH0 and PWMx_CH1 Pair	355
Figure 6.10-28 Brake Source Block Diagram	356
Figure 6.10-29 Brake System Fail Block Diagram	356
Figure 6.10-30 Initial State and Polarity Control with Rising Edge Dead-Time Insertion	357
Figure 6.10-31 PWM_CH0 and PWM_CH1 Pair Interrupt Architecture Diagram	358
Figure 6.10-32 PWMx_CH0 and PWMx_CH1 Pair Trigger ADC Block Diagram	359
Figure 6.10-33 PWM Trigger ADC in Up-Down Counter Type Timing Waveform	359
Figure 6.10-34 PWM_CH0 Capture Block Diagram	360
Figure 6.10-35 Capture Operation Waveform	361
Figure 6.10-36 Capture PDMA Operation Waveform of Channel 0	362
Figure 6.11-1 UART Clock Control Diagram	416
Figure 6.11-2 UART Block Diagram	417
Figure 6.11-3 Auto-Baud Rate Measurement	423
Figure 6.11-4 Transmit Delay Time Operation	423
Figure 6.11-5 UART nCTS Wake-up Case1	424
Figure 6.11-6 UART nCTS Wake-up Case2	424
Figure 6.11-7 UART Data Wake-up	425
Figure 6.11-8 UART Received Data FIFO Reached Threshold Wake-up	425
Figure 6.11-9 UART RS-485 AAD Mode Address Match Wake-up	426

Figure 6.11-10 UART Received Data FIFO threshold time-out wake-up	426
Figure 6.11-11 Auto-Flow Control Block Diagram	430
Figure 6.11-12 UART nCTS Auto-Flow Control Enabled	430
Figure 6.11-13 UART nRTS Auto-Flow Control Enabled	431
Figure 6.11-14 UART nRTS Auto-Flow with Software Control	431
Figure 6.11-15 IrDA Control Block Diagram	432
Figure 6.11-16 IrDA TX/RX Timing Diagram	433
Figure 6.11-17 Structure of LIN Frame	433
Figure 6.11-18 Structure of LIN Byte	434
Figure 6.11-19 Break Detection in LIN Mode	436
Figure 6.11-20 LIN Frame ID and Parity Format	436
Figure 6.11-21 LIN Sync Field Measurement	438
Figure 6.11-22 UART_BAUD Update Sequence in AR mode if SLVDUEN is 1	439
Figure 6.11-23 UART_BAUD Update Sequence in AR mode if SLVDUEN is 0	439
Figure 6.11-24 RS-485 nRTS Driving Level in Auto Direction Mode	441
Figure 6.11-25 RS-485 nRTS Driving Level with Software Control	442
Figure 6.11-26 Structure of RS-485 Frame	442
Figure 6.12-1 USCI Block Diagram	483
Figure 6.12-2 Input Conditioning for USCIx_DAT[1:0] and USCIx_CTL[1:0]	484
Figure 6.12-3 Input Conditioning for USCIx_CLK	485
Figure 6.12-4 Block Diagram of Data Buffering	486
Figure 6.12-5 Data Access Structure	487
Figure 6.12-6 Transmit Data Path	487
Figure 6.12-7 Receive Data Path	488
Figure 6.12-8 Protocol-Relative Clock Generator	489
Figure 6.12-9 Basic Clock Divider Counter	490
Figure 6.12-10 Block of Timing Measurement Counter	490
Figure 6.12-11 Sample Time Counter	491
Figure 6.12-12 Event and Interrupt Structure	492
Figure 6.13-1 USCI-UART Mode Block Diagram	494
Figure 6.13-2 UART Signal Connection for Full-Duplex Communication	496
Figure 6.13-3 UART Standard Frame Format	497
Figure 6.13-4 UART Bit Timing (data sample time)	499
Figure 6.13-5 UART Auto Baud Rate Control	501
Figure 6.13-6 Incoming Data Wake-Up	502
Figure 6.13-7 nCTS Wake-Up Case 1	502
Figure 6.13-8 nCTS Wake-Up Case 2	502

Figure 6.14-1 SPI Master Mode Application Block Diagram527	
Figure 6.14-2 SPI Slave Mode Application Block Diagram 527	
Figure 6.14-3 USCI SPI Mode Block Diagram528	
Figure 6.14-44-Wire Full-Duplex SPI Communication Signals (Master Mode)	
Figure 6.14-54-Wire Full-Duplex SPI Communication Signals (Slave Mode)	
Figure 6.14-6 SPI Communication with Different SPI Clock Configuration (SCLKMODE=0x0) 531	
Figure 6.14-7 SPI Communication with Different SPI Clock Configuration (SCLKMODE=0x1) 532	
Figure 6.14-8 SPI Communication with Different SPI Clock Configuration (SCLKMODE=0x2) 532	
Figure 6.14-9 SPI Communication with Different SPI Clock Configuration (SCLKMODE=0x3) 533	
Figure 6.14-1016-bit Data Length in One Word Transaction with MSB First Format	
Figure 6.14-11 Word Suspend Interval between Two Transaction Words	
Figure 6.14-12 Auto Slave Select (SUSPITV \geq 0x3)	
Figure 6.14-13 Auto Slave Select (SUSPITV < 0x3)	
Figure 6.14-14 One Output Data Channel Half-duplex (SPI Master Mode)	
Figure 6.14-15 One Input Data Channel Half-duplex (SPI Master Mode)	
Figure 6.14-16 SPI Timing in Master Mode538	
Figure 6.14-17 SPI Timing in Master Mode (Alternate Phase of Serial Bus Clock)	
Figure 6.14-18 SPI Timing in Slave Mode539	
Figure 6.14-19 SPI Timing in Slave Mode (Alternate Phase of Serial Bus Clock)	
Figure 6.15-1 I ² C Bus Timing	
Figure 6.15-2 USCI I ² C Mode Block Diagram	
Figure 6.15-3 I ² C Protocol	
Figure 6.15-4 START and STOP Conditions	
Figure 6.15-5 Bit Transfer on the I ² C Bus	
Figure 6.15-6 Acknowledge on the I ² C Bus	
Figure 6.15-7 Arbitration Lost	
Figure 6.15-8 Control I ² C Bus According to Current I ² C Status	
Figure 6.15-9 Master Transmits Data to Slave with a 7-bit Address	
Figure 6.15-10 Master Reads Data from Slave with a 7-bit Address	
Figure 6.15-11 Master Transmits Data to Slave by 10-bit Address	
Figure 6.15-12 Master Reads Data from Slave by 10-bit Address	
Figure 6.15-13 Master Transmitter Mode Control Flow with 7-bit Address	
Figure 6.15-14 Master Receiver Mode Control Flow with 7-bit Address	
Figure 6.15-15 Master Transmitter Mode Control Flow with 10-bit Address	
Figure 6.15-16 Master Recevier Mode Control Flow with 10-bit Address	
Figure 6.15-17 Save Mode Control Flow with 7-bit Address	
Figure 6.15-18 Save Mode Control Flow with 10-bit Address	

Figure 6.15-19 GC Mode with 7-bit Address	580
Figure 6.15-20 Setup Time Wrong Adjustment	582
Figure 6.15-21 Hold Time Wrong Adjustment	582
Figure 6.15-22 I ² C Time-out Count Block Diagram	583
Figure 6.15-23 EEPROM Random Read	584
Figure 6.15-24 Protocol of EEPROM Random Read	584
Figure 6.16-1 CAN Peripheral Block Diagram	606
Figure 6.16-2 CAN Core in Silent Mode	608
Figure 6.16-3 CAN Core in Loop Back Mode	609
Figure 6.16-4 CAN Core in Loop Back Mode Combined with Silent Mode	609
Figure 6.16-5 Data Transfer between IFn Registers and Message	611
Figure 6.16-6 Application Software Handling of a FIFO Buffer	616
Figure 6.16-7 Bit Timing	618
Figure 6.16-8 Propagation Time Segment	619
Figure 6.16-9 Synchronization on "late" and "early" Edges	620
Figure 6.16-10 Filtering of Short Dominant Spikes	621
Figure 6.16-11 Structure of the CAN Core's CAN Protocol Controller	622
Figure 6.17-1 CRC Generator Block Diagram	665
Figure 6.17-2 CHECKSUM Bit Order Reverse Functional Block	666
Figure 6.17-3 Write Data Bit Order Reverse Functional Block	667
Figure 6.18-1 Hardware Divider Operation Flow	674
Figure 6.19-1 AD Controller Block Diagram	682
Figure 6.19-2 ADC Peripheral Clock Control	683
Figure 6.19-3 Single Mode Conversion Timing Diagram	684
Figure 6.19-4 Burst Mode Conversion Timing Diagram	685
Figure 6.19-5 Single-Cycle Scan Mode on Enabled Channels Timing Diagram	686
Figure 6.19-6 Continuous Scan Mode on Enabled Channels Timing Diagram	687
Figure 6.19-7 A/D Conversion Result Monitor Logic Diagram	688
Figure 6.19-8 A/D Controller Interrupt	689
Figure 6.19-9 Conversion Result Mapping Diagram of ADC Single-end Input	693
Figure 6.19-10 Conversion Result Mapping Diagram of ADC Differential Input	694
Figure 6.20-1 Digital-to-Analog Converter Block Diagram	706
Figure 6.20-2 DAC Conversion Started by Software Write Trigger	707
Figure 6.20-3 DAC Conversion Started by Hardware Trigger Event	708
Figure 6.20-4 DAC PDMA Underrun Condition Example	709
Figure 6.20-5 DAC Continuous Conversion with Software PDMA Mode	709
Figure 6.20-6 DAC Interrupt Source	710

Figure 6.21-1 Analog Comparator Block Diagram	. 720
Figure 6.21-2 Comparator Hysteresis Function of ACMP0	. 721
Figure 6.21-3 Window Latch Mode	. 722
Figure 6.21-4 Filter Function Example	. 722
Figure 6.21-5 Comparator Controller Interrupt	. 723
Figure 6.21-6 Comparator Reference Voltage Block Diagram	. 723
Figure 6.21-7 Example of Window Compare Mode	. 724
Figure 6.21-8 Example of Window Compare Mode	. 725

List of Tables	
Table 1-1 NuMicro [®] M0A21/M0A23 Series Key Features Table	17
Table 6.2-1 Reset Value of Registers	103
Table 6.2-2 Power Mode Table	108
Table 6.2-3 Power Mode Difference Table	108
Table 6.2-4 Power Mode Difference Table	108
Table 6.2-5 Clocks in Power Modes	110
Table 6.2-6 Condition of Entering Power-down Mode Again	111
Table 6.2-7 Address Space Assignments for On-Chip Controllers	112
Table 6.2-8 Exception Model	157
Table 6.2-9 Interrupt Number Table	158
Table 6.2-10 Priority Grouping	176
Table 6.4-1 Vector Mapping Support	218
Table 6.4-2 ISP Command List	219
Table 6.4-3 FMC Control Registers for Flash Programming	221
Table 6.6-1 Channel Priority Table	259
Table 6.7-1 Timer0 ~ Timer3 MFP Table	295
Table 6.8-1 Watchdog Timer Time-out Interval Period Selection	317
Table 6.9-1 WWDT Prescaler Value Selection	325
Table 6.9-2 CMPDAT Setting Limitation	328
Table 6.10-1 PWM Clock Source Control Registers Setting Table	337
Table 6.10-2 PWM Pulse Generation Event Priority for Up-Counter	
Table 6.10-3 PWM Pulse Generation Event Priority for Down-Counter	350
Table 6.10-4 PWM Pulse Generation Event Priority for Up-Down-Counter	350
Table 6.11-1 NuMicro [®] M0A21/M0A23 Series UART Features	415
Table 6.11-2 UART Interrupt	418
Table 6.11-3 UART Interface Controller Pin	419
Table 6.11-4 UART Controller Baud Rate Equation Table	420
Table 6.11-5 UART Controller Baud Rate Parameter Setting Example Table	420
Table 6.11-6 UART Controller Baud Rate Register Setting Example Table	421
Table 6.11-7 Baud Rate Compensation Example Table 1	421
Table 6.11-8 Baud Rate Compensation Example Table 2	422
Table 6.11-9 UART controller Interrupt Source and Flag List	428
Table 6.11-10 UART Line Control of Word and Stop Length Setting	429
Table 6.11-11 UART Line Control of Parity Bit Setting	429
Table 6.11-12 LIN Header Selection in Master Mode	434
Table 6.12-1 Input Signals for Different Protocols	484

Table 6.12-2 Output Signals for Different Protocols 485
Table 6.12-3 Data Transfer Events and Interrupt Handling 492
Table 6.12-4 Protocol-specific Events and Interrupt Handling
Table 6.13-1 Input Signals for UART Protocol
Table 6.13-2 Output Signals for Different Protocol 497
Table 6.14-1 Serial Bus Clock Configuration
Table 6.15-1 Relationship between I ² C Baud Rate and PCLK
Table 6.16-1 Initialization of a Transmit Object
Table 6.16-2 Initialization of a Receive Object
Table 6.16-3 CAN Bit Time Parameters
Table 6.16-4 CAN Register Map for Each Bit Function
Table 6.16-5 Last Error Code
Table 6.16-6 Source of Interrupts
Table 6.16-7 IF1 and IF2 Message Interface Register
Table 6.16-8 Structure of a Message Object in the Message Memory
Table 6.21-1 Truth Table of Window Compare Logic 724
Table 6.22-1 Peripherals Interconnect Matrix Table 734
Table 10.1-1 List of Abbreviations

1 GENERAL DESCRIPTION

The NuMicro[®] M0A21/M0A23 series is a 32-bit microcontroller based on Arm[®] Cortex[®]-M0 core. It provides compact package with highly flexible digital pin function assignment, rich analog peripherals, -40°C to 125°C operating temperature, 2.4V ~ 5.5V operating voltage, CAN 2.0B and LIN interface for robust communication. The NuMicro[®] M0A23/M0A21 series targets robust and high operating temperature applications, such as 24 GHz mmWave radar, Battery Management System (BMS), car lighting, electric window lifter, and power seat.

The NuMicro[®] M0A21/M0A23 series provide SSOP20 and TSSOP28 package with rich analog and digital functions, which are especially suitable for small form factor applications. SSOP20 provides up to 18 IO pins and TSSOP28 provides up to 26 IO pins. Each IO pin of the M0A21/M0A23 series can be arbitrarily assigned to digital peripherals, such as UART, SPI, and PWM. The M0A21/M0A23 series provides rich analog functions including 17-ch 12-bit 800 kSPS ADC, 1 set of 5-bit DAC and 2 sets of ACMP in both SSOP20 and TSSOP28 package. Moreover, it provides low voltage reset (LVR) and brown-out detector (BOD) to ensure the system safety.

The NuMicro[®] M0A21/M0A23 series runs up to 48 MHz and supports hardware divider. It provides 32 Kbytes Flash memory, 4 Kbytes SRAM and 2 Kbytes LDROM for ISP (In-System Programming) feature for easily firmware update. It is equipped with plenty of peripherals including up to four 32-bit timers, 6-ch 16-bit PWM generators, 1 set of CAN 2.0B controller, 2 sets of LIN functions, 5-ch PDMA, 2 sets of UART with One-Wire mode, IrDA and RS485 functions. Besides, the M0A21/M0A23 series provides two sets of Universal Serial Control Interfaces (USCI) that can be configured as UART, SPI or I²C.

The package types of the M0A21/M0A23 series are included SSOP20 (5.3x7.2x1.75 mm) and TSSOP28 (4.4x9.7x1.0 mm).

Product Line	CAN	UART	LIN	USCI	Timer	PWM	PDMA	ADC	ACMP	Divider
M0A21	0	2	2	2	4	6	5	17	2	1
M0A23	1	2	2	2	4	6	5	17	2	1

Table 1-1 NuMicro® M0A21/M0A23 Series Key Features Table

The M0A21/M0A23 is targeted at applications such as:

- 24GHz mmWave radar
- BMS (Battery Management System)
- Car lighting
- Car windows
- Power seat

2 FEATURES

Core and System	
	• Arm [®] Cortex [®] -M0 core, running up to 48 MHz
	Built-in Nested Vectored Interrupt Controller (NVIC)
Arm [®] Cortex [®] -M0	24-bit system tick timer
	Programmble and maskable interrupt
	Low Power Sleep mode by WFI and WFE instructions
Brown-out Detector (BOD)	• Four-level BOD with brown-out interrupt and reset option. (4.4V/3.7V/2.7V/2.3V)
Low Voltage Reset (LVR)	LVR with 2.22V threshold voltage level
	• 96-bit Unique ID (UID).
Security	• 128-bit Unique Customer ID (UCID).
	One built-in temperature sensor.
	Signed (two's complement) integer calculation
	• 32-bit dividend with 16-bit divisor calculation capacity
32-bit H/W Divider(HDIV)	 32-bit quotient and 32-bit remainder outputs (16-bit remainder with sign extends to 32-bit)
	• 6 HCLK clocks taken for one cycle calculation
Memories	
Boot Loader	 Nuvoton ISP (In-System-Programming) tool for firmware upgrade via UART
	ISP/IAP libraries
	Up to 32 KB application ROM (APROM)
	• 2 KB on-chip Flash for user-defined loader (LDROM)
	All on-chip Flash support 512 bytes page erase
Flash	Fast Flash programming verification with CRC
1 1231	 On-chip Flash programming with In-Chip Programming (ICP), In-System Programming (ISP) and In-Application Programming (IAP) capabilities
	 Configurable boot up sources including boot loader, user- defined loader (LDROM) or Application ROM (APROM)

	Data Flash with configurable memory size
	2-wired ICP Flash updating through SWD interface
	32-bit and multi-word Flash programming function
	Up to 4 KB embedded SRAM
SRAM	Supports byte-, half-word- and word-access
	Supports PDMA mode
	 Supports CRC-CCITT, CRC-8, CRC-16 and CRC-32 polynomials
	Programmable initial value
Cyclic Redundancy	 Programmable order reverse setting and one's complement setting for input data and CRC checksum
Calculation (CRC)	• 8-bit, 16-bit, and 32-bit data width
	8-bit write mode with 1-AHB clock cycle operation
	16-bit write mode with 2-AHB clock cycle operation
	32-bit write mode with 4-AHB clock cycle operation
	Uses DMA to write data with performing CRC operation
	 Supports up to 5 independent configurable channels for automatic data transfer between memories and peripherals
	Basic and Scatter-Gather transfer modes
	 Each channel supports circular buffer management using Scatter-Gather Transfer mode
Peripheral DMA (PDMA)	Stride function for rectangle image data movement
	Fixed-priority and Round-robin priorities modes
	Single and burst transfer types
	• Byte-, half-word- and word tranfer unit with count up to 65536
	 Request source can be from software, UART, ADC, PWM and Timer
Clocks	
	 4~24 MHz High-speed eXternal crystal oscillator (HXT) for precise timing operation
External Clock Source	 32.768 kHz Low-speed eXternal crystal oscillator (LXT) for low power system operation
	Supports clock failure detection for external crystal oscillators and exception generatation (NMI)
Internal Clock Source	• 48 MHz High-speed Internal RC oscillator (HIRC) trimmed to

Jan. 23, 2024

- ±0.25% accuracy that can optionally be used as a system clock
- 38.4 kHz Low-speed Internal RC oscillator (LIRC) for watchdog timer and wakeup operation

Timers	
	• Four sets of 32-bit timers with 24-bit up counter and one 8-bit pre-scale counter from independent clock source
	 One-shot, Periodic, Toggle and Continuous Counting operation modes
32-bit Timer	 Supports event counting function to count the event from external pins
	 Supports external capture pin for enhanced interval measurement and resetting 24-bit up counter
	 Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is generated
	• Timer interrupt flag or external capture interrupt flag to trigger PWM, ADC and PDMA.
	• Three 16-bit counters with 12-bit prescale for six 48 MHz PWM output channels.
	 Supports independent mode for PWM output/Capture input channel
	 Supports complementary mode for 3 complementary paired PWM output channel
	Dead-time insertion with 12-bit resolution
	Two compared values during one period
PWM	Supports 16-bit resolution PWM counter
	Up, down or up-down PWM counter type
	Supports mask function and tri-state enable for each PWM pin
	Supports brake function
	 Up to 6 independent input capture channels with 16-bit resolution counter
	Counter synchronous start function
	Able to trigger ADC to start conversion.
	• 20-bit free running up counter for WDT time-out interval.
Watchdog	• Selectable time-out interval (24 ~ 220) and the time-out interval is 416us ~ 27.3 s if WDT_CLK = 38.4 kHz (LIRC).
	• System kept in reset state for a period of (1 / WDT_CLK) * 63.
	Able to wake up from Power-down or Idle mode

	Interrupt or reset selectable on watchdog time-out
	 Supports selectable WDT reset delay period, including 1026, 130, 18 or 3 WDT_CLK reset delay period.
	 Supports to force WDT enabled after chip powered on or reset by setting CWDTEN[2:0] in Config0 register.
	• Supports WDT time-out wake-up function only if WDT clock source is selected as LIRC or LXT.
	Clock sources from HCLK/2048 (default selection) or LIRC
Window Watchdog	Window set by 6-bit down counter with 11-bit prescale
window watchdog	WWDT counter suspends in Idle/Power-down mode
	Supports Interrupt
Analog Interfaces	
	• Analog input voltage range: $0 \sim AV_{DD}$ (voltage of V_{DD} pin).
	• 12-bit resolution and 10-bit accuracy is guaranteed.
	 Up to 17 single-end analog input channels or 8 differential analog input channels
	Maximum ADC peripheral clock frequency is 16 MHz.
	Up to 800 kSPS sampling rate.
	Four operation modes:
	 Single mode: A/D conversion is performed one time on a specified channel.
	 Burst mode: A/D converter samples and converts the specified single channel and sequentially stores the result in FIFO.
Analog-to-Digital Converter (ADC)	 Single-cycle Scan mode: A/D conversion is performed only one cycle on all specified channels with the sequence from the smallest numbered channel to the largest numbered channel.
	 Continuous Scan mode: A/D converter continuously performs Single-cycle Scan mode until software stops A/D conversion.
	An A/D conversion can be started by:
	Software Write 1 to ADST bit.
	• External pin (STADC).
	• Timer 0~3 overflow pulse trigger.
	• PWM trigger.
	 Each conversion result is held in data register of each channel with valid and overrun indicators.

	•	Conversion result can be compared with specified value and user can select whether to generate an interrupt when conversion result matches the compare register setting.					
	•	4 internal channels band-gap voltage (VBG), temperature sensor (VTEMP), internal reference voltage and DAC0 output					
	•	Supports PDMA transfer mode					
	•	Supports one 5-bit 100 kSPS voltage type DAC					
	•	Analog output voltage range: 0~AVDD (voltage of VDD pin)					
Digital to Analog	•	Reference voltage from internal reference voltage $V_{\text{REF}}\text{pin}$ or AV_{DD}					
Converter (DAC)	•	DAC maximum conversion updating rate 100K sps					
	•	Rail to rail settle time 10us					
	•	Supports software and timer0~3 trigger to start DAC conversion					
	•	Supports PDMA mode					
	•	Analog input voltage range: 0 ~ AVDD (voltage of VDD pin)					
	•	Up to two rail-to-rail analog comparators					
	•	Supports hysteresis function					
	•	Supports wake-up function					
	•	Selectable input sources of positive input and negative input					
	ACMP0 supports:						
	•	3 multiplexed I/O pins at positive sources:					
		 ACMP0_P0, Comparator Reference Voltage (CRV), and DAC0 output 					
	•	5 negative sources:					
Analog Comparator		- ACMP0_N0, ACMP0_N1, ACMP0_N2, ACMP0_N3					
(ACMP)		- Comparator Reference Voltage (CRV)					
	AC	MP1 supports:					
	•	3 multiplexed I/O pins at positive sources:					
		 ACMP1_P0, Comparator Reference Voltage (CRV), and DAC0 output 					
	•	5 negative sources:					
	AC	MP1_N					
	•	ACMP1_N0, ACMP1_N1, ACMP1_N2, ACMP1_N3					
	•	Comparator Reference Voltage (CRV)					

- Shares one ACMP interrupt vector for all comparators
- Interrupts generated when compare results change (Interrupt event condition is programmable)

- Supports triggers for break events and cycle-by-cycle control for PWM
- Supports window compare mode and window latch mode

Communication Interfaces

- Supports up to 2 UARTs: UART0, UART1
- UART baud rate clock from LXT (32.768 kHz) with 9600bps can work normally in power down mode even system clock is stopped
- Full-duplex asynchronous communications
- Separates receive and transmit 16/16 bytes entry FIFO for data payloads
- Supports hardware auto-flow control (RX, TX, CTS and RTS) and programmable receiver buffer trigger level
- Supports programmable baud rate generator for each channel individually
- Supports 8-bit receiver buffer time-out detection function
- Programmable transmitting data delay time between the last stop and the next start bit

by setting DLY (UART_TOUT [15:8])

• Supports Auto-Baud Rate measurement and baud rate compensation function

UART

- Supports break error, frame error, parity error and receive/transmit buffer overflow detection function
- Fully programmable serial-interface characteristics
- Programmable number of data bit, 5-, 6-, 7-, 8- bit character
- Programmable parity bit, even, odd, no parity or stick parity bit generation and detection
- Programmable stop bit, 1, 1.5, or 2 stop bit generation
- Supports LIN function mode
- Supports LIN master/slave mode
- Supports programmable break generation function for transmitter
- Supports break detection function for receiver
- Supports LIN slave header time-out detection function
- Supports LIN response time-out detection function
- Supports LIN wake-up function
- Supports IrDA SIR function mode
- Supports for 3/16 bit duration for normal mode

	•	Supports RS-485 mode
	•	Supports RS-485 9-bit mode
	•	Supports hardware or software enables to program nRTS pin to control RS-485 transmission direction
	•	Supports nCTS, incoming data, Received Data FIFO reached threshold and RS-485 Address Match (AAD mode) wake-up function
	•	Supports PDMA mode
	•	Supports Single-wire function mode.
	•	Supports CAN protocol version 2.0 part A and B
• • • •	•	Bit rates up to 1 MBit/s
CAN	•	32 Message Objects
	•	Supports wake-up function
	•	Supports one set of USCI
	•	USCI supports UART, SPI and I ² C function
	•	Single byte TX and RX buffer mode
	UAR	RT
	•	One transmit buffer and two receive buffer for data payload
	•	Hardware auto flow control function and programmable flow control trigger level
	•	Programmable baud-rate generator
	•	Supports 9-Bit Data Transfer
	•	Baud rate detection by built-in capture event of baud rate generator
Universal Serial Control Interface (USCI)	•	Supports Wake-up function (Data and nCTS Wakeup Only)
	•	Supports PDMA transfer
	SPI	
	•	Master or Slave mode operation (maximum frequency: master = fPCLK / 2, slave < fPCLK / 5)
	•	Configurable bit length of a transfer word from 4 to 16-bit
	•	One transmit buffer and two receive buffer for data payload
	•	MSB first or LSB first transfer sequence
	•	Word suspend function
	•	Supports PDMA transfer
	•	Supports 3-wire, no slave select signal, bi-direction interface

• Wake-up function: input slave select transition

• Supports one data channel half-duplex transfer

I²C

- Full master and slave device capability
- 7-bit addressing mode (10-bit mode Not supported)
- Communication in standard mode (100 kbps) or in fast mode (up to 400 kbps)
- Multi-master bus
- One transmit buffer and two receive buffer for data payload
- Supports 10-bit bus time-out capability
- Supports Bus monitor mode
- Power down wake-up by data toggle or address match
- Multiple address recognition
- Device address flag
- Setup/hold time programmable
- Four I/O modes:
 - Quasi-bidirectional mode
 - Push-Pull Output mode
 - Open-Drain Output mode
 - Input only with high impendence mode

Supports high drive and high sink current I/O

Supports independent pull-up control

I/O pin configured as interrupt source with edge/level trigger

Maximum I/O Speed is 24 MHz when $V_{DD} = 2.4 \sim 5.5V$. Supports up to 18/26 GPIOs for SSOP20 TSSOP28

Enabling the pin interrupt function will also enable the wake-up

• Schmitt trigger input

setting

respectively

function

GPIO

M0A21/M0A23 SERIES TECHNICAL REFERENCE MANUA

3 PARTS INFORMATION

3.1 Package Type

Package is Halogen-free, RoHS-compliant and TSCA-compliant.

SSOP20	TSSOP28
M0A21OB1AC	M0A21EB1AC
M0A21OC1AC	M0A21EC1AC
M0A23OC1AC	M0A23EC1AC

3.2 NuMicro® M0A21/M0A23 Series Selection Guide

3.2.1 NuMicro[®] M0A21 Series

			3)					C	Conne	ctivit	у					
Part Number	Flash (KB)	SRAM (KB)	ISP ROM (KB)	0/1	Timer	PWM	PDMA	USCI*	UART	LIN	CAN	DAC	ГХТ	ACMP	ADC(12-Bit)	Package
M0A21OB1AC	16	4	2	18	4	6	5	2	2	2	-	1	1	2	17-ch	SSOP20
M0A21OC1AC	32	4	2	18	4	6	5	2	2	2	-	1	1	2	17-ch	SSOP20
M0A21EB1AC	16	4	2	26	4	6	5	2	2	2	-	1	1	2	17-ch	TSSOP28
M0A21EC1AC	32	4	2	26	4	6	5	2	2	2	-	1	1	2	17-ch	TSSOP28

USCI*: supports UART, SPI or I²C

3.2.2 NuMicro[®] M0A23 Series

				(KB)					(Connectivity						(
	Part Number	Flash (KB)	Flash (KB) SRAM (KB)		0/1	Timer	PWM	PDMA	USCI*	UART	LIN	CAN	DAC	ГХТ	ACMP	ADC(12-Bit)	Package	
I	M0A23OC1AC	32	4	2	18	4	6	5	2	2	2	1	1	1	2	17-ch	SSOP20	
	M0A23EC1AC	32	4	2	26	4	6	5	2	2	2	1	1	1	2	17-ch	TSSOP28	

USCI*: supports UART, SPI or I²C

3.2.3 NuMicro[®] M0A21/M0A23 Selection Code

Core	Series	Package	Flash Size	SRAM Size	Revision	Temperature
MO	A21	0	С	1	А	С
Cortex [®] -M0	A21: without CAN A23: with CAN		B: 16 KB C: 32 KB	1: 4 KB		C:-40°C ~ 125°C

4 PIN CONFIGURATION

The pin configuration information can be found in the M0A21/M0A23 Series Multi-function Summary Table section or by using <u>NuTool - PinConfigure</u>. The NuTool - PinConfigure contains all Nuvoton NuMicro[®] Family chip series with all part number, and helps configure GPIO multi-function pins correctly and handily.

4.1 Pin Configuration

4.1.1 M0A21 Series Pin Diagram

4.1.1.1 SSOP20 Package

Corresponding Part Number: M0A21OB1AC, M0A21OC1AC

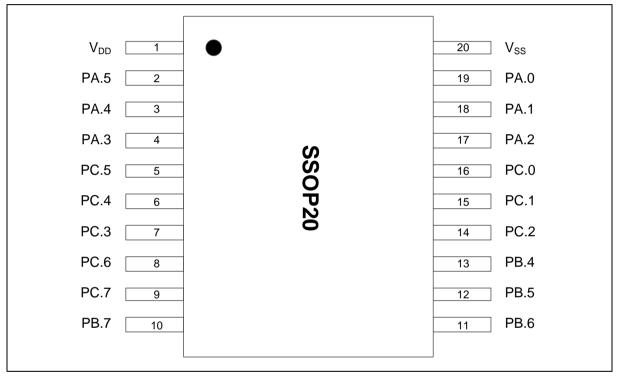


Figure 4.1-1 M0A21 Series SSOP 20-pin Diagram

4.1.1.2 TSSOP28 Package

Corresponding Part Number: M0A21EB1AC, M0A21EC1AC

V _{DD} 1	• 2	8 V _{SS}
PA.5 2	2	27 PA.0
PA.4 3	2	6 PA.1
PA.3 4	2	25 PA.2
PC.5 5	2	PC.0
PC.4 6	–	3 PC.1
PC.3 7	TSSOP28 2	22 PC.2
PD.0 8	OP 2	PB.4
PD.1 9	N 22	20 PD.7
PD.2 10	1	9 PD.6
PD.3 11	1	8 PD.5
PC.6 12	1	7 PD.4
PC.7 13	1	6 PB.5
PB.7 14		5 PB.6

Figure 4.1-2 M0A21 Series TSSOP 28-pin Diagram

4.1.2 M0A21 Series Function Pin Table

4.1.2.1 SSOP20 Package

Corresponding Part Number: M0A21OB1AC, M0A21OC1AC

M0A21OB1AC Multi-function Pin Table

Pin	M0A210B1AC Pin Function
1	VDD
2	PA.5 / ADC0_CH16 / UART0_nRTS / XT1_IN / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / ACMP0_WLAT
3	PA.4 / ADC0_CH15 / UART0_nRTS / XT1_OUT / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / ACMP1_WLAT
4	PA.3 / nRESET / UART0_nCTS / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_RXD / INT0
5	PC.5 / ADC0_CH14 / X32_IN / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 /

Pin	M0A21OB1AC Pin Function
	USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT1
6	PC.4 / ADC0_CH13 / X32_OUT / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT2
7	PC.3 / ADC0_CH12 / ACMP0_N3 / ACMP1_N3 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT3
8	PC.6 / ADC0_CH11 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT4
9	PC.7 / ADC0_CH10 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT5
10	PB.7 / ADC0_CH9 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / ACMP0_WLAT
11	PB.6 / ADC0_CH8 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / ACMP1_WLAT
12	PB.5 / ADC0_CH7 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT0
13	PB.4 / ADC0_CH6 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / UART1_nCTS
14	PC.2 / ADC0_CH5 / ACMP0_N2 / ACMP1_N2 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / UART1_nRTS
15	PC.1 / ADC0_CH4 / ACMP0_N1 / ACMP1_N1 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD
16	PC.0 / ADC0_CH3 / ACMP1_P0 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE0
17	PA.2 / ADC0_CH2 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE1

Pin	M0A210B1AC Pin Function
18	PA.1 / ADC0_CH1 / ACMP0_N0 / ACMP1_N0 / VREF+ / ICE_CLK / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE0
19	PA.0 / ADC0_CH0 / DAC0_OUT / ACMP0_P0 / ICE_DAT / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE1
20	Vss

M0A21OC1AC Multi-function Pin Table

Pin	M0A21OC1AC Pin Function
1	V _{DD}
2	PA.5 / ADC0_CH16 / UART0_nRTS / XT1_IN / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / ACMP0_WLAT
3	PA.4 / ADC0_CH15 / UART0_nRTS / XT1_OUT / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / ACMP1_WLAT
4	PA.3 / nRESET / UART0_nCTS / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_RXD / INT0
5	PC.5 / ADC0_CH14 / X32_IN / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT1
6	PC.4 / ADC0_CH13 / X32_OUT / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT2
7	PC.3 / ADC0_CH12 / ACMP0_N3 / ACMP1_N3 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT3
8	PC.6 / ADC0_CH11 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT4
9	PC.7 / ADC0_CH10 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT5

Pin	M0A21OC1AC Pin Function
10	PB.7 / ADC0_CH9 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / ACMP0_WLAT
11	PB.6 / ADC0_CH8 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / ACMP1_WLAT
12	PB.5 / ADC0_CH7 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT0
13	PB.4 / ADC0_CH6 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / UART1_nCTS
14	PC.2 / ADC0_CH5 / ACMP0_N2 / ACMP1_N2 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / UART1_nRTS
15	PC.1 / ADC0_CH4 / ACMP0_N1 / ACMP1_N1 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD
16	PC.0 / ADC0_CH3 / ACMP1_P0 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE0
17	PA.2 / ADC0_CH2 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE1
18	PA.1 / ADC0_CH1 / ACMP0_N0 / ACMP1_N0 / VREF+ / ICE_CLK / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE0
19	PA.0 / ADC0_CH0 / DAC0_OUT / ACMP0_P0 / ICE_DAT / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE1
20	V _{SS}

4.1.2.2 TSSOP28 Package

Corresponding Part Number: M0A21EB1AC, M0A21EC1AC

M0A21EB1AC Multi-function Pin Table

Pin	M0A21EB1AC Pin Function
1	V _{DD}
2	PA.5 / ADC0_CH16 / UART0_nRTS / XT1_IN / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / ACMP0_WLAT
3	PA.4 / ADC0_CH15 / UART0_nRTS / XT1_OUT / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / ACMP1_WLAT
4	PA.3 / nRESET / UART0_nCTS / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_RXD / INT0
5	PC.5 / ADC0_CH14 / X32_IN / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT1
6	PC.4 / ADC0_CH13 / X32_OUT / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT2
7	PC.3 / ADC0_CH12 / ACMP0_N3 / ACMP1_N3 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT3
8	PD.0 / PWM0_CH4 / UART0_TXD / USCI1_CLK / TM0
9	PD.1 / PWM0_CH5 / UART0_RXD / USCI1_DAT0 / TM1
10	PD.2 / PWM0_CH0 / USCI1_DAT1 / TM2 / UART1_nCTS
11	PD.3 / PWM0_CH1 / USCI1_CTL0 / TM3 / UART1_nRTS
12	PC.6 / ADC0_CH11 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT4
13	PC.7 / ADC0_CH10 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT5
14	PB.7 / ADC0_CH9 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / ACMP0_WLAT
15	PB.6 / ADC0_CH8 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / ACMP1_WLAT
16	PB.5 / ADC0_CH7 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 /

Pin	M0A21EB1AC Pin Function
	TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT0
17	PD.4 / PWM0_CH0 / UART0_TXD / USCI0_CLK / TM0
18	PD.5 / PWM0_CH1 / UART0_RXD / USCI0_DAT0 / TM1
19	PD.6 / PWM0_CH2 / USCI0_DAT1 / TM2 / UART1_nCTS
20	PD.7 / PWM0_CH3 / USCI0_CTL0 / TM3 / UART1_nRTS
21	PB.4 / ADC0_CH6 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / UART1_nCTS
22	PC.2 / ADC0_CH5 / ACMP0_N2 / ACMP1_N2 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / UART1_nRTS
23	PC.1 / ADC0_CH4 / ACMP0_N1 / ACMP1_N1 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD
24	PC.0 / ADC0_CH3 / ACMP1_P0 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE0
25	PA.2 / ADC0_CH2 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE1
26	PA.1 / ADC0_CH1 / ACMP0_N0 / ACMP1_N0 / VREF+ / ICE_CLK / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE0
27	PA.0 / ADC0_CH0 / DAC0_OUT / ACMP0_P0 / ICE_DAT / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE1
28	Vss

M0A21EC1AC Multi-function Pin Table

Pin	M0A21EC1AC Pin Function
1	V _{DD}
2	PA.5 / ADC0_CH16 / UART0_nRTS / XT1_IN / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / ACMP0_WLAT

Pin	M0A21EC1AC Pin Function
3	PA.4 / ADC0_CH15 / UART0_nRTS / XT1_OUT / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / ACMP1_WLAT
4	PA.3 / nRESET / UART0_nCTS / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_RXD / INT0
	PC.5 / ADC0_CH14 / X32_IN / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 /

5	PC.5 / ADC0_CH14 / X32_IN / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT1
6	PC.4 / ADC0_CH13 / X32_OUT / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT2
7	PC.3 / ADC0_CH12 / ACMP0_N3 / ACMP1_N3 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT3
8	PD.0 / PWM0_CH4 / UART0_TXD / USCI1_CLK / TM0
9	PD.1 / PWM0_CH5 / UART0_RXD / USCI1_DAT0 / TM1
10	PD.2 / PWM0_CH0 / USCI1_DAT1 / TM2 / UART1_nCTS
11	PD.3 / PWM0_CH1 / USCI1_CTL0 / TM3 / UART1_nRTS
12	PC.6 / ADC0_CH11 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT4
13	PC.7 / ADC0_CH10 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT5
14	PB.7 / ADC0_CH9 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / ACMP0_WLAT
15	PB.6 / ADC0_CH8 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / ACMP1_WLAT
16	PB.5 / ADC0_CH7 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT0
17	PD.4 / PWM0_CH0 / UART0_TXD / USCI0_CLK / TM0
18	PD.5 / PWM0_CH1 / UART0_RXD / USCI0_DAT0 / TM1
19	PD.6 / PWM0_CH2 / USCI0_DAT1 / TM2 / UART1_nCTS

Pin	M0A21EC1AC Pin Function
20	PD.7 / PWM0_CH3 / USCI0_CTL0 / TM3 / UART1_nRTS
21	PB.4 / ADC0_CH6 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / UART1_nCTS
22	PC.2 / ADC0_CH5 / ACMP0_N2 / ACMP1_N2 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / UART1_nRTS
23	PC.1 / ADC0_CH4 / ACMP0_N1 / ACMP1_N1 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD
24	PC.0 / ADC0_CH3 / ACMP1_P0 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE0
25	PA.2 / ADC0_CH2 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE1
26	PA.1 / ADC0_CH1 / ACMP0_N0 / ACMP1_N0 / VREF+ / ICE_CLK / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE0
27	PA.0 / ADC0_CH0 / DAC0_OUT / ACMP0_P0 / ICE_DAT / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE1
28	V _{SS}

4.1.3 M0A23 Series Pin Diagram

4.1.3.1 SSOP20 Package

Corresponding Part Number: M0A23OC1AC

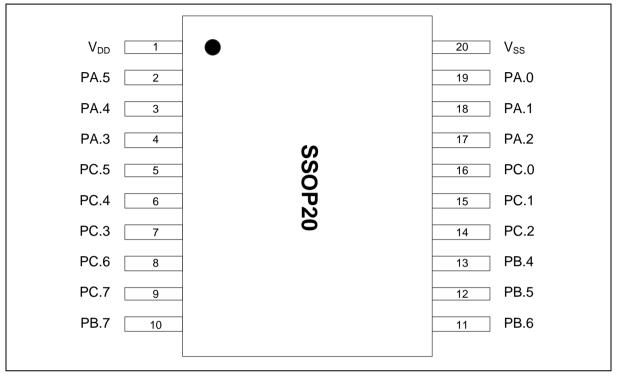
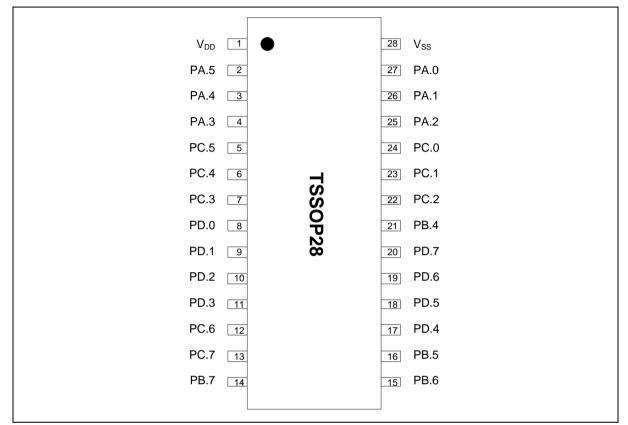



Figure 4.1-3 M0A23 Series SSOP 20-pin Diagram

4.1.3.2 TSSOP28 Package

Corresponding Part Number: M0A23EC1AC.

4.1.4 M0A23 Series Function Pin Table

4.1.4.1 SSOP20 Package

Corresponding Part Number: M0A23OC1AC.

M0A23OC1AC Multi-function Pin Table

Pin	M0A23OC1AC Pin Function
1	Vdd
2	PA.5 / ADC0_CH16 / UART0_nRTS / XT1_IN / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / ACMP0_WLAT
3	PA.4 / ADC0_CH15 / UART0_nRTS / XT1_OUT / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / ACMP1_WLAT
4	PA.3 / nRESET / UART0_nCTS / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_RXD / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_RXD / INT0
5	PC.5 / ADC0_CH14 / X32_IN / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT1
6	PC.4 / ADC0_CH13 / X32_OUT / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT2
7	PC.3 / ADC0_CH12 / ACMP0_N3 / ACMP1_N3 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT3
8	PC.6 / ADC0_CH11 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT4
9	PC.7 / ADC0_CH10 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT5
10	PB.7 / ADC0_CH9 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / ACMP0_WLAT
11	PB.6 / ADC0_CH8 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / ACMP1_WLAT
12	PB.5 / ADC0_CH7 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O /

Pin	M0A23OC1AC Pin Function
	ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT0
13	PB.4 / ADC0_CH6 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / UART1_nCTS
14	PC.2 / ADC0_CH5 / ACMP0_N2 / ACMP1_N2 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / UART1_nRTS
15	PC.1 / ADC0_CH4 / ACMP0_N1 / ACMP1_N1 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD
16	PC.0 / ADC0_CH3 / ACMP1_P0 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE0
17	PA.2 / ADC0_CH2 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE1
18	PA.1 / ADC0_CH1 / ACMP0_N0 / ACMP1_N0 / VREF+ / ICE_CLK / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE0
19	PA.0 / ADC0_CH0 / DAC0_OUT / ACMP0_P0 / ICE_DAT / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE1
20	Vss

4.1.4.2 TSSOP28 Package

Corresponding Part Number: M0A23EC1AC.

M0A23EC1AC Multi-function Pin Table

Pin	M0A23EC1AC Pin Function
1	V _{DD}
2	PA.5 / ADC0_CH16 / UART0_nRTS / XT1_IN / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / ACMP0_WLAT
3	PA.4 / ADC0_CH15 / UART0_nRTS / XT1_OUT / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 /

Pin	M0A23EC1AC Pin Function
	USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / ACMP1_WLAT
4	PA.3 / nRESET / UART0_nCTS / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_RXD / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_RXD / INT0
5	PC.5 / ADC0_CH14 / X32_IN / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT1
6	PC.4 / ADC0_CH13 / X32_OUT / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT2
7	PC.3 / ADC0_CH12 / ACMP0_N3 / ACMP1_N3 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT3
8	PD.0 / PWM0_CH4 / UART0_TXD / USCI1_CLK / TM0
9	PD.1 / PWM0_CH5 / UART0_RXD / USCI1_DAT0 / TM1
10	PD.2 / PWM0_CH0 / USCI1_DAT1 / TM2 / UART1_nCTS
11	PD.3 / PWM0_CH1 / USCI1_CTL0 / TM3 / UART1_nRTS
12	PC.6 / ADC0_CH11 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT4
13	PC.7 / ADC0_CH10 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / INT5
14	PB.7 / ADC0_CH9 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / ACMP0_WLAT
15	PB.6 / ADC0_CH8 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / ACMP1_WLAT
16	PB.5 / ADC0_CH7 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / INT0
17	PD.4 / PWM0_CH0 / UART0_TXD / USCI0_CLK / TM0
18	PD.5 / PWM0_CH1 / UART0_RXD / USCI0_DAT0 / TM1
19	PD.6 / PWM0_CH2 / USCI0_DAT1 / TM2 / UART1_nCTS

Pin	M0A23EC1AC Pin Function
20	PD.7 / PWM0_CH3 / USCI0_CTL0 / TM3 / UART1_nRTS
21	PB.4 / ADC0_CH6 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / UART1_nCTS
22	PC.2 / ADC0_CH5 / ACMP0_N2 / ACMP1_N2 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / UART1_nRTS
23	PC.1 / ADC0_CH4 / ACMP0_N1 / ACMP1_N1 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD
24	PC.0 / ADC0_CH3 / ACMP1_P0 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE0
25	PA.2 / ADC0_CH2 / UART0_nRTS / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE1
26	PA.1 / ADC0_CH1 / ACMP0_N0 / ACMP1_N0 / VREF+ / ICE_CLK / UART0_nCTS / CLKO / PWM0_CH0 / PWM0_CH2 / PWM0_CH4 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI1_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM0 / TM2 / TM0_EXT / TM2_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE0
27	PA.0 / ADC0_CH0 / DAC0_OUT / ACMP0_P0 / ICE_DAT / UART0_nCTS / CLKO / PWM0_CH1 / PWM0_CH3 / PWM0_CH5 / UART0_TXD / UART0_RXD / USCI0_CLK / USCI0_DAT0 / USCI0_DAT1 / USCI0_CTL0 / USCI0_CTL1 / USCI1_CLK / USCI1_DAT0 / USCI1_DAT1 / USCI1_CTL0 / CAN0_TXD / CAN0_RXD / ACMP0_O / ACMP1_O / ADC0_ST / TM1 / TM3 / TM1_EXT / TM3_EXT / UART1_TXD / UART1_RXD / PWM0_BRAKE1
28	V _{SS}

4.2 Pin Description

Different part number with same package might have different functions. Please refer to the selection guide in section 3.2.

4.2.1	M0A21/M0A23 Series Pin Description
-------	------------------------------------

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
1	1	V _{DD}	Р	MFP0	Power supply for I/O ports and LDO source for internal PLL and digital circuit.
2	2	PA.5	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH16	А	MFP1	ADC0 channel 16 analog input.
		UART0_nRTS	0	MFP2	UART0 request to Send output pin.
		XT1_IN	I	MFP3	External 4~24 MHz (high speed) crystal input pin.
		СІКО	0	MFP4	Clock Out
		PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
		PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
		PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	I	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	I	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	I	MFP23	ADC0 external trigger input pin.
		тмо	I/O	MFP24	Timer0 event counter input/toggle output pin.
		TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.
		TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.
		TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	I	MFP29	UART1 data receiver input pin.
		ACMP0_WLAT	I	MFP30	Analog comparator 0 window latch input pin
3	3	PA.4	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH15	А	MFP1	ADC0 channel 15 analog input.
		UART0_nRTS	0	MFP2	UART0 request to Send output pin.
		XT1_OUT	0	MFP3	External 4~24 MHz (high speed) crystal output pin.
		СГКО	0	MFP4	Clock Out
		PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
		PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
		PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	I	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	I	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	I	MFP23	ADC0 external trigger input pin.
		TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
		ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
		TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
		TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	I	MFP29	UART1 data receiver input pin.
		ACMP1_WLAT	I	MFP30	Analog comparator 1 window latch input pin

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
4	4	PA.3	I	MFP0	General purpose digital input pin.
		nRESET	I	MFP2	External reset input: active LOW, with an internal pull-up. Set this pin low reset to initial state.
					Note: It is recommended to use 10 k Ω pull-up resistor and 10 uF capacitor on nRESET pin.
		UART0_nCTS	Ι	MFP3	UART0 clear to Send input pin.
		PWM0_CH0	Ι	MFP5	PWM0 channel 0 capture input.
		PWM0_CH2	Ι	MFP6	PWM0 channel 2 capture input.
		PWM0_CH4	I	MFP7	PWM0 channel 4 capture input.
		UART0_RXD	I	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I	MFP10	USCI0 clock pin.
		USCI0_DAT0	I	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I	MFP13	USCI0 control 0 pin.
		USCI0_CTL1	I	MFP14	USCI0 control 1 pin.
		USCI1_CLK	I	MFP15	USCI1 clock pin.
		USCI1_DAT0	I	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I	MFP18	USCI1 control 0 pin.
		CAN0_RXD	I	MFP20	CAN0 bus receiver input.
		ADC0_ST	I	MFP23	ADC0 external trigger input pin.
		ТМО	I	MFP24	Timer0 event counter input pin.
		TM2	I	MFP25	Timer2 event counter input pin.
		TM0_EXT	I	MFP26	Timer0 external capture input pin.
		TM2_EXT	I	MFP27	Timer2 external capture input pin.
		UART1_RXD	I	MFP29	UART1 data receiver input pin.
		INTO	I	MFP30	External interrupt 0 input pin.
5	5	PC.5	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH14	А	MFP1	ADC0 channel 14 analog input.
		X32_IN	I	MFP2	External 32.768 kHz crystal input pin.
		UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
1		CLKO	0	MFP4	Clock Out
1		PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
1		PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
1		PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	I	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	Ι	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	Ι	MFP23	ADC0 external trigger input pin.
		TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
		ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
		TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
		TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	Ι	MFP29	UART1 data receiver input pin.
		INT1	Ι	MFP30	External interrupt 1 input pin.
6	6	PC.4	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH13	А	MFP1	ADC0 channel 13 analog input.
		X32_OUT	0	MFP2	External 32.768 kHz crystal output pin.
		UART0_nCTS	Ι	MFP3	UART0 clear to Send input pin.
		СІКО	0	MFP4	Clock Out
		PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
		PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
		PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	I	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	I	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	I	MFP23	ADC0 external trigger input pin.
		ТМО	I/O	MFP24	Timer0 event counter input/toggle output pin.
		TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.
		TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.
		TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	I	MFP29	UART1 data receiver input pin.
		INT2	I	MFP30	External interrupt 2 input pin.
7	7	PC.3	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH12	А	MFP1	ADC0 channel 12 analog input.
		ACMP0_N3	А	MFP1	Analog comparator 0 negative input 3 pin.
		ACMP1_N3	А	MFP1	Analog comparator 1 negative input 3 pin.
		UART0_nRTS	0	MFP2	UART0 request to Send output pin.
		UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
		СІКО	0	MFP4	Clock Out
		PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
		PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
		PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	I	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	I	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	I	MFP23	ADC0 external trigger input pin.
		TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
		ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
		TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
		TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	Ι	MFP29	UART1 data receiver input pin.
		INT3	Ι	MFP30	External interrupt 3 input pin.
	8	PD.0	I/O	MFP0	General purpose digital I/O pin.
		PWM0_CH4	I/O	MFP2	PWM0 channel 4 output/capture input.
		UART0_TXD	0	MFP3	UART0 data transmitter output pin.
		USCI1_CLK	I/O	MFP4	USCI1 clock pin.
		ТМО	I/O	MFP5	Timer0 event counter input/toggle output pin.
	9	PD.1	I/O	MFP0	General purpose digital I/O pin.
		PWM0_CH5	I/O	MFP2	PWM0 channel 5 output/capture input.
		UART0_RXD	Ι	MFP3	UART0 data receiver input pin.
		USCI1_DAT0	I/O	MFP4	USCI1 data 0 pin.
		TM1	I/O	MFP5	Timer1 event counter input/toggle output pin.
	10	PD.2	I/O	MFP0	General purpose digital I/O pin.
		PWM0_CH0	I/O	MFP2	PWM0 channel 0 output/capture input.
		CAN0_TXD	0	MFP3	CAN0 bus transmitter output.
		USCI1_DAT1	I/O	MFP4	USCI1 data 1 pin.
		TM2	I/O	MFP5	Timer2 event counter input/toggle output pin.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		UART1_nCTS	I	MFP6	UART1 clear to Send input pin.
	11	PD.3	I/O	MFP0	General purpose digital I/O pin.
		PWM0_CH1	I/O	MFP2	PWM0 channel 1 output/capture input.
		CAN0_RXD	I	MFP3	CAN0 bus receiver input.
		USCI1_CTL0	I/O	MFP4	USCI1 control 0 pin.
		ТМЗ	I/O	MFP5	Timer3 event counter input/toggle output pin.
		UART1_nRTS	0	MFP6	UART1 request to Send output pin.
8	12	PC.6	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH11	А	MFP1	ADC0 channel 11 analog input.
		UART0_nRTS	0	MFP2	UART0 request to Send output pin.
		UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
		СІКО	0	MFP4	Clock Out
		PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
		PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
		PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	I	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	I	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	I	MFP23	ADC0 external trigger input pin.
		ТМО	I/O	MFP24	Timer0 event counter input/toggle output pin.
		TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.
		TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	I	MFP29	UART1 data receiver input pin.
		INT4	I	MFP30	External interrupt 4 input pin.
9	13	PC.7	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH10	А	MFP1	ADC0 channel 10 analog input.
		UART0_nRTS	0	MFP2	UART0 request to Send output pin.
		UART0_nCTS	Į	MFP3	UART0 clear to Send input pin.
		CLKO	0	MFP4	Clock Out
		PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
		PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
		PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	Į	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	Į	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	I	MFP23	ADC0 external trigger input pin.
		TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
		ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
		TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
		TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	I	MFP29	UART1 data receiver input pin.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		INT5	I	MFP30	External interrupt 5 input pin.
10	14	PB.7	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH9	А	MFP1	ADC0 channel 9 analog input.
		UART0_nRTS	0	MFP2	UART0 request to Send output pin.
		UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
		СLКО	0	MFP4	Clock Out
		PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
		PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
		PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	I	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	I	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	I	MFP23	ADC0 external trigger input pin.
		тмо	I/O	MFP24	Timer0 event counter input/toggle output pin.
		TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.
		TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.
		TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	I	MFP29	UART1 data receiver input pin.
		ACMP0_WLAT	I	MFP30	Analog comparator 0 window latch input pin
11	15	PB.6	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH8	А	MFP1	ADC0 channel 8 analog input.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		UART0_nRTS	0	MFP2	UART0 request to Send output pin.
		UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
		CLKO	0	MFP4	Clock Out
		PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
		PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
		PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	I	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	I	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	I	MFP23	ADC0 external trigger input pin.
		TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
		ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
		TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
		TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	I	MFP29	UART1 data receiver input pin.
		ACMP1_WLAT	I	MFP30	Analog comparator 1 window latch input pin
12	16	PB.5	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH7	А	MFP1	ADC0 channel 7 analog input.
		UART0_nRTS	0	MFP2	UART0 request to Send output pin.
		UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
		CLKO	0	MFP4	Clock Out

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
		PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
		PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	Ι	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	I	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	I	MFP23	ADC0 external trigger input pin.
		ТМО	I/O	MFP24	Timer0 event counter input/toggle output pin.
		TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.
		TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.
		TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	I	MFP29	UART1 data receiver input pin.
		INTO	I	MFP30	External interrupt 0 input pin.
	17	PD.4	I/O	MFP0	General purpose digital I/O pin.
		PWM0_CH0	I/O	MFP2	PWM0 channel 0 output/capture input.
		UART0_TXD	0	MFP3	UART0 data transmitter output pin.
		USCI0_CLK	I/O	MFP4	USCI0 clock pin.
		ТМО	I/O	MFP5	Timer0 event counter input/toggle output pin.
	18	PD.5	I/O	MFP0	General purpose digital I/O pin.
		PWM0_CH1	I/O	MFP2	PWM0 channel 1 output/capture input.
		UART0_RXD	I	MFP3	UART0 data receiver input pin.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		USCI0_DAT0	I/O	MFP4	USCI0 data 0 pin.
		TM1	I/O	MFP5	Timer1 event counter input/toggle output pin.
	19	PD.6	I/O	MFP0	General purpose digital I/O pin.
		PWM0_CH2	I/O	MFP2	PWM0 channel 2 output/capture input.
		CAN0_TXD	0	MFP3	CAN0 bus transmitter output.
		USCI0_DAT1	I/O	MFP4	USCI0 data 1 pin.
		TM2	I/O	MFP5	Timer2 event counter input/toggle output pin.
		UART1_nCTS	I	MFP6	UART1 clear to Send input pin.
	20	PD.7	I/O	MFP0	General purpose digital I/O pin.
		PWM0_CH3	I/O	MFP2	PWM0 channel 3 output/capture input.
		CAN0_RXD	I	MFP3	CAN0 bus receiver input.
		USCI0_CTL0	I/O	MFP4	USCI0 control 0 pin.
		ТМЗ	I/O	MFP5	Timer3 event counter input/toggle output pin.
		UART1_nRTS	0	MFP6	UART1 request to Send output pin.
13	21	PB.4	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH6	А	MFP1	ADC0 channel 6 analog input.
		UART0_nRTS	0	MFP2	UART0 request to Send output pin.
		UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
		СLКО	0	MFP4	Clock Out
		PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
		PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
		PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	I	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		CAN0_RXD	I	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	Ι	MFP23	ADC0 external trigger input pin.
		TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
		ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
		TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
		TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	Ι	MFP29	UART1 data receiver input pin.
		UART1_nCTS	Ι	MFP30	UART1 clear to Send input pin.
14	22	PC.2	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH5	А	MFP1	ADC0 channel 5 analog input.
		ACMP0_N2	А	MFP1	Analog comparator 0 negative input 2 pin.
		ACMP1_N2	А	MFP1	Analog comparator 1 negative input 2 pin.
		UART0_nRTS	0	MFP2	UART0 request to Send output pin.
		UART0_nCTS	Ι	MFP3	UART0 clear to Send input pin.
		СІКО	0	MFP4	Clock Out
		PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
		PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
		PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	I	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	I	MFP20	CAN0 bus receiver input.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	I	MFP23	ADC0 external trigger input pin.
		тмо	I/O	MFP24	Timer0 event counter input/toggle output pin.
		TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.
		TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.
		TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	I	MFP29	UART1 data receiver input pin.
		UART1_nRTS	0	MFP30	UART1 request to Send output pin.
15	23	PC.1	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH4	А	MFP1	ADC0 channel 4 analog input.
		ACMP0_N1	А	MFP1	Analog comparator 0 negative input 1 pin.
		ACMP1_N1	А	MFP1	Analog comparator 1 negative input 1 pin.
		UART0_nRTS	0	MFP2	UART0 request to Send output pin.
		UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
		СГКО	0	MFP4	Clock Out
		PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
		PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
		PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	I	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	I	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	Ι	MFP23	ADC0 external trigger input pin.
		TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
		ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
		TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
		TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	Ι	MFP29	UART1 data receiver input pin.
16	24	PC.0	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH3	А	MFP1	ADC0 channel 3 analog input.
		ACMP1_P0	А	MFP1	Analog comparator 1 positive input 0 pin.
		UART0_nRTS	0	MFP2	UART0 request to Send output pin.
		UART0_nCTS	Ι	MFP3	UART0 clear to Send input pin.
		CLKO	0	MFP4	Clock Out
		PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
		PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
		PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	I	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	I	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	Ι	MFP23	ADC0 external trigger input pin.
		ТМО	I/O	MFP24	Timer0 event counter input/toggle output pin.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.
		TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.
		TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	I	MFP29	UART1 data receiver input pin.
		PWM0_BRAKE0	1	MFP30	PWM0 Brake 0 input pin.
17	25	PA.2	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH2	А	MFP1	ADC0 channel 2 analog input.
		UART0_nRTS	0	MFP2	UART0 request to Send output pin.
		UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
		CLKO	0	MFP4	Clock Out
		PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
		PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
		PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	ļ	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	ļ	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	I	MFP23	ADC0 external trigger input pin.
		TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
		ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
		TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
		TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	I	MFP29	UART1 data receiver input pin.
		PWM0_BRAKE1	I	MFP30	PWM0 Brake 1 input pin.
18	26	PA.1	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH1	А	MFP1	ADC0 channel 1 analog input.
		ACMP0_N0	А	MFP1	Analog comparator 0 negative input 0 pin.
		ACMP1_N0	А	MFP1	Analog comparator 1 negative input 0 pin.
		V _{REF}	A	MFP1	ADC reference voltage input. Note: This pin needs to be connected with a 1uF capacitor.
		ICE_CLK	I	MFP2	Serial wired debugger clock pin.
					Note: It is recommended to use 100 k Ω pull-up resistor on ICE_CLK pin.
		UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
		СЬКО	0	MFP4	Clock Out
		PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
		PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
		PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	I	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	I	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	I	MFP23	ADC0 external trigger input pin.
		тмо	I/O	MFP24	Timer0 event counter input/toggle output pin.
		TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.
		TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	I	MFP29	UART1 data receiver input pin.
		PWM0_BRAKE0	I	MFP30	PWM0 Brake 0 input pin.
19	27	PA.0	I/O	MFP0	General purpose digital I/O pin.
		ADC0_CH0	А	MFP1	ADC0 channel 0 analog input.
		DAC0_OUT	А	MFP1	DAC0 channel analog output.
		ACMP0_P0	А	MFP1	Analog comparator 0 positive input 0 pin.
		ICE_DAT	I/O	MFP2	Serial wired debugger data pin. Note: It is recommended to use 100 k Ω pull-up resistor on ICE_DAT pin.
		UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
		СГКО	0	MFP4	Clock Out
		PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
		PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
		PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
		UART0_TXD	0	MFP8	UART0 data transmitter output pin.
		UART0_RXD	I	MFP9	UART0 data receiver input pin.
		USCI0_CLK	I/O	MFP10	USCI0 clock pin.
		USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
		USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
		USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
		USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
		USCI1_CLK	I/O	MFP15	USCI1 clock pin.
		USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
		USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
		USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
		CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
		CAN0_RXD	I	MFP20	CAN0 bus receiver input.
		ACMP0_O	0	MFP21	Analog comparator 0 output pin.
		ACMP1_O	0	MFP22	Analog comparator 1 output pin.
		ADC0_ST	I	MFP23	ADC0 external trigger input pin.
		TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
		ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.

20 Pin	28 Pin	Pin Name	Туре	MFP	Description
		TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
		TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
		UART1_TXD	0	MFP28	UART1 data transmitter output pin.
		UART1_RXD	I	MFP29	UART1 data receiver input pin.
		PWM0_BRAKE1	I	MFP30	PWM0 Brake 1 input pin.
20	28	V _{SS}	Р	MFP0	Ground pin for digital circuit.

4.2.2 M0A21/M0A23 Series Multi-function Summary Table

Group	Pin Name	GPIO	MFP	Туре	Description
	ACMP0_N0	PA.1	MFP1	А	Analog comparator 0 negative input 0 pin.
	ACMP0_N1	PC.1	MFP1	А	Analog comparator 0 negative input 1 pin.
	ACMP0_N2	PC.2	MFP1	А	Analog comparator 0 negative input 2 pin.
	ACMP0_N3	PC.3	MFP1	А	Analog comparator 0 negative input 3 pin.
	ACMP0_O	PA.5	MFP21	0	Analog comparator 0 output pin.
	ACMP0_O	PA.4	MFP21	0	Analog comparator 0 output pin.
	ACMP0_O	PC.5	MFP21	0	Analog comparator 0 output pin.
	ACMP0_O	PC.4	MFP21	0	Analog comparator 0 output pin.
	ACMP0_O	PC.3	MFP21	0	Analog comparator 0 output pin.
	ACMP0_O	PC.6	MFP21	0	Analog comparator 0 output pin.
ACMP0	ACMP0_O	PC.7	MFP21	0	Analog comparator 0 output pin.
ACIVIFU	ACMP0_O	PB.7	MFP21	0	Analog comparator 0 output pin.
	ACMP0_O	PB.6	MFP21	0	Analog comparator 0 output pin.
	ACMP0_O	PB.5	MFP21	0	Analog comparator 0 output pin.
	ACMP0_O	PB.4	MFP21	0	Analog comparator 0 output pin.
	ACMP0_O	PC.2	MFP21	0	Analog comparator 0 output pin.
	ACMP0_O	PC.1	MFP21	0	Analog comparator 0 output pin.
	ACMP0_O	PC.0	MFP21	0	Analog comparator 0 output pin.
	ACMP0_O	PA.2	MFP21	0	Analog comparator 0 output pin.
	ACMP0_O	PA.1	MFP21	0	Analog comparator 0 output pin.
	ACMP0_O	PA.0	MFP21	0	Analog comparator 0 output pin.
	ACMP0_P0	PA.0	MFP1	А	Analog comparator 0 positive input 0 pin.

Group	Pin Name	GPIO	MFP	Туре	Description
	ACMP0_WLAT	PA.5	MFP30	I	Analog comparator 0 window latch input pin
	ACMP0_WLAT	PB.7	MFP30	Ι	Analog comparator 0 window latch input pin
	ACMP1_N0	PA.1	MFP1	А	Analog comparator 1 negative input 0 pin.
	ACMP1_N1	PC.1	MFP1	А	Analog comparator 1 negative input 1 pin.
	ACMP1_N2	PC.2	MFP1	А	Analog comparator 1 negative input 2 pin.
	ACMP1_N3	PC.3	MFP1	А	Analog comparator 1 negative input 3 pin.
	ACMP1_O	PA.5	MFP22	0	Analog comparator 1 output pin.
	ACMP1_O	PA.4	MFP22	0	Analog comparator 1 output pin.
	ACMP1_O	PC.5	MFP22	0	Analog comparator 1 output pin.
	ACMP1_O	PC.4	MFP22	0	Analog comparator 1 output pin.
	ACMP1_O	PC.3	MFP22	0	Analog comparator 1 output pin.
	ACMP1_O	PC.6	MFP22	0	Analog comparator 1 output pin.
	ACMP1_O	PC.7	MFP22	0	Analog comparator 1 output pin.
	ACMP1_O	PB.7	MFP22	0	Analog comparator 1 output pin.
ACMP1	ACMP1_O	PB.6	MFP22	0	Analog comparator 1 output pin.
	ACMP1_O	PB.5	MFP22	0	Analog comparator 1 output pin.
	ACMP1_O	PB.4	MFP22	0	Analog comparator 1 output pin.
	ACMP1_O	PC.2	MFP22	0	Analog comparator 1 output pin.
	ACMP1_O	PC.1	MFP22	0	Analog comparator 1 output pin.
	ACMP1_O	PC.0	MFP22	0	Analog comparator 1 output pin.
	ACMP1_O	PA.2	MFP22	0	Analog comparator 1 output pin.
	ACMP1_O	PA.1	MFP22	0	Analog comparator 1 output pin.
	ACMP1_O	PA.0	MFP22	0	Analog comparator 1 output pin.
	ACMP1_P0	PC.0	MFP1	А	Analog comparator 1 positive input 0 pin.
	ACMP1_WLAT	PA.4	MFP30	Ι	Analog comparator 1 window latch input pin
	ACMP1_WLAT	PB.6	MFP30	Ι	Analog comparator 1 window latch input pin
	ADC0_CH0	PA.0	MFP1	А	ADC0 channel 0 analog input.
	ADC0_CH1	PA.1	MFP1	А	ADC0 channel 1 analog input.
	ADC0_CH10	PC.7	MFP1	А	ADC0 channel 10 analog input.
	ADC0_CH11	PC.6	MFP1	А	ADC0 channel 11 analog input.
ADC0	ADC0_CH12	PC.3	MFP1	А	ADC0 channel 12 analog input.
	ADC0_CH13	PC.4	MFP1	А	ADC0 channel 13 analog input.
	ADC0_CH14	PC.5	MFP1	А	ADC0 channel 14 analog input.
	ADC0_CH15	PA.4	MFP1	А	ADC0 channel 15 analog input.

M0A21/M0A23 Series

Group	Pin Name	GPIO	MFP	Туре	Description
	ADC0_CH16	PA.5	MFP1	А	ADC0 channel 16 analog input.
	ADC0_CH2	PA.2	MFP1	А	ADC0 channel 2 analog input.
	ADC0_CH3	PC.0	MFP1	А	ADC0 channel 3 analog input.
	ADC0_CH4	PC.1	MFP1	А	ADC0 channel 4 analog input.
	ADC0_CH5	PC.2	MFP1	А	ADC0 channel 5 analog input.
	ADC0_CH6	PB.4	MFP1	А	ADC0 channel 6 analog input.
	ADC0_CH7	PB.5	MFP1	А	ADC0 channel 7 analog input.
	ADC0_CH8	PB.6	MFP1	А	ADC0 channel 8 analog input.
	ADC0_CH9	PB.7	MFP1	А	ADC0 channel 9 analog input.
	ADC0_ST	PA.5	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PA.4	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PA.3	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PC.5	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PC.4	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PC.3	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PC.6	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PC.7	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PB.7	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PB.6	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PB.5	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PB.4	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PC.2	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PC.1	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PC.0	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PA.2	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PA.1	MFP23	I	ADC0 external trigger input pin.
	ADC0_ST	PA.0	MFP23	I	ADC0 external trigger input pin.
	CAN0_RXD	PA.5	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PA.4	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PA.3	MFP20	I	CAN0 bus receiver input.
CAN0	CAN0_RXD	PC.5	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PC.4	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PC.3	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PD.3	MFP3	I	CAN0 bus receiver input.

Group	Pin Name	GPIO	MFP	Туре	Description
	CAN0_RXD	PC.6	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PC.7	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PB.7	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PB.6	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PB.5	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PD.7	MFP3	I	CAN0 bus receiver input.
	CAN0_RXD	PB.4	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PC.2	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PC.1	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PC.0	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PA.2	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PA.1	MFP20	I	CAN0 bus receiver input.
	CAN0_RXD	PA.0	MFP20	I	CAN0 bus receiver input.
	CAN0_TXD	PA.5	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PA.4	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PC.5	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PC.4	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PC.3	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PD.2	MFP3	0	CAN0 bus transmitter output.
	CAN0_TXD	PC.6	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PC.7	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PB.7	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PB.6	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PB.5	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PD.6	MFP3	0	CAN0 bus transmitter output.
	CAN0_TXD	PB.4	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PC.2	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PC.1	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PC.0	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PA.2	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PA.1	MFP19	0	CAN0 bus transmitter output.
	CAN0_TXD	PA.0	MFP19	0	CAN0 bus transmitter output.
01.1/2	CLKO	PA.5	MFP4	0	Clock Out
CLKO	CLKO	PA.4	MFP4	0	Clock Out

Group	Pin Name	GPIO	MFP	Туре	Description
	CLKO	PC.5	MFP4	0	Clock Out
	CLKO	PC.4	MFP4	0	Clock Out
	CLKO	PC.3	MFP4	0	Clock Out
	CLKO	PC.6	MFP4	0	Clock Out
	CLKO	PC.7	MFP4	0	Clock Out
	CLKO	PB.7	MFP4	0	Clock Out
	CLKO	PB.6	MFP4	0	Clock Out
	CLKO	PB.5	MFP4	0	Clock Out
	CLKO	PB.4	MFP4	0	Clock Out
	CLKO	PC.2	MFP4	0	Clock Out
	CLKO	PC.1	MFP4	0	Clock Out
	CLKO	PC.0	MFP4	0	Clock Out
	CLKO	PA.2	MFP4	0	Clock Out
	CLKO	PA.1	MFP4	0	Clock Out
	CLKO	PA.0	MFP4	0	Clock Out
DAC0	DAC0_OUT	PA.0	MFP1	А	DAC0 channel analog output.
					Serial wired debugger clock pin.
105	ICE_CLK	PA.1	MFP2	I	Note: It is recommended to use 100 k Ω pull-up resistor on ICE_CLK pin.
ICE					Serial wired debugger data pin.
	ICE_DAT	PA.0	MFP2	I/O	Note: It is recommended to use 100 k Ω pull-up resistor on ICE_DAT pin.
INTO	INTO	PA.3	MFP30	I	External interrupt 0 input pin.
INTO	INTO	PB.5	MFP30	I	External interrupt 0 input pin.
INT1	INT1	PC.5	MFP30	I	External interrupt 1 input pin.
INT2	INT2	PC.4	MFP30	ļ	External interrupt 2 input pin.
INT3	INT3	PC.3	MFP30	I	External interrupt 3 input pin.
INT4	INT4	PC.6	MFP30	I	External interrupt 4 input pin.
INT5	INT5	PC.7	MFP30	I	External interrupt 5 input pin.
	PWM0_BRAKE0	PC.0	MFP30	I	PWM0 Brake 0 input pin.
	PWM0_BRAKE0	PA.1	MFP30	I	PWM0 Brake 0 input pin.
	PWM0_BRAKE1	PA.2	MFP30	I	PWM0 Brake 1 input pin.
PWM0	PWM0_BRAKE1	PA.0	MFP30	I	PWM0 Brake 1 input pin.
	PWM0_CH0	PA.5	MFP5	I/O	PWM0 channel 0 output/capture input.
	PWM0_CH0	PA.3	MFP5	I	PWM0 channel 0 capture input.
	PWM0_CH0	PC.4	MFP5	I/O	PWM0 channel 0 output/capture input.

Group	Pin Name	GPIO	MFP	Туре	Description
	PWM0_CH0	PD.2	MFP2	I/O	PWM0 channel 0 output/capture input.
	PWM0_CH0	PC.6	MFP5	I/O	PWM0 channel 0 output/capture input.
	PWM0_CH0	PB.7	MFP5	I/O	PWM0 channel 0 output/capture input.
	PWM0_CH0	PB.5	MFP5	I/O	PWM0 channel 0 output/capture input.
	PWM0_CH0	PD.4	MFP2	I/O	PWM0 channel 0 output/capture input.
	PWM0_CH0	PC.2	MFP5	I/O	PWM0 channel 0 output/capture input.
	PWM0_CH0	PC.0	MFP5	I/O	PWM0 channel 0 output/capture input.
	PWM0_CH0	PA.1	MFP5	I/O	PWM0 channel 0 output/capture input.
	PWM0_CH1	PA.4	MFP5	I/O	PWM0 channel 1 output/capture input.
	PWM0_CH1	PC.5	MFP5	I/O	PWM0 channel 1 output/capture input.
	PWM0_CH1	PC.3	MFP5	I/O	PWM0 channel 1 output/capture input.
	PWM0_CH1	PD.3	MFP2	I/O	PWM0 channel 1 output/capture input.
	PWM0_CH1	PC.7	MFP5	I/O	PWM0 channel 1 output/capture input.
	PWM0_CH1	PB.6	MFP5	I/O	PWM0 channel 1 output/capture input.
	PWM0_CH1	PD.5	MFP2	I/O	PWM0 channel 1 output/capture input.
	PWM0_CH1	PB.4	MFP5	I/O	PWM0 channel 1 output/capture input.
	PWM0_CH1	PC.1	MFP5	I/O	PWM0 channel 1 output/capture input.
	PWM0_CH1	PA.2	MFP5	I/O	PWM0 channel 1 output/capture input.
	PWM0_CH1	PA.0	MFP5	I/O	PWM0 channel 1 output/capture input.
	PWM0_CH2	PA.5	MFP6	I/O	PWM0 channel 2 output/capture input.
	PWM0_CH2	PA.3	MFP6	I	PWM0 channel 2 capture input.
	PWM0_CH2	PC.4	MFP6	I/O	PWM0 channel 2 output/capture input.
	PWM0_CH2	PC.6	MFP6	I/O	PWM0 channel 2 output/capture input.
	PWM0_CH2	PB.7	MFP6	I/O	PWM0 channel 2 output/capture input.
	PWM0_CH2	PB.5	MFP6	I/O	PWM0 channel 2 output/capture input.
	PWM0_CH2	PD.6	MFP2	I/O	PWM0 channel 2 output/capture input.
	PWM0_CH2	PC.2	MFP6	I/O	PWM0 channel 2 output/capture input.
	PWM0_CH2	PC.0	MFP6	I/O	PWM0 channel 2 output/capture input.
	PWM0_CH2	PA.1	MFP6	I/O	PWM0 channel 2 output/capture input.
	PWM0_CH3	PA.4	MFP6	I/O	PWM0 channel 3 output/capture input.
	PWM0_CH3	PC.5	MFP6	I/O	PWM0 channel 3 output/capture input.
	PWM0_CH3	PC.3	MFP6	I/O	PWM0 channel 3 output/capture input.
	PWM0_CH3	PC.7	MFP6	I/O	PWM0 channel 3 output/capture input.
	PWM0_CH3	PB.6	MFP6	I/O	PWM0 channel 3 output/capture input.

M0A21/M0A23 Series

Group	Pin Name	GPIO	MFP	Туре	Description
	PWM0_CH3	PD.7	MFP2	I/O	PWM0 channel 3 output/capture input.
	PWM0_CH3	PB.4	MFP6	I/O	PWM0 channel 3 output/capture input.
	PWM0_CH3	PC.1	MFP6	I/O	PWM0 channel 3 output/capture input.
	PWM0_CH3	PA.2	MFP6	I/O	PWM0 channel 3 output/capture input.
	PWM0_CH3	PA.0	MFP6	I/O	PWM0 channel 3 output/capture input.
	PWM0_CH4	PA.5	MFP7	I/O	PWM0 channel 4 output/capture input.
	PWM0_CH4	PA.3	MFP7	I	PWM0 channel 4 capture input.
	PWM0_CH4	PC.4	MFP7	I/O	PWM0 channel 4 output/capture input.
	PWM0_CH4	PD.0	MFP2	I/O	PWM0 channel 4 output/capture input.
	PWM0_CH4	PC.6	MFP7	I/O	PWM0 channel 4 output/capture input.
	PWM0_CH4	PB.7	MFP7	I/O	PWM0 channel 4 output/capture input.
	PWM0_CH4	PB.5	MFP7	I/O	PWM0 channel 4 output/capture input.
	PWM0_CH4	PC.2	MFP7	I/O	PWM0 channel 4 output/capture input.
	PWM0_CH4	PC.0	MFP7	I/O	PWM0 channel 4 output/capture input.
	PWM0_CH4	PA.1	MFP7	I/O	PWM0 channel 4 output/capture input.
	PWM0_CH5	PA.4	MFP7	I/O	PWM0 channel 5 output/capture input.
	PWM0_CH5	PC.5	MFP7	I/O	PWM0 channel 5 output/capture input.
	PWM0_CH5	PC.3	MFP7	I/O	PWM0 channel 5 output/capture input.
	PWM0_CH5	PD.1	MFP2	I/O	PWM0 channel 5 output/capture input.
	PWM0_CH5	PC.7	MFP7	I/O	PWM0 channel 5 output/capture input.
	PWM0_CH5	PB.6	MFP7	I/O	PWM0 channel 5 output/capture input.
	PWM0_CH5	PB.4	MFP7	I/O	PWM0 channel 5 output/capture input.
	PWM0_CH5	PC.1	MFP7	I/O	PWM0 channel 5 output/capture input.
	PWM0_CH5	PA.2	MFP7	I/O	PWM0 channel 5 output/capture input.
	PWM0_CH5	PA.0	MFP7	I/O	PWM0 channel 5 output/capture input.
	тмо	PA.5	MFP24	I/O	Timer0 event counter input/toggle output pin.
	тмо	PA.3	MFP24	I	Timer0 event counter input pin.
	тмо	PC.4	MFP24	I/O	Timer0 event counter input/toggle output pin.
	ТМО	PD.0	MFP5	I/O	Timer0 event counter input/toggle output pin.
TM0	ТМО	PC.6	MFP24	I/O	Timer0 event counter input/toggle output pin.
	ТМО	PB.7	MFP24	I/O	Timer0 event counter input/toggle output pin.
	ТМО	PB.5	MFP24	I/O	Timer0 event counter input/toggle output pin.
	ТМО	PD.4	MFP5	I/O	Timer0 event counter input/toggle output pin.
	тмо	PC.2	MFP24	I/O	Timer0 event counter input/toggle output pin.

Group	Pin Name	GPIO	MFP	Туре	Description
	TM0	PC.0	MFP24	I/O	Timer0 event counter input/toggle output pin.
	ТМО	PA.1	MFP24	I/O	Timer0 event counter input/toggle output pin.
	TM1	PA.4	MFP24	I/O	Timer1 event counter input/toggle output pin.
	TM1	PC.5	MFP24	I/O	Timer1 event counter input/toggle output pin.
	TM1	PC.3	MFP24	I/O	Timer1 event counter input/toggle output pin.
	TM1	PD.1	MFP5	I/O	Timer1 event counter input/toggle output pin.
	TM1	PC.7	MFP24	I/O	Timer1 event counter input/toggle output pin.
TM1	TM1	PB.6	MFP24	I/O	Timer1 event counter input/toggle output pin.
	TM1	PD.5	MFP5	I/O	Timer1 event counter input/toggle output pin.
	TM1	PB.4	MFP24	I/O	Timer1 event counter input/toggle output pin.
	TM1	PC.1	MFP24	I/O	Timer1 event counter input/toggle output pin.
	TM1	PA.2	MFP24	I/O	Timer1 event counter input/toggle output pin.
	TM1	PA.0	MFP24	I/O	Timer1 event counter input/toggle output pin.
	TM2	PA.5	MFP25	I/O	Timer2 event counter input/toggle output pin.
	TM2	PA.3	MFP25	I	Timer2 event counter input pin.
	TM2	PC.4	MFP25	I/O	Timer2 event counter input/toggle output pin.
	TM2	PD.2	MFP5	I/O	Timer2 event counter input/toggle output pin.
	TM2	PC.6	MFP25	I/O	Timer2 event counter input/toggle output pin.
TM2	TM2	PB.7	MFP25	I/O	Timer2 event counter input/toggle output pin.
	TM2	PB.5	MFP25	I/O	Timer2 event counter input/toggle output pin.
	TM2	PD.6	MFP5	I/O	Timer2 event counter input/toggle output pin.
	TM2	PC.2	MFP25	I/O	Timer2 event counter input/toggle output pin.
	TM2	PC.0	MFP25	I/O	Timer2 event counter input/toggle output pin.
	TM2	PA.1	MFP25	I/O	Timer2 event counter input/toggle output pin.
	ТМЗ	PA.4	MFP25	I/O	Timer3 event counter input/toggle output pin.
	ТМЗ	PC.5	MFP25	I/O	Timer3 event counter input/toggle output pin.
	тмз	PC.3	MFP25	I/O	Timer3 event counter input/toggle output pin.
	ТМЗ	PD.3	MFP5	I/O	Timer3 event counter input/toggle output pin.
TMO	ТМЗ	PC.7	MFP25	I/O	Timer3 event counter input/toggle output pin.
TM3	ТМЗ	PB.6	MFP25	I/O	Timer3 event counter input/toggle output pin.
	ТМЗ	PD.7	MFP5	I/O	Timer3 event counter input/toggle output pin.
	ТМЗ	PB.4	MFP25	I/O	Timer3 event counter input/toggle output pin.
	ТМЗ	PC.1	MFP25	I/O	Timer3 event counter input/toggle output pin.
	ТМЗ	PA.2	MFP25	I/O	Timer3 event counter input/toggle output pin.

M0A21/M0A23 Series

Group	Pin Name	GPIO	MFP	Туре	Description
	TM3	PA.0	MFP25	I/O	Timer3 event counter input/toggle output pin.
	TM0_EXT	PA.5	MFP26	I/O	Timer0 external capture input/toggle output pin.
	TM0_EXT	PA.3	MFP26	I	Timer0 external capture input pin.
	TM0_EXT	PC.4	MFP26	I/O	Timer0 external capture input/toggle output pin.
	TM0_EXT	PC.6	MFP26	I/O	Timer0 external capture input/toggle output pin.
тмо	TM0_EXT	PB.7	MFP26	I/O	Timer0 external capture input/toggle output pin.
	TM0_EXT	PB.5	MFP26	I/O	Timer0 external capture input/toggle output pin.
	TM0_EXT	PC.2	MFP26	I/O	Timer0 external capture input/toggle output pin.
	TM0_EXT	PC.0	MFP26	I/O	Timer0 external capture input/toggle output pin.
	TM0_EXT	PA.1	MFP26	I/O	Timer0 external capture input/toggle output pin.
	TM1_EXT	PA.4	MFP26	I/O	Timer1 external capture input/toggle output pin.
	TM1_EXT	PC.5	MFP26	I/O	Timer1 external capture input/toggle output pin.
	TM1_EXT	PC.3	MFP26	I/O	Timer1 external capture input/toggle output pin.
	TM1_EXT	PC.7	MFP26	I/O	Timer1 external capture input/toggle output pin.
TM1	TM1_EXT	PB.6	MFP26	I/O	Timer1 external capture input/toggle output pin.
	TM1_EXT	PB.4	MFP26	I/O	Timer1 external capture input/toggle output pin.
	TM1_EXT	PC.1	MFP26	I/O	Timer1 external capture input/toggle output pin.
	TM1_EXT	PA.2	MFP26	I/O	Timer1 external capture input/toggle output pin.
	TM1_EXT	PA.0	MFP26	I/O	Timer1 external capture input/toggle output pin.
	TM2_EXT	PA.5	MFP27	I/O	Timer2 external capture input/toggle output pin.
	TM2_EXT	PA.3	MFP27	I	Timer2 external capture input pin.
	TM2_EXT	PC.4	MFP27	I/O	Timer2 external capture input/toggle output pin.
	TM2_EXT	PC.6	MFP27	I/O	Timer2 external capture input/toggle output pin.
TM2	TM2_EXT	PB.7	MFP27	I/O	Timer2 external capture input/toggle output pin.
	TM2_EXT	PB.5	MFP27	I/O	Timer2 external capture input/toggle output pin.
	TM2_EXT	PC.2	MFP27	I/O	Timer2 external capture input/toggle output pin.
	TM2_EXT	PC.0	MFP27	I/O	Timer2 external capture input/toggle output pin.
	TM2_EXT	PA.1	MFP27	I/O	Timer2 external capture input/toggle output pin.
	TM3_EXT	PA.4	MFP27	I/O	Timer3 external capture input/toggle output pin.
	TM3_EXT	PC.5	MFP27	I/O	Timer3 external capture input/toggle output pin.
TMO	TM3_EXT	PC.3	MFP27	I/O	Timer3 external capture input/toggle output pin.
TM3	TM3_EXT	PC.7	MFP27	I/O	Timer3 external capture input/toggle output pin.
	TM3_EXT	PB.6	MFP27	I/O	Timer3 external capture input/toggle output pin.
	TM3_EXT	PB.4	MFP27	I/O	Timer3 external capture input/toggle output pin.

Group	Pin Name	GPIO	MFP	Туре	Description
	TM3_EXT	PC.1	MFP27	I/O	Timer3 external capture input/toggle output pin.
	TM3_EXT	PA.2	MFP27	I/O	Timer3 external capture input/toggle output pin.
	TM3_EXT	PA.0	MFP27	I/O	Timer3 external capture input/toggle output pin.
	UART0_RXD	PA.5	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PA.4	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PA.3	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PC.5	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PC.4	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PC.3	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PD.1	MFP3	I	UART0 data receiver input pin.
	UART0_RXD	PC.6	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PC.7	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PB.7	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PB.6	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PB.5	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PD.5	MFP3	I	UART0 data receiver input pin.
	UART0_RXD	PB.4	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PC.2	MFP9	I	UART0 data receiver input pin.
JART0	UART0_RXD	PC.1	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PC.0	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PA.2	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PA.1	MFP9	I	UART0 data receiver input pin.
	UART0_RXD	PA.0	MFP9	I	UART0 data receiver input pin.
	UART0_TXD	PA.5	MFP8	0	UART0 data transmitter output pin.
	UART0_TXD	PA.4	MFP8	0	UART0 data transmitter output pin.
	UART0_TXD	PC.5	MFP8	0	UART0 data transmitter output pin.
	UART0_TXD	PC.4	MFP8	0	UART0 data transmitter output pin.
	UART0_TXD	PC.3	MFP8	0	UART0 data transmitter output pin.
	UART0_TXD	PD.0	MFP3	0	UART0 data transmitter output pin.
	UART0_TXD	PC.6	MFP8	0	UART0 data transmitter output pin.
	UART0_TXD	PC.7	MFP8	0	UART0 data transmitter output pin.
	UART0_TXD	PB.7	MFP8	0	UART0 data transmitter output pin.
	UART0_TXD	PB.6	MFP8	0	UART0 data transmitter output pin.
	UART0_TXD	PB.5	MFP8	0	UART0 data transmitter output pin.

M0A21/M0A23 Series

Group	Pin Name	GPIO	MFP	Туре	Description
	UART0_TXD	PD.4	MFP3	0	UART0 data transmitter output pin.
	UART0_TXD	PB.4	MFP8	0	UART0 data transmitter output pin.
	UART0_TXD	PC.2	MFP8	0	UART0 data transmitter output pin.
	UART0_TXD	PC.1	MFP8	0	UART0 data transmitter output pin.
	UART0_TXD	PC.0	MFP8	0	UART0 data transmitter output pin.
	UART0_TXD	PA.2	MFP8	0	UART0 data transmitter output pin.
	UART0_TXD	PA.1	MFP8	0	UART0 data transmitter output pin.
	UART0_TXD	PA.0	MFP8	0	UART0 data transmitter output pin.
	UART0_nCTS	PA.3	MFP3	I	UART0 clear to Send input pin.
	UART0_nCTS	PC.5	MFP3	I	UART0 clear to Send input pin.
	UART0_nCTS	PC.4	MFP3	I	UART0 clear to Send input pin.
	UART0_nCTS	PC.3	MFP3	I	UART0 clear to Send input pin.
	UART0_nCTS	PC.6	MFP3	I	UART0 clear to Send input pin.
	UART0_nCTS	PC.7	MFP3	I	UART0 clear to Send input pin.
	UART0_nCTS	PB.7	MFP3	I	UART0 clear to Send input pin.
	UART0_nCTS	PB.6	MFP3	I	UART0 clear to Send input pin.
	UART0_nCTS	PB.5	MFP3	I	UART0 clear to Send input pin.
	UART0_nCTS	PB.4	MFP3	I	UART0 clear to Send input pin.
	UART0_nCTS	PC.2	MFP3	I	UART0 clear to Send input pin.
	UART0_nCTS	PC.1	MFP3	I	UART0 clear to Send input pin.
	UART0_nCTS	PC.0	MFP3	I	UART0 clear to Send input pin.
	UART0_nCTS	PA.2	MFP3	I	UART0 clear to Send input pin.
	UART0_nCTS	PA.1	MFP3	I	UART0 clear to Send input pin.
	UART0_nCTS	PA.0	MFP3	I	UART0 clear to Send input pin.
	UART0_nRTS	PA.5	MFP2	0	UART0 request to Send output pin.
	UART0_nRTS	PA.4	MFP2	0	UART0 request to Send output pin.
	UART0_nRTS	PC.3	MFP2	0	UART0 request to Send output pin.
	UART0_nRTS	PC.6	MFP2	0	UART0 request to Send output pin.
	UART0_nRTS	PC.7	MFP2	0	UART0 request to Send output pin.
	UART0_nRTS	PB.7	MFP2	0	UART0 request to Send output pin.
	UART0_nRTS	PB.6	MFP2	0	UART0 request to Send output pin.
	UART0_nRTS	PB.5	MFP2	0	UART0 request to Send output pin.
	UART0_nRTS	PB.4	MFP2	0	UART0 request to Send output pin.
	UART0_nRTS	PC.2	MFP2	0	UART0 request to Send output pin.

Group	Pin Name	GPIO	MFP	Туре	Description
	UART0_nRTS	PC.1	MFP2	0	UART0 request to Send output pin.
	UART0_nRTS	PC.0	MFP2	0	UART0 request to Send output pin.
	UART0_nRTS	PA.2	MFP2	0	UART0 request to Send output pin.
	UART1_RXD	PA.5	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PA.4	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PA.3	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PC.5	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PC.4	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PC.3	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PC.6	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PC.7	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PB.7	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PB.6	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PB.5	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PB.4	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PC.2	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PC.1	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PC.0	MFP29	I	UART1 data receiver input pin.
UART1	UART1_RXD	PA.2	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PA.1	MFP29	I	UART1 data receiver input pin.
	UART1_RXD	PA.0	MFP29	I	UART1 data receiver input pin.
	UART1_TXD	PA.5	MFP28	0	UART1 data transmitter output pin.
	UART1_TXD	PA.4	MFP28	0	UART1 data transmitter output pin.
	UART1_TXD	PC.5	MFP28	0	UART1 data transmitter output pin.
	UART1_TXD	PC.4	MFP28	0	UART1 data transmitter output pin.
	UART1_TXD	PC.3	MFP28	0	UART1 data transmitter output pin.
	UART1_TXD	PC.6	MFP28	0	UART1 data transmitter output pin.
	UART1_TXD	PC.7	MFP28	0	UART1 data transmitter output pin.
	UART1_TXD	PB.7	MFP28	0	UART1 data transmitter output pin.
	UART1_TXD	PB.6	MFP28	0	UART1 data transmitter output pin.
	UART1_TXD	PB.5	MFP28	0	UART1 data transmitter output pin.
	UART1_TXD	PB.4	MFP28	0	UART1 data transmitter output pin.
	UART1_TXD	PC.2	MFP28	0	UART1 data transmitter output pin.
	UART1_TXD	PC.1	MFP28	0	UART1 data transmitter output pin.

M0A21/M0A23 Series

Group	Pin Name	GPIO	MFP	Туре	Description
	UART1_TXD	PC.0	MFP28	0	UART1 data transmitter output pin.
	UART1_TXD	PA.2	MFP28	0	UART1 data transmitter output pin.
	UART1_TXD	PA.1	MFP28	0	UART1 data transmitter output pin.
	UART1_TXD	PA.0	MFP28	0	UART1 data transmitter output pin.
	UART1_nCTS	PD.2	MFP6	I	UART1 clear to Send input pin.
	UART1_nCTS	PD.6	MFP6	I	UART1 clear to Send input pin.
	UART1_nCTS	PB.4	MFP30	I	UART1 clear to Send input pin.
	UART1_nRTS	PD.3	MFP6	0	UART1 request to Send output pin.
	UART1_nRTS	PD.7	MFP6	0	UART1 request to Send output pin.
	UART1_nRTS	PC.2	MFP30	0	UART1 request to Send output pin.
	USCI0_CLK	PA.5	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PA.4	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PA.3	MFP10	I	USCI0 clock pin.
	USCI0_CLK	PC.5	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PC.4	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PC.3	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PC.6	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PC.7	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PB.7	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PB.6	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PB.5	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PD.4	MFP4	I/O	USCI0 clock pin.
USCI0	USCI0_CLK	PB.4	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PC.2	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PC.1	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PC.0	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PA.2	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PA.1	MFP10	I/O	USCI0 clock pin.
	USCI0_CLK	PA.0	MFP10	I/O	USCI0 clock pin.
	USCI0_CTL0	PA.5	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PA.4	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PA.3	MFP13	I	USCI0 control 0 pin.
	USCI0_CTL0	PC.5	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PC.4	MFP13	I/O	USCI0 control 0 pin.

Group	Pin Name	GPIO	MFP	Туре	Description
	USCI0_CTL0	PC.3	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PC.6	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PC.7	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PB.7	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PB.6	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PB.5	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PD.7	MFP4	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PB.4	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PC.2	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PC.1	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PC.0	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PA.2	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PA.1	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL0	PA.0	MFP13	I/O	USCI0 control 0 pin.
	USCI0_CTL1	PA.5	MFP14	I/O	USCI0 control 1 pin.
	USCI0_CTL1	PA.3	MFP14	I	USCI0 control 1 pin.
	USCI0_CTL1	PC.5	MFP14	I/O	USCI0 control 1 pin.
	USCI0_CTL1	PC.3	MFP14	I/O	USCI0 control 1 pin.
	USCI0_CTL1	PC.7	MFP14	I/O	USCI0 control 1 pin.
	USCI0_CTL1	PB.6	MFP14	I/O	USCI0 control 1 pin.
	USCI0_CTL1	PB.4	MFP14	I/O	USCI0 control 1 pin.
	USCI0_CTL1	PC.1	MFP14	I/O	USCI0 control 1 pin.
	USCI0_CTL1	PA.2	MFP14	I/O	USCI0 control 1 pin.
	USCI0_CTL1	PA.0	MFP14	I/O	USCI0 control 1 pin.
	USCI0_DAT0	PA.5	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PA.4	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PA.3	MFP11	I	USCI0 data 0 pin.
	USCI0_DAT0	PC.5	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PC.4	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PC.3	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PC.6	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PC.7	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PB.7	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PB.6	MFP11	I/O	USCI0 data 0 pin.

Group	Pin Name	GPIO	MFP	Туре	Description
	USCI0_DAT0	PB.5	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PD.5	MFP4	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PB.4	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PC.2	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PC.1	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PC.0	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PA.2	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PA.1	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT0	PA.0	MFP11	I/O	USCI0 data 0 pin.
	USCI0_DAT1	PA.5	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PA.4	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PA.3	MFP12	I	USCI0 data 1 pin.
	USCI0_DAT1	PC.5	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PC.4	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PC.3	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PC.6	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PC.7	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PB.7	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PB.6	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PB.5	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PD.6	MFP4	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PB.4	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PC.2	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PC.1	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PC.0	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PA.2	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PA.1	MFP12	I/O	USCI0 data 1 pin.
	USCI0_DAT1	PA.0	MFP12	I/O	USCI0 data 1 pin.
	USCI1_CLK	PA.5	MFP15	I/O	USCI1 clock pin.
	USCI1_CLK	PA.4	MFP15	I/O	USCI1 clock pin.
	USCI1_CLK	PA.3	MFP15	Ι	USCI1 clock pin.
USCI1	USCI1_CLK	PC.5	MFP15	I/O	USCI1 clock pin.
	USCI1_CLK	PC.4	MFP15	I/O	USCI1 clock pin.
	USCI1_CLK	PC.3	MFP15	I/O	USCI1 clock pin.

Group	Pin Name	GPIO	MFP	Туре	Description
	USCI1_CLK	PD.0	MFP4	I/O	USCI1 clock pin.
	USCI1_CLK	PC.6	MFP15	I/O	USCI1 clock pin.
	USCI1_CLK	PC.7	MFP15	I/O	USCI1 clock pin.
	USCI1_CLK	PB.7	MFP15	I/O	USCI1 clock pin.
	USCI1_CLK	PB.6	MFP15	I/O	USCI1 clock pin.
	USCI1_CLK	PB.5	MFP15	I/O	USCI1 clock pin.
	USCI1_CLK	PB.4	MFP15	I/O	USCI1 clock pin.
	USCI1_CLK	PC.2	MFP15	I/O	USCI1 clock pin.
	USCI1_CLK	PC.1	MFP15	I/O	USCI1 clock pin.
	USCI1_CLK	PC.0	MFP15	I/O	USCI1 clock pin.
	USCI1_CLK	PA.2	MFP15	I/O	USCI1 clock pin.
	USCI1_CLK	PA.1	MFP15	I/O	USCI1 clock pin.
	USCI1_CLK	PA.0	MFP15	I/O	USCI1 clock pin.
	USCI1_CTL0	PA.5	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PA.4	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PA.3	MFP18	I	USCI1 control 0 pin.
	USCI1_CTL0	PC.5	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PC.4	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PC.3	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PD.3	MFP4	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PC.6	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PC.7	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PB.7	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PB.6	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PB.5	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PB.4	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PC.2	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PC.1	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PC.0	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PA.2	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PA.1	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL0	PA.0	MFP18	I/O	USCI1 control 0 pin.
	USCI1_CTL1	PA.4	MFP14	I/O	USCI1 control 1 pin.
	USCI1_CTL1	PC.4	MFP14	I/O	USCI1 control 1 pin.

Group	Pin Name	GPIO	MFP	Туре	Description
	USCI1_CTL1	PC.6	MFP14	I/O	USCI1 control 1 pin.
	USCI1_CTL1	PB.7	MFP14	I/O	USCI1 control 1 pin.
	USCI1_CTL1	PB.5	MFP14	I/O	USCI1 control 1 pin.
	USCI1_CTL1	PC.2	MFP14	I/O	USCI1 control 1 pin.
	USCI1_CTL1	PC.0	MFP14	I/O	USCI1 control 1 pin.
	USCI1_CTL1	PA.1	MFP14	I/O	USCI1 control 1 pin.
	USCI1_DAT0	PA.5	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PA.4	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PA.3	MFP16	I	USCI1 data 0 pin.
	USCI1_DAT0	PC.5	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PC.4	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PC.3	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PD.1	MFP4	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PC.6	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PC.7	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PB.7	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PB.6	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PB.5	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PB.4	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PC.2	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PC.1	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PC.0	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PA.2	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PA.1	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT0	PA.0	MFP16	I/O	USCI1 data 0 pin.
	USCI1_DAT1	PA.5	MFP17	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PA.4	MFP17	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PA.3	MFP17	-	USCI1 data 1 pin.
	USCI1_DAT1	PC.5	MFP17	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PC.4	MFP17	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PC.3	MFP17	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PD.2	MFP4	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PC.6	MFP17	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PC.7	MFP17	I/O	USCI1 data 1 pin.

Group	Pin Name	GPIO	MFP	Туре	Description
	USCI1_DAT1	PB.7	MFP17	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PB.6	MFP17	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PB.5	MFP17	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PB.4	MFP17	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PC.2	MFP17	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PC.1	MFP17	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PC.0	MFP17	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PA.2	MFP17	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PA.1	MFP17	I/O	USCI1 data 1 pin.
	USCI1_DAT1	PA.0	MFP17	I/O	USCI1 data 1 pin.
V_{REF}	V _{ref}	PA.1	MFP1	A	ADC reference voltage input. Note: This pin needs to be connected with a 1uF capacitor.
¥60	X32_IN	PC.5	MFP2	I	External 32.768 kHz crystal input pin.
X32	X32_OUT	PC.4	MFP2	0	External 32.768 kHz crystal output pin.
	XT1_IN	PA.5	MFP3	I	External 4~24 MHz (high speed) crystal input pin.
XT1	XT1_OUT	PA.4	MFP3	о	External 4~24 MHz (high speed) crystal output pin.
nRESET	nRESET	PA.3	MFP2	I	External reset input: active LOW, with an internal pull-up. Set this pin low reset to initial state. Note: It is recommended to use 10 k Ω pull-up resistor and 10 uF capacitor on nRESET pin.

4.2.3 M0A21/M0A23 Series Multi-function Summary Table Sorted by GPIO

	Pin Name	Туре	MFP	Description
	PA.0	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH0	А	MFP1	ADC0 channel 0 analog input.
	DAC0_OUT	А	MFP1	DAC0 channel analog output.
	ACMP0_P0	А	MFP1	Analog comparator 0 positive input 0 pin.
	ICE_DAT	I/O	MFP2	Serial wired debugger data pin. Note: It is recommended to use 100 k Ω pull-up resistor on ICE_DAT pin.
	UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
	CLKO	0	MFP4	Clock Out
	PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
	PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
	PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
	UART0_RXD	I	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
PA.0	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	I	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	I	MFP23	ADC0 external trigger input pin.
	TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
	ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
	TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
	TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	I	MFP29	UART1 data receiver input pin.

	Pin Name	Туре	MFP	Description
	PWM0_BRAKE1	I	MFP30	PWM0 Brake 1 input pin.
	PA.1	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH1	А	MFP1	ADC0 channel 1 analog input.
	ACMP0_N0	А	MFP1	Analog comparator 0 negative input 0 pin.
	ACMP1_N0	А	MFP1	Analog comparator 1 negative input 0 pin.
	V _{REF}	A	MFP1	ADC reference voltage input. Note: This pin needs to be connected with a 1uF capacitor.
	ICE_CLK	I	MFP2	Serial wired debugger clock pin. Note: It is recommended to use 100 k Ω pull-up resistor on ICE_CLK pin.
	UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
	СГКО	0	MFP4	Clock Out
	PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
	PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
	PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
	UART0_RXD	I	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
PA.1	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	I	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	I	MFP23	ADC0 external trigger input pin.
	тмо	I/O	MFP24	Timer0 event counter input/toggle output pin.
	TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.
	TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.
	TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.

	Pin Name	Туре	MFP	Description
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	I	MFP29	UART1 data receiver input pin.
	PWM0_BRAKE0	Ι	MFP30	PWM0 Brake 0 input pin.
	PA.2	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH2	А	MFP1	ADC0 channel 2 analog input.
	UART0_nRTS	0	MFP2	UART0 request to Send output pin.
	UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
	CLKO	0	MFP4	Clock Out
	PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
	PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
	PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
	UART0_RXD	Ι	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
PA.2	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	I	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	I	MFP23	ADC0 external trigger input pin.
	TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
	ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
	TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
	TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	I	MFP29	UART1 data receiver input pin.
	PWM0_BRAKE1	I	MFP30	PWM0 Brake 1 input pin.

	Pin Name	Туре	MFP	Description
	PA.3	I	MFP0	General purpose digital input pin.
	nRESET	I	MFP2	External reset input: active LOW, with an internal pull-up. Set this pin low reset to initial state.
				Note: It is recommended to use 10 k Ω pull-up resistor and 10 uF capacitor on nRESET pin.
	UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
	PWM0_CH0	I	MFP5	PWM0 channel 0 capture input.
	PWM0_CH2	I	MFP6	PWM0 channel 2 capture input.
	PWM0_CH4	I	MFP7	PWM0 channel 4 capture input.
	UART0_RXD	I	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I	MFP10	USCI0 clock pin.
	USCI0_DAT0	I	MFP11	USCI0 data 0 pin.
	USCI0_DAT1	I	MFP12	USCI0 data 1 pin.
	USCI0_CTL0	I	MFP13	USCI0 control 0 pin.
PA.3	USCI0_CTL1	I	MFP14	USCI0 control 1 pin.
	USCI1_CLK	I	MFP15	USCI1 clock pin.
	USCI1_DAT0	I	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I	MFP18	USCI1 control 0 pin.
	CAN0_RXD	I	MFP20	CAN0 bus receiver input.
	ADC0_ST	I	MFP23	ADC0 external trigger input pin.
	тмо	I	MFP24	Timer0 event counter input pin.
	TM2	I	MFP25	Timer2 event counter input pin.
	TM0_EXT	I	MFP26	Timer0 external capture input pin.
	TM2_EXT	I	MFP27	Timer2 external capture input pin.
	UART1_RXD	I	MFP29	UART1 data receiver input pin.
	INTO	I	MFP30	External interrupt 0 input pin.
	PA.4	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH15	А	MFP1	ADC0 channel 15 analog input.
	UART0_nRTS	0	MFP2	UART0 request to Send output pin.
	XT1_OUT	0	MFP3	External 4~24 MHz (high speed) crystal output pin.
PA.4	CLKO	0	MFP4	Clock Out
	PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
	PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
	PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.

	Pin Name	Туре	MFP	Description
	UART0_RXD	Ι	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	Ι	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	Ι	MFP23	ADC0 external trigger input pin.
	TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
	ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
	TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
	TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	Ι	MFP29	UART1 data receiver input pin.
	ACMP1_WLAT	Ι	MFP30	Analog comparator 1 window latch input pin
	PA.5	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH16	А	MFP1	ADC0 channel 16 analog input.
	UART0_nRTS	0	MFP2	UART0 request to Send output pin.
	XT1_IN	Ι	MFP3	External 4~24 MHz (high speed) crystal input pin.
	СLКО	0	MFP4	Clock Out
PA.5	PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
171.0	PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
	PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
	UART0_RXD	Ι	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.

	Pin Name	Туре	MFP	Description
	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	I	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	Ι	MFP23	ADC0 external trigger input pin.
	ТМО	I/O	MFP24	Timer0 event counter input/toggle output pin.
	TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.
	TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.
	TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	I	MFP29	UART1 data receiver input pin.
	ACMP0_WLAT	Ι	MFP30	Analog comparator 0 window latch input pin
	PB.4	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH6	А	MFP1	ADC0 channel 6 analog input.
	UART0_nRTS	0	MFP2	UART0 request to Send output pin.
	UART0_nCTS	Ι	MFP3	UART0 clear to Send input pin.
	CLKO	0	MFP4	Clock Out
	PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
	PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
PB.4	PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
	UART0_RXD	Ι	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.

	Pin Name	Туре	MFP	Description
	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	Ι	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	Ι	MFP23	ADC0 external trigger input pin.
	TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
	ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
	TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
	TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	Ι	MFP29	UART1 data receiver input pin.
	UART1_nCTS	Ι	MFP30	UART1 clear to Send input pin.
	PB.5	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH7	А	MFP1	ADC0 channel 7 analog input.
	UART0_nRTS	0	MFP2	UART0 request to Send output pin.
	UART0_nCTS	Ι	MFP3	UART0 clear to Send input pin.
	CLKO	0	MFP4	Clock Out
	PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
	PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
	PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
PB.5	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
FD.J	UART0_RXD	Ι	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.

	Pin Name	Туре	MFP	Description
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	I	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	I	MFP23	ADC0 external trigger input pin.
	ТМО	I/O	MFP24	Timer0 event counter input/toggle output pin.
	TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.
	TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.
	TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	I	MFP29	UART1 data receiver input pin.
	INT0	I	MFP30	External interrupt 0 input pin.
	PB.6	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH8	А	MFP1	ADC0 channel 8 analog input.
	UART0_nRTS	0	MFP2	UART0 request to Send output pin.
	UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
	CLKO	0	MFP4	Clock Out
	PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
	PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
	PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
	UART0_RXD	I	MFP9	UART0 data receiver input pin.
PB.6	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	I	MFP20	CAN0 bus receiver input.

	Pin Name	Туре	MFP	Description
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	I	MFP23	ADC0 external trigger input pin.
	TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
	ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
	TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
	TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	I	MFP29	UART1 data receiver input pin.
	ACMP1_WLAT	I	MFP30	Analog comparator 1 window latch input pin
	PB.7	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH9	А	MFP1	ADC0 channel 9 analog input.
	UART0_nRTS	0	MFP2	UART0 request to Send output pin.
	UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
	CLKO	0	MFP4	Clock Out
	PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
	PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
	PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
	UART0_RXD	I	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
PB.7	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
FD.7	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	Ι	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	Ι	MFP23	ADC0 external trigger input pin.

	Pin Name	Туре	MFP	Description
	тмо	I/O	MFP24	Timer0 event counter input/toggle output pin.
	TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.
	TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.
	TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	I	MFP29	UART1 data receiver input pin.
	ACMP0_WLAT	I	MFP30	Analog comparator 0 window latch input pin
	PC.0	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH3	А	MFP1	ADC0 channel 3 analog input.
	ACMP1_P0	А	MFP1	Analog comparator 1 positive input 0 pin.
	UART0_nRTS	0	MFP2	UART0 request to Send output pin.
	UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
	СLКО	0	MFP4	Clock Out
	PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
	PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
	PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
	UART0_RXD	I	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
PC.0	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	I	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	I	MFP23	ADC0 external trigger input pin.
	тмо	I/O	MFP24	Timer0 event counter input/toggle output pin.
	TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.

	Pin Name	Туре	MFP	Description
	TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.
	TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	I	MFP29	UART1 data receiver input pin.
	PWM0_BRAKE0	I	MFP30	PWM0 Brake 0 input pin.
	PC.1	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH4	А	MFP1	ADC0 channel 4 analog input.
	ACMP0_N1	А	MFP1	Analog comparator 0 negative input 1 pin.
	ACMP1_N1	А	MFP1	Analog comparator 1 negative input 1 pin.
	UART0_nRTS	0	MFP2	UART0 request to Send output pin.
	UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
	CLKO	0	MFP4	Clock Out
	PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
	PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
	PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
	UART0_RXD	I	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
PC.1	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	I	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	I	MFP23	ADC0 external trigger input pin.
	TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
	ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
	TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.

	Pin Name	Туре	MFP	Description
	TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	Ι	MFP29	UART1 data receiver input pin.
	PC.2	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH5	А	MFP1	ADC0 channel 5 analog input.
	ACMP0_N2	А	MFP1	Analog comparator 0 negative input 2 pin.
	ACMP1_N2	А	MFP1	Analog comparator 1 negative input 2 pin.
	UART0_nRTS	0	MFP2	UART0 request to Send output pin.
	UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
	CLKO	0	MFP4	Clock Out
	PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
	PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
	PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
	UART0_RXD	Ι	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
PC.2	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	Ι	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	Ι	MFP23	ADC0 external trigger input pin.
	ТМО	I/O	MFP24	Timer0 event counter input/toggle output pin.
	TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.
	TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.
	TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.

	Pin Name	Туре	MFP	Description
	UART1_RXD	I	MFP29	UART1 data receiver input pin.
	UART1_nRTS	0	MFP30	UART1 request to Send output pin.
	PC.3	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH12	А	MFP1	ADC0 channel 12 analog input.
	ACMP0_N3	А	MFP1	Analog comparator 0 negative input 3 pin.
	ACMP1_N3	А	MFP1	Analog comparator 1 negative input 3 pin.
	UART0_nRTS	0	MFP2	UART0 request to Send output pin.
	UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
	CLKO	0	MFP4	Clock Out
	PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
	PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
	PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
	UART0_RXD	Ι	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
PC.3	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
FC.3	USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	Ι	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	Ι	MFP23	ADC0 external trigger input pin.
	TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
	ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
	TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
	TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	I	MFP29	UART1 data receiver input pin.

	Pin Name	Туре	MFP	Description
	INT3	I	MFP30	External interrupt 3 input pin.
	PC.4	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH13	А	MFP1	ADC0 channel 13 analog input.
	X32_OUT	0	MFP2	External 32.768 kHz crystal output pin.
	UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
	CLKO	0	MFP4	Clock Out
	PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
	PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
	PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
	UART0_RXD	I	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
PC.4	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	I	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	I	MFP23	ADC0 external trigger input pin.
	тмо	I/O	MFP24	Timer0 event counter input/toggle output pin.
	TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.
	TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.
	TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	Ι	MFP29	UART1 data receiver input pin.
	INT2	Ι	MFP30	External interrupt 2 input pin.
PC.5	PC.5	I/O	MFP0	General purpose digital I/O pin.
F0.0	ADC0_CH14	А	MFP1	ADC0 channel 14 analog input.

	Pin Name	Туре	MFP	Description
	X32_IN	I	MFP2	External 32.768 kHz crystal input pin.
	UART0_nCTS	I	MFP3	UART0 clear to Send input pin.
	СLКО	0	MFP4	Clock Out
	PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
	PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
	PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
	UART0_RXD	Ι	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	Ι	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	Ι	MFP23	ADC0 external trigger input pin.
	TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
	ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
	TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
	TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	Ι	MFP29	UART1 data receiver input pin.
	INT1	Ι	MFP30	External interrupt 1 input pin.
	PC.6	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH11	А	MFP1	ADC0 channel 11 analog input.
PC.6	UART0_nRTS	0	MFP2	UART0 request to Send output pin.
	UART0_nCTS	Ι	MFP3	UART0 clear to Send input pin.
	СLКО	0	MFP4	Clock Out

	Pin Name	Туре	MFP	Description
	PWM0_CH0	I/O	MFP5	PWM0 channel 0 output/capture input.
	PWM0_CH2	I/O	MFP6	PWM0 channel 2 output/capture input.
	PWM0_CH4	I/O	MFP7	PWM0 channel 4 output/capture input.
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
	UART0_RXD	I	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI1_CTL1	I/O	MFP14	USCI1 control 1 pin.
	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	I	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	Ι	MFP23	ADC0 external trigger input pin.
	ТМО	I/O	MFP24	Timer0 event counter input/toggle output pin.
	TM2	I/O	MFP25	Timer2 event counter input/toggle output pin.
	TM0_EXT	I/O	MFP26	Timer0 external capture input/toggle output pin.
	TM2_EXT	I/O	MFP27	Timer2 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	Ι	MFP29	UART1 data receiver input pin.
	INT4	Ι	MFP30	External interrupt 4 input pin.
	PC.7	I/O	MFP0	General purpose digital I/O pin.
	ADC0_CH10	А	MFP1	ADC0 channel 10 analog input.
	UART0_nRTS	0	MFP2	UART0 request to Send output pin.
PC.7	UART0_nCTS	Ι	MFP3	UART0 clear to Send input pin.
F0.7	CLKO	0	MFP4	Clock Out
	PWM0_CH1	I/O	MFP5	PWM0 channel 1 output/capture input.
	PWM0_CH3	I/O	MFP6	PWM0 channel 3 output/capture input.
	PWM0_CH5	I/O	MFP7	PWM0 channel 5 output/capture input.

	Pin Name	Туре	MFP	Description
	UART0_TXD	0	MFP8	UART0 data transmitter output pin.
	UART0_RXD	I	MFP9	UART0 data receiver input pin.
	USCI0_CLK	I/O	MFP10	USCI0 clock pin.
	USCI0_DAT0	I/O	MFP11	USCI0 data 0 pin.
	USCI0_DAT1	I/O	MFP12	USCI0 data 1 pin.
	USCI0_CTL0	I/O	MFP13	USCI0 control 0 pin.
	USCI0_CTL1	I/O	MFP14	USCI0 control 1 pin.
	USCI1_CLK	I/O	MFP15	USCI1 clock pin.
	USCI1_DAT0	I/O	MFP16	USCI1 data 0 pin.
	USCI1_DAT1	I/O	MFP17	USCI1 data 1 pin.
	USCI1_CTL0	I/O	MFP18	USCI1 control 0 pin.
	CAN0_TXD	0	MFP19	CAN0 bus transmitter output.
	CAN0_RXD	Ι	MFP20	CAN0 bus receiver input.
	ACMP0_O	0	MFP21	Analog comparator 0 output pin.
	ACMP1_O	0	MFP22	Analog comparator 1 output pin.
	ADC0_ST	Ι	MFP23	ADC0 external trigger input pin.
	TM1	I/O	MFP24	Timer1 event counter input/toggle output pin.
	ТМЗ	I/O	MFP25	Timer3 event counter input/toggle output pin.
	TM1_EXT	I/O	MFP26	Timer1 external capture input/toggle output pin.
	TM3_EXT	I/O	MFP27	Timer3 external capture input/toggle output pin.
	UART1_TXD	0	MFP28	UART1 data transmitter output pin.
	UART1_RXD	Ι	MFP29	UART1 data receiver input pin.
	INT5	Ι	MFP30	External interrupt 5 input pin.
	PD.0	I/O	MFP0	General purpose digital I/O pin.
	PWM0_CH4	I/O	MFP2	PWM0 channel 4 output/capture input.
PD.0	UART0_TXD	0	MFP3	UART0 data transmitter output pin.
	USCI1_CLK	I/O	MFP4	USCI1 clock pin.
	тмо	I/O	MFP5	Timer0 event counter input/toggle output pin.
	PD.1	I/O	MFP0	General purpose digital I/O pin.
	PWM0_CH5	I/O	MFP2	PWM0 channel 5 output/capture input.
PD.1	UART0_RXD	I	MFP3	UART0 data receiver input pin.
	USCI1_DAT0	I/O	MFP4	USCI1 data 0 pin.
	TM1	I/O	MFP5	Timer1 event counter input/toggle output pin.
PD.2	PD.2	I/O	MFP0	General purpose digital I/O pin.

	Pin Name	Туре	MFP	Description	
	PWM0_CH0	I/O	MFP2	PWM0 channel 0 output/capture input.	
	CAN0_TXD	0	MFP3	CAN0 bus transmitter output.	
	USCI1_DAT1	I/O	MFP4	USCI1 data 1 pin.	
	TM2	I/O	MFP5	Timer2 event counter input/toggle output pin.	
	UART1_nCTS	I	MFP6	UART1 clear to Send input pin.	
	PD.3	I/O	MFP0	General purpose digital I/O pin.	
	PWM0_CH1	I/O	MFP2	PWM0 channel 1 output/capture input.	
	CAN0_RXD	I	MFP3	CAN0 bus receiver input.	
PD.3	USCI1_CTL0	I/O	MFP4	USCI1 control 0 pin.	
	ТМЗ	I/O	MFP5	Timer3 event counter input/toggle output pin.	
	UART1_nRTS	0	MFP6	UART1 request to Send output pin.	
	PD.4	I/O	MFP0	General purpose digital I/O pin.	
	PWM0_CH0	I/O	MFP2	PWM0 channel 0 output/capture input.	
PD.4	UART0_TXD	0	MFP3	UART0 data transmitter output pin.	
	USCI0_CLK	I/O	MFP4	USCI0 clock pin.	
	тмо	I/O	MFP5	Timer0 event counter input/toggle output pin.	
	PD.5	I/O	MFP0	General purpose digital I/O pin.	
	PWM0_CH1	I/O	MFP2	PWM0 channel 1 output/capture input.	
PD.5	UART0_RXD	I	MFP3	UART0 data receiver input pin.	
	USCI0_DAT0	I/O	MFP4	USCI0 data 0 pin.	
	TM1	I/O	MFP5	Timer1 event counter input/toggle output pin.	
	PD.6	I/O	MFP0	General purpose digital I/O pin.	
	PWM0_CH2	I/O	MFP2	PWM0 channel 2 output/capture input.	
	CAN0_TXD	0	MFP3	CAN0 bus transmitter output.	
PD.6	USCI0_DAT1	I/O	MFP4	USCI0 data 1 pin.	
	TM2	I/O	MFP5	Timer2 event counter input/toggle output pin.	
	UART1_nCTS	I	MFP6	UART1 clear to Send input pin.	
	PD.7	I/O	MFP0	General purpose digital I/O pin.	
	PWM0_CH3	I/O	MFP2	PWM0 channel 3 output/capture input.	
	CAN0_RXD	I	MFP3	CAN0 bus receiver input.	
PD.7	USCI0_CTL0	I/O	MFP4	USCI0 control 0 pin.	
	ТМЗ	I/O	MFP5	Timer3 event counter input/toggle output pin.	
	UART1_nRTS	0	MFP6	UART1 request to Send output pin.	

5 BLOCK DIAGRAM

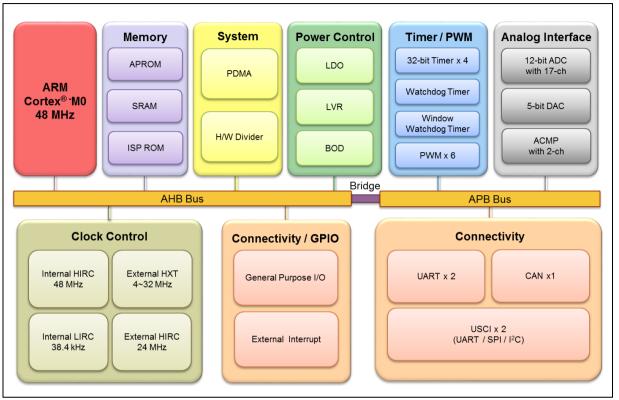


Figure 4.2-1 NuMicro® M0A21/M0A23 Block Diagram

6 FUNCTIONAL DESCRIPTION

6.1 Arm[®] Cortex[®]-M0 Core

The Cortex[®]-M0 core is a configurable, multistage, 32-bit RISC processor, which has an AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug functionality. The core can execute Thumb code and is compatible with other Cortex[®]-M profile processor. The profile supports two modes -Thread mode and Handler mode. Handler mode is entered as a result of an exception. An exception return can only be issued in Handler mode. Thread mode is entered on Reset, and can be entered as a result of an exception return. Figure 6.1-1 shows the functional block diagram of processor.

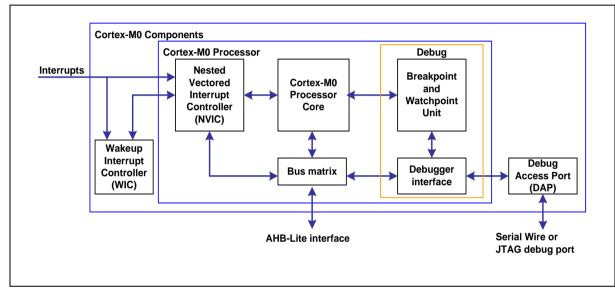


Figure 6.1-1 Functional Block Diagram

The implemented device provides:

- A low gate count processor:
 - Arm[®]6-M Thumb[®] instruction set
 - Thumb-2 technology
 - Arm®6-M compliant 24-bit SysTick timer
 - A 32-bit hardware multiplier
 - System interface supported with little-endian data accesses
 - Ability to have deterministic, fixed-latency, interrupt handling
 - Load/store-multiples and multicycle-multiplies that can be abandoned and restarted to facilitate rapid interrupt handling
 - C Application Binary Interface compliant exception model. This is the Armv6-M, C Application Binary Interface (C-ABI) compliant exception model that enables the use of pure C functions as interrupt handlers
 - Low Power Sleep mode entry using the Wait For Interrupt (WFI), Wait For Event (WFE) instructions, or return from interrupt sleep-on-exit feature
- NVIC:
 - 32 external interrupt inputs, each with four levels of priority

- Dedicated Non-maskable Interrupt (NMI) input
- Supports for both level-sensitive and pulse-sensitive interrupt lines
- Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power Sleep mode
- Debug support:
 - Four hardware breakpoints
 - Two watchpoints
 - Program Counter Sampling Register (PCSR) for non-intrusive code profiling
 - Single step and vector catch capabilities
- Bus interfaces:
 - Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all system peripherals and memory
 - Single 32-bit slave port that supports the DAP (Debug Access Port)

6.2 System Manager

6.2.1 Overview

System management includes the following sections:

- System Reset
- System Power Distribution
- SRAM Memory Orginization
- System Timer (SysTick)
- Nested Vectored Interrupt Controller (NVIC)
- System Control register

6.2.2 System Reset

The system reset can be issued by one of the events listed below. These reset event flags can be read from SYS_RSTSTS register to determine the reset source. Hardware reset sources are from peripheral signals. Software reset can trigger reset through setting control registers.

- Hardware Reset Sources
 - Power-on Reset
 - Low level on the nRESET pin
 - Watchdog Time-out Reset and Window Watchdog Reset (WDT/WWDT Reset)
 - Low Voltage Reset (LVR)
 - Brown-out Detector Reset (BOD Reset)
 - CPU Lockup Reset
- Software Reset Sources
 - CHIP Reset will reset whole chip by writing 1 to CHIPRST (SYS_IPRST0[0])
 - MCU Reset to reboot but keeping the booting setting from APROM or LDROM by writing 1 to SYSRESETREQ (AIRCR[2])
 - CPU Reset for Cortex[®]-M0 core Only by writing 1 to CPURST (SYS_IPRST0[1])
 - nRESET glitch filter time 32us

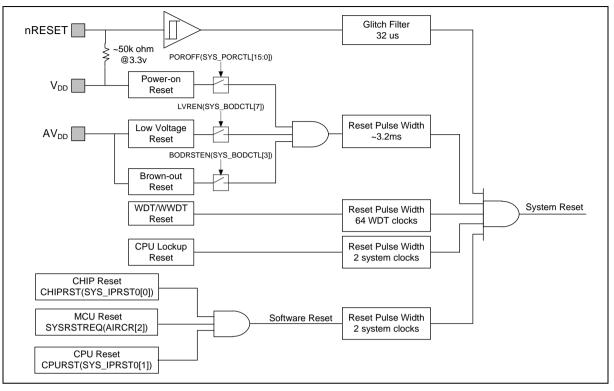


Figure 6.2-1 System Reset Sources

There are a total of 9 reset sources in the NuMicro[®] family. In general, CPU reset is used to reset Cortex[®]-M0 only; the other reset sources will reset Cortex[®]-M0 and all peripherals. However, there are small differences between each reset source and they are listed in Table 6.2-1.

Reset Sources Register	POR	NRESET	WDT	LVR	BOD	Lockup	CHIP	МСИ	CPU
SYS_RSTSTS	Bit 0 = 1	Bit 1 = 1	Bit 2 = 1	Bit 3 = 1	Bit 4 = 1	Bit 8 = 1	Bit 0 = 1	Bit 5 = 1	Bit 7 = 1
CHIPRST (SYS_IPRST0[0])	0x0	-	-	-	-	-	-	-	-
BODEN (SYS_BODCTL[0])	Reload from CONFIG0	Reload from CONFIG0		Reload from CONFIG0	-	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	-
BODVL (SYS_BODCTL[16])									
BODRSTEN (SYS_BODCTL[3])									
HXTEN (CLK_PWRCTL[0])	Reload from CONFIG0	Reload from CONFIG0			Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	
LXTEN (CLK_PWRCTL[1])	0x0	-	-	-	-	-	-	-	-
WDTCKEN (CLK_APBCLK0[0])	0x1	-	0x1	-	-	-	0x1	-	-

HCLKSEL (CLK_CLKSEL0[2:0])	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	-
WDTSEL (CLK_CLKSEL1[1:0])	0x3	0x3	-	-	-	-	-	-	-
HXTSTB (CLK_STATUS[0])	0x0	-	-	-	-	-	-	-	-
LXTSTB (CLK_STATUS[1])	0x0	-	-	-	-	-	-	-	-
HIRCSTB (CLK_STATUS[4])	0x0	-	-	-	-	-	-	-	-
CLKSFAIL (CLK_STATUS[7])	0x0	0x0	-	-	-	-	-	-	-
RSTEN (WDT_CTL[1])	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	-	Reload from CONFIG0	-	-
WDTEN (WDT_CTL[7])									
WDT_CTL except bit 1 and bit 7.	0x0700	0x0700	0x0700	0x0700	0x0700	-	0x0700	-	-
WDT_ALTCTL	0x0000	0x0000	0x0000	0x0000	0x0000	-	0x0000	-	-
WWDT_RLDCNT	0x0000	0x0000	0x0000	0x0000	0x0000	-	0x0000	-	-
WWDT_CTL	0x3F0800	0x3F0800	0x3F0800	0x3F0800	0x3F0800	-	0x3F0800	-	-
WWDT_STATUS	0x0000	0x0000	0x0000	0x0000	0x0000	-	0x0000	-	-
WWDT_CNT	0x3F	0x3F	0x3F	0x3F	0x3F	-	0x3F	-	-
BS (FMC_ISPCTL[1])	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	-	Reload from CONFIG0	-	-
FMC_DFBA	Reload from CONFIG1	Reload from CONFIG1	Reload from CONFIG1	Reload from CONFIG1	Reload from CONFIG1	-	Reload from CONFIG1	-	-
CBS (FMC_ISPSTS[2:1))	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	Reload from CONFIG0	-	Reload from CONFIG0	-	-
VECMAP (FMC_ISPSTS[23:9])	Reload base on CONFIG0	Reload base on CONFIG0			Reload base on CONFIG0	-	Reload base on CONFIG0	-	-
Other Peripheral Registers	Reset Value -								
FMC Registers	Reset Value								
Note: '-' means that the	value of regis	ster keeps o	riginal settir	ıg.					

Table 6.2-1 Reset Value of Registers

6.2.2.1 nRESET Reset

The nRESET reset means to generate a reset signal by pulling low nRESET pin, which is an asynchronous reset input pin and can be used to reset system at any time. When the nRESET voltage is lower than $0.2 V_{DD}$ and the state keeps longer than 32 us (glitch filter), chip will be reset. The nRESET reset will control the chip in reset state until the nRESET voltage rises above $0.7 V_{DD}$ and the state keeps longer than 32 us (glitch filter). The PINRF(SYS_RSTSTS[1]) will be set to 1 if the previous reset source is nRESET reset. Figure 6.2-2 shows the nRESET reset waveform.

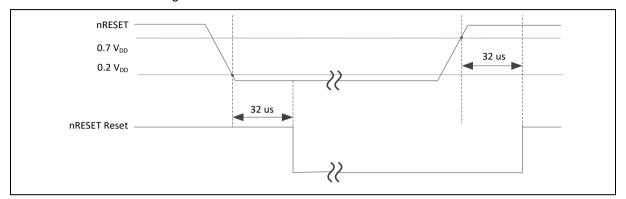


Figure 6.2-2 nRESET Reset Waveform

The special mode can enable nRESET pin function when system select other function for GPA.3, user can input special control signal for GPA.3 make system force enable nRESET pin.

Figure 6.2-3 shows the method of entry special mode.

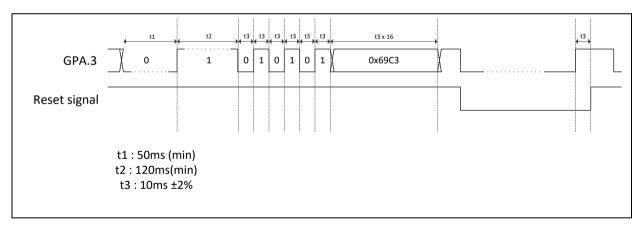


Figure 6.2-3 nRESET Reset Mode Enable Control Waveform

6.2.2.2 Power-on Reset (POR)

The Power-on reset (POR) is used to generate a stable system reset signal and forces the system to be reset when power-on to avoid unexpected behavior of MCU. When applying the power to MCU, the POR module will detect the rising voltage and generate reset signal to system until the voltage is ready for MCU operation. At POR reset, the PORF(SYS_RSTSTS[0]) will be set to 1 to indicate there is a POR reset event. The PORF(SYS_RSTSTS[0]) bit can be cleared by writing 1 to it. Figure 6.2-4 shows the power-on reset waveform.

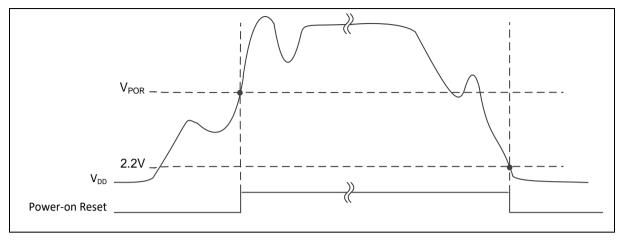


Figure 6.2-4 Power-on Reset (POR) Waveform

6.2.2.3 Low Voltage Reset (LVR)

If the Low Voltage Reset function is enabled by setting the Low Voltage Reset Enable Bit LVREN (SYS_BODCTL[7]) to 1, after 200us delay, LVR detection circuit will be stable and the LVR function will be active. Then LVR function will detect AV_{DD} during system operation. When the AV_{DD} voltage is lower than V_{LVR} and the state keeps longer than De-glitch time set by LVRDGSEL (SYS_BODCTL[14:12]), chip will be reset. The LVR reset will control the chip in reset state until the AV_{DD} voltage rises above V_{LVR} and the state keeps longer than De-glitch time set by LVRDGSEL (SYS_BODCTL[14:12]). The default setting of Low Voltage Reset is enabled without De-glitch function. Figure 6.2-5 shows the Low Voltage Reset waveform.

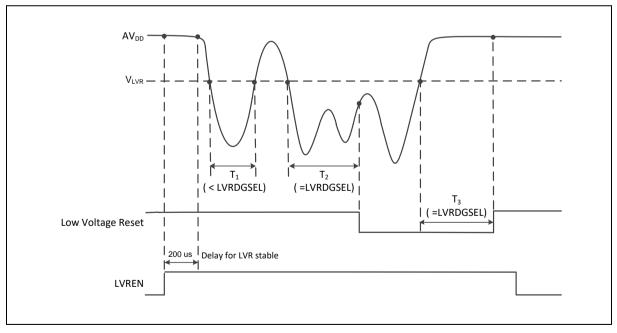


Figure 6.2-5 Low Voltage Reset (LVR) Waveform

6.2.2.4 Brown-out Detector Reset (BOD Reset)

If the Brown-out Detector (BOD) function is enabled by setting the Brown-out Detector Enable Bit BODEN (SYS_BODCTL[0]), Brown-out Detector function will detect AV_{DD} during system operation. When the AV_{DD} voltage is lower than V_{BOD} which is decided by BODEN and BODVL (SYS_BODCTL[17:16]) and the state keeps longer than De-glitch time set by BODDGSEL

 $(SYS_BODCTL[10:8])$, chip will be reset. The BOD reset will control the chip in reset state until the AV_DD voltage rises above V_{BOD} and the state keeps longer than De-glitch time set by BODDGSEL. The default value of BODEN, BODVL and BODRSTEN (SYS_BODCTL[3]) is set by Flash controller user configuration register CBODEN (CONFIGO [19]), CBOV (CONFIGO [23:21]) and CBORST(CONFIG0[20]) respectively. User can determine the initial BOD setting by setting the CONFIGO register. Figure 6.2-6 shows the Brown-out Detector waveform.

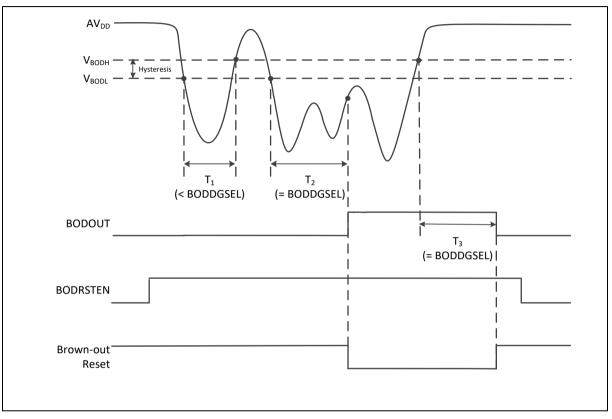


Figure 6.2-6 Brown-out Detector (BOD) Waveform

6.2.2.5 Watchdog Timer Reset (WDT)

In most industrial applications, system reliability is very important. To automatically recover the MCU from failure status is one way to improve system reliability. The watchdog timer(WDT) is widely used to check if the system works fine. If the MCU is crashed or out of control, it may cause the watchdog timeout. User may decide to enable system reset during watchdog time-out to recover the system and take action for the system crash/out-of-control after reset.

Software can check if the reset is caused by watchdog time-out to indicate the previous reset is a watchdog reset and handle the failure of MCU after watchdog time-out reset by checking WDTRF(SYS_RSTSTS[2]).

6.2.2.6 CPU Lockup Reset

CPU enters lockup status after CPU produces hardfault at hardfault handler and chip gives immediate indication of seriously errant kernel software. This is the result of the CPU being locked because of an unrecoverable exception following the activation of the processor's built in system state protection hardware. When chip enters debug mode, the CPU lockup reset will be ignored.

6.2.2.7 CPU Reset, CHIP Reset and MCU Reset

The CPU Reset means only Cortex[®]-M0 core is reset and all other peripherals remain the same status after CPU reset. User can set the CPURST(SYS_IPRST0[1]) to 1 to assert the CPU Reset signal.

The CHIP Reset is same with Power-on Reset. The CPU and all peripherals are reset and BS(FMC_ISPCTL[1]) bit is automatically reloaded from CONFIG0 setting. User can set the CHIPRST(SYS_IPRST0[0]) to 1 to assert the CHIP Reset signal.

The MCU Reset is similar with CHIP Reset. The difference is that BS(FMC_ISPCTL[1]) will not be reloaded from CONFIG0 setting and keep its original software setting for booting from APROM or LDROM. User can set the SYSRESETREQ(AIRCR[2]) to 1 to assert the MCU Reset.

6.2.3 System Power Distribution

In this chip, power distribution is divided into three segments:

- Analog power from V_{DD} and V_{SS} provides the power for analog components operation.
- Digital power from V_{DD} and V_{SS} supplies the power to the internal regulator which provides a fixed 1.8V power for digital operation and I/O pins.

The outputs of internal voltage regulators, LDO and V_{DD} , require an external capacitor which should be located close to the corresponding pin. Figure 6.2-7 shows the NuMicro[®] M0A21/M0A23 power distribution.

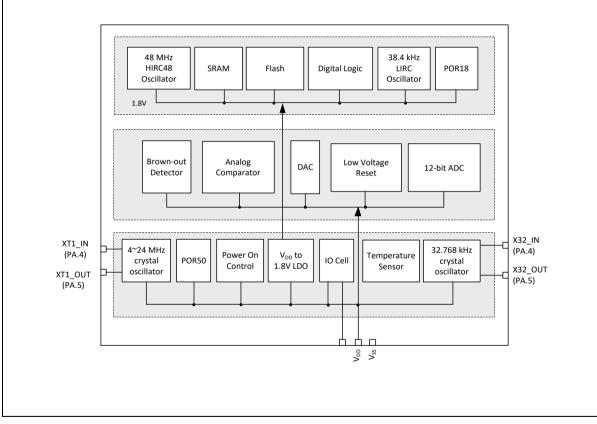


Figure 6.2-7 NuMicro® M0A21/M0A23 Power Distribution Diagram

6.2.4 Power Modes and Wake-up Sources

The M0A21/M0A23 series has power manager unit to support several operating modes for saving power. Table 6.2-2 lists all power mode in the M0A21/M0A23 series.

Mode CPU Operating Maximum Speed(MHz)		Clock Disable				
Normal mode	48	All clocks are disabled by control register.				

Idle mode	CPU enter Sleep mode	Only CPU clock is disabled.
Power-down mode	CPU enters Power-down mode	Most clocks are disabled except LIRC/LXT, and only WDT/Timer/UART peripheral clocks still enable if their clock sources are selected as LIRC/LXT.

Table 6.2-2 Power Mode Table

There are different power mode entry settings and leaving condition for each power mode. Table 6.2-3 shows the entry setting for each power mode. When chip power-on, chip is running in normal mode. User can enter each mode by setting SLEEPDEEP (SCR[2]), PDEN (CLK_PWRCT:[7]) and execute WFI instruction.

Register/Instruction Mode	-	PDEN (CLK_PWRCTL[7])	CPU Run WFI Instruction	
Normal mode	0	0	NO	
Idle mode (CPU enter Sleep mode)	0	0	YES	
Power-down mode (CPU enters Deep Sleep mode)	1	1	YES	

Table 6.2-3 Power Mode Difference Table

There are several wake-up sources in Idle mode and Power-down mode. Table 6.2-4 lists the available clocks for each power mode.

Power Mode	Normal Mode	ldle Mode	Power-Down Mode	
Definition CPU is in active state 0		CPU is in sleep state	CPU is in sleep state and all clocks stop except LXT and LIRC. SRAM content retended.	
Entry Condition Chip is in normal mode after system reset released		CPU executes WFI instruction.	CPU sets sleep mode enable and power down enable and executes WFI instruction.	
Wake-up Sources N/A		All interrupts	WDT, Timer, UART, BOD, GPIO, EINT, USCI, CAN and ACMP	
Available Clocks	All	All except CPU clock	LXT and LIRC	
After Wake-up	N/A	CPU back to normal mode	CPU back to normal mode	

Table 6.2-4 Power Mode Difference Table

nuvoTon

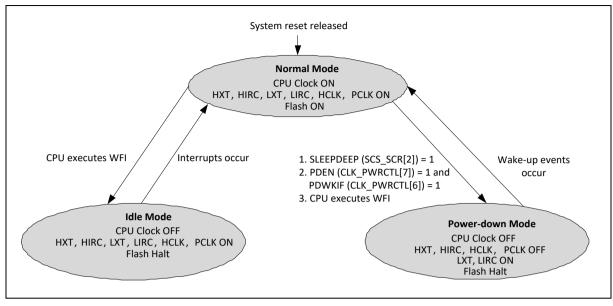


Figure 6.2-8 Power Mode State Machine

- 1. LXT (32768 Hz XTL) ON or OFF depends on SW setting in normal mode.
- 2. LIRC (38.4 kHz OSC) ON or OFF depends on S/W setting in normal mode.
- 3. If TIMER clock source is selected as LIRC/LXT and LIRC/LXT is on.
- 4. If WDT clock source is selected as LIRC and LIRC is on.
- 5. If UART clock source is selected as LXT and LXT is on.

	Normal Mode	Idle Mode	Power-Down Mode
HXT (4~24 MHz XTL)	ON	ON	Halt
HIRC48 (48 MHz OSC)	ON	ON	Halt
LXT (32768 Hz XTL)	ON	ON	ON/OFF ¹
LIRC (38.4 kHz OSC)	ON	ON	ON/OFF ²
MLDO	ON	ON	OFF
ULDO	ON	ON	ON
CPU	ON	Halt	Halt
HCLK/PCLK	ON	ON	Halt
SRAM retention	ON	ON	ON
FLASH	ON	ON	Halt
GPIO	ON	ON	Halt
PDMA	ON	ON	Halt
TIMER	ON	ON	ON/OFF ³
PWM	ON	ON	Halt
WDT	ON	ON	ON/OFF ⁴
WWDT	ON	Halt	Halt
UART	ON	ON	ON/OFF ⁶
USCI	ON	ON	Halt
ADC	ON	ON	Halt
ACMP	ON	ON	Halt

Table 6.2-5 Clocks in Power Modes

Wake-up sources in Power-down mode:

WDT, Timer, UART, USCI, BOD, GPIO, CAN, and ACMP.

After chip enters power down, the following wake-up sources can wake chip up to normal mode. Table 6.2-5 lists the condition about how to enter Power-down mode again for each peripheral.

*User needs to wait this condition before setting PDEN(CLK_PWRCTL[7]) and execute WFI to enter Power-down mode.

Wake-Up Source	Wake-Up Condition	System Can Enter Power-Down Mode Again Condition*					
BOD	rown-Out Detector Interrupt After software writes 1 to clear (SYS_BODCTL[4]).						
INT	External Interrupt	ternal Interrupt After software write 1 to clear the Px_INTSRC[n] bit.					
GPIO	GPIO Interrupt After software write 1 to clear the Px_INTSRC[n] bit.						
TIMER	Timer Interrupt	After software writes 1 to clear TWKF (TIMERx_INTSTS[1]) and TIF (TIMERx_INTSTS[0]).					
WDT	WDT Interrupt	After software writes 1 to clear WKF (WDT_CTL[5]) (Write Protect).					

	nCTS wake-up	After software writes 1 to clear CTSWKF (UARTx_WKSTS[0]).
	RX Data wake-up	After software writes 1 to clear DATWKF (UARTx_WKSTS[1]).
UART0/1	Received FIFO Threshold Wake-up	After software writes 1 to clear RFRTWKF (UARTx_WKSTS[2]).
	RS-485 AAD Mode Wake-up	After software writes 1 to clear RS485WKF (UARTx_WKSTS[3]).
	Received FIFO Threshold Time-out Wake-up	After software writes 1 to clear TOUTWKF (UARTx_WKSTS[4]).
CAN	RX Data wake-up	After software writes 1 to clear WAKUP_STS (CAN_WU_STATUS[0]).
ACMP	Comparator Power-Down Wake-Up Interrupt	After software writes 1 to clear WKIF0 (ACMP_STATUS[8]) and WKIF1 (ACMP_STATUS[9]).

Table 6.2-6 Condition of Entering Power-down Mode Again

6.2.5 System Memory Map

The NuMicro[®] M0A21/M0A23 series provides 4G-byte addressing space. The memory locations assigned to each on-chip controllers are shown in Table 6.2-7. The detailed register definition, memory space, and programming will be described in the following sections for each on-chip peripheral. The M0A21/M0A23 series only supports little-endian data format.

Address Space	Token	Controllers
Flash and SRAM Memory Space		
0x0000_0000 – 0x0000_7FFF	FLASH_BA	FLASH Memory Space (32 Kbytes)
0x2000_0000 – 0x2000_0FFF	SRAM0_BA	SRAM Memory Space (4 Kbytes)
Peripheral Controllers Space (0x4000	_0000 – 0x400F_F	FFF)
0x4000_0000 – 0x4000_01FF	SYS_BA	System Control Registers
0x4000_0200 – 0x4000_02FF	CLK_BA	Clock Control Registers
0x4000_0300 – 0x4000_03FF	NMI_BA	NMI Control Registers
0x4000_4000 – 0x4000_4FFF	GPIO_BA	GPIO Control Registers
0x4000_8000 – 0x4000_8FFF	PDMA_BA	Peripheral DMA Control Registers
0x4000_C000 – 0x4000_CFFF	FMC_BA	Flash Memory Control Registers
0x4001_4000 – 0x4001_7FFF	HDIV_BA	Hardware Divider Register
0x4003_1000 – 0x4003_1FFF	CRC_BA	CRC Generator Registers
APB Controllers Space (0x4000_0000) ~ 0x400F_FFFF)	
0x4004_0000 – 0x4004_0FFF	WDT_BA	Watchdog Timer Control Registers
0x4004_3000 – 0x4004_3FFF	ADC_BA	Analog-Digital-Converter (ADC) Control Registers
0x4004_5000 – 0x4004_5FFF	ACMP01_BA	Analog Comparator 0/ 1 Control Registers
0x4004_7000 – 0x4004_7FFF	DAC0_BA	DAC 0 Control Registers
0x4005_0000 – 0x4005_0FFF	TMR01_BA	Timer0/Timer1 Control Registers
0x4005_1000 – 0x4005_1FFF	TMR23_BA	Timer2/Timer3 Control Registers
0x4005_8000 – 0x4005_8FFF	PWM0_BA	PWM0 Control Registers

0x4007_0000 – 0x4007_0FFF	UART0_BA	UART0 Control Registers
0x4007_1000 – 0x4007_1FFF	UART1_BA	UART1 Control Registers
0x400A_0000 – 0x400A_0FFF	CAN0_BA	CAN0 Control Registers
0x400D_0000 – 0x400D_0FFF	USCI0_BA	USCI0 Control Registers
0x400D_1000 – 0x400D_1FFF	USCI1_BA	USCI1 Control Registers
System Controllers Space (0xE000_E	F)	
0xE000_E010 - 0xE000_E0FF	SCS_BA	System Timer Control Registers
0xE000_E100 - 0xE000_ECFF	SCS_BA	External Interrupt Controller Control Registers
0xE000_ED00 - 0xE000_ED8F	SCS_BA	System Control Registers

Table 6.2-7 Address Space Assignments for On-Chip Controllers

6.2.6 SRAM Memory Orginization

The M0A21/M0A23 supports embedded SRAM with total 4 Kbytes size

- Supports total 4 Kbytes SRAM
- Supports byte / half word / word write
- Supports oversize response error

Table 6.2-9 shows the SRAM organization of M0A21/M0A23. The address between 0x2000_1000 to 0x3FFF_FFFF is illegal memory space and chip will enter hardfault if CPU accesses these illegal memory addresses.

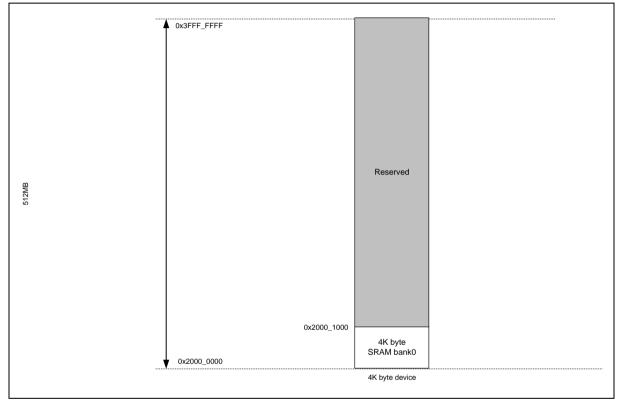


Figure 6.2-9 SRAM Memory Organization

6.2.7 Chip Bus Matrix

The M0A21/M0A23 series supports Bus Matrix to manage the access arbitration between masters. The access arbitration use round-robin algorithm as the bus priority.

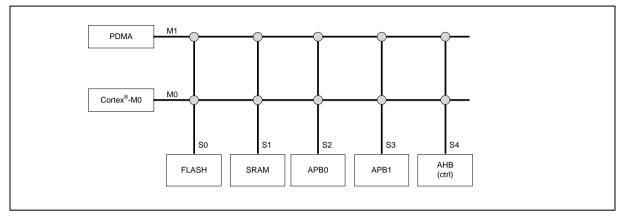


Figure 6.2-10 NuMicro[®] M0A21/M0A23 Bus Matrix Diagram

6.2.8 IRC Auto Trim

This chip supports auto-trim function: the HIRC trim (48 MHz RC oscillator), according to the accurate external 32.768 kHz crystal oscillator, automatically gets accurate output frequency, 0.25 % deviation within all temperature ranges.

In HIRC case, the system needs an accurate 48 MHz clock. In such case, if not soldering 32.768 kHz crystal or 12 MHz crystal in system, user has to set REFCKSEL (SYS_HIRCTRIMCTL [10] reference clock selection) to "0", set FREQSEL (SYS_HIRCTRIMCTL [1:0] trim frequency selection) to "01", and the auto-trim function will be enabled. Interrupt status bit FREQLOCK (SYS_HIRCTRIMSTS[0] HIRC frequency lock status) "1" indicates the HIRC output frequency is accurate within 0.25% deviation.

6.2.9 Register Lock Control

Some of the system control registers need to be protected to avoid inadvertent write and disturb the chip operation. These system control registers are protected after the power-on reset till user to disable register protection. For user to program these protected registers, a register protection disable sequence needs to be followed by a special programming. The register protection disable sequence is writing the data "59h", "16h" "88h" to the register SYS_REGLCTL address at 0x4000_0100 continuously. Any different data value, different sequence or any other write to other address during these three data writing will abort the whole sequence. All protected control registers are noted "(Write Protect)" and add an note "**Note:** This bit is write protected. Refer to the SYS_REGLCTL register in register description field.

6.2.10 UART0_TXD/USCI0_DAT0 Modulation with PWM

This chip supports UART0_TXD/USCI_DAT0 to modulate with PWM channel. User can set MODPWMSEL(SYS_MODCTL[7:4]) to choose which PWM0 channel to modulate with UART0_TXD/USCI0_DAT0 and set MODEN(SYS_MODCTL[0]) to enable modulation function. User can set TXDINV(UART_LINE[8]) to inverse UART0_TXD or DATOINV(UUART_LINECTL[5]) to inverse USCI0_DAT0 before modulating with PWM.

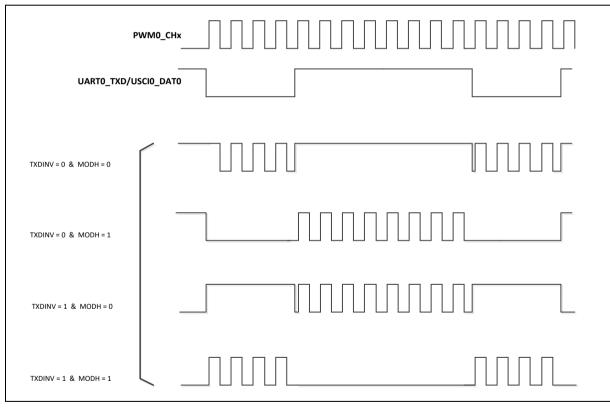


Figure 6.2-11 UART0_TXD/USCI0_DAT0 Modulated with PWM Channel

6.2.11 Register Map

R: read only, W: write only, R/W: both read and write

	-			
Register	Offset	R/W	Description	Reset Value
SYS Base Address: SYS_BA = 0x4000_0000				
SYS_PDID	SYS_BA+0x00	R	Part Device Identification Number Register	0xXXXX_XXXX
SYS_RSTSTS	SYS_BA+0x04	R/W	System Reset Status Register	0x0000_0043
SYS_IPRST0	SYS_BA+0x08	R/W	Peripheral Reset Control Register 0	0x0000_0000
SYS_IPRST1	SYS_BA+0x0C	R/W	Peripheral Reset Control Register 1	0x0000_0000
SYS_IPRST2	SYS_BA+0x10	R/W	Peripheral Reset Control Register 2	0x0000_0000
SYS_BODCTL	SYS_BA+0x18	R/W	Brown-out Detector Control Register	0x00XX_038X
SYS_IVSCTL	SYS_BA+0x1C	R/W	Internal Voltage Source Control Register	0x0000_0000
SYS_PORCTL	SYS_BA+0x24	R/W	Power-On-reset Controller Register	0x0000_0000
SYS_VREFCTL	SYS_BA+0x28	R/W	V _{REF} Control Register	0x0000_0100
SYS_GPA_MFP0	SYS_BA+0x30	R/W	GPIOA Multiple Function Control Register 0	0x0000_0202
SYS_GPA_MFP1	SYS_BA+0x34	R/W	GPIOA Multiple Function Control Register 1	0x0000_0000
SYS_GPB_MFP1	SYS_BA+0x44	R/W	GPIOB Multiple Function Control Register 1	0x0000_0000
SYS_GPC_MFP0	SYS_BA+0x50	R/W	GPIOC Multiple Function Control Register 0	0x0000_0000
SYS_GPC_MFP1	SYS_BA+0x54	R/W	GPIOC Multiple Function Control Register 1	0x0000_0000
SYS_GPD_MFP0	SYS_BA+0x60	R/W	GPIOD Multiple Function Control Register 0	0x0000_0000
SYS_GPD_MFP1	SYS_BA+0x64	R/W	GPIOD Multiple Function Control Register 1	0x0000_0000
SYS_GPA_MFOS	SYS_BA+0xB0	R/W	GPIOA Multiple Function Output Select Register	0x0000_0000
SYS_GPB_MFOS	SYS_BA+0xB4	R/W	GPIOB Multiple Function Output Select Register	0x0000_0000
SYS_GPC_MFOS	SYS_BA+0xB8	R/W	GPIOC Multiple Function Output Select Register	0x0000_0000
SYS_GPD_MFOS	SYS_BA+0xBC	R/W	GPIOD Multiple Function Output Select Register	0x0000_0000
SYS_SRAM_BISTCTL	SYS_BA+0xD0	R/W	System SRAM BIST Test Control Register	0x0000_0000
SYS_SRAM_BISTSTS	SYS_BA+0xD4	R	System SRAM BIST Test Status Register	0x00xx_00xx
SYS_MODCTL	SYS_BA+0xE8	R/W	Modulation Control Register	0x0000_0000
SYS_HIRCTRIMCTL	SYS_BA+0xF0	R/W	HIRC Trim Control Register	0x0008_0000
SYS_HIRCTRIMIEN	SYS_BA+0xF4	R/W	HIRC Trim Interrupt Enable Register	0x0000_0000
SYS_HIRCTRIMSTS	SYS_BA+0xF8	R/W	HIRC Trim Interrupt Status Register	0x0000_0000
SYS_REGLCTL	SYS_BA+0x100	R/W	Register Lock Control Register	0x0000_0000

M0A21/M0A23 Series

SYS_PORDISAN SYS_BA+0x1EC	R/W	Analog POR Disable Control Register	0x0000_0000
---------------------------	-----	-------------------------------------	-------------

6.2.12 Register Description

Part Device Identification Number Register (SYS_PDID)

Register	Offset	R/W	Description	Reset Value
SYS_PDID	SYS_BA+0x00	R	Part Device Identification Number Register	0xXXXX_XXXX

[1] Every part number has a unique default reset value.

31	30	29	28	27	26	25	24			
PDID										
23	22	21	20	19	18	17	16			
	PDID									
15	14	13	12	11	10	9	8			
			PC	DID						
7	6	5	4	3	2	1	0			
	PDID									

Bits	Description							
[31:0]	חוחם	Part Device Identification Number (Read Only)						
[31.0]	FUID	This register reflects device part number code. Software can read this register to identify which device is used.						

System Reset Status Register (SYS_RSTSTS)

This register provides specific information for software to identify this chip's reset source from last operation.

Register	Offset	R/W	Description	Reset Value
SYS_RSTSTS	SYS_BA+0x04	R/W	System Reset Status Register	0x0000_0043

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
CPURF	Reserved	SYSRF	BODRF	LVRF	WDTRF	PINRF	PORF			

Bits	Descriptio	n					
[31:9]	Reserved	Reserved.					
[8]		CPU Lockup Reset Flag 0 = No reset from CPU lockup happened. 1 = The Cortex [®] -M0 lockup happened and chip is reset. Note: Write 1 to clear this bit to 0. Note 2: When CPU lockup happened under ICE is connected, This flag will set to 1 but chip will not reset.					
[7]	CPURF	CPU Reset Flag The CPU reset flag is set by hardware if software writes CPURST (SYS_IPRST0[1]) 1 to reset Cortex [®] - M0 Core and Flash Memory Controller (FMC). 0 = No reset from CPU. 1 = The Cortex [®] -M0 Core and FMC are reset by software setting CPURST to 1. Note: Write to clear this bit to 0.					
[6]	Reserved	Reserved.					
[5]	SYSRF	 System Reset Flag The system reset flag is set by the "Reset Signal" from the Cortex[®]-M0 Core to indicate the previous reset source. 0 = No reset from Cortex[®]-M0. 1 = The Cortex[®]- M0 had issued the reset signal to reset the system by writing 1 to the bit SYSRESETREQ(AIRCR[2], Application Interrupt and Reset Control Register, address = 0xE000ED0C) in system control registers of Cortex[®]-M0 core. Note: Write 1 to clear this bit to 0. 					

nuvoTon

Bits	Descriptio	n
[4]	BODRF	 BOD Reset Flag The BOD reset flag is set by the "Reset Signal" from the Brown-Out Detector to indicate the previous reset source. 0 = No reset from BOD. 1 = The BOD had issued the reset signal to reset the system. Note: Write 1 to clear this bit to 0.
[3]	LVRF	 LVR Reset Flag The LVR reset flag is set by the "Reset Signal" from the Low Voltage Reset Controller to indicate the previous reset source. 0 = No reset from LVR. 1 = LVR controller had issued the reset signal to reset the system. Note: Write 1 to clear this bit to 0.
[2]	WDTRF	 WDT Reset Flag The WDT reset flag is set by the "Reset Signal" from the Watchdog Timer or Window Watchdog Timer to indicate the previous reset source. 0 = No reset from watchdog timer or window watchdog timer. 1 = The watchdog timer or window watchdog timer had issued the reset signal to reset the system. Note 1: Write 1 to clear this bit to 0. Note 2: Watchdog Timer register RSTF(WDT_CTL[2]) bit is set if the system has been reset by WDT time-out reset. Window Watchdog Timer register WWDTRF(WWDT_STATUS[1]) bit is set if the system has been reset by WWDT time-out reset.
[1]	PINRF	 NRESET Pin Reset Flag The nRESET pin reset flag is set by the "Reset Signal" from the nRESET Pin to indicate the previous reset source. 0 = No reset from nRESET pin. 1 = Pin nRESET had issued the reset signal to reset the system. Note: Write 1 to clear this bit to 0.
[0]	PORF	 POR Reset Flag The POR reset flag is set by the "Reset Signal" from the Power-on Reset (POR) Controller or bit CHIPRST (SYS_IPRST0[0]) to indicate the previous reset source. 0 = No reset from POR or CHIPRST. 1 = Power-on Reset (POR) or CHIPRST had issued the reset signal to reset the system. Note: Write 1 to clear this bit to 0.

Peripheral Reset Control Register 0 (SYS_IPRST0)

Register Offset		R/W	Description	Reset Value
SYS_IPRST0	SYS_BA+0x08	R/W	Peripheral Reset Control Register 0	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	Reserved										
7	6	5	4	3	2	1	0				
CRCRST	CRCRST Reserved			Reserved	PDMARST	CPURST	CHIPRST				

Bits	Description	n
[31:8]	Reserved	Reserved.
[7]	CRCRST	 CRC Calculation Controller Reset (Write Protect) Set this bit to 1 will generate a reset signal to the CRC calculation controller. User needs to set this bit to 0 to release from the reset state. 0 = CRC calculation controller normal operation. 1 = CRC calculation controller reset. Note: This bit is write protected. Refer to the SYS_REGLCTL register.
[6:5]	Reserved	Reserved.
[4]	HDIV_RST	 HDIV Controller Reset (Write Protect) Set this bit to 1 will generate a reset signal to the hardware divider. User need to set this bit to 0 to release from the reset state. 0 = Hardware divider controller normal operation. 1 = Hardware divider controller reset. Note: This bit is write protected. Refer to the SYS_REGLCTL register.
[3]	Reserved	Reserved.
[2]	PDMARST	 PDMA Controller Reset (Write Protect) Setting this bit to 1 will generate a reset signal to the PDMA. User needs to set this bit to 0 to release from reset state. 0 = PDMA controller normal operation. 1 = PDMA controller reset. Note: This bit is write protected. Refer to the SYS_REGLCTL register.
[1]	CPURST	 Processor Core One-shot Reset (Write Protect) Setting this bit will only reset the processor core and Flash Memory Controller(FMC), and this bit will automatically return to 0 after the 2 clock cycles. 0 = Processor core normal operation. 1 = Processor core one-shot reset. Note: This bit is write protected. Refer to the SYS_REGLCTL register.

		Chip One-shot Reset (Write Protect)
		Setting this bit will reset the whole chip, including Processor core and all peripherals, and this bit will automatically return to 0 after the 2 clock cycles.
		The CHIPRST is same as the POR reset, all the chip controllers is reset and the chip setting from Flash are also reload.
[0]	CHIPRST	About the difference between CHIPRST and SYSRESETREQ(AIRCR[2]), please refer to section 6.2.2
		0 = Chip normal operation.
		1 = Chip one-shot reset.
		Note 1: This bit is write protected. Refer to the SYS_REGLCTL register.
		Note 2: Reset by powr on reset.

Peripheral Reset Control Register 1 (SYS_IPRST1)

Setting these bits 1 will generate asynchronous reset signals to the corresponding module controller. Users need to set these bits to 0 to release corresponding module controller from reset state.

Register	Offset	R/W	Description	Reset Value
SYS_IPRST1	SYS_BA+0x0C	R/W	Peripheral Reset Control Register 1	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved		ADCRST		Reserved			
23	23 22 21		20	19	18	17	16	
	Reserved							
15	15 14 13		12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
ACMP01RST	Reserved	TMR3RST	TMR2RST	TMR1RST	TMR0RST	GPIORST	Reserved	

Bits	Description					
[31:29]	Reserved	Reserved.				
[28]	ADCRST	 ADC Controller Reset 0 = ADC controller normal operation. 1 = ADC controller reset. 				
[27:25]	Reserved	Reserved.				
[24]	CANORST	CAN0 Controller Reset 0 = CAN0 controller normal operation. 1 = CAN0 controller reset.				
[23:18]	Reserved Reserved.					
[17]	UART1RST	UART1 Controller Reset 0 = UART1 controller normal operation. 1 = UART1 controller reset.				
[16]	UARTORST	UART0 Controller Reset 0 = UART0 controller normal operation. 1 = UART0 controller reset.				
[15:8]	Reserved	Reserved.				
[7]	ACMP01RST	 Analog Comparator 0/1 Controller Reset 0 = Analog Comparator 0/1 controller normal operation. 1 = Analog Comparator 0/1 controller reset. 				
[6]	Reserved	Reserved.				
[5]	TMR3RST	Timer3 Controller Reset0 = Timer3 controller normal operation.1 = Timer3 controller reset.				

[4]	TMR2RST	Timer2 Controller Reset 0 = Timer2 controller normal operation. 1 = Timer2 controller reset.
[3]	TMR1RST	Timer1 Controller Reset 0 = Timer1 controller normal operation. 1 = Timer1 controller reset.
[2]	TMRORST	Timer0 Controller Reset 0 = Timer0 controller normal operation. 1 = Timer0 controller reset.
[1]	GPIORST	 GPIO Controller Reset 0 = GPIO controller normal operation. 1 = GPIO controller reset.
[0]	Reserved	Reserved.

Peripheral Reset Control Register 2 (SYS_IPRST2)

Setting these bits to 1 will generate asynchronous reset signals to the corresponding module controller. Users need to set these bits to 0 to release corresponding module controller from reset state.

Register	Offset	R/W	Description	Reset Value
SYS_IPRST2	SYS_BA+0x10	R/W	Peripheral Reset Control Register 2	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	23 22 21			19	18	17	16			
	Reserved									
15	15 14 13		12	11	10	9	8			
	Reserved			Rese	erved	USCI1RST	USCIORST			
7 6 5		4	3	2	1	0				
	Reserved									

Bits	Description	
[31:17]	Reserved	Reserved.
[16]	PWMORST	PWM0 Controller Reset 0 = PWM0 controller normal operation. 1 = PWM0 controller reset.
[15:13]	Reserved	Reserved.
[12]	DACORST	DAC0 Controller Reset 0 = DAC0 controller normal operation. 1 = DAC0 controller reset.
[11:10]	Reserved	Reserved.
[9]	USCI1RST	USCI1 Controller Reset 0 = USCI1 controller normal operation. 1 = USCI1 controller reset.
[8]	USCIORST	USCI0 Controller Reset 0 = USCI0 controller normal operation. 1 = USCI0 controller reset.
[7:0]	Reserved	Reserved.

Brown-out Detector Control Register (SYS_BODCTL)

Partial of the SYS_BODCTL control registers values are initiated by the Flash configuration and partial bits are write-protected bit.

Register	Offset	R/W	Description	Reset Value
SYS_BODCTL	SYS_BA+0x18	R/W	Brown-out Detector Control Register	0x00XX_038X

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved					BO	DVL
15	14	13	12	11	10	9	8
Reserved	Reserved LVRDGSEL					BODDGSEL	
7	6	5	4	3	2	1	0
LVREN	BODOUT	BODLPM	BODIF	BODRSTEN	Rese	erved	BODEN

Bits	Description								
[31:18]	Reserved	eserved.							
[17:16]	BODVL	 Brown-out Detector Threshold Voltage Selection (Write Protect) The default value is set by Flash controller user configuration register CBOV (CONFIG0 [22:21]). 00 = Brown-Out Detector threshold voltage is 2.3V. 01 = Brown-Out Detector threshold voltage is 2.7V. 10 = Brown-Out Detector threshold voltage is 3.7V. 11 = Brown-Out Detector threshold voltage is 4.4V. Note: This bit is write protected. Refer to the SYS_REGLCTL register. Note : reset by powr on reset 							
[15]	Reserved	Reserved.							
[14:12]	LVRDGSEL	LVR Output De-glitch Time Select (Write Protect) 000 = Without de-glitch function. 001 = 64 system clock (HCLK). 010 = 128 system clock (HCLK). 011 = 256 system clock (HCLK). 100 = 512 system clock (HCLK). 101 = 1024 system clock (HCLK). 110 = 2048 system clock (HCLK). 111 = 4096 system clock (HCLK). Note: These bits are write protected. Refer to the SYS_REGLCTL register.							
[11]	Reserved	Reserved.							

Bits	Description								
		Brown-out Detector Output De-glitch Time Select (Write Protect)							
		000 = BOD output is sampled by RC32K clock.							
		001 = 64 system clock (HCLK).							
		010 = 128 system clock (HCLK).							
[10.0]	PODDOSEL	011 = 256 system clock (HCLK).							
[10:8]	BODDGSEL	100 = 512 system clock (HCLK).							
		101 = 1024 system clock (HCLK).							
		110 = 2048 system clock (HCLK).							
		111 = 4096 system clock (HCLK).							
		Note: These bits are write protected. Refer to the SYS_REGLCTL register.							
		Low Voltage Reset Enable Bit (Write Protect)							
		The LVR function resets the chip when the input power voltage is lower than LVR circuit setting. LVR function is enabled by default.							
[7]	LVREN	0 = Low Voltage Reset function Disabled.							
[/]	LVKEN	1 = Low Voltage Reset function Enabled.							
		Note 1: After enabling the bit, the LVR function will be active with 200us delay for LVR output stable (default).							
		Note 2: This bit is write protected. Refer to the SYS_REGLCTL register.							
		Brown-out Detector Output Status							
		0 = Brown-out Detector output status is 0.							
[6]	BODOUT	It means the detected voltage is higher than BODVL setting or BODEN is 0.							
[0]	505001	1 = Brown-out Detector output status is 1.							
		It means the detected voltage is lower than BODVL setting. If the BODEN is 0, BOD function disabled, this bit always responds 0000.							
		Brown-out Detector Low Power Mode (Write Protect)							
		0 = BOD operate in normal mode (default).							
[5]	BODLPM	1 = BOD Low Power mode Enabled.							
[]	BODLFIN	Note 1: The BOD consumes about 100uA in normal mode, the low power mode can reduce the current to about 1/10 but slow the BOD response.							
		Note 2: This bit is write protected. Refer to the SYS_REGLCTL register.							
		Brown-out Detector Interrupt Flag							
		0 = Brown-out Detector does not detect any voltage draft at V_{DD} down through or up through the voltage of BODVL setting.							
[4]	BODIF	1 = When Brown-out Detector detects the V_{DD} is dropped down through the voltage of BODVL setting or the V_{DD} is raised up through the voltage of BODVL setting, this bit is set to 1 and the brown-out interrupt is requested if brown-out interrupt is enabled.							
		Note: Write 1 to clear this bit to 0.							

nuvoTon

Bits	Description								
		Brown-out Reset Enable Bit (Write Protect)							
		The default value is set by Flash controller user configuration register CBORST(CONFIG0[20]) bit .							
		0 = Brown-out "INTERRUPT" function Enabled.							
		1 = Brown-out "RESET" function Enabled.							
		Note 1:							
[3]	BODRSTEN	While the Brown-out Detector function is enabled (BODEN high) and BOD reset function is enabled (BODRSTEN high), BOD will assert a signal to reset chip when the detected voltage is lower than the threshold (BODOUT high).							
		While the BOD function is enabled (BODEN high) and BOD interrupt function is enabled (BODRSTEN low), BOD will assert an interrupt if BODOUT is high. BOD interrupt will keep till to the BODEN set to 0. BOD interrupt can be blocked by disabling the NVIC BOD interrupt or disabling BOD function (set BODEN low).							
		Note 2: This bit is write protected. Refer to the SYS_REGLCTL register.							
		Note 3: Reset by powr on reset.							
[2:1]	Reserved	Reserved.							
		Brown-out Detector Enable Bit (Write Protect)							
		The default value is set by Flash controller user configuration register CBODEN (CONFIG0 [19]).							
[0]	BODEN	0 = Brown-out Detector function Disabled.							
[0]	BODEN	1 = Brown-out Detector function Enabled.							
		Note 1: This bit is write protected. Refer to the SYS_REGLCTL register.							
		Note 2: Reset by powr on reset.							

Internal Voltage Source Control Register (SYS_IVSCTL)

Register	Offset	R/W	Description	Reset Value
SYS_IVSCTL	SYS_BA+0x1C	R/W	Internal Voltage Source Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
	Reserved							

Bits	Descriptio	ion							
[31:2]	Reserved	eserved.							
[0]	VIEMPEN	Temperature Sensor Enable Bit This bit is used to enable/disable temperature sensor function. 0 = Temperature sensor function Disabled (default). 1 = Temperature sensor function Enabled. Note: After this bit is set to 1, the value of temperature sensor output can be obtained from ADC conversion result. Please refer to ADC function chapter for details.							

Power-on Reset Controller Register (SYS_PORCTL)

Register	Offset	R/W	Description	Reset Value
SYS_PORCTL	SYS_BA+0x24	R/W	Power-On-reset Controller Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			POR	OFF				
7	6	5	4	3	2	1	0	
	POROFF							

Bits	Descriptio	cription							
[31:16]	Reserved	Reserved.							
		Power-on Reset Enable Bit (Write Protect)							
		When powered on, the POR circuit generates a reset signal to reset the whole chip function, but noise on the power may cause the POR active again. User can disable internal POR circuit to avoid unpredictable noise to cause chip reset by writing 0x5AA5 to this field.							
[15:0]		The POR function will be active again when this field is set to another value or chip is reset by other reset source, including:							
		nRESET, Watchdog, LVR reset, BOD reset, ICE reset command and the software-chip reset function.							
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.							

VREF Control Register (SYS_VREFCTL)

Register	Offset	R/W	Description	Reset Value
SYS_VREFCTL	SYS_BA+0x28	R/W	V _{REF} Control Register	0x0000_0100

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
Reserved	PRELOADSEL	EL Reserved ADCPRESEL VREFCTL						

Bits	Description							
[31:7]	Reserved	Reserved.						
[6]	PRELOADSEL	Pre-load Timing Selection (Write Protect) 0 = Pre-load time is 60us for 0.1uF Capacitor. 1 = Pre-load time is 310us for 1uF Capacitor. Note: These bits is write protected. Refer to the SYS_REGLCTL register.						
[5]	Reserved	Reserved.						
[4]	ADCPRESEL	 ADC Voltage Reference 0 = ADC positive reference voltage comes from AV_{DD} (voltage of V_{DD} pin) 1 = ADC positive reference voltage comes from internal or external V_{REF}. Note: These bits is write protected. Refer to the SYS_REGLCTL register. 						
[3:0]	VREFCTL	V_{REF} Control Bits (Write Protect) $0000 = V_{REF}$ is from external pin. $0001 = V_{REF}$ is internal 1.536V. $0011 = V_{REF}$ is internal 2.048V. $0101 = V_{REF}$ is internal 2.048V. $0101 = V_{REF}$ is internal 2.56V. $0111 = V_{REF}$ is internal 3.072V. $1001 = V_{REF}$ is internal 4.096V.Others = Reserved.Note 1: GPA1 needs to keep folating if Internal voltage reference is enabled.Note 2: These bits are write protected. Refer to the SYS_REGLCTL register.						

GPIOA Multiple Function Control Register 0 (SYS_GPA_MFP0)

Register	Offset	R/W	Description	Reset Value
SYS_GPA_MFP0	SYS_BA+0x30	R/W	GPIOA Multiple Function Control Register 0	0x0000_0202

31	30	29	28	27	26	25	24		
	GPA3MFP								
23	22	21	20	19	18	17	16		
	GPA2MFP								
15	14	13	12	11	10	9	8		
			GPA ²	1MFP					
7	6	5	4	3	2	1	0		
	GPA0MFP								

Bits	Description	escription			
[31:24]	GPA3MFP	PA.3 Multi-function Pin Selection			
[23:16]	GPA2MFP	PA.2 Multi-function Pin Selection			
[15:8]	GPA1MFP	PA.1 Multi-function Pin Selection			
[7:0]	GPA0MFP	PA.0 Multi-function Pin Selection			

GPIOA Multiple Function Control Register 1 (SYS_GPA_MFP1)

Register	Offset	R/W	Description	Reset Value
SYS_GPA_MFP1	SYS_BA+0x34	R/W	GPIOA Multiple Function Control Register 1	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	GPA5MFP								
7	6	5	4	3	2	1	0		
	GPA4MFP								

Bits	Description	escription			
[30:16]	Reserved	Reserved.			
[15:8]	GPA5MFP	PA.5 Multi-function Pin Selection			
[7:0]	GPA4MFP	PA.4 Multi-function Pin Selection			

GPIOB Multiple Function Control Register 1 (SYS_GPB_MFP1)

Register	Offset	R/W	Description	Reset Value
SYS_GPB_MFP1	SYS_BA+0x44	R/W	GPIOB Multiple Function Control Register 1	0x0000_0000

31	30	29	28	27	26	25	24		
	GPB7MFP								
23	22	21	20	19	18	17	16		
	GPB6MFP								
15	14	13	12	11	10	9	8		
	GPB5MFP								
7	6	5	4	3	2	1	0		
	GPB4MFP								

Bits	Description			
[31:24]	GPB7MFP	PB.7 Multi-function Pin Selection		
[23:16]	GPB6MFP	PB.6 Multi-function Pin Selection		
[15:8]	GPB5MFP	PB.5 Multi-function Pin Selection		
[7:0]	GPB4MFP	PB.4 Multi-function Pin Selection		

GPIOC Multiple Function Control Register 0 (SYS_GPC_MFP0)

Register	Offset	R/W	Description	Reset Value
SYS_GPC_MFP0	SYS_BA+0x50	R/W	GPIOC Multiple Function Control Register 0	0x0000_0000

31	30	29	28	27	26	25	24	
	GPC3MFP							
23	22	21	20	19	18	17	16	
	GPC2MFP							
15	14	13	12	11	10	9	8	
	GPC1MFP							
7	6	5	4	3	2	1	0	
	GPC0MFP							

Bits	Description	escription			
[31:24]	GPC3MFP	PC3 Multi-function Pin Selection			
[23:16]	GPC2MFP	PC.2 Multi-function Pin Selection			
[15:8]	GPC1MFP	PC.1 Multi-function Pin Selection			
[7:0]	GPC0MFP	PC.0 Multi-function Pin Selection			

GPIOC Multiple Function Control Register 1 (SYS_GPC_MFP1)

Register	Offset	R/W	Description	Reset Value
SYS_GPC_MFP1	SYS_BA+0x54	R/W	GPIOC Multiple Function Control Register 1	0x0000_0000

31	30	29	28	27	26	25	24		
	GPC7MFP								
23	22	21	20	19	18	17	16		
	GPC6MFP								
15	14	13	12	11	10	9	8		
	GPC5MFP								
7	6	5	4	3	2	1	0		
	GPC4MFP								

Bits	Description	escription			
[31:24]	GPC7MFP	PC.7Multi-function Pin Selection			
[23:16]	GPC6MFP	PC.6 Multi-function Pin Selection			
[15:8]	GPC5MFP	PC.5 Multi-function Pin Selection			
[7:0]	GPC4MFP	PC.4 Multi-function Pin Selection			

GPIOD Multiple Function Control Register 0 (SYS_GPD_MFP0)

Register	Offset	R/W	Description	Reset Value
SYS_GPD_MFP0	SYS_BA+0x60	R/W	GPIOD Multiple Function Control Register 0	0x0000_0000

31	30	29	28	27	26	25	24	
	GPD3MFP							
23	22	21	20	19	18	17	16	
	GPD2MFP							
15	14	13	12	11	10	9	8	
	GPD1MFP							
7	6	5	4	3	2	1	0	
	GPD0MFP							

Bits	Description	escription			
[31:24]	GPD3MFP	PD3 Multi-function Pin Selection			
[23:16]	GPD2MFP	PD.2 Multi-function Pin Selection			
[15:8]	GPD1MFP	PD.1 Multi-function Pin Selection			
[7:0]	GPD0MFP	PD.0 Multi-function Pin Selection			

GPIOD Multiple Function Control Register 1 (SYS_GPD_MFP1)

Register	Offset	R/W	Description	Reset Value
SYS_GPD_MFP1	SYS_BA+0x64	R/W	GPIOD Multiple Function Control Register 1	0x0000_0000

31	30	29	28	27	26	25	24	
	GPD7MFP							
23	22	21	20	19	18	17	16	
	GPD6MFP							
15	14	13	12	11	10	9	8	
	GPD5MFP							
7	6	5	4	3	2	1	0	
	GPD4MFP							

Bits	Description	escription			
[31:24]	GPD7MFP	PD.7Multi-function Pin Selection			
[23:16]	GPD6MFP	PD.6 Multi-function Pin Selection			
[15:8]	GPD5MFP	PD.5 Multi-function Pin Selection			
[7:0]	GPD4MFP	PD.4 Multi-function Pin Selection			

Register	Offset	R/W	Description	Reset Value
SYS_GPA_MFOS	SYS_BA+0xB0	R/W	GPIOA Multiple Function Output Select Register	0x0000_0000
SYS_GPB_MFOS	SYS_BA+0xB4	R/W	GPIOB Multiple Function Output Select Register	0x0000_0000
SYS_GPC_MFOS	SYS_BA+0xB8	R/W	GPIOC Multiple Function Output Select Register	0x0000_0000
SYS_GPD_MFOS	SYS_BA+0xBC	R/W	GPIOD Multiple Function Output Select Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	MFOS									
7	6	5	4	3	2	1	0			
	MFOS									

Bits	Description									
[31:16]	Reserved	eserved.								
[n] n=0,115	MFOS	 GPIOA-h Pin[n] Multiple Function Pin Output Mode Select This bit used to select multiple function pin output mode type for Px.n pin. 0 = Multiple funtion pin output mode type is unchanged. 1 = Multiple funtion pin output mode type is Open-drain mode. Note: Max. n=5 for port A. Max. n=7 for port B. The PB.0/ PB.1/ PB.2/ PB.3 is ignored. Max. n=7 for port C/D. If MFOS is enabled then GPIO mode setting is ignored when MFP setting be GPIO. 								

System SRAM BIST Test Control Register (SYS_SRAM_BISTCTL)

Register	Offset	R/W	Description	Reset Value
SYS_SRAM_BISTCTL	SYS_BA+0xD0	R/W	System SRAM BIST Test Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
PDMABIST	PDMABIST Reserved								

Bits	Description	Description							
[31:8]	Reserved	erved.							
		PDMA BIST Enable Bit (Write Protect)							
		This bit enables BIST test for PDMA RAM							
[7]	PDMABIST	0 = system PDMA BIST Disabled.							
		1 = system PDMA BIST Enabled.							
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.							
[6:0]	Reserved	Reserved.							

System SRAM BIST Test Status Register (SYS_SRAM_BISTSTS)

Register	Offset	R/W	Description	Reset Value
SYS_SRAM_BISTSTS	SYS_BA+0xD4	R	System SRAM BIST Test Status Register	0x00xx_00xx

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
PDMAEND		Reserved								
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
PDMABISTF	PDMABISTF Reserved									

Bits	Description	Description							
[31:24]	Reserved	Reserved.							
[23]		PDMA SRAM BIST Test Finish 0 = PDMA SRAM BIST is active. 1 = PDMA SRAM BIST test finished.							
[22:8]	Reserved Reserved.								
[7]		PDMA SRAM BIST Failed Flag 0 = PDMA SRAM BIST pass. 1 = PDMA SRAM BIST failed.							
[6:0]	Reserved	Reserved.							

Modulation Control Register (SYS_MODCTL)

Register	egister Offset R/W Des			Des	scription			Reset Value		
SYS_MODCTL	IODCTL SYS_BA+0xE8 R/W Mo			Mod	ulation Control F	Register		0x000	0x0000_0000	
31	30		29	28		27	26	25	;	24
					Rese	rved				
23	22		21	20		19	18	17		16
					Rese	rved				-
15	14		13	12		11	10	9		8
	Reserved									
7	6		5	4		3	2	1		0
	MODPWMSEL					Rese	erved	MO	ЭН	MODEN

Bits	Description	
[31:8]	Reserved	Reserved.
		PWM0 Channel Select for Modulation
		Select the PWM0 channel to modulate with the UART0_TXD or USCI0_DAT0.
		0000: PWM0 Channel 0 modulate with UART0_TXD.
		0001: PWM0 Channel 1 modulate with UART0_TXD.
		0010: PWM0 Channel 2 modulate with UART0_TXD.
		0011: PWM0 Channel 3 modulete with UART0_TXD.
		0100: PWM0 Channel 4 modulete with UART0_TXD.
		0101: PWM0 Channel 5 modulete with UART0_TXD.
		0110: Reserved.
[7:4]		0111: Reserved.
		1000: PWM0 Channel 0 modulate with USCI0_DAT0.
		1001: PWM0 Channel 1 modulate with USCI0_DAT0.
		1010: PWM0 Channel 2 modulate with USCI0_DAT0.
		1011: PWM0 Channel 3 modulete with USCI0_DAT0.
		1100: PWM0 Channel 4 modulete with USCI0_DAT0.
		1101: PWM0 Channel 5 modulete with USCI0_DAT0.
		1110: Reserved.
		1111: Reserved.
		Note: This bis is valid while MODEN (SYS_MODCTL[0]) is set to 1.
[3:2]	Reserved	Reserved.
		Modulation at Data High
[4]	MODH	Select modulation pulse(PWM0) at high or low of UART0_TXD or USCI0_DAT0
[1]	MODH	0 = Modulation pulse at UART0_TXD low or USCI0_DAT0 low.
		1 = Modulation pulse at UART0_TXD high or USCI0_DAT0 high.
		Modulation Function Enable Bit
[0]	MODEN	This bit enables modulation funcion by modulating with PWM0 channel output and USCI0(USCI0_DAT0) or UART0(UART0_TXD) output.

nuvoTon

	0 = Modulation Function Disabled.
	1 = Modulation Function Enabled.

HIRC Trim Control Register (SYS_HIRCTRIMCTL)

Register	Offset	R/W	Description	Reset Value	
SYS_HIRCTRIMCTL	SYS_BA+0xF0	R/W	HIRC Trim Control Register	0x0008_0000	

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
Reserved			BOUNDARY				
15	14	13	12	11	10	9	8
		Reserved			REFCKSEL	BOUNDEN	CESTOPEN
7	6	5	4	3	2	1	0
RETR	YCNT	LOOI	PSEL	Reserved		FREQSEL	

Bits	Description						
[31:21]	Reserved	Reserved.					
[20:16]	6] Boundary Selection 6] BOUNDARY Fill the boundary range from 0x1 to 0x1F, 0x0 is reserved. Note: This field is effective only when the BOUNDEN(SYS_HIRCTRIMCTL[9]) is enable.						
[15:11]	Reserved	Reserved.					
[10]	REFCKSEL	Reference Clock Selection 0 = HIRC trim reference clock is from LXT (32.768 kHz). 1 = Reserved. Note: If there is no reference clock (LXT) when the rc_trim is enabled, CLKERIF (SYS_HIRCTRIMCTL[2] will be set to 1.					
[9]	BOUNDEN	Boundary Enable Bit 0 = Boundary function Disabled. 1 = Boundary function Enabled.					
[8]	CESTOPEN	Clock Error Stop Enable Bit 0 = The trim operation is keep going if clock is inaccuracy. 1 = The trim operation is stopped if clock is inaccuracy.					
[7:6]	RETRYCNT	 Trim Value Update Limitation Count This field defines that how many times the auto trim circuit will try to update the HIRC trim value before the frequency of HIRC locked. Once the HIRC locked, the internal trim value update counter will be reset. If the trim value update counter reached this limitation value and frequency of HIRC still doesn't lock, the auto trim operation will be disabled and FREQSEL will be cleared to 00. 00 = Trim retry count limitation is 64 loops. 01 = Trim retry count limitation is 256 loops. 11 = Trim retry count limitation is 512 loops. 					
[5:4]	LOOPSEL	Trim Calculation Loop Selection					

nuvoTon

		This field defines that trim value calculation is based on how many reference clocks.
		00 = Trim value calculation is based on average difference in 4 clocks of reference clock.
		01 = Trim value calculation is based on average difference in 8 clocks of reference clock.
		10 = Trim value calculation is based on average difference in 16 clocks of reference clock.
		11 = Trim value calculation is based on average difference in 32 clocks of reference clock.
		Note: For example, if LOOPSEL is set as 00, auto trim circuit will calculate trim value based on the average frequency difference in 4 clocks of reference clock.
[3:2]	Reserved	Reserved.
		Trim Frequency Selection
1		This field indicates the target frequency of 48 MHz internal high speed RC oscillator (HIRC) auto trim.
[1:0]	FREQSEL	During auto trim operation, if clock error detected with CESTOPEN is set to 1 or trim retry limitation count
[1:0]	FREQSEL	During auto trim operation, if clock error detected with CESTOPEN is set to 1 or trim retry limitation count reached, this field will be cleared to 00 automatically.
[1:0]	FREQSEL	During auto trim operation, if clock error detected with CESTOPEN is set to 1 or trim retry limitation count reached, this field will be cleared to 00 automatically. 00 = Disable HIRC auto trim function.

HIRC Trim Interrupt Enable Register (SYS_HIRCTRIMIEN)

Register	Offset	R/W	Description	Reset Value
SYS_HIRCTRIMIEN	SYS_BA+0xF4	R/W	HIRC Trim Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24				
Reserved											
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	Reserved										
7	7 6 5 4 3 2 1 0										
		Reserved	CLKEIEN	TFALIEN	Reserved						

Bits	Descriptio	n
[31:3]	Reserved	Reserved.
		Clock Error Interrupt Enable Bit
		This bit controls if CPU would get an interrupt while clock is inaccuracy during auto trim operation.
[2]	CLKEIEN	If this bit is set to1, and CLKERRIF(SYS_HIRCTRIMSTS[2]) is set during auto trim operation, an interrupt will be triggered to notify the clock frequency is inaccuracy.
		0 = Disable CLKERRIF(SYS_HIRCTRIMSTS[2]) status to trigger an interrupt to CPU.
		1 = Enable CLKERRIF(SYS_HIRCTRIMSTS[2]) status to trigger an interrupt to CPU.
		Trim Failure Interrupt Enable Bit
		This bit controls if an interrupt will be triggered while HIRC trim value update limitation count reached and HIRC frequency still not locked on target frequency set by FREQSEL(SYS_HIRCTRIMCTL[1:0]).
[1]		If this bit is high and TFAILIF(SYS_HIRCTRIMSTS[1]) is set during auto trim operation, an interrupt will be triggered to notify that HIRC trim value update limitation count was reached.
		0 = Disable TFAILIF(SYS_HIRCTRIMSTS[1]) status to trigger an interrupt to CPU.
		1 = Enable TFAILIF(SYS_HIRCTRIMSTS[1]) status to trigger an interrupt to CPU.
[0]	Reserved	Reserved.

HIRC Trim Interrupt Status Register (SYS_HIRCTRIMSTS)

Register	Offset	R/W	Description	Reset Value
SYS_HIRCTRIMSTS	SYS_BA+0xF8	R/W	HIRC Trim Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	Rese	erved		OVBDIF	CLKERIF	TFAILIF	FREQLOCK			

Bits	Description	
[31:4]	Reserved	Reserved.
[3]	ovbdif	Over Boundary Status When the over boundary function is set, if there occurs the over boundary condition, this flag will be set. 0 = Over boundary coundition did not occur. 1 = Over boundary coundition occurred. Note: Write 1 to clear this flag.
[2]	CLKERIF	Clock Error Interrupt Status When the frequency relation between reference clock and 48 MHz internal high speed RC oscillator (HIRC) is shift larger to unreasonable value, this bit will be set and to be an indicate that clock frequency is inaccuracy. Once this bit is set to 1, the auto trim operation stopped and FREQSEL(SYS_HIRCTRIMCTL[1:0]) will be cleared to 00 by hardware automatically if CESTOPEN(SYS_HIRCTRIMCTL[8]) is set to 1. If this bit is set and CLKEIEN(SYS_HIRCTIEN[2]) is high, an interrupt will be triggered to notify the clock frequency is inaccuracy. 0 = Clock frequency is accuracy. 1 = Clock frequency is inaccuracy. Note : reset by powr on reset
[1]	TFAILIF	Trim Failure Interrupt Status This bit indicates that HIRC trim value update limitation count reached and the HIRC clock frequency still doesn't be locked. Once this bit is set, the auto trim operation stopped and FREQSEL(SYS_HIRCTRIMCTL[1:0]) will be cleared to 00 by hardware automatically. If this bit is set and TFAILIEN(SYS_HIRCIEN[1]) is high, an interrupt will be triggered to notify that HIRC trim value update limitation count was reached. Write 1 to clear this to 0. 0 = Trim value update limitation count does not reach. 1 = Trim value update limitation count reached and HIRC frequency still not locked. Note : reset by powr on reset
[0]	FREQLOCK	HIRC Frequency Lock Status This bit indicates the HIRC frequency is locked. This is a status bit and doesn't trigger any interrupt

nuvoTon

Write 1 to clear this to 0. This bit will be set automatically, if the frequecy is lock and the RC_TRIM is enabled.
0 = The internal high-speed oscillator frequency doesn't lock at 48 MHz yet.
1 = The internal high-speed oscillator frequency locked at 48 MHz.
Note : Reset by powr on reset.

Register Lock Control Register (SYS_REGLCTL)

Some of the system control registers need to be protected to avoid inadvertent write and disturb the chip operation. These system control registers are protected after the power-on reset till user to disable register protection. For user to program these protected registers, a register protection disable sequence needs to be followed by a special programming. The register protection disable sequence is writing the data "59h", "16h" "88h" to the register SYS_REGLCTL address at 0x4000_0100 continuously. Any different data value, different sequence or any other write to other address during these three data writing will abort the whole sequence.

After the protection is disabled, user can check the protection disable bit at address 0x4000_0100 bit0, 1 is protection disable, and 0 is protection enable. Then user can update the target protected register value and then write any data to the address "0x4000_0100" to enable register protection.

This register is writen to disable/enable register protection and read for the REGLCTL status.

Register	gister Offset R/W Description		Description	Reset Value
SYS_REGLCTL	SYS_BA+0x100	R/W	Register Lock Control Register	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	Reserved										
15	15 14 13 12				10	9	8				
	Reserved										
7	7 6 5 4 3 2 1 0										
			REG	LCTL							

Bits	Descriptio	on							
[31:8]	Reserved	eserved.							
		Register Lock Control Code (Write Only)							
		Some registers have write-protection function. Writing these registers have to disable the protected function by writing the sequence value "59h", "16h", "88h" to this field. After this sequence is completed, the REGLCTL bit will be set to 1 and write-protection registers can be normal write.							
[7:0]	REGLCTL	REGLCTL[0]							
		Register Lock Control Disable Index (Read Only)							
		0 = Write-protection Enabled for writing protected registers. Any write to the protected register is ignored.							
		1 = Write-protection Disabled for writing protected registers.							

Analog POR Disable Control Register (SYS_PORDISAN)

Register Offset		R/W	Description	Reset Value
SYS_PORDISAN	SYS_BA+0x1EC	R/W	Analog POR Disable Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			PORC	FFAN					
7	6	5	4	3	2	1	0		
	POROFFAN								

Bits	Description	escription							
[31:16]	Reserved	served.							
		Power-on Reset Enable Bit (Write Protect)							
		After powered on, User can turn off internal analog POR circuit to save power by writing 0x5AA5 to this field.							
[15:0]		The analog POR circuit will be active again when this field is set to another value or chip is reset by other reset source, including:							
		nRESET, Watchdog, LVR reset, BOD reset, ICE reset command and the software-chip reset function.							
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.							

6.2.13 System Timer (SysTick)

The Cortex[®]-M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit clear-onwrite, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.

When system timer is enabled, it will count down from the value in the SysTick Current Value Register (SYST_VAL) to zero, and reload (wrap) to the value in the SysTick Reload Value Register (SYST_LOAD) on the next clock cycle, and then decrement on subsequent clocks. When the counter transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

The SYST_VAL value is UNKNOWN on reset. Software should write to the register to clear it to zero before enabling the feature. This ensures the timer will count from the SYST_LOAD value rather than an arbitrary value when it is enabled.

If the SYST_LOAD is zero, the timer will be maintained with a current value of zero after it is reloaded with this value. This mechanism can be used to disable the feature independently from the timer enable bit.

For more detailed information, please refer to the "Arm[®] Cortex[®]-M0 Technical Reference Manual" and "Arm[®] v6-M Architecture Reference Manual".

6.2.13.1 System Timer Control Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
	SYST Base Address: SCS_BA = 0xE000_E000						
SYST_CTRL	SCS_BA+0x10	R/W	SysTick Control and Status Register	0x0000_0000			
SYST_LOAD	SCS_BA+0x14	R/W	SysTick Reload Value Register	0xXXXX_XXXX			
SYST_VAL	SCS_BA+0x18	R/W	SysTick Current Value Register	0xXXXX_XXXX			

6.2.13.2 System Timer Control Register Description

SysTick Control and Status Register (SYST_CTRL)

Register	Offset	R/W	Description	Reset Value
SYST_CTRL	SCS_BA+0x10	R/W	SysTick Control and Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
		Reserved	CLKSRC	TICKINT	ENABLE				

Bits	Description						
[31:17]	Reserved	Reserved.					
[16]	COUNTFLAG	System Tick Counter Flag Returns 1 if timer counted to 0 since last time this register was read. COUNTFLAG is set by a count transition from 1 to 0. COUNTFLAG is cleared on read or by a write to the Current Value register.					
[15:3]	Reserved	served.					
[2]	CLKSRC	System Tick Clock Source Selection 0 = Clock source is the (optional) external reference clock. 1 = Core clock used for SysTick.					
[1]	TICKINT	System Tick Interrupt Enabled 0 = Counting down to 0 does not cause the SysTick exception to be pended. Software can use COUNTFLAG to determine if a count to zero has occurred. 1 = Counting down to 0 will cause the SysTick exception to be pended. Clearing the SysTick current value register by a register write in software will not cause SysTick to be pended.					
[0]	ENABLE	System Tick Counter Enabled 0 = Counter Disabled. 1 = Counter will operate in a multi-shot manner.					

SysTick Reload Value Register (SYST_LOAD)

Register	Offset	R/W	Description	Reset Value
SYST_LOAD	SCS_BA+0x14	R/W	SysTick Reload Value Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	RELOAD							
15	14	13	12	11	10	9	8	
			REL	OAD				
7	6	5 4 3 2 1					0	
	RELOAD							

Bits	Description	escription						
[31:24]	Reserved	Reserved.						
[23:0]	RELOAD	System Tick Reload Value The value to load into the Current Value register when the counter reaches 0.						

SysTick Current Value Register (SYST_VAL)

Register	Offset	R/W	Description	Reset Value
SYST_VAL	SCS_BA+0x18	R/W	SysTick Current Value Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	CURRENT								
15	14	13	12	11	10	9	8		
			CURI	RENT					
7	6	5	4	3	2	1	0		
	CURRENT								

Bits	Description						
[31:24]	Reserved	Reserved.					
[23:0]	CURRENT	System Tick Current Value Current counter value. This is the value of the counter at the time it is sampled. The counter does not provide read-modify-write protection. The register is write-clear. A software write of any value will clear the register to 0.					

6.2.14 Nested Vectored Interrupt Controller (NVIC)

The Cortex[®]-M0 provides an interrupt controller as an integral part of the exception mode, named as "Nested Vectored Interrupt Controller (NVIC)", which is closely coupled to the processor core and provides following features:

- Nested and Vectored interrupt support
- Automatic processor state saving and restoration
- Reduced and deterministic interrupt latency

The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in "Handler Mode". This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority. All of the interrupts and most of the system exceptions can be configured to different priority levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the current running one's priority. If the priority of the new interrupt is higher than the current one, the new interrupt handler will override the current handler.

When an interrupt is accepted, the starting address of the interrupt service routine (ISR) is fetched from a vector table in memory. There is no need to determine which interrupt is accepted and branch to the starting address of the correlated ISR by software. While the starting address is fetched, NVIC will also automatically save processor state including the registers "PC, PSR, LR, R0~R3, R12" to the stack. At the end of the ISR, the NVIC will restore the mentioned registers from stack and resume the normal execution. Thus it will take less and deterministic time to process the interrupt request.

The NVIC supports "Tail Chaining" which handles back-to-back interrupts efficiently without the overhead of states saving and restoration and therefore reduces delay time in switching to pending ISR at the end of current ISR. The NVIC also supports "Late Arrival" which improves the efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will give priority to the higher one without delay penalty. Thus it advances the real-time capability.

For more detailed information, please refer to the "Arm[®] Cortex[®]-M0 Technical Reference Manual" and "Arm[®] v6-M Architecture Reference Manual".

6.2.14.1 Exception Model and System Interrupt Map

Table 6.2-8 lists the exception model supported by the M0A21/M0A23 series. Software can set four levels of priority on some of these exceptions as well as on all interrupts. The highest user-configurable priority is denoted as "0" and the lowest priority is denoted as "3". The default priority of all the user-configurable interrupts is "0". Note that priority "0" is treated as the fourth priority on the system, after three system exceptions "Reset", "NMI" and "Hard Fault".

Exception Name	Vector Number	Priority
Reset	1	-3
NMI	2	-2
Hard Fault	3	-1
Reserved	4 ~ 10	Reserved
SVCall	11	Configurable
Reserved	12 ~ 13	Reserved
PendSV	14	Configurable

nuvoTon

M0A21/M0A23 Series

SysTick	15	Configurable	
Interrupt (IRQ0 ~ IRQ31)	16 ~ 47	Configurable	

Vector Number	Interrupt Number (Bit In Interrupt Registers)	Interrupt Name	Interrupt Description
0 ~ 15	-	-	System exceptions
16	0	BODOUT	Brown-Out low voltage detected interrupt
17	1	WDT_INT	Watchdog Timer interrupt
18	2	EINT024	External interrupt from EINT0,2,4.
19	3	EINT135	External interrupt from EINT1.3.5
20	4	GPAB_INT	External interrupt from PA, PB pin
21	5	GPCD_INT	External interrupt from PC, PD pin
22	6	PWM0_INT	PWM0 interrupt
23	7	Reserved	Reserved
24	8	TMR0_INT	Timer 0 interrupt
25	9	TMR1_INT	Timer 1 interrupt
26	10	TMR2_INT	Timer 2 interrupt
27	11	TMR3_INT	Timer 3 interrupt
28	12	UART0_INT	UART0 interrupt
29	13	UART1_INT	UART1 interrupt
30	14	Reserved	Reserved
31	15	CAN0_INT	CAN0 interrupt
32	16	Reserved	Reserved
33	17	Reserved	Reserved
34	18	Reserved	Reserved
35	19	Reserved	Reserved
36	20	Reserved	Reserved
37	21	Reserved	Reserved
38	22	USCI0	USCI0 interrupt
39	23	Reserved	Reserved
40	24	DAC0_INT	DAC0 interrupt
41	25	ACMP01_INT	ACMP0 and ACMP1 interrupt
42	26	PDMA_INT	PDMA interrupt

Table 6.2-8 Exception Model

43	27	USCI1	USCI1 interrupt
44	28	PWRWU_INT	Clock controller interrupt for chip wake-up from power-down state
45	29	ADC_INT	ADC interrupt
46	30	CLKFAIL	Clock fail detected or IRC Auto Trim interrupt
47	31	Reserved	Reserved

Table 6.2-9 Interrupt Number Table

6.2.14.2 Vector Table

When an interrupt is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For Armv6-M, the vector table base address is fixed at 0x00000000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with exception handler entry as illustrated in previous section.

Vector Table Word Offset Description	
0	SP_main – The Main stack pointer
Vector Number	Exception Entry Pointer using that Vector Number

Table 7.2-10 Vector Figure Format

6.2.14.3 Operation Description

NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current enabled state of the corresponding interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the interrupt will not be activated. If an interrupt is Active when it is disabled, it remains in its Active state until cleared by reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt.

NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current pended state of the corresponding interrupts. The Clear-Pending Register has no effect on the execution status of an Active interrupt.

NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting four interrupts).

The general registers associated with the NVIC are all accessible from a block of memory in the System Control Space and will be described in next section.

6.2.14.4 NVIC Control Registers

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
	NVIC Base Address: NVIC_BA = 0xE000_E100						
NVIC_ISER0	NVIC_BA+0x000	R/W	IRQ0 ~ IRQ31 Set-enable Control Register	0x0000_0000			
NVIC_ICER0	NVIC_BA+0x080	R/W	IRQ0 ~ IRQ31 Clear-enable Control Register	0x0000_0000			
NVIC_ISPR0	NVIC_BA+0x100	R/W	IRQ0 ~ IRQ31 Set-pending Control Register	0x0000_0000			
NVIC_ICPR0	NVIC_BA+0x180	R/W	IRQ0 ~ IRQ31 Clear-pending Control Register	0x0000_0000			
NVIC_IABR0	NVIC_BA+0x200	R/W	IRQ0 ~ IRQ31 Active Bit Register	0x0000_0000			
NVIC_IPRn n=0,17	0xE000E400 +0x4*n	R/W	IRQ0 ~ IRQ31 Priority Control Register	0x0000_0000			
STIR	0xE000EF00	R/W	Software Trigger Interrupt Registers	0x0000_0000			

IRQ0 ~ IRQ31 Set-enable Control Register (NVIC_ISER0)

Register	Offset	R/W	Description	Reset Value
NVIC_ISER0	NVIC_BA+0x000	R/W	IRQ0 ~ IRQ31 Set-enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			SET	ENA			
23	22	21	20	19	18	17	16
			SET	ENA			
15	14	13	12	11	10	9	8
			SET	ENA			
7	6	5	4	3	2	1	0
	SETENA						

Description	1
SETENA	Interrupt Set Enable Bit The NVIC_ISER0 registers enable interrupts, and show which interrupts are enabled Write Operation: 0 = No effect. 1 = Interrupt Enabled. Read Operation: 0 = Interrupt Disabled. 1 = Interrupt Enabled.

IRQ0 ~ IRQ31 Clear-enable Control Register (NVIC_ICER0)

Register	Offset	R/W	Description	Reset Value
NVIC_ICER0	NVIC_BA+0x080	R/W	IRQ0 ~ IRQ31 Clear-enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			CAL	ENA			
23	22	21	20	19	18	17	16
			CAL	ENA			
15	14	13	12	11	10	9	8
			CAL	ENA			
7	6	5	4	3	2	1	0
	CALENA						

Bits	Descriptior	ription									
[31:0]	CALENA	Interrupt Clear Enable Bit The NVIC_ICER0 registers disable interrupts, and show which interrupts are enabled. Write Operation: 0 = No effect. 1 = Interrupt Disabled. Read Operation: 0 = Interrupt Disabled. 1 = Interrupt Enabled.									

IRQ0 ~ IRQ31 Set-pending Control Register (NVIC_ISPR0)

Register	Offset	R/W	Description	Reset Value
NVIC_ISPR0	NVIC_BA+0x100	R/W	IRQ0 ~ IRQ31 Set-pending Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
SETPEND									
23	22	21	20	19	18	17	16		
	SETPEND								
15	14	13	12	11	10	9	8		
	SETPEND								
7	6	5	4	3	2	1	0		
			SETF	PEND					

Bits	Descriptio	1
[31:0]	SETPEND	Interrupt Set-pending The NVIC_ISPR0 registers force interrupts into the pending state, and show which interrupts are pending Write Operation: 0 = No effect. 1 = Changes interrupt state to pending. Read Operation: 0 = Interrupt is not pending. 1 = Interrupt is pending.

IRQ0 ~ IRQ31 Clear-pending Control Register (NVIC_ICPR0)

Register	Offset	R/W	Description	Reset Value
NVIC_ICPR0	NVIC_BA+0x180	R/W	IRQ0 ~ IRQ31 Clear-pending Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
CALPEND									
23	22	21	20	19	18	17	16		
	CALPEND								
15	14	13	12	11	10	9	8		
	CALPEND								
7	6	5	4	3	2	1	0		
	CALPEND								

Bits	Descriptio	n								
[31:0]	CALPEND	Interrupt Clear-pending The NVIC_ICPR0 registers remove the pending state from interrupts, and show which interrupts are pending Write Operation: 0 = No effect. 1 = Removes pending state an interrupt. Read Operation: 0 = Interrupt is not pending. 1 = Interrupt is pending.								

IRQ0 ~ IRQ31 Active Bit Register (NVIC_IABR0)

Register	Offset	R/W	Description	Reset Value
NVIC_IABR0	NVIC_BA+0x200	R/W	IRQ0 ~ IRQ31 Active Bit Register	0x0000_0000

31	30	29	28	27	26	25	24		
ACTIVE									
23	22	21	20	19	18	17	16		
	ACTIVE								
15	14	13	12	11	10	9	8		
			ACT	IVE					
7	6	5	4	3	2	1	0		
	ACTIVE								

Bits	Description	
[31:0]	ACTIVE	Interrupt Active Flags The NVIC_IABR0 registers indicate which interrupts are active. 0 = interrupt not active. 1 = interrupt active.

IRQ0 ~ IRQ31 Interrupt Priority Register (NVIC_IPRn)	
--	--

Register	Offset	R/W	Description	Reset Value
NVIC_IPRn n=0,17	0xE000E400 +0x4*n	R/W	IRQ0 ~ IRQ31 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
PRI_	4n_3		Reserved							
23	22	21	20	19	18	17	16			
PRI_	4n_2	Reserved								
15	14	13	12	11	10	9	8			
PRI_	4n_1	Reserved								
7	6	5	4	3	2	1	0			
PRI_4n_0				Rese	erved					

Bits	Description	rescription						
[31:30]	PRI_4n_3	Priority of IRQ_4n+3 "0" denotes the highest priority and "3" denotes the lowest priority						
[29:24]	Reserved	Reserved.						
[23:22]	PRI_4n_2	Priority of IRQ_4n+2 "0" denotes the highest priority and "3" denotes the lowest priority						
[21:16]	Reserved	Reserved.						
[15:14]	PRI_4n_1	Priority of IRQ_4n+1 "0" denotes the highest priority and "3" denotes the lowest priority						
[13:8]	Reserved	Reserved.						
[7:6]	PRI_4n_0	Priority of IRQ_4n+0 "0" denotes the highest priority and "3" denotes the lowest priority						
[5:0]	Reserved	Reserved.						

Software Trigger Interrupt Register (STIR)

Register	Offset	R/W	Description	Reset Value
STIR	0xE000EF00	R/W	Software Trigger Interrupt Registers	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Reserved				INTID
7	6	5	4	3	2	1	0
	INTID						

Bits	Descriptio	Description							
[31:9]	Reserved	Reserved.							
[8:0]	INTID	Interrupt ID Write to the STIR To Generate An Interrupt from Software When the USERSETMPEND bit in the SCR is set to 1, unprivileged software can access the STIR Interrupt ID of the interrupt to trigger, in the range 0-31. For example, a value of 0x03 specifies interrupt IRQ3.							

6.2.14.5 NMI Control Registers

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value		
	NMI Base Address: NMI_BA = 0x4000_0300					
NMIEN	NMI_BA+0x00 R/W NMI Source Interrupt Enable Register 0x0000_000		0x0000_0000			
NMISTS	NMI_BA+0x04	R	NMI Source Interrupt Status Register	0x0000_0000		

NMI Source Interrupt Enable Register (NMIEN)

Register	Offset	R/W	Description	Reset Value
NMIEN	NMI_BA+0x00	R/W	NMI Source Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
UART1_INT	UART0_INT	EINT5	EINT4	EINT3	EINT2	EINT1	EINT0
7	6	5	4	3	2	1	0
	Reserved		CLKFAIL	Reserved	PWRWU_INT	IRC_INT	BODOUT

Bits	Description	
[31:16]	Reserved	Reserved.
[15]	UART1_INT	UART1 NMI Source Enable (Write Protect) 0 = UART1 NMI source Disabled. 1 = UART1 NMI source Enabled. Note: This bit is write protected. Refer to the SYS_REGLCTL register.
[14]	UART0_INT	UART0 NMI Source Enable (Write Protect) 0 = UART0 NMI source Disabled. 1 = UART0 NMI source Enabled. Note: This bit is write protected. Refer to the SYS_REGLCTL register.
[13]	EINT5	External Interrupt From PC.7 Pin NMI Source Enable (Write Protect) 0 = External interrupt from PC.7 pin NMI source Disabled. 1 = External interrupt from PC.7 pin NMI source Enabled. Note: This bit is write protected. Refer to the SYS_REGLCTL register.
[12]	EINT4	 External Interrupt From PC.6 Pin NMI Source Enable (Write Protect) 0 = External interrupt from PC.6 pin NMI source Disabled. 1 = External interrupt from PC.6 pin NMI source Enabled. Note: This bit is write protected. Refer to the SYS_REGLCTL register.
[11]	EINT3	 External Interrupt From PC.3 Pin NMI Source Enable (Write Protect) 0 = External interrupt from PC.3 pin NMI source Disabled. 1 = External interrupt from PC.3 pin NMI source Enabled. Note: This bit is write protected. Refer to the SYS_REGLCTL register.
[10]	EINT2	External Interrupt From PC.4 Pin NMI Source Enable (Write Protect) 0 = External interrupt from PC.4 pin NMI source Disabled. 1 = External interrupt from PC.4 pin NMI source Enabled. Note: This bit is write protected. Refer to the SYS_REGLCTL register.
[9]	EINT1	External Interrupt From PC.5 Pin NMI Source Enable (Write Protect)

nuvoTon

		0 = External interrupt from PC.5 pin NMI source Disabled.
		1 = External interrupt from PC.5 pin NMI source Enabled.
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.
		External Interrupt From PA.3 or PB.5 Pin NMI Source Enable (Write Protect)
101	EINT0	0 = External interrupt from PA.3 or PB.5 pin NMI source Disabled.
[8]		1 = External interrupt from PA.3 or PB.5 pin NMI source Enabled.
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.
[7:5]	Reserved	Reserved.
		Clock Fail Detected and IRC Auto Trim Interrupt NMI Source Enable (Write Protect)
[4]	CLKFAIL	0 = Clock fail detected and IRC Auto Trim interrupt NMI source Disabled.
[4]	CLKFAIL	1 = Clock fail detected and IRC Auto Trim interrupt NMI source Enabled.
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.
[3]	Reserved	Reserved.
		Power-down Mode Wake-up NMI Source Enable (Write Protect)
[2]	PWRWU INT	0 = Power-down mode wake-up NMI source Disabled.
[∠]		1 = Power-down mode wake-up NMI source Enabled.
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.
		IRC TRIM NMI Source Enable (Write Protect)
[4]	IRC_INT	0 = IRC TRIM NMI source Disabled.
[1]		1 = IRC TRIM NMI source Enabled.
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.
		BOD NMI Source Enable (Write Protect)
101	BODOUT	0 = BOD NMI source Disabled.
[0]	600001	1 = BOD NMI source Enabled.
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.

NMI Source Interrupt Status Register (NMISTS)

Register	Offset	R/W	Description	Reset Value
NMISTS	NMI_BA+0x04	R	NMI Source Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
UART1_INT	UART0_INT	EINT5	EINT4	EINT3	EINT2	EINT1	EINT0
7	6	5	4	3	2	1	0
	Reserved		CLKFAIL	Reserved	PWRWU_INT	IRC_INT	BODOUT

Bits	Description	
[31:16]	Reserved	Reserved.
[15]	UART1_INT	UART1 Interrupt Flag (Read Only) 0 = UART1 interrupt is deasserted. 1 = UART1 interrupt is asserted.
[14]	UART0_INT	UART0 Interrupt Flag (Read Only) 0 = UART1 interrupt is deasserted. 1 = UART1 interrupt is asserted.
[13]	EINT5	External Interrupt From PC.7 Pin Interrupt Flag (Read Only) 0 = External Interrupt from PC.7 interrupt is deasserted. 1 = External Interrupt from PC.7 interrupt is asserted.
[12]	EINT4	External Interrupt From PC.6 Pin Interrupt Flag (Read Only) 0 = External Interrupt from PC.6 interrupt is deasserted. 1 = External Interrupt from PC.6 interrupt is asserted.
[11]	EINT3	External Interrupt From PC.3 Pin Interrupt Flag (Read Only) 0 = External Interrupt from PC.3 interrupt is deasserted. 1 = External Interrupt from PC.3 interrupt is asserted.
[10]	EINT2	External Interrupt From PC.4 Pin Interrupt Flag (Read Only) 0 = External Interrupt from PC.4 interrupt is deasserted. 1 = External Interrupt from PC.4 interrupt is asserted.
[9]	EINT1	External Interrupt From PC.5 Pin Interrupt Flag (Read Only) 0 = External Interrupt from PC.5 interrupt is deasserted. 1 = External Interrupt from PC.5 interrupt is asserted.
[8]	EINTO	External Interrupt From PA.3 or PB.5 Pin Interrupt Flag (Read Only) 0 = External Interrupt from PA.3 or PB.5 interrupt is deasserted. 1 = External Interrupt from PA.3 or PB.5 interrupt is asserted.
[7:5]	Reserved	Reserved.

[4]	CLKFAIL	Clock Fail Detected or IRC Auto Trim Interrupt Flag (Read Only) 0 = Clock fail detected or IRC Auto Trim interrupt is deasserted. 1 = Clock fail detected or IRC Auto Trim interrupt is asserted.
[3]	Reserved	Reserved.
[2]	PWRWU_INT	Power-down Mode Wake-up Interrupt Flag (Read Only) 0 = Power-down mode wake-up interrupt is deasserted. 1 = Power-down mode wake-up interrupt is asserted.
[1]	IRC_INT	IRC TRIM Interrupt Flag (Read Only) 0 = HIRC TRIM interrupt is deasserted. 1 = HIRC TRIM interrupt is asserted.
[0]	BODOUT	BOD Interrupt Flag (Read Only) 0 = BOD interrupt is deasserted. 1 = BOD interrupt is asserted.

6.2.15 System Control Register

The Cortex[®]-M0 status and operation mode control are managed by System Control Registers. Including CPUID, Cortex[®]-M0 interrupt priority and Cortex[®]-M0 power management can be controlled through these system control registers.

For more detailed information, please refer to the "Arm[®] Cortex[®]-M0 Technical Reference Manual" and "Arm[®] v6-M Architecture Reference Manual".

Register	Offset	R/W	Description	Reset Value			
	SCR Base Address: SCS_BA = 0xE000_E000						
ICSR	SCS_BA+0xD04	R/W	Interrupt Control and State Register	0x0000_0000			
AIRCR	SCS_BA+0xD0C	R/W	Application Interrupt and Reset Control Register	0xFA05_0000			
SCR	SCS_BA+0xD10	R/W	System Control Register	0x0000_0000			
SHPR2	SCS_BA+0xD1C	R/W	System Handler Priority Register 2	0x0000_0000			
SHPR3	SCS_BA+0xD20	R/W	System Handler Priority Register 3	0x0000_0000			

Interrupt Control State Register (ICSR)

Register	Offset	R/W	Description	Reset Value
ICSR	SCS_BA+0xD04	R/W	Interrupt Control and State Register	0x0000_0000

31	30	29	28	27	26	25	24
NMIPENDSET	Rese	erved	PENDSVSET	PENDSVCLR	PENDSTSET	PENDSTCLR	Reserved
23	22	21	20	19	18	17	16
ISRPREEMPT	ISRPENDING		Rese	erved		VECTPENDING	
15	14	13	13 12		10	9	8
	VECTPENDING					Reserved	
7	6	5	4	3	2	1	0
Reserved				VECTA	CTIVE		

Bits	Description	iption				
[31]	NMIPENDSET	 NMI Set-pending Bit Write Operation: 0 = No effect. 1 = Changes NMI exception state to pending. Read Operation: 0 = NMI exception is not pending. 1 = NMI exception is pending. 1 = NMI exception is pending. Note: Because NMI is the highest-priority exception, normally the processor enters the NMI exception handler as soon as it detects a write of 1 to this bit. Entering the handler then clears this bit to 0. This means a read of this bit by the NMI exception handler returns 1 only if the NMI signal is reasserted while the processor is executing that handler. 				
[30:29]	Reserved	served.				
[28]	PENDSVSET	PendSV Set-pending Bit Write Operation: 0 = No effect. 1 = Changes PendSV exception state to pending. Read Operation: 0 = PendSV exception is not pending. 1 = PendSV exception is pending. 1 = PendSV exception is pending. Note: Writing 1 to this bit is the only way to set the PendSV exception state to pending.				
[27]	PENDSVCLR	PendSV Clear-pending Bit Write Operation: 0 = No effect. 1 = Removes the pending state from the PendSV exception. Note: This is a write only bit. To clear the PENDSV bit, you must "write 0 to PENDSVSET and write 1 to PENDSVRTC_CAL" at the same time.				

[26]	PENDSTSET	SysTick Exception Set-pending Bit Write Operation: 0 = No effect. 1 = Changes SysTick exception state to pending. Read Operation: 0 = SysTick exception is not pending. 1 = SysTick exception is pending.
[25]	PENDSTCLR	SysTick Exception Clear-pending Bit Write Operation: 0 = No effect. 1 = Removes the pending state from the SysTick exception. Note: This is a write only bit. To clear the PENDST bit, you must "write 0 to PENDSTSET and write 1 to PENDSTRTC_CAL" at the same time.
[24]	Reserved	Reserved.
[23]	ISRPREEMPT	Interrupt Preempt Bit (Read Only) If set, a pending exception will be serviced on exit from the debug halt state.
[22]	ISRPENDING	Interrupt Pending Flag, Excluding NMI and Faults (Read Only) 0 = Interrupt not pending. 1 = Interrupt pending.
[21:18]	Reserved	Reserved.
[17:12]	VECTPENDING	Number of the Highest Pended Exception Indicate the Exception Number of the Highest Priority Pending Enabled Exception 0 = no pending exceptions. Nonzero = the exception number of the highest priority pending enabled exception. The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the PRIMASK register.
[11]	RETTOBASE	Preempted Active Exceptions Indicator Indicate whether There are Preempted Active Exceptions 0 = there are preempted active exceptions to execute. 1 = there are no active exceptions, or the currently-executing exception is the only active exception.
[10:6]	Reserved	Reserved.
[5:0]	VECTACTIVE	Number of the Current Active Exception 0 = Thread mode. Non-zero = The exception number of the currently active exception.

Application Interrupt and Reset Control Register (AIRCR)

Register	Offset	R/W	Description	Reset Value
AIRCR	SCS_BA+0xD0C	R/W	Application Interrupt and Reset Control Register	0xFA05_0000

31	30	29	28	27	26	25	24	
	VECTORKEY							
23	22	21	20	19	18	17	16	
	VECTORKEY							
15	14	10	9	8				
ENDIANNESS		Rese	erved			PRIGROUP		
7	6	5	4	3	2	1	0	
	Reserved					VECTCLRACTI VE	VECTRESET	

Bits	Description						
[31:16]	VECTORKEY	Register Access Key When writing this register, this field should be 0x05FA, otherwise the write action will be unpredictable. The VECTORKEY filed is used to prevent accidental write to this register from resetting the system or clearing of the exception status.					
[15]	ENDIANNESS	Data Endianness 0 = Little-endian. 1 = Big-endian.					
[14:11]	Reserved	ed Reserved.					
[10:8]	PRIGROUP	Interrupt Priority Grouping This field determines the Split Of Group priority from subpriority,					
[7:3]	Reserved Reserved.						
[2]	SYSRESETREQ	System Reset Request Writing This Bit to 1 Will Cause A Reset Signal To Be Asserted To The Chip And Indicate A Reset Is Requested This bit is write only and self-cleared as part of the reset sequence.					
[1]	VECTCLRACTIVE	Exception Active Status Clear Bit Setting This Bit To 1 Will Clears All Active State Information For Fixed And Configurable Exceptions This bit is write only and can only be written when the core is halted. Note: It is the debugger's responsibility to re-initialize the stack.					
[0]	VECTRESET	Reserved.					

nuvoTon

PRIGROUP	Binary Point	Group Priority Bits	Subpriority Bits	Number Of Group Priorities	Subpriorities
0b000	bxxxxxx.y	[7:1]	[0]	128	2
0b001	bxxxxxx.yy	[7:2]	[1:0]	64	4
0b010	bxxxxx.yyy	[7:3]	[2:0]	32	8
0b011	bxxxx.yyyy	[7:4]	[3;0]	16	16
0b100	bxxx.yyyyy	[7:5]	[4:0]	8	32
0b101	bxx.yyyyyy	[7:6]	[5:0]	4	64
0b110	bx.yyyyyyy	[7]	[6:0]	2	128
0b111	b.yyyyyyyy	None	[7:0]	1	256

Table 6.2-10 Priority Grouping

nuvoTon

System Control Register (SCR)

Register	Offset	R/W	Description	Reset Value
SCR	SCS_BA+0xD10	R/W	System Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved		SEVONPEND	Reserved	SLEEPDEEP	SLEEPONEXIT	Reserved

Bits	Description					
[31:5]	Reserved	Reserved.				
		Send Event on Pending				
		0 = Only enabled interrupts or events can wake up the processor, while disabled interrupts are excluded.				
[4]	SEVONPEND	1 = Enabled events and all interrupts, including disabled interrupts, can wake up the processor.				
L.]		When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not waiting for an event, the event is registered and affects the next WFE.				
		The processor also wakes up on execution of an SEV instruction or an external event.				
[3]	Reserved	Reserved.				
		Processor Deep Sleep and Sleep Mode Selection				
[0]		Control Whether the Processor Uses Sleep Or Deep Sleep as its Low Power Mode.				
[2]	SLEEPDEEP	0 = Sleep.				
		1 = Deep sleep.				
		Sleep-on-exit Enable Control				
		This bit indicate Sleep-On-Exit when Returning from Handler Mode to Thread Mode.				
[1]	SLEEPONEXIT	0 = Do not sleep when returning to Thread mode.				
[']	SEEL ONEAN	1 = Enter sleep, or deep sleep, on return from an ISR to Thread mode.				
		Note: Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.				
[0]	Reserved	Reserved.				

System Handler Priority Register 2 (SHPR2)

Register	Offset	R/W	Description	Reset Value	
SHPR2	SCS_BA+0xD1C	R/W	System Handler Priority Register 2	0x0000_0000	

31	30	29	28	27	26	25	24
PRI	PRI_11 Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved						

Bits	Description	Description					
[31:30]	IPRI 11	Priority of System Handler 11 – SVCall "0" denotes the highest priority and "3" denotes the lowest priority.					
[29:0]	Reserved	Reserved.					

System Handler Priority Register 3 (SHPR3)

Register	Offset	R/W	Description	Reset Value
SHPR3	SCS_BA+0xD20	R/W	System Handler Priority Register 3	0x0000_0000

31	30	29	28	27	26	25	24	
PRI	_15		Reserved					
23	22	21	20	19	18	17	16	
PRI	_14	Reserved						
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	Reserved							

Bits	Description	Description						
[31:30]	PRI_15 Priority of System Handler 15 – SysTick "0" denotes the highest priority and "3" denotes the lowest priority.							
[29:24]	Reserved Reserved.							
[23:22]	PRI 14	Priority of System Handler 14 – PendSV "0" denotes the highest priority and "3" denotes the lowest priority.						

6.3 Clock Controller

6.3.1 Overview

The clock controller generates clocks for the whole chip, including system clocks and all peripheral clocks. The clock controller also implements the power control function with the individually clock ON/OFF control, clock source selection and a clock divider. The chip will not enter Power-down mode until CPU sets the Power-down enable bit PDEN(CLK_PWRCTL[7]) and Cortex[®]-M0 core executes the WFI instruction. After that, chip enters Power-down mode and wait for wake-up interrupt source triggered to leave Power-down mode. In Power-down mode, the clock controller turns off the 4~24 MHz external high speed crystal (HXT) and 48 MHz internal high speed RC oscillator (HIRC) to reduce the overall system power consumption. Figure 6.3-1 shows the clock generator and the overview of the clock source control.

M0A21/M0A23 Series

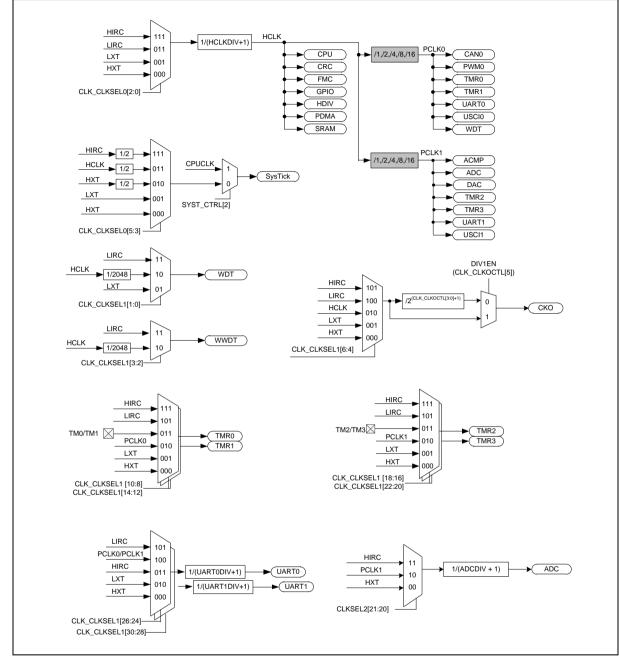


Figure 6.3-1 Clock Generator Global View Diagram

6.3.2 Clock Generator

The clock generator consists of 4 clock sources, which are listed below:

- 32.768 kHz external low speed crystal oscillator (LXT)
- 4~24 MHz external high speed crystal oscillator (HXT)
- 48 MHz internal high speed RC oscillator (HIRC)
- 38.4 kHz internal low speed RC oscillator (LIRC)

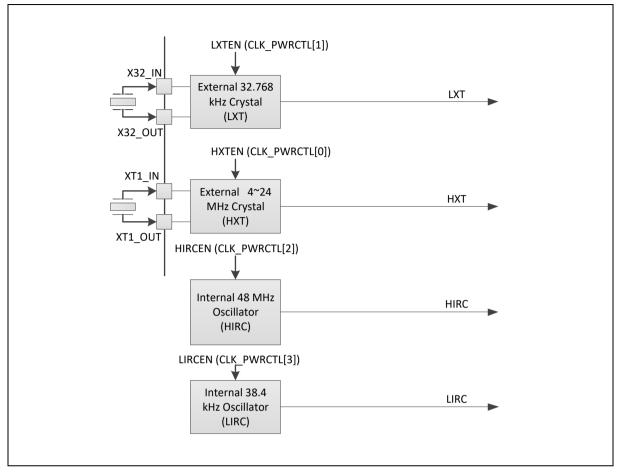


Figure 6.3-2 Clock Generator Block Diagram

6.3.3 System Clock and SysTick Clock

The system clock has 4 clock sources, which were generated from clock generator block. The clock source switch depends on the register HCLKSEL (CLK_CLKSEL0[2:0]). The block diagram is shown in Figure 6.3-3

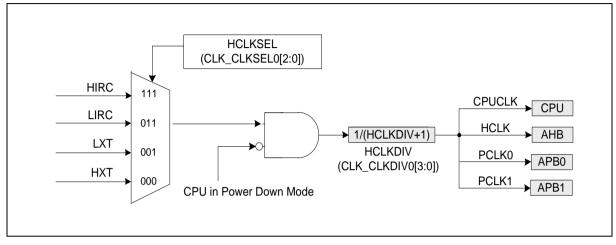


Figure 6.3-3 System Clock Block Diagram

There are two clock fail detectors to observe HXT and LXT clock source and they have individual enable and interrupt control. When HXT detector is enabled, the HIRC clock is enabled automatically. When LXT detector is enabled, the LIRC clock is enabled automatically.

When HXT clock detector is enabled, the system clock will auto switch to HIRC if HXT clock stop being detected on the following condition: system clock source comes from HXT. If HXT clock stop condition is detected, the HXTFIF (CLK_CLKDSTS[0]) is set to 1 and chip will enter interrupt if HXTFIEN (CLK_CLKDCTL[5]) is set to 1. User can trying to recover HXT by disable HXT and enable HXT again to check if the clock stable bit is set to 1 or not. If HXT clock stable bit is set to 1, it means HXT is recover to oscillate after re-enable action and user can switch system clock to HXT again.

The HXT clock stop detect and system clock switch to HIRC procedure is shown in Figure 6.3-4.

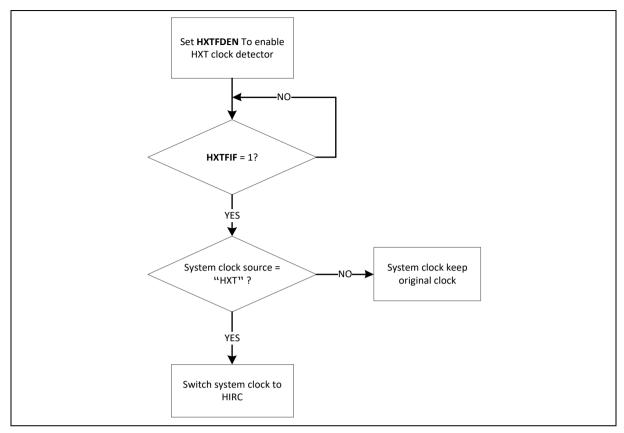


Figure 6.3-4 HXT Stop Protect Procedure

The clock source of SysTick in Cortex[®]-M0 core can use CPU clock or external clock (SYST_CTRL[2]). If using external clock, the SysTick clock (STCLK) has 5 clock sources. The clock source switch depends on the setting of the register STCLKSEL (CLK_CLKSEL0[5:3]). The block diagram is shown in Figure 6.3-5.

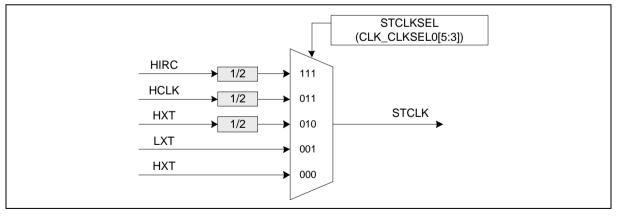


Figure 6.3-5 SysTick Clock Control Block Diagram

6.3.4 Peripherals Clock

The peripherals clock has different clock source switch setting, which depends on the different peripheral. Please refer to the CLK_CLKSELx register description in section 6.3.8.

6.3.5 Power-down Mode Clock

When entering Power-down mode, system clocks, some clock sources and some peripheral clocks are disabled. Some clock sources and peripherals clock are still active in Power-down mode.

For theses clocks, which still keep active, are listed below:

- Clock Generator
 - 38.4 kHz internal low speed RC oscillator (LIRC) clock
 - 32.768 kHz external low speed crystal oscillator (LXT) clock
- Peripherals Clock (When the modules adopt LXT or LIRC as clock source)

6.3.6 Clock Output

This device is equipped with a power-of-2 frequency divider which is composed by16 chained divideby-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one multiplexer is reflected to CLKO function pin. Therefore there are 16 options of power-of-2 divided clocks with the frequency from $F_{in}/2^{1}$ to $F_{in}/2^{16}$ where F_{in} is input clock frequency to the clock divider.

The output formula is $F_{out} = F_{in}/2^{(N+1)}$, where F_{in} is the input clock frequency, F_{out} is the clock divider output frequency and N is the 4-bit value in FREQSEL (CLK_CLKOCTL[3:0]).

When writing 1 to CLKOEN (CLK_CLKOCTL[4]), the chained counter starts to count. When writing 0 to CLKOEN (CLK_CLKOCTL[4]), the chained counter continuously runs till divided clock reaches low state and stays in low state.

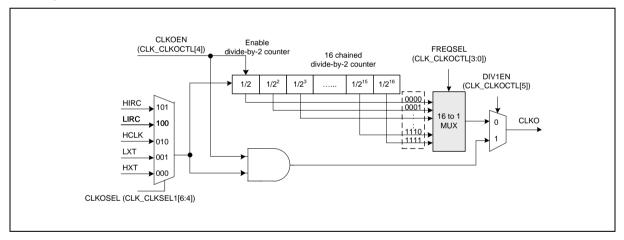


Figure 6.3-6 Clock Output Block Diagram

6.3.7 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
CLK Base Addres CLK_BA = 0x4000				
CLK_PWRCTL	CLK_BA+0x00	R/W	System Power-down Control Register	0xB901_001X
CLK_AHBCLK	CLK_BA+0x04	R/W	AHB Devices Clock Enable Control Register	0x0000_0004
CLK_APBCLK0	CLK_BA+0x08	R/W	APB Devices Clock Enable Control Register 0	0x0000_0001
CLK_APBCLK1	CLK_BA+0x0C	R/W	APB Devices Clock Enable Control Register 1	0x0000_0000
CLK_CLKSEL0	CLK_BA+0x10	R/W	Clock Source Select Control Register 0	0x0000_003F
CLK_CLKSEL1	CLK_BA+0x14	R/W	Clock Source Select Control Register 1	0x4477_773B
CLK_CLKSEL2	CLK_BA+0x18	R/W	Clock Source Select Control Register 2	0x0020_032B
CLK_CLKDIV0	CLK_BA+0x20	R/W	Clock Divider Number Register 0	0x0000_0000
CLK_PCLKDIV	CLK_BA+0x34	R/W	APB Clock Divider Register	0x0000_0000
CLK_STATUS	CLK_BA+0x50	R	Clock Status Monitor Register	0x0000_00XX
CLK_CLKOCTL	CLK_BA+0x60	R/W	Clock Output Control Register	0x0000_0000
CLK_CLKDCTL	CLK_BA+0x70	R/W	Clock Fail Detector Control Register	0x0000_0000
CLK_CLKDSTS	CLK_BA+0x74	R/W	Clock Fail Detector Status Register	0x0000_0000
CLK_CDUPB	CLK_BA+0x78	R/W	Clock Frequency Range Detector Upper Boundary Register	0x0000_0000
CLK_CDLOWB	CLK_BA+0x7c	R/W	Clock Frequency Range Detector Lower Boundary Register	0x0000_0000
CLK_HXTFSEL	CLK_BA+0xB4	R/W	HXT Filter Select Control Register	0x0000_0000

6.3.8 Register Description

System Power-down Control Register (CLK_PWRCTL)

Register	Offset	R/W	Description	Reset Value
CLK_PWRCTL	CLK_BA+0x00	R/W	System Power-down Control Register	0xB901_001X

31	30	29	28	27	26	25	24
HXTSELXT		HXTGAIN		LXTSELXT	LXTGAIN		
23	22	21	20	19	18	17	16
		Reserved					
15	14	13	12	11	10	9	8
		Reserved					
7	6	5	4	3	2	1	0
PDEN	PDWKIF	PDWKIEN	PDWKDLY	LIRCEN	HIRCEN	LXTEN	HXTEN

Bits	Description						
[31]	HXTSELXT	 HXT Crystal Mode Selection 0 = HXT works as external clock mode. PA.5 is configured as external clock input pin. 1 = HXT works as crystal mode. PA.4 and PA.5 are configured as high speed crystal (HXT) pins. Note 1: When HXTSELXT = 0, PA.4 MFP should be set as GPIO mode. The DC characteristic of XT1_OUT is the same as GPIO. Note 2: This bit is write protected. Refer to the SYS_REGLCTL register. 					
[30:28]	HXT Gain Control Bit (Write Protect) Please refer to HXT Charateristic. Note: This bit is write protected. Refer to the SYS_REGLCTL register.						
[27]	LXTSELXT	SELXT LXT Crystal Mode Selection 0 = LXT works as external clock mode. PC.5 is configured as external clock input pin. 1 = LXT works as crystal mode. PC.4 and PC.5 are configured as low speed crystal (LXT) pins. Note 1: When LXTSELXT = 0, PC.4 MFP should be set as GPIO mode. The DC characteristic of X32_C is the same as GPIO. Note 2: This bit is write protected. Refer to the SYS_REGLCTL register.					
[26:24]	LXTGAIN	LXT Gain Control Bit (Write Protect) Please refer to LXT Charateristic. Note: This bit is write protected. Refer to the SYS_REGLCTL register.					
[23:8]	Reserved	Reserved.					
[7]	PDEN	System Power-down Enable (Write Protect) When this bit is set to 1, Power-down mode is enabled and chip keeps active utill the CPU sleep mode is also active and then the chip enters Power-down mode. When chip wakes up from Power-down mode, this bit is auto cleared. Users need to set this bit again for next Power-down. In Power-down mode, HXT and the HIRC will be disabled in this mode, but LXT and LIRC are not controlled by Power-down mode. If user disable LIRC before entering power-down mode, this bit should be set after LIRC disabled 50us.					

		In Power-down mode, system clock are disabled, and ignored the clock source selection. The clocks of peripheral are not controlled by Power-down mode, if the peripheral clock source is from LXT or LIRC.
		0 = Chip operating normally or chip in idle mode because of WFI command.
		1 = Chip enters Power-down mode instant or wait CPU sleep command WFI.
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.
		Power-down Mode Wake-up Interrupt Status
		Set by "Power-down wake-up event", it indicates that resume from Power-down mode"
[6]	PDWKIF	The flag is set if any wake-up source is occurred. Refer Power Modes and Wake-up Sources chapter.
		Note 1: Write 1 to clear the bit to 0.
		Note 2: This bit works only if PDWKIEN (CLK_PWRCTL[5]) set to 1.
		Power-down Mode Wake-up Interrupt Enable Bit (Write Protect)
		0 = Power-down mode wake-up interrupt Disabled.
[5]	PDWKIEN	1 = Power-down mode wake-up interrupt Enabled.
		Note 1: The interrupt will occur when both PDWKIF and PDWKIEN are high.
		Note 2: This bit is write protected. Refer to the SYS_REGLCTL register.
		Enable the Wake-up Delay Counter (Write Protect)
		When the chip wakes up from Power-down mode, the clock control will delay certain clock cycles to wait system clock stable.
[4]	PDWKDLY	The delayed clock cycle is 4096 clock cycles when chip works at external high speed crystal oscillator (HXT),
		and 512 clock cycles when chip works at internal high speed RC oscillator (HIRC).
		0 = Clock cycles delay Disabled.
		1 = Clock cycles delay Enabled.
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.
		LIRC Enable Bit (Write Protect)
[3]	LIRCEN	0 = Internal low speed RC oscillator (LIRC) Disabled.
		1 = Internal low speed RC oscillator (LIRC) Enabled.
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.
		HIRC Enable Bit (Write Protect)
[2]	HIRCEN	0 = Internal high speed RC oscillator (HIRC) Disabled.
		1 = Internal high speed RC oscillator (HIRC) Enabled.
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.
		LXT Enable Bit (Write Protect)
		0 = External low speed crystal (LXT) Disabled.
[1]	LXTEN	1 = External low speed crystal (LXT) Enabled.
		Note 1: Reset by power on reset.
		Note 2: This bit is write protected. Refer to the SYS_REGLCTL register.
		HXT Enable Bit (Write Protect)
		0 = Eexternal high speed crystal (HXT) Disabled.
[0]	HXTEN	1 = External high speed crystal (HXT) Enabled.
		Note 1: Reset by power on reset.
		Note 2: This bit is write protected. Refer to the SYS_REGLCTL register.
	-	·

AHB Devices Clock Enable Control Register (CLK_AHBCLK)

The bits in this register are used to enable/disable clock for system clock, AHB bus devices clock.

Register	Offset	R/W	Description	Reset Value
CLK_AHBCLK	CLK_BA+0x04	R/W	AHB Devices Clock Enable Control Register	0x0000_0004

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
CRCCKEN	Reserved		HDIV_EN	Reserved	ISPCKEN	PDMACKEN	Reserved	

Bits	Description	
[31:8]	Reserved	Reserved.
[7]	CRCCKEN	CRC Generator Controller Clock Enable Bit 0 = CRC peripheral clock Disabled. 1 = CRC peripheral clock Enabled.
[6:5]	Reserved	Reserved.
[4]	HDIV_EN	 Divider Controller Clock Enable Control 0 = Divider controller peripheral clock Disabled. 1 = Divider controller peripheral clock Enabled.
[3]	Reserved	Reserved.
[2]	ISPCKEN	Flash ISP Controller Clock Enable Bit 0 = Flash ISP peripheral clock Disabled. 1 = Flash ISP peripheral clock Enabled.
[1]	PDMACKEN	PDMA Controller Clock Enable Bit 0 = PDMA peripheral clock Disabled. 1 = PDMA peripheral clock Enabled.
[0]	Reserved	Reserved.

APB Devices Clock Enable Control Register 0 (CLK_APBCLK0)

The bits in this register are used to enable/disable clock for peripheral controller clocks.

Register	Offset	R/W	Description	Reset Value
CLK_APBCLK0	CLK_BA+0x08	R/W	APB Devices Clock Enable Control Register 0	0x0000_0001

31	30	29	28	27	26	25	24	
	Reserved				Reserved			
23	22	21	20	19	18	17	16	
		Rese	erved		UART1CKEN	UART0CKEN		
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
ACMP01CKEN	CLKOCKEN	TMR3CKEN	TMR2CKEN	TMR1CKEN	TMR0CKEN	Reserved	WDTCKEN	

Bits	Description	
[31:29]	Reserved	Reserved.
[28]	ADCCKEN	Analog-digital-converter Clock Enable Bit 0 = ADC clock Disabled. 1 = ADC clock Enabled.
[27:25]	Reserved	Reserved.
[24]	CAN0CKEN	CAN0 Clock Enable Bit 0 = CAN0 clock Disabled. 1 = CAN0 clock Enabled.
[23:18]	Reserved	Reserved.
[17]	UART1CKEN	UART1 Clock Enable Bit 0 = UART1 clock Disabled. 1 = UART1 clock Enabled.
[16]	UART0CKEN	UART0 Clock Enable Bit 0 = UART0 clock Disabled. 1 = UART0 clock Enabled.
[15:8]	Reserved	Reserved.
[7]	ACMP01CKEN	Analog Comparator 0/1 Clock Enable Bit0 = Analog comparator 0/1 clock Disabled.1 = Analog comparator 0/1 clock Enabled.
[6]	CLKOCKEN	CLKO Clock Enable Bit 0 = CLKO clock Disabled. 1 = CLKO clock Enabled.
[5]	TMR3CKEN	Timer3 Clock Enable Bit 0 = Timer3 clock Disabled.

		1 = Timer3 clock Enabled.
[4]	TMR2CKEN	Timer2 Clock Enable Bit 0 = Timer2 clock Disabled. 1 = Timer2 clock Enabled.
[3]	TMR1CKEN	Timer1 Clock Enable Bit 0 = Timer1 clock Disabled. 1 = Timer1 clock Enabled.
[2]	TMROCKEN	Timer0 Clock Enable Bit 0 = Timer0 clock Disabled. 1 = Timer0 clock Enabled.
[1]	Reserved	Reserved.
[0]	WDTCKEN	 Watchdog Timer Clock Enable Bit (Write Protect) 0 = Watchdog timer clock Disabled. 1 = Watchdog timer clock Enabled. Note 1: This bit is write protected. Refer to the SYS_REGLCTL register. Note 2: This bit is reset by power on reset, Watchdog reset or software chip reset.

APB Devices Clock Enable Control Register 1 (CLK_APBCLK1)

The bits in this register are used to enable/disable clock for peripheral controller clocks.

Register	Offset	R/W	Description	Reset Value
CLK_APBCLK1	CLK_BA+0x0C	R/W	APB Devices Clock Enable Control Register 1	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	23 22 21			19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	Reserved		DACCKEN	Reserved USCI1CKEN			USCI0CKEN				
7	7 6 5		4	3 2		1	0				
	Reserved										

Bits	Description	
[31:17]	Reserved	Reserved.
[16]	PWM0CKEN	PWM0 Clock Enable Bit 0 = PWM0 clock Disabled. 1 = PWM0 clock Enabled.
[15:13]	Reserved	Reserved.
[12]	DACCKEN	DAC Clock Enable Bit 0 = DAC clock Disabled. 1 = DAC clock Enabled.
[11:10]	Reserved	Reserved.
[9]	USCI1CKEN	USCI1 Clock Enable Bit 0 = USCI1 clock Disabled. 1 = USCI1 clock Enabled.
[8]	USCIOCKEN	USCI0 Clock Enable Bit 0 = USCI0 clock Disabled. 1 = USCI0 clock Enabled.
[7:0]	Reserved	Reserved.

Clock Source Select Control Register 0 (CLK_CLKSEL0)

Register Offset		R/W	Description	Reset Value
CLK_CLKSEL0	CLK_BA+0x10	R/W	Clock Source Select Control Register 0	0x0000_003F

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Rese	erved		STCLKSEL			HCLKSEL				

Bits	Description									
[31:6]	Reserved	erved Reserved.								
[5:3]	STCLKSEL	Cortex®-M0 SysTick Clock Source Selection (Write Protect) If SYST_CTRL[2]=0, SysTick uses listed clock source below. 000 = Clock source from HXT. 001 = Clock source from LXT. 010 = Clock source from HXT/2. 011 = Clock source from HCLK/2. 111 = Clock source from HIRC/2. Other = Reserved. Note 1: If SysTick clock source is not from HCLK (i.e. SYST_CTRL[2] = 0), SysTick clock source must less than or equal to HCLK/2. Note 2: This bit is write protected. Refer to the SYS_REGLCTL register.								
[2:0]	HCLKSEL	HCLK Clock Source Selection (Write Protect) Before clock switching, the related clock sources (both pre-select and new-select) must be turned on. 000 = Clock source from HXT. 001 = Clock source from LXT. 011 = Clock source from LIRC. 111= Clock source from HIRC. Other = Reserved. Note 1: This bit is write protected. Refer to the SYS_REGLCTL register. Note 2: Reset by power on reset								

Clock Source Select Control Register 1 (CLK_CLKSEL1)

Before clock switching, the related clock sources (pre-selected and newly-selected) must be turned on.

Register Offset R/W		R/W	Description	Reset Value
CLK_CLKSEL1	CLK_BA+0x14	R/W	Clock Source Select Control Register 1	0x4477_773B

31	30	29	28	27	26	25	24
Reserved		UART1SEL		Reserved	UART0SEL		
23	22	21	20	19	18	17	16
Reserved		TMR3SEL		Reserved	TMR2SEL		
15	14	13	12	11	10	9	8
Reserved		TMR1SEL		Reserved	TMR0SEL		
7	6	5	4	3	2	1	0
Reserved	CLKOSEL			WWD	WWDTSEL WDTSEL		

Bits	Description								
[31]	Reserved	Reserved.							
[30:28]	UART1SEL	UART1 Clock Source Selection 000 = Clock source from external high speed crystal oscillator (HXT). 010 = Clock source from external low speed crystal oscillator (LXT). 011 = Clock source from internal high speed RC oscillator (HIRC). 100 = Clock source from PCLK1. 101 = Clock source from internal low speed RC oscillator (LIRC). Other = Reserved.							
[27]	Reserved	Reserved.							
[26:24]		 UART0 Clock Source Selection 000 = Clock source from external high speed crystal oscillator (HXT). 010 = Clock source from external low speed crystal oscillator (LXT). 011 = Clock source from internal high speed RC oscillator (HIRC). 100 = Clock source from PCLK0. 101 = Clock source from internal low speed RC oscillator (LIRC). Other = Reserved. 							
[23]	Reserved	Reserved.							
[22:20]	TMR3SEL	TIMER3 Clock Source Selection 000 = Clock source from external high speed crystal oscillator (HXT). 001 = Clock source from external low speed crystal oscillator (LXT). 010 = Clock source from PCLK1. 011 = Clock source from external clock T3 pin. 101 = Clock source from internal low speed RC oscillator (LIRC). 111 = Clock source from internal high speed RC oscillator (HIRC). 011 = Reserved.							

[19]	Reserved	Reserved.
		TIMER2 Clock Source Selection
		000 = Clock source from external high speed crystal oscillator (HXT).
		001 = Clock source from external low speed crystal oscillator (LXT).
		010 = Clock source from PCLK1.
[18:16]	TMR2SEL	011 = Clock source from external clock T2 pin.
		101 = Clock source from internal low speed RC oscillator (LIRC).
		111 = Clock source from internal high speed RC oscillator (HIRC).
		Others = Reserved.
[15]	Reserved	Reserved.
		TIMER1 Clock Source Selection
		000 = Clock source from external high speed crystal oscillator (HXT).
		001 = Clock source from external low speed crystal oscillator (LXT).
[4.4.40]		010 = Clock source from PCLK0.
[14:12]	TMR1SEL	011 = Clock source from external clock T1 pin.
		101 = Clock source from internal low speed RC oscillator (LIRC).
		111 = Clock source from internal high speed RC oscillator (HIRC).
		Others = Reserved.
[11]	Reserved	Reserved.
		TIMER0 Clock Source Selection
	TMROSEL	000 = Clock source from external high speed crystal oscillator (HXT).
		001 = Clock source from external low speed crystal oscillator (LXT).
		010 = Clock source from PCLK0.
[10:8]		011 = Clock source from external clock T0 pin.
		101 = Clock source from internal low speed RC oscillator (LIRC).
		111 = Clock source from internal high speed RC oscillator (HIRC).
		Others = Reserved.
[7]	Reserved	Reserved.
		Clock Divider Clock Source Selection
		000 = Clock source from external high speed crystal oscillator (HXT).
		001 = Clock source from external low speed crystal oscillator (LXT).
[6:4]	CI KOSEI	010 = Clock source from HCLK.
[0.1]	01.00011	100 = Clock source from internal low speed RC oscillator (LIRC).
		101 = Clock source from internal high speed RC oscillator (HIRC).
		Others = Reserved.
		Window Watchdog Timer Clock Source Selection (Write Protect)
10.01		10 = Clock source from HCLK/2048.
[3:2]	WWDTSEL	11 = Clock source from internal low speed RC oscillator (LIRC).
		Others = Reserved.
		Watchdog Timer Clock Source Selection (Write Protect)
		01 = Clock source from external low speed crystal oscillator (LXT).
		10 = Clock source from HCLK/2048.
[1:0]	WDTSEL	11 = Clock source from internal low speed RC oscillator (LIRC).
		Others = Reserved.
		Note: This bit is write protected. Refer to the SYS_REGLCTL register. 2. It will be forced to 11 when
		CONFIG0[31], CONFIG0[4], CONFIG0[3] are all ones.

Clock Source Select Control Register 2 (CLK_CLKSEL2)

Before clock switching, the related clock sources (pre-select and new-select) must be turned on.

Register	Offset	R/W	Description	Reset Value
CLK_CLKSEL2	CLK_BA+0x18	R/W	Clock Source Select Control Register 2	0x0020_032B

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
Rese	erved	ADC	SEL	Reserved							
15	14	13	12	11	10	9	8				
	Reserved										
7	6	5	4	3	2	1	0				
	Reserved										

Bits	Description							
[31:22]	Reserved	served Reserved.						
		ADC Clock Source Selection						
		00 = Clock source from external high speed crystal oscillator (HXT) clock.						
[21:20]	ADCSEL	01 = Reserved.						
		10 = Clock source from PCLK1.						
		11 = Clock source from internal high speed RC oscillator (HIRC) clock.						
[19:0]	Reserved	Reserved.						

Clock Divider Number Register 0 (CLK_CLKDIV0)

Register Offset		R/W	Description	Reset Value	
CLK_CLKDIV0	CLK_BA+0x20	R/W	Clock Divider Number Register 0	0x0000_0000	

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	ADCDIV									
15	14	13	12	11	10	9	8			
	UAR	[1DIV		UARTODIV						
7	6	5	4	3	2	1	0			
	Reserved				HCL	KDIV				

Bits	Description	Description							
[31:24]	Reserved	Reserved.							
[23:16]	ADCDIV	ADC Clock Divide Number From ADC Clock Source ADC clock frequency = (ADC clock source frequency) / (ADCDIV + 1).							
[15:12]	UART1DIV	UART1 Clock Divide Number From UART1 Clock Source UART1 clock frequency = (UART1 clock source frequency) / (UART1DIV + 1).							
[11:8]	UARTODIV	UART0 Clock Divide Number From UART0 Clock Source UART0 clock frequency = (UART0 clock source frequency) / (UART0DIV + 1).							
[7:4]	Reserved	Reserved.							
[3:0]	HCLKDIV	HCLK Clock Divide Number From HCLK Clock Source HCLK clock frequency = (HCLK clock source frequency) / (HCLKDIV + 1).							

APB Clock Divider Register (CLK_PCLKDIV)

Register	Offset	R/W	Description	Reset Value
CLK_PCLKDIV	CLK_BA+0x34	R/W	APB Clock Divider Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved	Reserved APB1DIV					APB0DIV				

Bits	Description	
[31:7]	Reserved	Reserved.
[6:4]	APB1DIV	APB1 Clock Dlvider APB1 clock can be divided from HCLK 000: PCLK1 = HCLK. 001: PCLK1 = 1/2 HCLK. 010: PCLK1 = 1/4 HCLK. 011: PCLK1 = 1/8 HCLK. 100: PCLK1 = 1/16 HCLK. 000: PCLK1 = 1/16 HCLK.
[3]	Reserved	Reserved.
[2:0]	APB0DIV	APB0 Clock Dlvider APB0 clock can be divided from HCLK 000: PCLK0 = HCLK. 001: PCLK0 = 1/2 HCLK. 010: PCLK0 = 1/4 HCLK. 011: PCLK0 = 1/8 HCLK. 100: PCLK0 = 1/8 HCLK. 100: PCLK0 = 1/16 HCLK. 00: PCLK0 = 1/16 HCLK.

Clock Status Monitor Register (CLK_STATUS)

The bits in this register are used to monitor if the chip clock source is stable or not, and whether the clock switch is failed.

Register	Offset	R/W	Description	Reset Value
CLK_STATUS	CLK_BA+0x50	R	Clock Status Monitor Register	0x0000_00XX

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
CLKSFAIL	Reserved		HIRCSTB	LIRCSTB	Reserved	LXTSTB	нхтѕтв			

Bits	Description	1
[31:8]	Reserved	Reserved.
		Clock Switching Fail Flag (Read Only)
	0	This bit is updated when software switches system clock source. If switch target clock is stable, this bit will be set to 0. If switch target clock is not stable, this bit will be set to 1.
[7]	CLKSFAIL	0 = Clock switching success.
		1 = Clock switching failure.
		Note: Write 1 to clear the bit to 0.
[6:5]	Reserved	Reserved.
		HIRC Clock Source Stable Flag (Read Only)
[4]	HIRCSTB	0 = Internal high speed RC oscillator (HIRC) clock is not stable or disabled.
		1 = Internal high speed RC oscillator (HIRC) clock is stable and enabled.
		LIRC Clock Source Stable Flag (Read Only)
[3]	LIRCSTB	0 = Internal low speed RC oscillator (LIRC) clock is not stable or disabled.
		1 = Internal low speed RC oscillator (LIRC) clock is stable and enabled.
[2]	Reserved	Reserved.
		LXT Clock Source Stable Flag (Read Only)
[1]	LXTSTB	0 = External low speed crystal oscillator (LXT) clock is not stable or disabled.
		1 = External low speed crystal oscillator (LXT) clock is stabled and enabled.
		HXT Clock Source Stable Flag (Read Only)
[0]	нхтѕтв	0 = External high speed crystal oscillator (HXT) clock is not stable or disabled.
		1 = External high speed crystal oscillator (HXT) clock is stable and enabled.

Clock Output Control Register (CLK_CLKOCTL)

Register	Offset	R/W	Description	Reset Value
CLK_CLKOCTL	CLK_BA+0x60	R/W	Clock Output Control Register	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	Reserved										
7	6	5	4	3	2	1	0				
Rese	Reserved DIV1EN CLKOEN				FREQSEL						

Bits	Description	
[31:6]	Reserved	Reserved.
[5]	DIV1EN	 Clock Output Divide One Enable Bit 0 = Clock Output will output clock with source frequency divided by FREQSEL. 1 = Clock Output will output clock with source frequency.
[4]	CLKOEN	Clock Output Enable Bit 0 = Clock Output function Disabled. 1 = Clock Output function Enabled.
[3:0]	FREQSEL	Clock Output Frequency SelectionThe formula of output frequency is $F_{out} = F_{in}/2^{(N+1).}$ F_{in} is the input clock frequency. F_{out} is the frequency of divider output clock.N is the 4-bit value of FREQSEL[3:0].

Clock Fail Detector Control Register (CLK_CLKDCTL)

Register	Offset	R/W	Description	Reset Value
CLK_CLKDCTL	CLK_BA+0x70	R/W	Clock Fail Detector Control Register	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
		Rese	erved			HXTFQIEN	HXTFQDEN				
15	14	13	12	11	10	9	8				
Rese	erved	LXTFIEN	LXTFDEN	Reserved							
7	6	5	4	3	2	1	0				
Rese	erved	HXTFIEN	HXTFDEN		Rese	erved					

Bits	Description	
[31:18]	Reserved	Reserved.
[17]	HXTFQIEN	 HXT Clock Frequency Range Detector Interrupt Enable Bit 0 = External high speed crystal oscillator (HXT) clock frequency range detector fail interrupt Disabled. 1 = External high speed crystal oscillator (HXT) clock frequency range detector fail interrupt Enabled.
[16]	HXTFQDEN	 HXT Clock Frequency Range Detector Enable Bit 0 = External high speed crystal oscillator (HXT) clock frequency range detector Disabled. 1 = External high speed crystal oscillator (HXT) clock frequency range detector Enabled.
[15:14]	Reserved	Reserved.
[13]	LXTFIEN	LXT Clock Fail Interrupt Enable Bit 0 = External low speed crystal oscillator (LXT) clock fail interrupt Disabled. 1 = External low speed crystal oscillator (LXT) clock fail interrupt Enabled.
[12]	LXTFDEN	LXT Clock Fail Detector Enable Bit 0 = External low speed crystal oscillator (LXT) clock fail detector Disabled. 1 = External low speed crystal oscillator (LXT) clock fail detector Enabled.
[11:6]	Reserved	Reserved.
[5]	HXTFIEN	HXT Clock Fail Interrupt Enable Bit 0 = External high speed crystal oscillator (HXT) clock fail interrupt Disabled. 1 = External high speed crystal oscillator (HXT) clock fail interrupt Enabled.
[4]	HXTFDEN	HXT Clock Fail Detector Enable Bit 0 = External high speed crystal oscillator (HXT) clock fail detector Disabled. 1 = External high speed crystal oscillator (HXT) clock fail detector Enabled.
[3:0]	Reserved	Reserved.

Clock Fail Detector Status Register (CLK_CLKDSTS)

Register Offset		R/W	Description	Reset Value
CLK_CLKDSTS	CLK_BA+0x74	R/W	Clock Fail Detector Status Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
			Reserved				HXTFQIF			
7	6	5	4	3	2	1	0			
		Rese	erved			LXTFIF	HXTFIF			

Bits	Description	
[31:9]	Reserved	Reserved.
[8]	HXTFQIF	 HXT Clock Frequency Range Detector Interrupt Flag (Write Protect) 0 = External high speed crystal oscillator (HXT) clock frequency is normal. 1 = External high speed crystal oscillator (HXT) clock frequency is abnormal. Note: Write 1 to clear the bit to 0.
[7:2]	Reserved	Reserved.
[1]	LXTFIF	 LXT Clock Fail Interrupt Flag (Write Protect) 0 = External low speed crystal oscillator (LXT) clock is normal. 1 = External low speed crystal oscillator (LXT) stops. Note: Write 1 to clear the bit to 0.
[0]	HXTFIF	 HXT Clock Fail Interrupt Flag (Write Protect) 0 = External high speed crystal oscillator (HXT) clock is normal. 1 = External high speed crystal oscillator (HXT) clock stops. Note: Write 1 to clear the bit to 0.

Clock Frequency Range Detector Upper Boundary Register (CLK_CDUPB)

Register	Offset	R/W	Description	Reset Value
CLK_CDUPB	CLK_BA+0x78	R/W	Clock Frequency Range Detector Upper Boundary Register	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	Reserved UPERBD										
7	6	5	4	3	2	1	0				
	UPERBD										

Bits	Description							
[31:10]	Reserved	Reserved Reserved.						
[9:0]	UPERBD	HXT Clock Frequency Range Detector Upper Boundary Value The bits define the maximum value of frequency range detector window. When HXT frequency is higher than this maximum frequency value, the HXT Clock Frequency Range Detector Interrupt Flag will be set to 1.						

Clock Frequency Range Detector Lower Boundary Register (CLK_CDLOWB)

Register	Offset	R/W	Description	Reset Value
CLK_CDLOWB	CLK_BA+0x7c	R/W	Clock Frequency Range Detector Lower Boundary Register	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
		Rese	erved			LOW	ERBD				
7	6	5	4	3	2	1	0				
			LOW	ERBD							

Bits	Description	Description				
[31:10]	Reserved	eserved Reserved.				
[9·0]	LOWERBD	HXT Clock Frequency Range Detector Lower Boundary Value The bits define the minimum value of frequency range detector window.				
[9:0]		When HXT frequency is lower than this minimum frequency value, the HXT Clock Frequency Range Detector Interrupt Flag will be set to 1.				

Frequency out of range will be asserted when HIRC_period*1024> HXT_period*CLK_DUPB or HIRC_period*1024 < HXT_period*CLK_CDLOWB

HXT Filter Select Control Register (CLK_HXTFSEL)

Register	Offset	R/W	Description	Reset Value
CLK_HXTFSEL	CLK_BA+0xB4	R/W	HXT Filter Select Control Register	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
			Rese	erved							
7	7 6 5 4 3 2 1										
			Reserved				HXTFSEL				

Bits	Description	scription			
[31:1]	Reserved	eserved Reserved.			
[0]	HXTFSEL	HXT Filter Select 0 = HXT frequency is greater than12 MHz. 1 = HXT frequency is less than or equal to 12 MHz. Note: This bit should not be changed during HXT running.			

6.4 Flash Memory Controller (FMC)

6.4.1 Overview

This chip is equipped with 16/32 Kbytes on-chip embedded Flash. A User Configuration block is provided for system initialization. A loader ROM (LDROM) is used for In-System-Programming (ISP) function. This chip also supports In-Application-Programming (IAP) function. User switches the code executing without the chip reset after the embedded Flash is updated.

6.4.2 Features

- Supports 16/32 Kbytes application ROM (APROM).
- Supports 512 bytes page size for 16/32 Kbytes Flash.
- Supports 2 Kbytes loader ROM (LDROM).
- Supports configurable Data Flash size to share with APROM.
- Supports 12 bytes User Configuration block to control system initialization.
- Supports 512 bytes page erase for all embedded Flash.
- Supports CRC-32 checksum calculation function.
- Supports In-System-Programming (ISP) / In-Application-Programming (IAP) to update embedded Flash memory.

6.4.3 Block Diagram

The Flash memory controller (FMC) consists of AHB slave interface, Flash control registers, Flash initialization controller, Flash operation control and embedded Flash memory. Figure 6.4-1 shows the block diagram of Flash memory controller.

ηυνοΤοη

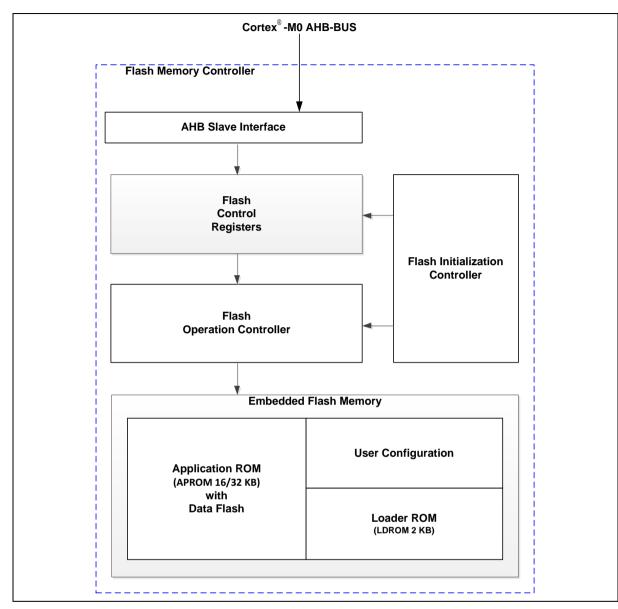


Figure 6.4-116/32 KB Flash Memory Control Block Diagram

AHB Slave Interface

There is single AHB slave interface in Flash memory controller for Cortex[®]-M0 to perform the instruction, data fetch and ISP control registers.

Flash Control Registers

All of ISP control and status registers are in the Flash control registers. Refer to the Register Description section for the detailed register description.

Flash Initialization Controller

When the chip is powered on or active from reset, the Flash initialization controller will start to access Flash automatically and check the Flash stability, and also reload User Configuration content to the Flash control registers as system initialization stage.

Flash Operation Controller

The Flash operations, such as checksum, Flash erase, Flash program, and Flash read operation, have

specific control timing for embedded Flash memory. The Flash operation controller generates those control timing by requirement from the Flash control registers and the Flash initialization controller.

Embedded Flash Memory

The embedded Flash memory is the main memory for user application code and parameters. It consists of the user configuration block, 2 Kbytes LDROM and 16/32 Kbytes APROM with Data Flash. The page erase Flash size is 512 bytes, and program bit width is 32 bits.

6.4.4 Functional Description

FMC functions include the memory organization, boot selection, IAP, ISP, the embedded Flash programming, and checksum calculation. The Flash memory map and system memory map are also introduced in the memory organization.

6.4.4.1 Memory Organization

The FMC memory consists of the embedded Flash memory. The embedded Flash memory is programmable, and includes APROM, LDROM, Data Flash and the User Configuration block. The address map includes Flash memory map and four system address maps: LDROM with IAP, LDROM without IAP, APROM with IAP, and APROM without IAP functions.

6.4.4.2 LDROM, APROM and Data Flash

LDROM is designed for a loader to implement In-System-Programming (ISP) function by user. LDROM is a 2 KB embedded Flash memory, the Flash address range is from 0x0010_0000 to 0x0010_07FF. APROM is main memory for user applications. The APROM size is 16/32 KB. Data Flash is used to store application parameters (not instruction). Data Flash is shared with APROM and its size is configurable. The base address of Data Flash is determined by DFBA (CONFIG1[19:0]). All of embedded Flash memory is 512 bytes page erased.

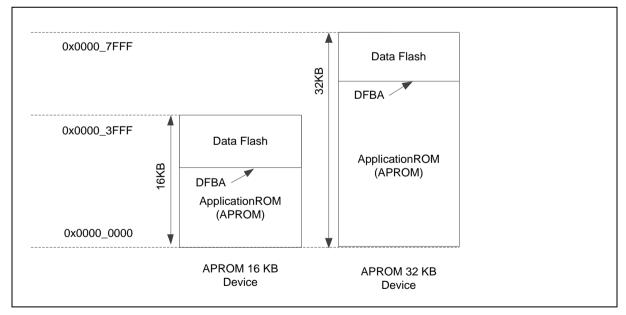


Figure 6.4-2 Data Flash Shared with APROM

6.4.4.3 User Configuration Block

User Configuration block is internal programmable configuration area for boot options, such as Flash

security lock, boot selection, brown-out voltage level, and Data Flash base address. It works like a fuse for power on setting. It is loaded from Flash memory to its corresponding control registers during chip power on. User can set these bits according to different application requirements. User Configuration block can be updated by ISP function and its address located at 0x0030_0000 with three 32 bits words (CONFIG0, CONFIG1 and CONFIG2). Any change on User Configuration block will take effect after system reboot

CONFIG0 (A	Address =	0x0030_	0000)
------------	-----------	---------	-------

31	30	29	28	27	26	25	24
CWDTEN[2]	CWDTPDEN	Rese	Reserved		Reserved	CFGRPS	Reserved
23	22	21	20	19	18	17	16
Reserved	СВ	ov	CBORST	CBODEN	Reserved		
15	14	13	12	11	10	9	8
	Reserved		ICELOCK	Reserved	CIOINI	RSTEXT	RSTWSEL
7	6	5	4	3	2	1	0
CI	3S	Reserved	CWDTI	EN[1:0]	Reserved	LOCK	DFEN

Bits	Description								
		Watchdog Timer Hardware Enable Bit							
[31]		When the watchdog timer hardware enable function is enabled, the watchdog enable bit WDTEN (WDT_CTL[7]) and watchdog reset enable bit RSTEN (WDT_CTL[1]) is set to 1 automatically after power on. The clock source of watchdog timer is force at LIRC and LIRC can't be disabled in normal operation mode. However, in Power-down mode, the LIRC may be able to be disabled by setting CWDTPDEN=1 and LIRCEN=0 (CLK_PWRCTL[3]).							
	CWDTEN[2]	CWDTEN[2:0] is CONFIG0[31][4][3],							
		011 = WDT hardware enable function is active. WDT clock is always on except chip enters Power- down mode. When chip enters Power-down mode, WDT clock is always on if CWDTPDEN is 0 or WDT clock is controlled by LIRCEN (CLK_PWRCTL[3]) if CWDTPDEN is 1. Please refer to bit field description of CWDTPDEN.							
		111 = WDT hardware enable function is inactive, WDT clock source only can be changed in this case.							
		Others = WDT hardware enable function is active. WDT clock is always on.							
		Watchdog Clock Power-down Enable Bit							
[30]	CWDTPDEN	This bit should be used with CWDTEN. When WDT enabled by CWDTEN, user can use this bit to control WDT wakeup when system is in Power-down mode. If it is necessary to wakeup system by WDT, then user can set CWDTPDEN=0 to make sure WDT keep working at Power-down mode. If user don't want to wakeup system by WDT, user may just set CWDTPDEN=1 and LIRCEN=0 to let WDT suspend in power down.							
		0 = Watchdog Timer clock kept enabled when chip enters power-down.							
		1 = Watchdog Timer clock is controlled by LIRCEN (CLK_PWRCTL[3]) when the chip enters power- down.							
		Note: This bit only works if CWDTEN[2:0] is set to 011.							
[29:28]	Reserved	Reserved.							
		HXT Mode Selection							
		0 = HXT works as external clock mode. PA.5 is configured as external clock input pin.							
[27]	CFGXT1	1 = HXT works as crystal mode. PA.4 and PA.5 are configured as external high speed crystal(HXT) pins.							
		Note: When CFGXT1 = 0, P4.5 MFP should be set as GPIO mode. The DC characteristic of XT1_IN is the same as GPIO.							
[26]	Reserved	Reserved.							
		Reset Pin Selection							
[25]	CFGRPS	0 = Set GPA[3] to GPIO mode.							
		1 = Set GPA[3] to nReset mode.							
[24.23]	Reserved	Reserved.							

[22:21]	своу	Brown-out Voltage Selection 00 = Brown-out voltage is 2.3V. 01 = Brown-out voltage is 3.3V. 10 = Brown-out voltage is 3.7V. 11 = Brown-out voltage is 4.4V.
[20]	CBORST	Brown-out Reset Enable Bit 0 = Brown-out reset Enabled after power on or active from reset pin. 1 = Brown-out reset Disabled after power on or active from reset pin.
[19]	CBODEN	Brown-out Detector Enable Bit 0= Brown-out detect Enabled after powered on. 1= Brown-out detect Disabled after powered on.
[18:13]	Reserved	Reserved.
[12]	ICELOCK	ICE Lock Bit This bit is only used to disable ICE function. User may use it with LOCK (CONFIG0[1]) bit to increase security level. 0 = ICE function Disabled. 1 = ICE function Enabled.
[11]	Reserved	Reserved.
[10]	CIOINI	 I/O Initial State Selection 0 = All GPIO set as Quasi-bidirectional mode after chip powered on or active from reset pin. 1 = All GPIO set as input tri-state mode after powered on or active from reset pin.
[9]	RSTEXT	Chip Reset Time Extend 0 = Extend reset time to 26.6 ms if chip release from power-on reset/LVR/BOD/nReset pin reset happened. 1 = Extend reset time to 3.2 ms if chip release from power-on reset/LVR/BOD/nReset pin reset happened.
[8]	RSTWSEL	RST Pin Width Selection 0 = nReset pin debounce width is 2 us. 1 = nReset pin debounce width is 32 us.
[7:6]	CBS	Chip Booting Selection When CBS[0] = 0 with IAP mode, the LDROM base address is mapping to 0x100000 and APROM base address is mapping to 0x0. User could access both APROM and LDROM without boot switching. In other words, the code in LDROM and APROM can be called by each other. CBS value is valid. 00 = Boot from LDROM with IAP mode. 01 = Boot from LDROM without IAP mode. 10 = Boot from APROM with IAP mode. 11 = Boot from APROM with IAP mode. 11 = Boot from APROM without IAP mode. 85 (FMC_ISPCTL[1]) is only be used to control boot switching when CBS[0] = 1. VECMAP (FMC_ISPSTS[23:9]) is only used to remap 0x0~0x1FF when CBS[0] = 0.
[5]	Reserved	Reserved.
[4:3]	CWDTEN[1:0]	Watchdog Timer Hardware Enable Bit Please refer to CWDTEN[2] (CONFIG0[31]) for details.
[2]	Reserved	Reserved.

[1]	LOCK	Security Lock Control 0 = Flash memory content is locked. 1 = Flash memory content is unlocked if ALOCK (CONFIG2[7:0]) is also equal to 0x5A.
[0]	DFEN	Data Flash Enable Bit The Data Flash is shared with APROM, and the base address of Data Flash is decided by DFBA (CONFIG1[19:0]) when DFEN is 0. 0 = Data Flash Enabled. 1 = Data Flash Disabled.

CONFIG1 (Address = 0x0030_0004)

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Rese	erved		DFBA						
15	14	13	12	11	10	9	8			
			DF	BA						
7	6	5	4	3	2	1	0			
			DF	ВА						

Bits	Descriptio	Description					
[31:20]	Reserved	Reserved.					
		Data Flash Base Address					
[19:0]		This register works only when DFEN (CONFIG0[0]) is set to 0. If DFEN (CONFIG0[0]) is set to 0, the Data Flash base address is defined by user. Since on-chip Flash erase unit is 512 bytes, it is mandatory to keep bit 8-0 or bit 10-0 respectively as 0.					

CONFIG2 (Address = 0x0030_0008)

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
			ALC	оск						

Bits	Description	
[31:8]	Reserved	Reserved.
[7:0]	ALOCK	Advance Security Lock Control 0x5A = Flash memory content is unlocked if LOCK (CONFIG0[1]) is set to 1. Others = Flash memory content is locked. Note: ALOCK will be programmed as 0x5A after executing ISP page erase or ISP/ICP whole chip erase

6.4.4.4 Flash Memory Map

In the M0A21/M0A23, the Flash memory map is different from system memory map. The system memory map is used by CPU fetch code or data from FMC memory. The Flash memory map is used for ISP function to read, program or erase FMC memory. Figure 6.4-3 shows the Flash memory map.



Figure 6.4-3 16/32 Kbytes Flash Memory Map

Jan. 23, 2024

6.4.4.5 System Memory Map with IAP Mode

The system memory map is used by CPU to fetch code or data from FMC memory and LDROM(0x0010_0000~0x0010_07FF) address map are the same as in the Flash memory map. The Data Flash is shared with APROM and the Data Flash base address is defined by CONFIG1. The content of CONFIG1 is loaded into DFBA (Data Flash Base Address Register) at the Flash initialization. The DFBA~APROM maximum size is the Data Flash region for Cortex[®]-M0 data access, and 0x0000_0200~(DFBA-1) is APROM region for Cortex[®]-M0 instruction access.

The address from 0x0000_0000 to 0x0000_01FF is called system memory vector. APROM and LDROM can map to the system memory vector for CPU start up. There are two kinds of system memory map with IAP mode when chip booting: (1) LDROM with IAP, and (2) APROM with IAP.

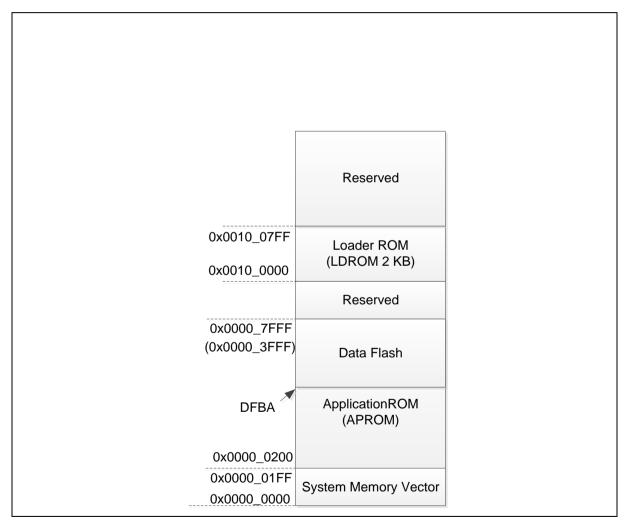


Figure 6.4-4 16/32 Kbytes Flash System Memory Map with IAP Mode

In LDROM with IAP mode, the default value of {VECMAP[11:0], 9'h000} is 0x100000 and first page of LDROM (0x0010_0000 ~ 0x0010_01FF) is mapping to the system memory vector for Cortex[®]-M0 instruction or data access.

ηυνοτοη

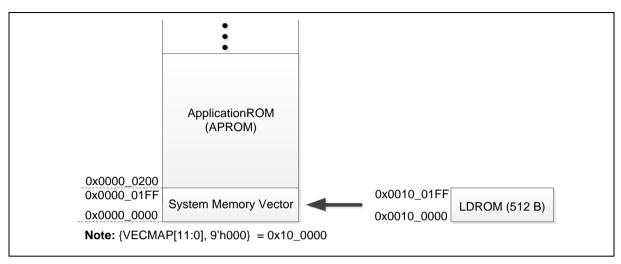


Figure 6.4-5 LDROM with IAP Mode

In APROM with IAP mode, the default value of {VECMAP[11:0], 9'h000} is 0x000000 and first page of APROM (0x0000_0000~0x0000_01FF) is mapping to the system memory vector for Cortex[®]-M0 instruction or data access.

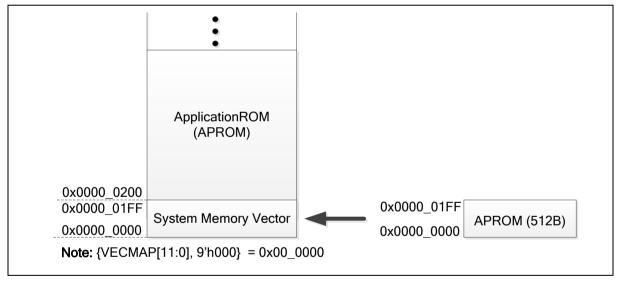


Figure 6.4-6 APROM with IAP Mode

In system memory map with IAP mode, APROM and LDROM can remap to the system memory vector when CPU running. User can write the target remap address to FMC_ISPADDR register and then trigger ISP procedure with the "Vector Page Remap" command (0x2E). In VECMAP (FMC_ISPSTS[23:9]), shows the finial system memory vector mapping address.

6.4.4.6 System Memory Map without IAP Mode

In system memory map without IAP mode, the system memory vector mapping is not supported. There are two kinds of system memory map without IAP mode when chip booting: (1) LDROM without IAP, (2) APROM without IAP. In LDROM without IAP mode, LDROM base is mapping to 0x0000_0000. CPU program cannot run to access APROM. In APROM without IAP mode, APROM base is mapping to 0x0000_0000. CPU program cannot run to access LDROM. The Data Flash is shared with APROM and the Data Flash base address is defined by CONFIG1. The content of CONFIG1 is loaded into DFBA (Data Flash Base Address Register) at the Flash initialization. The DFBA~0x0000_7FFF is the Data Flash region for Cortex[®]-M0 data access, and 0x0000_0000~(DFBA-1) is APROM region for Cortex[®]-

M0 instruction access.

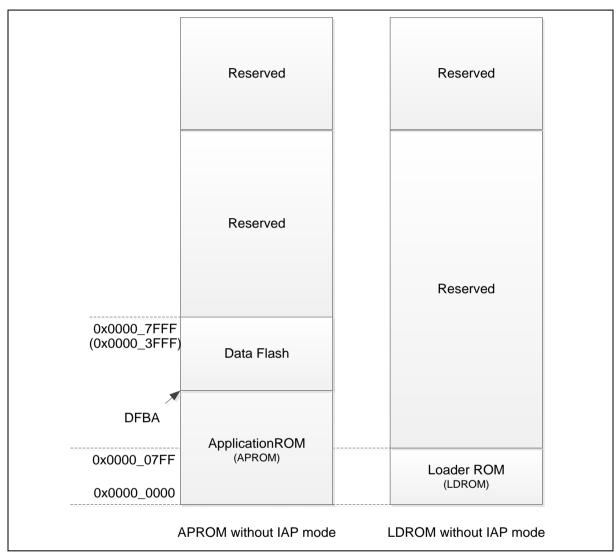


Figure 6.4-7 16/32 Kbytes Flash System Memory Map without IAP Mode

6.4.4.7 Boot Selection

The M0A21/M0A23 provides four booting modes for application field. They are LDROM with IAP, LDROM without IAP, APROM with IAP, and APROM without IAP. The booting modes and system memory map are setting by CBS (CONFIG0[7:6]).

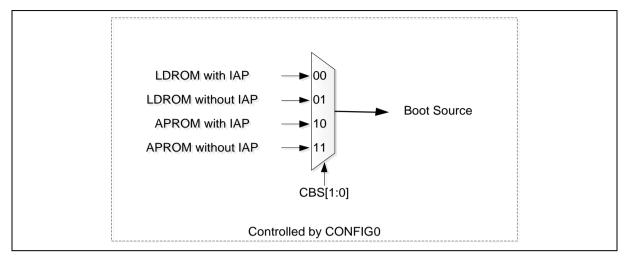


Figure 6.4-8 Boot Source Selection

CBS[1:0]	Boot Selection/System Memory Map	Vector Mapping Supporting
00	LDROM with IAP	Yes
01	LDROM without IAP	No
10	APROM with IAP	Yes
11	APROM without IAP	No

Table 6.4-1	Vector	Mapping	Support
-------------	--------	---------	---------

6.4.4.8 In-Application-Programming (IAP)

The M0A21/M0A23 provides In-Application-Programming (IAP) function for user to switch the code executing between APROM and LDROM. User can enable the IAP function by booting chip and setting the chip boot selection bits in CBS (CONFIG0[7:6]) as 10 or 00.

When chip boots with IAP function enabled, any executable code (align to 512 bytes) is allowed to map to the system memory vector(0x0000_0000~0x0000_01FF) any time. User can change the remap address to FMC_ISPADDR and then trigger ISP procedure with the "Vector Page Remap" command.

6.4.4.9 In-System-Programming (ISP)

The M0A21/M0A23 supports In-System-Programming (ISP) function allowing the embedded Flash memory to be reprogrammed under software control. ISP is performed without removing the microcontroller from the system through the firmware and on-chip connectivity interface, such as UART, I²C, and SPI.

The M0A21/M0A23 ISP provides the following functions for embedded Flash memory.

- Supports Flash page erase function
- Supports Flash data program function
- Supports Flash data read function
- Supports company ID read function
- Supports unique ID read function
- Supports memory checksum calculation function

• Supports system memory vector remap function

ISP Commands

ISP Command	FMC_ISPCMD	FMC_ISPADDR	FMC_ISPDAT
FLASH Page Erase	0x22	/alid address of Flash memory origination. t must be 512 bytes page alignment.	
FLASH 32-bit Program	0x21	Valid address of Flash memory origination	FMC_ISPDAT: Programming Data
FLASH 32-bit Read	ASH 32-bit Read 0x00 Valid address of Flash memory origination. It must be word alignment.		FMC_ISPDAT: Return Data
Read Company ID	0x0B	0x0000_0000	FMC_ISPDAT: 0x0000_00DA
Read Checksum	0x0D	Keep address of "Run Checksum Calculation"	FMC_ISPDAT: Return Checksum
Run Checksum Calculation	0x2D	Valid start address of memory origination It must be 512 bytes page alignment	FMC_ISPDAT: Size It must be 512 bytes alignment
		0x0000_0000	FMC_ISPDAT: Unique ID Word 0
		0x0000_0004	FMC_ISPDAT: Unique ID Word 1
Read Unique ID	0x04	0x0000_0008	FMC_ISPDAT: Unique ID Word 2
		0x0000_0070	FMC_ISPDAT[11:0]: Built-in VBG ADC conversion result
Vector Remap	0x2E	Valid address in APROM or LDROM. It must be 512 bytes alignment	N/A

Table 6.4-2 ISP Command List

ISP Procedure

The FMC controller provides embedded Flash memory read, erase and program operation. Several control bits of FMC control register are write-protected, thus it is necessary to unlock before setting.

After unlocking the protected register bits, user needs to set the FMC_ISPCTL control register to decide to update LDROM, APROM or User Configuration block, and then set ISPEN (FMC_ISPCTL[0]) to enable ISP function.

Once the FMC_ISPCTL register is set properly, user can set FMC_ISPCMD (refer to above ISP command list) for specify operation. Set FMC_ISPADDR for target Flash memory based on Flash memory origination. FMC_ISPDAT can be used to set the data to program or used to return the read data according to FMC_ISPCMD.

M0A21/M0A23 Series

ηυνοτοη

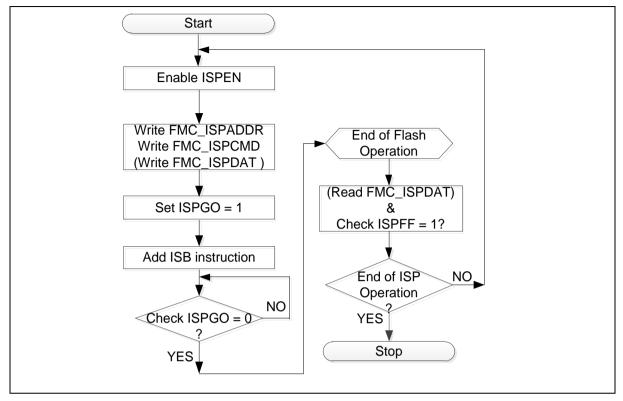


Figure 6.4-9 ISP Procedure Example

Finally, set ISPGO (FMC_ISPTRG[0]) register to perform the relative ISP function. The ISPGO(FMC_ISPTRG[0]) bit is self-cleared when ISP function has been done. To make sure ISP function has been finished before CPU goes ahead, ISB (Instruction Synchronization Barrier) instruction is used right after ISPGO(FMC_ISPTRG[0]) setting.

Several error conditions will be checked after ISP is completed. If an error condition occurs, ISP operation is not started and the ISP fail flag will be set instead. ISPFF(FMC_ISPSTS[6]) flag can only be cleared by software. The next ISP procedure can be started even ISPFF(FMC_ISPSTS[6]) bit is kept as 1. Therefore, it is recommended to check the ISPFF(FMC_ISPSTS[6]) bit and clear it after each ISP operation if it is set to 1.

When the ISPGO(FMC_ISPTRG[0]) bit is set, CPU will wait for ISP operation to finish during this period; the peripheral still keeps working as usual. If any interrupt request occurs, CPU will not service it till ISP operation is finished. When ISP operation is finished, the ISPGO bit will be cleared by hardware automatically. User can check whether ISP operation is finished or not by the ISPGO(FMC_ISPTRG[0]) bit. User should add ISB (Instruction Synchronization Barrier) instruction next to the instruction in which ISPGO (FMC_ISPTRG[0]) bit is set 1 to ensure correct execution of the instructions following ISP operation.

6.4.4.10 VECMAP for Interrupt and Memory Programming

Accelerate interrupt by VECMAP

In IAP mode, VECMAP function could be used to map 512 bytes SRAM to vector map space. It means it is possible to store all exception vectors to SRAM. Then, if any exceptions assert, CPU can read exception handler from SRAM with zero wait state to speed up exception latency.

Because the vector map space is fixed to be 512 bytes, user must copy all 512 bytes to SRAM before remapping SRAM to vector map space. Otherwise, CPU may get wrong data from vector map space after remapping. Figure 6.4-10 shows an example to accelerating interrupt by VECMAP.

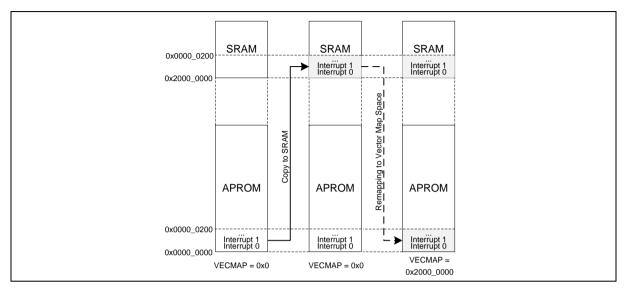


Figure 6.4-10 Example for Accelerating Interrupt by VECMAP

Avoid CPU halt when Flash programming

When Flash memory controller is busy, any CPU access to Flash memory will cause CPU halt for waiting Flash controller ready. If Flash controller is busy in page erasing, it may cause CPU halt for a long time to erase pages. To avoid this situation, user needs to avoid CPU access Flash memory when page erasing. The easiest way is to execute code in SRAM and use VECMAP to map all exceptions to SRAM. By executing code in SRAM, CPU will not access Flash to get instructions. By mapping all exceptions to SRAM, all interrupts will not need to get exception handler from Flash memory.

6.4.4.11 Embedded Flash Memory Programming

This chip provides 32-bit Flash memory programming function to updated procedure. Table 6.4-3 lists required FMC control registers in each embedded Flash programming function.

Register	Description	32-Bit Programming
FMC_ISPCTL	ISP Control Register	•
FMC_ISPADDR	ISP Address Register	•
FMC_ISPDAT	ISP Data Register	•
FMC_ISPCMD	ISP Command Register	0x21
FMC_ISPTRG	ISP Trigger Control Register	•
FMC_ISPSTS	ISP Status Register	•

Table 6.4-3 FMC Control Registers for Flash Programming

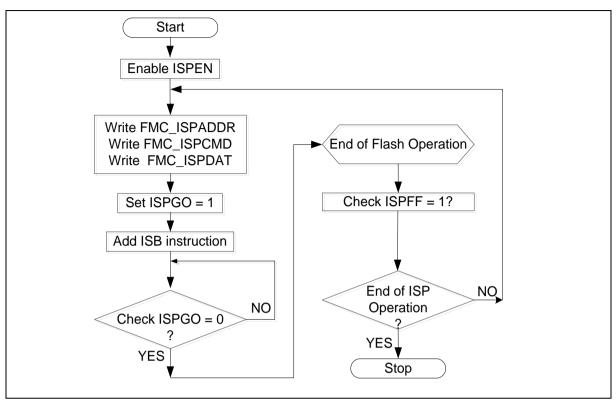


Figure 6.4-11 ISP 32-bit Programming Procedure

6.4.4.12 CRC32 Checksum Calculation

The M0A21/M0A23 supports the Cyclic Redundancy Check (CRC-32) checksum calculation function to help user quickly check the memory content includes APROM and LDROM. The CRC-32 polynomial is as below.

$$\mathsf{CRC-32:} \ \mathsf{X}^{32} + \mathsf{X}^{26} + \mathsf{X}^{23} + \mathsf{X}^{22} + \mathsf{X}^{16} + \mathsf{X}^{12} + \mathsf{X}^{11} + \mathsf{X}^{10} + \mathsf{X}^8 + \mathsf{X}^7 + \mathsf{X}^5 + \mathsf{X}^4 + \mathsf{X}^2 + \mathsf{X} + \mathsf{1}$$

M0A21/M0A23 Series

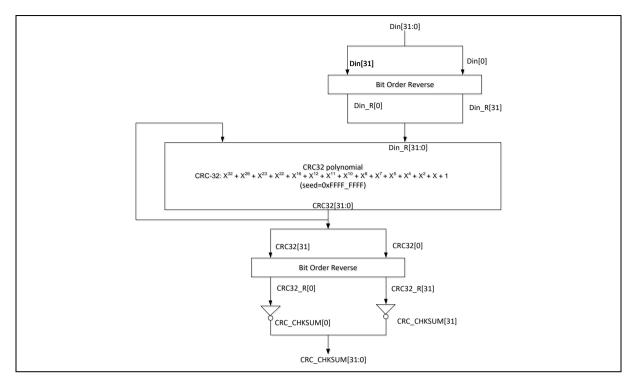


Figure 6.4-12 CRC-32 Checksum Calculation

The following three steps complete the CRC-32 checksum calculation.

- 1. Perform ISP "Run Memory Checksum" operation: user has to set the memory starting address (FMC_ISPADDR) and size (FMC_ISPDAT) to calculate. Both address and size have to be 512 bytes alignment, the size must be multiples of 512 bytes and the starting address includes APROM and LDROM.
- 2. Perform ISP "Read Memory Checksum" operation: the FMC_ISPADDR should be kept the same as step 1.
- 3. Read FMC_ISPDAT to get checksum: The checksum is read from FMC_ISPDAT. If the checksum is 0x0000_0000, It must be one of two conditions (1) Checksum calculation is in-progress, (2) Address and size is over device limitation.

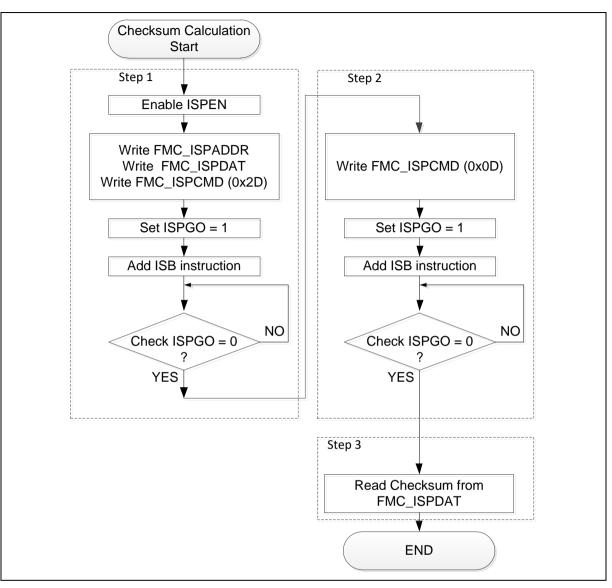


Figure 6.4-13 CRC-32 Checksum Calculation Flow

6.4.5 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
FMC Base Address: FMC_BA = 0x4000_C000								
FMC_ISPCTL	FMC_BA+0x00	R/W	ISP Control Register	0x0000_000X				
FMC_ISPADDR	FMC_BA+0x04	R/W	ISP Address Register	0x0000_0000				
FMC_ISPDAT	FMC_BA+0x08	R/W	ISP Data Register	0x0000_0000				
FMC_ISPCMD	FMC_BA+0x0C	R/W	ISP Command Register	0x0000_0000				
FMC_ISPTRG	FMC_BA+0x10	R/W	ISP Trigger Control Register	0x0000_0000				
FMC_DFBA	FMC_BA+0x14	R	Data Flash Base Address	0xXXXX_XXXX				
FMC_ISPSTS	FMC_BA+0x40	R/W	ISP Status Register	0xX0X0_000X				

6.4.6 Register Description

ISP Control Register (FMC_ISPCTL)

SP Control Register (FMC_ISPCIL)								
Register		ifset	R/W	Description		Reset Value		
FMC_ISPCTL FMC_BA+0x00		R/W	ISP Control Re	gister	0x0000_0	000X		
31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
Reserved	ISPFF	LDUEN	CFGUEN	APUEN	Reserved	BS	ISPEN	

Bits	Descriptior	n					
[31:7]	I:7] Reserved Reserved.						
[6]	ISPFF	ISP Fail Flag (Write Protect) This bit is set by hardware when a triggered ISP meets any of the following conditions: APROM writes to itself if APUEN is set to 0. LDROM writes to itself if LDUEN is set to 0. CONFIG is erased/programmed if CFGUEN is set to 0. Page Erase command at LOCK mode with ICE connection. Erase or Program command at brown-out detected. Destination address is illegal, such as over an available range. Invalid ISP commands. This bit needs to be cleared by writing 1 to it. Note: This bit is write-protected. Refer to the SYS_REGLCTL register.					
[5]	LDUEN	LDROM Update Enable Bit (Write Protect) LDROM update enable bit. 0 = LDROM cannot be updated. 1 = LDROM can be updated. Note: This bit is write-protected. Refer to the SYS_REGLCTL register.					
[4]	CFGUEN	CONFIG Update Enable Bit (Write Protect) 0 = CONFIG cannot be updated. 1 = CONFIG can be updated. Note: This bit is write-protected. Refer to the SYS_REGLCTL register.					
[3]	APUEN	APROM Update Enable Bit (Write Protect) 0 = APROM cannot be updated when the chip runs in APROM. 1 = APROM can be updated when the chip runs in APROM. Note: This bit is write-protected. Refer to the SYS_REGLCTL register.					
[2]	Reserved	Reserved.					

[1]	BS	Boot Selection (Write Protect) Set/clear this bit to select next booting from LDROM/APROM, respectively. This bit also functions as chip booting status flag, which can be used to check where chip booted from. This bit is initiated with the inversed value of CBS[1] (CONFIG0[7]) after any reset is happened except CPU reset (RSTS_CPU is 1) or system reset (RSTS_SYS) is happened 0 = Booting from APROM. 1 = Booting from LDROM. Note: This bit is write-protected. Refer to the SYS_REGLCTL register.
[0]	ISPEN	ISP Enable Bit (Write Protect) 0 = ISP function Disabled. 1 = ISP function Enabled. Note: This bit is write-protected. Refer to the SYS_REGLCTL register.

ISP Address (FMC_ISPADDR)

Register	Offset	R/W	Description	Reset Value
FMC_ISPADDR	FMC_BA+0x04	R/W	ISP Address Register	0x0000_0000

31	30	29	28	27	26	25	24		
	ISPADDR								
23	22	21	20	19	18	17	16		
	ISPADDR								
15	14	13	12	11	10	9	8		
	ISPADDR								
7	7 6 5 4 3 2 1 0								
	ISPADDR								

Bits	Descriptior	Description					
[31:0]		ISP Address The M0A21/M0A23 is equipped with embedded Flash. ISPADDR[1:0] must be kept 00 for ISP 32-bit operation. For CRC32 Checksum Calculation command, this field is the Flash starting address for checksum calculation, 512 bytes alignment is necessary for checksum calculation. 16/32 Kbytes Flash: ISPADR[8:0] must be kept all 0 for Vector Page Remap Command.					

ISP Data Register (FMC_ISPDAT)

Register	Offset	R/W	Description	Reset Value
FMC_ISPDAT	FMC_BA+0x08	R/W	ISP Data Register	0x0000_0000

31	30	29	28	27	26	25	24			
	ISPDAT									
23	22	21	20	19	18	17	16			
	ISPDAT									
15	14	13	12	11	10	9	8			
	ISPDAT									
7	6	5	4	3	2	1	0			
	ISPDAT									

Bits	Description					
[31:0]	ISPDAT	ISP Data Write data to this register before ISP program operation. Read data from this register after ISP read operation. For Run Checksum Calculation command, ISPDAT is the memory size (byte) and 512 bytes alignment. For Read Checksum command, ISPDAT is the checksum result. If ISPDAT = 0x0000_0000, it means that (1) the checksum calculation is in progress, or (2) the memory range for checksum calculation is incorrect.				

ISP Command (FMC_ISPCMD)

Register	Offset	R/W	Description	Reset Value
FMC_ISPCMD	FMC_BA+0x0C	R/W	ISP Command Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	7 6 5 4 3 2 1 0								
Reserved	CMD								

Bits	Description					
[31:7]	Reserved	Reserved.				
		ISP CMD				
		ISP command table is shown below:				
		0x00= Flash 32-bit Read.				
		0x04= Read Unique ID.				
		0x0B= Read Company ID.				
[6:0]	CMD	0x0D= Read CRC32 Checksum.				
		0x21= Flash 32-bit Program.				
		0x22= Flash Page Erase.				
		0x2D= Run CRC32 Checksum Calculation.				
		0x2E= Vector Remap.				
		The other commands are invalid.				

ISP Trigger Control Register (FMC_ISPTRG)

Register	Offset	R/W	Description	Reset Value
FMC_ISPTRG	FMC_BA+0x10	R/W	ISP Trigger Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7 6 5 4 3 2 1									
Reserved							ISPGO		

Bits	Descriptior	Description						
[31:1]	Reserved	d Reserved.						
[0]	ISPGO	ISP Start Trigger (Write Protect) Write 1 to start ISP operation and this bit will be cleared to 0 by hardware automatically when ISP operation is finished. 0 = ISP operation is finished. 1 = ISP is progressed. Note: This bit is write-protected. Refer to the SYS_REGLCTL register.						

Data Flash Base Address Register (FMC_DFBA)

Register	Offset	R/W	Description	Reset Value
FMC_DFBA	FMC_BA+0x14	R	Data Flash Base Address	0xXXXX_XXX

31	30	29	28	27	26	25	24			
	DFBA									
23	22	21	20	19	18	17	16			
	DFBA									
15	14	13	12	11	10	9	8			
	DFBA									
7 6 5 4 3 2 1 0										
	DFBA									

Bits	Description						
		Data Flash Base Address					
[31:0]	DFBA	This register indicates Data Flash start address. It is a read only register.					
[31.0]	DFBA	The Data Flash is shared with APROM. the content of this register is loaded from CONFIG1.					
		This register is valid when DFEN (CONFIG0[0]) = 0.					

ISP Status Register (FMC_ISPSTS)

Register	Offset	R/W	Description	Reset Value
FMC_ISPSTS	FMC_BA+0x40	R/W	ISP Status Register	0xX0X0_000X

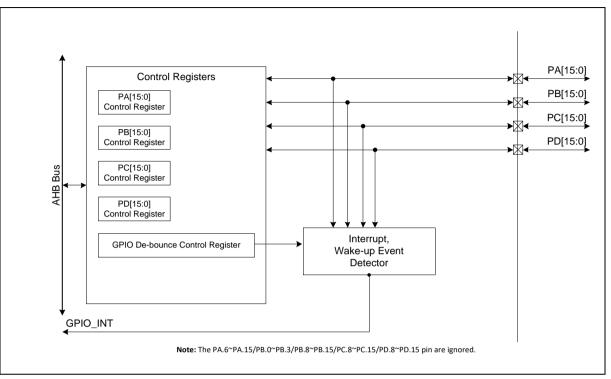
31	30	29	28	27	26	25	24
Reserved VECMAP					MAP		
23	22	21	20	19	18	17	16
VECMAP							
15	14	13	12	11	10	9	8
			VECMAP				Reserved
7	6	5	4	3	2	1	0
Reserved	ISPFF		Reserved		CI	BS	ISPBUSY

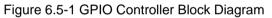
Bits	Description	Description						
[31:30]	Reserved	Reserved.						
[29:9]	VECMAP	ector Page Mapping Address (Read Only) Il access to 0x0000_0000~0x0000_01FF is remapped to the Flash memory or SRAM address /ECMAP[20:0], 9'h000} ~ {VECMAP[20:0], 9'h1FF}. ECMAP [20:19] = 00 system vector address is mapped to Flash memory. ECMAP [20:19] = 10 system vector address is mapped to SRAM memory. ECMAP [18:12] should be 0.						
[8:7]	Reserved	Reserved.						
[6]	ISPFF	 ISP Fail Flag (Write Protect) This bit is the mirror of ISPFF (FMC_ISPCTL[6]), it needs to be cleared by writing 1 to FMC_ISPCTL[6] or FMC_ISPSTS[6]. This bit is set by hardware when a triggered ISP meets any of the following conditions: APROM writes to itself if APUEN is set to 0. LDROM writes to itself if LDUEN is set to 0. CONFIG is erased/programmed if CFGUEN is set to 0. Page Erase command at LOCK mode with ICE connection Erase or Program command at brown-out detected Destination address is illegal, such as over an available range. Invalid ISP commands 						
[5:3]	Reserved	Reserved.						
[2:1]	CBS	 Boot Selection of CONFIG (Read Only) This bit is initiated with the CBS (CONFIG0[7:6]) after any reset is happened except CPU reset (RSTS_CPU is 1) or system reset (RSTS_SYS) is happened. 00 = LDROM with IAP mode. 01 = LDROM without IAP mode. 10 = APROM with IAP mode. 11 = APROM without IAP mode. 						

			ISP BUSY (Read Only)
[0]	ISP	PBUSY	0 = ISP operation is finished.
			1 = ISP operation is busy.

6.5 General Purpose I/O (GPIO)

6.5.1 Overview


This chip has up to 26 General Purpose I/O pins to be shared with other function pins depending on the chip configuration. These 26 pins are arranged in 4 ports named as PA, PB, PC, PD. PA has 6 pins on port, PB has 4 pins on port. PC and PD have 8 pins on port. Each 26 pins is independent and has the corresponding register bits to control the pin mode function and data, except GPA[3]. GPA[3] is a input pin.


The I/O type of each of I/O pins can be configured by software individually as Input, Push-pull output, Open-drain output or Quasi-bidirectional mode. After the chip is reset, the I/O mode of all pins are depending on CIOINI (CONFIG0[10]). Each I/O pin has a very weakly individual pull-up resistor which is about 50 k Ω . Please refer to the M0A21/M0A23 Datasheet for detailed pin operation voltage information about V_{DD} electrical characteristics.

6.5.2 Features

- Four I/O modes:
 - Quasi-bidirectional mode
 - Push-Pull Output mode
 - Open-Drain Output mode
 - Input only with high impendence mode
- TTL/Schmitt trigger input selectable
- I/O pin can be configured as interrupt source with edge/level setting
- Configurable default I/O mode of all pins after reset by CIOINI (CONFIG0[10]) setting
 - CIOINI = 0, all GPIO pins in Quasi-bidirectional mode after chip reset
 - CIOINI = 1, all GPIO pins in input mode after chip reset
- Supports independent pull-up control
- Enabling the pin interrupt function will also enable the wake-up function

6.5.3 Block Diagram

Note: The PA.6~PA.15/PB.0~PB.3/PB.8~PB.15/PC.8~PC.15/PD.8~PD.15 pins are not available.

6.5.4 Basic Configuration

- Reset configuration
 - Reset GPIO in GPIORST (SYS_IPRST1[1])
- Pin configuration

Group	Pin Name	GPIO	MFP
ΙΝΤΟ	INT0	PA.3, PB.5	MFP30
INT1	INT1	PC.5	MFP30
INT2	INT2	PC.4	MFP30
INT3	INT3	PC.3	MFP30
INT4	INT4	PC.6	MFP30
INT5	INT5	PC.7	MFP30

6.5.5 Functional Description

6.5.5.1 Input Mode

Set MODEn (Px_MODE[2n+1:2n]) to 00 as the Px.n pin is in Input mode and the I/O pin is in tri-state

(high impedance) without output drive capability. The PIN (Px_PIN[n]) value reflects the status of the corresponding port pins.

Each I/O pin includes an internal resistor. Set (Px_PUSEL[n]) to 1 to enable internal pull-up resistor.

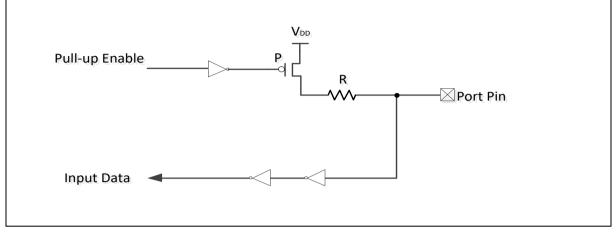


Figure 6.5-2 Input Mode

6.5.5.2 Push-pull Output Mode

Figure 6.5-3 shows the diagram of Push-pull Output Mode. Set MODEn (Px_MODE[2n+1:2n]) to 01 as Px.n pin is in Push-pull Output mode and the I/O pin supports digital output function with source/sink current capability. The bit value in the corresponding DOUT (Px_DOUT[n]) is driven on the pin.

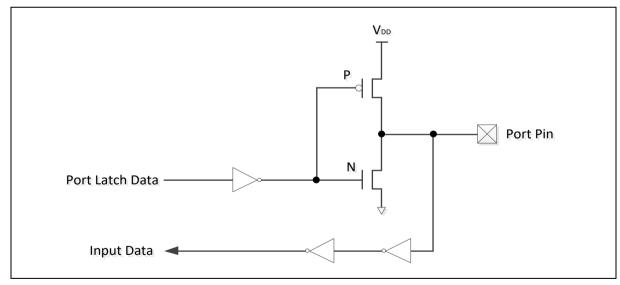


Figure 6.5-3 Push-Pull Output

6.5.5.3 Open-drain Mode

Figure 6.5-4 shows the diagram of Open-drain Mode. Set MODEn ($Px_MODE[2n+1:2n]$) to 10 the Px.n pin is in Open-drain mode and the digital output function of I/O pin supports only sink current capability, an external pull-up register is needed for driving high state. If the bit value in the corresponding DOUT ($Px_DOUT[n]$) bit is 0, the pin drive a low output on the pin. If the bit value in the corresponding DOUT ($Px_DOUT[n]$) bit is 1, the pin output drives high that is controlled by external pull high resistor.

Each I/O pin includes an internal resistor. Set (Px_PUSEL[2n+1:2n]) to 01 to enable internal pull-up resistor. Internal pull-up resistor is available in Open-drain mode.

ηυνοτοη

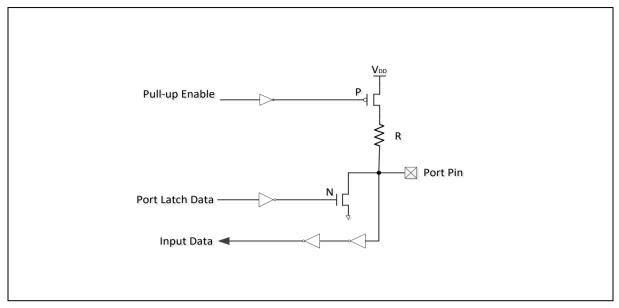


Figure 6.5-4 Open-Drain Output

6.5.5.4 Quasi-bidirectional Mode

Figure 6.5-5 shows the diagram of Quasi-bidirectional Mode. Set MODEn ($Px_MODE[2n+1:2n]$) to 11 as the Px.n pin is in Quasi-bidirectional mode and the I/O pin supports digital output and input function at the same time but the source current is only up to hundreds uA. Before the digital input function is performed the corresponding DOUT ($Px_DOUT[n]$) bit must be set to 1. The quasi-bidirectional output is common on the 80C51 and most of its derivatives. If the bit value in the corresponding DOUT ($Px_DOUT[n]$) bit is 0, the pin drive a low output on the pin. If the bit value in the corresponding DOUT ($Px_DOUT[n]$) bit is 1, the pin will check the pin value. If pin value is high, no action takes. If pin state is low, the pin will drive strong high with 2 clock cycles on the pin and then disable the strong output drive. Meanwhile, the pin status is controlled by internal pull-up resistor. Note that the source current capability in quasi-bidirectional mode, please refer to the M0A21/M0A23 Datasheet for detailed information.

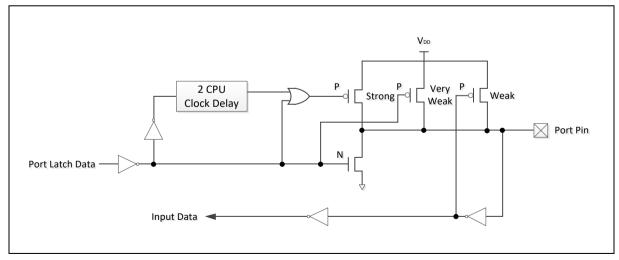


Figure 6.5-5 Quasi-Bidirectional I/O Mode

6.5.5.5 GPIO Interrupt and Wake-up Function

Each GPIO pin can be set as chip interrupt source by setting correlative RHIEN (Px_INTEN[n+16])/ FLIEN (Px_INTEN[n]) bit and TYPE (Px_INTTYPE[n]). There are five types of interrupt condition can be selected: low level trigger, high level trigger, falling edge trigger, rising edge trigger and both rising and falling edge trigger. The GPIO can also be the chip wake-up source when chip enters Idle/Power-down mode. The setting of wake-up trigger condition is the same as GPIO interrupt trigger.

6.5.5.6 GPIO De-bounce Function

GPIO de-bounce function can be used to sample interrupt input for each GPIO pin and prevent unexpected interrupt happened which caused by noise. GPIO de-bounce function only support edge detection trigger type. For edge trigger condition, there are three types of interrupt condition can be selected for de-bounce function: falling edge trigger, rising edge trigger and both rising and falling edge trigger. If user wants to use de-bounce function, de-bounce enable control register Px_DBEN must be set for corresponding GPIO pin. The de-bounce clock source can be HCLK or LIRC (38.4 kHz) by setting DBCLKSRC (GPIO_DBCTL[4]) register. And DBCLKSEL (GPIO_DBCTL[3:0]) register can control sampling cycle period.

Figure 6.5-6 shows GPIO rising edge trigger interrupt. The interval of time between the two valid sample signal is determined by DBCLKSRC (GPIO_DBCTL[4]) and DBCLKSEL (GPIO_DBCTL[3:0]). Each valid data from GPIO pin need to be sample twice. For rising edge setting, if pin status is low before setting DBEN (Px_DBEN), interrupt will happen when generating a pin high valid data. But, if pin status is high before setting DBEN (Px_DBEN), interrupt will happen when generating a pin low valid data first, and then generating a pin high valid data. For falling edge trigger, Figure 6.5-7 shows the situation is opposite to rising edge trigger.

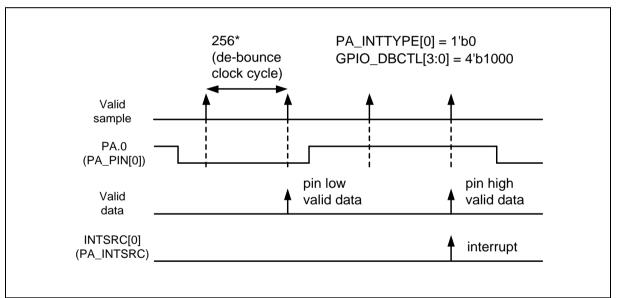


Figure 6.5-6 GPIO Rising Edge Trigger Interrupt

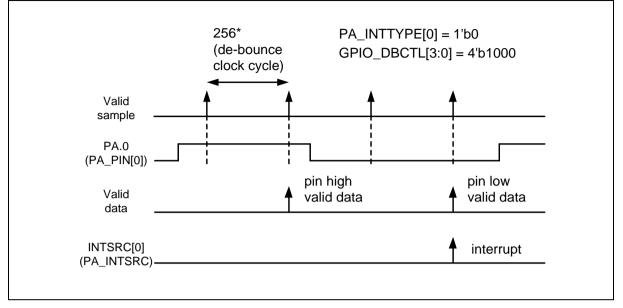


Figure 6.5-7 GPIO Falling Edge Trigger Interrupt

6.5.5.7 GPIO Digital Input Path Disable Control

User can disable GPIO digital input path by setting DINOFF (Px_DINOFF[n+16]). When GPIO digital input path is disabled, the digital input pin value PIN (Px_PIN[n]) is tied to low. By the way, the GPIO digital input path is force disabled by hardware and DINOFF control is useless when I/O function configure as ADC/ACMP/ext. XTL

6.5.5.8 GPIO Group Clock On-Off Control

User can disable GPIO group clock by setting GPIO_CLKON. When GPxOn is diabled, the group clock is Off, the GPIO register and pin control and PDIO circiut are not workable. Only GPIO_DBCTL and GPIO_CLKON can be wrote.

6.5.6 Register Map

R: read only, W: write only, R/W: both read and write

PA_MODE		R/W	PA I/O Mode Control								
		R/W	PA I/O Mode Control	GPIO_BA = 0x4000_4000							
PA DINOFF	GPIO_BA+0x004			0xXXXX_XXXX							
_		R/W	PA Digital Input Path Disable Control	0x0000_0000							
PA_DOUT	GPIO_BA+0x008	R/W	PA Data Output Value	0x0000_0037							
PA_DATMSK	GPIO_BA+0x00C	R/W	PA Data Output Write Mask	0x0000_0000							
PA_PIN G	GPIO_BA+0x010	R	PA Pin Value	0x0000_XXXX							
PA_DBEN	GPIO_BA+0x014	R/W	PA De-bounce Enable Control Register	0x0000_0000							
PA_INTTYPE	GPIO_BA+0x018	R/W	PA Interrupt Trigger Type Control	0x0000_0000							
PA_INTEN G	GPIO_BA+0x01C	R/W	PA Interrupt Enable Control Register	0x0000_0000							
PA_INTSRC	GPIO_BA+0x020	R/W	PA Interrupt Source Flag	0x0000_XXXX							
PA_SMTEN	GPIO_BA+0x024	R/W	PA Input Schmitt Trigger Enable Register	0x0000_0000							
PA_PUSEL	GPIO_BA+0x030	R/W	PA Pull-up Selection Register	0x0000_0000							
PB_MODE	GPIO_BA+0x040	R/W	PB I/O Mode Control	0xXXXX_XXXX							
PB_DINOFF	GPIO_BA+0x044	R/W	PB Digital Input Path Disable Control	0x0000_0000							
PB_DOUT	GPIO_BA+0x048	R/W	PB Data Output Value	0x0000_00F0							
PB_DATMSK	GPIO_BA+0x04C	R/W	PB Data Output Write Mask	0x0000_0000							
PB_PIN G	GPIO_BA+0x050	R	PB Pin Value	0x0000_XXXX							
PB_DBEN	GPIO_BA+0x054	R/W	PB De-bounce Enable Control Register	0x0000_0000							
PB_INTTYPE	GPIO_BA+0x058	R/W	PB Interrupt Trigger Type Control	0x0000_0000							
PB_INTEN G	GPIO_BA+0x05C	R/W	PB Interrupt Enable Control Register	0x0000_0000							
PB_INTSRC	GPIO_BA+0x060	R/W	PB Interrupt Source Flag	0x0000_XXXX							
PB_SMTEN	GPIO_BA+0x064	R/W	PB Input Schmitt Trigger Enable Register	0x0000_0000							
PB_PUSEL G	GPIO_BA+0x070	R/W	PB Pull-up Selection Register	0x0000_0000							
PC_MODE G	GPIO_BA+0x080	R/W	PC I/O Mode Control	0xXXXX_XXXX							
PC_DINOFF	GPIO_BA+0x084	R/W	PC Digital Input Path Disable Control	0x0000_0000							
PC_DOUT	GPIO_BA+0x088	R/W	PC Data Output Value	0x0000_00FF							
PC_DATMSK	GPIO_BA+0x08C	R/W	PC Data Output Write Mask	0x0000_0000							
PC_PIN G	GPIO_BA+0x090	R	PC Pin Value	0x0000_XXXX							

ηυνοΤοη

PC_DBEN	GPIO_BA+0x094	R/W	PC De-bounce Enable Control Register	0x0000_0000
PC_INTTYPE	GPIO_BA+0x098	R/W	PC Interrupt Trigger Type Control	0x0000_0000
PC_INTEN	GPIO_BA+0x09C	R/W	PC Interrupt Enable Control Register	0x0000_0000
PC_INTSRC	GPIO_BA+0x0A0	R/W	PC Interrupt Source Flag	0x0000_XXXX
PC_SMTEN	GPIO_BA+0x0A4	R/W	PC Input Schmitt Trigger Enable Register	0x0000_0000
PC_PUSEL	GPIO_BA+0x0B0	R/W	PC Pull-up Selection Register	0x0000_0000
PD_MODE	GPIO_BA+0x0C0	R/W	PD I/O Mode Control	0xXXXX_XXXX
PD_DINOFF	GPIO_BA+0x0C4	R/W	PD Digital Input Path Disable Control	0x0000_0000
PD_DOUT	GPIO_BA+0x0C8	R/W	PD Data Output Value	0x0000_00FF
PD_DATMSK	GPIO_BA+0x0CC	R/W	PD Data Output Write Mask	0x0000_0000
PD_PIN	GPIO_BA+0x0D0	R	PD Pin Value	0x0000_XXXX
PD_DBEN	GPIO_BA+0x0D4	R/W	PD De-bounce Enable Control Register	0x0000_0000
PD_INTTYPE	GPIO_BA+0x0D8	R/W	PD Interrupt Trigger Type Control	0x0000_0000
PD_INTEN	GPIO_BA+0x0DC	R/W	PD Interrupt Enable Control Register	0x0000_0000
PD_INTSRC	GPIO_BA+0x0E0	R/W	PD Interrupt Source Flag	0x0000_XXXX
PD_SMTEN	GPIO_BA+0x0E4	R/W	PD Input Schmitt Trigger Enable Register	0x0000_0000
PD_PUSEL	GPIO_BA+0x0F0	R/W	PD Pull-up Selection Register	0x0000_0000
GPIO_DBCTL	GPIO_BA+0x440	R/W	Interrupt De-bounce Control Register	0x000F_0000
GPIO_CLKON	GPIO_BA+0x444	R/W	GPIO Clock On-off Register	0x0000_000F
PAn_PDIO n=0,15	GPIO_BA+0x800+(0x04 * n)	R/W	GPIO PA.n Pin Data Input/Output Register	0x0000_000X
PBn_PDIO n=37	GPIO_BA+0x840+(0x04 * n)	R/W	GPIO PB.n Pin Data Input/Output Register	0x0000_000X
PCn_PDIO n=0,17	GPIO_BA+0x880+(0x04 * n)	R/W	GPIO PC.n Pin Data Input/Output Register	0x0000_000X
PDn_PDIO n=0,17	GPIO_BA+0x8C0+(0x04 * n)	R/W	GPIO PD.n Pin Data Input/Output Register	0x0000_000X

6.5.7 Register Description

Port A-D I/O Mode Control (Px_MODE)

Register	Offset	R/W	Description	Reset Value
PA_MODE	GPIO_BA+0x000	R/W	PA I/O Mode Control	0xXXXX_XXX
PB_MODE	GPIO_BA+0x040	R/W	PB I/O Mode Control	0xXXXX_XXX
PC_MODE	GPIO_BA+0x080	R/W	PC I/O Mode Control	0xXXXX_XXX
PD_MODE	GPIO_BA+0x0C0	R/W	PD I/O Mode Control	0xXXXX_XXX

31	30	29	28	27	26	25	24
MODE15		MODE14		MODE13		MODE12	
23	22	21	20	19	18	17	16
MODE11		MODE10		MODE9		MODE8	
15	14	13	12	11	10	9	8
MO	DE7	MODE6		MODE5		MODE4	
7	6	5	4	3	2	1	0
MODE3 MODE2		МО	DE1	МО	DE0		

Bits	Descri	ption
[2n+1:2n] n=0,115	MODE	Port A-D I/O Pin[n] Mode Control Determine each I/O mode of Px.n pins. 00 = Px.n is in Input mode. 01 = Px.n is in Push-pull Output mode. 10 = Px.n is in Open-drain Output mode. 11 = Px.n is in Quasi-bidirectional mode. Note 1: The initial value of this field is defined by CIOINI (CONFIGO [10]). If CIOINI is set to 0, the default value is 0xFFFF_FFFF and all pins will be quasi-bidirectional mode after chip powered on. If CIOINI is set to 1, the default value is 0x0000_0000 and all pins will be input mode after chip powered on. Note 2: The PA.6~PA.15/PB.0~PB.3/PB.8~PB.15/PC.8~15/PD.8~15 pin is ineffective. Note 3: The GPA.3 is a input pin. Note 4: If MFOS is enabled then GPIO mode setting is ignored.

Port A-D Digital Input Path Disable Control (Px_DINOFF)

Register	Offset	R/W	Description	Reset Value
PA_DINOFF	GPIO_BA+0x004	R/W	PA Digital Input Path Disable Control	0x0000_0000
PB_DINOFF	GPIO_BA+0x044	R/W	PB Digital Input Path Disable Control	0x0000_0000
PC_DINOFF	GPIO_BA+0x084	R/W	PC Digital Input Path Disable Control	0x0000_0000
PD_DINOFF	GPIO_BA+0x0C4	R/W	PD Digital Input Path Disable Control	0x0000_0000

31	30	29	28	27	26	25	24	
	DINOFF							
23	22	21	20	19	18	17	16	
	DINOFF							
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
	Reserved							

Bits	Descriptio	escription						
		Port A-D Pin[n] Digital Input Path Disable Bit						
[n+16]		Each of these bits is used to control if the digital input path of corresponding Px.n pin is disabled. If input is analog signal, users can disable Px.n digital input path to avoid input current leakage.						
n=0,115	DINOFF	0 = Px.n digital input path Enabled.						
	-,	1 = Px.n digital input path Disabled (digital input tied to low).						
		Note: The PA.6~PA.15/PB.0~PB.3/PB.8~PB.15/PC.8~15/PD.8~15 pin is ineffective.						
[15:0]	Reserved	Reserved.						

Port A-D Data Output Value (Px_DOUT)

Register	Offset	R/W	Description	Reset Value
PA_DOUT	GPIO_BA+0x008	R/W	PA Data Output Value	0x0000_0037
PB_DOUT	GPIO_BA+0x048	R/W	PB Data Output Value	0x0000_00F0
PC_DOUT	GPIO_BA+0x088	R/W	PC Data Output Value	0x0000_00FF
PD_DOUT	GPIO_BA+0x0C8	R/W	PD Data Output Value	0x0000_00FF

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			DO	UT				
7	6	5	4	3	2	1	0	
	DOUT							

Bits	Description							
[31:16]	Reserved	Reserved.						
[n] n=0,115	DOUT	 Port A-D Pin[n] Output Value Each of these bits controls the status of a Px.n pin when the Px.n is configured as Push-pull output, Opendrain output or Quasi-bidirectional mode. 0 = Px.n will drive Low if the Px.n pin is configured as Push-pull output, Open-drain output or Quasi-bidirectional mode. 1 = Px.n will drive High if the Px.n pin is configured as Push-pull output or Quasi-bidirectional mode. 1 = Px.n will drive High if the Px.n pin is configured as Push-pull output or Quasi-bidirectional mode. Note 1: The PA.6~PA.15/PB.0~PB.3/PB.8~PB.15/PC.8~15/PD.8~15 pin is ineffective. 						
		Note 2:The GPA.3 is a input pin.						

Port A-D Data Output Write Mask (Px_DATMSK)

Register	Offset	R/W	Description	Reset Value
PA_DATMSK	GPIO_BA+0x00C	R/W	PA Data Output Write Mask	0x0000_0000
PB_DATMSK	GPIO_BA+0x04C	R/W	PB Data Output Write Mask	0x0000_0000
PC_DATMSK	GPIO_BA+0x08C	R/W	PC Data Output Write Mask	0x0000_0000
PD_DATMSK	GPIO_BA+0x0CC	R/W	PD Data Output Write Mask	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			DAT	MSK				
7	6	5	4	3	2	1	0	
	DATMSK							

Bits	Descriptio	Description						
[31:16]	Reserved	Reserved.						
		Port A-D Pin[n] Data Output Write Mask These bits are used to protect the corresponding DOUT (Px_DOUT[n]) bit. When the DATMSK (Px_DATMSK[n]) bit is set to 1, the corresponding DOUT (Px_DOUT[n]) bit is protected. If the write signal						
[n]	DATMSK	 a rousicity bit is set to 1, the corresponding DOOT (1x_DOOT(1)) bit is protected. If the write signal is masked, writing data to the protect bit is ineffective. a = Corresponding DOUT (Px_DOUT[n]) bit can be updated. 						
n=0,115		1 = Corresponding DOUT (Px_DOUT[n]) bit protected.						
		Note 1: This function only protects the corresponding DOUT (Px_DOUT[n]) bit, and will not protect the corresponding PDIO (Pxn_PDIO[0]) bit.						
		Note 2: The PA.6~PA.15/PB.0~PB.3/PB.8~PB.15/PC.8~15/PD.8~15 pin is ineffective.						

Port A-D Pin Value (Px_PIN)

Register	Offset	R/W	Description	Reset Value
PA_PIN	GPIO_BA+0x010	R	PA Pin Value	0x0000_XXXX
PB_PIN	GPIO_BA+0x050	R	PB Pin Value	0x0000_XXXX
PC_PIN	GPIO_BA+0x090	R	PC Pin Value	0x0000_XXXX
PD_PIN	GPIO_BA+0x0D0	R	PD Pin Value	0x0000_XXXX

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			P	IN				
7	6	5	4	3	2	1	0	
	PIN							

Bits	Description	Description					
[31:16]	Reserved	served Reserved.					
[n] n=0,115	PIN	Port A-D Pin[n] Pin Value Each bit of the register reflects the actual status of the respective Px.n pin. 0 = The corresponding pin status is low. 1 = The corresponding pin status is high.					
		Note: The PA.6~PA.15/PB.0~PB.3/PB.8~PB.15/PC.8~15/PD.8~15 pin is ineffective.					

Port A-D De-bounce Enable Control Register (Px_DBEN)

Register	Offset	R/W	Description	Reset Value
PA_DBEN	GPIO_BA+0x014	R/W	PA De-bounce Enable Control Register	0x0000_0000
PB_DBEN	GPIO_BA+0x054	R/W	PB De-bounce Enable Control Register	0x0000_0000
PC_DBEN	GPIO_BA+0x094	R/W	PC De-bounce Enable Control Register	0x0000_0000
PD_DBEN	GPIO_BA+0x0D4	R/W	PD De-bounce Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			DB	EN				
7	6	5	4	3	2	1	0	
	DBEN							

Bits	Descriptio	Description							
[31:16]	Reserved	Reserved.							
[n] n=0,115	DBEN	Port A-D Pin[n] Input Signal De-bounce Enable Bit The DBEN[n] bit is used to enable the de-bounce function for each corresponding bit. If the input signal pulse width cannot be sampled by continuous two de-bounce sample cycle, the input signal transition is seen as the signal bounce and will not trigger the interrupt. The de-bounce clock source is controlled by DBCLKSRC (GPIO_DBCTL [4]), one de-bounce sample cycle period is controlled by DBCLKSEL (GPIO_DBCTL [3:0]). 0 = Px.n de-bounce function Disabled. 1 = Px.n de-bounce function Enabled. The de-bounce function is valid only for edge triggered interrupt. If the interrupt mode is level triggered, the de-bounce enable bit is ineffective. Note: The PA.6~PA.15/PB.0~PB.3/PB.8~PB.15/PC.8~15/PD.8~15 pin is ineffective.							

Port A-D Interrupt Type Control (Px_INTTYPE)

Register	Offset	R/W	Description	Reset Value
PA_INTTYPE	GPIO_BA+0x018	R/W	PA Interrupt Trigger Type Control	0x0000_0000
PB_INTTYPE	GPIO_BA+0x058	R/W	PB Interrupt Trigger Type Control	0x0000_0000
PC_INTTYPE	GPIO_BA+0x098	R/W	PC Interrupt Trigger Type Control	0x0000_0000
PD_INTTYPE	GPIO_BA+0x0D8	R/W	PD Interrupt Trigger Type Control	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			ТҮ	ΈE				
7	6	5	4	3	2	1	0	
			TY	ΈE				

Bits	Description							
[31:16]	Reserved	Reserved.						
[n] n=0,115	TYPE	Port A-D Pin[n] Edge or Level Detection Interrupt Trigger Type Control TYPE (Px_INTTYPE[n]) bit is used to control the triggered interrupt is by level trigger or by edge trigger. If the interrupt is by edge trigger, the trigger source can be controlled by de-bounce. If the interrupt is by level trigger, the input source is sampled by one HCLK clock and generates the interrupt. 0 = Edge trigger interrupt. 1 = Level trigger interrupt. If the pin is set as the level trigger interrupt, only one level can be set on the registers RHIEN (Px_INTEN[n+16])/FLIEN (Px_INTEN[n]). If both levels to trigger interrupt are set, the setting has no effect and no interrupt will occur. The de-bounce function is valid only for edge triggered interrupt. If the interrupt mode is level triggered, the de-bounce enable bit is ineffective. Note: The PA.6~PA.15/PB.0~PB.3/PB.8~PB.15/PC.8~15/PD.8~15 pin is ineffective.						

Port A-D Interrupt Enable Control Register (Px_INTEN)

Register	Offset	R/W	Description	Reset Value
PA_INTEN	GPIO_BA+0x01C	R/W	PA Interrupt Enable Control Register	0x0000_0000
PB_INTEN	GPIO_BA+0x05C	R/W	PB Interrupt Enable Control Register	0x0000_0000
PC_INTEN	GPIO_BA+0x09C	R/W	PC Interrupt Enable Control Register	0x0000_0000
PD_INTEN	GPIO_BA+0x0DC	R/W	PD Interrupt Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	RHIEN							
23	22	21	20	19	18	17	16	
	RHIEN							
15	14	13	12	11	10	9	8	
			FLI	EN				
7	6	5	4	3	2	1	0	
			FLI	EN				

Bits	Descri	scription							
		Port A-D Pin[n] Rising Edge or High Level Interrupt Trigger Type Enable Bit							
		The RHIEN (Px_INTEN[n+16]) bit is used to enable the interrupt for each of the corresponding input Px.n pin. Set bit to 1 also enable the pin wake-up function.							
		When setting the RHIEN (Px_INTEN[n+16]) bit to 1 :							
[n+16]	RHIEN	If the interrupt is level trigger (TYPE (Px_INTTYPE[n]) bit is set to 1), the input Px.n pin will generate the interrupt while this pin state is at high level.							
n=0,115		If the interrupt is edge trigger (TYPE (Px_INTTYPE[n]) bit is set to 0), the input Px.n pin will generate the interrupt while this pin state changed from low to high.							
		0 = Px.n level high or low to high interrupt Disabled.							
		1 = Px.n level high or low to high interrupt Enabled.							
		Note: The PA.6~PA.15/PB.0~PB.3/PB.8~PB.15/PC.8~15/PD.8~15 pin is ineffective.							
		Port A-D Pin[n] Falling Edge or Low Level Interrupt Trigger Type Enable Bit							
		The FLIEN (Px_INTEN[n]) bit is used to enable the interrupt for each of the corresponding input Px.n pin. Set bit to 1 also enable the pin wake-up function.							
		When setting the FLIEN (Px_INTEN[n]) bit to 1 :							
[n]	FLIEN	If the interrupt is level trigger (TYPE (Px_INTTYPE[n]) bit is set to 1), the input Px.n pin will generate the interrupt while this pin state is at low level.							
n=0,115		If the interrupt is edge trigger(TYPE (Px_INTTYPE[n]) bit is set to 0), the input Px.n pin will generate the interrupt while this pin state changed from high to low.							
		0 = Px.n level low or high to low interrupt Disabled.							
		1 = Px.n level low or high to low interrupt Enabled.							
		Note: The PA.6~PA.15/PB.0~PB.3/PB.8~PB.15/PC.8~15/PD.8~15 pin is ineffective.							

Port A-D Interrupt Source Flag (Px_INTSRC)

Register	Offset	R/W	Description	Reset Value
PA_INTSRC	GPIO_BA+0x020	R/W	PA Interrupt Source Flag	0x0000_XXXX
PB_INTSRC	GPIO_BA+0x060	R/W	PB Interrupt Source Flag	0x0000_XXXX
PC_INTSRC	GPIO_BA+0x0A0	R/W	PC Interrupt Source Flag	0x0000_XXXX
PD_INTSRC	GPIO_BA+0x0E0	R/W	PD Interrupt Source Flag	0x0000_XXXX

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			INT	SRC				
7	6	5	4	3	2	1	0	
	INTSRC							

Bits	Description	escription						
[31:16]	Reserved	Reserved.						
[n] n=0,115	INTSRC	Port A-D Pin[n] Interrupt Source Flag Write Operation: 0 = No action. 1 = Clear the corresponding pending interrupt. Read Operation: 0 = No interrupt at Px.n. 1 = Px.n generates an interrupt. Note: The PA.6~PA.15/PB.0~PB.3/PB.8~PB.15/PC.8~15/PD.8~15 pin is ineffective.						

Port A-D Input Schmitt Trigger Enable Register (Px_SMTEN)

Register	Offset	R/W	Description	Reset Value
PA_SMTEN	GPIO_BA+0x024	R/W	PA Input Schmitt Trigger Enable Register	0x0000_0000
PB_SMTEN	GPIO_BA+0x064	R/W	PB Input Schmitt Trigger Enable Register	0x0000_0000
PC_SMTEN	GPIO_BA+0x0A4	R/W	PC Input Schmitt Trigger Enable Register	0x0000_0000
PD_SMTEN	GPIO_BA+0x0E4	R/W	PD Input Schmitt Trigger Enable Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			SM	TEN				
7	6	5	4	3	2	1	0	
	SMTEN							

Bits	Description	Description				
[31:16]	Reserved	ved Reserved.				
[n] n=0,115		Port A-D Pin[n] Input Schmitt Trigger Enable Bit 0 = Px.n input schmitt trigger function Disabled. 1 = Px.n input schmitt trigger function Enabled. Note: The PA.6~PA.15/PB.0~PB.3/PB.8~PB.15/PC.8~15/PD.8~15 pin is ineffective.				

Port A-D Pull-up Selection Register (Px_PUSEL)

Register	Offset	R/W	Description	Reset Value
PA_PUSEL	GPIO_BA+0x030	R/W	PA Pull-up Selection Register	0x0000_0000
PB_PUSEL	GPIO_BA+0x070	R/W	PB Pull-up Selection Register	0x0000_0000
PC_PUSEL	GPIO_BA+0x0B0	R/W	PC Pull-up Selection Register	0x0000_0000
PD_PUSEL	GPIO_BA+0x0F0	R/W	PD Pull-up Selection Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			PU	SEL					
7	6	5	4	3	2	1	0		
	PUSEL								

Bits	Descrip	Description						
[n] n=0,115	PUSEL	Port A-D Pin[n] Pull-up Enable Register Determine each I/O Pull-up of Px.n pins. 0 = Px.n pull-up disable. 1 = Px.n pull-up enable. Note 1: The independent pull-up control register only valid when MODEn set as input and open-drain mode even if I/O function is switched to multi-function pin. Ex: UARTx_RXD. Note2: The PA.3/PA.6~PA.15/PB.0~PB.3/PB.8~PB.15/PC.8~15/PD.8~15 pin is ineffective.						

Interrupt De-bounce Control Register (GPIO_DBCTL)

Register	Offset	R/W	Description	Reset Value
GPIO_DBCTL	GPIO_BA+0x440	R/W	Interrupt De-bounce Control Register	0x000F_0000

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
	Reserved				ICLKONC	ICLKONB	ICLKONA
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved			DBCLKSRC	DBCLKSEL			

Bits	Description	
[31:20]	Reserved	Reserved.
[19:16] x=A,B,C,D	ICLKONx	Interrupt Clock on Mode 0 = Edge detection circuit is active only if I/O pin corresponding RHIEN (Px_INTEN[n+16])/FLIEN (Px_INTEN[n]) bit is set to 1. 1 = All I/O pins edge detection circuit is always active after reset. Note: It is recommended to disable this bit to save system power if no special application concern. Each bit control each GPIO group.
[15:5]	Reserved	Reserved.
[4]	DBCLKSRC	De-bounce Counter Clock Source Selection 0 = De-bounce counter clock source is the HCLK. 1 = De-bounce counter clock source is the 38.4 kHz internal low speed RC oscillator (LIRC).
[3:0]	DBCLKSEL	De-bounce Sampling Cycle Selection0000 = Sample interrupt input once per 1 clocks.0001 = Sample interrupt input once per 2 clocks.0010 = Sample interrupt input once per 4 clocks.0011 = Sample interrupt input once per 8 clocks.0100 = Sample interrupt input once per 16 clocks.0101 = Sample interrupt input once per 32 clocks.0111 = Sample interrupt input once per 64 clocks.0111 = Sample interrupt input once per 128 clocks.0102 = Sample interrupt input once per 128 clocks.0103 = Sample interrupt input once per 256 clocks.0104 = Sample interrupt input once per 2*256 clocks.1015 = Sample interrupt input once per 4*256 clocks.1016 = Sample interrupt input once per 16*256 clocks.1017 = Sample interrupt input once per 16*256 clocks.1018 = Sample interrupt input once per 16*256 clocks.1019 = Sample interrupt input once per 16*256 clocks.1110 = Sample interrupt input once per 32*256 clocks.1111 = Sample interrupt input once per 42*256 clocks.1111 = Sample interrupt input once per 42*256 clocks.1111 = Sample interrupt input once per 64*256 clocks.1111 = Sample interrupt input once per 128*256 clocks.

GPIO Clock On-off Register (GPIO_CLKON)

Register	Offset	R/W	Description	Reset Value
GPIO_CLKON	GPIO_BA+0x444	R/W	GPIO Clock On-off Register	0x0000_000F

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
	Reserved				GPCOn	GPBOn	GPAOn	

Bits D	Descriptio	scription							
[31:4] R	Reserved	Reserved.							
[3:0] G	GPxOn	GPIO Group Clock On-off The GPIO port clock can be disabled to reduce power consumption by setting GPIO_CLKON if the GPIO port isn't used. When GPxOn is set to 0 to diable GPIO port clock, the GPIO register, pin control and PDIO function are not workable. Only GPIO_CLKON and GPIO_DBCTL register can be updated 0 = Disable GPIO group clock, include register & pin control & PDIO circuit. 1 = Enable GPIO group clock, include register & pin control & PDIO circuit.							

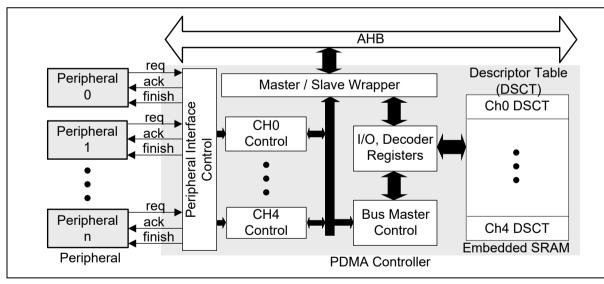
GPIO Px.n Pin Data Input/Outut Register (Pxn_PDIO)

Register	er Offset R/W Description		Reset Value	
PAn_PDIO n=0,15	GPIO_BA+0x800+(0x04 * n)	R/W	GPIO PA.n Pin Data Input/Output Register	0x0000_000X
PBn_PDIO n=4,5,6,7	GPIO_BA+0x840+(0x04 * n)	R/W	GPIO PB.n Pin Data Input/Output Register	0x0000_000X
PCn_PDIO n=0,17	GPIO_BA+0x880+(0x04 * n)	R/W	GPIO PC.n Pin Data Input/Output Register	0x0000_000X
PDn_PDIO n=0,17	GPIO_BA+0x8C0+(0x04 * n)	R/W	GPIO PD.n Pin Data Input/Output Register	0x0000_000X

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved						

Bits	Descriptio	Description							
[31:1]	Reserved	Reserved.							
		GPIO Px.n Pin Data Input/Output							
		Writing this bit can control one GPIO pin output value.							
		0 = Corresponding GPIO pin set to low.							
		1 = Corresponding GPIO pin set to high.							
[0]	PDIO	Read this register to get GPIO pin status.							
[0]		For example, writing PA0_PDIO will reflect the written value to bit DOUT (Px_DOUT[0]), reading PA0_PDIO will return the value of PIN (PA_PIN[0]).							
		Note 1: The writing operation will not be affected by register DATMSK (Px_DATMSK[n]).							
		Note 2: The PA.6~PA.15/PB.0~PB.3/PB.8~PB.15/PC.8~15/PD.8~15 pin is ineffective.							
		Note 3: The GPA.3 is a input pin.							

6.6 PDMA Controller (PDMA)


6.6.1 Overview


The peripheral direct memory access (PDMA) controller is used to provide high-speed data transfer. The PDMA controller can transfer data from one address to another without CPU intervention. This has the benefit of reducing the workload of CPU and keeps CPU resources free for other applications. The PDMA controller has a total of 5 channels and each channel can perform transfer between memory and peripherals or between memory and memory.

6.6.2 Features

- Supports 5 independently configurable channels
- Selectable 2 level of priority (fixed priority or round-robin priority)
- Supports transfer data width of 8, 16, and 32 bits
- Supports source and destination address increment size can be byte, half-word, word or no increment
- Supports software and UART, USCI, ADC, PWM, DAC and TIMER request
- Supports Scatter-Gather mode to perform sophisticated transfer through the use of the descriptor link list table
- Supports single and burst transfer type
- Supports time-out function on channel 0 and channel1

6.6.3 Block Diagram

6.6.4 Basic Configuration

- Clock Source Configuration
 - Enable PDMA controller clock in PDMACKEN (CLK_AHBCLK [1]).
- Reset Configuration
 - Reset PDMA controller in PDMARST (SYS_IPRST0[2]).

6.6.5 Functional Description

The PDMA controller transfers data from one address to another without CPU intervention. The PDMA controller supports 5 independent channels and serves only one channel at one time, as the result, PDMA controller supports two level channel priorities: fixed and round-robin priority, PDMA controller serves channel in order from highest to lowest priority channel. The PDMA controller supports two operation modes: Basic mode and Scatter-gather mode. Basic mode is used to perform one descriptor table transfer. Scatter-gather mode has more entries for each PDMA channel, and thus the PDMA controller supports sophisticated transfer through the entries. The descriptor table entry data structure contains many transfer information including the transfer source address, transfer destination address, transfer count, burst size, transfer type and operation mode. Figure 6.6-2 shows the diagram of descriptor table (DSCT) data structure.

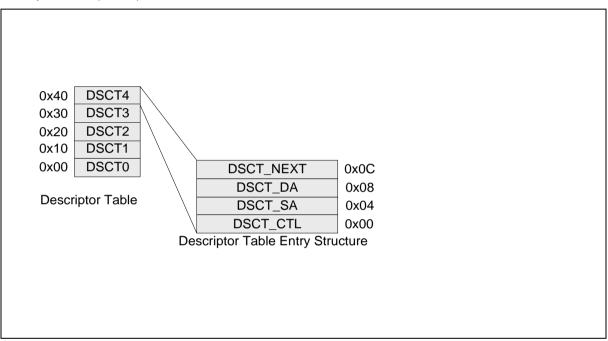


Figure 6.6-2 Descriptor Table Entry Structure

The PDMA controller also supports single and burst transfer type and the request source can be from software or peripheral request, transfer between memory to memory using software request. A single transfer means that software or peripheral is ready to transfer one data (every data needs one request), and the burst transfer means that software or peripherals will transfer multiple data (multiple data only need one request).

6.6.5.1 Channel Priority

The PDMA controller supports two level channel priorities including fixed and round-robin priority. The fixed priority channel has higher priority than round-robin priority channel. If multiple channels are set as fixed or round-robin priority, the higher channel will have higher priority. The priority order is listed in Table 6.6-1.

PDMA_PRISET	Channel Number	Priority Setting	Arbitration Priority In Descending Order
1	4	Channel4, Fixed Priority	Highest
1	3	Channel3, Fixed Priority	
1	0	Channel0, Fixed Priority	

0	4	Channel4, Round-Robin Priority	
0	3	Channel3, Round-Robin Priority	

Table 6.6-1 Channel Priority Table

6.6.5.2 PDMA Operation Mode

The PDMA controller supports two operation modes including Basic mode and Scatter-Gather mode.

Basic Mode

Basic mode is used to perform one descriptor table transfer mode. This mode can be used to transfer data between memory and memory, peripherals and memory or peripherals and peripherals, but if user want to transfer data between peripherals and peripherals, one thing must be sured is that the request from peripherals knows that the data is ready for transfer or not. PDMA controller operation mode can be set from OPMODE (PDMA_DSCTn_CTL[1:0], n denotes PDMA channel), the default setting is in idle state (OPMODE (PDMA_DSCTn_CTL[1:0]) = 0x0) and recommend user configure the descriptor table in idle state. If operation mode is not in idle state, user re-configure channel setting may make some operation error.

User must fill the transfer count TXCNT (PDMA DSCTn CTL[31:16]) register and select transfer width TXWIDTH (PDMA DSCTn CTL[13:12]), destination address increment size DAINC (PDMA_DSCTn_CTL[11:10]), source address increment size SAINC (PDMA_DSCTn_CTL[9:8]), burst size BURSIZE (PDMA DSCTn CTL[6:4]) and transfer type TXTYPE (PDMA DSCTn CTL[2]), then the PDMA controller will perform transfer operation in transfer state after receiving request signal. Finishing this task will generate an interrupt to CPU if corresponding PDMA interrupt bit INTENn (PDMA INTEN[4:0]) is enabled and the operation mode will be updated to idle state as shown in Figure 6.6-3. If software configures the operation mode to idle state, the PDMA controller will not perform any transfer and then clear this operation request. Finishing this task will also generate an interrupt to CPU if corresponding PDMA interrupt bit is enabled.

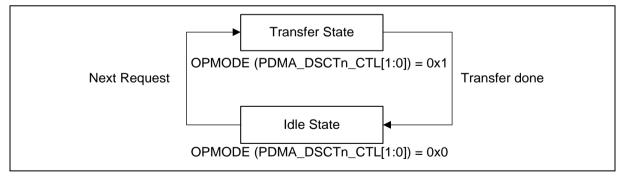


Figure 6.6-3 Basic Mode Finite State Machine

Scatter-Gather Mode

Scatter-Gather mode is a complex mode and can perform sophisticated transfer through the use of the description link list table as shown in Figure 6.6-4. Through operation mode user can perform peripheral wrapper-around, and multiple PDMA task can be used for data transfer between varied locations in system memory instead of a set of contiguous locations. Scatter-gather mode only needs a request to finish all table entries task till the last task with OPMODE (PDMA_DSCTn_CTL[1:0]) is idle state without ack. It also means scatter-gather mode can be used to transfer data between memory to memory without handshaking.

In Scatter-Gather mode, the table is just used for jumping to the next table entry. The first task will not

perform any operation transfer. Finishing each task will generate an interrupt to CPU if corresponding PDMA interrupt bit is enabled and TBINTDIS (PDMA_DSCTn_CTL[7]) bit is "0" (when finishing task and TBINTDIS bit is "0", corresponding TDIFn (PDMA_TDSTS[4:0]) flag will be asserted and if this bit is "1" TDIFn will not be active).

If channel 4 has been triggered, and the operation mode is in Scatter-Gather mode (OPMODE (PDMA_DSCTn_CTL[1:0]) = 0x2), the hardware will load the real PDMA information task from the address generated by adding PDMA_DSCTn_NEXT (link address) and PDMA_SCATBA (base address) registers. For example, base address is 0x2000_0000 (only MSB 16 bits valid in PDMA_SCATBA), the current link address is 0x0000_0100 (only LSB 16bits without last two bits [1:0] valid in PDMA_DSCTn_NEXT), and then the next DSCT entry start address is 0x2000_0100.

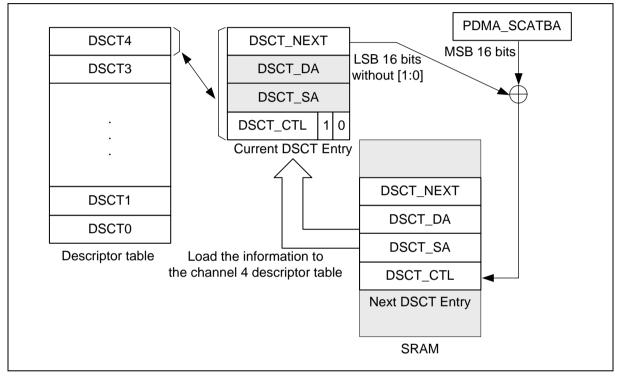


Figure 6.6-4 Descriptor Table Link List Structure

The above link list table operation is DSCT state in Scatter-Gather Mode as shown in Figure 6.6-5. When loading the information is finished, it will go to transfer state and start transfer by this information automatically. However, if the next PDMA information is also set to Scatter-Gather mode, the hardware will catch the next PDMA information block when the current task is finished. The Scatter-Gather mode switches to basic mode when doing the next task. Then, the basic mode switches to Idle state when the last task is finished.

nuvoTon

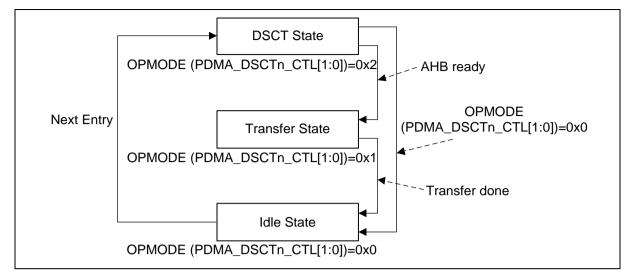
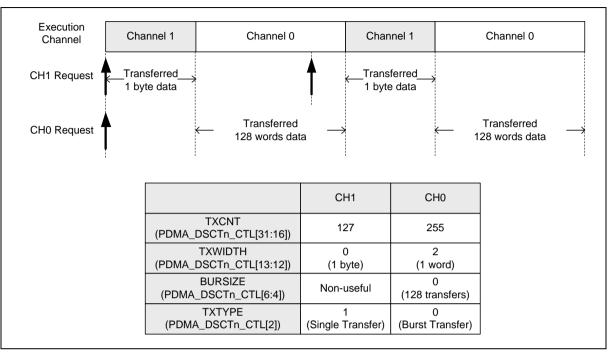


Figure 6.6-5 Scatter-Gather Mode Finite State Machine

6.6.5.3 Transfer Type

The PDMA controller supports two transfer types: single transfer type and burst transfer type, configure by setting TXTYPE (PDMA_DSCTn_CTL[2]).


When the PDMA controller is operated in single transfer type, each transfer data needs one request signal for one transfer, after transferred data, TXCNT (PDMA_DSCTn_CTL[31:16]) will decrease 1. Transfer will be finished after the TXCNT (PDMA_DSCTn_CTL[31:16]) decreases to 0. In this mode, the BURSIZE (PDMA_DSCTn_CTL[6:4]) is not useful to control the transfer size. The BURSIZE (PDMA_DSCTn_CTL[6:4]) will be fixed as one.

For the burst transfer type, the PDMA controller transfers TXCNT (PDMA_DSCTn_CTL[31:16]) of data and need only one request signal. After transferred BURSIZE (PDMA_DSCTn_CTL[6:4]) of data, TXCNT (PDMA_DSCTn_CTL[31:16]) will decrease BURSIZE number. Transfer will be done after the transfer count TXCNT (PDMA_DSCTn_CTL[31:16]) decreases to 0. Note that burst transfer type can only be used for PDMA controller to do burst transfer between memory and memory. User must use single request type for memory-to-peripheral and peripheral-to-memory transfers.

Figure 6.6-6 shows an example about single and burst transfer type in basic mode. In this example, channel 1 uses single transfer type and TXCNT (PDMA_DSCTn_CTL[31:16]) = 127. Channel 0 uses burst transfer type, BURSIZE (PDMA_DSCTn_CTL[6:4]) = 128 and TXCNT (PDMA_DSCTn_CTL[31:16]) = 255. The operation sequence is described below:

- 1. Channel 0 and channel 1 get the trigger signal at the same time.
- 2. Channel 1 has higher priority than channel 0 by default; the PDMA controller will load the channel 1 descriptor table first and executing. But channel 1 is single transfer type, and thus the PDMA controller will only transfer one transfer data.
- 3. Then, the PDMA controller turns to the channel 0 and loads channel 0's descriptor table. The channel 0 is burst transfer type and the burst size selected to 128. Therefore, the PDMA controller will transfer 128 transfer data.
- 4. When channel 0 transfers 128 data, channel 1 gets another request signal, then after channel 0 finishes 128 transfer data, the PDMA controller will turn to channel 1 and transfer next one data.
- 5. After channel 1 transfers data, the PDMA controller switches to low priority channel 0 to continuous next 128 data transfer. If no channel 1 request receives, PDMA will start next channel 0, 128 data transfer.
- 6. The PDMA controller will complete transfer when channel 0 finishes data transfer 256 times,

and channel 1 finishes transferring 128 times.

Figure 6.6-6 Example of Single Transfer Type and Burst Transfer Type in Basic Mode

6.6.5.4 Channel Time-out

Only PDMA channel 0 and channel 1 support time-out function. When the transfer channel is enabled and selected to the peripheral, corresponding channel time-out TOUTENn (PDMA_TOUTEN [n], n=0,1) is enabled, then channel's corresponding time-out counter will start count up from 0 while the channel has received trigger signal from the peripheral.

The time-out counter is based on output of HCLK prescaler, which is setting by corresponding channel's TOUTPSCn (PDMA_TOUTPSC [2+4n:4n], n=0,1). If time-out counter counts up from 0 to corresponding channel's TOCn (PDMA_TOCO_1 [16(n+1)-1):16n], n=0,1), the PDMA controller will generate interrupt signal when corresponding TOUTIENn (PDMA_TOUTIEN [n], n=0,1) is enabled. When time-out occurred, corresponding channel's REQTOFn (PDMA_INTSTS [n+8], n=0,1) will be set to indicate channel time-out is happened.

Time-out counter will restart from 0 while counter count to TOCn (PDMA_TOC0_1 [16(n+1)-1:16n], n=0,1), received trigger signal, time-out function is disabled or chip enters Power-down mode. The time-out counter will keep counting until time-out function is disabled.

Figure 6.6-7 shows an example about time-out counter operation. The operation sequence is described below:

- 1. The channel 0 time-out counter is not counting when time-out function is enabled by setting TOUTEN0(PDMA_TOUTEN[0]) bit to 1.
- Time-out counter starts counting from 0 to the value of TOC0(PDMA_TOC0_1[15:0]) bits when receiving the first peripheral request.
- 3. Time-out counter is reset to 0 by received second peripheral request.
- 4. Channel 0 request time-out flag(REQTOF0(PDMA_INTSTS[8])) is set to high when time-out counter counts to 5. The counter will keep counting.
- 5. Time-out counter is reset to 0 when time-out function is disabled.

ηυνοΤοη

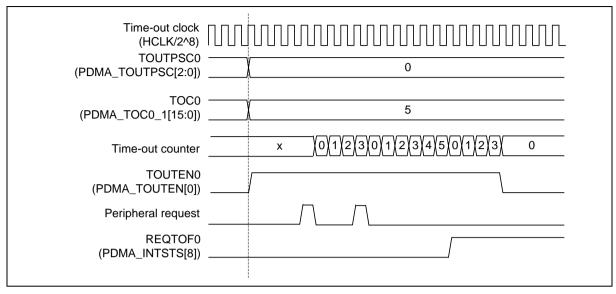


Figure 6.6-7 Example of PDMA Channel 0 Time-out Counter Operation

6.6.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
PDMA Base Address: PDMA_BA = 0x4000_8				
PDMA_DSCTn_CTL n = 0,14	PDMA_BA+0x10*n	R/W	Descriptor Table Control Register of PDMA Channel n	0xXXXX_XXXX
PDMA_DSCTn_SA n = 0,14	PDMA_BA+0x0004+0x10*n	R/W	Source Address Register of PDMA Channel n	0xXXXX_XXXX
PDMA_DSCTn_DA n = 0,14	PDMA_BA+0x0008+0x10*n	R/W	Destination Address Register of PDMA Channel n	0xXXXX_XXXX
PDMA_DSCTn_NEXT n = 0,14	PDMA_BA+0x000c+0x10*n	R/W	Next Scatter-gather Descriptor Table Offset Address of PDMA Channel n	0xXXXX_XXXX
PDMA_CURSCATn n = 0,14	PDMA_BA+0x0100+0x004*n	R	Current Scatter-gather Descriptor Table Address of PDMA Channel n	0xXXXX_XXXX
PDMA_CHCTL	PDMA_BA + 0x400	R/W	PDMA Channel Control Register	0x0000_0000
PDMA_PAUSE	PDMA_BA + 0x404	w	PDMA Transfer Pause Control Register	0x0000_0000
PDMA_SWREQ	PDMA_BA + 0x408	w	PDMA Software Request Register	0x0000_0000
PDMA_TRGSTS	PDMA_BA + 0x40C	R	PDMA Channel Request Status Register	0x0000_0000
PDMA_PRISET	PDMA_BA + 0x410	R/W	PDMA Fixed Priority Setting Register	0x0000_0000
PDMA_PRICLR	PDMA_BA + 0x414	W	PDMA Fixed Priority Clear Register	0x0000_0000
PDMA_INTEN	PDMA_BA + 0x418	R/W	PDMA Interrupt Enable Register	0x0000_0000
PDMA_INTSTS	PDMA_BA + 0x41C	R/W	PDMA Interrupt Status Register	0x0000_0000
PDMA_ABTSTS	PDMA_BA + 0x420	R/W	PDMA Channel Read/Write Target Abort Flag Register	0x0000_0000
PDMA_TDSTS	PDMA_BA + 0x424	R/W	PDMA Channel Transfer Done Flag Register	0x0000_0000
PDMA_ALIGN	PDMA_BA + 0x428	R/W	PDMA Transfer Alignment Status Register	0x0000_0000
PDMA_TACTSTS	PDMA_BA + 0x42C	R	PDMA Transfer Active Flag Register	0x0000_0000
PDMA_TOUTPSC	PDMA_BA + 0x430	R/W	PDMA Time-out Prescaler Register	0x0000_0000
PDMA_TOUTEN	PDMA_BA + 0x434	R/W	PDMA Time-out Enable Register	0x0000_0000
PDMA_TOUTIEN	PDMA_BA + 0x438	R/W	PDMA Time-out Interrupt Enable Register	0x0000_0000
PDMA_SCATBA	PDMA_BA + 0x43C	R/W	PDMA Scatter-gather Descriptor Table Base Address Register	0x2000_0000
PDMA_TOC0_1	PDMA_BA + 0x440	R/W	PDMA Time-out Counter Ch1 and Ch0 Register	0xFFFF_FFF
PDMA_CHRST	PDMA_BA + 0x460	R/W	PDMA Channel Reset Register	0x0000_0000
PDMA_REQSEL0_3	PDMA_BA + 0x480	R/W	PDMA Request Source Select Register 0	0x0000_0000
PDMA_REQSEL4	PDMA_BA + 0x484	R/W	PDMA Request Source Select Register 1	0x0000_0000

6.6.7 Register Description

Descriptor Table Control Register (PDMA_DSCTn_CTL)

Register	Offset	R/W	Description	Reset Value
PDMA_DSCTn_CTL	PDMA_BA+0x10*n	R/W	Descriptor Table Control Register of PDMA Channel n	0xXXXX_XXXX

31	30	29	28	27	26	25	24	
TXCNT								
23	22	21	20	19	18	17	16	
	TXCNT							
15	14	13	12	11	10	9	8	
Rese	Reserved TXWIDTH			DA	INC	SA	SAINC	
7	6	5	4	3	2	1	0	
TBINTDIS		BURSIZE	-	Reserved	TXTYPE	OPM	ODE	

Bits	Descriptio	n					
[31:16]	TXCNT	Transfer Count The TXCNT represents the required number of PDMA transfer, the real transfer count is (TXCNT + 1); The maximum transfer count is 16384, every transfer may be byte, half-word or word that is dependent on TXWIDTH field. Note: When PDMA finishes each transfer data, this field will be decrease immediately.					
[15:14]	Reserved	Reserved.					
[13:12]	TXWIDTH	Transfer Width Selection This field is used for transfer width. 00 = One byte (8 bit) is transferred for every operation. 01= One half-word (16 bit) is transferred for every operation. 10 = One word (32-bit) is transferred for every operation. 11 = Reserved. Note: The PDMA transfer source address (PDMA_DSCT_SA) and PDMA transfer destination address (PDMA_DSCT_DA) should be alignment under the TXWIDTH selection					
[11:10]	DAINC	Destination Address Increment This field is used to set the destination address increment size. 11 = No increment (fixed address). Others = Increment and size is depended on TXWIDTH selection. Note: The fixed address function does not support in memory to memory transfer type.					
[9:8]	SAINC	Source Address Increment This field is used to set the source address increment size. 11 = No increment (fixed address). Others = Increment and size is depended on TXWIDTH selection. Note: The fixed address function does not support in memory to memory transfer type.					
[7]	TBINTDIS	Table Interrupt Disable Bit TBINTDIS This field can be used to decide whether to enable table interrupt or not. If the TBINTDIS bit is enabled it v not generates TDIFn(PDMA_TDSTS[4:0]) when PDMA controller finishes transfer task.					

Bits	Descriptio	n							
		0 = Table interrupt Enabled.							
		1 = Table interrupt Disabled.							
		Note: This function is only for scatter-gather mode.							
		Burst Size							
		000 = 128 Transfers.							
		001 = 64 Transfers.							
		010 = 32 Transfers.							
[6:4]	BURSIZE	011 = 16 Transfers.							
[0.4]	DUNSIZE	100 = 8 Transfers.							
		101 = 4 Transfers.							
		110 = 2 Transfers.							
		111 = 1 Transfers.							
		Note: This field is only useful in burst transfer type.							
[3]	Reserved	Reserved.							
		Transfer Type							
[2]	TXTYPE	0 = Burst transfer type.							
		1 = Single transfer type.							
		PDMA Operation Mode Selection							
		00 = Idle state: Channel is stopped or this table is complete, when PDMA finish channel table task, OPMODE will be cleared to idle state automatically.							
[1:0]	OPMODE	01 = Basic mode: The descriptor table only has one task. When this task is finished, the PDMA_INTSTS[1] will be asserted.							
[1.0]	OFMODE	10 = Scatter-Gather mode: When operating in this mode, user must give the next descriptor table address in PDMA_DSCT_NEXT register; PDMA controller will ignore this task, then load the next task to execute.							
		11 = Reserved.							
		Note: Before filling new transfer task in the Descriptor Table, user must check the PDMA_INTSTS[1] to make sure the curren task is complete.							

Start Source Address Register (PDMA_DSCTn_SA)

Register	Register Offset			R/W	N Description				Reset Value	
PDMA_DSCTn	_ SA PDMA_BA+0x0004+0x10*n			R/W	Sou	rce Address Reo	gister of PDMA (Channel n	0xXXXX_XXXX	
31		30	29		28		27	26	25	24
						S	A			
23		22	21		20		19	18	17	16
			-			S	A	-	-	
15		14	13		12		11	10	9	8
						S	A			
7		6	5		4		3	2	1	0
	SA SA									

Bits	Descr	iption
[21.0]	SA	PDMA Transfer Source Address
[31:0]	ЗА	This field indicates a 32-bit source address of PDMA controller.

Destination Address Register (PDMA_DSCTn_DA)

Register	Offset	R/W	Description	Reset Value
PDMA_DSCTn_DA	PDMA_BA+0x0008+0x10*n	R/W	Destination Address Register of PDMA Channel n	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
DA									
23	22	21	20	19	18	17	16		
	DA								
15	14	13	12	11	10	9	8		
			D	A					
7	6	5	4	3	2	1	0		
	DA								

Bits	Descr	escription						
[31:0]		PDMA Transfer Destination Address						
[31:0]	DA	This field indicates a 32-bit destination address of PDMA controller.						

Next Scatter-gather Descriptor Table Offset Address (PDMA_DSCTn_NEXT)

Register	Offset	R/W	Description	Reset Value
PDMA_DSCTn_NEXT	PDMA_BA+0x000c+0x10*n	R/W	Next Scatter-gather Descriptor Table Offset Address of PDMA Channel n	0xXXXX_XXXX

31	30	29	28	27	26	25	24							
	EXENEXT													
23	23 22 21 20 19 18 17 16													
	EXENEXT													
15	14	13	12	11	10	9	8							
			NE	хт										
7	6	5	4	3	2	1	0							
			NE	хт										

Bits	Descriptio	n
		PDMA Execution Next Descriptor Table Offset
[31:16]	EXENEXT	This field indicates the offset of next descriptor table address of current execution descriptor table in system memory.
		Note: Write operation is useless in this field.
		PDMA Next Descriptor Table Offset
		This field indicates the offset of the next descriptor table address in system memory.
		Write Operation:
[45:0]	NEXT	If the system memory based address is 0x2000_0000 (PDMA_SCATBA), and the next descriptor table is start from 0x2000_0100, then this field must fill in 0x0100.
[15:0]	NEXT	Read Operation:
		When operating in scatter-gather mode, the last two bits NEXT[1:0] will become reserved, and indicate the first next address of system memory.
		Note 1: The descriptor table address must be word boundary.
		Note 2: Before filling transfer task in the descriptor table, user must check if the descriptor table is complete.

Current Scatter-gather Descriptor Table Address (PDMA_CURSCATn)

Register	Offset	R/W	Description	Reset Value
PDMA_CURSCATn	PDMA_BA+0x0100+0x004*n	R	Current Scatter-gather Descriptor Table Address of PDMA Channel n	0xXXXX_XXXX

31	30	29	28	27	26	25	24							
	CURADDR													
23	22	21	21 20 19 18 17 16											
	CURADDR													
15	14	13	12	11	10	9	8							
			CUR	ADDR										
7	7 6 5 4 3 2 1 0													
			CUR	ADDR										

Bits	Description	escription										
[31:0]	CURADDR	PDMA Current Description Address (Read Only) This field indicates a 32-bit current external description address of PDMA controller. Note: This field is read only and used for Scatter-Gather mode only to indicate the current external description address.										

Channel Control Register (PDMA_CHCTL)

Register Offset			F	R/W	Des	Description				Reset Value		
PDMA_CHCTL PDMA_BA + 0x400		F	R/W	PDN	MA Channel Cor	000_000						
31	30)	29		28		27	26	25		24	
Reserved												
23	22	2	21		20		19	19 18			16	
					F	Rese	erved		-			
15	14	L I	13		12		11	10	9		8	
	Reserved											
7	6		5		4		3	2	1		0	
Reserved				С	CHEN4		CHEN3	CHEN2	CHEN1		CHEN0	

Bits	Descriptio	Description											
[31:5]	Reserved	Reserved.											
[n] n=0,14	CHENn	PDMA Channel Enable Bits Set this bit to 1 to enable PDMAn operation. Channel cannot be active if it is not set as enabled. 0 = PDMA channel [n] Disabled. 1 = PDMA channel [n] Enabled. Note: Setting the corresponding bit of PDMA_PAUSE or PDMA_CHRST register will also clear this bit.											

PDMA Transfer Pause Control Register (PDMA_PAUSE)

Register Offset I		R/W	Description	Reset Value	
PDMA_PAUSE	PDMA_BA + 0x404	W	PDMA Transfer Pause Control Register	0x0000_0000	

31	30	29	28	27	26	25	24							
	Reserved													
23	22	21	20	19	18	17	16							
	Reserved													
15	14	13	12	11	10	9	8							
	Reserved													
7	6	5	4	3	2	1	0							
	Reserved		PAUSE4	PAUSE4 PAUSE3		PAUSE1	PAUSE0							

Bits	Descriptio	escription										
[31:5]	Reserved	Reserved Reserved.										
[n] n=0,14	PAUSEn	PDMA Channel n Transfer Pause Control (Write Only) User can set PAUSEn bit field to pause the PDMA transfer. When user sets PAUSEn bit, the PDMA controller will pause the on-going transfer, then clear the channel enable bit CHEN(PDMA_CHCTL [n], n=0,14) and clear request active flag(PDMA_TRGSTS[n:0], n=0,14). If the paused channel is re-enabled again, the remaining transfers will be processed.										
		0 = No effect. 1 = Pause PDMA channel n transfer.										

Reserved

SWREQ1

SWREQ0

PDMA Software Request Register (PDMA_SWREQ)

Register Off		Offset R		R/W	Dese	cription		Reset Value			
PDMA_SWREQ PDMA_BA + 0x408			W	PDMA Software Request Register 0x0000_0000							
31	31 30 29 28 27 26 25 24							24			
	Reserved										

Reserved

Reserved

SWREQ3

SWREQ2

SWREQ4

Bits	Descriptio	Description								
[31:5]	Reserved	Reserved.								
		PDMA Software Request (Write Only)								
		Set this bit to 1 to generate a software request to PDMA [n].								
[n]		0 = No effect.								
n=0,14	SWREQn	1 = Generate a software request.								
11-0,1+		Note 1: User can read PDMA_TRGSTS register to know which channel is on active. Active flag may be triggered by software request or peripheral request.								
		Note 2: If user does not enable corresponding PDMA channel, the software request will be ignored.								

PDMA Channel Request Status Register (PDMA_TRGSTS)

Register Offset R/W		Description	Reset Value	
PDMA_TRGSTS	PDMA_BA + 0x40C	R	PDMA Channel Request Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved		REQSTS4	REQSTS3	REQSTS2	REQSTS1	REQSTS0		

Bits	Descriptio	Description								
[31:5]	Reserved	eserved.								
		PDMA Channel Request Status (Read Only)								
[]		This flag indicates whether channel[n] have a request or not, no matter request from software or peripheral. When PDMA controller finishes channel transfer, this bit will be cleared automatically.								
[n] n=0.14		0 = PDMA Channel n has no request.								
11=0,14		1 = PDMA Channel n has a request.								
		Note: If user pauses or resets each PDMA transfer by setting PDMA_PAUSE or PDMA_CHRST register respectively, this bit will be cleared automatically after finishing the current transfer.								

PDMA Fixed Priority Setting Register (PDMA_PRISET)

Register	gister Offset R/W Description		Reset Value	
PDMA_PRISET	PDMA_BA + 0x410	R/W	PDMA Fixed Priority Setting Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved		FPRISET4	FPRISET3	FPRISET2	FPRISET1	FPRISET0		

Bits	Description	Description									
[31:5]	Reserved	Reserved.									
[n] n=0,14	FPRISETn	PDMA Fixed Priority Setting Set this bit to 1 to enable fixed priority level. Write Operation: 0 = No effect. 1 = Set PDMA channel [n] to fixed priority channel. Read Operation: 0 = Corresponding PDMA channel is round-robin priority. 1 = Corresponding PDMA channel is fixed priority.									
		0 = Corresponding PDMA channel is round-robin priority.									

PDMA Fix Priority Clear Register (PDMA_PRICLR)

Register	Offset	R/W	Description	Reset Value
PDMA_PRICLR	PDMA_BA + 0x414	W	PDMA Fixed Priority Clear Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	Reserved		FPRICLR4	FPRICLR3	FPRICLR2	FPRICLR1	FPRICLR0			

Bits	Description								
[31:5]	Reserved	Reserved.							
		PDMA Fixed Priority Clear Bits (Write Only)							
[n]		Set this bit to 1 to clear fixed priority level.							
[n] n=0.14	FPRICLRn	0 = No effect.							
11=0,14		1 = Clear PDMA channel [n] fixed priority setting.							
		Note: User can read PDMA_PRISET register to know the channel priority.							

PDMA Interrupt Enable Register (PDMA_INTEN)

Register Offset			R/\	W De	scription	Reset Value				
PDMA_INTEN		PDMA_B	A + 0x418	R/\	W PE	MA Interrupt Ena	ble Register		0x0000_0000	
31		30	29		28	27	26	25	24	
	Reserved									
23		22	21		20	19	18	17	16	
					Re	served	-		-	
15		14	13		12	11	10	9	8	
Reserved										
7		6	5		4	3	2	1	0	
	Res	served		IN	TEN4	INTEN3	INTEN2	INTEN [,]	1 INTEN	0

Bits	Description	Description							
[31:5]	Reserved	Reserved.							
		PDMA Interrupt Enable Bits							
[n]		This field is used to enable PDMA channel[n] interrupt.							
[n] n=0,14	INTENn	0 = PDMA channel n interrupt Disabled.							
11=0,14		1 = PDMA channel n interrupt Enabled.							
		Note: The interrupt flag is time-out, abort, transfer done and align.							

PDMA Interrupt Status Register (PDMA_INTSTS)

Register	Offset	R/W	Description	Reset Value
PDMA_INTSTS	PDMA_BA + 0x41C	R/W	PDMA Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
		Rese	erved			REQTOF1	REQTOF0	
7	6	5	4	3	2	1	0	
		Reserved	ALIGNF	TDIF	ABTIF			

Bits	Descriptio	n					
[31:10]	Reserved	Reserved.					
[9]		Request Time-out Flag for Channel 1 This flag indicates that PDMA controller has waited peripheral request for a period defined by PDMA_TO user can write 1 to clear these bits. 0 = No request time-out. 1 = Peripheral request time-out. Note: Please disable time-out function before clearing this bit.					
[8]	REQTOF0	 Request Time-out Flag for Channel 0 This flag indicates that PDMA controller has waited peripheral request for a period defined by PDMA_TO user can write 1 to clear these bits. 0 = No request time-out. 1 = Peripheral request time-out. Note: Please disable time-out function before clearing this bit. 					
[7:3]	Reserved	Reserved.					
[2]	ALIGNF	Transfer Alignment Interrupt Flag (Read Only) 0 = PDMA channel source address and destination address both follow transfer width setting. 1 = PDMA channel source address or destination address is not follow transfer width setting.					
[1]	TDIF	 Transfer Done Interrupt Flag (Read Only) This bit indicates that PDMA controller has finished transmission; User can read PDMA_TDSTS register to indicate which channel finished transfer. 0 = Not finished yet. 1 = PDMA channel has finished transmission. 					
[0]	ABTIF	PDMA Read/Write Target Abort Interrupt Flag (Read Only) This bit indicates that PDMA has target abort error; Software can read PDMA_ABTSTS register to find which channel has target abort error. 0 = No AHB bus ERROR response received. 1 = AHB bus ERROR response received.					

PDMA Channel Read/Write Target Abort Flag Register (PDMA_ABTSTS)

Register	Offset	R/W	Description	Reset Value
PDMA_ABTSTS	PDMA_BA + 0x420	R/W	PDMA Channel Read/Write Target Abort Flag Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved		ABTIF4	ABTIF3	ABTIF2	ABTIF1	ABTIF0		

Bits	Descriptio	Description						
[31:5]	Reserved	eserved.						
[n] n=0,14	ABTIFn	PDMA Read/Write Target Abort Interrupt Status Flag This bit indicates which PDMA controller has target abort error; User can write 1 to clear these bits. 0 = No AHB bus ERROR response received when channel n transfer. 1 = AHB bus ERROR response received when channel n transfer.						

PDMA Channel Transfer Done Flag Register (PDMA_TDSTS)

Register	Offset	R/W	Description	Reset Value
PDMA_TDSTS	PDMA_BA + 0x424	R/W	PDMA Channel Transfer Done Flag Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
	Reserved		TDIF4	TDIF3	TDIF2	TDIF1	TDIF0	

Bits	Descriptio	escription							
[31:5]	Reserved	rved Reserved.							
		Transfer Done Flag							
		This bit indicates whether PDMA controller channel transfer has been finished or not, user can write 1 to clear these bits.							
n=0,14		0 = PDMA channel transfer has not finished.							
		1 = PDMA channel has finished transmission.							

PDMA Transfer Alignment Status Register (PDMA_ALIGN)

Register	Offset	R/W	Description	Reset Value
PDMA_ALIGN	PDMA_BA + 0x428	R/W	PDMA Transfer Alignment Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved		ALIGN4	ALIGN3	ALIGN2	ALIGN1	ALIGN0		

Bits	Descriptio	escription								
[31:5]	Reserved	rved Reserved.								
		Transfer Alignment Flag								
	ALIGNn	This bit indicates whether source and destination address both follow transfer width setting, user can write 1 to clear these bits.								
n=0,14	4	0 = PDMA channel source address and destination address both follow transfer width setting.								
		1 = PDMA channel source address or destination address is not follow transfer width setting.								

PDMA Transfer Active Flag Register (PDMA_TACTSTS)

Register	Offset	R/W	Description	Reset Value
PDMA_TACTSTS	PDMA_BA + 0x42C	R	PDMA Transfer Active Flag Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	Reserved		TXACTF4	TXACTF3	TXACTF2	TXACTF1	TXACTF0			

Bits	Description					
[31:5]	Reserved	Reserved.				
[n] n=0,14	TXACTFn	Transfer on Active Flag (Read Only) This bit indicates which PDMA channel is in active. 0 = PDMA channel is finished. 1 = PDMA channel is active.				

	PDMA	Time-out	Prescaler	Register	(PDMA	TOUTPSC)
--	-------------	-----------------	-----------	----------	-------	----------

Register	Offset	R/W	Description	Reset Value
PDMA_TOUTPSC	PDMA_BA + 0x430	R/W	PDMA Time-out Prescaler Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved	Reserved TOUTPSC1			Reserved	TOUTPSC0					

Bits	Description							
[31:7]	Reserved	Reserved.						
		PDMA Channel 1 Time-out Clock Source Prescaler Bits						
		000 = PDMA channel 1 time-out clock source is HCLK/28.						
		001 = PDMA channel 1 time-out clock source is HCLK/29.						
		010 = PDMA channel 1 time-out clock source is HCLK/2 ¹⁰ .						
[6:4]	TOUTPSC1	011 = PDMA channel 1 time-out clock source is HCLK/2 ¹¹ .						
		100 = PDMA channel 1 time-out clock source is HCLK/2 ¹² .						
		101 = PDMA channel 1 time-out clock source is $HCLK/2^{13}$.						
		110 = PDMA channel 1 time-out clock source is HCLK/2 ¹⁴ .						
		111 = PDMA channel 1 time-out clock source is $HCLK/2^{15}$.						
[3]	Reserved	Reserved.						
		PDMA Channel 0 Time-out Clock Source Prescaler Bits						
		000 = PDMA channel 0 time-out clock source is HCLK/2 ⁸ .						
		001 = PDMA channel 0 time-out clock source is HCLK/29.						
		010 = PDMA channel 0 time-out clock source is HCLK/2 ¹⁰ .						
[2:0]	TOUTPSC0	011 = PDMA channel 0 time-out clock source is HCLK/2 ¹¹ .						
		100 = PDMA channel 0 time-out clock source is HCLK/2 ¹² .						
		101 = PDMA channel 0 time-out clock source is $HCLK/2^{13}$.						
		110 = PDMA channel 0 time-out clock source is $HCLK/2^{14}$.						
		111 = PDMA channel 0 time-out clock source is HCLK/2 ¹⁵ .						

PDMA Time-out Enable Register (PDMA_TOUTEN)

Register	Offset	R/W	Description	Reset Value
PDMA_TOUTEN	PDMA_BA + 0x434	R/W	PDMA Time-out Enable Register	0x0000_0000

31	30	29	28	27	26	25	24				
Reserved											
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	Reserved										
7	6	5	4	3	2	1	0				
		TOUTEN1	TOUTEN0								

Bits	Description					
[31:2]	Reserved	Reserved.				
[n]		PDMA Time-out Enable Bits				
[n] n=0,1	TOUTENn	0 = PDMA Channel n time-out function Disabled.				
11=0,1		1 = PDMA Channel n time-out function Enabled.				

PDMA Time-out Interrupt Enable Register (PDMA_TOUTIEN)

Register	Offset	R/W	Description	Reset Value
PDMA_TOUTIEN	PDMA_BA + 0x438	R/W	PDMA Time-out Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	17	16					
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
		TOUTIEN1	TOUTIEN0							

Bits	Description			
[31:2]	Reserved Reserved.			
[n] n=0,1	TOUTIENn	PDMA Time-out Interrupt Enable Bits		
		0 = PDMA Channel n time-out interrupt Disabled.		
		1 = PDMA Channel n time-out interrupt Enabled.		

PDMA Scatter-gather Descriptor Table Base Address Register (PDMA_SCATBA)

Register	Offset	R/W	Description	Reset Value
PDMA_SCATBA	PDMA_BA + 0x43C	R/W	PDMA Scatter-gather Descriptor Table Base Address Register	0x2000_0000

31	30	29	28	27	26	25	24	
	SCATBA							
23	22	21	20	19	18	17	16	
	SCATBA							
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
	Reserved							

Bits	Descriptio	scription							
		PDMA Scatter-gather Descriptor Table Address							
[31:16]		In Scatter-Gather mode, this is the base address for calculating the next link - list address. The next link address equation is							
		Next Link Address = PDMA_SCATBA + PDMA_DSCT_NEXT.							
		Note: Only useful in Scatter-Gather mode.							
[15:0]	Reserved	Reserved.							

PDMA Time-out Period Counter Register 0 (PDMA_TOC0_1)

Register	Offset	R/W	Description	Reset Value
PDMA_TOC0_1	PDMA_BA + 0x440	R/W	PDMA Time-out Counter Ch1 and Ch0 Register	0xFFFF_FFF

31	30	29	28	27	26	25	24	
	TOC1							
23	22	21	20	19	18	17	16	
	TOC1							
15	14	13	12	11	10	9	8	
	TOCO							
7	6	5	4	3	2	1	0	
	тосо							

Bits	Description						
[31:16]	TOC1	Time-out Counter for Channel 1 This controls the period of time-out function for channel 1. The calculation unit is based on TOUTPSC1 (PDMA_TOUTPSC[6:4]) clock. For the example of time-out period, refer to TOC0 bit description.					
[15:0]	тосо	Time-out Counter for Channel 0 This controls the period of time-out function for channel 0. The calculation unit is based on TOUTPSC0 (PDMA_TOUTPSC[2:0]) clock. Time-out period = (Period of time-out clock) * (16-bit TOCn), n = 0,1.					

PDMA Channel Reset Register (PDMA_CHRST)

Register	Register Offset		Description	Reset Value
PDMA_CHRST	PDMA_BA + 0x460	R/W	PDMA Channel Reset Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved		CH4RST	CH3RST	CH2RST	CH1RST	CHORST

Bits	Description				
[31:5]	Reserved	Reserved.			
[4:0]		Channel n Reset 0 = corresponding channel n is not reset. 1 = corresponding channel n is reset.			

PDMA Request Source Select Register 0 (PDMA_REQSEL0_3)

Register	Offset	R/W	Description	Reset Value
PDMA_REQSEL0_3	PDMA_BA + 0x480	R/W	PDMA Request Source Select Register 0	0x0000_0000

31	30	29	28	27	26	25	24			
Rese	erved		REQSRC3							
23	22	21	20	19	18	17	16			
Rese	erved	REQSRC2								
15	14	13	12	11	10	9	8			
Rese	erved	REQSRC1								
7	6	5	4	3	2	1	0			
Reserved				REQ	SRC0					

Bits	Description	n
[31:30]	Reserved	Reserved.
[29:24]		 Channel 3 Request Source Selection This filed defines which peripheral is connected to PDMA channel 3. User can configure the peripheral setting by REQSRC3. Note: The channel configuration is the same as REQSRC0 field. Please refer to the explanation of REQSRC0.
[23:22]	Reserved	Reserved.
[21:16]		 Channel 2 Request Source Selection This filed defines which peripheral is connected to PDMA channel 2. User can configure the peripheral setting by REQSRC2. Note: The channel configuration is the same as REQSRC0 field. Please refer to the explanation of REQSRC0.
[15:14]	Reserved	Reserved.
[13:8]	REQSRC1	 Channel 1 Request Source Selection This filed defines which peripheral is connected to PDMA channel 1. User can configure the peripheral setting by REQSRC1. Note: The channel configuration is the same as REQSRC0 field. Please refer to the explanation of REQSRC0.
[7:6]	Reserved	Reserved.
[5:0]	REQSRCO	Channel 0 Request Source Selection This filed defines which peripheral is connected to PDMA channel 0. User can configure the peripheral by setting REQSRC0. 0 = Disable PDMA peripheral request. 1 = Channel connects to DAC0_TX. 4 = Channel connects to UART0_TX. 5 = Channel connects to UART0_RX. 6 = Channel connects to UART1_TX. 7 = Channel connects to UART1_RX.

Bits	Description
	8 = Reserved.
	9 = Reserved.
	10 = Channel connects to USCI0_TX.
	11 = Channel connects to USCI0_RX.
	12 = Channel connects to USCI1_TX.
	13 = Channel connects to USCI1_RX.
	14 = Reserved.
	15 = Reserved.
	16 = Reserved.
	17 = Reserved.
	18 = Reserved.
	19 = Reserved.
	20 = Channel connects to ADC_RX.
	21 = Channel connects to PWM0_P1_RX.
	22 = Channel connects to PWM0_P2_RX.
	23 = Channel connects to PWM0_P3_RX.
	24 = Reserved.
	25 = Reserved.
	26 = Reserved.
	27 = Reserved.
	28 = Reserved.
	29 = Reserved.
	30 = Reserved.
	31 = Reserved.
	32 = Channel connects to TMR0.
	33 = Channel connects to TMR1.
	34 = Channel connects to TMR2.
	35 = Channel connects to TMR3.
	Others = Reserved.
	Note 1: A peripheral cannot be assigned to two channels at the same time.
	Note 2: This field is useless when transfer between memory and memory.

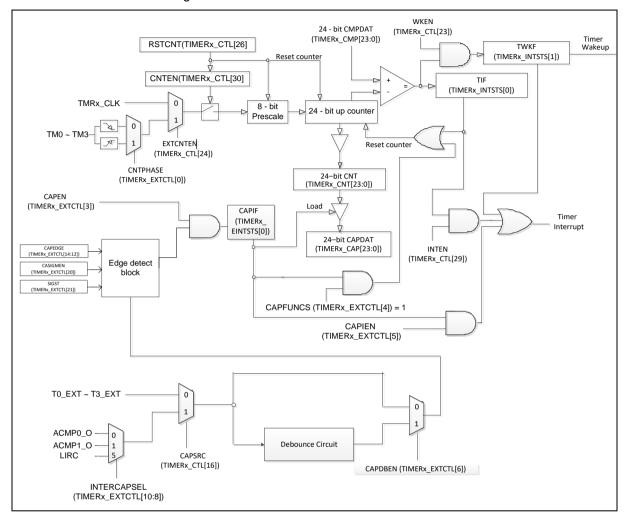
PDMA Request Source Select Register 1 (PDMA_REQSEL4)

Register	Offset	R/W	Description	Reset Value
PDMA_REQSEL4	PDMA_BA + 0x484	R/W	PDMA Request Source Select Register 1	0x0000_0000

31	30	29	28	27	26	25	24				
Reserved											
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	Reserved										
7	6	5 4 3 2 1 0									
Reserved REQSRC4											

Bits	Description						
[31:6]	Reserved	Reserved.					
[5:0]	REQSRC4	Channel 4 Request Source Selection This filed defines which peripheral is connected to PDMA channel 4. User can configure the peripheral setting by REQSRC4. Note: The channel configuration is the same as REQSRC0 field. Please refer to the explanation of REQSRC0.					

6.7 Timer Controller (TMR)


6.7.1 Overview

The timer controller includes four 32-bit timers, Timer0 ~ Timer3, allowing user to easily implement a timer control for applications. The timer can perform functions, such as frequency measurement, delay timing, clock generation, and event counting by external input pins, and interval measurement by external capture pins.

6.7.2 Features

- 6.7.2.1 Timer Function Features
 - Four sets of 32-bit timers, each timer having one 24-bit up counter and one 8-bit prescale counter
 - Independent clock source for each timer
 - Provides one-shot, periodic, toggle-output and continuous counting operation modes
 - 24-bit up counter value is readable through CNT (TIMERx_CNT[23:0])
 - Supports event counting function
 - 24-bit capture value is readable through CAPDAT (TIMERx_CAP[23:0])
 - Supports external capture pin event for interval measurement
 - Supports external capture pin event to reset 24-bit up counter
 - Supports internal capture triggered while internal ACMP output signal and LIRC transition
 - Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is generated
 - Support Timer0 ~ Timer3 time-out interrupt signal or capture interrupt signal to trigger PWM, ADC, PDMA function
 - Supports Inter-Timer trigger mode

6.7.4 Block Diagram

The timer controller block diagram and clock control are shown as follows.

Figure 6.7-1 Timer Controller Block Diagram

6.7.5 Basic Configuration

- Clock Source Configuration
 - The clock source of Timer0 ~ Timer3 in timer mode can be enabled in TMRxCKEN (CLK_APBCLK0[5:2]).
 - Select the source of Timer0 ~ Timer3 on TMR0SEL (CLK_CLKSEL1[10:8]) for Timer0, TMR1SEL (CLK_CLKSEL1[14:12]) for Timer1, TMR2SEL (CLK_CLKSEL1[18:16]) for Timer2 and TMR3SEL (CLK_CLKSEL1[22:20]) for Timer3.

The Timer0 ~ Timer3 clock control is shown in Figure 6.7-2.

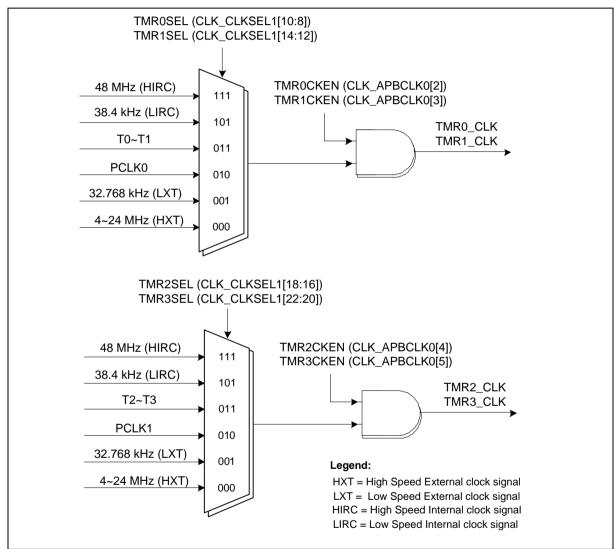


Figure 6.7-2 Clock Source of Timer Controller

- Timer0 ~ Timer3 MFP configurations
 - The MFP table for Timer0 ~ Timer3 is shown as Table 6.7-1.

Signal Name	Pin Name	MFP
тмо	PA.1, PA.5, PA.3, PB.7, PB.5, PC.0, PC.2, PC.4, PC.6	MFP24

	PD.0, PD.4	MFP5
TM1	PA.2, PA.0, PA.4, PB.4, PB.6, PC.1, PC.3, PC.5, PC.7	MFP24
	PD.1, PD.5	MFP5
TM2	PA.1, PA.5, PA.3, PB.7, PB.5, PC.0, PC.2, PC.4, PC.6	MFP25
	PD.2, PD.6	MFP5
ТМЗ	PA.2, PA.0, PA.4, PB.4, PB.6, PC.1, PC.3, PC.5, PC.7	MFP25
	PD.3, PD.7	MFP5
TM0_EXT	PA.1, PA.5, PA.3, PB.7, PB.5, PC.0, PC.2, PC.4, PC.6	MFP26
TM1_EXT	PA.2, PA.0, PA.4, PB.4, PB.6, PC.1, PC.3, PC.5, PC.7	MFP26
TM2_EXT	PA.1, PA.5, PA.3, PB.7, PB.5, PC.0, PC.2, PC.4, PC.6	MFP27
TM3_EXT	PA.2, PA.0, PA.4, PB.4, PB.6, PC.1, PC.3, PC.5, PC.7	MFP27

Table 6.7-1 Timer0 ~ Timer3 MFP Table

6.7.6 Functional Description

6.7.6.1 Timer Interrupt Flag

The timer controller supports the following interrupt flags; one is TIF (TIMERx_INTSTS[0]) and it is set while timer counter value CNT (TIMERx_CNT[23:0]) matches the timer compared value CMPDAT (TIMERx_CMP[23:0]). The other situation that CAPIF (TIMERx_EINTSTS[0]) is set means when the transition on the TMx_EXT pin, LIRC, or ACMP is associated with CAPEDGE (TIMERx_EXTCTL[14:12]) setting. User can set CAPSRC (TIMERx_CTL[16]) and INTERCAPSEL (TIMERx_EXTCTL[10:8]) to select capture source. The TWKF (TIMERx_INTSTS[1]) bit indicates the interrupt wake-up flag status of timer. Set WKEN (TIMERx_CTL[23]) to 1 to use wake-up function.

6.7.6.2 Timer Counting Mode

The timer controller provides four timer counting modes: one-shot, periodic, toggle-output and continuous counting operation modes:

6.7.6.3 One–Shot Mode

If the timer controller is configured in one-shot mode (TIMERx_CTL[28:27] is 00) and CNTEN (TIMERx_CTL[30]) is set, the timer counter starts up counting. Once the CNT (TIMERx_CNT[23:0]) value reaches CMPDAT (TIMERx_CMP[23:0]) value, the TIF (TIMERx_INTSTS[0]) will be set to 1, CNT value and CNTEN bit is cleared automatically by timer controller then timer counting operation stops. In the meantime, if the INTEN (TIMERx_CTL[29]) is set, the timer interrupt signal is generated and sent to NVIC to inform CPU.

User can set ICEDEBUG (TIMERx_CTL[31]) to 1 to disable ICE debug mode acknowledgement that affects TIMER counting when CPU is halted.

6.7.6.4 Periodic Mode

If the timer controller is configured in periodic mode (TIMERx_CTL[28:27] is 01) and CNTEN (TIMERx_CTL[30]) is set, the timer counter starts up counting. Once the CNT (TIMERx_CNT[23:0]) value reaches CMPDAT (TIMERx_CMP[23:0]) value, the TIF (TIMERx_INTSTS[0]) will be set to 1, CNT value will be cleared automatically by timer controller and timer counter operates counting again. In the

meantime, if the INTEN (TIMERx_CTL[29]) bit is set, the timer interrupt signal is generated and sent to NVIC to inform CPU. In this mode, the timer controller operates counting and compares with CMPDAT value periodically until the CNTEN bit is cleared by user.

6.7.6.5 Toggle-Output Mode

If the timer controller is configured in toggle-output mode (TIMERx_CTL[28:27] is 10) and CNTEN (TIMERx_CTL[30]) is set, the timer counter starts up counting. The counting operation of toggle-output mode is almost the same as periodic mode, except toggle-output mode has associated TM0 ~ TM3 or TM0_EXT ~ TM3_EXT pin to output signal while specify TIF (TIMERx_INTSTS[0]) is set. User can set TGLPINSEL (TIMERx_CTL[22]) to choose TMx or TMx_EXT as toggle-output pin. Thus, the toggle-output signal on TM0 ~ TM3 pin is high and changing back and forth with 50% duty cycle.

6.7.6.6 Continuous Counting Mode

If the timer controller is configured in continuous counting mode (TIMERx_CTL[28:27] is 11) and CNTEN (TIMERx_CTL[30]) is set, the timer counter starts up counting. Once the CNT (TIMERx_CNT[23:0]) value reaches CMPDAT (TIMERx_CMP[23:0]) value, the TIF (TIMERx_INTSTS[0]) will be set to 1 and CNT value keeps up counting. In the meantime, if the INTEN (TIMERx_CTL[29]) is set, the timer interrupt signal is generated and sent to NVIC to inform CPU. User can change different CMPDAT value immediately without disabling timer counting and restarting timer counting in this mode.

For example, the CMPDAT value is set as 80, first. The TIF will be set to 1 when the CNT value is equal to 80, the timer counter is kept counting and the CNT value will not go back to 0, it continues to count 81, 82, 83,... to 2²⁴-1, 0, 1, 2, 3,... to 2²⁴-1 again and again. Next, if user programs CMPDAT value as 200 and clears TIF, the TIF will be set to 1 again when the CNT value reaches 200. At last, user programs CMPDAT as 500 and clears TIF, and the TIF will be set to 1 again when the CNT value reaches 200.

In this mode, the timer counting is continuous. So, this operation mode is called as continuous counting mode.

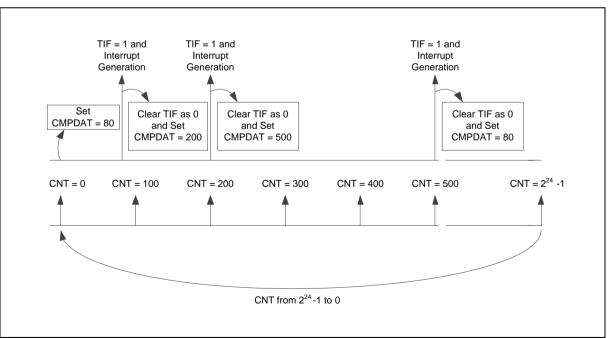


Figure 6.7-3 Continuous Counting Mode

6.7.6.7 Event Counting Mode

The timer controller also provides an application which can count the input event from TMx (x=0~3) pin and the number of event will reflect to CNT (TIMERx_CNT[23:0]) value. It is also called as event

counting function. In this function, EXTCNTEN (TIMERx_CTL[24]) should be set and the timer peripheral clock source should be set as PCLK.

If ECNTSSEL (TIMERx_EXTCTL[16]) is 0, the event counter source is from external TMx pin. User can enable or disable TMx pin de-bounce circuit by setting CNTDBEN (TIMERx_EXTCTL[7]). The input event frequency should be less than 1/3 PCLK if TMx pin de-bounce disabled or less than 1/8 PCLK if TMx pin de-bounce enabled to assure the returned CNT value is correct, and user can also select edge detection phase of TMx pin by setting CNTPHASE (TIMERx_EXTCTL[0]) bit.

In event counting mode, the timer counting operation mode can be selected as one-shot, periodic and continuous counting mode to counts the counter value CNT (TIMERx_CNT[23:0]) for TMx pin.

6.7.6.8 Capture Mode

The event capture function is used to load CNT (TIMERx_CNT[23:0]) value to CAPDAT (TIMERx_CAP[23:0]) value while edge transition detected on TMx_EXT (x= 0~3) pin, LIRC, or ACMP. In this mode, CAPFUNCS (TIMERx_EXTCTL[4]) should be as 0 to trigger event capture function and the timer peripheral clock source should be set as PCLK.

If CAPSRC (TIMERx_CTL[16]) is 0, the capture event is triggered by TMx_EXT pin transition. User can enable or disable TMx_EXT pin de-bounce circuit by setting CAPDBEN (TIMERx_EXTCTL[6]). The transition frequency of TMx_EXT pin should be less than 1/3 PCLK if TMx_EXT pin de-bounce disabled or less than 1/8 PCLK if TMx_EXT pin de-bounce enabled to assure the capture function can be work normally, and user can also select edge transition detection of TMx_EXT pin by setting CAPEDGE (TIMERx_EXTCTL[14:12]).

In event capture mode, if user did not consider what timer counting operation mode is selected, the capture event occurred only if edge transition on TMx_EXT pin is detected.

User can enable CAPIEN (TIMERx_EXTCTL[5]) to use capture interrupt fuction. When the TMx_EXT edge transition meets setting, CAPIF is high.

User must consider the Timer will keep register TIMERx_CAP unchanged and drop the new capture value, if the CPU does not clear the CAPIF status.

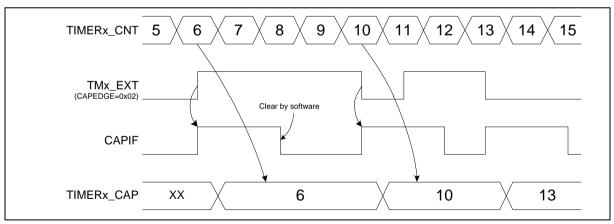


Figure 6.7-4 External Capture Mode

If CAPSRC (TIMERx_CTL[16]) is 1, set INTERCAPSEL (TIMERx_EXTCTL[10:8]) to choose different capture source. The capture event can be triggered by internal output signal transition on ACMP0 if INTERCAPSEL is 000, ACMP1 if INTERCAPSEL is 001, or LIRC if INTERCAPSEL is 101.

6.7.6.9 Reset Counter Mode

The timer controller also provides reset counter function to reset CNT (TIMERx_CNT[23:0]) value while capture event is generated. In this mode, CAPFUNCS (TIMERx_EXTCTL[4]) should be as 1. User must set CAPSRC and INTERCAPSEL to select TMx_EXT transition, internal ACMPx output signal, or LIRC

to trigger reset counter value.

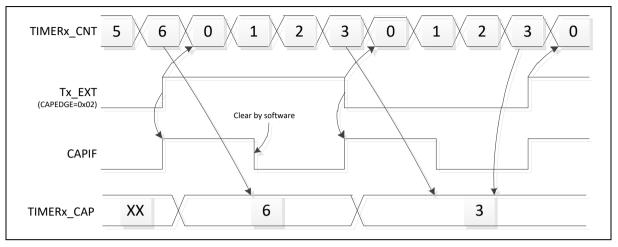


Figure 6.7-5 Reset Counter Mode

6.7.6.10 Timer Trigger Function

The timer controller provides timer time-out interrupt or capture interrupt to trigger PWM, DAC, ADC and PDMA. If TRGSSEL (TIMERx_CTL[18]) is 0, time-out interrupt signal is used to trigger PWM, DAC, ADC and PDMA. If TRGSSEL (TIMERx_CTL[18]) is 1, capture interrupt signal is used to trigger PWM, DAC, ADC and PDMA.

When the TRGPWM (TIMERx_CTL[19]) is set, if the timer interrupt signal is generated, the timer controller will generate a trigger pulse as PWM external clock source.

When the TRGDAC (TIMERx_CTL[20]) is set, if the timer interrupt signal is generated, the timer controller will trigger DAC to start converter.

When the TRGADC (TIMERx_CTL[21]) is set, if the timer interrupt signal is generated, the timer controller will trigger ADC to start converter.

When the TRGPDMA (TIMERx_CTL[8]) is set, if the timer interrupt signal is generated, the timer controller will trigger PDMA.

M0A21/M0A23 Series

nuvoTon

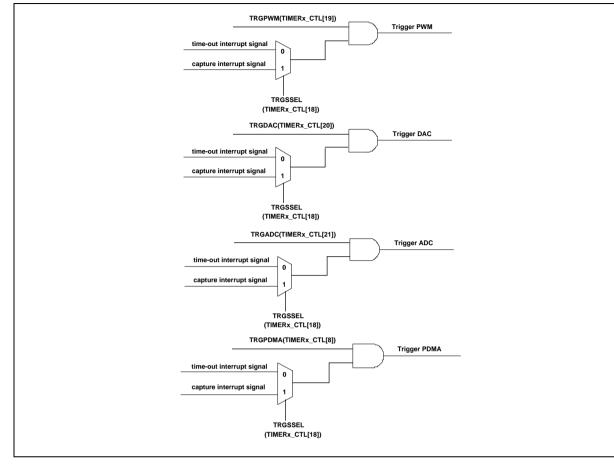


Figure 6.7-6 Internal Timer Trigger

6.7.6.11 Inter-Timer Trigger Capture Mode

In this mode, the Timer0/2 will be forced in event counting mode, counting with external event, and will generate an internal signal (INTR_TMR_TRG) to trigger Timer1/3 start or stop counting. Also, the Timer1/3 will be forced in capture mode and start/stop trigger-counting by Timer0/2 counter status.

When setting Timer0 Inter-timer Trigger Capture enabled, trigger-counting capture function is forced on Timer1. Setting Timer2 Inter-timer Trigger Capture enabled, trigger-counting capture function is forced on Timer3.

Start Trigger

While INTRGEN (TIMERx_CTL[10]) in Timer0/2 is set, the Timer0/2 will make a rising-edge transition of INTR_TMR_TRG while Timer0/2 24-bit counter value (CNT) is counting from 0x0 to 0x1 and Timer1/3 counter will start counting immediately and automatically.

Stop Trigger

When Timer0/2 CNT reaches the Timer0/2 CMPDAT value, the Timer0/2 will make a falling-edge transition of INTR_TMR_TRG. Then Timer0/2 counter mode function will be disabled and INTRGEN (TIMERx_CTL[10]) will be cleared by hardware then Timer1/3 will stop counting also. At the same time, the Timer1/3 CNT value will be saved into Timer1/3 CAPDAT (TIMERx_CAP[23:0]).

The inter-timer trigger mode can be used to measure the period of external event (TMx) more precisely. Figure 6.7-7 shows the sample flow of Inter-Timer Trigger Capture Mode for Timer0 as event counting mode and Timer1 as trigger-counting capture mode.

M0A21/M0A23 Series

nuvoTon

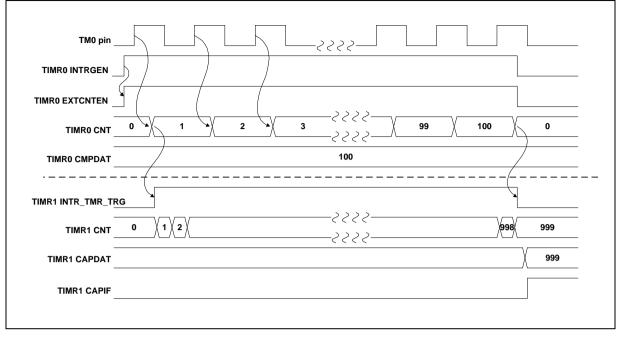


Figure 6.7-7 Inter-Timer Trigger Capture Timing

User must clear Timer1/3 CAPIF if user wants to use the second inter-timer trigger function.

6.7.6.12 Capture Single Measure Mode

When user sets CAPEN (TIMERx_EXTCTL[3]) = 1 and CASIGMEN(TIMERx_EXTCTL[20]) = 1, Timer will enter Single Meaure Mode. User can use timer to measure full period or half period. When user writes one to SIGST (TIMERx_EXTCTL[21]), timer will start to measure TMx_EXT. When timer detects edge finish, SIGST will be auto cleared by hardware and the measured value will be uploaded to Timer Capture Data Register. User can write one to SIGST to trigger timer measure again.

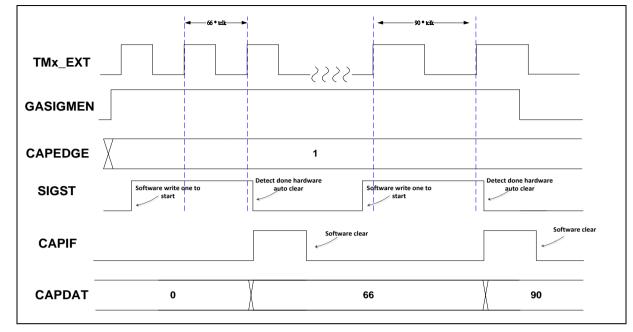


Figure 6.7-8 Capture Single Measure Mode

6.7.7 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
TIMER Base Address:				
TMR01_BA = 0x4005_00 TMR23_BA = 0x4005_10				
TIMER0_CTL	TMR01_BA+0x00	R/W	Timer0 Control Register	0x0000_0005
TIMER0_CMP	TMR01_BA+0x04	R/W	Timer0 Comparator Register	0x0000_0000
TIMER0_INTSTS	TMR01_BA+0x08	R/W	Timer0 Interrupt Status Register	0x0000_0000
TIMER0_CNT	TMR01_BA+0x0C	R	Timer0 Data Register	0x0000_0000
TIMER0_CAP	TMR01_BA+0x10	R	Timer0 Capture Data Register	0x0000_0000
TIMER0_EXTCTL	TMR01_BA+0x14	R/W	Timer0 External Control Register	0x0000_0000
TIMER0_EINTSTS	TMR01_BA+0x18	R/W	Timer0 External Interrupt Status Register	0x0000_0000
TIMER1_CTL	TMR01_BA+0x20	R/W	Timer1 Control Register	0x0000_0005
TIMER1_CMP	TMR01_BA+0x24	R/W	Timer1 Comparator Register	0x0000_0000
TIMER1_INTSTS	TMR01_BA+0x28	R/W	Timer1 Interrupt Status Register	0x0000_0000
TIMER1_CNT	TMR01_BA+0x2C	R	Timer1 Data Register	0x0000_0000
TIMER1_CAP	TMR01_BA+0x30	R	Timer1 Capture Data Register	0x0000_0000
TIMER1_EXTCTL	TMR01_BA+0x34	R/W	Timer1 External Control Register	0x0000_0000
TIMER1_EINTSTS	TMR01_BA+0x38	R/W	Timer1 External Interrupt Status Register	0x0000_0000
TIMER2_CTL	TMR23_BA+0x00	R/W	Timer2 Control Register	0x0000_0005
TIMER2_CMP	TMR23_BA+0x04	R/W	Timer2 Comparator Register	0x0000_0000
TIMER2_INTSTS	TMR23_BA+0x08	R/W	Timer2 Interrupt Status Register	0x0000_0000
TIMER2_CNT	TMR23_BA+0x0C	R	Timer2 Data Register	0x0000_0000
TIMER2_CAP	TMR23_BA+0x10	R	Timer2 Capture Data Register	0x0000_0000
TIMER2_EXTCTL	TMR23_BA+0x14	R/W	Timer2 External Control Register	0x0000_0000
TIMER2_EINTSTS	TMR23_BA+0x18	R/W	Timer2 External Interrupt Status Register	0x0000_0000
TIMER3_CTL	TMR23_BA+0x20	R/W	Timer3 Control Register	0x0000_0005
TIMER3_CMP	TMR23_BA+0x24	R/W	Timer3 Comparator Register	0x0000_0000
TIMER3_INTSTS	TMR23_BA+0x28	R/W	Timer3 Interrupt Status Register	0x0000_0000
TIMER3_CNT	TMR23_BA+0x2C	R	Timer3 Data Register	0x0000_0000
TIMER3_CAP	TMR23_BA+0x30	R	Timer3 Capture Data Register	0x0000_0000

TIMER3_EXTCTL	TMR23_BA+0x34	R/W	Timer3 External Control Register	0x0000_0000
TIMER3_EINTSTS	TMR23_BA+0x38	R/W	Timer3 External Interrupt Status Register	0x0000_0000

6.7.8 Register Description

Timer Control Register (TIMERx_CTL)

Register	Offset	R/W	Description	Reset Value
TIMER0_CTL	TMR01_BA+0x00	R/W	Timer0 Control Register	0x0000_0005
TIMER1_CTL	TMR01_BA+0x20	R/W	Timer1 Control Register	0x0000_0005
TIMER2_CTL	TMR23_BA+0x00	R/W	Timer2 Control Register	0x0000_0005
TIMER3_CTL	TMR23_BA+0x20	R/W	Timer3 Control Register	0x0000_0005

31	30	29	28	27	26	25	24		
ICEDEBUG	CNTEN	INTEN	OPM	ODE	RSTCNT	ACTSTS	EXTCNTEN		
23	22	21	20	19	18	17	16		
WKEN	TGLPINSEL	TRGADC	TRGDAC	TRGPWM	TRGSSEL	Reserved	CAPSRC		
15	14	13	12	11	10	9	8		
		Reserved			INTRGEN	Reserved	TRGPDMA		
7	6	5	4	3	2	1	0		
	PSC								

Bits	Description	
[31]	ICEDEBUG	ICE Debug Mode Acknowledge Disable Bit (Write Protect) 0 = ICE debug mode acknowledgement effects TIMER counting. TIMER counter will be held while CPU is held by ICE. 1 = ICE debug mode acknowledgement Disabled. TIMER counter will keep going no matter CPU is held by ICE or not. Note: This bit is write protected. Refer to the SYS_REGLCTL register.
[30]	CNTEN	 Timer Counting Enable Bit 0 = Stops/Suspends counting. 1 = Starts counting. Note 1: In stop status, and then setting CNTEN to 1 will enable the 24-bit up counter to keep counting from the last stop counting value. Note 2: This bit is auto-cleared by hardware in one-shot mode (TIMER_CTL[28:27] = 00) when the timer time-out interrupt flag TIF (TIMERx_INTSTS[0]) is generated. Note 3: Setting enable/disable this bit needs 2 * TMR_CLK period to become active. User can read ACTSTS (TIMERx_CTL[25]) to check enable/disable command is completed or not.
[29]	INTEN	Timer Interrupt Enable Bit 0 = Timer time-out interrupt Disabled. 1 = Timer time-out interrupt Enabled. Note: If this bit is enabled, when the timer time-out interrupt flag TIF is set to 1, the timer interrupt signal is generated and inform to CPU.
[28:27]	OPMODE	Timer Counting Mode Select 00 = The timer controller is operated in One-shot mode.

r		A The first state lie is second of a Devisit state of
		01 = The timer controller is operated in Periodic mode.
		10 = The timer controller is operated in Toggle-output mode.
		11 = The timer controller is operated in Continuous Counting mode.
[26]	RSTCNT	Timer Counter Reset Bit Setting this bit will reset the 24-bit up counter value CNT (TIMERx_CNT[23:0]) and also force CNTEN (TIMERx_CTL[30]) to 0 if ACTSTS (TIMERx_CTL[25]) is 1. 0 = No effect. 1 = Reset internal 8-bit prescale counter, 24-bit up counter value and CNTEN bit. Note: This bit will be auto cleared.
[25]	ACTSTS	Timer Active Status Bit (Read Only)This bit indicates the 24-bit up counter status.0 = 24-bit up counter is not active.1 = 24-bit up counter is active.Note: This bit may be active when CNT 0 transition to CNT 1.
[24]	EXTCNTEN	Event Counter Mode Enable Bit This bit is for external counting pin function enabled. 0 = Event counter mode Disabled. 1 = Event counter mode Enabled. Note 1: When timer is used as an event counter, this bit should be set to 1 and select PCLKx (x=0~1) as timer clock source. Note 2: When TMR0/TMR2 INTRGEN is set to 1, this bit is forced to 1. When INTRGEN is 1 and TMR1/TMR3 CAPIF (TIMERx_EINTSTS[0]) is 1, this bit is forced to 0.
[23]	WKEN	Wake-up Function Enable Bit If this bit is set to 1, while timer interrupt flag TIF (TIMERx_INTSTS[0]) is 1 and INTEN (TIMERx_CTL[29]) is enabled, the timer interrupt signal will generate a wake-up trigger event to CPU. 0 = Wake-up function Disabled if timer interrupt signal generated. 1 = Wake-up function Enabled if timer interrupt signal generated.
[22]	TGLPINSEL	Toggle-output Pin Select 0 = Toggle mode output to Tx (Timer Event Counter Pin). 1 = Toggle mode output to Tx_EXT (Timer External Capture Pin).
[21]	TRGADC	 Trigger ADC Enable Bit If this bit is set to 1, timer time-out interrupt or capture interrupt can trigger ADC. 0 = Timer interrupt trigger ADC Disabled. 1 = Timer interrupt trigger ADC Enabled. Note: If TRGSSEL (TIMERx_CTL[18]) = 0, time-out interrupt signal will trigger ADC. If TRGSSEL (TIMERx_CTL[18]) = 1, capture interrupt signal will trigger ADC.
[20]	TRGDAC	 Trigger DAC Enable Bit If this bit is set to 1, timer time-out interrupt or capture interrupt can trigger DAC. 0 = Timer interrupt trigger DAC Disabled. 1 = Timer interrupt trigger DAC Enabled. Note: If TRGSSEL (TIMERx_CTL[18]) = 0, time-out interrupt signal will trigger DAC. If TRGSSEL (TIMERx_CTL[18]) = 1, capture interrupt signal will trigger DAC.
[19]	TRGPWM	 Trigger PWM Enable Bit If this bit is set to 1, timer time-out interrupt or capture interrupt can trigger PWM. 0 = Timer interrupt trigger PWM Disabled. 1 = Timer interrupt trigger PWM Enabled. Note: If TRGSSEL (TIMERx_CTL[18]) = 0, time-out interrupt signal will trigger PWM.

		If TRGSSEL (TIMERx_CTL[18]) = 1, capture interrupt signal will trigger PWM.
[18]	TRGSSEL	 Trigger Source Select Bit This bit is used to select trigger source is from Timer time-out interrupt signal or capture interrupt signal. 0 = Timer time-out interrupt signal is used to trigger PWM, DAC, ADC and PDMA. 1 = Capture interrupt signal is used to trigger PWM, DAC, ADC and PDMA.
[17]	Reserved	Reserved.
[16]	CAPSRC	Capture Pin Source Selection 0 = Capture Function source is from TMx_EXT (x= 0~3) pin. 1 = Capture Function source is from internal ACMP output signal or LIRC. User can set INTERCAPSEL (TIMERx_EXTCTL[10:8]) to decide which internal ACMP output signal or LIRC is timer capture source.
[15:11]	Reserved	Reserved.
[10]	INTRGEN	Inter-timer Trigger Mode Enable Bit Setting this bit will enable the inter-timer trigger capture function. The Timer0/2 will be in event counter mode and counting with external clock source or event. Also, Timer1/3 will be in trigger-counting mode of capture function. 0 = Inter-Timer Trigger mode Disabled. 1 = Inter-Timer Trigger mode Enabled. Note: For Timer1/3, this bit is ignored and the read back value is always 0.
[9]	Reserved	Reserved.
[8]	TRGPDMA	Trigger PDMA Enable Bit If this bit is set to 1, timer time-out interrupt or capture interrupt can trigger PDMA. 0 = Timer interrupt trigger PDMA Disabled. 1 = Timer interrupt trigger PDMA Enabled. Note: If TRGSSEL (TIMERx_CTL[18]) = 0, time-out interrupt signal will trigger PDMA. If TRGSSEL (TIMERx_CTL[18]) = 1, capture interrupt signal will trigger PDMA.
[7:0]	PSC	Prescale Counter Timer input clock or event source is divided by (PSC+1) before it is fed to the timer up counter. If this field is 0 (PSC = 0), then there is no scaling. Note: Updating prescale counter value will reset internal 8-bit prescale counter and 24-bit up counter value.

Timer Comparator Register (TIMERx_CMP)

Register Offset		R/W	Description	Reset Value	
TIMER0_CMP	TMR01_BA+0x04	R/W	Timer0 Comparator Register	0x0000_0000	
TIMER1_CMP	TMR01_BA+0x24	R/W	Timer1 Comparator Register	0x0000_0000	
TIMER2_CMP	TMR23_BA+0x04	R/W	Timer2 Comparator Register	0x0000_0000	
TIMER3_CMP	TMR23_BA+0x24	R/W	Timer3 Comparator Register	0x0000_0000	

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	CMPDAT									
15	14	13	12	11	10	9	8			
	CMPDAT									
7	6	5	4	3	2	1	0			
	CMPDAT									

Bits	Descriptio	n						
[31:24]	Reserved	Reserved.						
[23:0]	CMPDAT	Timer Comparator Value CMPDAT is a 24-bit compared value register. When the internal 24-bit up counter value is equal to CMPDAT value, the TIF (TIMERx_INTSTS[0] Timer Interrupt Flag) will set to 1. Time-out period = (Period of timer clock input) * (8-bit PSC + 1) * (24-bit CMPDAT). Note 1: Never write 0x0 or 0x1 in CMPDAT field, or the core will run into unknown state. Note 2: When timer is operating at continuous counting mode, the 24-bit up counter will keep counting continuously even if user writes a new value into CMPDAT field. But if timer is operating at other modes, the 24-bit up counter will restart counting from 0 and using the newest CMPDAT value to be the timer compared value while user writes a new value into CMPDAT field.						

Timer Interrupt Status Register (TIMERx_INTSTS)

Register	Offset	R/W	Description	Reset Value
TIMER0_INTSTS	TMR01_BA+0x08	R/W	Timer0 Interrupt Status Register	0x0000_0000
TIMER1_INTSTS	TMR01_BA+0x28	R/W	Timer1 Interrupt Status Register	0x0000_0000
TIMER2_INTSTS	TMR23_BA+0x08	R/W	Timer2 Interrupt Status Register	0x0000_0000
TIMER3_INTSTS	TMR23_BA+0x28	R/W	Timer3 Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
		TWKF	TIF						

Bits	Descriptio	n
[31:2]	Reserved	Reserved.
[1]	ТWKF	 Timer Wake-up Flag This bit indicates the interrupt wake-up flag status of timer. 0 = Timer does not cause CPU wake-up. 1 = CPU wake-up from Idle or Power-down mode if timer time-out interrupt signal generated. Note: This bit is cleared by writing 1 to it.
[0]	TIF	Timer Interrupt Flag This bit indicates the interrupt flag status of Timer while 24-bit timer up counter CNT (TIMERx_CNT[23:0]) value reaches CMPDAT (TIMERx_CMP[23:0]) value. 0 = No effect. 1 = CNT value matches the CMPDAT value. Note: This bit is cleared by writing 1 to it.

Timer Data Register (TIMERx_CNT)

Register	Offset	R/W	Description	Reset Value
TIMER0_CNT	TMR01_BA+0x0C	R	Timer0 Data Register	0x0000_0000
TIMER1_CNT	TMR01_BA+0x2C	R	Timer1 Data Register	0x0000_0000
TIMER2_CNT	TMR23_BA+0x0C	R	Timer2 Data Register	0x0000_0000
TIMER3_CNT	TMR23_BA+0x2C	R	Timer3 Data Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	CNT									
15	14	13	12	11	10	9	8			
	CNT									
7	6	5	4	3	2	1	0			
	СNT									

Bits	Descriptio	escription							
[31:24]	Reserved	erved Reserved.							
[23:0]	CNT	Timer Data Register Read this register to get CNT value. For example: If EXTCNTEN (TIMERx_CTL[24]) is 0, user can read CNT value for getting current 24-bit counter value. If EXTCNTEN (TIMERx_CTL[24]) is 1, user can read CNT value for getting current 24-bit event input counter value.							

Timer Capture Data Register (TIMERx_CAP)

Register Offset R/W Description		Reset Value		
TIMER0_CAP	TMR01_BA+0x10	R	Timer0 Capture Data Register	0x0000_0000
TIMER1_CAP	TMR01_BA+0x30	R	Timer1 Capture Data Register	0x0000_0000
TIMER2_CAP	TMR23_BA+0x10	R	Timer2 Capture Data Register	0x0000_0000
TIMER3_CAP	TMR23_BA+0x30	R	Timer3 Capture Data Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			CAP	DAT				
15	14	13	12	11	10	9	8	
			CAP	DAT				
7	6	5	4	3	2	1	0	
			CAP	DAT				

Bits	Descriptio	Description						
[31:24]	Reserved	Reserved.						
[23:0]	CAPDAT	Timer Capture Data Register When CAPEN (TIMERx_EXTCTL[3]) bit is set, and a transition on TMx_EXT pin matched the CAPEDGE (TIMERx_EXTCTL[14:12]) setting, CAPIF (TIMERx_EINTSTS[0]) will set to 1 and the current timer counter value CNT (TIMERx_CNT[23:0]) will be auto-loaded into this CAPDAT field.						

Timer External Control Register (TIMERx_EXTCTL)

Register	Offset	R/W	Description Reset Val		
TIMER0_EXTCTL	TMR01_BA+0x14	R/W	Timer0 External Control Register	0x0000_0000	
TIMER1_EXTCTL	TMR01_BA+0x34	R/W	Timer1 External Control Register	0x0000_0000	
TIMER2_EXTCTL	TMR23_BA+0x14	R/W	Timer2 External Control Register	0x0000_0000	
TIMER3_EXTCTL	TMR23_BA+0x34	R/W	Timer3 External Control Register	0x0000_0000	

31	30	29	28	27	26	25	24
Re				erved			
23	22	21	20	19	18	17	16
Reserved SIGST CASIC		CASIGMEN		ECNTSSEL			
15	14	13	12	11	10	9	8
Reserved	Reserved CAPEDGE		Reserved		INTERCAPSEL		
7	6	5	4	3	2	1	0
CNTDBEN	CAPDBEN	CAPIEN	CAPFUNCS	CAPEN	Rese	erved	CNTPHASE

Bits	Description	
[31:22]	Reserved	Reserved.
[21]	SIGST	Single Measure Start Bit User can write 1'b1 to this bit to let timer start measure TMx_EXT pin. When capture measure event finishes this bit will auto clear by hardware.
[20]	CASIGMEN	Capture Single Measure Mode Enable Bit Enable Single Pulse Mode function, user can write one to SIGST that can start measure full period or half period on TMx_EXT(x=0~3),. 0 = Single Measure Mode Disabled. 1 = Single Measure Mode Enabled. Note: these bits only available when CAPEN (TIMERx_EXTCTL[3]) is 1.
[19:17]	Reserved	Reserved.
[16]	ECNTSSEL	Event Counter Source Selection to Trigger Event Counter Function 0 = Event Counter input source is from TMx (x= 0~3) pin. 1 = Reserved.
[15]	Reserved	Reserved.
[14:12]	CAPEDGE	Timer External Capture Pin Edge Detect When first capture event is generated, the CNT (TIMERx_CNT[23:0]) will be reset to 0 and first CAPDAT (TIMERx_CAP[23:0]) will be set to 0. Disable Single Pulse Mode : 000 = Capture event occurred when detect falling edge transfer on TMx_EXT (x= 0~3) pin. 001 = Capture event occurred when detect rising edge transfer on TMx_EXT (x= 0~3) pin. 010 = Capture event occurred when detect both falling and rising edge transfer on TMx_EXT (x= 0~3) pin.

1	1	
		pin, and first capture event occurred at falling edge transfer.
		011 = Capture event occurred when detect both rising and falling edge transfer on TMx_EXT (x= 0~3) pin, and first capture event occurred at rising edge transfer.
		110 = First capture event occurred at falling edge, follows capture events are at rising edge transfer on TMx_EXT ($x= 0$ ~3) pin.
		111 = First capture event occurred at rising edge, follows capture events are at falling edge transfer on TMx_EXT ($x = 0 - 3$) pin.
		100, 101 = Reserved.
		Enable Single Pulse Mode:
		000 = Measure falling edge \rightarrow falling edge transfer on TMx_EXT (x= 0~3) pin.
		001 = Measure rising edge → rising edge transfer on TMx_EXT (x= 0~3) pin.
		110 = Measure falling edge \rightarrow rising edge transfer on TMx_EXT (x= 0~3) pin.
		111 = Measure rising edge → falling edge transfer on TMx_EXT (x= 0~3) pin.
		010, 011, 100, 101 = Reserved.
[11]	Reserved	Reserved.
		Internal Capture Source Selection to Trigger Capture Function
		000 = Capture Function source is from internal ACMP0 output signal.
[10.0]	INTERCAPSEL	001 = Capture Function source is from internal ACMP1 output signal.
[10:8]	INTERCAPSEL	101 = Capture Function source is from LIRC.
		Others = Reserved.
		Note: these bits only available when CAPSRC (TIMERx_CTL[16]) is 1.
		Timer Counter Pin De-bounce Enable Bit
[7]	CNTDBEN	$0 = TMx (x = 0 \sim 3)$ pin de-bounce Disabled.
[,]	011122211	1 = TMx (x= 0~3) pin de-bounce Enabled.
		Note: If this bit is enabled, the edge detection of TMx pin is detected with de-bounce circuit.
		Timer External Capture Pin De-bounce Enable Bit
		$0 = TMx_EXT$ (x= 0~3) pin de-bounce or ACMP output de-bounce Disabled.
[6]	CAPDBEN	1 = TMx_EXT (x= $0 \sim 3$) pin de-bounce or ACMP output de-bounce Enabled.
		Note: If this bit is enabled, the edge detection of TMx_EXT pin or ACMP output is detected with de- bounce circuit.
		Timer External Capture Interrupt Enable Bit
		$0 = TMx_EXT$ (x= 0~3) pin, LIRC, or ACMP detection Interrupt Disabled.
		1 = TMx_EXT (x= $0 \sim 3$) pin, LIRC, or ACMP detection Interrupt Enabled.
[5]	CAPIEN	Note: CAPIEN is used to enable timer external interrupt. If CAPIEN enabled, timer will rise an interrupt when CAPIF (TIMERx_EINTSTS[0]) is 1.
		For example, while CAPIEN = 1, CAPEN = 1, and CAPEDGE = 00, a 1 to 0 transition on the Tx_EXT ($x=0~3$) pin, or ACMP will cause the CAPIF to be set then the interrupt signal is generated and sent to NVIC to inform CPU.
		Capture Function Selection
		0 = External Capture Mode Enabled.
r 41		1 = External Reset Mode Enabled.
[4]	CAPFUNCS	Note 1: When CAPFUNCS is 0, transition on TMx_EXT (x= 0~3) pin is using to save current 24-bit timer counter value (CNT value) to CAPDAT field.
		Note 2: When CAPFUNCS is 1, transition on TMx_EXT (x= 0~3) pin is using to save current 24-bit timer counter value (CNT value) to CAPDAT field then CNT value will be reset immediately.
		Timer Capture Enable Bit
[3]		This bit enables the capture input function.
[3]	CAPEN	This bit enables the capture input function. 0 =Capture source Disabled.

		Note: TMR1/TMR3 CAPEN will be forced to 1 when TMR0/TMR2 INTRGEN is enabled.
[2:1]	Reserved	Reserved.
		Timer External Count Phase
[0]	0.1701405	This bit indicates the detection phase of external counting pin TMx ($x=0~3$).
[0]	CNTPHASE	0 = A falling edge of external counting pin will be counted.
		1 = A rising edge of external counting pin will be counted.

Timer External Interrupt Status Register (TIMERx_EINTSTS)

Register Offset R/W		R/W	Description	Reset Value
TIMER0_EINTSTS	TMR01_BA+0x18	R/W	Timer0 External Interrupt Status Register	0x0000_0000
TIMER1_EINTSTS	TMR01_BA+0x38	R/W	Timer1 External Interrupt Status Register	0x0000_0000
TIMER2_EINTSTS	TMR23_BA+0x18	R/W	Timer2 External Interrupt Status Register	0x0000_0000
TIMER3_EINTSTS	TMR23_BA+0x38	R/W	Timer3 External Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved								

Bits	Descriptio	tion							
[31:1]	Reserved	eserved.							
[0]	CAPIF	Timer External Capture Interrupt Flag This bit indicates the timer external capture interrupt flag status. 0 = TMx_EXT (x= 0~3) pin interrupt did not occur. 1 = TMx_EXT (x= 0~3) pin interrupt occurred. Note 1: This bit is cleared by writing 1 to it. Note 2: When CAPEN (TIMERx_EXTCTL[3]) bit is set and a transition on Tx_EXT (x= 0~3) pin matched the CAPEDGE (TIMERx_EXTCTL[14:12]) setting, this bit will set to 1 by hardware. Note 3: There is a new incoming capture event detected before CPU clearing the CAPIF status. If the above condition occurred, the Timer will keep register TIMERx_CAP unchanged and drop the new capture value.							

6.8 Watchdog Timer (WDT)

6.8.1 Overview

The Watchdog Timer (WDT) is used to perform a system reset when system runs into an unknown state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog Timer supports the function to wake up system from Idle/Power-down mode.

6.8.2 Features

- 20-bit free running up counter for WDT time-out interval
- Selectable time-out interval (2⁴ ~ 2²⁰) and the time-out interval is 416us ~ 27.3 s if WDT_CLK = 38.4 kHz (LIRC).
- System kept in reset state for a period of (1 / WDT_CLK) * 63
- Supports selectable WDT reset delay period, including 1026, 130, 18 or 3 WDT_CLK reset delay period
- Supports to force WDT enabled after chip powered on or reset by setting CWDTEN[2:0] in Config0 register
- Supports WDT time-out wake-up function only if WDT clock source is selected as LIRC or LXT.

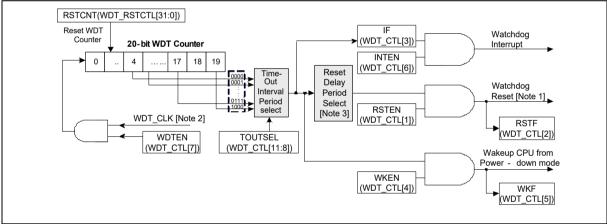


Figure 6.8-1 Watchdog Timer Block Diagram

Note1: WDT resets CPU and lasts 63 WDT_CLK.

Note2: Chip can be woken up by WDT time-out interrupt signal generated only if WDT clock source is selected to LIRC or LXT.

Note3: The WDT reset delay period can be selected as 3/18/130/1026 WDT_CLK.

6.8.4 Basic Configuration

- Clock Source Configuration
 - Select the source of WDT peripheral clock on WDTSEL (CLK_CLKSEL1[1:0])
 - Enable WDT peripheral clock in WDTCKEN (CLK_APBCLK0[0]).
 - Force enable WDT controller after chip powered on or reset in CWDTEN[2:0] (CWDTEN[2] is Config0[31], CWDTEN[1:0] is Config0[4:3])

WDT clock source can be changed only if CWDTEN[2:0] is 111.

The WDT clock control is shown in Figure 6.8-2.

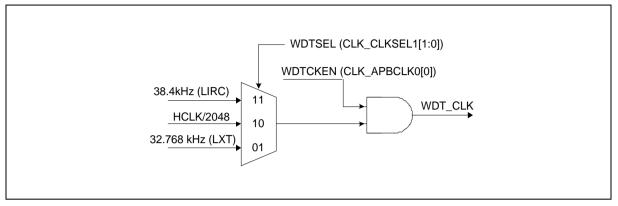
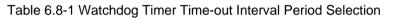


Figure 6.8-2 Watchdog Timer Clock Control

6.8.5 Functional Description

The WDT includes an 20-bit free running up counter with programmable time-out intervals. Table 6.8-1 shows the WDT time-out interval period selection and Figure 6.8-3 shows the WDT time-out interval and reset period timing.


6.8.5.1 WDT Time-out Interrupt

Setting WDTEN (WDT_CTL[7]) to 1 will enable the WDT function and the WDT counter to start counting up. The SYNC (WDT_CTL[30]) can be indicated whether enable/disable WDTEN function is completed or not. There are eight time-out interval period can be selected by setting TOUTSEL (WDT_CTL[11:8]). When the WDT up counter reaches the TOUTSEL (WDT_CTL[11:8]) settings, WDT time-out interrupt will occur then WDT time-out interrupt flag IF (WDT_CTL[3]) will be set to 1 immediately. If INTEN (WDT_CTL[6]) is enabled, WDT time-out interrupt will inform CPU.

6.8.5.2 WDT Reset Delay Period and Reset System

There is a specified T_{RSTD} reset delay period follows the IF (WDT_CTL[3]) is setting to 1. User should set WDT_RSTCNT to reset the 20-bit WDT up counter value to avoid generate WDT time-out reset signal before the T_{RSTD} reset delay period expires. Moreover, user should set RSTDSEL (WDT_ALTCTL [1:0]) to select reset delay period to clear WDT counter. If the WDT up counter value has not been cleared after the specific T_{RSTD} delay period expires, the WDT control will set RSTF (WDT_CTL[2]) to 1 if RSTEN (WDT_CTL[1]) bit is enabled, then chip enters reset state immediately. Refer to Figure 6.8-3. T_{RST} reset period will keep last 63 WDT clocks then chip restart executing program from reset vector (0x0000_0000). The RSTF (WDT_CTL[2]) will keep 1 after WDT time-out resets the chip, user can check RSTF (WDT_CTL[2]) by software to recognize the system has been reset by WDT time-out reset or not.

TOUTSEL	Time-Out Interval Period T _{TIS}	Reset Delay Period T _{RSTD}
000	2 ⁴ * T _{WDT}	(3/18/130/1026) * T _{WDT}
001	2 ⁶ * T _{WDT}	(3/18/130/1026) * T _{WDT}
010	2 ⁸ * T _{WDT}	(3/18/130/1026) * T _{WDT}
011	2 ¹⁰ * T _{WDT}	(3/18/130/1026) * T _{WDT}
100	2 ¹² * T _{WDT}	(3/18/130/1026) * T _{WDT}
101	2 ¹⁴ * T _{WDT}	(3/18/130/1026) * T _{WDT}
110	2 ¹⁶ * T _{WDT}	(3/18/130/1026) * T _{WDT}
111	2 ¹⁸ * T _{WDT}	(3/18/130/1026) * T _{WDT}
1000	2 ^{20*} T _{WDT}	(3/18/130/1026) * T _{WDT}

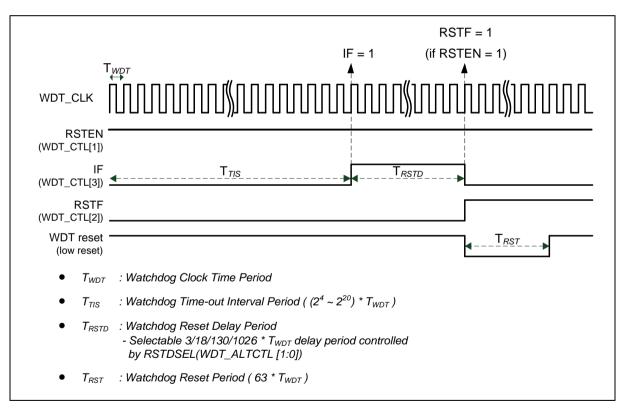


Figure 6.8-3 Watchdog Timer Time-out Interval and Reset Period Timing

6.8.5.3 WDT Wake-up

If WDT clock source is selected to LIRC or LXT, system can be woken up from Power-down mode while WDT time-out interrupt signal is generated and WKEN (WDT_CTL[4]) enabled. Note that user should set LXTEN (CLK_PWRCTL [1]) or LIRCEN (CLK_PWRCTL [3]) to select clock source before system enters Power-down mode because the system peripheral clock are disabled when system is in Power-down mode. In the meanwhile, the WKF (WDT_CTL[5]) will be set to 1 automatically, and user can check WKF (WDT_CTL[5]) status by software to recognize the system has been woken up by WDT time-out interrupt or not.

6.8.5.4 WDT ICE Debug

When ICE is connected to MCU, WDT counter is counting or not by ICEDEBUG (WDT_CTL[31]). The default value of ICEDEBUG is 0, WDT counter will stop counting when CPU is held by ICE. If ICEDEBUG is set to 1, WDT counter will keep counting no matter CPU is held by ICE or not.

6.8.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value		
WDT Base Address: WDT_BA = 0x4004_0000						
WDT_CTL WDT_BA+0x00 R/		R/W	WDT Control Register	0x0000_0800		
WDT_ALTCTL WDT_BA+0x04 R/		R/W	WDT Alternative Control Register	0x0000_0000		
WDT_RSTCNT WDT_BA+0x08		W	WDT Reset Counter Register	0x0000_0000		

6.8.7 Register Description

WDT Control Register (WDT_CTL)

Register	Offset	R/W	Description	Reset Value	
WDT_CTL	WDT_BA+0x00	R/W	WDT Control Register	0x0000_0800	

31	30	29	28	27	26	25	24	
ICEDEBUG	SYNC			Reserved				
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
Reserved				TOUTSEL				
7	6	5	4	3	2	1	0	
WDTEN	INTEN	WKF	WKEN	IF	RSTF	RSTEN	Reserved	

Bits	Description								
		ICE Debug Mode Acknowledge Disable Bit (Write Protect)							
		0 = ICE debug mode acknowledgement affects WDT counting.							
[04]	ICEDEBUG	WDT up counter will be held while CPU is held by ICE.							
[31]	ICEDEBUG	1 = ICE debug mode acknowledgement Disabled.							
		WDT up counter will keep going no matter CPU is held by ICE or not.							
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.							
		WDT Enable Control SYNC Flag Indicator (Read Only)							
ra a1		If user executes enable/disable WDTEN (WDT_CTL[7]), this flag can be indicated enable/disable WDTEN function is completed or not.							
[30]	SYNC	0 = Set WDTEN bit is completed.							
		1 = Set WDTEN bit is synchronizing and not become active yet.							
		Note: Performing enable or disable WDTEN bit needs 2 * WDT_CLK period to become active.							
[29:12]	Reserved	Reserved.							
		WDT Time-out Interval Selection (Write Protect)							
		These four bits select the time-out interval period for the WDT.							
		$0000 = 2^4 * WDT_CLK.$							
		0001 = 2 ⁶ * WDT_CLK.							
		0010 = 2 ⁸ * WDT_CLK.							
[11:8]	TOUTSEL	0011 = 2 ¹⁰ * WDT_CLK.							
[11.0]	TOUTSEE	$0100 = 2^{12} * WDT_CLK.$							
		$0101 = 2^{14} * WDT_CLK.$							
		$0110 = 2^{16} * WDT_CLK.$							
		0111 = 2 ¹⁸ * WDT_CLK.							
		$1000 = 2^{20} * WDT_CLK.$							
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.							
[7]	WDTEN	WDT Enable Bit (Write Protect)							

		0 = WDT Disabled (This action will reset the internal up counter value).
		1 = WDT Enabled.
		Note 1: This bit is write protected. Refer to the SYS_REGLCTL register.
		Note 2: If CWDTEN[2:0] (combined by Config0[31] and Config0[4:3]) bits is not configured to 111, this bit is forced as 1 and user cannot change this bit to 0.
		WDT Time-out Interrupt Enable Bit (Write Protect)
		If this bit is enabled, the WDT time-out interrupt signal is generated and inform to CPU.
[6]	INTEN	0 = WDT time-out interrupt Disabled.
		1 = WDT time-out interrupt Enabled.
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.
		WDT Time-out Wake-up Flag (Write Protect)
		This bit indicates the interrupt wake-up flag status of WDT
[5]	WKF	0 = WDT does not cause chip wake-up.
[0]		1 = Chip wake-up from Idle or Power-down mode if WDT time-out interrupt signal generated.
		Note 1: This bit is write protected. Refer to the SYS_REGLCTL register.
		Note 2: This bit is cleared by writing 1 to it.
		WDT Time-out Wake-up Function Control (Write Protect)
		If this bit is set to 1, while WDT time-out interrupt flag IF (WDT_CTL[3]) is generated to 1 and interrupt enable
		bit INTEN (WDT_CTL[6]) is enabled, the WDT time-out interrupt signal will generate a wake-up trigger event to chip.
[4]	WKEN	0 = Wake-up trigger event Disabled if WDT time-out interrupt signal generated.
[4]	WKEN	1 = Wake-up trigger event Enabled if WDT time-out interrupt signal generated.
		Note 1: This bit is write protected. Refer to the SYS_REGLCTL register.
		Note 2: Chip can be woken up by WDT time-out interrupt signal generated only if WDT clock source is
		selected to 38.4 kHz internal low speed RC oscillator (LIRC) or LXT.
		WDT Time-out Interrupt Flag
		This bit will set to 1 while WDT up counter value reaches the selected WDT time-out interval
[3]	IF	0 = WDT time-out interrupt did not occur.
		1 = WDT time-out interrupt occurred.
		Note: This bit is cleared by writing 1 to it.
		WDT Time-out Reset Flag
		This bit indicates the system has been reset by WDT time-out reset or not.
[2]	RSTF	0 = WDT time-out reset did not occur.
		1 = WDT time-out reset occurred.
		Note: This bit is cleared by writing 1 to it.
		WDT Time-out Reset Enable Bit (Write Protect)
		Setting this bit will enable the WDT time-out reset function If the WDT up counter value has not been cleared after the specific WDT reset delay period expires.
[1]	RSTEN	0 = WDT time-out reset function Disabled.
		1 = WDT time-out reset function Enabled.
		Note: This bit is write protected. Refer to the SYS_REGLCTL register.
[0]	Reserved	Reserved.
L		1

WDT Alternative Control Register (WDT_ALTCTL)

Register	Offset	R/W	Description	Reset Value	
WDT_ALTCTL	WDT_ALTCTL WDT_BA+0x04		WDT Alternative Control Register	0x0000_0000	

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
		RSTI	DSEL					

Bits	Descriptio	n								
[31:2]	Reserved	served.								
[1:0]		WDT Reset Delay Selection (Write Protect) When WDT time-out happened, user has a time named WDT Reset Delay Period to clear WDT counter by writing 0x00005aa5 to RSTCNT (WDT_RSTCNT[31:0]) to prevent WDT time-out reset happened. User can select a suitable setting of RSTDSEL for different WDT Reset Delay Period. 00 = WDT Reset Delay Period is 1026 * WDT_CLK. 01 = WDT Reset Delay Period is 130 * WDT_CLK. 10 = WDT Reset Delay Period is 18 * WDT_CLK. 11 = WDT Reset Delay Period is 3 * WDT_CLK.								
		Note 1: This bit is write protected. Refer to the SYS_REGLCTL register. Note 2: This register will be reset to 0 if WDT time-out reset happened.								

WDT Reset Counter Register (WDT_RSTCNT)

Register	ister Offset I			R/W	Desc	Description			Reset Value	
WDT_RSTCNT		WDT_	BA+0x08	W	WDT	Reset Counter	Register		0x0000_0000	
31	30		29	28		27	26	25		24
					RST	CNT				
23	22	21		20	19		18	17		16
					RST	CNT				
15	14		13	12		11	10	9		8
					RST	CNT				
7	7 6 5 4 3 2 1 0					0				
	RSTCNT									

Bits	Description								
[31:0]		WDT Reset Counter Register							
[31.0]		Writing 0x00005AA5 to this field will reset the internal 20-bit WDT up counter value to 0. Note: Performing RSTCNT to reset counter needs 2 * WDT_CLK period to become active.							

6.9 Window Watchdog Timer (WWDT)

6.9.1 Overview

The Window Watchdog Timer (WWDT) is used to perform a system reset within a specified window period to prevent software run to uncontrollable status by any unpredictable condition.

6.9.2 Features

- 6-bit down counter value (CNTDAT, WWDT_CNT[5:0]) and 6-bit compare value (CMPDAT, WWDT_CTL[21:16]) to make the WWDT time-out window period flexible
- Supports 4-bit value (PSCSEL, WWDT_CTL[11:8]) to programmable maximum 11-bit prescale counter period of WWDT counter
- WWDT counter suspends in Idle/Power-down mode

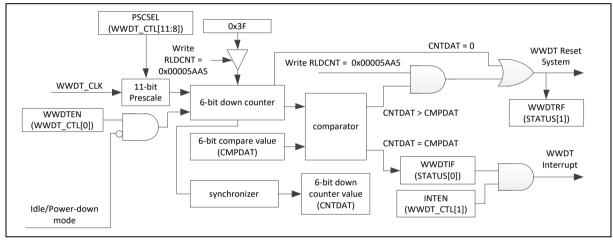
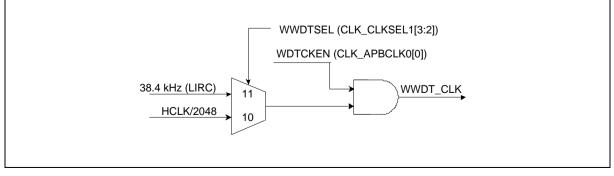



Figure 6.9-1 WWDT Block Diagram

6.9.4 Basic Configuration

- Clock Source Configuration
 - Select the source of WWDT peripheral clock on WWDTSEL (CLK_CLKSEL1[31:30])
 - Enable WWDT peripheral clock in WDTCKEN (CLK_APBCLK0[0]).

The WWDT clock control is shown in Figure 6.9-2.

6.9.5 Functional Description

The WWDT includes a 6-bit down counter with programmable prescale value to define different WWDT time-out intervals. The clock source of 6-bit WWDT is based on system clock divide 2048 (HCLK/2048) or 38.4 kHz internal low speed RC oscillator (LIRC) with a programmable 11-bit prescale counter value which controlled by PSCSEL (WWDT_CTL[11:8]). Also, the correlate of PSCSEL (WWDT_CTL[11:8]) and prescale value are listed in Table 6.9-1.

PSCSEL	Prescaler Value	Max. Time-Out Period	Max. Time-Out Interval (WWDT_CLK=38.4 kHz)
0000	1	1 * 64 * T _{WWDT}	1.666667 ms
0001	2	2 * 64 * T _{WWDT}	3.33333 ms
0010	4	4 * 64 * T _{WWDT}	6.6667 ms
0011	8	8 * 64 * T _{WWDT}	13.333 ms
0100	16	16 * 64 * T _{WWDT}	26.667 ms
0101	32	32 * 64 * T _{WWDT}	53.333 ms
0110	64	64 * 64 * T _{WWDT}	106.66 ms
0111	128	128 * 64 * T _{WWDT}	213.33 ms
1000	192	192 * 64 * T _{WWDT}	320 ms
1001	256	256 * 64 * T _{WWDT}	426.66 ms
1010	384	384 * 64 * T _{WWDT}	640 ms
1011	512	512 * 64 * T _{WWDT}	853.33 ms
1100	768	768 * 64 * T _{WWDT}	1.28 s
1101	1024	1024 * 64 * T _{WWDT}	1.706 s
1110	1536	1536 * 64 * T _{WWDT}	2.56 s
1111	2048	2048 * 64 * T _{WWDT}	3.413 s

Table 6.9-1 WWDT Prescaler Value Selection

6.9.5.1 WWDT Counting

When the WWDTEN (WWDT_CTL[0]) is set, WWDT down counter will start counting from 0x3F to 0. To prevent program runs to disable WWDT counter counting unexpected, the WWDT_CTL register can only be written once after chip is powered on or reset. User cannot disable WWDT counter counting (WWDTEN), change counter prescale period (PSCSEL) or change window compare value (CMPDAT) while WWDTEN (WWDT_CTL[0]) has been enabled by user unless chip is reset.

To avoid the system is reset while CPU clock is disabled, the WWDT counter will stop counting when CPU enters Idle/Power-down mode. After CPU enters normal mode, the WWDT counter will start down counting.

6.9.5.2 WWDT Compare Match Interrupt

During down counting by the WWDT counter, the WWDTIF (WWDT_STATUS[0]) is set to 1 while the WWDT counter value (CNTDAT) is equal to window compare value (CMPDAT) and WWDTIF can be cleared by user; if INTEN (WWDT_CTL[1]) is also set to 1 by user, the WWDT compare match interrupt signal is generated also while WWDTIF is set to 1 by hardware.

6.9.5.3 WWDT Reset System

Figure 6.9-3 shows three cases of WWDT reset and reload behavior.

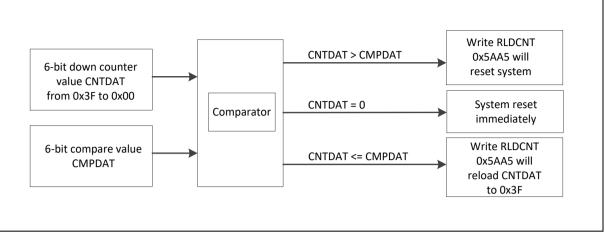
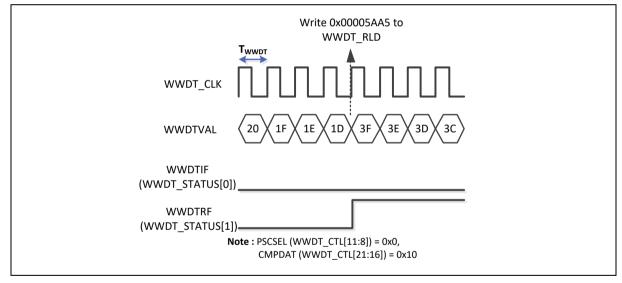
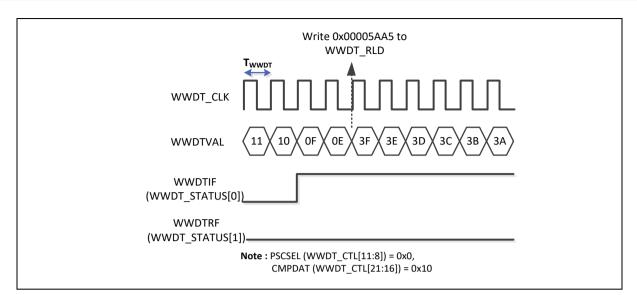


Figure 6.9-3 WWDT Reset and Reload Behavior

If the current CNTDAT (WWDT_CNT[5:0]) is larger than CMPDAT (WWDT_CTL[21:16]) and user writes 0x00005AA5 to the WWDT_RLDCNT register, the WWDT reset system signal will be generated immediately to cause chip reset also. The waveform of WWDT reload counter when CNTDAT > CMPDAT is shown in Figure 6.9-4.

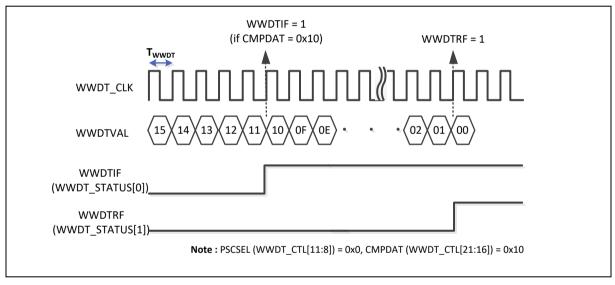


Figure 6.9-4 WWDT Reload Counter When CNTDAT > CMPDAT

When WWDTIF (WWDT_STATUS[0]) is generated, user must reload WWDT counter value to 0x3F by writing 0x00005AA5 to WWDT_RLDCNT register, and also to prevent WWDT counter value reached 0 and generate WWDT reset system signal to inform system reset. Figure 6.9-5 shows the waveform of WWDT reload counter when CNTDAT < CMPDAT and Figure 6.9-6 shows that WWDT generates reset system signal (WWDTRF) if user doesn't write 0x00005AA5 to WWDT_RLD before WWDT counter value reaches 0.

6.9.5.4 WWDT Window Setting Limitation

When user writes 0x00005AA5 to WWDT_RLDCNT register to reload WWDT counter value to 0x3F, it needs 3 WWDT clocks to sync the reload command to actually perform reload action. Note that if user sets PSCSEL (WWDT_CTL[11:8]) to 0000, the counter prescale value should be as 1, and the CMPDAT (WWDT_CTL[21:16]) must be larger than 2. Otherwise, writing WWDT_RLDCNT register to reload WWDT counter value to 0x3F is unavailable, WWDTIF (WWDT_STATUS[0]) is generated, and WWDT reset system event always happened. The WWDT CMPDAT setting limitation is shown in Table 6.9-2.

If user sets CMPDATA as 0x3F and 0x0, the interrupt doesn't occur. The reset occurs when WWDT counts to 0x0, so the interrupt doesn't occur when CMPDATA is 0x0.

PSCSEL	Prescale Value	Valid CMPDAT Value
0000	1	0x3 ~ 0x3E
0001	2	0x2 ~ 0x3E

Others	Others	0x1 ~ 0x3E

Table 6.9-2 CMPDAT Setting Limitation

6.9.5.5 WWDT ICE Debug

When ICE is connected to MCU, the WWDT counter is counting or not by ICEDEBUG (WWDT_CTL[31]). The default value of ICEDEBUG is 0. The WWDT counter will stop counting when CPU is held by ICE. If ICEDEBUG is set to 1, the WWDT counter will keep counting no matter CPU is held by ICE or not.

6.9.6 Register Map

R: read only, W: write only, R/W: both read and write

Register Offset			Description	Reset Value				
WWDT Base Address: WWDT_BA = 0x4004_0100								
WWDT_RLDCNT	WWDT_BA+0x00	W	WWDT Reload Counter Register	0x0000_0000				
WWDT_CTL	WWDT_BA+0x04	R/W	WWDT Control Register	0x003F_0800				
WWDT_STATUS	WWDT_BA+0x08	R/W	WWDT Status Register	0x0000_0000				
WWDT_CNT	WWDT_BA+0x0C	R	WWDT Counter Value Register	0x0000_003F				

6.9.7 Register Description

WWDT Reload Counter Register (WWDT_RLDCNT)

Register	egister Offset		Description	Reset Value	
WWDT_RLDCNT	WWDT_BA+0x00	W	WWDT Reload Counter Register	0x0000_0000	

31	30	29	28	27	26	25	24				
	RLDCNT										
23	22	21	20	19	18	17	16				
	RLDCNT										
15	14	13	12	11	10	9	8				
	RLDCNT										
7	7 6 5 4 3 2 1 0										
	RLDCNT										

Bits	Descripti	escription							
	RLDCNT	WWDT Reload Counter Register Writing 0x00005AA5 to this register will reload the WWDT counter value to 0x3F.							
[31:0]		Note: User can only write WWDT_RLDCNT register to reload WWDT counter value when current WWDT counter value between 0 and CMPDAT (WWDT_CTL[21:16]). If user writes WWDT_RLDCNT when current WWDT counter value is larger than CMPDAT, WWDT reset signal will be generated immediately.							

WWDT Control Register (WWDT_CTL)

Register	er Offset		Description	Reset Value
WWDT_CTL	WWDT_BA+0x04	R/W	WWDT Control Register	0x003F_0800

Note: This register can be written only one time after chip is powered on or reset.

31	30	29	28	27	26	25	24
ICEDEBUG				Reserved			
23	22	21	20	19	18	17	16
Rese	erved			CMPDAT			
15	14	13	12	11	10	9	8
	Rese	erved		PSCSEL			
7	6	5	4	3	2	1	0
Reserved							WWDTEN

Bits	Description	
		ICE Debug Mode Acknowledge Disable Bit
		0 = ICE debug mode acknowledgement effects WWDT counting.
[31]	ICEDEBUG	WWDT down counter will be held while CPU is held by ICE.
		1 = ICE debug mode acknowledgement Disabled.
		Note: WWDT down counter will keep going no matter CPU is held by ICE or not.
[30:22]	Reserved	Reserved.
		WWDT Window Compare Register
_		Set this register to adjust the valid reload window.
[21:16]	CMPDAT	Note: User can only write WWDT_RLDCNT register to reload WWDT counter value when current WWDT counter value between 0 and CMPDAT. If user writes WWDT_RLDCNT register when current WWDT counter value is larger than CMPDAT, WWDT reset signal will be generated immediately.
[15:12]	Reserved	Reserved.
		WWDT Counter Prescale Period Selection
		0000 = Pre-scale is 1; Max time-out period is 1 * 64 * WWDT_CLK.
		0001 = Pre-scale is 2; Max time-out period is 2 * 64 * WWDT_CLK.
		0010 = Pre-scale is 4; Max time-out period is 4 * 64 * WWDT_CLK.
		0011 = Pre-scale is 8; Max time-out period is 8 * 64 * WWDT_CLK.
		0100 = Pre-scale is 16; Max time-out period is 16 * 64 * WWDT_CLK.
		0101 = Pre-scale is 32; Max time-out period is 32 * 64 * WWDT_CLK.
[11:8]	PSCSEL	0110 = Pre-scale is 64; Max time-out period is 64 * 64 * WWDT_CLK.
		0111 = Pre-scale is 128; Max time-out period is 128 * 64 * WWDT_CLK.
		1000 = Pre-scale is 192; Max time-out period is 192 * 64 * WWDT_CLK.
		1001 = Pre-scale is 256; Max time-out period is 256 * 64 * WWDT_CLK.
		1010 = Pre-scale is 384; Max time-out period is 384 * 64 * WWDT_CLK.
		1011 = Pre-scale is 512; Max time-out period is 512 * 64 * WWDT_CLK.
		1100 = Pre-scale is 768; Max time-out period is 768 * 64 * WWDT_CLK.
		1101 = Pre-scale is 1024; Max time-out period is 1024 * 64 * WWDT_CLK.

		1110 = Pre-scale is 1536; Max time-out period is 1536 * 64 * WWDT_CLK. 1111 = Pre-scale is 2048; Max time-out period is 2048 * 64 * WWDT_CLK.
[7:2]	Reserved	Reserved.
[1]	INTEN	 WWDT Interrupt Enable Bit If this bit is enabled, the WWDT counter compare match interrupt signal is generated and inform to CPU. 0 = WWDT counter compare match interrupt Disabled. 1 = WWDT counter compare match interrupt Enabled.
[0]	WWDTEN	WWDT Enable Bit 0 = WWDT counter is stopped. 1 = WWDT counter starts counting.

WWDT Status Register (WWDT_STATUS)

Register	Register Offset R/W Description			Reset Value	•				
WWDT_STATUS WWDT_BA+0x08			R/W	WWDT Status R	egister	0x0000_000	0		
31	30		29		28	27	26	25	24
					Res	erved			
23	22		21	2		19	18	17	16
					Res	erved			
15	14		13		12	11	10	9	8
Reserved									
7	7 6 5			4	3	2	1	0	
	Reserved								WWDTIF

Bits	Descriptio							
[31:2]	Reserved	eserved.						
[1]	WWDTRF	WWDT Timer-out Reset Flag his bit indicates the system has been reset by WWDT time-out reset or not. = WWDT time-out reset did not occur. = WWDT time-out reset occurred. Note: This bit is cleared by writing 1 to it.						
[0]	WWDTIF	 WWDT Compare Match Interrupt Flag This bit indicates the interrupt flag status of WWDT while WWDT counter value matches CMPDAT (WWDT_CTL[21:16]). 0 = No effect. 1 = WWDT counter value matches CMPDAT. Note: This bit is cleared by writing 1 to it. 						

WWDT Counter Value Register (WWDT_CNT)

Register	Offset	R/W	Description	Reset Value
WWDT_CNT	WWDT_BA+0x0C	R	WWDT Counter Value Register	0x0000_003F

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
Rese	erved			CNT	DAT			

Bits	Description	Description				
[31:6]	Reserved	Reserved.				
[5:0]	CNTDAT	WWDT Counter Value CNTDAT will be updated continuously to monitor 6-bit WWDT down counter value.				

6.10 **PWM Generator and Capture Timer (PWM)**

6.10.1 Overview

The chip provides one PWM generator. PWM supports 6 channels of PWM output or input capture. There is a 12-bit prescaler to support flexible clock to the 16-bit PWM counter with 16-bit comparator. The PWM counter supports up, down and up-down counter types. PWM uses comparator compared with counter to generate events. These events are used to generate PWM pulse, interrupt and trigger signal for ADC to start conversion.

The PWM generator supports two standard PWM output modes: Independent mode and Complementary mode. They have different architecture. In Complementary mode, there are two comparators to generate various PWM pulse with 12-bit dead-time generator. For PWM output control unit, it supports polarity output, independent pin mask and brake functions.

The PWM generator also supports input capture function to latch PWM counter value to the corresponding register when input channel has a rising transition, falling transition or both transition is happened. Capture function also support PDMA to transfer captured data to memory.

6.10.2 Features

6.10.2.1 PWM Function Features

- Supports maximum clock frequency up to 48 MHz
- Supports up to one PWM module and provides 6 output channels
- Supports independent mode for PWM output/Capture input channel
- Supports complementary mode for 3 complementary paired PWM output channel
 - Dead-time insertion with 12-bit resolution
 - Two compared values during one period
- Supports 12-bit prescaler from 1 to 4096
- Supports 16-bit resolution PWM counter
 - Up, down and up-down counter operation type
- Supports mask function and tri-state enable for each PWM pin
- Supports brake function
 - Brake source from pin and system safety events (clock failed, Brown-out detection and CPU lockup)
 - Noise filter for brake source from pin
 - Edge detect brake source to control brake state until brake interrupt cleared
 - Level detect brake source to auto recover function after brake condition removed
- Supports interrupt on the following events:
 - PWM counter matches 0, period value or compared value
 - Brake condition happened
- Supports trigger ADC on the following events:
 - PWM counter matches 0, period value or compared value

6.10.2.2 Capture Function Features

- Supports up to 6 capture input channels with 16-bit resolution
- Supports rising or falling capture condition

- Supports input rising/falling capture interrupt
- Supports rising/falling capture with counter reload option
- Supports PDMA transfer function for PWM all channels

6.10.3 Block Diagram

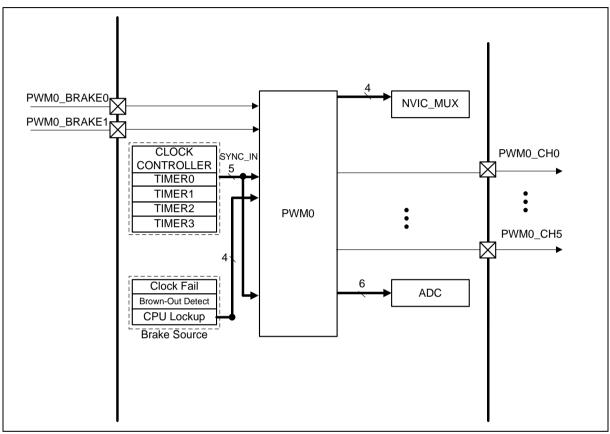


Figure 6.10-1 PWM Generator Overview Block Diagram

The PWM Clock frequency can be set equal to PCLK frequency as Figure 6.10-2.

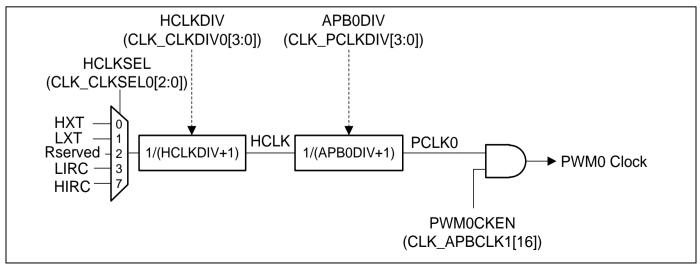


Figure 6.10-2 PWM System Clock Source Control

For the detailed register setting, please refer to Table 6.10-1. Each PWM generator has three clock source inputs, each clock source can be selected from PWM Clock or four TIMER trigger PWM outputs as Figure 6.10-3 by ECLKSRC0 (PWM_CLKSRC[2:0]) for PWM_CLK0, ECLKSRC2 (PWM_CLKSRC[10:8]) for PWM_CLK2 and ECLKSRC4 (PWM_CLKSRC[18:16]) for PWM_CLK4.

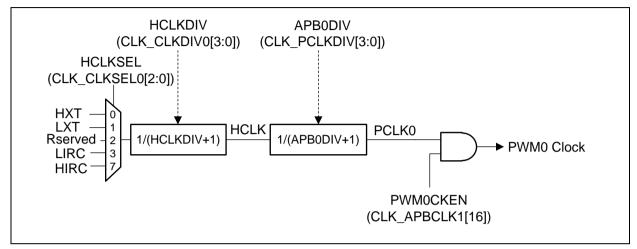
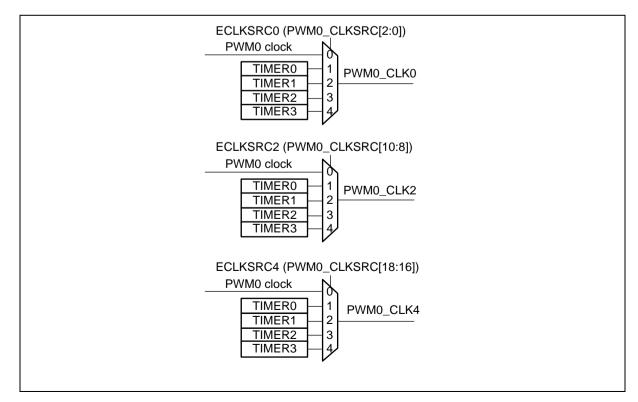



Figure 6.10-2 PWM System Clock Source Control

Frequency Ratio PCLK:PWM Clock	HCLK	-			CLK_CLKDIV0[3:0]	APB0DIV (CLK_PCLKDIV [2:0]),
1:1	HCLK	PCLK	PCLK	Don't care	Don't care	Don't care

Table 6.10-1 PWM Clock Source Control Registers Setting Table

Figure 6.10-3 PWM Clock Source Control

Figure 6.10-4 and Figure 6.10-5 illustrate the architecture of PWM independent mode and complementary mode. No matter independent mode or complementary mode, paired channels' (PWM_CH0 and PWM_CH1, PWM_CH2 and PWM_CH3, PWM_CH4 and PWM_CH5) counters both come from the same clock source and prescaler. When counter count to 0, PERIOD (PWM_PERIODn[15:0]) or equal to comparator, events will be generated. These events are passed to corresponding generators to generate PWM pulse, interrupt signal and trigger signal for ADC to start conversion. Output control is used to changing PWM pulse output state; brake function in output control also generates interrupt events. In complementary mode, even channel use odd channel comparator to generate events.

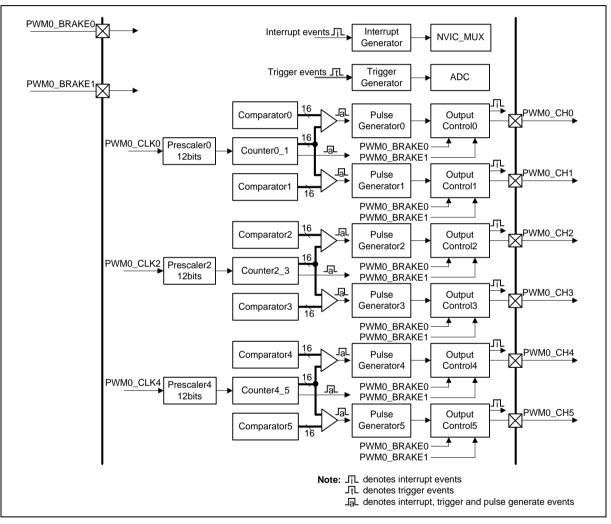


Figure 6.10-4 PWM Independent Mode Architecture Diagram

ηυνοτοη

M0A21/M0A23 Series

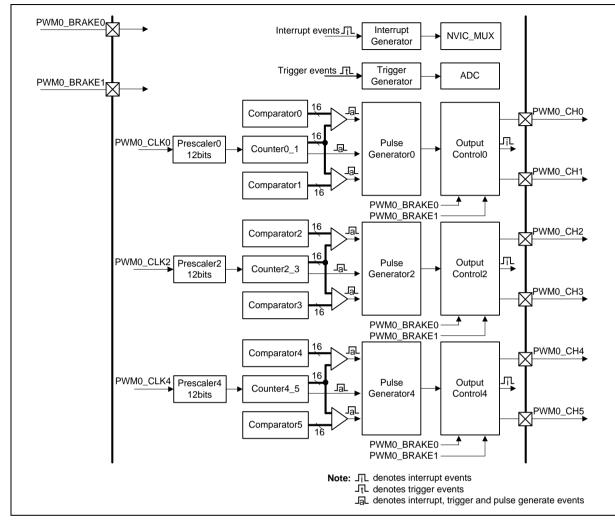


Figure 6.10-5 PWM Complementary Mode Architecture Diagram

6.10.4 Basic Configuration

6.10.4.1 PWM0 Basic Configuration

- Clock Source Configuration
 - Select the source of PWM0 peripheral clock on PWM0SEL (CLK_CLKSEL2[0])
 - Enable PWM0 peripheral clock in PWM0CKEN CLK_APBCLK1[16]).
- Reset Configuration
 - Reset PWM0 in PWM0RST (SYS_IPRST2[16])
- Pin Configuration

Group	Pin Name	GPIO	MFP
	PWM0_BRAKE0	PA.1	MFP30
PWM0		PC.0	MFP30
		PA.0	MFP30
	PWM0_BRAKE1	PA.2	MFP30

		PA.1	MFP5
		PA.3	MFP5
		PA.5	MFP5
		PB.5	MFP5
		PB.7	MFP5
	PWM0_CH0	PC.0	MFP5
		PC.2	MFP5
		PC.4	MFP5
		PC.6	MFP5
		PD.2	MFP2
		PD.4	MFP2
		PA.0	MFP5
		PA.2	MFP5
		PA.4	MFP5
	PWM0_CH1	PB.4	MFP5
		PB.6	MFP5
		PC.1	MFP5
		PC.3	MFP5
		PC.5	MFP5
		PC.7	MFP5
		PD.3	MFP2
		PD.5	MFP2
		PA.1	MFP6
		PA.3	MFP6
		PA.5	MFP6
		PB.5	MFP6
	PWM0_CH2	PB.7	MFP6
		PC.0	MFP6
		PC.2	MFP6
		PC.4	MFP6
		PC.6	MFP6
		PD.6	MFP2
		PA.0	MFP6
	PWM0_CH3	PA.2	MFP6
		PA.4	MFP6

		PB.4	MFP6
		PB.6	MFP6
		PC.1	MFP6
		PC.3	MFP6
		PC.5	MFP6
		PC.7	MFP6
		PD.7	MFP2
		PA.1	MFP7
		PA.3	MFP7
		PA.5	MFP7
		PB.5	MFP7
	PWM0_CH4	PB.7	MFP7
		PC.0	MFP7
		PC.2	MFP7
		PC.4	MFP7
		PC.6	MFP7
		PD.0	MFP2
		PA.0	MFP7
		PA.2	MFP7
		PA.4	MFP7
		PB.4	MFP7
		PB.6	MFP7
	PWM0_CH5	PC.1	MFP7
		PC.3	MFP7
		PC.5	MFP7
		PC.7	MFP7
		PD.1	MFP7

6.10.5 Functional Description

6.10.5.1 PWM Prescaler

The PWM prescaler is used to divide clock source, prescaler counting CLKPSC +1 times, PWM counter only count once. The prescale double buffer is setting by CLKPSC (PWM_CLKPSCn[11:0], n = 0, 2, 4) bits. Figure 6.10-6 is an example of PWM channel 0 prescale waveform. The prescale counter will reload CLKPSC at the beginning of the next prescale counter down-count.

PWM0_CLK			
CLKPSC (PWM_CLKPSC0_1[11:0])		4	6
CNTEN0 (PWM_CNTEN[0])			
Prescale counter	0	4\3\2\1\0\4\3\2\1\0\4\3\2\1\0\4\3\2\1\0\4	4\3\2\1\0\6\5\4\3\2\1\0\6\
CNT (PWM_CNT0[15:0])		x) 0) 1)	2 3 4

Figure 6.10-6 PWM0_CH0 Prescaler Waveform in Up Counter Type

6.10.5.2 PWM Counter

PWM supports 3 counter types operation: Up Counter, Down Counter and Up-Down Counter types.

To clear PWM counter, take PWM channel0 for an example, CNT(PWM_CNT0[15:0]) can clear to 0x00 by CNTCLR0 (PWM_CNTCLR[0]). CNT will be cleared when prescale counter counts to 0, and CNTCLR0 will be set 0 by hardware automatically.

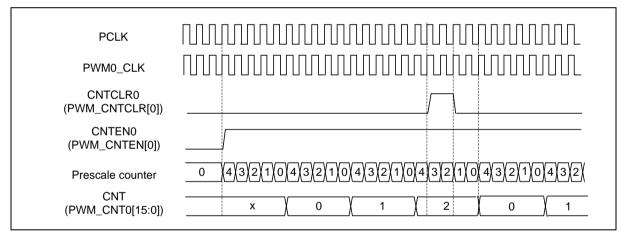


Figure 6.10-7 PWMx Counter Waveform When Setting Clear Counter

6.10.5.3 Up Counter Type

When PWM counter is set to up counter type, CNTTYPEn (PWM_CTL1[2n+1:2n], n = 0,1..5) is 0x0, it starts up-counting from 0 to PERIOD (PWM_PERIODn[15:0], where n denotes channel number) to complete a PWM period. The current counter value can be read from CNT (PWM_CNTn[15:0]) bits. PWM generates zero point event when the counter counts to 0 and prescale counts to 0. PWM generates period point event when the counter counts to PERIOD and prescale counts to 0. Figure 6.10-8 shows an example of up counter, wherein

PWM period time = (PERIOD+1) *(CLKPSC+1)* PWMx_CLK.

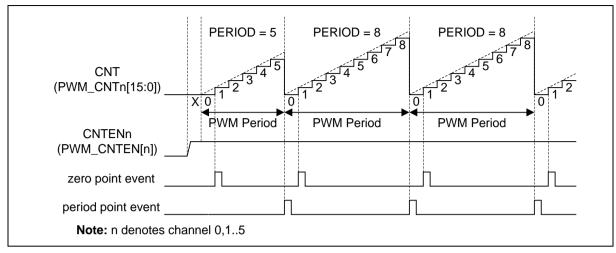


Figure 6.10-8 PWM Up Counter Type

6.10.5.4 Down Counter Type

When PWM counter is set to down counter type, CNTTYPEn (PWM_CTL1[2n+1:2n], n = 0,1..5) is 0x1, it starts down-counting from PERIOD to 0 to complete a PWM period. The current counter value can be read from CNT (PWM_CNTn[15:0]) bits. PWM generates zero point event when the counter counts to 0 and prescale counts to 0. PWM generates period point event when the counter counts to PERIOD and prescale counts to 0. Figure 6.10-9 shows an example of down counter, wherein

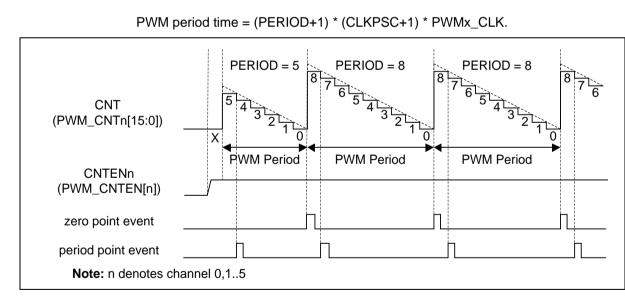


Figure 6.10-9 PWM Down Counter Type

6.10.5.5 Up-Down Counter Type

When PWM counter is set to up-down count type, CNTTYPEn (PWM_CTL1[2n+1:2n], n = 0,1..5) is 0x2, it starts counting-up from 0 to PERIOD and then starts counting down to 0 to complete a PWM period. The current counter value can be read from CNT (PWM_CNTn[15:0]) bits. PWM generates zero point event when the counter counts to 0 and prescale counts to 0. PWM generates center point event which is equal to period point event when the counter counts to PERIOD. Figure 6.10-10 shows an example of up-down counter, wherein

PWM period time =(2*PERIOD) * (CLKPSC+1) * PWMx_CLK.

The DIRF (PWM_CNTn[16]) bit is counter direction indicator flag, where high is up counting, and low is down counting.

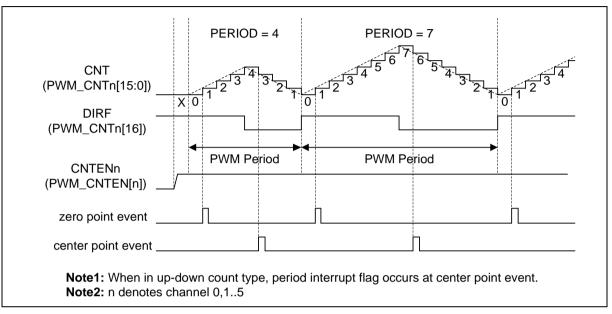
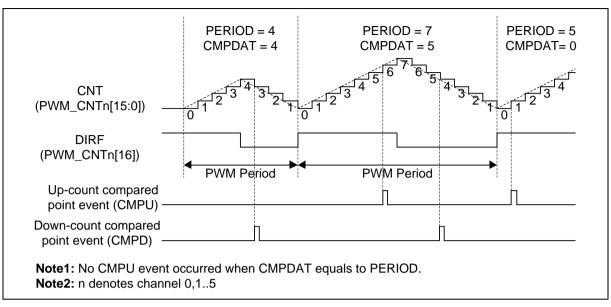



Figure 6.10-10 PWM Up-Down Counter Type

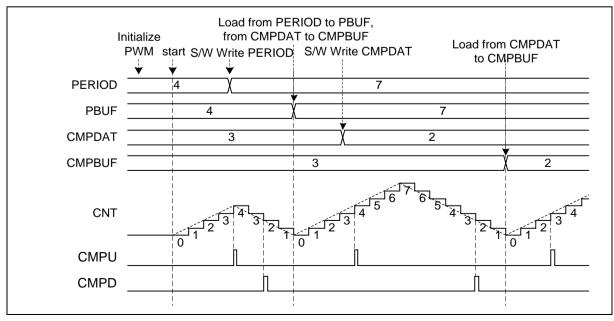
6.10.5.6 PWM Comparator

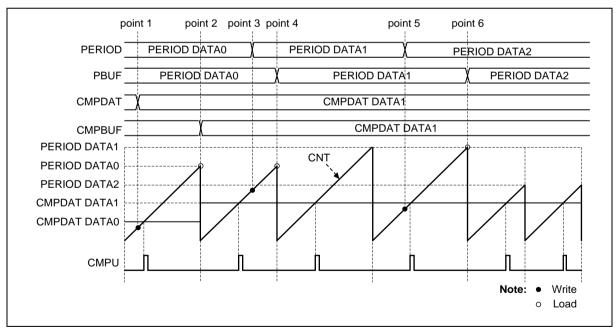
CMPDATn is a basic comparator register of PWM channel n; In Independent mode each channel only has one comparator, the value of CMPDATn register is continuously compared to the corresponding channel's counter value. In Complementary mode each paired channels has two comparators, and the value of CMPDATn and CMPDATm (n = 0,2,4, m = 1,3,5) registers are continuously compared to the complementary even channel's counter value, because of odd channel's counter is useless. For example, channel 0 and channel 1 are complementary channels, in Complementary mode, channel 1's comparator is continuously compared to channel 0's counter, but not channel 1's. When the counter is equal to value of CMPDAT0 register, PWM generates a compared point event and uses the event to generate PWM pulse, interrupt or use to trigger ADC. In up-down counter type, two events will be generated in a PWM period as shown in Figure 6.10-11. The CMPU is up count compared point event and CMPD is down count compared point event.

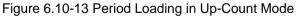
6.10.5.7 PWM Double Buffering

The double buffering uses double buffers to separate software writing and hardware action operation timing. There are three loading modes for loading values to buffer: period loading mode, immediately loading mode, and center loading mode. After registers are modified through software, hardware will load register value to the buffer register according to the loading mode timing. The hardware action is based on the buffer value. This can prevent asynchronously operation problem due to software and hardware asynchronism.

The PWM provides PBUF (PWM_PBUFn[15:0]) as the active PERIOD buffer register, CMPBUF (PWM_CMPBUFn[15:0]) as the active CMPDAT buffer register. The concept of double buffering is used in loading modes, which are described in the following sections. For example, as shown Figure 6.10-12, in period loading mode, writing PERIOD and CMPDAT through software, PWM will load new values to their buffer PBUF (PWM_PBUFn[15:0]) and CMPBUF (PWM_CMPBUFn[15:0]) at start of the next period without affecting the current period counter operation.




Figure 6.10-12 PWM Double Buffering Illustration


6.10.5.8 Period Loading Mode

When immediately loading mode and center loading mode are disabled that IMMLDENn (PWM_CTL0[21:16]) and CTRLDn (PWM_CTL0[5:0]) are set to 0, PWM operates at period Loading mode. In period Loading mode, PERIOD(PWM_PERIODn[15:0]) and CMP(PWM_CMPDATn[15:0]) will all load to their active PBUF and CMPBUF registers while each period is completed. For example, after PWM counter up counts from zero to PERIOD in the up-counter operation or down counts from PERIOD to zero in the down-counter operation or counts up from 0 to PERIOD and then counts down to 0 in the up-down counter operation.

Figure 6.10-13 shows period loading timing of up-count operation, where PERIOD DATA0 denotes the initial data of PERIOD, PERIOD DATA1 denotes the first updated PERIOD data by software and so on. CMPDAT also follows this rule. The following describes steps sequence of Figure 6.10-13. User can know the PERIOD and CMPDAT update condition, by watching PWM period and CMPU event.

- 1. Software writes CMPDAT DATA1 to CMPDAT at point 1.
- 2. Hardware loads CMPDAT DATA1 to CMPBUF at the end of PWM period at point 2.
- 3. Software writes PERIOD DATA1 to PERIOD at point 3.
- 4. Hardware loads PERIOD DATA1 to PBUF at the end of PWM period at point 4.
- 5. Software writes PERIOD DATA2 to PERIOD at point 5.
- 6. Hardware loads PERIOD DATA2 to PBUF at the end of PWM period at point 6.

6.10.5.9 Immediately Loading Mode

If the IMMLDENn (PWM_CTL0[21:16]) bit is set to 1, PWM operates at immediately loading mode. In immediately loading mode, when user update PERIOD (PWM_PERIODn[15:0]) or CMP (PWM_CMPDATn[15:0]), PERIOD or CMPDAT will be load to active PBUF (PWM_PBUFn[15:0]) or CMPBUF (PWM_CMPBUFn[15:0]) after current counter count is completed. If the updated PERIOD value is less than current counter value, counter will count to 0xFFFF. When counter counts to 0xFFFF and prescale also counts to 0, the flag CNTMAXF(PWMx_STATUS[5:0]) will raise. And then counter will count wraparound. Immediately loading mode has the highest priority. If IMMLDENn has been set,

other loading mode for channel n will become invalid. Figure 6.10-14 shows an example and its steps sequence is described below.

- 1. Software writes CMPDAT DATA1 and hardware immediately loading CMPDAT DATA1 to CMPBUF at point 1.
- 2. Software writes PERIOD DATA1 which is greater than current counter value at point 2; counter will continue counting until equal to PERIOD DATA1 to finish a period loading.
- 3. Software writes PERIOD DATA2 which is less than the current counter value at point 3; counter will continue counting to its maximum value 0xFFFF and count wraparound from 0 to PERIOD DATA2 to finish this period loading.

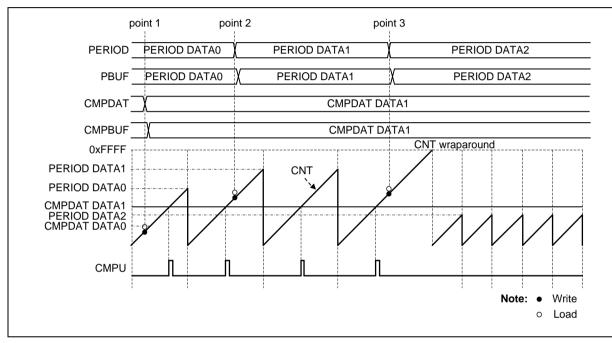


Figure 6.10-14 Immediately Loading in Up-Count Mode

6.10.5.10 Center Loading Mode

When the CTRLDn (PWM_CTL0[5:0]) bit is set to 1 and PWM counter is set to up-down count type, CNTTYPEn (PWM_CTL1[2n+1:2n], n = 0,1..5) is 0x2, PWM operates at center loading mode. In center loading mode, CMP(PWM_CMPDATn[15:0]) will load to active CMPBUF register in center of each period, that is, counter counts to PERIOD. PERIOD(PWM_PERIODn[15:0]) will all load to their active PBUF registers while each period is completed. Figure 6.10-15 shows an example and its steps sequence is described below.

- 1. Software writes CMPDAT DATA1 at point 1.
- 2. Hardware loads CMPDAT DATA1 to CMPBUF at center of PWM period at point 2.
- 3. Software writes PERIOD DATA1 at point 3.
- 4. Hardware loads PERIOD DATA1 to PBUF at the end of PWM period at point 4.
- 5. Software writes CMPDAT DATA2 at point 5.
- 6. Hardware loads CMPDAT DATA2 to CMPBUF at center of PWM period at point 6.
- 7. Software writes PERIOD DATA2 at point 7.
- 8. Hardware loads PERIOD DATA2 to PBUF at the end of PWM period at point 8.

M0A21/M0A23 Series

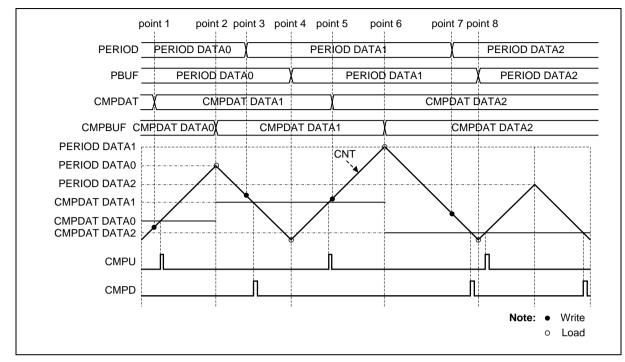


Figure 6.10-15 Center Loading in Up-Down-Count Mode

6.10.5.11 PWM Counter Operation Mode

The PWM counter supports Auto-reload mode.

In Auto-reload mode, CMPDAT and PERIOD registers should be written first and then the CNTENn(PWM_CNTEN[n]) bit is set to 1 to enable PWM prescaler and start to run counter. The value of CLKPSC(PWM_CLKPSCn_m[11:0]), PERIOD(PWM_PERIODn[15:0]) and CMP(EPWM_CMPDATn[15:0]) will auto reload to their active buffer according different loading mode. If PERIOD(EPWM_PERIODn[15:0]) is set to 0, PWM counter will be set to 0.

6.10.5.12 PWM Pulse Generator

The PWM pulse generator uses counter and comparator events to generate PWM pulse. The events are: zero point, period point in up counter type and down counter type, center point in up-down counter type and counter equal to comparator point in three types. As to up-down counter type, there are two counter equal comparator points, one at up count and the other at down count. Besides, Complementary mode has two comparators compared with counter, and thus comparing equal points will become four in up-down counter type and two for up or down counter type.

Each event point can decide PWM waveform to do nothing (X), set Low (L), set High (H) or toggle (T) by setting the PWM_WGCTL0 and PWM_WGCTL1 registers. Using these points can easily generate asymmetric PWM pulse or variant waveform as shown in Figure 6.10-16. In the figure, PWM is in complementary mode, there are two comparators n and m to generate PWM pulse. n denotes even channel number 0, 2, or 4, and m denotes odd channel number 1, 3, or 5. n channel and m channel are complementary paired. Complementary mode uses two channels (CH0 and CH1, CH2 and CH3, or CH4 and CH5) as a pair of PWM outputs to generate complement paired waveforms. CMPU denotes CNT(PWM_CNTn[15:0]) is equal to CMP(PWM_CMPDATn[15:0]) when counting up. CMPD denotes CNT bits is equal to CMP bits when counting down.

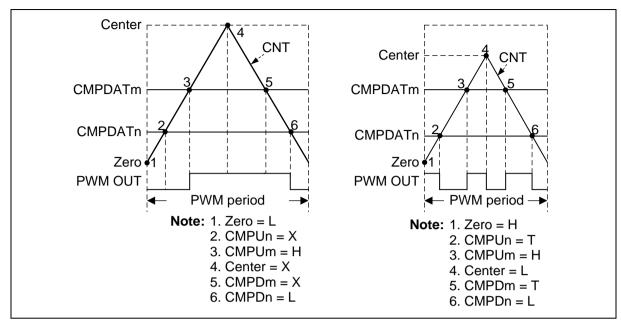


Figure 6.10-16 PWM Pulse Generation

The generation events may sometimes be set to the same value, as the reason, events priority between different counter types are list below, up counter type (Table 6.10-2), down counter type (Table 6.10-3) and up-down counter type (Table 6.10-4). By using event priority, user can easily generate 0% to 100% duty pulse as shown in Figure 6.10-17.

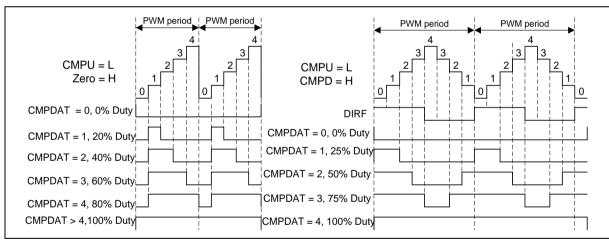


Figure 6.10-17 PWM 0% to 100% Pulse Generation

Priority	Up Event			
1 (Highest)	iod event (CNT = PERIOD)			
2	mpare up event of odd channel (CNT = CMPUm)			
3	ompare up event of even channel (CNT = CMPUn)			
4 (Lowest)	ro event (CNT = 0)			

Table 6.10-2 PWM Pulse Generation Event Priority for Up-Counter

Priority	Down Event			
1 (Highest)	ro event (CNT = 0)			
2	Compare down event of odd channel (CNT = CMPDm)			
3	ompare down event of even channel (CNT = CMPDn)			
4 (Lowest)	eriod event (CNT = PERIOD)			

 Table 6.10-3 PWM Pulse Generation Event Priority for Down-Counter

Priority	Up Event	Down Event
1 (Highest)	Compare up event of odd channel (CNT = CMPUm	Compare down event of odd channel (CNT = CMPDm)
2	Compare up event of even channel (CNT = CMPUn)	Compare down event of even channel (CNT = CMPDn)
3 (Lowest)	Zero event (CNT = 0)	Period (center) event (CNT = PERIOD)

Table 6.10-4 PWM Pulse Generation Event Priority for Up-Down-Counter

6.10.5.13 PWM Output Mode

The PWM supports two output modes: Independent mode which may be applied to DC motor system, Complementary mode with dead-time insertion which may be used in the application of AC induction motor and permanent magnet synchronous motor.

6.10.5.14 Independent Mode

By default, the PWM is operating in independent mode, independent mode is enabled when channel n corresponding PWMMODEn (PWM_CTL1[26:24]) bit is set to 0. In this mode six PWM channels: PWM_CH0, PWM_CH1, PWM_CH2, PWM_CH3, PWM_CH4 and PWM_CH5 are running off its own period and duty as shown in Figure 6.10-18.

Setting: OUTMOE	DE0 (PWM_CTL1[24]) = 0x0
PWM_CH0	
PWM_CH1	
Setting: OUTMO	DE2 (PWM_CTL1[25]) = 0x0
PWM_CH2	
PWM_CH3	
Setting: OUTMO	DE4 (PWM_CTL1[26]) = 0x0
PWM_CH4	
PWM_CH5	

Figure 6.10-18 PWM Independent Mode Waveform

6.10.5.15 Complementary mode

Complementary mode is enabled when the paired channel corresponding PWMMODEn (PWM_CTL1[26:24]) bit set to 1. In this mode there are 3 PWM generators utilized for complementary mode, with total of 3 PWM output paired pins in this module. In Complementary modes, the internal odd

PWM signal must always be the complement of the corresponding even PWM signal. PWM_CH1 will be the complement of PWM_CH0. PWM_CH3 will be the complement of PWM_CH2 and PWM_CH5 will be the complement of PWM_CH4 as shown in Figure 6.10-19.

Setting: OUTMOD	DE0 (PWM_CTL1[24]) = 0x1
PWM_CH0	
PWM_CH1	
Setting: OUTMOD	DE2 (PWM_CTL1[25]) = 0x1
PWM_CH2	
PWM_CH3	
Setting: OUTMOD	DE4 (PWM_CTL1[26]) = 0x1
PWM_CH4	
PWM_CH5	

Figure 6.10-19 PWM Complementary Mode Waveform

6.10.5.16 PWM Output Control

After PWM pulse generation, there are four to six steps to control the output of PWM channels. In independent mode, there are Mask, Brake, Pin Polarity and Output Enable four steps as shown in Figure 6.10-20. In complementary mode, it needs two more steps to precede these four steps, Complementary channels and Dead-Time Insertion as shown in Figure 6.10-21.

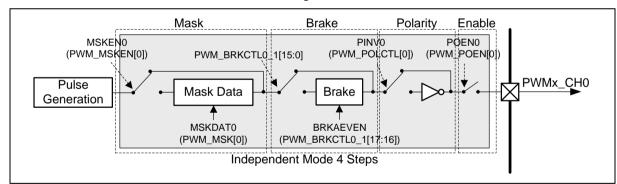


Figure 6.10-20 PWMx_CH0 Output Control in Independent Mode

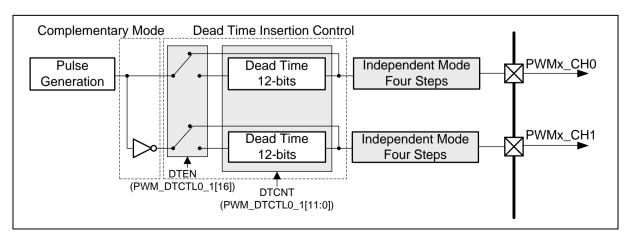


Figure 6.10-21 PWMx_CH0 and PWMx_CH1 Output Control in Complementary Mode

6.10.5.17 Dead-Time Insertion

In the complementary application, the complement channels may drive the external devices like power switches. The dead-time generator inserts a low level period called "dead-time" between complementary outputs to drive these devices safely and to prevent system or devices from the burn-out damage. Hence the dead-time control is a crucial mechansism to the proper operation of the complementary system. By setting corresponding channel n DTEN (PWM_DTCTLn_m[16]) bit to enable dead-time function and DTCNT (PWM_DTCTLn_m[11:0]) to control dead-time period, the dead-time can be calculated from the following formula:

Dead-time = (DTCNT (PWM_DTCTLn[11:0])+1) * PWMx_CLK period

Dead-time insertion clock source can be selected from prescaler output by setting DTCKSEL (PWM_DTCTLn_m[24]) to 1. By default, clock source comes from PWM_CLK, which is prescaler input. Then the dead-time can be calculated from the following formula:

Dead-time = (DTCNT (PWM_DTCTLn[11:0])+1) * (CLKPSC (PWM_CLKPSCn [11:0])+1)*PWMx_CLK period

Please note that the PWM_DTCTLn_m are write-protected registers.

Figure 6.10-22 indicates the dead-time insertion for one pair of PWM signals.

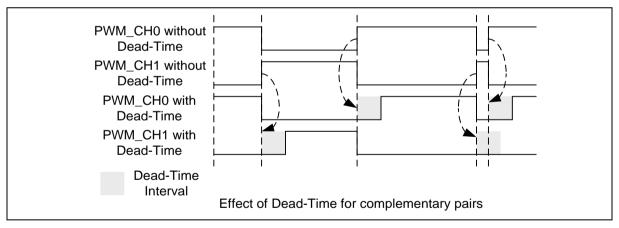


Figure 6.10-22 Dead-Time Insertion

6.10.5.18 PWM Mask Output Function

Each of the PWM channel output value can be manually overridden with the settings in the PWM Mask Enable Control Register (PWM_MSKEN) and the PWM Masked Data Register (PWM_MSK). With these settings, the PWM channel outputs can be assigned to specified logic states independent of the duty cycle comparison units. The PWM mask bits are useful when controlling various types of Electrically Commutated Motor (ECM) like a BLDC motor. The PWM_MSKEN register contains six bits, MSKENn(PWM_MSKEN[5:0]). If the MASKENn is set to active-high, the PWM channel n output will be overridden. The PWM_MSK register contains six bits, MSKDATn (PWM_MSK[5:0]). The bit value of the MSKDATn determines the state value of the PWM channel n output when the channel is overridden. Figure 6.10-23 shows an example of how PWM mask control can be used for the override feature.

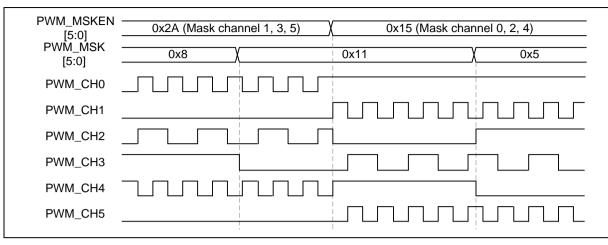


Figure 6.10-23 Illustration of Mask Control Waveform

6.10.5.19 PWM Brake

Each PWM module has two external input brake control signals. User can select active brake pin source is from PWMx_BRAKEy pin by BKxSRC bits of BNF register(x=0,1, y=0,1). The external signals will be filtered by a 3-bit noise filter. User can enable the noise filter function by BRKxNFEN bits of BNF register, and noise filter sampling clock can be selected by setting BRKxNFSEL bits of BNF register to fit different noise properties. Moreover, by setting the BRKxFCNT bits, user can define by how many sampling clock cycles a filter will recognize the effective edge of the brake signal.

In addition, it can be inversed by setting the BRKxPINV (x denotes input external pin 0 or 1) bits of BNF register to realize the polarity setup for the brake control signals. Set BRKxPINV bit to 0, brake event will occurred when PWMx_BRAKEy(x=0,1, y=0,1) pin status is from low to high; set BRKxPINV to 1, brake event will occurred when PWMx_BRAKEy pin status is from high to low.

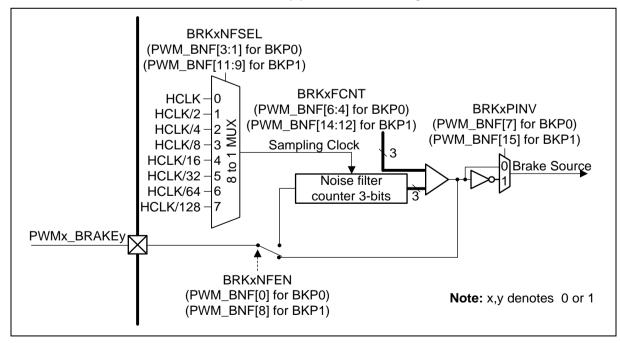
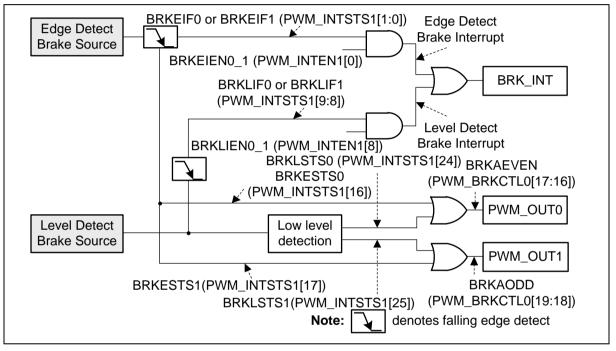


Figure 6.10-24 Brake Noise Filter Block Diagram

For Complementatry mode, it is often necessary to set a safe output state to the complement output pairs once the brake event occurs.

Each complementary channel pair shares a PWM brake function, as shown Figure 6.10-25. To control paired channels to output safety state, user can setup BRKAEVEN (PWM BRKCTL0 1[17:16]) for even channels and BRKAODD (PWM_BRKCTL0_1[19:18]) for odd channels when the fault brake event happens. There are two brake detectors: Edge detector and Level detector. When the edge detector detects the brake signal and BRKEIENn m (PWM INTEN1[2:0]) is enabled, the brake function generates BRK INT. This interrupt needs software to clear, and the BRKESTSn (PWM INTSTS1[21:16]) brake state will keep until the next PWM period starts after the interrupt cleared. The brake function can also operate in another way through the level detector. Once the level detector detects the brake signal and the BRKLIENn_m (PWM_INTEN1[10:8]) is also enabled, the brake function will generate BRK INT, but BRKLSTSn (PWM INTSTS1[29:24]) brake state will auto recovery to normal output while level brake source recovery to high level and pass through "Low Level Detection" at the PWM waveform period when brake condition removed without clear interrupt.



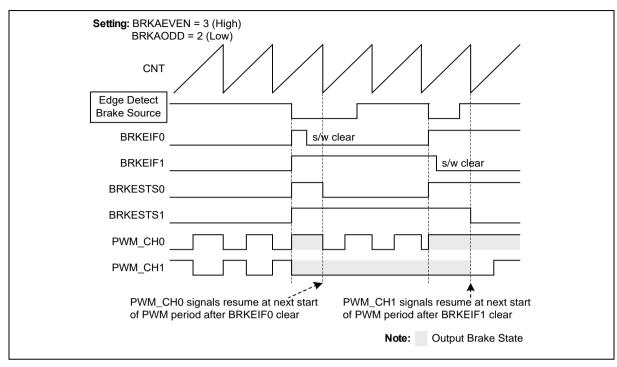

Figure 6.10-25 Brake Block Diagram for PWMx_CH0 and PWMx_CH1 Pair

Figure 6.10-26 illustrates the edge detector waveform for PWMx_CH0 and PWMx_CH1 pair. In this case, the edge detect brake source has occurred twice for the brake events. When the event occurs, both of the BRKEIF0 and BRKEIF1 flags are set and BRKESTS0 and BRKESTS1 bits are also set to indicate brake state of PWMx_CH0 and PWMx_CH1. For the first occurring event, software writes 1 to clear the BRKEIF0 flag. After that, the BRKESTS0 bit is cleared by hardware at the next start of the PWM period. At the same moment, the PWMx_CH0 outputs the normal waveform even though the brake event is still occurring. The second event also triggers the same flags, but at this time, software writes 1 to clear the BRKEIF1 flag. Afterward, PWMx_CH1 outputs normally at the next start of the PWM period.

As a contrast to the edge detector example, Figure 6.10-27 illustrates the level detector waveform for PWMx_CH0 and PWMx_CH1 pair. In this case, the BRKLIF0 and BRKLIF1 flags can only indicate the brake event having occurred. The BRKLSTS0 and BRKLSTS1 brake states will automatically recover at the start of the next PWM period no matter at what states the BRKLIF0 and BRKLIF1 flags are at that moment.

M0A21/M0A23 Series

nuvoTon

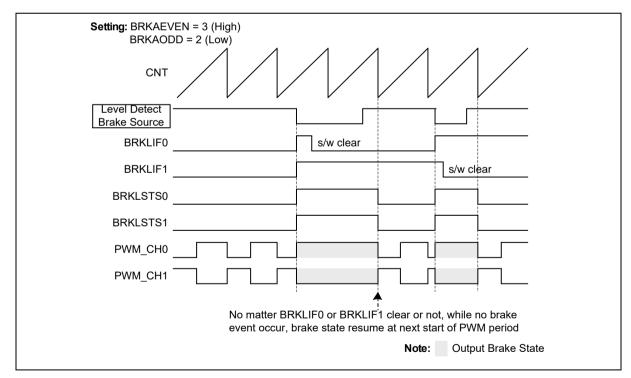


Figure 6.10-27 Level Detector Waveform for PWMx_CH0 and PWMx_CH1 Pair

The two kinds of detectors detect the same six brake sources: two from external input signals, two from analog comparators(ACMP), and one from system fail, and one from software triggered, that are shown in Figure 6.10-28. ACMP brake sources will be detected only when internal ACMP0_O or ACMP1_O signal from low to high.

Among the above described brake sources, the brake source coming from system fail can still be

specified to several different system fail conditions. These conditions include clock fail, Brown-out detect, and Core lockup. Figure 6.10-29 shows that by setting corresponding enable bits, the enabled system fail condition can be one of the sources to issue the Brake system fail to the PWM brake.

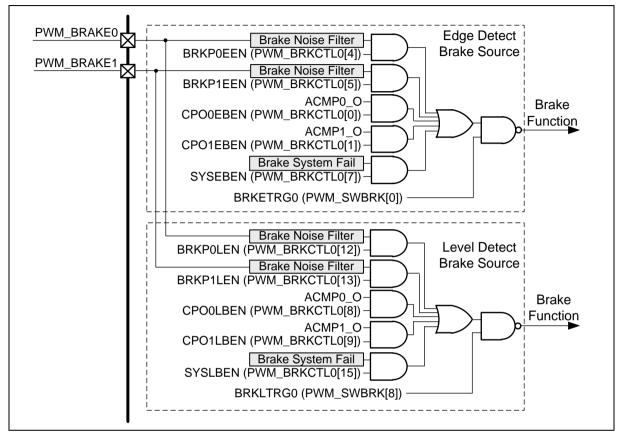


Figure 6.10-28 Brake Source Block Diagram

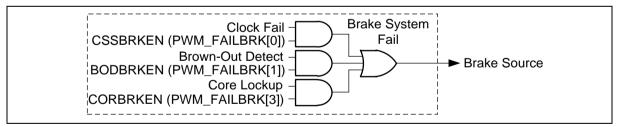


Figure 6.10-29 Brake System Fail Block Diagram

6.10.5.20 Polarity Control

Each PWM port, from PWM_CH0 to PWM_CH5, has an independent polarity control module to configure the polarity of the active state of the PWM output. By default, the PWM output is active high. This implies the PWM OFF state is low and ON state is high. This definition is variable through setting the PWM Negative Polarity Control Register (PWM_POLCTL), for each individual PWM channel. Figure 6.10-30 shows the initial state before PWM starting with different polarity settings.

ηυνοΤοη

PWM_WGCTL0		ĹĹĹ			l
PWM_WGCTL1				ļ	1
PWM_CH0_off	on	off	on	1	PINV0=0)
PWM_CH1 off	off	on	off		(PINV1=0)
PWM_CH0 off	on	off	on		(PINV0=1)
PWM_CH1 off	off	on	off		(PINV1=0)
PWM_CH0 off	on	off	on	Ì	(PINV0=0)
PWM_CH1 off	off	on	off		(PINV1=1)
PWM_CH0 off	on	off	on		(PINV0=1)
PWM_CH1 off	off	on	off		 (PINV1=1)

6.10.5.21 Synchronous start function

The synchronous start function can be enabled when SSEN0 (PWM_SSCTL[0]) is set. User can select synchronous source which is from PWM0 by SSRC (PWM_SSCTL[9:8]). The selected PWM channels (include channel0 to channel5 of PWM) will start counting at the same time once the synchronous start function is enabled and set CNTSEN (PWM_SSTRG). It is noted that set CNTSEN (PWM_SSTRG) will also set the counter enable bit (CNTENn, n denotes channel 0 to 5) to start counting.

6.10.5.22 PWM Interrupt Generator.

There are three independent interrupts for each PWM as shown in Figure 6.10-31.

The 1st PWM interrupt (PWM_INT) comes from PWM complementary pair events. The counter can generate the Zero point Interrupt Flag ZIFn (PWM_INTSTS0[n], n=0,2,4) and the Period point Interrupt Flag PIFn (PWM_INTSTS0[n+8], n=0,2,4). When PWM channel n's counter equals to the comparator value stored in PWM_CMPDATn, the different interrupt flags will be triggered depending on the counting direction. If the matching occurs at up-count direction, the Up Interrupt Flag CMPUIFn (PWM_INTSTS0[21:16]) is set and if matching at the opposite direction, the Down Interrupt Flag CMPUIFn (PWM_INTSTS0[29:24]) is set. If the corresponding interrupt enable bits are set, the trigger events will generates interrupt signals.

The 2nd interrupt is the capture interrupt (CAP_INT). It shares the PWM_INT vector in NVIC. The CAP_INT can be generated when the CRLIFn (PWM_CAPIF[5:0]) is triggered and the Capture Rising Interrupt Enable bit CAPRIENn (PWM_CAPIEN[5:0]) is set to 1. Or in the falling edge condition, the CFLIFn (PWM_CAPIF[13:8]) can be triggered when the Capture Falling Interrupt Enable bit CAPFIENn (PWM_CAPIEN[13:8]) is set to 1.

The last one is the brake interrupt (BRK_INT). The detail of the BRK_INT is described in the PWM Brake section.

Figure 6.10-31 demonstrates the architecture of the PWM interrupts.

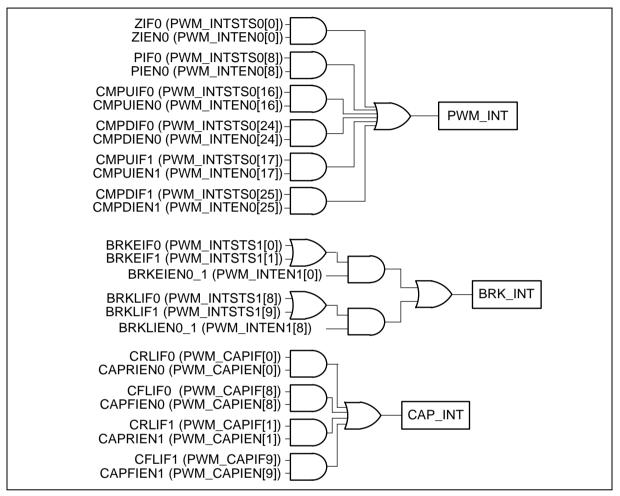


Figure 6.10-31 PWM_CH0 and PWM_CH1 Pair Interrupt Architecture Diagram

6.10.5.23 PWM Trigger ADC Generator

PWM can be one of the ADC conversion trigger source. Each PWM paired channels share the same trigger source. Setting TRGSELn is to select the trigger sources, where TRGSELn is TRGSEL0, TRGSEL1, ..., and TRGSEL5, which are located in PWM_ADCTS0[3:0], PWM_ADCTS0[11:8], PWM_ADCTS0[19:16], PWM_ADCTS0[27:24], PWM_ADCTS1[3:0] and PWM_ADCTS1[11:8], respectively. Setting TRGENn is to enable the trigger output to ADC, where TRGENn is TRGEN0, TRGEN1, ..., TRGEN5, which are located in PWM_ADCTS0[7], PWM_ADCTS0[15], PWM_ADCTS0[23], PWM_ADCTS0[31], PWM_ADCTS1[7] and PWM_ADCTS1[15], respectively. The number n (n = 0,1, ...,5) denotes PWM channel number.

There are 7 PWM events can be selected as the trigger source for one pair of channels. Figure 6.10-32 is an example of PWM_CH0 and PWM_CH1. PWM can trigger ADC to start conversion in different timings by setting PERIOD and CMPDAT. Figure 6.10-33 is the trigger ADC timing waveform in the up-down counter type.

M0A21/M0A23 Series

ηυνοτοη

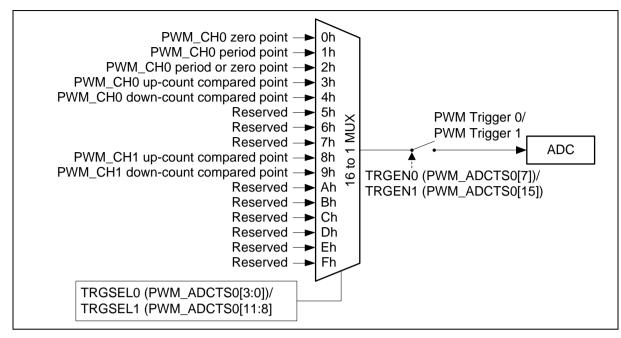
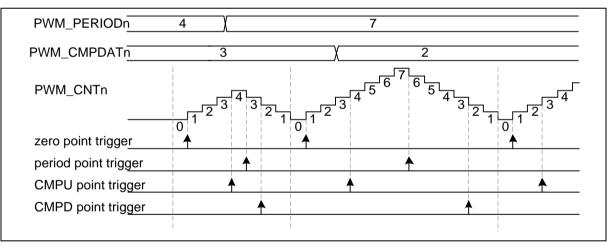
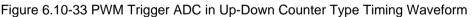




Figure 6.10-32 PWMx_CH0 and PWMx_CH1 Pair Trigger ADC Block Diagram

6.10.5.24 Capture Operation

The channels of the capture input and the PWM output share the same pin and counter. The counter can operate in up or down counter type. The capture function will always latch the PWM counter to the RCAPDATn (PWM_RCAPDATn[15:0]) bits or the FCAPDATn (PWM_FCAPDATn[15:0]) bits, if the input channel has a rising transition or a falling transition, respectively. The capture function will also generate an interrupt CAP_INT (using PWM_INT vector) if the rising or falling latch occurs and the corresponding channel n's rising or falling interrupt enable bits are set, where the CAPRIENn (PWM_CAPIEN[5:0]) bit is for the rising edge and the CAPFIENn (PWM_CAPIEN[13:8]) bit is for the falling edge. When rising or falling latch occurs, the corresponding PWM counter may be reloaded with the value of PWM_PERIODn register, depending on the setting of RCRLDENn or FCRLDENn bits (where RCRLDENn and FCRLDENn are located at PWM_CAPCTL[21:16] and PWM_CAPCTL[29:24], respectively). Note that the corresponding GPIO pins must be configured as the capture function by enable the CAPINENn (PWM_CAPINEN[5:0]) bits for the corresponding capture channel n. Figure 6.10-34 is the capture block diagram of channel 0.

M0A21/M0A23 Series

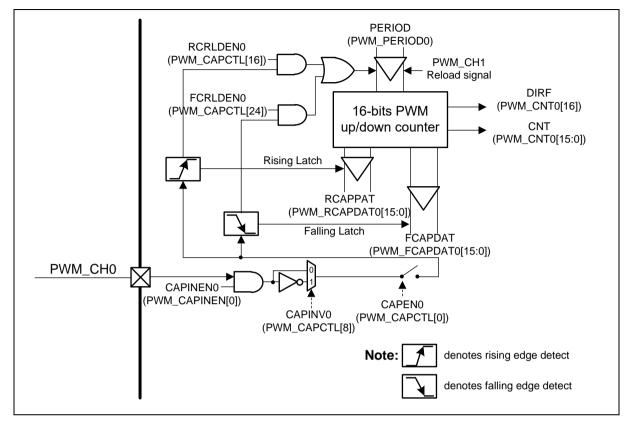


Figure 6.10-34 PWM_CH0 Capture Block Diagram

Figure 6.10-35 illustrates the capture function timing. In this case, the capture counter is set as PWM down counter type and the PERIOD is set to 8 so that the counter counts in the down direction, from 8 to 0. When detecting a falling edge at the capture input pin, the capture function latches the counter value to the PWM_FCAPDATn register. When detecting the rising edge, it latches the counter value to the PWM_RCAPDATn register. In this timing diagram, when the falling edge is detected at the first time, the capture function will reload the counter value from the PERIOD setting because the FCRLDENn bit is enabled. But at the second time, the falling edge does not result in a reload because of the disabled FCRLDENn bit. In this example, the counter also reloads at the rising edge of the capture input because the RCRLDENn bit is enabled, too.

Moreover, if the case is setup as the up counter type, the counter will reload the value zero and count up to the value PERIOD.

Figure 6.10-35 also illustrates the timing example for the interrupt and interrupt flag generation. When the rising edge at channel n is detected, the corresponding CRLIFn (PWM_CAPIF[5:0]) bit is set by hardware. Similarly, a falling edge detection at chnnel n causes the corresponding CFLIFn (PWM_CAPIF[13:8]) bit is set by hardware. CRLIFn and CFLIFn bits can be cleared by software by writing '1'. If the CRLIFn bit is set and the CAPRIENn bit is enabled, the capture function generates an interrupt. If the CFLIFn bit is set and the CAPFIENn is enabled, the interrupt also happens.

A condition which is not shown in Figure 6.10-35 is: if the rising latch happens again when the CRLIFn bit is already set, the Over run status CRLIFOVn (PWM_CAPSTS[5:0]) bit will be set to 1 by hardware to indicate the CRLIF flag overrunning. Also, if the falling latch happens again, the same hardware operation occurs for the CFLIF interrupt flag and the Over run status CFLIFOVn (PWM_CAPSTS[13:8]).

nuvoTon

PWM counter	3	2	1	8	7	6	5	8	7	6	5	4
				Reloa	ad (PE	RIOD =	= 8)	Relo	ad			
Capture Input			₩.						↓	\ \		
CAPINENn)	Falling	Latch					Fallin	g Latc	h
PWM_FCAPDATn						Risir 1	ng Lat	ch)			7	
PWM_RCAPDATn							X			5		
FCRLDENn												
RCRLDENn												
CAPFIENn												
CAPRIENn												
CFLIFn				Clea	r by S/	W		 				
CRLIFn									lear by	S/W		
Capture interrupt												
								I	Note	: n der	notes () to 5

Figure 6.10-35 Capture Operation Waveform

The capture pulse width meeting the following conditions can be calculated according to the formula.

- 1. The capture positive or negative pulse width is shorter than a counter period.
- 2. The counter operates in down counter type.
- 3. The counter can be reloaded by both falling and rising capture events through setting FCRLDENn and RCRLDENn bits of PWM_CAPCTL register to 1.

For the negative pulse case, the channel low pulse width is calculated as (PWM_PERIODn + 1 - PWM_RCAPDATn) PWM counter time, where one PWM counter time is (CLKPSC+1) * PWMx_CLK clock time. In Figure 6.10-35, the low pulse width is 8+1-5 = 4 PWM counter time.

For the positive pulse case, the channel high pulse width is calculated as (PWM_PERIODn + 1 - PWM_FCAPDATn) PWM counter time, where one PWM counter time is (CLKPSC+1) * PWMx_CLK clock time. In Figure 6.10-35, the high pulse width is 8+1-7 = 2 PWM counter time.

6.10.5.25 Capture PDMA Function

The PWM module supports the PDMA transfer function when operating in the capture mode (**Note:** If the PDMA function is not supported, this bit field will become invalid. Please refer to section 3.2 NuMicro[®] M0A21/M0A23 Series Selection Guide for detailed information.). When the corresponding PDMA enable bit CHENn_m (CHEN0_1 at PWM_PDMACTL[0], CHEN2_3 at PWM_PDMACTL[8] and CHEN4_5 at PWM_PDMACTL[16], where n and m denote complement pair channels) is set, the capture

module will issue a request to PDMA controller when the preceding capture event has happened. The PDMA controller will issue an acknowledgement to the capture module after it has read back the CAPBUF (PWM PDMACAPn m[15:0], n, m denotes complement pair channels) register in the capture module and has sent the register value to the memory. By setting CAPMODn m (CAPMOD0 1 at PWM PDMACTL[2:1]. CAPMOD2 3 at PWM PDMACTL[10:9] and CAPMOD4 5 at PWM PDMACTL[18:17]) bits, the PDMA can transfer the rising edge captured data or falling edge captured data or both of them to the memory. When using the PDMA to transfer both of the falling and rising edge data, remember to set CAPORDn m (CAPORD0 1 at PWM PDMACTL[3], CAPORD2 3 at PWM PDMACTL[11] and CAPORD4 5 at PWM PDMACTL[19]) bit to decide the order of the transferred data (falling edge captured is first or rising edge captured first). The complement pair channels share a PDMA channel. Therefore, a selection bit CHSELn m (CHSEL0 1 (PWM PDMACTL[4]), CHSEL2 3 (PWM PDMACTL[12]) and CHSEL4 5 (PWM PDMACTL[20])) bit is used to decide either channel n or channel m can be serviced by the PDMA channel.

Figure 6.10-36 is capture PDMA waveform. In this case, the CHSEL0_1 (PWM_PDMACTL[4]) bit is set to 0. Hence the PDMA will service channel 0 for the capture data transfer. CAPMOD0_1 (PWM_PDMACTL[2:1]) bits are set to 3. That means both of the rising and falling edge captured data will be transferred to the memory. The CAPORD0_1 (PWM_PDMACTL[3]) is set to 1, so the rising edge data will be the first data to transfer and following is the falling edge data to transfer. As shown in Figure 6.10-36, the last assertions of the CAPRIF0 CRLIF0 and CAPFIF0 CFLIF0 signal have some overlap. The PWM_RCAPDAT0 value 11 will be loaded to PWM_PDMACAP0_1 register to wait for transfer but not the PWM_FCAPDAT0 value 6. The PWM_PDMACAP0_1 register saves the data which will be transferred to the memory by PDMA. The HWDATA in Figure 6.10-36 denotes the data which are being transferred by PDMA.

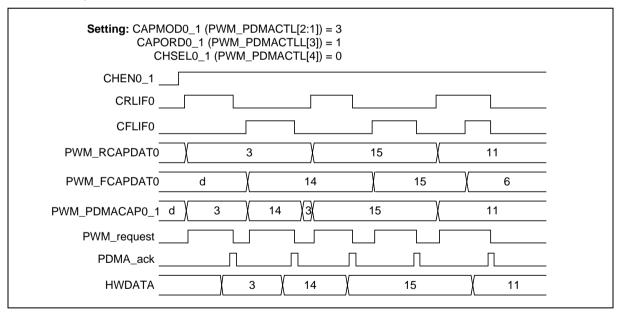


Figure 6.10-36 Capture PDMA Operation Waveform of Channel 0

6.10.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
PWM Base Address: PWM_BA = 0x4005_8000				
PWM_CTL0	PWM_BA+0x00	R/W	PWM Control Register 0	0x0000_0000
PWM_CTL1	PWM_BA+0x04	R/W	PWM Control Register 1	0x0000_0000
PWM_CLKSRC	PWM_BA+0x10	R/W	PWM Clock Source Register	0x0000_0000
PWM_CLKPSC0_1	PWM_BA+0x14	R/W	PWM Clock Prescale Register 0/1	0x0000_0000
PWM_CLKPSC2_3	PWM_BA+0x18	R/W	PWM Clock Prescale Register 2/3	0x0000_0000
PWM_CLKPSC4_5	PWM_BA+0x1C	R/W	PWM Clock Prescale Register 4/5	0x0000_0000
PWM_CNTEN	PWM_BA+0x20	R/W	PWM Counter Enable Register	0x0000_0000
PWM_CNTCLR	PWM_BA+0x24	R/W	PWM Clear Counter Register	0x0000_0000
PWM_PERIOD0	PWM_BA+0x30	R/W	PWM Period Register 0	0x0000_0000
PWM_PERIOD2	PWM_BA+0x38	R/W	PWM Period Register 2	0x0000_0000
PWM_PERIOD4	PWM_BA+0x40	R/W	PWM Period Register 4	0x0000_0000
PWM_CMPDAT0	PWM_BA+0x50	R/W	PWM Comparator Register 0	0x0000_0000
PWM_CMPDAT1	PWM_BA+0x54	R/W	PWM Comparator Register 1	0x0000_0000
PWM_CMPDAT2	PWM_BA+0x58	R/W	PWM Comparator Register 2	0x0000_0000
PWM_CMPDAT3	PWM_BA+0x5C	R/W	PWM Comparator Register 3	0x0000_0000
PWM_CMPDAT4	PWM_BA+0x60	R/W	PWM Comparator Register 4	0x0000_0000
PWM_CMPDAT5	PWM_BA+0x64	R/W	PWM Comparator Register 5	0x0000_0000
PWM_DTCTL0_1	PWM_BA+0x70	R/W	PWM Dead-time Control Register 0/1	0x0000_0000
PWM_DTCTL2_3	PWM_BA+0x74	R/W	PWM Dead-time Control Register 2/3	0x0000_0000
PWM_DTCTL4_5	PWM_BA+0x78	R/W	PWM Dead-time Control Register 4/5	0x0000_0000
PWM_CNT0	PWM_BA+0x90	R	PWM Counter Register 0	0x0000_0000
PWM_CNT2	PWM_BA+0x98	R	PWM Counter Register 2	0x0000_0000
PWM_CNT4	PWM_BA+0xA0	R	PWM Counter Register 4	0x0000_0000
PWM_WGCTL0	PWM_BA+0xB0	R/W	PWM Generation Register 0	0x0000_0000
PWM_WGCTL1	PWM_BA+0xB4	R/W	PWM Generation Register 1	0x0000_0000
PWM_MSKEN	PWM_BA+0xB8	R/W	PWM Mask Enable Register	0x0000_0000
PWM_MSK	PWM_BA+0xBC	R/W	PWM Mask Data Register	0x0000_0000

PWM_BNF	PWM_BA+0xC0	R/W	PWM Brake Noise Filter Register	0x0000_0000
PWM_FAILBRK	PWM_BA+0xC4	R/W	PWM System Fail Brake Control Register	0x0000_0000
PWM_BRKCTL0_1	PWM_BA+0xC8	R/W	PWM Brake Edge Detect Control Register 0/1	0x0000_0000
PWM_BRKCTL2_3	PWM_BA+0xCC	R/W	PWM Brake Edge Detect Control Register 2/3	0x0000_0000
PWM_BRKCTL4_5	PWM_BA+0xD0	R/W	PWM Brake Edge Detect Control Register 4/5	0x0000_0000
PWM_POLCTL	PWM_BA+0xD4	R/W	PWM Pin Polar Inverse Register	0x0000_0000
PWM_POEN	PWM_BA+0xD8	R/W	PWM Output Enable Register	0x0000_0000
PWM_SWBRK	PWM_BA+0xDC	w	PWM Software Brake Control Register	0x0000_0000
PWM_INTEN0	PWM_BA+0xE0	R/W	PWM Interrupt Enable Register 0	0x0000_0000
PWM_INTEN1	PWM_BA+0xE4	R/W	PWM Interrupt Enable Register 1	0x0000_0000
PWM_INTSTS0	PWM_BA+0xE8	R/W	PWM Interrupt Flag Register 0	0x0000_0000
PWM_INTSTS1	PWM_BA+0xEC	R/W	PWM Interrupt Flag Register 1	0x0000_0000
PWM_ADCTS0	PWM_BA+0xF8	R/W	PWM Trigger ADC Source Select Register 0	0x0000_0000
PWM_ADCTS1	PWM_BA+0xFC	R/W	PWM Trigger ADC Source Select Register 1	0x0000_0000
PWM_SSCTL	PWM_BA+0x110	R/W	PWM Synchronous Start Control Register	0x0000_0000
PWM_SSTRG	PWM_BA+0x114	w	PWM Synchronous Start Trigger Register	0x0000_0000
PWM_STATUS	PWM_BA+0x120	R/W	PWM Status Register	0x0000_0000
PWM_CAPINEN	PWM_BA+0x200	R/W	PWM Capture Input Enable Register	0x0000_0000
PWM_CAPCTL	PWM_BA+0x204	R/W	PWM Capture Control Register	0x0000_0000
PWM_CAPSTS	PWM_BA+0x208	R	PWM Capture Status Register	0x0000_0000
PWM_RCAPDAT0	PWM_BA+0x20C	R	PWM Rising Capture Data Register 0	0x0000_0000
PWM_FCAPDAT0	PWM_BA+0x210	R	PWM Falling Capture Data Register 0	0x0000_0000
PWM_RCAPDAT1	PWM_BA+0x214	R	PWM Rising Capture Data Register 1	0x0000_0000
PWM_FCAPDAT1	PWM_BA+0x218	R	PWM Falling Capture Data Register 1	0x0000_0000
PWM_RCAPDAT2	PWM_BA+0x21C	R	PWM Rising Capture Data Register 2	0x0000_0000
PWM_FCAPDAT2	PWM_BA+0x220	R	PWM Falling Capture Data Register 2	0x0000_0000
PWM_RCAPDAT3	PWM_BA+0x224	R	PWM Rising Capture Data Register 3	0x0000_0000
PWM_FCAPDAT3	PWM_BA+0x228	R	PWM Falling Capture Data Register 3	0x0000_0000
PWM_RCAPDAT4	PWM_BA+0x22C	R	PWM Rising Capture Data Register 4	0x0000_0000
PWM_FCAPDAT4	PWM_BA+0x230	R	PWM Falling Capture Data Register 4	0x0000_0000
PWM_RCAPDAT5	PWM_BA+0x234	R	PWM Rising Capture Data Register 5	0x0000_0000

PWM_FCAPDAT5	PWM_BA+0x238	R	PWM Falling Capture Data Register 5	0x0000_0000
PWM_PDMACTL	PWM_BA+0x23C	R/W	PWM PDMA Control Register	0x0000_0000
PWM_PDMACAP0_1	PWM_BA+0x240	R	PWM Capture Channel 01 PDMA Register	0x0000_0000
PWM_PDMACAP2_3	PWM_BA+0x244	R	PWM Capture Channel 23 PDMA Register	0x0000_0000
PWM_PDMACAP4_5	PWM_BA+0x248	R	PWM Capture Channel 45 PDMA Register	0x0000_0000
PWM_CAPIEN	PWM_BA+0x250	R/W	PWM Capture Interrupt Enable Register	0x0000_0000
PWM_CAPIF	PWM_BA+0x254	R/W	PWM Capture Interrupt Flag Register	0x0000_0000
PWM_PBUF0	PWM_BA+0x304	R	PWM PERIOD0 Buffer	0x0000_0000
PWM_PBUF2	PWM_BA+0x30C	R	PWM PERIOD2 Buffer	0x0000_0000
PWM_PBUF4	PWM_BA+0x314	R	PWM PERIOD4 Buffer	0x0000_0000
PWM_CMPBUF0	PWM_BA+0x31C	R	PWM CMPDAT0 Buffer	0x0000_0000
PWM_CMPBUF1	PWM_BA+0x320	R	PWM CMPDAT1 Buffer	0x0000_0000
PWM_CMPBUF2	PWM_BA+0x324	R	PWM CMPDAT2 Buffer	0x0000_0000
PWM_CMPBUF3	PWM_BA+0x328	R	PWM CMPDAT3 Buffer	0x0000_0000
PWM_CMPBUF4	PWM_BA+0x32C	R	PWM CMPDAT4 Buffer	0x0000_0000
PWM_CMPBUF5	PWM_BA+0x330	R	PWM CMPDAT5 Buffer	0x0000_0000

6.10.7 Register Description

PWM Control Register 0 (PWM_CTL0)

Register	Offset	R/W	Description	Reset Value
PWM_CTL0	PWM_BA+0x00	R/W	PWM Control Register 0	0x0000_0000

31	30	29	28	27	26	25	24			
DBGTRIOFF	DBGHALT		Reserved							
23	22	21	20	19	18	17	16			
Rese	erved	IMMLDEN5	IMMLDEN4	IMMLDEN3	IMMLDEN2	IMMLDEN1	IMMLDEN0			
15	14	13	12	11	10	9	8			
	-	-	Rese	erved	-	-	-			
7	6	5	4	3	2	1	0			
Rese	erved	CTRLD5	CTRLD4	CTRLD3	CTRLD2	CTRLD1	CTRLD0			

Bits	Description	
[31]	DBGTRIOFF	ICE Debug Mode Acknowledge Disable Bit (Write Protect) 0 = ICE debug mode acknowledgement effects PWM output. PWM pin will be forced as tri-state while ICE debug mode acknowledged. 1 = ICE debug mode acknowledgement disabled. PWM pin will keep output no matter ICE debug mode acknowledged or not. Note: This bit is write protected. Refer to SYS_REGLCTL register.
[30]	DBGHALT	ICE Debug Mode Counter Halt (Write Protect) If counter halt is enabled, PWM all counters will keep current value until exit ICE debug mode. 0 = ICE debug mode counter halt Disable. 1 = ICE debug mode counter halt Enable. Note: This bit is write protected. Refer to SYS_REGLCTL register.
[29:22]	Reserved	Reserved.
[n+16] n=0,15	IMMLDENn	Immediately Load Enable Bits 0 = PERIOD will load to PBUF at the end point of each period. CMPDAT will load to CMPBUF at the end point or center point of each period by setting CTRLD bit. 1 = PERIOD/CMPDAT will load to PBUF and CMPBUF immediately when software update PERIOD/CMPDAT. Note: If IMMLDENn is enabled, WINLDENn and CTRLDn will be invalid.
[15:6]	Reserved	Reserved.
[n] n=0,15	CTRLDn	Center Load Enable Bits In up-down counter type, PERIOD will load to PBUF at the end point of each period. CMPDAT will load to CMPBUF at the center point of a period.

PWM Control Register 1 (PWM_CTL1)

Register	egister Offset F		Description	Reset Value
PWM_CTL1	PWM_BA+0x04	R/W	PWM Control Register 1	0x0000_0000

31	30	29	28	27	26	25	24				
		Reserved	OUTMODE4	OUTMODE2	OUTMODE0						
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
		Rese	erved			CNTT	YPE4				
7	6	5	4	3	2	1	0				
Reserved CNTTYPE2				Rese	erved	CNTT	YPE0				

Bits	Description	
[31:27]	Reserved	Reserved.
[26:24]	OUTMODEn	 PWM Output Mode Each bit n controls the output mode of corresponding PWM channel n. 0 = PWM independent mode. 1 = PWM complementary mode. Note: When operating in group function, these bits must all set to the same mode.
[23:10]	Reserved	Reserved.
[9:8]	CNTTYPE4	 PWM Counter Behavior Type 4 The two bits control channel5 and channel4 00 = Up counter type (supported in capture mode). 01 = Down count type (supported in capture mode). 10 = Up-down counter type. 11 = Reserved.
[7:6]	Reserved	Reserved.
[5:4]	CNTTYPE2	PWM Counter Behavior Type 2 The two bits control channel3 and channel2 00 = Up counter type (supported in capture mode). 01 = Down count type (supported in capture mode). 10 = Up-down counter type. 11 = Reserved.
[3:2]	Reserved	Reserved.
[1:0]	CNTTYPE0	PWM Counter Behavior Type 0The two bits control channel1 and channel000 = Up counter type (supported in capture mode).01 = Down count type (supported in capture mode).10 = Up-down counter type.

11 = Reserved.

PWM Clock Source Register (PWM_CLKSRC)

Register	Offset	R/W	Description	Reset Value
PWM_CLKSRC	PWM_BA+0x10	R/W	PWM Clock Source Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	-	Reserved			ECLKSRC4					
15	14	13	12	11	10	9	8			
		Reserved				ECLKSRC2				
7	6	5	4	3	2	1	0			
Reserved						ECLKSRC0				

Bits	Description	
[31:19]	Reserved	Reserved.
		PWM_CH45 External Clock Source Select
		000 = PWMx_CLK, x denotes 0 or 1.
		001 = TIMER0 overflow.
[18:16]	ECLKSRC4	010 = TIMER1 overflow.
		011 = TIMER2 overflow.
		100 = TIMER3 overflow.
		Others = Reserved.
[15:11]	Reserved	Reserved.
		PWM_CH23 External Clock Source Select
		000 = PWMx_CLK, x denotes 0 or 1.
		001 = TIMER0 overflow.
[10:8]	ECLKSRC2	010 = TIMER1 overflow.
		011 = TIMER2 overflow.
		100 = TIMER3 overflow.
		Others = Reserved.
[7:3]	Reserved	Reserved.
		PWM_CH01 External Clock Source Select
		000 = PWMx_CLK, x denotes 0 or 1.
		001 = TIMER0 overflow.
[2:0]	ECLKSRC0	010 = TIMER1 overflow.
		011 = TIMER2 overflow.
		100 = TIMER3 overflow.
		Others = Reserved.

Register Offset R/W Description		Description	Reset Value	
PWM_CLKPSC0_1	PWM_BA+0x14	R/W	PWM Clock Prescale Register 0/1	0x0000_0000
PWM_CLKPSC2_3	PWM_BA+0x18	R/W	PWM Clock Prescale Register 2/3	0x0000_0000
PWM_CLKPSC4_5	PWM_BA+0x1C	R/W	PWM Clock Prescale Register 4/5	0x0000_0000

PWM Clock Pre-scale Register 0_1, 2_3, 4_5 (PWM_CLKPSC0_1, 2_3, 4_5)

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved		-		
15	14	13	12	11	10	9	8	
	Rese	erved		CLKPSC				
7	6	5	4	3	2	1	0	
	CLKPSC							

E	Bits	Description					
[31:12]	Reserved	Reserved.				
[11:0]	CLKPSC	PWM Counter Clock Prescale The clock of PWM counter is decided by clock prescaler. Each PWM pair share one PWM counter clock prescaler. The clock of PWM counter is divided by (CLKPSC+ 1).				

Reserved

CNTEN0

PWM Counter Enable Register (PWM_CNTEN)

Reserved

Register	Register Offset R/W Description				Reset Value				
PWM_CNTEN	VM_CNTEN PWM_BA+0x20 R/		R/W	PWM	Counter Enable	Register		0x0000_0000	
31	30	29	28		27	26	25		24
				Rese	erved				
23	22	21	20	1	19	18	17		16
				Rese	erved				-
15	14	13	12		11	10	9		8
Reserved									
7	6	5	4		3	2	1		0

Reserved

CNTEN2

CNTEN4

Bits	Description	Description					
[31:5]	Reserved	Reserved.					
[4]	CNTEN4	PWM Counter Enable Bit 4 0 = PWM Counter and clock prescaler Stop Running. 1 = PWM Counter and clock prescaler Start Running.					
[3]	Reserved	Reserved.					
[2]	CNTEN2	 PWM Counter Enable Bit 2 0 = PWM Counter and clock prescaler Stop Running. 1 = PWM Counter and clock prescaler Start Running. 					
[1]	Reserved Reserved.						
[0]	CNTEN0	PWM Counter Enable Bit 0 0 = PWM Counter and clock prescaler Stop Running. 1 = PWM Counter and clock prescaler Start Running.					

PWM Clear Counter Register (PWM_CNTCLR)

Register	Offset	R/W	Description	Reset Value
PWM_CNTCLR	PWM_BA+0x24	R/W	PWM Clear Counter Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
Reserved			CNTCLR4	Reserved	CNTCLR2	Reserved	CNTCLR0	

Bits	Description					
[31:5]	Reserved	Reserved.				
[4]	CNTCLR4	Clear PWM Counter Control Bit 4 It is automatically cleared by hardware. 0 = No effect. 1 = Clear 16-bit PWM counter to 0000H.				
[3]	Reserved	Reserved.				
[2]	CNTCLR2	Clear PWM Counter Control Bit 2 It is automatically cleared by hardware. 0 = No effect. 1 = Clear 16-bit PWM counter to 0000H.				
[1]	Reserved	Reserved.				
[0]	CNTCLR0	Clear PWM Counter Control Bit 0 It is automatically cleared by hardware. 0 = No effect. 1 = Clear 16-bit PWM counter to 0000H.				

nuvoTon

Register	Offset	R/W	Description	Reset Value		
PWM_PERIOD0	PWM_BA+0x30	R/W	PWM Period Register 0	0x0000_0000		
PWM_PERIOD2	PWM_BA+0x38	R/W	PWM Period Register 2	0x0000_0000		
PWM_PERIOD4	PWM_BA+0x40	R/W	PWM Period Register 4	0x0000_0000		

PWM Period Register 0, 2, 4 (PWM_PERIOD0, 2, 4)

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	PERIOD								
7	6	5	4	3	2	1	0		
	PERIOD								

Bits	Descriptio	Description					
[31:16]	Reserved	Reserved.					
[15:0]	PERIOD	PWM Period Register Up-Count mode: In this mode, PWM counter counts from 0 to PERIOD, and restarts from 0. Down-Count mode: In this mode, PWM counter counts from PERIOD to 0, and restarts from PERIOD. PWM period time = (PERIOD+1) * PWM_CLK period. Up-Down-Count mode: In this mode, PWM counter counts from 0 to PERIOD, then decrements to 0 and repeats again.					
		PWM period time = 2 * PERIOD * PWM_CLK period.					

PWM Comparator Register 0~5 (PWM_CMPDAT0~5)

Register	Offset	R/W	Description	Reset Value
PWM_CMPDAT0	PWM_BA+0x50	R/W	PWM Comparator Register 0	0x0000_0000
PWM_CMPDAT1	PWM_BA+0x54	R/W	PWM Comparator Register 1	0x0000_0000
PWM_CMPDAT2	PWM_BA+0x58	R/W	PWM Comparator Register 2	0x0000_0000
PWM_CMPDAT3	PWM_BA+0x5C	R/W	PWM Comparator Register 3 0x0000_000	
PWM_CMPDAT4	PWM_BA+0x60	R/W	PWM Comparator Register 4	0x0000_0000
PWM_CMPDAT5	PWM_BA+0x64	R/W	PWM Comparator Register 5	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
			CI	MP					
7	6	5	4	3	2	1	0		
	СМР								

Bits	Descriptio	Description						
[31:16]	Reserved	Reserved.						
[15:0]	СМР	PWM Comparator Register CMP is used to compare with CNTR to generate PWM waveform, interrupt and trigger ADC. In independent mode, PWM_CMPDAT0~5 denote as 6 independent PWM_CH0~5 compared point. In complementary mode, PWM_CMPDAT0, 2, 4 denote as first compared point, and PWM_CMPDAT1, 3, 5 denote as second compared point for the corresponding 3 complementary pairs PWM_CH0 and PWM_CH1, PWM_CH2 and PWM_CH3, PWM_CH4 and PWM_CH5.						

Register	Offset	R/W	Description	Reset Value
PWM_DTCTL0_1	PWM_BA+0x70	R/W	PWM Dead-time Control Register 0/1	0x0000_0000
PWM_DTCTL2_3	PWM_BA+0x74	R/W	PWM Dead-time Control Register 2/3	0x0000_0000
PWM_DTCTL4_5	PWM_BA+0x78	R/W	PWM Dead-time Control Register 4/5	0x0000_0000

PWM Dead-time Control Register 0_1, 2_3, 4_5 (PWM_DTCTL0_1, 2_3, 4_5)

31	30	29	28	27	26	25	24
			Reserved				DTCKSEL
23	22	21	20	19	18	17	16
	-		Reserved		-	-	DTEN
15	14	13	12	11	10	9	8
	Rese	erved		DTCNT			
7	6	5	4	3	2	1	0
	DTCNT						

Bits	Descriptio	n				
[31:25]	Reserved	Reserved.				
[24]	DTCKSEL	TCKSEL Dead-time Clock Select (Write Protect) 0 = Dead-time clock source from PWM_CLK. 1 = Dead-time clock source from prescaler output. Note: This bit is write protected. Refer to REGWRPROT register.				
[23:17]	Reserved	Reserved.				
[16]	DTEN	Enable Dead-time Insertion for PWM Pair (Write Protect) PWM_CH0 andPWM_CH1 PWM_CH2 andPWM_CH3 PWM_CH4 andPWM_CH5 Dead-time insertion is only active when this pair of complementary PWM is enabled. If dead- time insertion is inactive, the outputs of pin pair are complementary without any delay. 0 = Dead-time insertion Disabled on the pin pair. 1 = Dead-time insertion Enabled on the pin pair. Note: This bit is write protected. Refer to SYS_REGLCTL register.				
[15:12]	Reserved	Reserved.				
[11:0]	DTCNT	Dead-time Counter (Write Protect) The dead-time can be calculated from the following formula: DTCKSEL=0: Dead-time = (DTCNT[11:0]+1) * PWM_CLK period. DTCKSEL=1: Dead-time = (DTCNT[11:0]+1) * PWM_CLK period * (CLKPSC+1). Note: This bit is write protected. Refer to SYS_REGLCTL register.				

Register	Offset	R/W	Description	Reset Value		
PWM_CNT0	PWM_BA+0x90	R	PWM Counter Register 0	0x0000_0000		
PWM_CNT2	PWM_BA+0x98	R	PWM Counter Register 2	0x0000_0000		
PWM_CNT4	PWM_BA+0xA0	R	PWM Counter Register 4	0x0000_0000		

PWM Counter Register 0, 2, 4 (PWM_CNT0, 2, 4)

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved						DIRF	
15	14	13	12	11	10	9	8	
			CI	NT				
7	6	5	4	3	2	1	0	
	CNT							

Bits	Description	Description					
[31:17]	Reserved	eserved Reserved.					
[16]	DIRF	 PWM Direction Indicator Flag (Read Only) 0 = Counter is counting down. 1 = Counter is counting up. 					
[15:0]	CNT	PWM Data Register (Read Only) User can monitor CNTR to know the current value in 16-bit period counter.					

PWM Generation Register 0 (PWM_WGCTL0)

Register	Offset	R/W	Description	Reset Value
PWM_WGCTL0	PWM_BA+0xB0	R/W	PWM Generation Register 0	0x0000_0000

31	30	29	28	27	26	25	24
Reserved			PRDPCTL5		PRDPCTL4		
23	22	21	20	19	18	17	16
PRDF	CTL3	PRDP	CTL2	PRDPCTL1		PRDPCTL0	
15	14	13	12	11	10	9	8
	Rese	erved		ZPCTL5		ZPCTL4	
7	6	5	4	3	2	1	0
ZPCTL3 ZPCTL2		ZPCTL1		ZPCTL0			

Bits	Description	
[31:28]	Reserved	Reserved.
[17+2n:16+2n] n=0,15	PRDPCTLn	 PWM Period or CenterPoint Control 00 = Do nothing. 01 = PWM period orcente point output Low. 10 = PWM period orcenter point output High. 11 = PWM period orcenter point output Toggle. Note 1: PWM can control output level when PWM counter counts to (PERIODn+1). Note 2: This bit is center point control when PWM counter operating in up-down counter type.
[15:12]	Reserved	Reserved.
[1+2n:2n] n=0,15		

PWM Generation Register 1 (PWM_WGCTL1)

Register	Offset	R/W	Description	Reset Value
PWM_WGCTL1	PWM_BA+0xB4	R/W	PWM Generation Register 1	0x0000_0000

31	30	29	28	27	26	25	24
	Rese	erved		CMPDCTL5		CMPDCTL4	
23	22	21	20	19	18	17	16
CMPE	OCTL3	CMPE	OCTL2	CMPDCTL1		CMPDCTL0	
15	14	13	12	11	10	9	8
	Rese	erved		CMPUCTL5		CMPUCTL4	
7	6	5	4	3	2	1	0
CMPUCTL3 CMPUCTL2			CMPUCTL1 CMPUC			JCTL0	

Bits	Description	
[31:28]	Reserved	Reserved.
[17+2n:16+2n] n=0,15	CMPDCTLn	 PWM Compare Down Point Control 00 = Do nothing. 01 = PWM compare down point output Low. 10 = PWM compare down point output High. 11 = PWM compare down point output Toggle. Note 1: PWM can control output level when PWM counter counts down to CMPDAT. Note 2: In complementary mode, CMPDCTL1, 3, 5 is used as another CMPDCTL for channel 0, 2, 4.
[15:12]	Reserved	Reserved.
[1+2n:2n] n=0,15	CMPUCTLn	 PWM Compare Up Point Control 00 = Do nothing. 01 = PWM compare up point output Low. 10 = PWM compare up point output High. 11 = PWM compare up point output Toggle. Note 1: PWM can control output level when PWM counter counts up to CMPDAT. Note 2: In complementary mode, CMPUCTL1, 3, 5 is used as another CMPUCTL for channel 0, 2, 4.

PWM Mask Enable Register (PWM_MSKEN)

Register		Offset		R/W	Description			Reset Value		
PWM_MSKEN		PWM_	BA+0xB8	R/W	PW	M Mask Enable	Register		0x0000_0000	
31	30		29	28		27	26	25		24
					Rese	erved				
23	22		21	20	20 19		18	17		16
	-				Rese	erved				-
15	14		13	12		11	10	9		8
Reserved										
7	6		5	4		3	2	1		0
Rese	erved		MSKEN5	MSKEN	4	MSKEN3	MSKEN2	MSKE	N1	MSKEN0

Bits	Descriptio	Description					
[31:6]	Reserved	erved Reserved.					
[n] n=0,15	MSKENn	 PWM Mask Enable Bits The PWM output signal will be masked when this bit is enabled. The corresponding PWM channel n will output MSKDATn (PWM_MSK[5:0]) data. 0 = PWM output signal is non-masked. 1 = PWM output signal is masked and output MSKDATn data. 					

PWM Mask DATA Register (PWM_MSK)

Register	Offset	R/W	Description	Reset Value
PWM_MSK	PWM_BA+0xBC	R/W	PWM Mask Data Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	-	-	Rese	erved					
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
Rese	erved	MSKDAT5	MSKDAT4	MSKDAT3	MSKDAT2	MSKDAT1	MSKDAT0		

Bits	Descriptio	Description						
[31:6]	Reserved	ed Reserved.						
[n] n=0,15	MSKDATn	PWM Mask Data Bit This data bit control the state of PWMn output pin, if corresponding mask function is enabled. Each bit n controls the corresponding PWM channel n. 0 = Output logic low to PWM channel n.						
		1 = Output logic high to PWM channel n.						

PWM Brake Noise Filter Register (PWM_BNF)

Register	Offset	R/W	Description	Reset Value
PWM_BNF	PWM_BA+0xC0	R/W	PWM Brake Noise Filter Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
		-	Reserved		BK0SRC			
15	14	13	12	11	10	9	8	
BRK1PINV	BRK1PINV BRK1FCNT				BRK1NFSEL			
7	6	5	4	3	2	1	0	
BRK0PINV	BRK0PINV BRK0FCNT				BRK0NFSEL		BRK0NFEN	

Bits	Description				
[31:25]	Reserved	Reserved.			
[24]	BK1SRC	Brake 1 Pin Source Select For PWM0 setting: 0 = Brake 1 pin source come from PWM0_BRAKE1. 1 = Reserved			
[23:17]	Reserved	Reserved.			
[16]	BK0SRC	Brake 0 Pin Source Select For PWM0 setting: 0 = Brake 0 pin source come from PWM0_BRAKE0. 1 = Reserved.			
[15]	BRK1PINV	Brake 1 Pin Inverse 0 = The state of pin PWMx_BRAKE1 is passed to the negative edge detector. 1 = The inversed state of pin PWMx_BRAKE1 is passed to the negative edge detector.			
[14:12]	BRK1FCNT	Brake 1 Edge Detector Filter Count The register bits control the Brake1 filter counter to count from 0 to BRK1FCNT.			
[11:9]	BRK1NFSEL	Brake 1 Edge Detector Filter Clock Selection 000 = Filter clock = HCLK. 001 = Filter clock = HCLK/2. 010 = Filter clock = HCLK/4. 011 = Filter clock = HCLK/8. 100 = Filter clock = HCLK/16. 101 = Filter clock = HCLK/16. 101 = Filter clock = HCLK/32. 110 = Filter clock = HCLK/64. 111 = Filter clock = HCLK/128.			
[8]	BRK1NFEN	PWM Brake 1 Noise Filter Enable Bit			

		1 = Noise filter of PWM Brake 1 Enabled.			
[7]	BRKOPINV	Brake 0 Pin Inverse 0 = The state of pin PWMx_BRAKE0 is passed to the negative edge detector. 1 = The inversed state of pin PWMx_BRAKE10 is passed to the negative edge detector.			
[6:4]	BRK0FCNT	ake 0 Edge Detector Filter Count e register bits control the Brake0 filter counter to count from 0 to BRK1FCNT.			
[3:1]	BRKONFSEL	Brake 0 Edge Detector Filter Clock Selection 000 = Filter clock = HCLK. 001 = Filter clock = HCLK/2. 010 = Filter clock = HCLK/4. 011 = Filter clock = HCLK/8. 100 = Filter clock = HCLK/16. 101 = Filter clock = HCLK/32. 110 = Filter clock = HCLK/64. 111 = Filter clock = HCLK/128.			
[0]	BRKONFEN	PWM Brake 0 Noise Filter Enable Bit0 = Noise filter of PWM Brake 0 Disabled.1 = Noise filter of PWM Brake 0 Enabled.			

PWM System Fail Brake Control Register (PWM_FAILBRK)

Register	Offset	R/W	Description	Reset Value
PWM_FAILBRK	PWM_BA+0xC4	R/W	PWM System Fail Brake Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Reserved				Reserved	BODBRKEN	CSSBRKEN		

Bits	Description	escription						
[31:4]	Reserved	Reserved.						
[3]	CORBRKEN	Core Lockup Detection Trigger PWM Brake Function 0 Enable Bit 0 = Brake Function triggered by Core lockup detection Disabled. 1 = Brake Function triggered by Core lockup detection Enabled.						
[2]	Reserved	Reserved.						
[1]	BODBRKEN	Brown-out Detection Trigger PWM Brake Function 0 Enable Bit 0 = Brake Function triggered by BOD Disabled. 1 = Brake Function triggered by BOD Enabled.						
[0]	CSSBRKEN	Clock Security System Detection Trigger PWM Brake Function 0 Enable Bit 0 = Brake Function triggered by CSS detection Disabled. 1 = Brake Function triggered by CSS detection Enabled.						

Register	Offset	R/W	Description	Reset Value
PWM_BRKCTL0_1	PWM_BA+0xC8	R/W	PWM Brake Edge Detect Control Register 0/1	0x0000_0000
PWM_BRKCTL2_3	PWM_BA+0xCC	R/W	PWM Brake Edge Detect Control Register 2/3	0x0000_0000
PWM_BRKCTL4_5	PWM_BA+0xD0	R/W	PWM Brake Edge Detect Control Register 4/5	0x0000_0000

PWM Brake Edge Detect Control Register 0_1, 2_3, 4_5 (PWM_BRKCTL0_1, 2_3, 4_5)

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Rese	erved		BRK	AODD	BRKAEVEN			
15	14	13	12	11	10	9	8		
SYSLBEN	Reserved	BRKP1LEN	BRKP0LEN	Rese	erved	CPO1LBEN	CPOOLBEN		
7	6	5	4	3	2	1	0		
SYSEBEN	Reserved	BRKP1EEN	BRKP0EEN	Reserved		CPO1EBEN	CP00EBEN		

Bits	Description	
[31:20]	Reserved	Reserved.
[19:18]	BRKAODD	 PWM Brake Action Select for Odd Channel (Write Protect) 00 = PWM odd channel level-detect brake function not affect channel output. 01 = PWM odd channel output tri-state when level-detect brake happened. 10 = PWM odd channel output low level when level-detect brake happened. 11 = PWM odd channel output high level when level-detect brake happened. Note: These bits are write protected. Refer to SYS_REGLCTL register.
[17:16]	BRKAEVEN	 PWM Brake Action Select for Even Channel (Write Protect) 00 = PWM even channel level-detect brake function not affect channel output. 01 = PWM even channel output tri-state when level-detect brake happened. 10 = PWM even channel output low level when level-detect brake happened. 11 = PWM even channel output high level when level-detect brake happened. Note: These bits are write protected. Refer to SYS_REGLCTL register.
[15]	SYSLBEN	 Enable System Fail As Level-detect Brake Source (Write Protect) 0 = System Fail condition as level-detect brake source Disabled. 1 = System Fail condition as level-detect brake source Enabled. Note: This bit is write protected. Refer to SYS_REGLCTL register.
[14]	Reserved	Reserved.
[13]	BRKP1LEN	Enable BKP1 Pin As Level-detect Brake Source (Write Protect) 0 = PWMx_BRAKE1 pin as level-detect brake source Disabled. 1 = PWMx_BRAKE1 pin as level-detect brake source Enabled. Note: This bit is write protected. Refer to SYS_REGLCTL register.
[12]	BRKPOLEN	Enable BKP0 Pin As Level-detect Brake Source (Write Protect)

nuvoTon

		0 = PWMx_BRAKE0 pin as level-detect brake source Disabled. 1 = PWMx_BRAKE0 pin as level-detect brake source Enabled. Note: This bit is write protected. Refer to SYS_REGLCTL register.
[11:10]	Reserved	Reserved.
[9]	CPO1LBEN	Enable ACMP1_O Digital Output As Level-detect Brake Source (Write Protect) 0 = ACMP1_O as level-detect brake source Disabled. 1 = ACMP1_O as level-detect brake source Enabled. Note: This register is write protected. Refer to SYS_REGLCTL register.
[8]	CPO0LBEN	Enable ACMP0_O Digital Output As Level-detect Brake Source (Write Protect) 0 = ACMP0_O as level-detect brake source Disabled. 1 = ACMP0_O as level-detect brake source Enabled. Note: This register is write protected. Refer to SYS_REGLCTL register.
[7]	SYSEBEN	 Enable System Fail As Edge-detect Brake Source (Write Protect) 0 = System Fail condition as edge-detect brake source Disabled. 1 = System Fail condition as edge-detect brake source Enabled. Note: This bit is write protected. Refer to SYS_REGLCTL register.
[6]	Reserved	Reserved.
[5]	BRKP1EEN	Enable PWMx_BRAKE1 Pin As Edge-detect Brake Source (Write Protect) 0 = BKP1 pin as edge-detect brake source Disabled. 1 = BKP1 pin as edge-detect brake source Enabled. Note: This bit is write protected. Refer to SYS_REGLCTL register.
[4]	BRKP0EEN	 Enable PWMx_BRAKE0 Pin As Edge-detect Brake Source (Write Protect) 0 = BKP0 pin as edge-detect brake source Disabled. 1 = BKP0 pin as edge-detect brake source Enabled. Note: This bit is write protected. Refer to SYS_REGLCTL register.
[3:2]	Reserved	Reserved.
[1]	CPO1EBEN	Enable ACMP1_O Digital Output As Edge-detect Brake Source (Write Protect) 0 = ACMP1_O as edge-detect brake source Disabled. 1 = ACMP1_O as edge-detect brake source Enabled. Note: This register is write protected. Refer to SYS_REGLCTL register.
[0]	CPO0EBEN	Enable ACMP0_O Digital Output As Edge-detect Brake Source (Write Protect) 0 = ACMP0_O as edge-detect brake source Disabled. 1 = ACMP0_O as edge-detect brake source Enabled. Note: This register is write protected. Refer to SYS_REGLCTL register.

PWM Pin Polar Inverse Control (PWM_POLCTL)

Register	Offset	R/W	Description	Reset Value
PWM_POLCTL	PWM_BA+0xD4	R/W	PWM Pin Polar Inverse Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Rese	Reserved PINV5			PINV3	PINV2	PINV1	PINV0			

Bits	Description	Description						
[31:6]	Reserved	Reserved.						
		PWM PIN Polar Inverse Control						
[n]	PINVn	The register controls polarity state of PWM output.						
n=0,15		0 = PWM output polar inverse Disabled.						
		1 = PWM output polar inverse Enabled.						

PWM Output Enable Register (PWM_POEN)

Register	Offset	R/W	Description	Reset Value
PWM_POEN PWM_BA+0xD8		R/W	PWM Output Enable Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Rese	Reserved POEN5			POEN3	POEN2	POEN1	POEN0			

Bits	Description						
[31:6]	Reserved	Reserved.					
[n] n=0,15	POENn	PWM Pin Output Enable Bits 0 = PWM pin at tri-state. 1 = PWM pin in output mode.					

PWM Software Brake Control Register (PWM_SWBRK)

Register	Offset	R/W	Description	Reset Value
PWM_SWBRK	PWM_BA+0xDC	W	PWM Software Brake Control Register	0x0000_0000

31	30	29	28	27	26	25	24				
Reserved											
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
		Reserved			BRKLTRG4	BRKLTRG2	BRKLTRG0				
7	6	5	4	3	2	1	0				
		Reserved	BRKETRG4	BRKETRG2	BRKETRG0						

Bits	Description							
[31:11]	Reserved	Reserved.						
[8+n/2] n=0,2,4	BRKLTRGn	PWM Level Brake Software Trigger (Write Only) (Write Protect) Write 1 to this bit will trigger level brake, and set BRKLIFn to 1 in PWM_INTSTS1 register. Note: This bit is write protected. Refer to SYS_REGLCTL register.						
[7:3]	Reserved	Reserved.						
[n/2] n=0,2,4	BRKETRGn	PWM Edge Brake Software Trigger (Write Only) (Write Protect) Write 1 to this bit will trigger Edge brake, and set BRKEIFn to 1 in PWM_INTSTS1 register. Note: This bit is write protected. Refer to SYS_REGLCTL register.						

PWM Interrupt Enable Register 0 (PWM_INTEN0)

Register	Offset	R/W	Description	Reset Value
PWM_INTEN0	PWM_BA+0xE0	R/W	PWM Interrupt Enable Register 0	0x0000_0000

31	30	29	28	27	26	25	24
Reserved		CMPDIEN5	CMPDIEN4	CMPDIEN3	CMPDIEN2	CMPDIEN1	CMPDIEN0
23	22	21	20	19	18	17	16
Rese	Reserved		CMPUIEN4	CMPUIEN3	CMPUIEN2	CMPUIEN1	CMPUIEN0
15	14	13	12	11	10	9	8
	Reserved		PIEN4	Reserved	PIEN2	Reserved	PIEN0
7	6	5	4	3	2	1	0
Reserved			ZIEN4	Reserved	ZIEN2	Reserved	ZIEN0

Bits	Description					
[31:30]	Reserved	Reserved.				
[24+n] n=0,15	CMPDIENn	 PWM Compare Down Count Interrupt Enable Bits 0 = Compare down count interrupt Disabled. 1 = Compare down count interrupt Enabled. Note: In complementary mode, CMPDIEN1, 3, 5 is used as another CMPDIEN for channel 0, 2, 4. 				
[23:22]	Reserved	Reserved.				
[16+n] n=0,15	CMPUIENn	PWM Compare Up Count Interrupt Enable Bits Each bit n controls the corresponding PWM channel n. IPUIENn 0 = Compare up count interrupt Disabled. 1 = Compare up count interrupt Enabled. Note: In complementary mode, CMPUIEN1, 3, 5 is used as another CMPUIEN for channel 0, 2, 4.				
[15:13]	Reserved	Reserved.				
[12]	PIEN4	 PWM Period Point Interrupt Enable Bit 4 0 = Period point interrupt Disabled. 1 = Period point interrupt Enabled. Note: When up-down counter type, period point means center point. 				
[11]	Reserved	Reserved.				
[10]	PIEN2	 PWM Period Point Interrupt Enable Bit 2 0 = Period point interrupt Disabled. 1 = Period point interrupt Enabled. Note: When up-down counter type, period point means center point. 				
[9]	Reserved	Reserved.				
[8]	PIENO	PWM Period Point Interrupt Enable Bit 0 0 = Period point interrupt Disabled. 1 = Period point interrupt Enabled.				

M0A21/M0A23 Series

nuvoTon

		Note: When up-down counter type, period point means center point.
[7:5]	Reserved	Reserved.
[4]	ZIEN4	 PWM Zero Point Interrupt Enable Bit 4 0 = Zero point interrupt Disabled. 1 = Zero point interrupt Enabled. Note: Odd channels will read always 0 at complementary mode.
[3]	Reserved	Reserved.
[2]	ZIEN2	 PWM Zero Point Interrupt Enable Bit 2 0 = Zero point interrupt Disabled. 1 = Zero point interrupt Enabled. Note: Odd channels will always read 0 at complementary mode.
[1]	Reserved	Reserved.
[0]	ZIEN0	 PWM Zero Point Interrupt Enable Bit 0 0 = Zero point interrupt Disabled. 1 = Zero point interrupt Enabled. Note: Odd channels will always read 0 at complementary mode.

PWM Interrupt Enable Register 1 (PWM_INTEN1)

Register		Offset		R/W	Description			Reset Value		et Value	
PWM_INTEN1		PWM_B	A+0xE4	R/W	PWM Ir	nterrupt Enable F	Register 1 0x0		0x00	0000_0000	
31	:	30	29	2	8	27	26	25		24	
	Reserved										
23	:	22	21	2	0	19	18	17		16	
					Rese	erved					
15		14	13	1:	2	11	10	9		8	
			Reserved				BRKLIEN4_5	BRKLIEN	12_3	BRKLIEN0_1	
7		6	5	4		3	2	1		0	
Reserved						BRKEIEN4_5	BRKEIEN	12_3	BRKEIEN0_1		

Bits	Description	
[31:11]	Reserved	Reserved.
[10]	BRKLIEN4_5	 PWM Level-detect Brake Interrupt Enable for Channel4/5 (Write Protect) 0 = Level-detect Brake interrupt for channel4/5 Disabled. 1 = Level-detect Brake interrupt for channel4/5 Enabled. Note: This bit is write protected. Refer to SYS_REGLCTL register.
[9]	BRKLIEN2_3	 PWM Level-detect Brake Interrupt Enable for Channel2/3 (Write Protect) 0 = Level-detect Brake interrupt for channel2/3 Disabled. 1 = Level-detect Brake interrupt for channel2/3 Enabled. Note: This bit is write protected. Refer to SYS_REGLCTL register.
[8]	BRKLIEN0_1	 PWM Level-detect Brake Interrupt Enable for Channel0/1 (Write Protect) 0 = Level-detect Brake interrupt for channel0/1 Disabled. 1 = Level-detect Brake interrupt for channel0/1 Enabled. Note: This bit is write protected. Refer to SYS_REGLCTL register.
[7:3]	Reserved	Reserved.
[2]	BRKEIEN4_5	 PWM Edge-detect Brake Interrupt Enable for Channel4/5 (Write Protect) 0 = Edge-detect Brake interrupt for channel4/5 Disabled. 1 = Edge-detect Brake interrupt for channel4/5 Enabled. Note: This bitr is write protected. Refer to SYS_REGLCTL register.
[1]	BRKEIEN2_3	 PWM Edge-detect Brake Interrupt Enable for Channel2/3 (Write Protect) 0 = Edge-detect Brake interrupt for channel2/3 Disabled. 1 = Edge-detect Brake interrupt for channel2/3 Enabled. Note: This bit is write protected. Refer to SYS_REGLCTL register.
[0]	BRKEIEN0_1	 PWM Edge-detect Brake Interrupt Enable for Channel0/1 (Write Protect) 0 = Edge-detect Brake interrupt for channel0/1 Disabled. 1 = Edge-detect Brake interrupt for channel0/1 Enabled. Note: This bit is write protected. Refer to SYS_REGLCTL register.

PWM Interrupt Flag Register 0 (PWM_INTSTS0)

Register	Offset	R/W	Description	Reset Value
PWM_INTSTS0	PWM_BA+0xE8	R/W	PWM Interrupt Flag Register 0	0x0000_0000

31	30	29	28	27	26	25	24
Reserved		CMPDIF5	CMPDIF4	CMPDIF3	CMPDIF2	CMPDIF1	CMPDIF0
23	22	21	20	19	18	17	16
Rese	Reserved		CMPUIF4	CMPUIF3	CMPUIF2	CMPUIF1	CMPUIF0
15	14	13	12	11	10	9	8
	Reserved		PIF4	Reserved	PIF2	Reserved	PIF0
7	7 6 5 4		3	2	1	0	
Reserved			ZIF4	Reserved	ZIF2	Reserved	ZIF0

Bits	Descriptio	n						
[31:30]	Reserved	Reserved.						
[24+n] n=0,15	CMPDIFn	PWM Compare Down Count Interrupt Flag Flag is set by hardware when PWM counter down count and reaches PWM_CMPDATn, software can clear this bit by writing 1 to it. Note: In complementary mode, CMPDIF1, 3, 5 is used as another CMPDIF for channel 0, 2, 4.						
[23:22]	Reserved	Reserved.						
[21:16]	CMPUIFn	PWM Compare Up Count Interrupt Flag Flag is set by hardware when PWM counter up count and reaches PWM_CMPDATn, software can clear this bit by writing 1 to it. Note: In complementary mode, CMPUIF1, 3, 5 is used as another CMPUIF for channel 0, 2, 4.						
[15:13]	Reserved	Reserved.						
[12]	PIF4	PWM Period Point Interrupt Flag 4 This bit is set by hardware when PWM_CH4 counter reaches PWM_PERIOD4. Note: This bit can be cleared to 0 by software writing 1.						
[11]	Reserved	Reserved.						
[10]	PIF2	PWM Period Point Interrupt Flag 2 This bit is set by hardware when PWM_CH2 counter reaches PWM_PERIOD2. Note: This bit can be cleared to 0 by software writing 1.						
[9]	Reserved	Reserved.						
[8]	PIF0	PWM Period Point Interrupt Flag 0 This bit is set by hardware when PWM_CH0 counter reaches PWM_PERIOD0. Note: This bit can be cleared to 0 by software writing 1.						
[7:5]	Reserved	Reserved.						
[4]	ZIF4	PWM Zero Point Interrupt Flag 4 This bit is set by hardware when PWM_CH4 counter reaches 0.						

nuvoTon

		Note: This bit can be cleared to 0 by software writing 1.
[3]	Reserved	Reserved.
[2]	ZIF2	PWM Zero Point Interrupt Flag 2 This bit is set by hardware when PWM_CH2 counter reaches 0. Note: This bit can be cleared to 0 by software writing 1.
[1]	Reserved	Reserved.
[0]	ZIFO	PWM Zero Point Interrupt Flag 0 This bit is set by hardware when PWM_CH0 counter reaches 0. Note: This bit can be cleared to 0 by software writing 1.

PWM Interrupt Flag Register 1 (PWM_INTSTS1)

Register	Offset	R/W	Description	Reset Value
PWM_INTSTS1	PWM_BA+0xEC	R/W	PWM Interrupt Flag Register 1	0x0000_0000

31	30	29	28	27	26	25	24
Rese	Reserved		BRKLSTS4	BRKLSTS3	BRKLSTS2	BRKLSTS1	BRKLSTS0
23	22	21	20	19	18	17	16
Rese	Reserved		BRKESTS4	BRKESTS3	BRKESTS2	BRKESTS1	BRKESTS0
15	14	13	12	11	10	9	8
Rese	Reserved		BRKLIF4	BRKLIF3	BRKLIF2	BRKLIF1	BRKLIF0
7	6	5	4	3	2	1	0
Rese	Reserved		BRKEIF4	BRKEIF3	BRKEIF2	BRKEIF1	BRKEIF0

Bits	Description				
[31:30]	Reserved	Reserved.			
		PWM Channel N Level-detect Brake Status (Read Only)			
		0 = PWM channel n level-detect brake state is released.			
[24+n] n=0,15	BRKLSTSn	1 = When PWM channel n level-detect brake detects a falling edge of any enabled brake source; this flag will be set to indicate the PWM channel n at brake state.			
n=0,15		Note: This bit is read only and auto cleared by hardware. When enabled brake source returns to high level PWM will release brake state until current PWM period finished. The PWM waveform will start output from next full PWM period.			
[23:22]	Reserved	Reserved.			
		PWM Channel N Edge-detect Brake Status (Read Only)			
	BRKESTSn	0 = PWM channel n edge-detect brake state is released.			
[16+n] n=0,15		1 = When PWM channel n edge-detect brake detects a falling edge of any enabled brake source; this flag will be set to indicate the PWM channel n at brake state.			
11=0,15		Note: This bit is read only and auto cleared by hardware. When edge-detect brake interrupt flag is cleared EPWM will release brake state until current EPWM period finished. The EPWM waveform will start output from next full EPWM period.			
[15:14]	Reserved	Reserved.			
		PWM Channel N Level-detect Brake Interrupt Flag (Write Protect)			
[8+n]		0 = PWM channel n level-detect brake event do not happened.			
n=0,15		1 = When PWM channel n level-detect brake event happened, this bit is set to 1, writing 1 to clear.			
		Note: This bit is write protected. Refer to SYS_REGLCTL register.			
[7:6]	Reserved	Reserved.			
[n]	BRKEIFn	PWM Channel N Edge-detect Brake Interrupt Flag (Write Protect)			
		0 = PWM channel n edge-detect brake event do not happened.			
n=0,15		1 = When PWM channel n edge-detect brake event happened, this bit is set to 1, writing 1 to clear.			
		Note: This bit is write protected. Refer to SYS_REGLCTL register.			

PWM Trigger ADC Source Select Register 0 (PWM_ADCTS0)

Register	Offset	R/W	Description	Reset Value
PWM_ADCTS0	PWM_BA+0xF8	R/W	PWM Trigger ADC Source Select Register 0	0x0000_0000

31	30	29	28	27	26	25	24	
TRGEN3		Reserved		TRGSEL3				
23	22	21	20	19	18	17	16	
TRGEN2		Reserved		TRGSEL2				
15	14	13	12	11	10	9	8	
TRGEN1	Reserved				TRG	SEL1		
7	6	5	4	3	2	1	0	
TRGEN0	Reserved				TRG	SEL0		

Bits	Description					
[31]	TRGEN3	PWM_CH3 Trigger ADC Enable Bit 0 = PWM_CH3 Trigger ADC function Disabled. 1 = PWM_CH3 Trigger ADC function Enabled.				
[30:28]	Reserved	Reserved.				
[27:24]	TRGSEL3	PWM_CH3 Trigger ADC Source Select 0000 = PWM_CH2 zero point. 0001 = PWM_CH2 period point. 0010 = PWM_CH2 zero or period point. 0011 = PWM_CH2 up-count CMPDAT point. 0100 = PWM_CH2 down-count CMPDAT point. 0101 = Reserved. 0111 = Reserved. 0111 = Reserved. 0110 = PWM_CH3 up-count CMPDAT point. 0001 = PWM_CH3 up-count CMPDAT point. 0011 = Reserved. 0110 = Reserved. 0111 = Reserved. 0001 = PWM_CH3 up-count CMPDAT point. 1001 = PWM_CH3 down-count CMPDAT point. 0011 = Reserved.				
[23]	TRGEN2	PWM_CH2 Trigger ADC Enable Bit 0 = PWM_CH2 Trigger ADC function Disabled. 1 = PWM_CH2 Trigger ADC function Enabled.				
[22:20]	Reserved	Reserved.				
[19:16]	TRGSEL2	PWM_CH2 Trigger ADC Source Select 0000 = PWM_CH2 zero point. 0001 = PWM_CH2 period point. 0010 = PWM_CH2 zero or period point. 0011 = PWM_CH2 up-count CMPDAT point. 0100 = PWM_CH2 down-count CMPDAT point. 0101 = Reserved.				

		0110 = Reserved.				
		0111 = Reserved.				
		1000 = PWM_CH3 up-count CMPDAT point.				
		1001 = PWM_CH3 down-count CMPDAT point.				
		Others = reserved.				
		PWM_CH1 Trigger ADC Enable Bit				
[15]	TRGEN1	0 = PWM_CH1 Trigger ADC function Disabled.				
		1 = PWM_CH1 Trigger ADC function Enabled.				
[14:12]	Reserved	Reserved.				
		PWM_CH1 Trigger ADC Source Select				
		0000 = PWM_CH0 zero point.				
		0001 = PWM_CH0 period point.				
		0010 = PWM_CH0 zero or period point.				
		0011 = PWM_CH0 up-count CMPDAT point.				
		0100 = PWM_CH0 down-count CMPDAT point.				
[11:8]	TRGSEL1	0101 = Reserved.				
		0110 = Reserved.				
		0111 = Reserved.				
		1000 = PWM_CH1 up-count CMPDAT point.				
		1001 = PWM_CH1 down-count CMPDAT point.				
		Others = reserved.				
		PWM_CH0 Trigger ADC Enable Bit				
[7]	TRGEN0	0 = PWM_CH0 Trigger ADC function Disabled.				
		1 = PWM_CH0 Trigger ADC function Enabled.				
[6:4]	Reserved	Reserved.				
		PWM_CH0 Trigger ADC Source Select				
		0000 = PWM_CH0 zero point.				
		0001 = PWM_CH0 period point.				
		0010 = PWM_CH0 zero or period point.				
		0011 = PWM_CH0 up-count CMPDAT point.				
		0100 = PWM_CH0 down-count CMPDAT point.				
[3:0]	TRGSEL0	 0101 = Reserved.				
		0110 = Reserved.				
		0111 = Reserved.				
		1000 = PWM_CH1 up-count CMPDAT point.				
		1001 = PWM_CH1 down-count CMPDAT point.				
		Others = reserved.				

PWM Trigger ADC Source Select Register 1 (PWM_ADCTS1)

Register Offset F		R/W	Description	Reset Value
PWM_ADCTS1	PWM_BA+0xFC	R/W	PWM Trigger ADC Source Select Register 1	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
TRGEN5		Reserved		TRGSEL5					
7	6	5	4	3	2	1	0		
TRGEN4 Reserved			TRGSEL4						

Bits	Description	Description						
[31:16]	Reserved	Reserved.						
[15]	TRGEN5	PWM_CH5 Trigger ADC Enable Bit 0 = PWM_CH5 Trigger ADC function Disabled. 1 = PWM_CH5 Trigger ADC function Enabled.						
[14:12]	Reserved	Reserved.						
[11:8]	TRGSEL5	PWM_CH5 Trigger ADC Source Select 0000 = PWM_CH4 zero point. 0001 = PWM_CH4 period point. 0010 = PWM_CH4 zero or period point. 0011 = PWM_CH4 up-count CMPDAT point. 0100 = PWM_CH4 down-count CMPDAT point. 0101 = Reserved. 0111 = Reserved. 0101 = PWM_CH5 up-count CMPDAT point. 1000 = PWM_CH5 up-count CMPDAT point. 0010 = PWM_CH5 down-count CMPDAT point. 001 = PWM_CH5 down-count CMPDAT point.						
[7]	TRGEN4	PWM_CH4 Trigger ADC Enable Bit 0 = PWM_CH4 Trigger ADC function Disabled. 1 = PWM_CH4 Trigger ADC function Enabled.						
[6:4]	Reserved	Reserved.						
[3:0]	TRGSEL4	PWM_CH4 Trigger ADC Source Select0000 = PWM_CH4 zero point.0001 = PWM_CH4 period point.0010 = PWM_CH4 zero or period point.0011 = PWM_CH4 up-count CMPDAT point.						

	0100 = PWM_CH4 down-count CMPDAT point.
	0101 = Reserved.
	0110 = Reserved.
	0111 = Reserved.
	1000 = PWM_CH5 up-count CMPDAT point.
	1001 = PWM_CH5 down-count CMPDAT point.
	Others = reserved.

PWM Synchronous Start Control Register (PWM_SSCTL)

Register	Offset	R/W	Description	Reset Value
PWM_SSCTL	PWM_BA+0x110	R/W	PWM Synchronous Start Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved						SSRC		
7	6	5	4	3	2	1	0		
	Reserved		SSEN4	Reserved	SSEN2	Reserved	SSEN0		

Bits	Descriptio	n							
[31:10]	Reserved	Reserved.							
[9:8]	SSRC	PWM Synchronous Start Source Select Bits 00 = Synchronous start source come from PWM0. 01 = Reserved. 10 = Reserved. 11 = Reserved.							
[7:5]	Reserved	Reserved.							
[4]	SSEN4	 PWM Synchronous Start Function Enable Bit 4 When synchronous start function is enabled, the PWM_CH4 counter enable bit (CNTEN4) can be enabled by writing PWM synchronous start trigger bit (CNTSEN). 0 = PWM synchronous start function Disabled. 1 = PWM synchronous start function Enabled. 							
[3]	Reserved	Reserved.							
[2]	SSEN2	 PWM Synchronous Start Function Enable Bit 2 When synchronous start function is enabled, the PWM_CH2 counter enable bit (CNTEN2) can be enabled by writing PWM synchronous start trigger bit (CNTSEN). 0 = PWM synchronous start function Disabled. 1 = PWM synchronous start function Enabled. 							
[1]	Reserved	Reserved.							
[0]	SSEN0	 PWM Synchronous Start Function Enable Bit 0 When synchronous start function is enabled, the PWM_CH0 counter enable bit (CNTEN0) can be enabled by writing PWM synchronous start trigger bit (CNTSEN). 0 = PWM synchronous start function Disabled. 1 = PWM synchronous start function Enabled. 							

PWM Synchronous Start Trigger Register (PWM_SSTRG)

Register	Offset	R/W	Description	Reset Value
PWM_SSTRG	PWM_BA+0x114	W	PWM Synchronous Start Trigger Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	Reserved									

Bits	Description							
[31:1]	Reserved Reserved.							
		PWM Counter Synchronous Start Enable (Write Only)						
[0]	CNTSEN	PWM counter synchronous enable function is used to make selected PWM channels (include PWM0_CHx) start counting at the same time.						
		Writing this bit to 1 will also set the counter enable bit (CNTENn, n denotes channel 0 to 5) if correlated PWM channel counter synchronous start function is enabled.						

PWM Status Register (PWM_STATUS)

Register	Offset	R/W	Description	Reset Value
PWM_STATUS	PWM_BA+0x120	R/W	PWM Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
Rese	erved	ADCTRG5	ADCTRG4	ADCTRG3	ADCTRG2	ADCTRG1	ADCTRG0		
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
Rese	Reserved CNTMAX4			Reserved	CNTMAX2	Reserved	CNTMAX0		

Bits	Description					
[31:22]	Reserved	Reserved.				
[16+n] n=0,15	ADCTRGn	 ADC Start of Conversion Status 0 = Indicates no ADC start of conversion trigger event has occurred. 1 = An ADC start of conversion trigger event has occurred. Note: This bit can be cleared by software writing 1. 				
[15:5]	Reserved	erved.				
[4]	CNTMAX4	Time-base Counter 4 Equal to 0xFFFF Latched Flag 0 = The time-base counter never reached its maximum value 0xFFFF. 1 = The time-base counter reached its maximum value. Note: This bit can be cleared by software writing 1.				
[3]	Reserved	Reserved.				
[2]	CNTMAX2	Time-base Counter 2 Equal to 0xFFFF Latched Flag 0 = indicates the time-base counter never reached its maximum value 0xFFFF. 1 = indicates the time-base counter reached its maximum value. Note: This bit can be cleared by software writing 1.				
[1]	Reserved	Reserved.				
[0]	CNTMAXO	Time-base Counter 0 Equal to 0xFFFF Latched Flag 0 = indicates the time-base counter never reached its maximum value 0xFFFF. 1 = indicates the time-base counter reached its maximum value. Note: This bit can be cleared by software writing 1.				

PWM Capture Input Enable Register (PWM_CAPINEN)

Register Offset		R/W	Description	Reset Value
PWM_CAPINEN	PWM_BA+0x200	R/W	PWM Capture Input Enable Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved	Reserved CAPINEN5		CAPINEN4	CAPINEN3	CAPINEN2	CAPINEN1	CAPINEN0			

Bits	Descriptior	Description							
[31:6]	Reserved	Reserved.							
	CAPINENn	Capture Input Enable Bits							
[n]		0 = PWM Channel capture input path Disabled. The input of PWM channel capture function is always regarded as 0.							
n=0,15		1 = PWM Channel capture input path Enabled. The input of PWM channel capture function comes from correlative multifunction pin.							

PWM Capture Control Register (PWM_CAPCTL)

Register	Offset	R/W	Description	Reset Value
PWM_CAPCTL	PWM_BA+0x204	R/W	PWM Capture Control Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved		FCRLDEN5	FCRLDEN4	FCRLDEN3	FCRLDEN2	FCRLDEN1	FCRLDEN0
23	22	21	20	19	18	17	16
Rese	Reserved		RCRLDEN4	RCRLDEN3	RCRLDEN2	RCRLDEN1	RCRLDEN0
15	14	13	12	11	10	9	8
Rese	Reserved		CAPINV4	CAPINV3	CAPINV2	CAPINV1	CAPINV0
7	6	5	4	3	2	1	0
Reserved CAPEN5		CAPEN4	CAPEN3	CAPEN2	CAPEN1	CAPEN0	

Bits	Description				
[31:30]	Reserved	Reserved.			
[24+n] n=0,15	FCRLDENn	Falling Capture Reload Enable Bits 0 = Falling capture reload counter Disabled. 1 = Falling capture reload counter Enabled.			
[23:22]	Reserved Reserved.				
[16+n] n=0,15	RCRLDENn	Rising Capture Reload Enable Bits 0 = Rising capture reload counter Disabled. 1 = Rising capture reload counter Enabled.			
[15:14]	Reserved	Reserved.			
[8+n] n=0,15	CAPINVn	Capture Inverter Enable Bits 0 = Capture source inverter Disabled. 1 = Capture source inverter Enabled. Reverse the input signal from GPIO.			
[7:6]	Reserved	Reserved.			
[n] n=0,15	CAPENn	Capture Function Enable Bits 0 = Capture function Disabled. RCAPDAT/FCAPDAT register will not be updated. 1 = Capture function Enabled. Capture latched the PWM counter value when detected rising or falling edge of input signal and saved to RCAPDAT (Rising latch) and FCAPDAT (Falling latch).			

PWM Capture Status Register (PWM_CAPSTS)

Register	Offset	R/W	Description	Reset Value
PWM_CAPSTS	PWM_BA+0x208	R	PWM Capture Status Register	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
Rese	Reserved C		CFLIFOV4	CFLIFOV3	CFLIFOV2	CFLIFOV1	CFLIFOV0				
7	6	5	4	3	2	1	0				
Rese	erved	CRLIFOV5	CRLIFOV4	CRLIFOV3	CRLIFOV2	CRLIFOV1	CRLIFOV0				

Bits	Description	Description						
[31:14]	Reserved	Reserved.						
[8+n] n=0,15	CFLIFOVn	Capture Falling Latch Interrupt Flag Overrun Status (Read Only) This flag indicates if falling latch happened when the corresponding CFLIF is 1. Note: This bit will be cleared automatically when user clear corresponding CFLIF.						
[7:6]	Reserved	Reserved.						
[n] n=0,15	CRLIFOVn	Capture Rising Latch Interrupt Flag Overrun Status (Read Only) This flag indicates if rising latch happened when the corresponding CRLIF is 1. Note: This bit will be cleared automatically when user clear corresponding CRLIF.						

PWM Rising Capture Data Register 0~5 (PWM_RCAPDAT 0~5)

Register	Offset	R/W	Description	Reset Value
PWM_RCAPDAT0	PWM_BA+0x20C	R	PWM Rising Capture Data Register 0	0x0000_0000
PWM_RCAPDAT1	PWM_BA+0x214	R	PWM Rising Capture Data Register 1	0x0000_0000
PWM_RCAPDAT2	PWM_BA+0x21C	R	PWM Rising Capture Data Register 2	0x0000_0000
PWM_RCAPDAT3	PWM_BA+0x224	R	PWM Rising Capture Data Register 3	0x0000_0000
PWM_RCAPDAT4	PWM_BA+0x22C	R	PWM Rising Capture Data Register 4	0x0000_0000
PWM_RCAPDAT5	PWM_BA+0x234	R	PWM Rising Capture Data Register 5	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	RCAPDAT										
7 6 5 4 3 2 1 0											
	RCAPDAT										

Bits	Description	escription						
[31:16]	Reserved	Reserved.						
[15:0]	RCAPDAT	PWM Rising Capture Data Register (Read Only) When rising capture condition happened, the PWM counter value will be saved in this register.						

PWM Falling Capture Data Register 0~5 (PWM_FCAPDAT 0~5)

Register	Offset	R/W	Description	Reset Value
PWM_FCAPDAT0	PWM_BA+0x210	R	PWM Falling Capture Data Register 0	0x0000_0000
PWM_FCAPDAT1	PWM_BA+0x218	R	PWM Falling Capture Data Register 1	0x0000_0000
PWM_FCAPDAT2	PWM_BA+0x220	R	PWM Falling Capture Data Register 2	0x0000_0000
PWM_FCAPDAT3	PWM_BA+0x228	R	PWM Falling Capture Data Register 3	0x0000_0000
PWM_FCAPDAT4	PWM_BA+0x230	R	PWM Falling Capture Data Register 4	0x0000_0000
PWM_FCAPDAT5	PWM_BA+0x238	R	PWM Falling Capture Data Register 5	0x0000_0000

31	30	29	28	27	26	25	24				
Reserved											
23 22 21 20 19 18 17 16							16				
	Reserved										
15 14 13 12 11 10 9						8					
	FCAPDAT										
7	7 6 5 4 3 2 1 0										
			FCA	PDAT							

Bits	Description	escription							
[31:16]	Reserved	Reserved.							
[15:0]	FCAPDAT	PWM Falling Capture Data Register (Read Only) When falling capture condition happened, the PWM counter value will be saved in this register.							

PWM PDMA Control Register (PWM_PDMACTL)

Register	Offset	R/W	Description	Reset Value
PWM_PDMACTL	PWM_BA+0x23C	R/W	PWM PDMA Control Register	0x0000_0000

31	30	29	28	27	26	25	24					
	Reserved											
23	22	21	20	19	18	17	16					
	Reserved		CHSEL4_5	CHSEL4_5 CAPORD4_5 CAPMOD4_5		OD4_5	CHEN4_5					
15	15 14 13		12	11	10	9	8					
	Reserved		CHSEL2_3	CAPORD2_3	САРМ	OD2_3	CHEN2_3					
7 6 5		4	3	2	1	0						
	Reserved		CHSEL0_1	CAPORD0_1	САРМ	OD0_1	CHEN0_1					

Bits	Description	
[31:21]	Reserved	Reserved.
		Select Channel 4/5 to Do PDMA Transfer
		0 = Channel4.
[20]	CHSEL4_5	1 = Channel5.
		Note: If the PDMA function is not supported, this bit field will become invalid. Please refer to section 3.2 NuMicro [®] M0A21/M0A23 Series Selection Guide for detailed information.
[19]	CAPORD4_5	Capture Channel 4/5 Rising/Falling Order
		Set this bit to determine whether the PWM_RCAPDAT4/5 or PWM_FCAPDAT4/5 is the first captured data transferred to memory through PDMA when CAPMOD4_5 =11.
	0 = PWM_FCAPDAT4/5 is the first captured data to memory.	
		1 = PWM_RCAPDAT4/5 is the first captured data to memory.
		Note: If the PDMA function is not supported, this bit field will become invalid. Please refer to section 3.2 NuMicro [®] M0A21/M0A23 Series Selection Guide for detailed information.
[18:17]	CAPMOD4_5	Select PWM_RCAPDAT4/5 or PWM_FCAPDAT4/5 to Do PDMA Transfer
		00 = Reserved.
		01 = PWM_RCAPDAT4/5.
		10 = PWM_FCAPDAT4/5.
		11 = Both PWM_RCAPDAT4/5 and PWM_FCAPDAT4/5.
		Note: If the PDMA function is not supported, this bit field will become invalid. Please refer to section 3.2 NuMicro [®] M0A21/M0A23 Series Selection Guide for detailed information.
[16]	CHEN4_5	Channel 4/5 PDMA Enable Bit
		0 = Channel 4/5 PDMA function Disabled.
		1 = Channel 4/5 PDMA function Enabled for the channel 4/5 captured data and transfer to memory.
		Note: If the PDMA function is not supported, this bit field will become invalid. Please refer to section 3.2 NuMicro [®] M0A21/M0A23 Series Selection Guide for detailed information.
[15:13]	Reserved	Reserved.
[12]	CHSEL2_3	Select Channel 2/3 to Do PDMA Transfer 0 = Channel2.

		1 = Channel3.
		Note: If the PDMA function is not supported, this bit field will become invalid. Please refer to section 3.2 NuMicro [®] M0A21/M0A23 Series Selection Guide for detailed information.
[11]	CAPORD2_3	Capture Channel 2/3 Rising/Falling Order
		Set this bit to determine whether the PWM_RCAPDAT2/3 or PWM_FCAPDAT2/3 is the first captured data transferred to memory through PDMA when CAPMOD2_3 =11.
		0 = PWM_FCAPDAT2/3 is the first captured data to memory.
		1 = PWM_RCAPDAT2/3 is the first captured data to memory.
		Note: If the PDMA function is not supported, this bit field will become invalid. Please refer to section 3.2 NuMicro [®] M0A21/M0A23 Series Selection Guide for detailed information.
[10:9]	CAPMOD2_3	Select PWM_RCAPDAT2/3 or PWM_FCAODAT2/3 to Do PDMA Transfer
		00 = Reserved.
		01 = PWM_RCAPDAT2/3.
		10 = PWM_FCAPDAT2/3.
		11 = Both PWM_RCAPDAT2/3 and PWM_FCAPDAT2/3.
		Note: If the PDMA function is not supported, this bit field will become invalid. Please refer to section 3.2 NuMicro [®] M0A21/M0A23 Series Selection Guide for detailed information.
[8]	CHEN2_3	Channel 2/3 PDMA Enable Bit
		0 = Channel 2/3 PDMA function Disabled.
		1 = Channel 2/3 PDMA function Enabled for the channel 2/3 captured data and transfer to memory.
		Note: If the PDMA function is not supported, this bit field will become invalid. Please refer to section 3.2 NuMicro [®] M0A21/M0A23 Series Selection Guide for detailed information.
[7:5]	Reserved	Reserved.
[4]		Select Channel 0/1 to Do PDMA Transfer
		0 = Channel0.
	CHSEL0_1	1 = Channel1.
		Note: If the PDMA function is not supported, this bit field will become invalid. Please refer to section 3.2 NuMicro [®] M0A21/M0A23 Series Selection Guide for detailed information.
[3]	CAPORD0_1	Capture Channel 0/1 Rising/Falling Order
		Set this bit to determine whether the PWM_RCAPDAT0/1 or PWM_FCAPDAT0/1 is the first captured data transferred to memory through PDMA when CAPMOD0_1 =11.
		0 = PWM_FCAPDAT0/1 is the first captured data to memory.
		1 = PWM_RCAPDAT0/1 is the first captured data to memory.
		Note: If the PDMA function is not supported, this bit field will become invalid. Please refer to section 3.2 NuMicro [®] M0A21/M0A23 Series Selection Guide for detailed information.
[2:1]	CAPMOD0_1	Select PWM_RCAPDAT0/1 or PWM_FCAPDAT0/1 to Do PDMA Transfer
		00 = Reserved.
		01 = PWM_RCAPDAT0/1.
		10 = PWM_FCAPDAT0/1.
		11 = Both PWM_RCAPDAT0/1 and PWM_FCAPDAT0/1.
		Note: If the PDMA function is not supported, this bit field will become invalid. Please refer to section 3.2 NuMicro [®] M0A21/M0A23 Series Selection Guide for detailed information.
[0]	CHEN0_1	Channel 0/1 PDMA Enable Bit
		0 = Channel 0/1 PDMA function Disabled.
		1 = Channel 0/1 PDMA function Enabled for the channel 0/1 captured data and transfer to memory.
		Note: If the PDMA function is not supported, this bit field will become invalid. Please refer to section 3.2 NuMicro [®] M0A21/M0A23 Series Selection Guide for detailed information.

Register Offset		R/W	Description	Reset Value
PWM_PDMACAP0_1	PWM_BA+0x240	R	PWM Capture Channel 01 PDMA Register	0x0000_0000
PWM_PDMACAP2_3	PWM_BA+0x244	R	PWM Capture Channel 23 PDMA Register	0x0000_0000
PWM_PDMACAP4_5	PWM_BA+0x248	R	PWM Capture Channel 45 PDMA Register	0x0000_0000

PWM Capture Channel 0_1, 2_3, 4_5 PDMA Register (PWM_PDMACAP 0_1, 2_3, 4_5)

31	30	29	28	27	26	25	24				
Reserved											
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	CAPBUF										
7	7 6 5 4 3 2 1 0										
			CAP	BUF							

Bits	Descriptio	Description						
[31:16]	Reserved	Reserved.						
[15:0]	CAPBUF	 PWM Capture PDMA Register (Read Only) This register is used as a buffer to transfer PWM capture rising or falling data to memory by PDMA. Note: If the PDMA function is not supported, this bit field will become invalid. Please refer to section 3.2 NuMicro[®] M0A21/M0A23 Series Selection Guide for detailed information. 						

PWM Capture Interrupt Enable Register (PWM_CAPIEN)

Register	Offset	R/W	Description	Reset Value
PWM_CAPIEN	PWM_BA+0x250	R/W	PWM Capture Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
Rese	erved	CAPFIEN5	CAPFIEN4	CAPFIEN3	CAPFIEN2	CAPFIEN1	CAPFIEN0
7	6	5	4	3	2	1	0
Rese	Reserved CAPRIEN		CAPRIEN4	CAPRIEN3	CAPRIEN2	CAPRIEN1	CAPRIEN0

Bits	Description	Description				
[31:14]	Reserved	Reserved.				
[8+n] n=0,15	CAPFIENn	 PWM Capture Falling Latch Interrupt Enable Bits 0 = Capture falling edge latch interrupt Disabled. 1 = Capture falling edge latch interrupt Enabled. 				
[7:6]	Reserved	Reserved.				
[n] n=0,15	CAPRIENn	 PWM Capture Rising Latch Interrupt Enable Bits 0 = Capture rising edge latch interrupt Disabled. 1 = Capture rising edge latch interrupt Enabled. 				

PWM Capture Interrupt Flag Register (PWM_CAPIF)

Register	Offset	R/W	Description	Reset Value
PWM_CAPIF	PWM_BA+0x254	R/W	PWM Capture Interrupt Flag Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
Rese	erved	CFLIF5	CFLIF4	CFLIF3	CFLIF2	CFLIF1	CFLIF0
7	6	5	4	3	2	1	0
Rese	Reserved CRLIF5		CRLIF4	CRLIF3	CRLIF2	CRLIF1	CRLIF0

Bits	Descriptio	scription							
[31:14]	Reserved	eserved.							
[8+n] n=0,15	CFLIFn	 PWM Capture Falling Latch Interrupt Flag 0 = No capture falling latch condition happened. 1 = Capture falling latch condition happened, this flag will be set to high. Note 1: When Capture with PDMA operating, CAPIF corresponding channel CFLIF will be cleared by hardware after PDMA transfer data. Note 2: This bit is cleared by writing 1 to it. 							
[7:6]	Reserved	Reserved.							
[n] n=0,15	CRLIFn	 PWM Capture Rising Latch Interrupt Flag 0 = No capture rising latch condition happened. 1 = Capture rising latch condition happened, this flag will be set to high. Note 1: When Capture with PDMA operating, CAPIF corresponding channel CRLIF will be cleared by hardware after PDMA transfer data. Note 2: This bit is cleared by writing 1 to it. 							

|--|

Register	Offset	R/W	Description	Reset Value
PWM_PBUF0	PWM_BA+0x304	R	PWM PERIOD0 Buffer	0x0000_0000
PWM_PBUF2	PWM_BA+0x30C	R	PWM PERIOD2 Buffer	0x0000_0000
PWM_PBUF4	PWM_BA+0x314	R	PWM PERIOD4 Buffer	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	PBUF						
7	6	5	4	3	2	1	0
	PBUF						

Bits	Description	
[31:16]	Reserved	Reserved.
[15:0]	PBUF	PWM Period Register Buffer (Read Only) Used as PERIOD active register.

Register	Offset	R/W	Description	Reset Value				
PWM_CMPBUF0	PWM_BA+0x31C	R	PWM CMPDAT0 Buffer	0x0000_0000				
PWM_CMPBUF1	PWM_BA+0x320	R	PWM CMPDAT1 Buffer	0x0000_0000				
PWM_CMPBUF2	PWM_BA+0x324	R	PWM CMPDAT2 Buffer	0x0000_0000				
PWM_CMPBUF3	PWM_BA+0x328	R	PWM CMPDAT3 Buffer	0x0000_0000				
PWM_CMPBUF4	PWM_BA+0x32C	R	PWM CMPDAT4 Buffer	0x0000_0000				
PWM_CMPBUF5	PWM_BA+0x330	R	PWM CMPDAT5 Buffer	0x0000_0000				

PWM Comparator Register Buffer 0~5 (PWM_CMPBUF0~5)

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	CMPBUF						
7	6	5	4	3	2	1	0
	CMPBUF						

Bits	Description					
[31:16]	Reserved	Reserved Reserved.				
[15:0]	CMPBUF	PWM Comparator Register Buffer (Read Only) Used as CMP active register.				

6.11 UART Interface Controller (UART)

6.11.1 Overview

The chip provides two channels of Universal Asynchronous Receiver/Transmitters (UART). The UART controller performs serial-to-parallel conversion on data received from the peripheral and parallel-to-serial conversion on data transmitted from the CPU. Each UART controller channel supports eleven types of interrupts. The UART controller supports flow control function. The UART controller also supports LIN, IrDA SIR, RS-485, and Single-wire function modes and auto-baud rate measuring function.

6.11.2 Features

- Full-duplex asynchronous communications
- Separates receive and transmit 16/16 bytes entry FIFO for data payloads
- Supports hardware auto-flow control
- Programmable receiver buffer trigger level
- Supports programmable baud rate generator for each channel individually
- Supports nCTS, incoming data, Received Data FIFO reached threshold and RS-485 Address Match (AAD mode) wake-up function
- Supports 8-bit receiver buffer time-out detection function
- Programmable transmitting data delay time between the last stop and the next start bit by setting DLY (UART_TOUT[15:8])
- Supports Auto-Baud Rate measurement and baud rate compensation function
 - Supports 9600 bps for UART_CLK is selected LXT.
- Supports break error, frame error, parity error and receive/transmit buffer overflow detection function
- Fully programmable serial-interface characteristics
 - Programmable number of data bit, 5-, 6-, 7-, 8- bit character
 - Programmable parity bit, even, odd, no parity or stick parity bit generation and detection
 - Programmable stop bit, 1, 1.5, or 2 stop bit generation
- Supports IrDA SIR function mode
 - Supports for 3/16 bit duration for normal mode
- Supports LIN function mode
 - Supports LIN master/slave mode
 - Supports programmable break generation function for transmitter
 - Supports break detection function for receiver
 - Supports LIN slave header time-out detection function
 - Supports LIN response time-out detection function
 - Supports LIN wake-up function
- Supports RS-485 function mode
 - Supports RS-485 9-bit mode
 - Supports hardware or software enables to program nRTS pin to control RS-485

transmission direction

- Supports PDMA transfer function
- Supports Single-wire function mode.

UART Feature	UART0/ UART1	USCI-UART		
FIFO	16 Bytes	TX: 1 Byte RX: 2 Bytes		
Auto Flow Control (CTS/RTS)	\checkmark	\checkmark		
IrDA	\checkmark	-		
LIN	\checkmark	-		
RS-485 Function Mode	\checkmark	\checkmark		
nCTS Wake-up	\checkmark	\checkmark		
Imcoming Data Wake-up	\checkmark	\checkmark		
Received Data FIFO reached threshold Wake-up	N	-		
RS-485 Address Match (AAD mode) Wake-up	V	-		
Auto-Baud Rate Measurement	\checkmark	\checkmark		
STOP Bit Length	1, 1.5, 2 bit	1, 2 bit		
Word Length	5, 6, 7, 8 bits	6~13 bits		
Even / Odd Parity	\checkmark	\checkmark		
Stick Bit	\checkmark	-		
Note: √= Supported				

Table 6.11-1 NuMicro® M0A21/M0A23 Series UART Features

6.11.3 Block Diagram

The UART clock control and block diagram are shown in Figure 6.11-1 and Figure 6.11-2 respectively. **Note:** The frequency of UARTx_CLK should not be greater than 30 times HCLK.

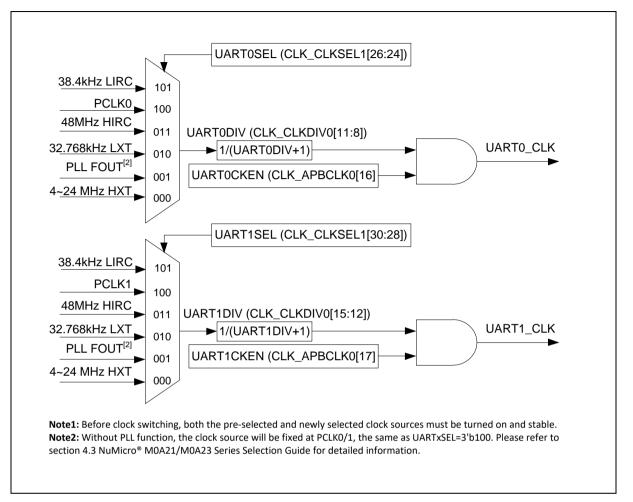


Figure 6.11-1 UART Clock Control Diagram

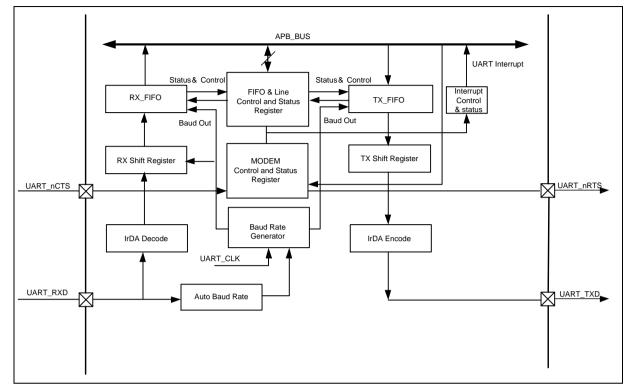


Figure 6.11-2 UART Block Diagram

Each block is described in detail as follows:

<u>TX_FIFO</u>

The transmitter is buffered with a 16 bytes FIFO to reduce the number of interrupts presented to the CPU.

<u>RX_FIFO</u>

The receiver is buffered with a 16 bytes FIFO (plus three error bits, BIF (UART_FIFOSTS[6]), FEF (UART_FIFOSTS[5]), PEF (UART_FIFOSTS[4])) to reduce the number of interrupts presented to the CPU.

TX Shift Register

This block is responsible for shifting out the transmitting data serially.

RX Shift Register

This block is responsible for shifting in the receiving data serially.

Modem Control and Status Register

This register controls the interface to the MODEM or data set (or a peripheral device emulating a MODEM).

Baud Rate Generator

Divide the external clock by the divisor to get the desired baud rate clock. Refer to baud rate equation.

IrDA Encode

This block is IrDA encoding control block.

IrDA Decode

This block is IrDA decoding control block.

FIFO & Line Control and Status Register

This field is register set that including the FIFO control register (UART_FIFO), FIFO status register

(UART_FIFOSTS), and line control register (UART_LINE) for transmitter and receiver. The time-out register (UART_TOUT) identifies the condition of time-out interrupt.

Auto-Baud Rate Measurement

This block is responsible for auto-baud rate measurement.

Interrupt Control and Status Register

There are eleven types of interrupts. Interrupt enable register (UART_INTEN) enable or disable the responding interrupt and interrupt status register (UART_INTSTS) identifying the occurrence of the responding interrupt.

Interrupt	Description
RDAINT	Receive Data Available Interrupt.
THERINT	Transmit Holding Register Empty Interrupt.
TXENDINT	Transmitter Empty Interrupt.
RLSINT	Receive Line Status Interrupt (parity error or frame error or break error).
MODEMINT	MODEM Status Interrupt.
RXTOINT	Receiver Buffer Time-out Interrupt.
BUFERRINT	Buffer Error Interrupt.
LININT	LIN Bus Interrupt.
WKINT	Wake-up Interrupt.
ABRINT	Auto-Baud Rate Interrupt.
SWBEINT	Single-wire Bit Error Detect Interrupt.

Table 6.11-2 UART Interrupt

6.11.4 Basic Configuration

The basic configurations of UART0 are as follows:

- Clock Source Configuration
 - Select the source of UART0 peripheral clock on UART0SEL (CLK_CLKSEL1[26:24]).
 - Select the clock divider number of UART0 peripheral clock on UART0DIV (CLK_CLKDIV0[11:8]).
 - Enable UART0 peripheral clock in UART0CKEN (CLK_APBCLK0[16]).
- Reset UART0 controller in UART0RST (SYS_IPRST1[16]).
- Pin Configuration

Group	Pin Name	GPIO	MFP
UART0_RXD		PD.1, PD.5	MFP3
	UART0_RXD	PA.0, PA.1, PA.2, PA.3, PA.4, PA.5 PB.4, PB.5, PB.6, PB.7 PC.0, PC.1, PC.2, PC.3, PC.4, PC.5, PC.6 PC.7	,MFP9
		PD.0, PD.4	MFP3
	UARTU_TAD	PA.0, PA.1, PA.2, PA.4, PA.5	MFP8

	PB.4, PB.5, PB.6, PB.7 PC.0, PC.1, PC.2, PC.3, PC.4, PC.5, PC.6, PC.7	
UART0_nCTS	PA.0, PA.1, PA.2, PA.3 PB.4, PB.5, PB.6, PB.7 PC.0, PC.1, PC.2, PC.3, PC.4, PC.5, PC.6, PC.7	MFP3
UART0_nRTS	PA.2, PA.4, PA.5 PB.4, PB.5, PB.6, PB.7 PC.0, PC.1, PC.2, PC.3, PC.4, PC.5, PC.6, PC.7	MFP2

The basic configurations of UART1 are as follows:

- Clock Source Configuration
 - Select the source of UART1 peripheral clock on UART1SEL (CLK_CLKSEL1[30:28]).
 - Select the clock divider number of UART1 peripheral clock on UART1DIV (CLK_CLKDIV0[15:12]).
 - Enable UART1 peripheral clock in UART1CKEN (CLK_APBCLK0[17]).
- Reset UART1 controller in UART1RST (SYS_IPRST1[17]).
- Pin Configuration

Group	Pin Name	GPIO	MFP
	UART1_RXD	PA.0, PA.1, PA.2, PA.3, PA.4, PA.5 PB.4, PB.5, PB.6, PB.7 PC.0, PC.1, PC.2, PC.3, PC.4, PC.5, PC.6, PC.7	MFP29
UART1	UART1_TXD	PA.0, PA.1, PA.2, PA.4, PA.5 PB.4, PB.5, PB.6, PB.7 PC.0, PC.1, PC.2, PC.3, PC.4, PC.5, PC.6, PC.7	MFP28
	UART1_nCTS	PD.2, PD.6	MFP6
		PB.4	MFP30
UAF	UART1_nRTS	PD.3, PD.7	MFP6
		PC.2	MFP30

UART Interface Controller Pin description is shown in Table 6.11-3:

Pin	Туре	Description	
UARTx_TXD	Output	UARTx transmit	
UARTx_RXD	Input	UARTx receive	
UARTx_nCTS	Input	UARTx modem clear to send	
UARTx_nRTS	Output	UARTx modem request to send	

Table 6.11-3 UART Interface Controller Pin

6.11.5 Functional Description

The UART controller supports five function modes including UART, LIN, IrDA, RS-485, and Single-wireJan. 23, 2024Page **419** of 744Rev 1.04

mode. User can select a function by setting the UART_FUNCSEL register. The five function modes will be described in the following section.

6.11.5.1 UART Controller Baud Rate Generator

The UART controller includes a programmable baud rate generator capable of dividing clock input by divisors to produce the serial clock that transmitter and receiver need. Table 6.11-4 lists the UART baud rate equations in the various conditions. Table 6.11-5 and Table 6.11-6 list the UART baud rate parameter and register setting example. In IrDA function mode, the baud rate generator must be set in mode 0. More detailed register description is shown in UART_BAUD register. There are three setting modes. Mode 0 is set by UART_BAUD[29:28] with 00. Mode 1 is set by UART_BAUD[29:28] with 10. Mode 2 is set by UART_BAUD[29:28] with 11.

Mode	BAUDM1	BAUDM0	Baud Rate Equation
Mode 0	0	0	UART_CLK / [16 * (BRD+2)].
Mode 1	1	0	UART_CLK / [(EDIVM1+1) * (BRD+2)], EDIVM1 must >= 8.
Mode 2	1	1	UART_CLK / (BRD+2) If UART_CLK <= 3*HCLK, BRD must >= 8. If UART_CLK > 3*HCLK, BRD must >= 3*N – 1. N is the smallest integer larger than or equal to the ratio of UART_CLK /HCLK. For example, if 3*HCLK < UART_CLK =< 4*HCLK, BRD must >=11. if 4*HCLK < UART_CLK =< 5*HCLK, BRD must >=14. (If the UART_CLK is selected from LXT, BRD can be greater than or equal to 1)

Table 6.11-4 UART Controller Baud Rate Equation Table

UART Peripheral CI	UART Peripheral Clock = 12 MHz			
Baud Rate	Mode 0	Mode 1	Mode 2	
921600	Not supported	Not recommended	BRD=11	
460800	Not recommended	BRD=0, EDIVM1 =13	BRD=24	
230400	Not recommended	BRD =2, EDIVM1 =13	BRD =50	
115200	Not recommended	BRD =6, EDIVM1 =13	BRD =102	
57600	BRD =11	BRD =14, EDIVM1 =13	BRD =206	
38400	BRD =18	BRD =22, EDIVM1 =13	BRD =311	
19200	BRD =37	BRD =123, EDIVM1 =5	BRD =623	
9600	BRD =76	BRD =123, EDIVM1 =10	BRD =1248	
4800	BRD =154	BRD =248, EDIVM1 =10	BRD =2498	

Table 6.11-5 UART Controller Baud Rate Parameter Setting Example Table

UART Peripheral Clock = 12 MHz				
	UART_BAUD Value			
Baud Rate	Mode 0	Mode 1	Mode 2	
921600	Not supported	Not recommended	0x3000_000B	

460800	Not recommended	0x2D00_0000	0x3000_0018
230400	Not recommended	0x2D00_0002	0x3000_0032
115200	Not recommended	0x2D00_0006	0x3000_0066
57600	0x0000_000B	0x2D00_000E	0x3000_00CE
38400	0x0000_0012	0x2D00_0016	0x3000_0137
19200	0x0000_0025	0x2500_007B	0x3000_026F
9600	0x0000_004C	0x2A00_007B	0x3000_04E0
4800	0x0000_009A	0x2A00_00F8	0x3000_09C2

Table 6.11-6 UART Controller Baud Rate Register Setting Example Table

6.11.5.2 UART Controller Baud Rate Compensation

The UART controller supports baud rate compensation function. It is used to optimize the precision in each bit. The precision of the compensation is half of UART module clock because there is BRCOMPDEC (UART_BRCOMP[31]) to define the positive or negative compensation in each bit. If the BRCOMPDEC (UART_BRCOMP[31]) = 0, it is positive compensation for each bit, one more module clock will be appended in the compensated bit. If the BRCOMPDEC (UART_BRCOMP[31]) = 1, it is negative compensation for each bit, decrease one module clock in the compensated bit.

There is 9-bit location, BRCOMP[8:0] (UART_BRCOMP[8:0]), can be configured by user to define the relative bit is compensated or not. BRCOMP[7:0] is used to define the compensation of DAT (UART_DAT[7:0]) and BRCOMP[8] is used to define PARITY (UART_DAT[8]).

Example:

1. UART's peripheral clock = 32.768 kHz and baud rate is 9600

Baud rate is 9600, UART peripheral clock is 32.768 kHz \rightarrow 3.413 peripheral clock/bit

if the baud divider is set as 1 (3 peripheral clock/bit), the inaccuracy of each bit is -0.413 peripheral clock and BRCOMPDEC (UART_BRCOMP[31]) = 0, so that the BRCOMP (UART_BRCOMP[8:0]) can be set as 9'b010100101 = 0xa5.

Bit	Name	Total INACCURACY	BRCOMP Compensated	Final Inaccuracy
0	Start	-0.413	x	-0.413
1	UART_DAT[0]	-0.826(-0.413-0.413)	1	0.174
2	UART_DAT[1]	-0.239(0.174-0.413)	0	-0.239
3	UART_DAT[2]	-0.652(-0.239-0.413)	1	0.348
4	UART_DAT[3]	-0.065(0.348-0.413)	0	-0.065
5	UART_DAT[4]	-0.478(-0.065-0.413)	0	-0.478
6	UART_DAT[5]	-0.891(-0.478-0.413)	1	0.109
7	UART_DAT[6]	-0.304(0.109-0.413)	0	-0.304
8	UART_DAT[7]	-0.717(-0.304-0.413)	1	0.283
9	Parity	-0.130(0.283-0.413)	0	-0.13

 Table 6.11-7 Baud Rate Compensation Example Table 1

2. UART's peripheral clock = 32.768 kHz and baud rate is 4800

Baud rate is 4800, UART peripheral clock is 32.768 kHz \rightarrow 6.827 peripheral clock/bit

if the baud divider is set as 5 (7 peripheral clock/bit), the inaccuracy of each bit is 0.173 peripheral clock and BRCOMPDEC (UART_BRCOMP[31]) = 1, so that the BRCOMP (UART_BRCOMP[8:0]) can be set as 9'b010000010 = 0x82.

Bit	Name	Total INACCURACY	BRCOMP Compensated	Final Inaccuracy
0	Start	0.173	x	0.173
1	UART_DAT[0]	0.346(0.173+0.173)	0	0.346
2	UART_DAT[1]	0.519(0.346+0.173)	1	-0.481
3	UART_DAT[2]	-0.308(-0.481+0.173)	0	-0.308
4	UART_DAT[3]	-0.135(-0.308+0.173)	0	-0.135
5	UART_DAT[4]	-0.038(-0.135+0.173)	0	0.038
6	UART_DAT[5]	0.211(0.038+0.173)	0	0.211
7	UART_DAT[6]	0.384(0.211+0.173)	0	0.384
8	UART_DAT[7]	0.557(0.384+0.173)	1	-0.443
9	Parity	-0.270(-0.443+0.173)	0	-0.270

Table 6.11-8 Baud Rate Compensation Example Table 2

UART Controller Auto-Baud Rate Function Mode

Auto-Baud Rate function can measure baud rate of receiving data from UART RX pin automatically. When the Auto-Baud Rate measurement is finished, the measuring baud rate is loaded to BRD (UART_BAUD[15:0]). Both of the BAUDM1 (UART_BAUD[29]) and BAUDM0 (UART_BAUD[28]) are set to 1 automatically. UART RX data from Start bit to 1st rising edge time is set by 2^{ABRDBITS} bit time in Auto-Baud Rate function detection frame.

The 2^{ABRDBITS} bit time from Start bit to the 1st rising edge is calculated by setting ABRDBITS (UART_ALTCTL[20:19]). Setting ABRDEN (UART_ALTCTL[18]) is to enable auto-baud rate function. In beginning stage, the UART RX is kept at 1. Once falling edge is detected, START bit is received. The auto-baud rate counter is reset and starts counting. The auto-baud rate counter will be stop when the 1st rising edge is detected. Then, auto-baud rate counter value divided by ABRDBITS (UART_ALTCTL[20:19]) is loaded to BRD (UART_BAUD[15:0]) automatically. ABRDEN (UART_ALTCTL[20:19]) is loaded to BRD (UART_BAUD[15:0]) automatically. ABRDEN (UART_ALTCTL[18]) is cleared. The Auto-Baud is shown in Figure 6.11-3. Once the auto-baud rate counter is overflow, ABRDTOIF (UART_FIFOSTS[2]) is set. If ABRDIF (UART_FIFOSTS[1]) or ABRDTOIF (UART_FIFOSTS[2]) is set, the auto-baud rate flag ABRIF (UART_ALTCTL[17]) is generated. If ABRIEN (UART_INTEN[18]) is enabled, the auto-baud rate interrupt ABRINT (UART_INTSTS[31]) is generated when ABRIF (UART_ALTCTL[17]) is set.

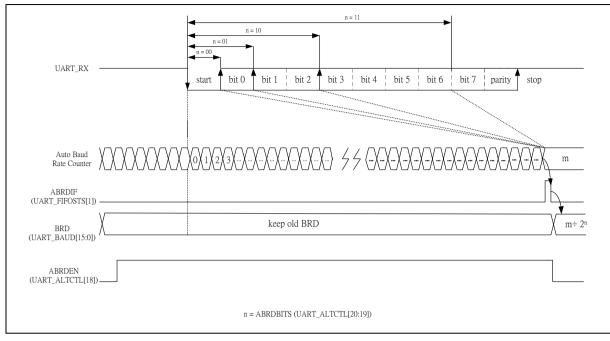


Figure 6.11-3 Auto-Baud Rate Measurement

6.11.5.3 Programming Sequence Example

- 1. Program ABRDBITS (UART_ALTCTL[20:19]) to determines 2 ABRDBITS bit time from UART RX receive START bit falling edge to data 1st rising edge.
- 2. Set ABRIEN (UART_INTEN[18]) to enable auto-baud rate function interrupt.
- 3. Set ABRDEN (UART_ALTCTL[18]) to enable auto-baud rate function.
- 4. ABRDIF (UART_FIFOSTS[1]) is set, the auto-baud rate measurement is finished.
- 5. Operate UART transmit and receive action.
- 6. ABRDTOIF (UART_FIFOSTS[2]) is set, if auto-baud rate counter is overflow.
- 7. Go to Step 3.

6.11.5.4 UART Controller Transmit Delay Time Value

The UART controller programs DLY (UART_TOUT[15:8]) to control the transfer delay time between the last stop bit and next start bit in transmission. The unit is baud. The operation is shown in Figure 6.11-4.

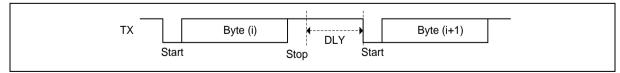


Figure 6.11-4 Transmit Delay Time Operation

6.11.5.5 UART Controller FIFO Control and Status

The UART controller is built-in with a 16 bytes transmitter FIFO (TX_FIFO) and a 16 bytes receiver FIFO (RX_FIFO) that reduces the number of interrupts presented to the CPU. The CPU can read the status of the UART at any time during operation. The reported status information includes condition of the transfer operations being performed by the UART, as well as 3 error conditions (parity error, framing error, break interrupt) occur if receiving data has parity, frame or break error. UART, IrDA, LIN and RS-485 mode support FIFO control and status function.

6.11.5.6 UART Controller Wake-up Function

The UART controller supports wake-up system function. The wake-up function includes nCTS pin, incoming data wake-up, Received Data FIFO reached threshold wake-up, RS-485 Address Match (AAD mode) wake-up and Received Data FIFO threshold time-out wake-up function. CTSWKF (UART_WKSTS[0]), DATWKF (UART_WKSTS[1]), RFRTWKF (UART_WKSTS[2]), RS485WKF (UART_WKSTS[3]) or TOUTWKF (UART_WKSTS[4]) cause the wake-up interrupt flag WKIF (UART_INTSTS[6]) is generated. If the WKIEN (UART_INTEN[6]) enabled, the wake-up interrupt flag WKIF (UART_INTSTS[6]) cause the wake-up interrupt WKINT (UART_INTSTS[14]) generated.

nCTS pin wake-up :

When the system is in Power-down mode and WKCTSEN (UART_WKCTL[0]) is set, the toggle of nCTS pin can wake-up system. If the WKCTSEN (UART_WKCTL[0]) is enabled, the toggle of nCTS pin cause the nCTS wake-up flag CTSWKF (UART_WKSTS[0]) generated. The nCTS wake-up is shown in Figure 6.11-5 and Figure 6.11-6.

nCTS Wake-up Case 1 (nCTS transition from low to high)

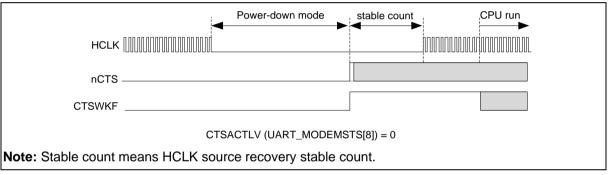


Figure 6.11-5 UART nCTS Wake-up Case1

nCTS Wake-up Case 2 (nCTS transition from high to low)

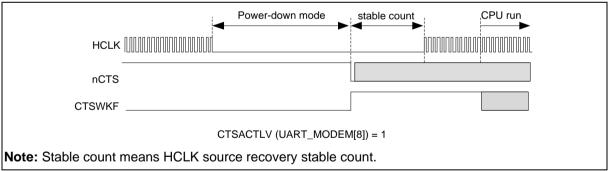


Figure 6.11-6 UART nCTS Wake-up Case2

Incoming Data Wake-up

When system is in Power-down mode and the WKDATEN (UART_WKCTL[1]) is set, the toggle of incoming data (UART_RXD) pin can wake-up the system. In order to receive the incoming data after the system wake-up, the STCOMP (UART_DWKCOMP[15:0]) shall be set. These bits field of STCOMP indicate how many clock cycle selected by UART_CLK do the UART controller can get the 1st bit (start bit) when the system is wakeup from Power-down mode.

When incoming data wakes system up, the incoming data will be received and stored in FIFO. If the WKDATEN (UART_WKCTL[1]) is enabled, the toggle of incoming data (UART_RXD) pin cause the incoming data wake-up flag DATWKF (UART_WKSTS[1]) is generated. The incoming data wake-up is shown in Figure 6.11-7.

Note1: The UART controller clock source should be selected as HIRC and the compensation time for

start bit is about 91.129us. It means that the value of STCOMP (UART_DWKCOMP[15:0]) can be set as 0x1116.

Note2: The value of BRD (UART_BAUD[15:0]) should be greater than STCOMP (UART_DWKCOMP[15:0]).

Figure 6.11-7 UART Data Wake-up

Received Data FIFO Reached Threshold Wake-up

The received data FIFO threshold reached wake-up function is enabled by setting WKRFRTEN (UART_WKCTL[2]). In Power-down mode, when the number of received data in RX FIFO reaches the threshold value RFITL (UART_FIFO[7:4]), it can wake-up the system. If the WKRFRTEN (UART_WKCTL[2]) is enabled, the number of received data in RX FIFO reaches the threshold value RFITL (UART_FIFO[7:4]) cause the received data FIFO reached threshold wake-up flag RFRTWKF (UART_WKSTS[2]) is generated. The Received Data FIFO reached threshold wake-up is shown in Figure 6.11-8.

Note: The UART controller clock source should be selected as LXT in Power-down mode to receive data.

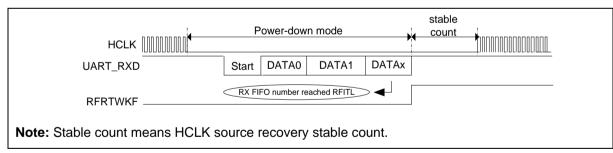
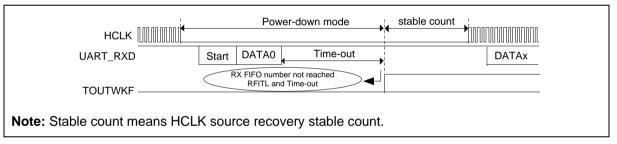


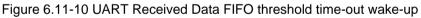
Figure 6.11-8 UART Received Data FIFO Reached Threshold Wake-up

RS-485 Address Match (AAD Mode) Wake-up

The RS-485 address match wake-up function is enabled by setting WKRFRTEN (UART_WKCTL[2]) and WKRS485EN (UART_WKCTL[3]). This function is used for RS-485 Auto Address Detection (AAD) mode in RS-485 function mode and ADDRDEN (UART_ALTCTL[15]) is set to 1. In Power-down mode, when an address byte is detected and matches the ADDRMV (UART_ALTCTL[31:24]) or the number of received data in RX FIFO reaches the threshold value RFITL (UART_FIFO[7:4]), it can wake-up the system. If the WKRS485EN (UART_WKCTL[3]) is enabled, when an address byte is detected and matches the ADDRMV (UART_ALTCTL[31:24]) that cause the RS485 address match (AAD mode) wake-up flag RS485WKF (UART_WKSTS[3]) is generated. The RS-485 Address Match (AAD mode) wake-up is shown in Figure 6.11-9.

Note: The UART controller clock source should be selected as LXT in Power-down mode to receive data.


	Power-down mode				stable	count
UART_RXD	Start	D0~	D7	ADD	STO	
RS485WKF	Address Match			◀┘		
Note: Stable count means HCLK source recovery stable count.						



Received Data FIFO Threshold Time-out Wake-up

The received data FIFO threshold time-out wake-up function is enabled by setting WKRFRTEN (UART_WKCTL[2]) and WKTOUTEN (UART_WKCTL[4]). Setting TOCNTEN (UART_INTEN[11]) to enable receiver buffer time-out counter. In Power-down mode, when the number of received data in RX FIFO does not reach the threshold value RFITL (UART_FIFO[7:4]) and the time-out counter equals to the time-out value TOIC (UART_TOUT[7:0]), it can wake-up the system. If the WKTOUTEN (UART_WKCTL[4]) is enabled, when the time-out counter equals to the time-out value TOIC (UART_TOUT[7:0]) that cause the Received Data FIFO threshold time-out wake-up flag TOUTWKF (UART_WKSTS[4]) is generated. The Received Data FIFO threshold time-out wake-up is shown in Figure 6.11-10.

Note: The UART controller clock source should be selected as LXT or LIRC in Power-down mode to receive data.

6.11.5.7 UART Controller Interrupt and Status

Each UART controller supports eleven types of interrupts including:

- Receive Data Available Interrupt (RDAINT)
- Transmit Holding Register Empty Interrupt (THERINT)
- Transmitter Empty Interrupt (TXENDIF)
- Receive Line Status Interrupt (RLSINT)
 - Break Interrupt Flag (BIF)
 - Framing Error Flag (FEF)
 - Parity Error Flag (PEF)
 - RS-485 Address Byte Detect Flag (ADDRDETF)
- MODEM Status Interrupt (MODEMINT)
 - Detect nCTS State Change Flag (CTSDETF)
- Receiver Buffer Time-out Interrupt (RXTOINT)
- Buffer Error Interrupt (BUFERRINT)

M0A21/M0A23 Series

nuvoTon

- TX Overflow Error Interrupt Flag (TXOVIF)
- RX Overflow Error Interrupt Flag (RXOVIF)
- LIN Bus Interrupt (LININT)
 - LIN Break Detection Flag (BRKDETF)
 - Bit Error Detect Status Flag (BITEF)
 - LIN Slave ID Parity Error Flag (SLVIDPEF)
 - LIN Slave Header Error Flag (SLVHEF)
 - LIN Slave Header Detection Flag (SLVHDETF)
 - LIN Slave Header Time-out Detect (SLVHTOF)
 - LIN Response Time-out Detect (RTOUTF)
- Wake-up Interrupt (WKINT)
 - nCTS Wake-up Flag (CTSWKF)
 - Incoming Data Wake-up Flag (DATWKF)
 - Received Data FIFO Reached Threshold Wake-up Flag (RFRTWKF)
 - RS-485 Address Match (AAD mode) Wake-up Flag (RS485WKF)
 - Received Data FIFO Threshold Time-out Wake-up Flag (TOUTWKF)
 - LIN Wake-up Flag (LINWKF)
- Auto-Baud Rate Interrupt (ABRINT)
 - Auto-baud Rate Detect Interrupt Flag (ABRDIF)
 - Auto-baud Rate Detect Time-out Interrupt Flag (ABRDTOIF)
- Single-wire Bit Error Detect Interrupt (SWBEINT)

Table 6.11-9 describes the interrupt sources and flags. The interrupt is generated when the interrupt flag is generated and the interrupt enable bit is set. User must clear the interrupt flag after the interrupt is generated.

Interrunt Source	Interrupt Indicator	Interrupt Enable Bit	Interrupt Flag	Flag Caused By	Flag Cleared By
Receive Data Available Interrupt	RDAINT	RDAIEN	RDAIF	N/A	Read UART_DAT
Transmit Holding Register Empty Interrupt	THERINT	THREIEN	THREIF	N/A	Write UART_DAT
Transmitter Empty Interrupt	TXENDINT	TXENDIEN	TXENDIF	N/A	Write UART_DAT
Receive Line Status Interrupt	RLSINT	RLSIEN	RLSIF	RLSIF = BIF	Write '1' to BIF
				RLSIF = FEF	Write '1' to FEF
				RLSIF = PEF	Write '1' to PEF
				RLSIF = ADDRDETF	Write '1' to ADDRDETF
Modem Status Interrupt	MODEMINT	MODEMIEN	MODEMIF	MODEMIF = CTSDETF	Write '1' to CTSDETF
Receiver Buffer Time-	RXTOINT	RXTOIEN	RXTOIF	N/A	Read UART_DAT

out Interrupt					
Buffer Error Interrupt	BUFERRINT	BUFERRIEN		BUFERRIF = TXOVIF	Write '1' to TXOVIF
			BUFERRIF	BUFERRIF = RXOVIF	Write '1' to RXOVIF
LIN Bus Interrupt	LININT LINI	LINIEN	LINIF	LINIF = BRKDETF	Write '1' to LINIF and Write '1' to BRKDETF
				LINIF = BITEF	Write '1' to LINIF and Write '1' to BITEF
				LINIF = SLVIDPEF	Write '1' to LINIF and Write '1' to SLVIDPEF
				LINIF = SLVHEF	Write '1' to LINIF and Write '1' to SLVHEF
				LINIF = SLVHDETF	Write '1' to LINIF and Write '1' to SLVHDETF
				LINIF = SLVHTOF	Write '1' to LINIF and Write '1' to SLVHTOF
				LINIF = RTOUTF	Write '1' to LINIF and Write '1' to RTOUTF
	WKINT	WKIEN	WKIF	WKIF = CTSWKF	Write '1' to CTSWKF
				WKIF = DATWKF	Write '1' to DATWKF
Wake-up Interrupt				WKIF = RFRTWKF	Write '1' to RFRTWKF
				WKIF = RS485WKF	Write '1' to RS485WKF
				WKIF = TOUTWKF	Write '1' to TOUTWKF
				WKIF = LINWKF	Write '1' to LINWKF
Auto-Baud Rate Interrupt	ABRINT	ABRIEN	ABRIF	ABRIF = ABRDIF	Write '1' to ABRDIF
				ABRIF = ABRDTOIF	Write '1' to ABRDTOIF
Single-wire Bit Error Detect Interrupt	SWBEINT	SWBEIEN	SWBEIF	N/A	Writing '1' to SWBEIF

Table 6.11-9 UART controller Interrupt Source and Flag List

6.11.5.8 UART Function Mode

The UART controller provides UART function (Setting FUNCSEL (UART_FUNCSEL[2:0]) to '000' to enable UART function mode). The UART baud rate is up to 1 Mbps.

The UART provides full-duplex and asynchronous communications. The transmitter and receiver contain 16 bytes FIFO for payloads. User can program receiver buffer trigger level and receiver buffer

time-out detection for receiver. The transmitting data delay time between the last stop and the next start bit can be programed by setting DLY (UART_TOUT[15:8]) register. The UART supports hardware autoflow control that provides programmable nRTS flow control trigger level. The number of data bytes in RX FIFO is equal to or greater than RTSTRGLV (UART_FIFO[19:16]), the nRTS is de-asserted.

UART Line Control Function

The UART controller supports fully programmable serial-interface characteristics by setting the UART_LINE register. User can program UART_LINE register for the word length, stop bit and parity bit setting. Table 6.11-10 and Table 6.11-11 list the UART word, stop bit length and the parity bit settings.

NSB (UART_LINE[2])	WLS (UART_LINE[1:0])	Word Length (Bit)	Stop Length (Bit)
0	00	5	1
0	01	6	1
0	10	7	1
0	11	8	1
1	00	5	1.5
1	01	6	2
1	10	7	2
1	11	8	2

Table 6.11-10 UART Line Control of Word and Stop Length Setting

Parity Type	SPE (UART_LINE[5])	EPE (UART_LINE[4])	PSS (UART_LINE[7])	PBE (UART_LINE[3])	Description
No Parity	х	х	х	0	No parity bit output.
Parity source from UART_DA T	x	x	1	1	Parity bit is generated and checked by software.
Odd Parity	0	0	0	1	Odd Parity is calculated by adding all the "1's" in a data stream and adding a parity bit to the total bits, to make the total count an odd number.
Even Parity	0	1	0	1	Even Parity is calculated by adding all the "1's" in a data stream and adding a parity bit to the total bits, to make the count an even number.
Forced Mask Parity	1	0	0	1	Parity bit always logic 1. Parity bit on the serial byte is set to "1" regardless of total number of "1's" (even or odd counts).
Forced Space Parity	1	1	0	1	Parity bit always logic 0. Parity bit on the serial byte is set to "0" regardless of total number of "1's" (even or odd counts).

Table 6.11-11 UART Line Control of Parity Bit Setting

UART Auto-Flow Control Function

The UART supports auto-flow control function that uses two signals, nCTS (clear-to-send) and nRTS (request-to-send), to control the flow of data transfer between the UART and external devices (e.g. Modem). When auto-flow is enabled, the UART is not allowed to receive data until the UART asserts

nRTS to external device. When the number of bytes stored in the RX FIFO equals the value of RTSTRGLV (UART_FIFO[19:16]), the nRTS is de-asserted. The UART sends data out when UART detects nCTS is asserted from external device. If the valid asserted nCTS is not detected, the UART will not send data out. The auto flow control block diagram is shown in Figure 6.11-11.

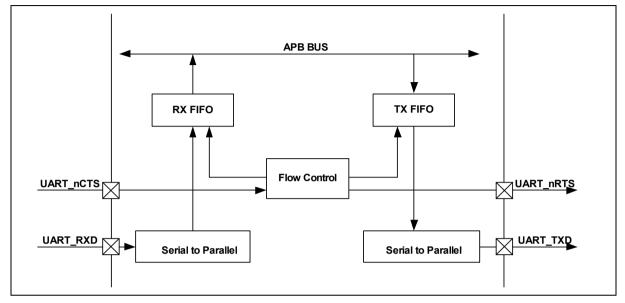


Figure 6.11-11 Auto-Flow Control Block Diagram

Figure 6.11-12 demonstrates the nCTS auto-flow control of UART function mode. User must set ATOCTSEN (UART_INTEN[13]) to enable nCTS auto-flow control function. The CTSACTLV (UART_MODEMSTS[8]) can set nCTS pin input active state. The CTSDETF (UART_MODEMSTS[0]) is set when any state change of nCTS pin input has occurred, and then TX data will be automatically transmitted from TX FIFO.

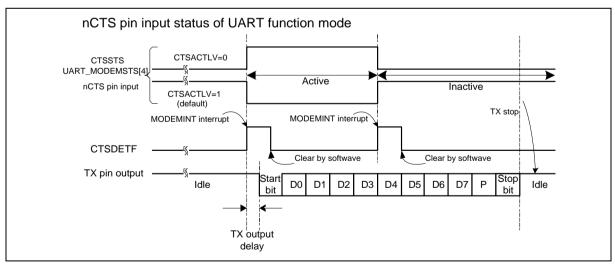


Figure 6.11-12 UART nCTS Auto-Flow Control Enabled

As shown in Figure 6.11-13, in UART nRTS auto-flow control mode (ATORTSEN (UART_INTEN[12])=1), the nRTS internal signal is controlled by UART FIFO controller with RTSTRGLV (UART_FIFO[19:16]) trigger level.

Setting RTSACTLV (UART_MODEM[9]) can control the nRTS pin output is inverse or non-inverse from nRTS signal. User can read the RTSSTS (UART_MODEM[13]) bit to get real nRTS pin output voltage

logic status.

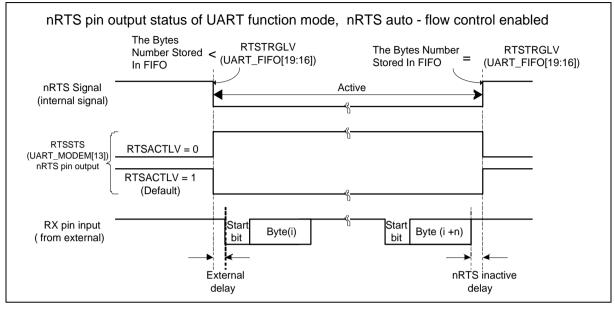


Figure 6.11-13 UART nRTS Auto-Flow Control Enabled

As shown in Figure 6.11-14, in software mode (ATORTSEN (UART_INTEN[12])=0), the nRTS flow is directly controlled by software programming of RTS (UART_MODEM[1]) control bit.

Setting RTSACTLV (UART_MODEM[9]) can control the nRTS pin output is inverse or non-inverse from RTS (UART_MODEM[1]) control bit. User can read the RTSSTS (UART_MODEM[13]) bit to get real nRTS pin output voltage logic status.

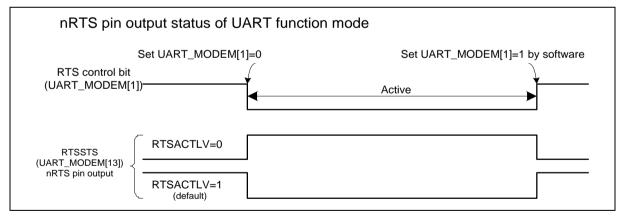


Figure 6.11-14 UART nRTS Auto-Flow with Software Control

6.11.5.9 IrDA Function Mode

The UART controller also provides Serial IrDA (SIR, Serial Infrared) function (Setting UART_FUNCSEL[2:0] to '010' to enable the IrDA function). The SIR specification defines a short-range infrared asynchronous serial transmission mode with one start bit, 8 data bits, and 1 stop bit. The maximum data rate is 115.2 kbps. The IrDA SIR block contains an IrDA SIR protocol encoder/decoder. The IrDA SIR protocol is half-duplex only. So, it cannot transmit and receive data at the same time. The IrDA SIR physical layer specifies a minimum 10 ms transfer delay between transmission and reception, and this delay feature must be implemented by software.

In IrDA mode, the BAUDM1 (UART_BAUD[29]) must be cleared.

Baud Rate = Clock / (16 * (BRD +2)), where BRD (UART_BAUD[15:0]) is Baud Rate Divider in UART_BAUD register.

Note: The tolerance of baud-rate is ±5% between IrDA master and IrDA slave.

The IrDA control block diagram is shown in Figure 6.11-15.

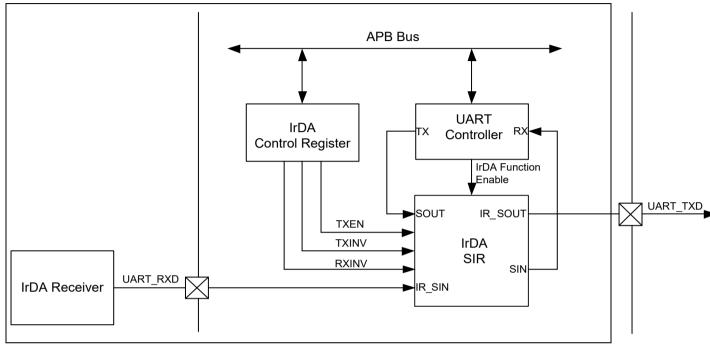


Figure 6.11-15 IrDA Control Block Diagram

IrDA SIR Transmit Encoder

The IrDA SIR Transmit Encoder modulates Non-Return-to-Zero (NRZ) transmit bit stream output from UART. The IrDA SIR physical layer specifies the use of Return-to-Zero, Inverted (RZI) modulation scheme which represents logic 0 as an infra light pulse. The modulated output pulse stream is transmitted to an external output driver and infrared light emitting diode.

The transmitted pulse width is specified as 3/16 period of baud rate.

IrDA SIR Receive Decoder

The IrDA SIR Receive Decoder demodulates the Return-to-Zero bit stream from the input detector and outputs the NRZ serial bits stream to the UART received data input.

In idle state, the decoder input is high. A start bit is detected when the decoder input is LOW. In normal operation, the RXINV (UART_IRDA[6]) is set to '1' and TXINV (UART_IRDA[5]) is set to '0'.

IrDA SIR Operation

The IrDA SIR encoder/decoder provides functionality which converts between UART data stream and half-duplex serial SIR interface. Figure 6.11-16 is IrDA encoder/decoder waveform.

M0A21/M0A23 Series

nuvoTon

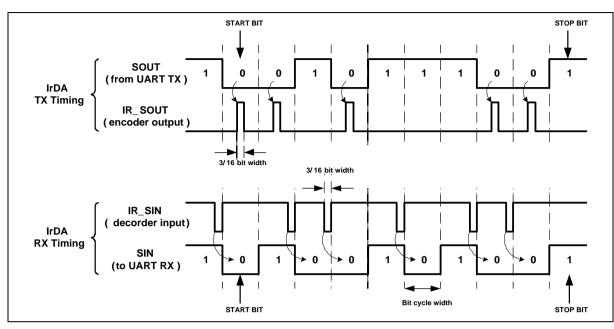


Figure 6.11-16 IrDA TX/RX Timing Diagram

6.11.5.10 LIN Function Mode (Local Interconnection Network)

The UART Controller supports LIN function. Setting FUNCSEL (UART_FUNCSEL[2:0]) to '001' to select LIN mode operation. The UART Controller supports LIN break/delimiter generation and break/delimiter detection in LIN master mode, and supports header detection and automatic resynchronization in LIN Slave mode.

Structure of LIN Frame

According to the LIN protocol, all information transmitted is packed as frames; a frame consists of a header (provided by the master task) and a response (provided by a slave task). The header (provided by the master task) consists of a break field and a sync field followed by a frame identifier (frame ID). The frame identifier uniquely defines the purpose of the frame. The slave task is appointed for providing the response associated with the frame ID. The response consists of a data field and a checksum field. Figure 6.11-17 is the structure of LIN Frame.

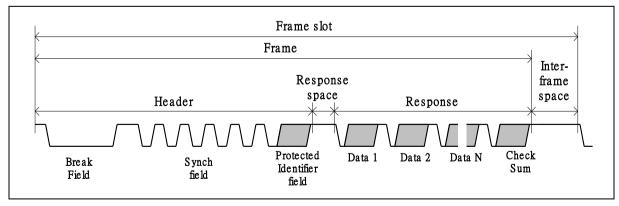


Figure 6.11-17 Structure of LIN Frame

Structure of LIN Byte

In LIN mode, each byte field is initiated by a START bit with value 0 (dominant), followed by 8 data bits and no parity bit, LSB is first and ended by 1 stop bit with value 1 (recessive) in accordance with the LIN standard. The structure of Byte is shown in Figure 6.11-18.

	•				Byte	field					
LIN Bus	Start bit	LSB (bit 0)	(bit 1)	(bit 2)	(bit 3)	(bit 4)	(bit 5)	(bit 6)	MSB (bit 7)	Stop bit	

Figure 6.11-18 Structure of LIN Byte

LIN Master Mode

The UART Controller supports LIN Master mode. To enable and initialize the LIN Master mode, the following steps are necessary:

- 1. Set the UART_BAUD register to select the desired baud rate.
- Set WLS (UART_LINE[1:0]) to '11' to configure the word length with 8 bits, clearing PBE (UART_LINE[3]) bit to disable parity check and clearing NSB (UART_LINE[2]) bit to configure with one stop bit.
- 3. Set FUNCSEL (UART_FUNCSEL[2:0]) to '001' to select LIN function mode operation.

A complete header consists of a break field and sync field followed by a frame identifier (frame ID). The UART controller can be selected header sending by three header selected modes. The header selected mode can be "break field" or "break field and sync field" or "break field, sync field and frame ID field" by setting HSEL (UART_LINCTL[23:22]). If the selected header is "break field", software must handle the following sequence to send a complete header to bus by filling sync data (0x55) and frame ID data to the UART_DAT register. If the selected header is "break field and sync field", software must handle the sequence to send a complete header to bus by filling the frame ID data to UART_DAT register, and if the selected header is "break field, sync field and frame ID field", hardware will control the header sending sequence automatically but software must filled frame ID data to PID (UART_LINCTL[31:24]). When operating in header selected mode in which the selected header is "break field, sync field and frame ID field", the frame ID parity bit can be calculated by software or hardware depending on whether the IDPEN (UART_LINCTL[9]) bit is set or not.

HSEL	Break Field	Sync Field	ID Field
0	Generated by Hardware	Handled by Software	Handled by Software
1	Generated by Hardware	Generated by Hardware	Handled by Software
2	Generated by Hardware	Generated by Hardware	Generated by Hardware (But Software needs to fill ID to PID (UART_LINCTL[31:24]) first)

		Coloction	N	lootor N	
Table 6.11-12 LIN	Header	Selection	IN N	viaster i	viode

When UART is operated in LIN data transmission, LIN bus transfer state can be monitored by hardware or software. User can enable hardware monitoring by setting BITERREN (UART_LINCTL[12]) to "1", if the input pin (UART_RX) state is not equal to the output pin (UART_TX) state in LIN transmitter state that hardware will generate an interrupt to CPU. Software can also monitor the LIN bus transfer state by checking the read back data in UART_DAT register. The following sequence is a program sequence example.

The procedure without software error monitoring in Master mode:

- 1. Fill Protected Identifier to PID (UART_LINCTL[31:24]).
- 2. Select the hardware transmission header field including "break field + sync field + protected identifier field" by setting HSEL (UART_LINCTL[23:22]) to "10".
- 3. Set SENDH (UART_LINCTL[8]) bit to 1 for requesting header transmission.
- 4. Wait until SENDH (UART_LINCTL[8]) bit cleared by hardware.
- 5. Wait until TXEMPTYF (UART_FIFOSTS[28]) set to 1 by hardware.

Note1: The default setting of break field is 12 dominant bits (break field) and 1 recessive bit break/sync delimiter. Setting BRKFL (UART_LINCTL[19:16]) and BSL (UART_LINCTL[21:20]) to change the LIN break field length and break/sync delimiter length.

Note2: The default setting of break/sync delimiter length is 1-bit time and the inter-byte spaces default setting is also 1-bit time. Setting BSL (UART_LINCTL[21:20]) and DLY (UART_TOUT[15:8]) can change break/sync delimiter length and inter-byte spaces.

Note3: If the header includes the "break field, sync field and frame ID field", software must fill frame ID to PID (UART_LINCTL[31:24]) before trigger header transmission (setting the SENDH (UART_LINCTL[8])). The frame ID parity can be generated by software or hardware depending on IDPEN (UART_LINCTL[9]) setting. If the parity generated by software with IDPEN (UART_LINCTL[9]) is set to '0', software must fill 8 bit data (include 2 bit parity) in this field. If the parity generated by hardware with IDPEN (UART_LINCTL[9]) is set to '1', software fills ID0~ID5 and hardware calculates P0 and P1.

Procedure with software error monitoring in Master mode:

- 1. Choose the hardware transmission header field to only include "break field" by setting HSEL (UART_LINCTL[23:22])] to '00'.
- 2. Enable break detection function by setting BRKDETEN (UART_LINCTL[10]).
- 3. Request break + break/sync delimiter transmission by setting the SENDH (UART_LINCTL[8]).
- 4. Wait until the BRKDETF (UART_LINSTS[8]) flag is set to "1" by hardware.
- 5. Request sync field transmission by writing 0x55 into UART_DAT register.
- 6. Wait until the RDAIF (UART_INTSTS[0]) is set to "1" by hardware and then read back the UART_DAT register.
- 7. Request header frame ID transmission by writing the protected identifier value to UART_DAT register.
- 8. Wait until the RDAIF (UART_INTSTS[0]) is set to "1" by hardware and then read back the UART_DAT register.

LIN Break and Delimiter Detection

When software enables the break detection function by setting BRKDETEN (UART_LINCTL[10]), the break detection circuit is activated. The break detection circuit is totally independent from the UART receiver.

When the break detection function is enabled, the circuit looks at the input UART_RX pin for a start signal. If UART LIN controller detects consecutive dominant is greater than 11 bits dominant followed by a recessive bit (delimiter), the BRKDETF (UART_LINSTS[8]) flag is set at the end of break field. If the LINIEN (UART_INTEN[8]) bit is set to 1, an interrupt LININT (UART_INTSTS[15]) will be generated. The behavior of the break detection and break flag are shown in Figure 6.11-19.

LIN Bus	IDLE													Delimiter
Capture Strobe		A	▲	▲	▲	A	▲	▲	A	A	≜	≜	A	
-		0	1	2	3	4	5	6	7	8	9	10	11	
BRKDETF Case 2:		ah to h		dataat	and							haan	oot	
- Case 2: Break signal is -		gh to b	oreak	detect	and E	BRKD	ETF(l	JART_	_LINS	TS[8]) has	been	set.	Delimiter
- Case 2:	long enoug	gh to b	oreak	detect	and E	BRKD	ETF(l	JART <u>.</u>	_LINS	TS[8]) has	s been	set.	Delimiter
- Case 2: Break signal is -		gh to b	oreak o	detect	and E	BRKD	ETF(L	JART_	_LINS	TS[8]) has	s been	set.	Delimiter

Figure 6.11-19 Break Detection in LIN Mode

LIN Frame ID and Parity Format

The LIN frame ID value in LIN function mode is shown, the frame ID parity can be generated by software or hardware depends on IDPEN (UART_LINCTL[9]).

If the parity generated by hardware (IDPEN (UART_LINCTL[9])=1), user fill ID0~ID5 (UART_LINCTL[29:24]) hardware will calculate P0 (UART_LINCTL[30]) and P1 (UART_LINCTL[31]) otherwise user must filled frame ID and parity in this field.

	-									
PID	start	ID0	ID1	ID2	ID3	ID4	ID5	P0	P1	

P0 = ID0 xor ID1 xor ID2 xor ID4

 $P1 = \sim (ID1 \text{ xor } ID3 \text{ xor } ID4 \text{ xor } ID5)$

Figure 6.11-20 LIN Frame ID and Parity Format

LIN Slave Mode

The UART Controller supports LIN Slave mode. To enable and initialize the LIN Slave mode, the following steps are necessary:

- 1. Set the UART_BAUD register to select the desired baud rate.
- Configure the data length to 8 bits by setting WLS (UART_LINE[1:0]) to '11' and disable parity check by clearing PBE (UART_LINE[3]) bit and configure with one stop bit by clearing NSB (UART_LINE[2]) bit.
- 3. Select LIN function mode by setting FUNCSEL (UART_FUNCSEL[2:0]) to '001'.
- 4. Enable LIN slave mode by setting the SLVEN (UART_LINCTL[0]) to 1.

LIN Header Reception

According to the LIN protocol, a slave node must wait for a valid header which comes from the master node. Next the slave task will take one of following actions (depend on the master header frame ID value).

- Receive the response.
- Transmit the response.
- Ignore the response and wait for next header.

In LIN Slave mode, user can enable the slave header detection function by setting the SLVHDEN (UART_LINCTL[1]) to detect complete frame header (receive "break field", "sync field" and "frame ID field"). When a LIN header is received, the SLVHDETF (UART_LINSTS[0]) flag will be set. If the LINIEN (UART_INTEN[8]) bit is set to 1, an interrupt will be generated. User can enable the frame ID parity check function by setting IDPEN (UART_LINCTL[9]). If only received frame ID parity is not correct (break and sync filed are correct), the SLVIDPEF (UART_LINSTS[2]) flag is set to '1'. If the LINIEN (UART_INTEN[8]) is set to 1, an interrupt will be generated and SLVHDETF (UART_LINSTS[0]) is set to '1'. User can also put LIN in mute mode by setting MUTE (UART_LINCTL[4]) to '1'. This mode allows detection of headers only (break + sync + frame ID) and prevents the reception of any other characters. In order to avoid bit rate tolerance, the controller supports automatic resynchronization function to avoid clock deviation error, user can enable this feature by setting SLVAREN (UART_LINCTL[2]).

LIN Response Transmission

The LIN slave node can transmit response and receive response. When slave node is the publisher of the response, the slave node sends response by filling data to the UART_DAT register. If the slave node is the subscriber of the response, the slave node receives data from LIN bus.

LIN Header Time-out Error

The LIN slave controller contains a header time-out counter. If the entire header is not received within the maximum time limit of 57 bit times, the header error flag SLVHEF (UART_LINSTS[1]) and the header time-out flag SLVHTOF (UART_LINSTS[4]) will be set. The time-out counter is enabled at each break detect edge and stopped in the following conditions.

- A LIN frame ID field has been received.
- The header error flag asserts.
- Writing 1 to the SLVSYNCF (UART_LINSTS[3]) to re-search a new frame header.

Mute Mode and LIN Exit from Mute Mode Condition

In Mute mode, a LIN slave node will not receive any data until specified condition occurred. It allows header detection only and prevents the reception of any other characters. User can enable Mute mode by setting the MUTE (UART_LINCTL[4]) and exiting from Mute mode condition can be selected by HSEL (UART_LINCTL[23:22]).

Note: It is recommended to set LIN slave node to Mute mode after checksum transmission.

The LIN slave controller exiting from Mute mode is described as follows: If HSEL (UART_LINCTL[23:22]) is set to "break field", when LIN slave controller detects a valid LIN break and delimiter, the controller will enable the receiver (exit from Mute mode) and subsequent data (sync data, frame ID data, response data) are received in RX FIFO.

If HSEL (UART_LINCTL[23:22]) is set to "break field and sync field", when the LIN slave controller detects a valid LIN break and delimiter followed by a valid sync field without frame error, the controller will enable the receiver (exit from mute mode) and subsequent data (ID data, response data) are received in RX FIFO. If HSEL (UART_LINCTL[23:22]) is set to "break field, sync field and ID field", when the LIN slave controller detects a valid LIN break and delimiter and valid sync field without frame error followed by ID data without frame error and received ID data matched PID (UART_LINCTL[31:24]) value. The controller will enable the receiver (exit from mute mode) and subsequent data (response data) are received in RX FIFO.

Slave Mode Non-automatic Resynchronization (NAR)

User can disable the automatic resynchronization function to fix the communication baud rate. When operating in Non-Automatic Resynchronization mode, software needs some initial process, and the initialization process flow of Non-Automatic Resynchronization mode is shown as follows:

- 1. Select the desired baud rate by setting the UART_BAUD register.
- 2. Select LIN function mode by setting FUNCSEL (UART_FUNCSEL[2:0]) to '001'.
- 3. Disable automatic resynchronization function by setting SLVAREN (UART_LINCTL[2]) is set to 0.
- 4. Enable LIN slave mode by setting the SLVEN (UART_LINCTL[0]) is set to 1.

Slave Mode with Automatic Resynchronization (AR)

In Automatic Resynchronization (AR) mode, the controller will adjust the baud rate generator after each sync field reception. The initialization process flow of Automatic Resynchronization mode is shown as follows:

- 1. Select the desired baud rate by setting the UART_BAUD register.
- 2. Select LIN function mode by setting UART_FUNCSEL (UART_FUNCSEL[2:0]) to '001'.
- 3. Enable automatic resynchronization function by setting SLVAREN (UART_LINCTL[2]) to '1'.
- 4. Enable LIN slave mode by setting the SLVEN (UART_LINCTL[0]) is set to '1'.

When the automatic resynchronization function is enabled, after each LIN break field, the time duration between five falling edges is sampled on peripheral clock and the result of this measurement is stored in an internal 13-bit register and the UART_BAUD register value will be automatically updated at the end of the fifth falling edge. If the measure timer (13-bit) overflows before five falling edges, then the header error flag SLVHEF (UART_LINSTS[1]) will be set.

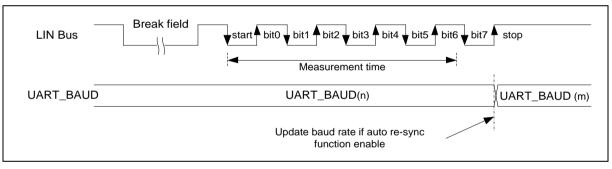


Figure 6.11-21 LIN Sync Field Measurement

When operating in Automatic Resynchronization (AR) mode, software must select the desired baud rate by setting the UART_BAUD register and hardware will store it at internal TEMP_REG register, after each LIN break field, the time duration between five falling edges is sampled on peripheral clock and the result of this measurement is stored in an internal 13-bit register BAUD_LIN and the result will be updated to UART_BAUD register automatically.

To guarantee the transmission baud rate, the baud rate generator must reload the initial value before each new break reception. The initial value is programmed by the application during initialization (TEMP_REG). User can set SLVDUEN (UART_LINCTL[3]) to enable auto reload initial baud rate value function. If the SLVDUEN (UART_LINCTL[3]) is set, when received the next character, hardware will auto reload the initial value to UART_BAUD, and when the UART_BAUD be updated, the SLVDUEN (UART_LINCTL[3]) will be cleared automatically. The behavior of LIN updated method as shown Figure 6.11-22.

Note1: It is recommended to set the SLVDUEN bit before every checksum reception.

Note2: When a header error is detected, user must write 1 to SLVSYNCF (UART_LINSTS[3]) to research new frame header. When writing 1 to it, hardware will reload the initial baud rate TEMP_REG and re-search new frame header.

Note3: When operating in Automatic Resynchronization mode, the baud rate setting must be operated at mode2 (BAUDM1 (UART_BAUD[29]) and BAUDM0 (UART_BAUD[28]) must be 1).

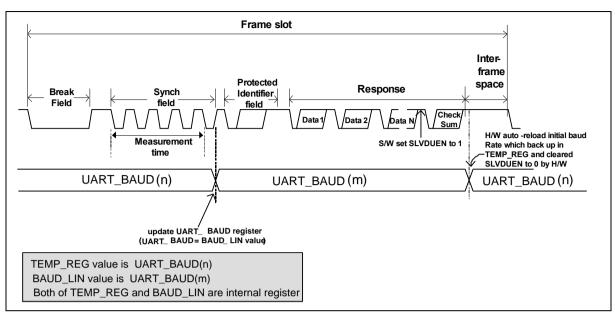


Figure 6.11-22 UART_BAUD Update Sequence in AR mode if SLVDUEN is 1

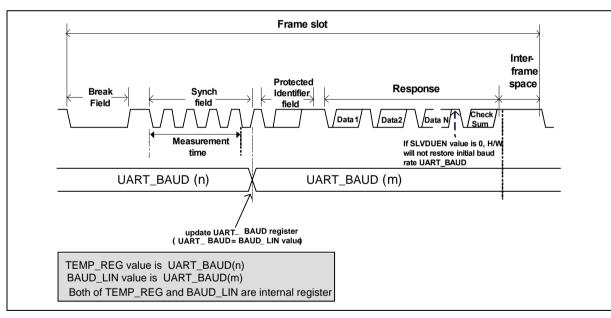


Figure 6.11-23 UART_BAUD Update Sequence in AR mode if SLVDUEN is 0

Deviation Error on the Sync Field

When operating in Automatic Resynchronization mode, the controller will check the deviation error on the sync field. The deviation error is checked by comparing the current baud rate with the received sync field. Two checks are performed in parallel.

Check1: Based on measurement between the first falling edge and the last falling edge of the sync field.

- If the difference is more than 14.84%, the header error flag SLVHEF (UART_LINSTS[1]) will be set.
- If the difference is less than 14.06%, the header error flag SLVHEF (UART_LINSTS[1]) will not be set.
- If the difference is between 14.84% and 14.06%, the header error flag SLVHEF

(UART_LINSTS[1]) may either set or not.

Check2: Based on measurement of time between each falling edge of the sync field.

- If the difference is more than 18.75%, the header error flag SLVHEF (UART_LINSTS[1]) will be set.
- If the difference is less than 15.62%, the header error flag SLVHEF (UART_LINSTS[1]) will not be set.
- If the difference is between 18.75% and 15.62%, the header error flag SLVHEF (UART_LINSTS[1]) may either set or not.

Note: The deviation check is based on the current baud rate clock. Therefore, in order to guarantee correct deviation checking, the baud rate must reload the nominal value before each new break reception by setting SLVDUEN (UART_LINCTL[3]) register (It is recommend setting the SLVDUEN (UART_LINCTL[3]) bit before every checksum reception).

LIN Header Error Detection

In LIN Slave function mode, when user enables the header detection function by setting the SLVHDEN (UART_LINCTL[1]), hardware will handle the header detect flow. If the header has an error, the LIN header error flag SLVHEF (UART_LINSTS[1]) will be set and an interrupt is generated if the LINIEN (UART_INTEN[8]) bit is set. When header error is detected, user must reset the detect circuit to research a new frame header by writing 1 to SLVSYNCF (UART_LINSTS[3]) to re-search a new frame header.

The LIN header error flag SLVHEF (UART_LINSTS[1]) is set if one of the following conditions occurs:

- Break Delimiter is too short (less than 0.5-bit time).
- Frame error in sync field or Identifier field.
- The sync field data is not 0x55 (Non-Automatic Resynchronization mode).
- The sync field deviation error (With Automatic Resynchronization mode).
- The sync field measure time-out (With Automatic Resynchronization mode).
- LIN header reception time-out.

6.11.5.11 RS-485 Function Mode

Another alternate function of UART controller is RS-485 function (user must set UART_FUNCSEL[2:0] to '011' to enable RS-485 function), and direction control provided by nRTS pin from an asynchronous serial port. The RS-485 transceiver control is implemented by using the nRTS control signal to enable the RS-485 driver. Many characteristics of the RX and TX are same as UART in RS-485 mode.

The UART controller can be configured as an RS-485 addressable slave and the RS-485 master transmitter will identify an address character by setting the parity (9-th bit) to 1. For data characters, the parity is set to 0. Software can use UART_LINE register to control the 9-th bit (When the PBE, EPE and SPE are set, the 9-th bit is transmitted 0 and when PBE and SPE are set and EPE is cleared, the 9-th bit is transmitted 1).

The controller supports three operation modes: RS-485 Normal Multidrop Operation Mode (NMM), RS-485 Auto Address Detection Operation Mode (AAD) and RS-485 Auto Direction Control Operation Mode (AUD). Software can choose any operation mode by programming the UART_ALTCTL register, and drive the transfer delay time between the last stop bit leaving the TX FIFO and the de-assertion of by setting DLY (UART_TOUT[15:8]) register.

RS-485 Normal Multidrop Operation Mode (NMM)

In RS-485 Normal Multidrop Operation Mode (RS485NMM (UART_ALTCTL[8]) = 1), in first, software must decide the data which before the address byte be detected will be stored in RX FIFO or not. If software wants to ignore any data before address byte detected, the flow is set RXOFF (UART_FIFO[8]) then enable RS485NMM (UART_ALTCTL[8]) and the receiver will ignore any data until an address byte is detected (bit 9 = 1) and the address byte data will be stored in the RX FIFO. If software wants to

receive any data before address byte detected, the flow is disables RXOFF (UART_FIFO[8]) then enable RS485NMM (UART_ALTCTL[8]) and the receiver will received any data.

If an address byte is detected (bit 9 = 1), it will generate an interrupt to CPU and RXOFF (UART_FIFO[8]) can decide whether accepting the following data bytes are stored in the RX FIFO. If software disables receiver by setting RXOFF (UART_FIFO[8]) register, when a next address byte is detected, the controller will clear the RXOFF (UART_FIFO[8]) bit and the address byte data will be stored in the RX FIFO.

RS-485 Auto Address Detection Operation Mode (AAD)

In RS-485 Auto Address Detection Operation Mode (RS485AAD (UART_ALTCTL[9]) = 1), the receiver will ignore any data until an address byte is detected (bit 9 = 1) and the address byte data matches the ADDRMV (UART_ALTCTL[31:24]) value. The address byte data will be stored in the RX FIFO. The all received byte data will be accepted and stored in the RX FIFO until an address byte data not match the ADDRMV (UART_ALTCTL[31:24]) value.

RS-485 Auto Direction Function (AUD)

Another option function of RS-485 controllers is RS-485 auto direction control function (RS485AUD (UART_ALTCTL[10) = 1). The RS-485 transceiver control is implemented by using the nRTS control signal from an asynchronous serial port. The nRTS line is connected to the RS-485 transceiver enable pin such that setting the nRTS line to high (logic 1) enables the RS-485 transceiver. Setting the nRTS line to low (logic 0) puts the transceiver into the tri-state condition to disabled. User can set RTSACTLV in UART_MODEM register to change the nRTS driving level.

Figure 6.11-24 demonstrates the RS-485 nRTS driving level in AUD mode. The nRTS pin will be automatically driven during TX data transmission.

Setting RTSACTLV (UART_MODEM[9]) can control nRTS pin output driving level. User can read the RTSSTS (UART_MODEM[13]) bit to get real nRTS pin output voltage logic status.

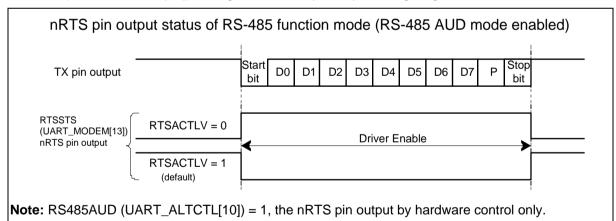


Figure 6.11-24 RS-485 nRTS Driving Level in Auto Direction Mode

Figure 6.11-25 demonstrates the RS-485 nRTS driving level in software control (RS485AUD (UART_ALTCTL[10])=0). The nRTS driving level is controlled by programing the RTS (UART_MODEM[1]) control bit.

Setting RTSACTLV (UART_MODEM[9]) can control the nRTS pin output is inverse or non-inverse from RTS (UART_MODEM[1]) control bit. User can read the RTSSTS (UART_MODEM[13]) bit to get real nRTS pin output voltage logic status. The structure of RS-485 frame is shown in Figure 6.11-26.

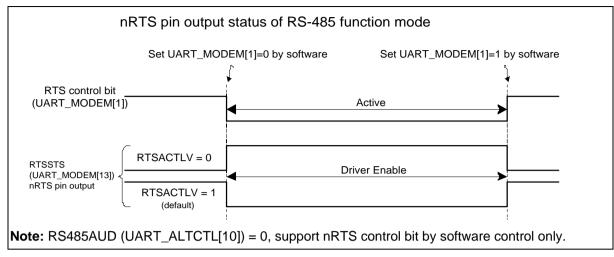


Figure 6.11-25 RS-485 nRTS Driving Level with Software Control

Programming Sequence Example:

- 1. Program FUNCSEL in UART_FUNCSEL to select RS-485 function.
- 2. Program the RXOFF (UART_FIFO[8]) to determine enable or disable the receiver RS-485 receiver.
- 3. Program the RS485NMM (UART_ALTCTL[8]) or RS485AAD (UART_ALTCTL[9]) mode.
- 4. If the RS485AAD (UART_ALTCTL[9]) mode is selected, the ADDRMV (UART_ALTCTL[31:24]) is programmed for auto address match value.
- 5. Determine auto direction control by programming RS485AUD (UART_ALTCTL[10]).

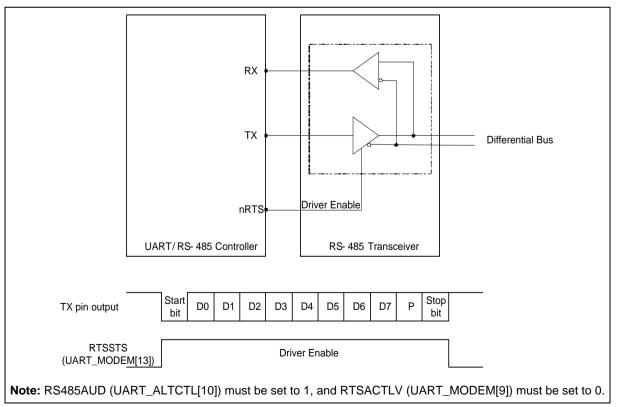


Figure 6.11-26 Structure of RS-485 Frame

6.11.5.12 UART Single-wire Half Duplex

The UART controller provides single-wire half duplex function in UART function mode (Setting UART_FUNCSEL[2:0] to '100' to enable the UART Single-wire function). The single-wire bus keeps at RX state during the single-wire bus is idle. By writing data to TX buffer DAT (UART_DAT[7:0]), the single wire transfers the bus state to TX state immediately. After end of trasmition, the single wire transfer bus type from TX state to RX state.

To reduce the bus conflict problem, the UART controller supports flow control and bit error detection. The nRTS is inactivated during the bus keeping in TX state. The default state of the UART is RX mode, and the UART only changes to TX mode to send data after the nCTS is inactivated when ATOCTSEN (UART_INTEN[13]) is enabled. Under the TX state, the UART controller will monitor bus state. If the bus state is not equal to the UART controller TX state, the SWBEIF (UART_INTSTS[16]) will be set.

Note1: Before writing data to TX buffer, the bus state should be checked in idle state by RXIDLE (UART_FIFOSTS[29]). And the bus confliction may cause RX receive broken data.

Note2: Single-wire does not support auto-flow control. Because the nRTS is actived automatic during TX transmitted.

6.11.5.13 PDMA Transfer Function

The UART controller supports PDMA transfer function.

By configuring PDMA parameter and set UART_DAT as the PDMA destination address. When TXPDMAEN (UART_INTEN[14]) is set to 1, the controller will issue request to PDMA controller to start the PDMA transmission process automatically.

By configuring PDMA parameter and set UART_DAT as the PDMA source address. When RXPDMAEN (UART_INTEN[15]) is set to 1, the controller will start the PDMA reception process. UART controller will issue request to PDMA controller automatically when there is data in the RX FIFO buffer.

Note: If STOPn (PDMA_STOP[n]) is set to stop UART RXPDMA task and the UART receive is not finished, the UART controller will complete the transfer and store the current receive data in receive buffer. Reading RXEMPTY (UART_FIFOSTS[14]) will check whether there is valid data in receive buffer or not.

6.11.6 Register Map

R: read only, W: write only, R/W: both read and write

Register 0	Offset	R/W	Description	Reset Value
UART Base Add UARTx_BA = 0x x=0,1	dress: (4007_0000 + (0x1()00 * x)		
UART_DAT x=0,1	UARTx_BA+0x00	R/W	UART Receive/Transmit Buffer Register	Undefined
UART_INTEN x=0,1	UARTx_BA+0x04	R/W	UART Interrupt Enable Register	0x0000_0000
UART_FIFO x=0,1	UARTx_BA+0x08	R/W	UART FIFO Control Register	0x0000_0101
UART_LINE x=0,1	UARTx_BA+0x0C	R/W	UART Line Control Register	0x0000_0000
UART_MODEM x=0,1	UARTx_BA+0x10	R/W	UART Modem Control Register	0x0000_0200
UART_MODEM STS x=0,1	UARTx_BA+0x14	R/W	UART Modem Status Register	0x0000_0110
UART_FIFOST S x=0,1	UARTx_BA+0x18	R/W	UART FIFO Status Register	0xB040_4000
UART_INTSTS x=0,1	UARTx_BA+0x1C	R/W	UART Interrupt Status Register	0x0040_0002
UART_TOUT x=0,1	UARTx_BA+0x20	R/W	UART Time-out Register	0x0000_0000
UART_BAUD x=0,1	UARTx_BA+0x24	R/W	UART Baud Rate Divider Register	0x0F00_0000
UART_IRDA x=0,1	UARTx_BA+0x28	R/W	UART IrDA Control Register	0x0000_0040
UART_ALTCTL x=0,1	UARTx_BA+0x2C	R/W	UART Alternate Control/Status Register	0x0000_000C
UART_FUNCS EL x=0,1	UARTx_BA+0x30	R/W	UART Function Select Register	0x0000_0000
UART_LINCTL x=0,1	UARTx_BA+0x34	R/W	UART LIN Control Register	0x000C_0000
UART_LINSTS x=0,1	UARTx_BA+0x38	R/W	UART LIN Status Register	0x0000_0000

UART_BRCOM P x=0,1	UARTx_BA+0x3C	R/W	UART Baud Rate Compensation Register	0x0000_0000
UART_WKCTL x=0,1	UARTx_BA+0x40	R/W	UART Wake-up Control Register	0x0000_0000
UART_WKSTS x=0,1	UARTx_BA+0x44	R/W	UART Wake-up Status Register	0x0000_0000
UART_DWKCO MP x=0,1	UARTx_BA+0x48	R/W	UART Incoming Data Wake-up Compensation Register	0x0000_0000
UART_LINRTO UT x=0,1	UARTx_BA+0x4C	R/W	UART LIN Response Time-out Register	0x00FF_FFFF
UART_LINWKC TL x=0,1		R/W	UART LIN Wake-up Control Register	0x0000_00C0

6.11.7 Register Description

UART Receive/Transmit Buffer Register (UART_DAT)

Register	Offset	R/W	Description	Reset Value
UART_DAT x=0,1	UARTx_BA+0x00	R/W	UART Receive/Transmit Buffer Register	Undefined

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
Reserved										
7	6	5	4	3	2	1	0			
		-	D	AT						

Bits	Description	
[31:9]	Reserved	Reserved.
[8]	PARITY	Parity Bit Receive/Transmit Buffer Write Operation: By writing to this bit, the parity bit will be stored in transmitter FIFO. If PBE (UART_LINE[3]) and PSS (UART_LINE[7]) are set, the UART controller will send out this bit follow the DAT (UART_DAT[7:0]) through the UART_TXD. Read Operation: If PBE (UART_LINE[3]) and PSS (UART_LINE[7]) are enabled, the parity bit can be read by this bit. Note: This bit has effect only when PBE (UART_LINE[3]) and PSS (UART_LINE[7]) are set.
[7:0]	DAT	Data Receive/Transmit Buffer Write Operation: By writing one byte to this register, the data byte will be stored in transmitter FIFO. The UART controller will send out the data stored in transmitter FIFO top location through the UART_TXD. Read Operation: By reading this register, the UART controller will return an 8-bit data received from receiver FIFO.

UART Interrupt Enable Register (UART_INTEN)

Register	Offset	R/W	Description	Reset Value
UART_INTEN x=0,1	UARTx_BA+0x04	R/W	UART Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
Reserved	TXENDIEN		Reserved		ABRIEN	Reserved	SWBEIEN
15	14	13	12	11	10	9	8
RXPDMAEN	TXPDMAEN	ATOCTSEN	ATORTSEN	TOCNTEN	Rese	erved	LINIEN
7	6	5	4	3	2	1	0
Reserved	WKIEN	BUFERRIEN	RXTOIEN	MODEMIEN	RLSIEN	THREIEN	RDAIEN

Bits	Description				
[31:23]	Reserved	Reserved.			
[22]	TXENDIEN	Transmitter Empty Interrupt Enable Bit If TXENDIEN (UART_INTEN[22]) is enabled, the Transmitter Empty interrupt TXENDINT (UART_INTSTS[30]) will be generated when TXENDIF (UART_INTSTS[22]) is set (TX FIFO (UART_DAT) is empty and the STOP bit of the last byte has been transmitted). 0 = Transmitter empty interrupt Disabled. 1 = Transmitter empty interrupt Enabled.			
[21:19]	Reserved	Reserved.			
[18]	ABRIEN Auto-baud Rate Interrupt Enable Bit 0 = Auto-baud rate interrupt Disabled. 1 = Auto-baud rate interrupt Enabled.				
[17]	Reserved	Reserved.			
[16]	SWBEIEN	Single-wire Bit Error Detection Interrupt Enable Bit Set this bit, the Single-wire Half Duplex Bit Error Detection Interrupt SWBEINT (UART_INTSTS[24]) is generated when Single-wire Bit Error Detection SWBEIF (UART_INTSTS[16]) is set. 0 = Single-wire Bit Error Detect Inerrupt Disabled. 1 = Single-wire Bit Error Detect Inerrupt Enabled. Note: This bit is valid when FUNCSEL (UART_FUNCSEL[2:0]) is select UART Single-wire mode.			
[15]	RXPDMAEN	RX PDMA Enable Bit This bit can enable or disable RX PDMA service. 0 = RX PDMA Disabled. 1 = RX PDMA Enabled. Note: If RLSIEN (UART_INTEN[2]) is enabled and HWRLSINT (UART_INTSTS[26]) is set to 1, the RLS (Receive Line Status) Interrupt is caused. If RLS interrupt is caused by Break Error Flag BIF (UART_FIFOSTS[6]), Frame Error Flag FEF (UART_FIFO[5]) or Parity Error Flag PEF (UART_FIFOSTS[4]), UART PDMA receive request operation is stopped. Clear Break Error Flag BIF or Frame Error Flag FEF or Parity Error Flag PEF by writing "1" to			

		corresponding BIF, FEF and PEF to make UART PDMA receive request operation continue.		
[14]	TXPDMAEN	TX PDMA Enable Bit 0 = TX PDMA Disabled. 1 = TX PDMA Enabled. Note: If RLSIEN (UART_INTEN[2]) is enabled and HWRLSINT (UART_INTSTS[26]) is set to 1, the RLS (Receive Line Status) Interrupt is caused. If RLS interrupt is caused by Break Error Flag BIF (UART_FIFOSTS[6]), Frame Error Flag FEF (UART_FIFO[5]) or Parity Error Flag PEF (UART_FIFOSTS[4]), UART PDMA transmit request operation is stopped. Clear Break Error Flag BIF or Frame Error Flag FEF or Parity Error Flag PEF by writing "1" to corresponding BIF, FEF and PEF to make UART PDMA transmit request operation continue.		
[13]	ATOCTSEN	nCTS Auto-flow Control Enable Bit 0 = nCTS auto-flow control Disabled. 1 = nCTS auto-flow control Enabled. Note: When nCTS auto-flow is enabled, the UART will send data to external device if nCTS input assert (UART will not send data to device until nCTS is asserted).		
[12]	ATORTSEN	nRTS Auto-flow Control Enable Bit 0 = nRTS auto-flow control Disabled. 1 = nRTS auto-flow control Enabled. Note: When nRTS auto-flow is enabled, if the number of bytes in the RX FIFO equals the RTSTRGLV (UART_FIFO[19:16]), the UART will de-assert nRTS signal.		
[11]	TOCNTEN	Receive Buffer Time-out Counter Enable Bit 0 = Receive Buffer Time-out counter Disabled. 1 = Receive Buffer Time-out counter Enabled.		
[10:9]	Reserved	Reserved.		
[8]	LINIEN	LIN Bus Interrupt Enable Bit 0 = LIN bus interrupt Disabled. 1 = LIN bus interrupt Enabled. Note: This bit is used for LIN function mode.		
[7]	Reserved	Reserved.		
[6]	WKIEN	Wake-up Interrupt Enable Bit 0 = Wake-up Interrupt Disabled. 1 = Wake-up Interrupt Enabled.		
[5]	BUFERRIEN	Buffer Error Interrupt Enable Bit 0 = Buffer error interrupt Disabled. 1 = Buffer error interrupt Enabled.		
[4]	RXTOIEN	RX Time-out Interrupt Enable Bit 0 = RX time-out interrupt Disabled. 1 = RX time-out interrupt Enabled.		
[3]	MODEMIEN	Modem Status Interrupt Enable Bit 0 = Modem status interrupt Disabled. 1 = Modem status interrupt Enabled.		
[2]	RLSIEN	Receive Line Status Interrupt Enable Bit 0 = Receive Line Status interrupt Disabled. 1 = Receive Line Status interrupt Enabled.		
[1]	THREIEN	Transmit Holding Register Empty Interrupt Enable Bit		

	0 = Transmit holding register empty interrupt Disabled. 1 = Transmit holding register empty interrupt Enabled.
[0]	Receive Data Available Interrupt Enable Bit 0 = Receive data available interrupt Disabled. 1 = Receive data available interrupt Enabled.

UART FIFO Control Register (UART_FIFO)

Register	Offset	R/W	Description	Reset Value
UART_FIFO x=0,1	UARTx_BA+0x08	R/W	UART FIFO Control Register	0x0000_0101

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved				RTSTRGLV			
15	14	13	12	11	10	9	8	
	Reserved						RXOFF	
7	6	5	4	3	2	1	0	
	RFITL				TXRST	RXRST	Reserved	

Bits	Description	
[31:20]	Reserved	Reserved.
		nRTS Trigger Level for Auto-flow Control 0000 = nRTS Trigger Level is 1 byte.
		0001 = nRTS Trigger Level is 4 bytes.
[19:16]	RTSTRGLV	0010 = nRTS Trigger Level is 8 bytes.
		0011 = nRTS Trigger Level is 14 bytes.
		Others = Reserved.
		Note: This field is used for auto nRTS flow control.
[15:9]	Reserved	Reserved.
		Receiver Disable Bit
		The receiver is disabled or not (set 1 to disable receiver).
[8]	RXOFF	0 = Receiver Enabled.
[-]		1 = Receiver Disabled.
		Note: This bit is used for RS-485 Normal Multi-drop mode. It should be programmed before RS485NMM (UART_ALTCTL[8]) is programmed.
		RX FIFO Interrupt Trigger Level
		When the number of bytes in the receive FIFO equals the RFITL, the RDAIF (UART_INTSTS[0]) will be set (if RDAIEN (UART_INTEN[0]) enabled, and an interrupt will be generated).
[7:4]	RFITL	0000 = RX FIFO Interrupt Trigger Level is 1 byte.
[1.4]		0001 = RX FIFO Interrupt Trigger Level is 4 bytes.
		0010 = RX FIFO Interrupt Trigger Level is 8 bytes.
		0011 = RX FIFO Interrupt Trigger Level is 14 bytes.
		Others = Reserved.
[3]	Reserved	Reserved.
[2]	TXRST	TX Field Software Reset
r1		When TXRST (UART_FIFO[2]) is set, all the byte in the transmit FIFO and TX internal state

		machine are cleared.
		0 = No effect.
		1 = Reset the TX internal state machine and pointers.
		Note1: This bit will automatically clear at least 3 UART peripheral clock cycles.
		Note2: Before setting this bit, it should wait for the TXEMPTYF (UART_FIFOSTS[28]) be set.
	RXRST	RX Field Software Reset
		When RXRST (UART_FIFO[1]) is set, all the byte in the receiver FIFO and RX internal state machine are cleared.
[1]		0 = No effect.
		1 = Reset the RX internal state machine and pointers.
		Note1: This bit will automatically clear at least 3 UART peripheral clock cycles.
		Note2: Before setting this bit, it should wait for the RXIDLE (UART_FIFOSTS[29]) be set.
[0]	Reserved	Reserved.

Register	Offset	R/W	Description	Reset Value
UART_LINE x=0,1	UARTx_BA+0x0C	R/W	UART Line Control Register	0x0000_0000

UART Line Control Register (UART_LINE)

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
	Reserved					RXDINV	TXDINV	
7	6	5	4	3	2	1	0	
PSS	ВСВ	SPE	EPE	PBE	NSB	WLS		

Bits	Description						
[31:10]	Reserved	Reserved.					
		RX Data Inverted					
		0 = Received data signal inverted Disabled.					
		1 = Received data signal inverted Enabled.					
[9]	RXDINV	Note1: Before setting this bit, TXRXDIS (UART_FUNCSEL[3]) should be set then waited for TXRXACT (UART_FIFOSTS[31]) is cleared. When the configuration is done, cleared TXRXDIS (UART_FUNCSEL[3]) to activate UART controller.					
		Note2: This bit is valid when FUNCSEL (UART_FUNCSEL[2:0]) is select UART, LIN, or RS485 function.					
		TX Data Inverted					
		0 = Transmitted data signal inverted Disabled.					
		1 = Transmitted data signal inverted Enabled.					
[8]	TXDINV	Note1: Before setting this bit, TXRXDIS (UART_FUNCSEL[3]) should be set then waited for TXRXACT (UART_FIFOSTS[31]) is cleared. When the configuration is done, cleared TXRXDIS (UART_FUNCSEL[3]) to activate UART controller.					
		Note2: This bit is valid when FUNCSEL (UART_FUNCSEL[2:0]) is select UART, LIN, or RS485 function.					
		Parity Bit Source Selection					
		The parity bit can be selected to be generated and checked automatically or by software.					
		0 = Parity bit is generated by EPE (UART_LINE[4]) and SPE (UART_LINE[5]) setting and checked automatically.					
[7]	PSS	1 = Parity bit generated and checked by software.					
		Note1: This bit has effect only when PBE (UART_LINE[3]) is set.					
		Note2: If PSS is 0, the parity bit is transmitted and checked automatically. If PSS is 1, the transmitted parity bit value can be determined by writing PARITY (UART_DAT[8]) and the parity bit can be read by reading PARITY (UART_DAT[8]).					
		Break Control Bit					
[6]	всв	0 = Break Control Disabled.					
		1 = Break Control Enabled.					

		Note: When this bit is set to logic 1, the transmitted serial data output (TX) is forced to the Spacing State (logic 0). This bit acts only on TX line and has no effect on the transmitter logic.
		Stick Parity Enable Bit 0 = Stick parity Disabled.
[5]	SPE	1 = Stick parity Enabled.
[5]	OFE	Note: If PBE (UART_LINE[3]) and EPE (UART_LINE[4]) are logic 1, the parity bit is transmitted and checked as logic 0. If PBE (UART_LINE[3]) is 1 and EPE (UART_LINE[4]) is 0 then the parity bit is transmitted and checked as 1.
		Even Parity Enable Bit
[4]	EPE	0 = Odd number of logic 1's is transmitted and checked in each word.
[4]	EPE	1 = Even number of logic 1's is transmitted and checked in each word.
		Note: This bit has effect only when PBE (UART_LINE[3]) is set.
		Parity Bit Enable Bit
		0 = Parity bit generated Disabled.
[3]	PBE	1 = Parity bit generated Enabled.
		Note: Parity bit is generated on each outgoing character and is checked on each incoming data.
		Number of "STOP Bit"
[2]	NSB	0 = One "STOP bit" is generated in the transmitted data.
[~]	nob	1 = When select 5-bit word length, 1.5 "STOP bit" is generated in the transmitted data. When select 6-, 7- and 8-bit word length, 2 "STOP bit" is generated in the transmitted data.
		Word Length Selection
		This field sets UART word length.
[1:0]	WLS	00 = 5 bits.
[1.0]	WL3	01 = 6 bits.
		10 = 7 bits.
		11 = 8 bits.

UART Modem Control Register (UART_MODEM)

Register	Offset	R/W	Description	Reset Value
UART_MODEM x=0,1	UARTx_BA+0x10	R/W	UART Modem Control Register	0x0000_0200

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
Rese	Reserved RTSSTS		RTSSTS Reserved			RTSACTLV	Reserved
7	6	5	4	3	2	1	0
	Reserved						Reserved

Bits	Description	
[31:14]	Reserved	Reserved.
[13]	RTSSTS	 nRTS Pin Status (Read Only) This bit mirror from nRTS pin output of voltage logic status. 0 = nRTS pin output is low level voltage logic state. 1 = nRTS pin output is high level voltage logic state.
[12:10]	Reserved	Reserved.
[9]	RTSACTLV	 nRTS Pin Active Level This bit defines the active level state of nRTS pin output. 0 = nRTS pin output is high level active. 1 = nRTS pin output is low level active. (Default) Note1: Refer to Figure 6.11-13 and Figure 6.11-14 for UART function mode. Note2: Refer to Figure 6.11-24 and Figure 6.11-25 for RS-485 function mode. Note3: Before setting this bit, TXRXDIS (UART_FUNCSEL[3]) should be set then waited for TXRXACT (UART_FIFOSTS[31]) is cleared. When the configuration is done, cleared TXRXDIS (UART_FUNCSEL[3]) to activate UART controller.
[8:2]	Reserved	Reserved.
[1]	RTS	nRTS (Request-to-send) Signal Control This bit is direct control internal nRTS signal active or not, and then drive the nRTS pin output with RTSACTLV bit configuration. 0 = nRTS signal is active. 1 = nRTS signal is inactive. Note1: The nRTS signal control bit is not effective when nRTS auto-flow control is enabled in UART function mode. Note2: The nRTS signal control bit is not effective when RS-485 auto direction mode (AUD) is enabled in RS-485 function mode. Note3: Single-wire mode supports this feature.
[0]	Reserved	Reserved.

UART Modem Status Register (UART_MODEMSTS)

Reset Value	Description	R/W	Offset	Register
0x0000_0110	UART Modem Status Regist	R/W	UARTx_BA+0x14	UART_MODEM STS
	UART Modem Status Regist	R/W	UARTx_BA+0x14	_

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved						CTSACTLV	
7	6	5	4	3	2	1	0	
	Reserved		CTSSTS		Reserved		CTSDETF	

Bits	Description				
[31:9]	Reserved	Reserved.			
		nCTS Pin Active Level			
		This bit defines the active level state of nCTS pin input.			
		0 = nCTS pin input is high level active.			
[8]	CTSACTLV	1 = nCTS pin input is low level active. (Default)			
		Note: Before setting this bit, TXRXDIS (UART_FUNCSEL[3]) should be set then waited for TXRXACT (UART_FIFOSTS[31]) is cleared. When the configuration is done, cleared TXRXDIS (UART_FUNCSEL[3]) to activate UART controller.			
[7:5]	Reserved	Reserved.			
		nCTS Pin Status (Read Only)			
		This bit mirror from nCTS pin input of voltage logic status.			
[4]	стяятя	0 = nCTS pin input is low level voltage logic state.			
		1 = nCTS pin input is high level voltage logic state.			
		Note: This bit echoes when UART controller peripheral clock is enabled, and nCTS multi- function port is selected.			
[3:1]	Reserved	Reserved.			
		Detect nCTS State Change Flag			
		This bit is set whenever nCTS input has change state, and it will generate Modem interrupt to CPU when MODEMIEN (UART_INTEN[3]) is set to 1.			
[0]	CTSDETF	0 = nCTS input has not change state.			
		1 = nCTS input has change state.			
		Note: This bit can be cleared by writing "1" to it.			

Register	Offset	R/W	Description	Reset Value
UART_FIFOSTS x=0,1	UARTx_BA+0x18	R/W	UART FIFO Status Register	0xB040_4000

UART FIFO Status Register (UART_FIFOSTS)
--

31	30	29	28	27	26	25	24
TXRXACT	Reserved	RXIDLE	TXEMPTYF		Reserved		TXOVIF
23	22	21	20	19	18	17	16
TXFULL	TXEMPTY	TXPTR					
15	14	13	12	11	10	9	8
RXFULL	RXEMPTY	RXPTR					
7	6	5	4	3	2	1	0
Reserved	BIF	FEF	PEF	ADDRDETF	ABRDTOIF	ABRDIF	RXOVIF

Bits	Description	
		TX and RX Active Status (Read Only)
		This bit indicates TX and RX are active or inactive.
_		0 = TX and RX are inactive.
[31]	TXRXACT	1 = TX and RX are active. (Default)
		Note: When TXRXDIS (UART_FUNCSEL[3]) is set and both TX and RX are in idle state, this bit is cleared. The UART controller can not transmit or receive data at this moment. Otherwise this bit is set.
[30]	Reserved	Reserved.
		RX Idle Status (Read Only)
[29]	RXIDLE	This bit is set by hardware when RX is idle.
[29]	KAIDLE	0 = RX is busy.
		1 = RX is idle. (Default)
		Transmitter Empty Flag (Read Only)
		This bit is set by hardware when TX FIFO (UART_DAT) is empty and the STOP bit of the last byte has been transmitted.
[28]	TXEMPTYF	0 = TX FIFO is not empty or the STOP bit of the last byte has been not transmitted.
		1 = TX FIFO is empty and the STOP bit of the last byte has been transmitted.
		Note: This bit is cleared automatically when TX FIFO is not empty or the last byte transmission has not completed.
[27:25]	Reserved	Reserved.
		TX Overflow Error Interrupt Flag
		If TX FIFO (UART_DAT) is full, an additional write to UART_DAT will cause this bit to logic 1.
[24]	TXOVIF	0 = TX FIFO is not overflow.
		1 = TX FIFO is overflow.
		Note: This bit can be cleared by writing "1" to it.
[23]	TXFULL	Transmitter FIFO Full (Read Only)

- 1		(that is, the stop bit following the last data bit or parity bit is detected as logic 0). 0 = No framing error is generated.
[5]	FEF	Framing Error Flag This bit is set to logic 1 whenever the received character does not have a valid "stop bit (the time the star bit following the last data bit encent)
		1 = Break interrupt is generated. Note: This bit can be cleared by writing "1" to it.
[6]		0 = No Break interrupt is generated.
	BIF	(logic 0) for longer than a full word transmission time (that is, the total time of "start bit" · data bits + parity + stop bits).
		This bit is set to logic 1 whenever the received data input (RX) is held in the "spacing state
		Break Interrupt Flag
[7]	Reserved	Reserved.
		The Maximum value shown in RXPTR is 15. When the using level of RX FIFO Buffer equator to 16, the RXFULL bit is set to 1 and RXPTR will show 0. As one byte of RX FIFO is reading by CPU, the RXFULL bit is cleared to 0 and RXPTR will show 15.
[13:8]	RXPTR	This field indicates the RX FIFO Buffer Pointer. When UART receives one byte from external device, RXPTR increases one. When one byte of RX FIFO is read by CPU RXPTR decreases one.
		RX FIFO Pointer (Read Only)
		Note: When the last byte of RX FIFO has been read by CPU, hardware sets this bit high It will be cleared when UART receives any new data.
		1 = RX FIFO is empty.
[14]	RXEMPTY	0 = RX FIFO is not empty.
1		This bit initiate RX FIFO empty or not.
		Receiver FIFO Empty (Read Only)
		Note: This bit is set when the number of usage in RX FIFO Buffer is equal to 16, otherwise it is cleared by hardware.
		1 = RX FIFO is full.
[15]	RXFULL	0 = RX FIFO is not full.
		This bit initiates RX FIFO full or not.
		Receiver FIFO Full (Read Only)
		The Maximum value shown in TXPTR is 15. When the using level of TX FIFO Buffer equa to 16, the TXFULL bit is set to 1 and TXPTR will show 0. As one byte of TX FIFO i transferred to Transmitter Shift Register, the TXFULL bit is cleared to 0 and TXPTR wi show 15.
[21:16]	TXPTR	UART_DAT, TXPTR increases one. When one byte of TX FIFO is transferred to Transmitter Shift Register, TXPTR decreases one.
		This field indicates the TX FIFO Buffer Pointer. When CPU writes one byte into
		TX FIFO Pointer (Read Only)
		Note: When the last byte of TX FIFO has been transferred to Transmitter Shift Register hardware sets this bit high. It will be cleared when writing data into UART_DAT (TX FIFC not empty).
[22]	TXEMPTY	1 = TX FIFO is empty.
		0 = TX FIFO is not empty.
		This bit indicates TX FIFO empty or not.
		Transmitter FIFO Empty (Read Only)
		Note: This bit is set when the number of usage in TX FIFO Buffer is equal to 16, otherwise it is cleared by hardware.
		1 = TX FIFO is full.
		0 = TX FIFO is not full.

		1 = Framing error is generated. Note: This bit can be cleared by writing "1" to it.
[4]	PEF	 Parity Error Flag This bit is set to logic 1 whenever the received character does not have a valid "parity bit". 0 = No parity error is generated. 1 = Parity error is generated. Note: This bit can be cleared by writing "1" to it.
[3]	ADDRDETF	RS-485 Address Byte Detect Flag 0 = Receiver detects a data that is not an address bit (bit 9 ='0'). 1 = Receiver detects a data that is an address bit (bit 9 ='1'). Note1: This field is used for RS-485 function mode and ADDRDEN (UART_ALTCTL[15]) is set to 1 to enable Address detection mode. Note2: This bit can be cleared by writing "1" to it.
[2]	ABRDTOIF	 Auto-baud Rate Detect Time-out Interrupt Flag This bit is set to logic "1" in Auto-baud Rate Detect mode when the baud rate counter is overflow. 0 = Auto-baud rate counter is underflow. 1 = Auto-baud rate counter is overflow. Note: This bit can be cleared by writing "1" to it.
[1]	ABRDIF	 Auto-baud Rate Detect Interrupt Flag This bit is set to logic "1" when auto-baud rate detect function is finished. 0 = Auto-baud rate detect function is not finished. 1 = Auto-baud rate detect function is finished. Note: This bit can be cleared by writing "1" to it.
[0]	RXOVIF	 RX Overflow Error Interrupt Flag This bit is set when RX FIFO overflow. If the number of bytes of received data is greater than RX_FIFO (UART_DAT) size 16 bytes, this bit will be set. 0 = RX FIFO is not overflow. 1 = RX FIFO is overflow. Note: This bit can be cleared by writing "1" to it.

UART Interrupt Status Register (UART_INTSTS)
--

Register	Offset	R/W	Description	Reset Value
UART_INTSTS x=0,1	UARTx_BA+0x1C	R/W	UART Interrupt Status Register	0x0040_0002

31	30	29	28	27	26	25	24
ABRINT	TXENDINT	HWBUFEINT	HWTOINT	HWMODINT	HWRLSINT	Reserved	SWBEINT
23	22	21	20	19	18	17	16
Reserved	TXENDIF	HWBUFEIF	HWTOIF	HWMODIF	HWRLSIF	Reserved	SWBEIF
15	14	13	12	11	10	9	8
LININT	WKINT	BUFERRINT	RXTOINT	MODEMINT	RLSINT	THREINT	RDAINT
7	6	5	4	3	2	1	0
LINIF	WKIF	BUFERRIF	RXTOIF	MODEMIF	RLSIF	THREIF	RDAIF

Bits	Description	Description					
[31]	ABRINT	Auto-baud Rate Interrupt Indicator (Read Only) This bit is set if ABRIEN (UART_INTEN[18]) and ABRIF (UART_ALTCTL[17]) are both set to 1. 0 = No Auto-baud Rate interrupt is generated. 1 = The Auto-baud Rate interrupt is generated.					
[30]	TXENDINT	Transmitter Empty Interrupt Indicator (Read Only) This bit is set if TXENDIEN (UART_INTEN[22]) and TXENDIF (UART_INTSTS[22]) are both set to 1. 0 = No Transmitter Empty interrupt is generated. 1 = Transmitter Empty interrupt is generated.					
[29]	HWBUFEINT	 PDMA Mode Buffer Error Interrupt Indicator (Read Only) This bit is set if BUFERRIEN (UART_INTEN[5]) and HWBUFEIF (UART_INTSTS[21]) are both set to 1. 0 = No buffer error interrupt is generated in PDMA mode. 1 = Buffer error interrupt is generated in PDMA mode. 					
[28]	HWTOINT	 PDMA Mode RX Time-out Interrupt Indicator (Read Only) This bit is set if RXTOIEN (UART_INTEN[4]) and HWTOIF (UART_INTSTS[20]) are both set to 1. 0 = No RX time-out interrupt is generated in PDMA mode. 1 = RX time-out interrupt is generated in PDMA mode. 					
[27]	HWMODINT	 PDMA Mode MODEM Status Interrupt Indicator (Read Only) This bit is set if MODEMIEN (UART_INTEN[3]) and HWMODIF (UART_INTSTS[19]) are both set to 1. 0 = No Modem interrupt is generated in PDMA mode. 1 = Modem interrupt is generated in PDMA mode. 					
[26]	HWRLSINT	PDMA Mode Receive Line Status Interrupt Indicator (Read Only) This bit is set if RLSIEN (UART_INTEN[2]) and HWRLSIF (UART_INTSTS[18]) are both set to 1.					

		0 = No RLS interrupt is generated in PDMA mode.
		1 = RLS interrupt is generated in PDMA mode.
[25]	Reserved	Reserved.
[24]	SWBEINT	Single-wire Bit Error Detect Interrupt Indicator (Read Only) This bit is set if SWBEIEN (UART_INTEN[16]) and SWBEIF (UART_INTSTS[16]) are both set to 1. 0 = No Single-wire Bit Error Detection Interrupt generated. 1 = Single-wire Bit Error Detection Interrupt generated.
[23]	Reserved	Reserved.
[22]	TXENDIF	 Transmitter Empty Interrupt Flag This bit is set when TX FIFO (UART_DAT) is empty and the STOP bit of the last byte has been transmitted (TXEMPTYF (UART_FIFOSTS[28]) is set). If TXENDIEN (UART_INTEN[22]) is enabled, the Transmitter Empty interrupt will be generated. 0 = No transmitter empty interrupt flag is generated. 1 = Transmitter empty interrupt flag is generated. Note: This bit is cleared automatically when TX FIFO is not empty or the last byte transmission has not completed.
[21]	HWBUFEIF	 PDMA Mode Buffer Error Interrupt Flag (Read Only) This bit is set when the TX or RX FIFO overflows (TXOVIF (UART_FIFOSTS[24]) or RXOVIF (UART_FIFOSTS[0]) is set). When BUFERRIF (UART_INTSTS[5]) is set, the transfer maybe is not correct. If BUFERRIEN (UART_INTEN[5]) is enabled, the buffer error interrupt will be generated. 0 = No buffer error interrupt flag is generated in PDMA mode. 1 = Buffer error interrupt flag is generated in PDMA mode. Note: This bit is cleared when both TXOVIF (UART_FIFOSTS[24]]) and RXOVIF (UART_FIFOSTS[0]) are cleared.
[20]	HWTOIF	 PDMA Mode RX Time-out Interrupt Flag (Read Only) This bit is set when the RX FIFO is not empty and no activities occurred in the RX FIFO and the time-out counter equal to TOIC (UART_TOUT[7:0]). If RXTOIEN (UART_INTEN[4]) is enabled, the RX time-out interrupt will be generated. 0 = No RX time-out interrupt flag is generated in PDMA mode. 1 = RX time-out interrupt flag is generated in PDMA mode. Note: This bit is read only and user can read UART_DAT (RX is in active) to clear it.
[19]	HWMODIF	PDMA Mode MODEM Interrupt Flag (Read Only) This bit is set when the nCTS pin has state change (CTSDETF (UART_MODEMSTS[0] =1)). If MODEMIEN (UART_INTEN[3]) is enabled, the Modem interrupt will be generated. 0 = No Modem interrupt flag is generated in PDMA mode. 1 = Modem interrupt flag is generated in PDMA mode. Note: This bit is read only and reset to 0 when the bit CTSDETF (UART_MODEMSTS[0]) is cleared by writing 1 on CTSDETF (UART_MODEMSTS[0]).
[18]	HWRLSIF	 PDMA Mode Receive Line Status Flag (Read Only) This bit is set when the RX receive data have parity error, frame error or break error (at least one of 3 bits, BIF (UART_FIFOSTS[6]), FEF (UART_FIFOSTS[5]) and PEF (UART_FIFOSTS[4]) is set). If RLSIEN (UART_INTEN[2]) is enabled, the RLS interrupt will be generated. 0 = No RLS interrupt flag is generated in PDMA mode. 1 = RLS interrupt flag is generated in PDMA mode. Note1: In RS-485 function mode, this field include "receiver detect any address byte received address byte character (bit9 = '1') bit". Note2: In UART function mode, this bit is read only and reset to 0 when all bits of BIF

		cleared.
		Note3: In RS-485 function mode, this bit is read only and reset to 0 when all bits of BIF (UART_FIFOSTS[6]), FEF (UART_FIFOSTS[5]), PEF (UART_FIFOSTS[4]) and ADDRDETF (UART_FIFOSTS[3]) are cleared.
[17]	Reserved	Reserved.
		Single-wire Bit Error Detection Interrupt Flag
		This bit is set when the single wire bus state not equals to UART controller TX state in Single-wire mode.
[16]	SWBEIF	0 = No single-wire bit error detection interrupt flag is generated.
	-	1 = Single-wire bit error detection interrupt flag is generated.
		Note1: This bit is active when FUNCSEL (UART_FUNCSEL[2:0]) is select UART Single- wire mode.
		Note2: This bit can be cleared by writing "1" to it.
		LIN Bus Interrupt Indicator (Read Only)
[15]	LININT	This bit is set if LINIEN (UART_INTEN[8]) and LINIF (UART_INTSTS[7]) are both set to 1.
		0 = No LIN Bus interrupt is generated.
		1 = The LIN Bus interrupt is generated.
		UART Wake-up Interrupt Indicator (Read Only)
[14]	WKINT	This bit is set if WKIEN (UART_INTEN[6]) and WKIF (UART_INTSTS[6]) are both set to 1.
[14]	WIXINT	0 = No UART wake-up interrupt is generated.
		1 = UART wake-up interrupt is generated.
		Buffer Error Interrupt Indicator (Read Only)
		This bit is set if BUFERRIEN (UART_INTEN[5]) and BUFERRIF (UART_ INTSTS[5]) are
[13]	BUFERRINT	both set to 1.
		0 = No buffer error interrupt is generated.
		1 = Buffer error interrupt is generated.
		RX Time-out Interrupt Indicator (Read Only)
[12]	RXTOINT	This bit is set if RXTOIEN (UART_INTEN[4]) and RXTOIF (UART_INTSTS[4]) are both set to 1.
[]		0 = No RX time-out interrupt is generated.
		1 = RX time-out interrupt is generated.
		MODEM Status Interrupt Indicator (Read Only)
		This bit is set if MODEMIEN (UART_INTEN[3]) and MODEMIF (UART_INTSTS[3]) are
[11]	MODEMINT	both set to 1 0 = No Modem interrupt is generated.
		1 = Modem interrupt is generated.
		Receive Line Status Interrupt Indicator (Read Only) This bit is set if RLSIEN (UART_INTEN[2]) and RLSIF (UART_INTSTS[2]) are both set to
[10]	RLSINT	
		0 = No RLS interrupt is generated.
		1 = RLS interrupt is generated.
		Transmit Holding Register Empty Interrupt Indicator (Read Only)
101		This bit is set if THREIEN (UART_INTEN[1]) and THREIF (UART_INTSTS[1]) are both set
[9]	THREINT	to 1. 0 = No THRE interrupt is generated.
		1 = THRE interrupt is generated.
		Receive Data Available Interrupt Indicator (Read Only)
[8]	RDAINT	This bit is set if RDAIEN (UART_INTEN[0]) and RDAIF (UART_INTSTS[0]) are both set to

		1.
		0 = No RDA interrupt is generated.
		1 = RDA interrupt is generated.
[7]		LIN Bus Interrupt Flag This bit is set when LIN slave header detect (SLVHDETF (UART_LINSTS[0] = 1)), LIN slave header error detect (SLVHEF (UART_LINSTS[1] = 1)), LIN slave ID parity error (SLVIDPEF (UART_LINSTS[2] = 1)), LIN slave header time-out detect (SLVHTOF (UART_LINSTS[4] = 1)), LIN response time-out detect (RTOUTF (UART_LINSTS[5] = 1)), LIN break detect (BRKDETF (UART_LINSTS[8] = 1)), or bit error detect (BITEF (UART_LINSTS[9] = 1)). If LINIEN (UART_INTEN[8]) is enabled the LIN interrupt will be generated.
[7]	LINIF	0 = None of SLVHDETF, SLVHEF, SLVIDPEF, SLVHTOF, RTOUTF, BITEF, and BRKDETF is generated.
		1 = At least one of SLVHDETF, SLVHEF, SLVIDPEF, SLVHTOF, RTOUTF, BITEF, and BRKDETF is generated.
		Note: This bit is cleared when SLVHDETF (UART_LINSTS[0]), SLVHEF (UART_LINSTS[1]), SLVIDPEF (UART_LINSTS[2]), SLVHTOF (UART_LINSTS[4]), RTOUTF (UART_LINSTS[5]), BRKDETF (UART_LINSTS[8]), and BITEF (UART_LINSTS[9]) all are cleared and software writing '1' to LINIF (UART_INTSTS[7]).
		UART Wake-up Interrupt Flag (Read Only)
[0]	Marie	This bit is set when TOUTWKF (UART_WKSTS[4]), RS485WKF (UART_WKSTS[3]), RFRTWKF (UART_WKSTS[2]), DATWKF (UART_WKSTS[1]) or CTSWKF (UART_WKSTS[0]) is set to 1.
[6]	WKIF	0 = No UART wake-up interrupt flag is generated.
		1 = UART wake-up interrupt flag is generated.
		Note: This bit is cleared if all of TOUTWKF, RS485WKF, RFRTWKF, DATWKF and CTSWKF are cleared to 0 by writing 1 to the corresponding interrupt flag.
		Buffer Error Interrupt Flag (Read Only)
		This bit is set when the TX FIFO or RX FIFO overflows (TXOVIF (UART_FIFOSTS[24]) or RXOVIF (UART_FIFOSTS[0]) is set). When BUFERRIF (UART_INTSTS[5]) is set, the transfer is not correct. If BUFERRIEN (UART_INTEN[5]) is enabled, the buffer error interrupt will be generated.
[5]	BUFERRIF	0 = No buffer error interrupt flag is generated.
		1 = Buffer error interrupt flag is generated.
		Note: This bit is cleared if both of RXOVIF (UART_FIFOSTS[0]) and TXOVIF (UART_FIFOSTS[24]) are cleared to 0 by writing 1 to RXOVIF (UART_FIFOSTS[0]) and TXOVIF (UART_FIFOSTS[24]).
		RX Time-out Interrupt Flag (Read Only)
[4]	RXTOIF	This bit is set when the RX FIFO is not empty and no activities occurred in the RX FIFO and the time-out counter equal to TOIC (UART_TOUT[7:0]). If RXTOIEN (UART_INTEN[4]) is enabled, the RX time-out interrupt will be generated.
		0 = No RX time-out interrupt flag is generated.
		1 = RX time-out interrupt flag is generated.
		Note: This bit is read only and user can read UART_DAT (RX is in active) to clear it.
		MODEM Interrupt Flag (Read Only)
		This bit is set when the nCTS pin has state change (CTSDETF (UART_MODEMSTS[0]) = 1). If MODEMIEN (UART_INTEN[3]) is enabled, the Modem interrupt will be generated.
[3]	MODEMIF	0 = No Modem interrupt flag is generated.
		1 = Modem interrupt flag is generated.
		Note: This bit is read only and reset to 0 when bit CTSDETF is cleared by a write 1 on CTSDETF (UART_MODEMSTS[0]).
		Receive Line Interrupt Flag (Read Only)
[2]	RLSIF	This bit is set when the RX receive data have parity error, frame error or break error (at least one of 3 bits, BIF (UART_FIFOSTS[6]), FEF (UART_FIFOSTS[5]) and PEF (UART_FIFOSTS[4]), is set). If RLSIEN (UART_INTEN[2]) is enabled, the RLS interrupt

		will be generated.
		0 = No RLS interrupt flag is generated.
		1 = RLS interrupt flag is generated.
		Note1: In RS-485 function mode, this field is set include "receiver detect and received address byte character (bit9 = '1') bit". At the same time, the bit of ADDRDETF (UART_FIFOSTS[3]) is also set.
		Note2: This bit is read only and reset to 0 when all bits of BIF (UART_FIFOSTS[6]), FEF (UART_FIFOSTS[5]) and PEF (UART_FIFOSTS[4]) are cleared.
		Note3: In RS-485 function mode, this bit is read only and reset to 0 when all bits of BIF (UART_FIFOSTS[6]), FEF (UART_FIFOSTS[5]), PEF (UART_FIFOSTS[4]) and ADDRDETF (UART_FIFOSTS[3]) are cleared.
		Transmit Holding Register Empty Interrupt Flag
	THREIF	This bit is set when the last data of TX FIFO is transferred to Transmitter Shift Register. If THREIEN (UART_INTEN[1]) is enabled, the THRE interrupt will be generated.
[1]		0 = No THRE interrupt flag is generated.
		1 = THRE interrupt flag is generated.
		Note: This bit is read only and it will be cleared when writing data into UART_DAT (TX FIFO not empty).
		Receive Data Available Interrupt Flag
		When the number of bytes in the RX FIFO equals the RFITL then the RDAIF (UART_INTSTS[0]) will be set. If RDAIEN (UART_INTEN[0]) is enabled, the RDA interrupt will be generated.
[0]	RDAIF	0 = No RDA interrupt flag is generated.
		1 = RDA interrupt flag is generated.
		Note: This bit is read only and it will be cleared when the number of unread bytes of RX FIFO drops below the threshold level (RFITL(UART_FIFO[7:4]).

Register	Offset	R/W	Description	Reset Value			
UART_TOUT x=0,1	UARTx_BA+0x20	R/W	UART Time-out Register	0x0000_0000			

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	DLY						
7	6	5	4	3	2	1	0
	TOIC						

Bits	Description	
[31:16]	Reserved	Reserved.
[15:8]	DLY	TX Delay Time Value This field is used to programming the transfer delay time between the last stop bit and next start bit. The unit is bit time.
[7:0]	тоіс	Time-out Interrupt Comparator The time-out counter resets and starts counting (the counting clock = baud rate) whenever the RX FIFO receives a new data word if time out counter is enabled by setting TOCNTEN (UART_INTEN[11]). Once the content of time-out counter is equal to that of time-out interrupt comparator (TOIC (UART_TOUT[7:0])), a receiver time-out interrupt (RXTOINT(UART_INTSTS[12])) is generated if RXTOIEN (UART_INTEN[4]) enabled. A new incoming data word or RX FIFO empty will clear RXTOIF (UART_INTSTS[4]). In order to avoid receiver time-out interrupt generation immediately during one character is being received, TOIC value should be set between 40 and 255. So, for example, if TOIC is set with 40, the time-out interrupt is generated after four characters are not received when 1 stop bit and no parity check is set for UART transfer.

UART Baud Rate Divider Register (UART_BAUD)

Register	Offset	R/W	Description	Reset Value
UART_BAUD x=0,1	UARTx_BA+0x24	R/W	UART Baud Rate Divider Register	0x0F00_0000

31	30	29	28	27	26	25	24
Rese	erved	BAUDM1	BAUDM0		EDI	VM1	
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			BI	RD			
7	6	5	4	3	2	1	0
	BRD						

Bits	Description	
[31:30]	Reserved	Reserved.
[29]	BAUDM1	BAUD Rate Mode Selection Bit 1This bit is baud rate mode selection bit 1. UART provides three baud rate calculation modes.This bit combines with BAUDM0 (UART_BAUD[28]) to select baud rate calculation mode.The detail description is shown in Table 6.11-4.Note: In IrDA mode must be operated in mode 0.
[28]	BAUDMO	BAUD Rate Mode Selection Bit 0 This bit is baud rate mode selection bit 0. UART provides three baud rate calculation modes. This bit combines with BAUDM1 (UART_BAUD[29]) to select baud rate calculation mode. The detail description is shown in Table 6.11-4.
[27:24]	EDIVM1	Extra Divider for BAUD Rate Mode 1 This field is used for baud rate calculation in mode 1 and has no effect for baud rate calculation in mode 0 and mode 2. The detail description is shown in Table 6.11-4.
[23:16]	Reserved	Reserved.
[15:0]	BRD	Baud Rate Divider The field indicates the baud rate divider. This filed is used in baud rate calculation. The detail description is shown in Table 6.11-4.

UART IrDA Co	ontrol Register	ster (UART_IRDA)				
Register	Offset	R/W	Description	R		

Register	Offset	R/W	Description	Reset Value
UART_IRDA x=0,1	UARTx_BA+0x28	R/W	UART IrDA Control Register	0x0000_0040

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved	<u> </u>			
7	6	5	4	3	2	1	0	
Reserved	RXINV	TXINV		Reserved	-	TXEN	Reserved	

Bits	Description	
[31:7]	Reserved	Reserved.
		IrDA Inverse Receive Input Signal
		0 = None inverse receiving input signal.
		1 = Inverse receiving input signal. (Default)
[6]	RXINV	Note1: Before setting this bit, TXRXDIS (UART_FUNCSEL[3]) should be set then waited for TXRXACT (UART_FIFOSTS[31]) is cleared. When the configuration is done, cleared TXRXDIS (UART_FUNCSEL[3]) to activate UART controller.
		Note2: This bit is valid when FUNCSEL (UART_FUNCSEL[2:0]) is select IrDA function.
		IrDA Inverse Transmitting Output Signal
		0 = None inverse transmitting signal. (Default).
		1 = Inverse transmitting output signal.
[5]	ΤΧΙΝΥ	Note1: Before setting this bit, TXRXDIS (UART_FUNCSEL[3]) should be set then waited for TXRXACT (UART_FIFOSTS[31]) is cleared. When the configuration is done, cleared TXRXDIS (UART_FUNCSEL[3]) to activate UART controller.
		Note2: This bit is valid when FUNCSEL (UART_FUNCSEL[2:0]) is select IrDA function.
[4:2]	Reserved	Reserved.
		IrDA Receiver/Transmitter Selection Enable Bit
[1]	TXEN	0 = IrDA Transmitter Disabled and Receiver Enabled. (Default)
		1 = IrDA Transmitter Enabled and Receiver Disabled.
[0]	Reserved	Reserved.

UART Alternate Control/Status Register (UART_ALTCTL)

Register	Offset	R/W	Description	Reset Value
UART_ALTCTL x=0,1	UARTx_BA+0x2C	R/W	UART Alternate Control/Status Register	0x0000_000C

31	30	29	28	27	26	25	24
			RMV				
23	22	21	20	19	18	17	16
	Reserved		ABRDBITS		ABRDEN	ABRIF	Reserved
15	14	13	12	11	10	9	8
ADDRDEN		Reserved			RS485AUD	RS485AAD	RS485NMM
7	6	5	4	3	2	1	0
LINTXEN	LINRXEN	Rese	erved		BR	KFL	

Bits	Description	
[31:24]	ADDRMV	Address Match Value This field contains the RS-485 address match values. Note: This field is used for RS-485 auto address detection mode.
[23:21]	Reserved	Reserved.
[20:19]	ABRDBITS	 Auto-baud Rate Detect Bit Length 00 = 1-bit time from Start bit to the 1st rising edge. The input pattern shall be 0x01. 01 = 2-bit time from Start bit to the 1st rising edge. The input pattern shall be 0x02. 10 = 4-bit time from Start bit to the 1st rising edge. The input pattern shall be 0x08. 11 = 8-bit time from Start bit to the 1st rising edge. The input pattern shall be 0x80. Note : The calculation of bit number includes the START bit.
[18]	ABRDEN	 Auto-baud Rate Detect Enable Bit 0 = Auto-baud rate detect function Disabled. 1 = Auto-baud rate detect function Enabled. Note : This bit is cleared automatically after auto-baud detection is finished.
[17]	ABRIF	 Auto-baud Rate Interrupt Flag (Read Only) This bit is set when auto-baud rate detection function finished or the auto-baud rate counter was overflow and if ABRIEN (UART_INTEN[18]) is set then the auto-baud rate interrupt will be generated. 0 = No auto-baud rate interrupt flag is generated. 1 = Auto-baud rate interrupt flag is generated. Note: This bit is read only, but it can be cleared by writing "1" to ABRDTOIF (UART_FIFOSTS[2]) and ABRDIF (UART_FIFOSTS[1]).
[16]	Reserved	Reserved.
[15]	ADDRDEN	 RS-485 Address Detection Enable Bit This bit is used to enable RS-485 Address Detection mode. 0 = Address detection mode Disabled. 1 = Address detection mode Enabled.

		Note: This bit is used for RS-485 any operation mode.
[14:11]	Reserved	Reserved.
[10]	RS485AUD	 RS-485 Auto Direction Function (AUD) 0 = RS-485 Auto Direction Operation function (AUD) Disabled. 1 = RS-485 Auto Direction Operation function (AUD) Enabled. Note: It can be active with RS-485_AAD or RS-485_NMM operation mode.
[9]	RS485AAD	 RS-485 Auto Address Detection Operation Mode (AAD) 0 = RS-485 Auto Address Detection Operation mode (AAD) Disabled. 1 = RS-485 Auto Address Detection Operation mode (AAD) Enabled. Note: It cannot be active with RS-485_NMM operation mode.
[8]	RS485NMM	RS-485 Normal Multi-drop Operation Mode (NMM) 0 = RS-485 Normal Multi-drop Operation mode (NMM) Disabled. 1 = RS-485 Normal Multi-drop Operation mode (NMM) Enabled. Note: It cannot be active with RS-485_AAD operation mode.
[7]	LINTXEN	LIN TX Break Mode Enable Bit 0 = LIN TX Break mode Disabled. 1 = LIN TX Break mode Enabled. Note: When TX break field transfer operation finished, this bit will be cleared automatically.
[6]	LINRXEN	LIN RX Enable Bit 0 = LIN RX mode Disabled. 1 = LIN RX mode Enabled.
[5:4]	Reserved	Reserved.
[3:0]	BRKFL	UART LIN Break Field Length This field indicates a 4-bit LIN TX break field count. Note1: This break field length is BRKFL + 1. Note2: According to LIN spec, the reset value is 0xC (break field length = 13).

UART Function Select Register (UART_FUNCSEL)

Register	Offset	R/W	Description	Reset Value
UART_FUNCS EL x=0,1	UARTx_BA+0x30	R/W	UART Function Select Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved	DGE	Rese	erved	TXRXDIS		FUNCSEL	

Bits	Description				
[31:7]	Reserved	Reserved.			
		Deglitch Enable Bit			
		0 = Deglitch Disabled.			
[6]	DGE	1 = Deglitch Enabled.			
[0]		Note: When this bit is set to logic 1, any pulse width less than about 300 ns will be considered a glitch and will be removed in the serial data input (RX). This bit acts only on RX line and has no effect on the transmitter logic.			
[5:4]	Reserved	Reserved.			
		TX and RX Disable Bit			
		Setting this bit can disable TX and RX.			
		0 = TX and RX Enabled.			
[3]	TXRXDIS	1 = TX and RX Disabled.			
		Note: The TX and RX will not disable immediately when this bit is set. The TX and RX compelet current task before disable TX and RX. When TX and RX disable, the TXRXACT (UART_FIFOSTS[31]) is cleared.			
		Function Select			
		000 = UART function.			
		001 = LIN function.			
[2:0]	FUNCSEL	010 = IrDA function.			
		011 = RS-485 function.			
		100 = UART Single-wire function.			
		Others = Reserved.			

	UART LIN Control	Register	(UART	LINCTL	
--	------------------	----------	-------	--------	--

Register	Offset	R/W	Description	Reset Value
UART_LINCTL x=0,1	UARTx_BA+0x34	R/W	UART LIN Control Register	0x000C_0000

31	30	20	29	27	26	25	24
			P	חו			
23	22	21	20	19	18	17	16
HS	HSEL BS		6L	BRKFL			
15	14	13	12	11	10	9	8
	Reserved		BITERREN	LINRXOFF	BRKDETEN	IDPEN	SENDH
7	6	5	4	3	2	1	0
Reserved RTOUTEN		MUTE	SLVDUEN	SLVAREN	SLVHDEN	SLVEN	

Bits	Description	
		LIN PID Bits
		This field contains the LIN frame ID value in LIN function mode, and the frame ID parity can be generated by software or hardware depends on IDPEN (UART_LINCTL[9]) = 1.
[31:24]	PID	If the parity generated by hardware, user fill ID0~ID5 (PID[29:24]), hardware will calculate P0 (PID[30]) and P1 (PID[31]), otherwise user must filled frame ID and parity in this field.
		Note1: User can fill any 8-bit value to this field and the bit 24 indicates ID0 (LSB first).
		Note2: This field can be used for LIN master mode or slave mode.
		LIN Header Select
		00 = The LIN header includes "break field".
		01 = The LIN header includes "break field" and "sync field".
[23:22]	HSEL	10 = The LIN header includes "break field", "sync field" and "frame ID field".
		11 = Reserved.
		Note: This bit is used to master mode for LIN to send header field (SENDH (UART_LINCTL[8]) = 1) or used to slave to indicates exit from mute mode condition (MUTE (UART_LINCTL[4] = 1).
		LIN Break/Sync Delimiter Length
		00 = The LIN break/sync delimiter length is 1-bit time.
[04.00]		01 = The LIN break/sync delimiter length is 2-bit time.
[21:20]	BSL	10 = The LIN break/sync delimiter length is 3-bit time.
		11 = The LIN break/sync delimiter length is 4-bit time.
		Note: This bit used for LIN master to sending header field.
		LIN Break Field Length
		This field indicates a 4-bit LIN TX break field count.
[19:16]	BRKFL	Note1: These registers are shadow registers of BRKFL (UART_ALTCTL[3:0]), User can read/write it by setting BRKFL (UART_ALTCTL[3:0]) or BRKFL (UART_LINCTL[19:16]).
		Note2: This break field length is BRKFL + 1.
		Note3: According to LIN spec, the reset value is 12 (break field length = 13).
[16:15]	Reserved	Reserved.

		Bit Error Detect Enable Bit
		0 = Bit error detection function Disabled.
[12]	BITERREN	1 = Bit error detection function Enabled.
		Note: In LIN function mode, when occur bit error, the BITEF (UART_LINSTS[9]) flag will be asserted. If the LINIEN (UART_INTEN[8]) = 1, an interrupt will be generated.
		LIN Receiver Disable Bit
[11]	LINRXOFF	If the receiver is enabled (LINRXOFF (UART_LINCTL[11]) = 0), all received byte data will be accepted and stored in the RX FIFO, and if the receiver is disabled (LINRXOFF (UART_LINCTL[11] = 1), all received byte data will be ignore. 0 = LIN receiver Enabled. 1 = LIN receiver Disabled. Note: This bit is only valid when operating in LIN function mode (FUNCSEL (LIPET FUNCSEL (201), 004)
		(UART_FUNCSEL[2:0]) = 001).
[10] BRKDETEN		LIN Break Detection Enable Bit When detect consecutive dominant greater than 11 bits, and are followed by a delimite character, the BRKDETF (UART_LINSTS[8]) flag is set at the end of break field. If the LINIEN (UART_INTEN[8])=1, an interrupt will be generated.
		0 = LIN break detection Disabled.
		1 = LIN break detection Enabled.
		LIN ID Parity Enable Bit
[9] II		0 = LIN frame ID parity Disabled.
		1 = LIN frame ID parity Enabled.
	IDPEN	Note1: This bit can be used for LIN master to sending header field (SENDF (UART_LINCTL[8])) = 1 and HSEL (UART_LINCTL[23:22]) = 10 or be used for enable LIN slave received frame ID parity checked.
		Note2: This bit is only used when the operation header transmitter is in HSEI (UART_LINCTL[23:22]) = 10.
		LIN TX Send Header Enable Bit
		The LIN TX header can be "break field" or "break and sync field" or "break, sync and frame ID field", it is depend on setting HSEL (UART_LINCTL[23:22]).
		0 = Send LIN TX header Disabled.
[8]	SENDH	1 = Send LIN TX header Enabled.
		Note1: This bit is shadow bit of LINTXEN (UART_ALTCTL[7]); user can read/write it by setting LINTXEN (UART_ALTCTL[7]) or SENDH (UART_LINCTL[8]).
		Note2: When transmitter header field (it may be "break" or "break + sync" or "break + sync + frame ID" selected by HSEL (UART_LINCTL[23:22]) field) transfer operation finished, this bit will be cleared automatically.
[7:6]	Reserved	Reserved.
		LIN Response Time-out Detection Enable Bit
		0 = LIN response time-out detection Disabled.
		1 = LIN response time-out detection Enabled.
[5]		Note1: This bit detects both master/slave response time-out. When detecting slave response time-out, SLVEN (UART_LINCTL[0]) and SLVHDEN (UART_LINCTL[1]) must be set to 1.
	RTOUTEN	Note2: There would be an internal counter up counting after LIN master sends a header of LIN slave detects a header. The master sends header event and sends response event and the slave detects header event and receives response event will reset the counter. When the counter is equal to or bigger than LINRTOIC (UART_LINRTOUT[23:0]), a LIN response
		time-out is generated.

		LIN Mute Mode Enable Bit
		0 = LIN mute mode Disabled.
[4]	MUTE	1 = LIN mute mode Enabled.
		Note: The exit from mute mode condition and each control and interactions of this field are explained in 6.11.5.10 (LIN slave mode).
		LIN Slave Divider Update Method Enable Bit
		0 = UART_BAUD updated is written by software (if no automatic resynchronization update occurs at the same time).
[2]	SLVDUEN	1 = UART_BAUD is updated at the next received character. User must set the bit before checksum reception.
[3]	SLVDUEN	Note1: This bit only is valid in LIN slave mode (SLVEN (UART_LINCTL[0]) = 1).
		Note2: This bit used for LIN Slave Automatic Resynchronization mode. (for Non-Automatic Resynchronization mode, this bit should be kept cleared)
		Note3: The control and interactions of this field are explained in 6.11.5.10 (Slave mode with automatic resynchronization).
		LIN Slave Automatic Resynchronization Mode Enable Bit
		0 = LIN automatic resynchronization Disabled.
		1 = LIN automatic resynchronization Enabled.
[2]	SLVAREN	Note1: This bit only is valid in LIN slave mode (SLVEN (UART_LINCTL[0]) = 1).
		Note2: When operation in Automatic Resynchronization mode, the baud rate setting must be mode2 (BAUDM1 (UART_BAUD[29]) and BAUDM0 (UART_BAUD[28]) must be 1).
		Note3: The control and interactions of this field are explained in 6.11.5.10 (Slave mode with automatic resynchronization).
		LIN Slave Header Detection Enable Bit
		0 = LIN slave header detection Disabled.
		1 = LIN slave header detection Enabled.
[1]	SLVHDEN	Note1: This bit is only valid in LIN slave mode (SLVEN (UART_LINCTL[0]) = 1).
		Note2: In LIN function mode, when detect header field (break + sync + frame ID), SLVHDETF (UART_LINSTS[0]) flag will be asserted. If the LINIEN (UART_INTEN[8]) = 1, an interrupt will be generated.
		LIN Slave Mode Enable Bit
[0]	SLVEN	0 = LIN slave mode Disabled.
		1 = LIN slave mode Enabled.

UART LIN Status Register (UART_LINSTS)

Register	Offset	R/W	Description	Reset Value
UART_LINSTS x=0,1	UARTx_BA+0x38	R/W	UART LIN Status Register	0x0000_0000

31	20	20	29	27	26	25	24
			Book	arved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved					BITEF	BRKDETF
7	6	5	4	3	2	1	0
Rese	erved	RTOUTF	SLVHTOF	SLVSYNCF	SLVIDPEF	SLVHEF	SLVHDETF

Bits	Description			
[31:10]	Reserved	Reserved.		
[9]	BITEF	 Bit Error Detect Status Flag At TX transfer state, hardware will monitor the bus state, if the input pin (UART_RXD) state not equals to the output pin (UART_TXD) state, BITEF (UART_LINSTS[9]) will be set. When occur bit error, if the LINIEN (UART_INTEN[8]) = 1, an interrupt will be generated. 0 = Bit error not detected. 1 = Bit error detected. Note1: This bit can be cleared by writing 1 to it. Note2: This bit is only valid when enable bit error detection function (BITERREN (UART_LINCTL[12]) = 1). 		
[8]	BRKDETF LIN Break Detection Flag This bit is set by hardware when a break is detected and be cleared by writing 1 to software. 0 = LIN break not detected. 1 = LIN break detected. Note1: This bit can be cleared by writing 1 to it. Note2: This bit is only valid when LIN break detection function is enabled (B (UART_LINCTL[10]) =1).			
[7:6]	Reserved	Reserved.		
[5]	RTOUTF	LIN Response Time-out Flag This bit is set when no LIN response received and the time-out counter equal to or bigger than LINRTOIC (UART_LINRTOUT[23:0]). If LINIEN (UART_INTEN[8]) is enabled, the LIN Bus Interrupt will be generated. 0 = LIN response time-out not detected. 1 = LIN response time-out detected. Note1: This bit can be cleared by writing 1 to it.		
[4]	SLVHTOF	LIN Slave Header Time-out Flag This bit is set by hardware when a LIN header reception time-out is detected in LIN slave mode and be cleared by writing 1 to it. When this bit is set, SLVHEF (UART_LINSTS[1]) will		

		also be set.
		0 = LIN header time-out not detected.
		1 = LIN header time-out detected.
		Note1: This bit can be cleared by writing 1 to it.
		Note2: This bit is only valid when UART is operated in LIN slave mode (SLVEN (UART_LINCTL[0]) = 1) and enables LIN slave header detection function (SLVHDEN (UART_LINCTL[1])).
		LIN Slave Sync Field
		This bit indicates that the LIN sync field is being analyzed in Automatic Resynchronization mode. When the receiver header have some error been detect, user must reset the internal circuit to re-search new frame header by writing 1 to this bit.
		0 = The current character is not at LIN sync state.
[3]	SLVSYNCF	1 = The current character is at LIN sync state.
		Note1: This bit can be cleared by writing 1 to it.
		Note2: This bit is only valid in LIN Slave mode (SLVEN (UART_LINCTL[0]) = 1).
		Note3: When writing 1 to it, hardware will reload the initial baud rate and re-search a new frame header.
		LIN Slave ID Parity Error Flag
l		This bit is set by hardware when receipted frame ID parity is not correct.
		0 = No active.
[2]	SLVIDPEF	1 = Receipted frame ID parity is not correct.
-		Note1: This bit can be cleared by writing 1 to it.
		Note2: This bit is only valid in LIN slave mode (SLVEN (UART_LINCTL[0])= 1) and enable
		LIN frame ID parity check function IDPEN (UART_LINCTL[9]).
		LIN Slave Header Error Flag
		This bit is set by hardware when a LIN header error is detected in LIN slave mode and be cleared by writing 1 to it. The header errors include "break delimiter is too short (less than 0.5 bit time)", "frame error in sync field or Identifier field", "sync field data is not 0x55 in Non-Automatic Resynchronization mode", "sync field deviation error with Automatic Resynchronization mode", "sync field measure time-out with Automatic Resynchronization mode" and "LIN header reception time-out".
[1]	SLVHEF	0 = LIN header error not detected.
		1 = LIN header error detected.
		Note1: This bit can be cleared by writing 1 to it.
		Note2: This bit is only valid when UART is operated in LIN slave mode (SLVEN (UART_LINCTL[0]) = 1) and enables LIN slave header detection function (SLVHDEN (UART_LINCTL[1])).
		LIN Slave Header Detection Flag
		This bit is set by hardware when a LIN header is detected in LIN slave mode and be cleared by writing 1 to it.
		0 = LIN header not detected.
		1 = LIN header detected (break + sync + frame ID).
[0]	SLVHDETF	Note1: This bit can be cleared by writing 1 to it.
		Note2: This bit is only valid in LIN slave mode (SLVEN (UART_LINCTL[0]) = 1) and enable LIN slave header detection function (SLVHDEN (UART_LINCTL[1])).
		Note3: When enable ID parity check IDPEN (UART_LINCTL[9]), if hardware detect complete header ("break + sync + frame ID"), the SLVHDETF will be set whether the frame ID correct or not.

UART Baud Rate Compensation Register (UART_BRCOMP)

Register	Offset	R/W	Description	Reset Value
UART_BRCOM P x=0,1		R/W	UART Baud Rate Compensation Register	0x0000_0000

31	30	29	28	27	26	25	24		
BRCOMPDEC		Reserved							
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	Reserved						BRCOMP		
7	6	5	4	3	2	1	0		
	BRCOMP								

Bits	Description				
[31]	BRCOMPDEC	 Baud Rate Compensation Decrease 0 = Positive (increase one module clock) compensation for each compensated bit. 1 = Negative (decrease one module clock) compensation for each compensated bit. 			
[30:9]	Reserved	Reserved.			
[8:0]	BRCOMP	Baud Rate Compensation Patten These 9-bits are used to define the relative bit is compensated or not. BRCOMP[7:0] is used to define the compensation of DAT (UART_DAT[7:0]) and BRCOM[8] is used to define PARITY (UART_DAT[8]).			

UART Wake-up Control Register (UART WKCTL)	
--	--

Register	Offset	R/W	Description	Reset Value
UART_WKCTL x=0,1	UARTx_BA+0x40	R/W	UART Wake-up Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved		WKTOUTEN	WKRS485EN	WKRFRTEN	WKDATEN	WKCTSEN

Bits	Description	Description						
[31:5]	Reserved	Reserved.						
		Received Data FIFO Reached Threshold Time-out Wake-up Enable Bit						
		0 = Received Data FIFO reached threshold time-out wake-up system function Disabled.						
		1 = Received Data FIFO reached threshold time-out wake-up system function Enabled.						
[4]	WKTOUTEN	Note1: When the system is in Power-down mode, Received Data FIFO reached threshold time-out will wake up system from Power-down mode.						
		Note2: It is suggested the function is enabled when the WKRFRTEN (UART_WKCTL[2]) is set to 1.						
		RS-485 Address Match (AAD Mode) Wake-up Enable Bit						
		0 = RS-485 Address Match (AAD mode) wake-up system function Disabled.						
		1 = RS-485 Address Match (AAD mode) wake-up system function Enabled.						
[3]	WKRS485EN	Note1: When the system is in.Power-down mode, RS-485 Address Match will wake-up system from Power-down mode.						
		Note2: This bit is used for RS-485 Auto Address Detection (AAD) mode in RS-485 function mode and ADDRDEN (UART_ALTCTL[15]) is set to 1.						
		Received Data FIFO Reached Threshold Wake-up Enable Bit						
		0 = Received Data FIFO reached threshold wake-up system function Disabled.						
[2]	WKRFRTEN	1 = Received Data FIFO reached threshold wake-up system function Enabled.						
		Note: When the system is in Power-down mode, Received Data FIFO reached threshold will wake-up system from Power-down mode.						
		Incoming Data Wake-up Enable Bit						
		0 = Incoming data wake-up system function Disabled.						
[1]	WKDATEN	1 = Incoming data wake-up system function Enabled.						
		Note: When the system is in Power-down mode, incoming data will wake-up system from Power-down mode.						
		nCTS Wake-up Enable Bit						
[0]	WKCTSEN	0 = nCTS Wake-up system function Disabled.						
		1 = nCTS Wake-up system function Enabled.						

UART Wake-up Status Register (UART_WKSTS)

Register	Offset	R/W	Description	Reset Value
UART_WKSTS x=0,1	UARTx_BA+0x44	R/W	UART Wake-up Status Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved		TOUTWKF	RS485WKF	RFRTWKF	DATWKF	CTSWKF

Bits	Description						
[31:5]	Reserved	Reserved.					
		Received Data FIFO Threshold Time-out Wake-up Flag					
		This bit is set if chip wake-up from power-down state by Received Data FIFO Threshold Time-out					
		wake-up.					
[4]	TOUTWKF	0 = Chip stays in power-down state.					
[.]		1 = Chip wake-up from power-down state by Received Data FIFO reached threshold time- out.					
		Note1: If WKTOUTEN (UART_WKCTL[4]) is enabled, the Received Data FIFO reached threshold time-out wake-up cause this bit is set to '1'.					
		Note2: This bit can be cleared by writing '1' to it.					
		RS-485 Address Match (AAD Mode) Wake-up Flag					
		This bit is set if chip wake-up from power-down state by RS-485 Address Match (AAD mode).					
101		0 = Chip stays in power-down state.					
[3]	RS485WKF	1 = Chip wake-up from power-down state by RS-485 Address Match (AAD mode) wake-up.					
		Note1: If WKRS485EN (UART_WKCTL[3]) is enabled, the RS-485 Address Match (AAD mode) wake-up cause this bit is set to '1'.					
		Note2: This bit can be cleared by writing '1' to it.					
		Received Data FIFO Reached Threshold Wake-up Flag					
		This bit is set if chip wake-up from power-down state by Received Data FIFO reached threshold wake-up.					
		0 = Chip stays in power-down state.					
[2]	RFRTWKF	1 = Chip wake-up from power-down state by Received Data FIFO Reached Threshold wake- up.					
		Note1: If WKRFRTEN (UART_WKCTL[2]) is enabled, the Received Data FIFO Reached Threshold wake-up cause this bit is set to '1'.					
		Note2: This bit can be cleared by writing '1' to it.					
[1]	DATWKF	Incoming Data Wake-up Flag					

		This bit is set if chip wake-up from power-down state by data wake-up.
		0 = Chip stays in power-down state.
		1 = Chip wake-up from power-down state by Incoming Data wake-up.
		Note1: If WKDATEN (UART_WKCTL[1]) is enabled, the Incoming Data wake-up cause this bit is set to '1'.
		Note2: This bit can be cleared by writing '1' to it.
		nCTS Wake-up Flag
		This bit is set if chip wake-up from power-down state by nCTS wake-up.
		0 = Chip stays in power-down state.
[0]	CTSWKF	
[0]	CTSWKF	0 = Chip stays in power-down state.

UART Incoming Data Wake-up Compensation Register (UART_DWKCOMP)

Register	Offset	R/W	Description	Reset Value
UART_DWKCO MP x=0,1		R/W	UART Incoming Data Wake-up Compensation Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	STCOMP								
7	6	5	4	3	2	1	0		
			STC	ОМР					

Bits	Description	Description					
[31:16]	Reserved Reserved.						
[15:0]	STCOMP	Start Bit Compensation Value These bits field indicate how many clock cycle selected by UART_CLK do the UART controller can get the 1 st bit (start bit) when the device is wake-up from Power-down mode. Note: It is valid only when WKDATEN (UART_WKCTL[1]) is set.					

UART LIN Response Time-out Register (UART_LINRTOUT)

Register	Offset	R/W	Description	Reset Value
UART_LINRTO UT x=0,1		R/W	UART LIN Response Time-out Register	0x00FF_FFFF

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
15	14	13	12	11	10	9	8		
			LINR	TOIC					
7	6	5	4	3	2	1	0		
			LINR	TOIC					

Bits	Description					
[31:24]	Reserved	red Reserved.				
[23:0]		LIN Response Time-out Comparator The time-out counter resets and starts counting (the counting clock = UART_CLK) whenever LIN master sends a header or LIN slave detects a header. Once the content of time-out counter is equal to or bigger than that of time-out comparator (LINRTOIC (UART_LINRTOUT[23:0])), a LIN response time-out (RTOUTF (UART_LINSTS[5])) is generated if RTOUTEN (UART_LINCTL[5]) enabled.				

UART LIN Wake-up	Control Register (UAR	T_LINWKCTL)	

Register	Offset	R/W	Description	Reset Value
UART_LINWKC TL x=0,1		R/W	UART LIN Wake-up Control Register	0x0000_00C0

31	30	29	28	27	26	25	24	
Rese	Reserved LII		LINWKEN		Reserved		SENDLINW	
23	22	21	20	19	18	17	16	
	LINWKC							
15	14	13	12	11	10	9	8	
			LIN	WKC				
7	6	5	4	3	2	1	0	
	LINWKC							

Bits	Description	Description						
[31:30]	Reserved	Reserved.						
		LIN Wake-up Flag						
		This bit is set if chip wake-up from power-down state by LIN wake-up.						
		0 = Chip stays in power-down state.						
[29]	LINWKF	1 = Chip wake-up from power-down state by LIN wake-up.						
		Note1: If LINWKEN (UART_LINWKCTL[28]) is enabled, the LIN wake-up event will cause this bit set to '1'.						
		Note2: This bit can be cleared by writing '1' to it.						
		LIN Wake-up Enable Bit						
		0 = LIN wake-up system function Disabled.						
[28]	LINWKEN	1 = LIN wake-up system function Enabled.						
		Note1: When the system is in Power-down mode, LIN wake-up event will wake up system from Power-down mode.						
[27:25]	Reserved	Reserved.						
		LIN Send Wake-up Enable Bit						
		0 = Send LIN Wake-up Disabled.						
[24]	SENDLINW	1 = Send LIN Wake-up Enabled.						
		Note1: When this bit is set, the UART will send LIN wake-up automatically. When LIN wake-up transfer operation finished, this bit will be cleared automatically.						
		LIN Send Wake-up Signal Length Counter						
[23:0]	LINWKC	When SENDLINW (UART_LINWKCTL[24]) is enabled, the UART will send LIN wake-up signal for LINWKC (UART_LINWKCTL[23:0]) period (the counting clock = UART_CLK). LINWKC (UART_LINWKCTL[23:0]) should be set to a value between 250 us to 5 ms according to UART_CLK rate.						

6.12 USCI - Universal Serial Control Interface Controller (USCI)

6.12.1 Overview

The Universal Serial Control Interface (USCI) is a flexible interface module covering several serial communication protocols. The user can configure this controller as UART, SPI, or I²C functional protocol.

6.12.2 Features

The controller can be individually configured to match the application needs. The following protocols are supported:

- UART
- SPI
- l²C

6.12.3 Block Diagram

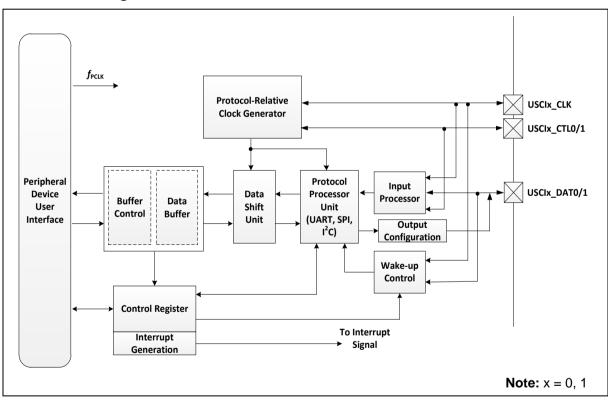


Figure 6.12-1 USCI Block Diagram

6.12.4 Functional Description

The structure of the Universal Serial Control Interface (USCI) controller is shown in Figure 6.12-1. The input signal is implemented in input processor. The data buffers and the data shift unit support the data transfers. Each protocol-specific function is handled by the protocol processor unit. The timing and time event control signals of the specific protocol are handled by the protocol-relative clock generator. All the protocol-specific events are processed in the interrupt generation unit. The wake-up function of the specific protocol is implemented in the wake-up control unit.

The USCI is equipped with three protocols including UART, SPI, and I²C. They can be selected by FUNMODE (USCI_CTL [2:0]). Note that the FUNMODE must be set to 0 before changing protocol.

6.12.4.1 I/O Processer

Input Signal

All input stages offer the similar feature set. They are used for all protocols.

Table 6.12-1lists the relative input signals for each selected protocol. Each input signal is handled by an input processor for signal conditioning, such as signal inverse selection control, or a digital input filter.

Selected	d Protocol	UART	SPI	I²C
Serial Bus Clock Input	USCIx_CLK	-	SPI_CLK	SCL
	USCIx_CTL0	nCTS	SPI_SS	-
Control Input	USCIx_CTL1	-	-	-
	USCIx_DAT0	RX	SPI_MOSI_0	SDA
Data Input	USCIx_DAT1	-	SPI_MISO_0	-

Table 6.12-1 Input Signals for Different Protocols

The description of protocol-specific items are given in the related protocol chapters.

General Input Structure

The input structures of data and control signals include inverter, digital filter and edge detection (data signal only).

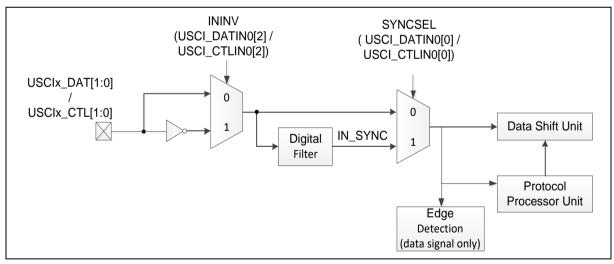


Figure 6.12-2 Input Conditioning for USCIx_DAT[1:0] and USCIx_CTL[1:0]

The input structure of USCIx_CLK is similar to USCIx_CTL[1:0] input structure, except it does not support inverse function.

ηυνοΤοη

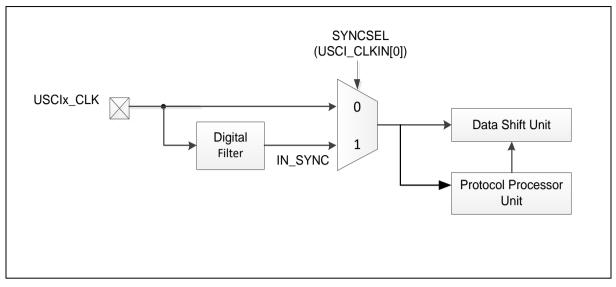


Figure 6.12-3 Input Conditioning for USCIx_CLK

All configurations of control, clock and data input structures are in USCI_CTLINO, USCI_CLKIN and USCI_DATINO registers respectively. EDGEDET (USCI_DATIN0[4:3]) is used to select the edge detection condition. Note that the EDGEDET for USCI_DATIN0 must be set 2'b10 in UART mode. The programmable edge detection indicates that the desired event has occurred by activating the trigger signal.

ININV (USCI_DATIN0[2] / USCI_CTLIN0[2]) allows a polarity inversion of the selected input signal to adapt the input signal polarity to the internal polarity of the data shift unit and the protocol state machine.

If the SYNCSEL (USCI_DATINO[0] / USCI_CTLINO[0] / USCI_CLKIN[0]) is set to 0, the paths of input signals do not contain any delay due to synchronization or filtering. If there is noise on the input signals, there is the possibility to synchronize the input signal (signal IN_SYNC is synchronized to f_{PCLK}). The synchronized input signal is taken into account by SYNCSEL = 1. The synchronization leads to a delay in the signal path of 2-3 times the period of f_{PCLK} .

Output Signals

Table 6.12-2 shows the relative output signals for each protocol. The number of actually used outputs depends on the selected protocol and they can be classified according to their meaning for the protocols.

Selected F	Protocol	UART	SPI	I ² C
Serial Bus Clock Output	USCIx_CLK	-	SPI_CLK	SCL
Control Output	USCIx_CTL0	-	SPI_SS	-
Control Output	USCIx_CTL1	nRTS	-	-
Data Quitaut	USCIx_DAT0	-	SPI_MOSI_0	SDA
Data Output	USCIx_DAT1	ТХ	SPI_MISO_0	-

Table 6.12-2 Output Signals for Different Protocols

The description of protocol-specific items are given in the related protocol chapters.

6.12.4.2 Data Buffering

The data handling of the USCI controller is based on a Data Shift Unit (DSU) and a buffer structure.

Both of the data shift and buffer registers are 16-bit wide. The inputs of Data Shift Unit include the shift data, the serial bus clock, and the shift control. The output pin of transmission can be USCIx_DAT0 pin or USCIx_DAT1 pin depends on what protocol is selected.

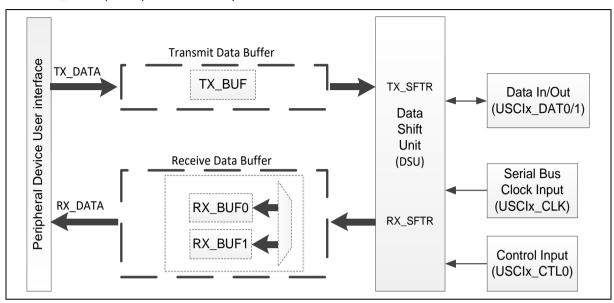


Figure 6.12-4 Block Diagram of Data Buffering

The operation of data handling includes:

- The peripheral device user interface (APB) is used to handle data, interrupts, status and control information.
- A transmitter includes transmit shift register (TX_SFTR) and a transmit data buffer (TX_BUF). The TXFULL / TXEMPTY (USCI_BUFSTS[9:8]) and TXENDIF (USCI_PROTSTS[2]) can indicate the status of transmitter.
- A receiver includes receive shift register (RX_SFTR) and a double receive buffer structure (RX_BUF0, RX_BUF1). In double buffer structure, user need not care about the reception sequence and two received data can be hold if user does not read the data of USCI_RXDAT register in time.

Data Access Structure

The Data Access Structure includes read access to received data and write access of data to be transmitted. The received data is stored in the receiver buffers including RX_BUF0 and RX_BUF1. User need not care about the reception sequence. The receive buffer can be accessed by reading USCI_RXDAT register. The first received data is read out first and the next received data becomes visible in USCI_RXDAT and can be read out next.

Transmit data can be loaded to TX_BUF by writing to the transmit register USCI_TXDAT.

ηυνοτοη

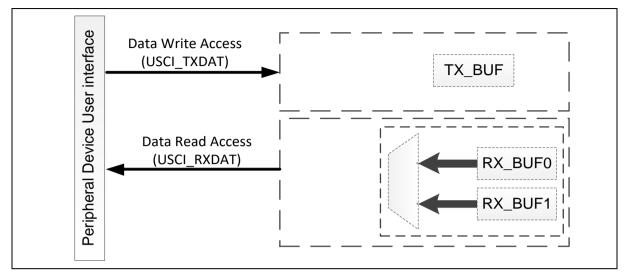


Figure 6.12-5 Data Access Structure

Transmit Data Path

The transmit data path is based on 16-bit wide transmit shift register (TX_SFTR) and transmit buffer TX_BUF. The data transfer parameters like data word length is controlled commonly for transmission and reception by the line control register USCI_LINECTL.

Transmit Buffering

The transmit shift register cannot be directly accessed by user. It is updated automatically with the value stored in the transmit buffer (TX_BUF) if a currently transmitted data is finished and new data is valid for transmission.



Figure 6.12-6 Transmit Data Path

Transmit Data Validation

The status of TXEMPTY (USCI_BUFSTS[8]) indicates the transmission data is valid or not in the transmit buffer (TX_BUF) and the TXSTIF (USCI_PROTSTS[1]) labels the start conditions for each data.

• If the USCI controller is a Master, the data transfer can only be started with valid data in the transmit buffer (TX_BUF). In this case, the transmit shift register is loaded with the content of transmit buffer.

Note: Master defines the start of data transfer.

• If the USCI controller is a Slave, a data transfer requested by Master and it has to be started independently of the status in transmit buffer (TX_BUF). If a data transfer is requested and started by the Master, the transmit shift register is loaded from specific protocol control signal if it is valid for transmission.

Note: Slave can not define the start itself, but has to react.

- The timing of loading data from transmit buffer to data shift unit depends on protocol configurations.
- **UART:** A transmission of the data word in transmit buffer can be started if TXEMPTY = 0 in normal operation. In auto flow control, A transmission of the data word in transmit buffer can be started while TXEMPTY = 0 and USCIx_CTL0 in active stage.
- **SPI:** In Master mode, data transmission will be started when TXEMPTY (USCI_BUFSTS[8]) is 0. In Slave mode, the data transmission can be started only when slave selection signal is at active state and clock is presented on USCIx_CLK pin.
- I^2C : A transmission of the data byte in transmit buffer can be started if TXEMPTY = 0.
- A transmission data which is located in transmit buffer can be started if the TXEMPTY (USCI_BUFSTS [8]) = 0. The content of the transmit buffer (in TX_BUF condition) should not be overwritten with new data while it is valid for transmission and a new transmission can start. If the content of TX_BUF has to be changed, user can set TXRST (USCI_BUFCTL [16]) to 1 to clear the content of TX_BUF before updating the data. Moreover, TXEMPTY (USCI_BUFSTS [8]) will be cleared automatically when transmit buffer (TX_BUF) is updated with new data. While a transmission is in progress, TX_BUF can be loaded with new data. User has to update the TX_BUF before a new transmission.

Receive Data Path

The receive data path is based on 16-bit wide receive shift register RX_SFTR and receive buffers RX_BUF0 and RX_BUF1. The data transfer parameters like data word length, or the shift direction are controlled commonly for transmission and reception by the line control register USCI_LINECTL. Register USCI_BUFSTS monitors the data validation of USCI_RXDAT.

Receive Buffering

The receive shift register cannot be directly accessed by user, but its content is automatically loaded into the receive buffer if a complete data word has been received or the frame is finished. The received data words in Receive Buffer can be read out automatically from register USCI_RXDAT.

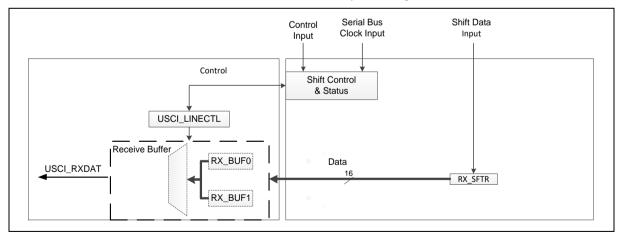


Figure 6.12-7 Receive Data Path

6.12.4.3 Port Direction Control

In SPI protocol with half-duplex configurations, the data port is bidirectional. Port direction control is intended to control the pin direction through a dedicated hardware interface.

The direction of selected pin is controlled by PORTDIR (USCI_TXDAT[16]). When user writes USCI_TXDAT register, the transmit data and its port direction are settled simultaneously.

6.12.4.4 Protocol Control and Status

The protocol-related control and status information are located in the protocol control register USCI_PROTCTL and in the protocol status register USCI_PROTSTS. These registers are shared between the available protocols. As a consequence, the meaning of the bit positions in these registers is different within the protocols. Refer to each protocol's relative register for detail information.

6.12.4.5 Protocol-Relative Clock Generator

The USCI controller contains a protocol-relative clock generator and it is controlled by register USCI_BRGEN. It is reset when the USCI_BRGEN register is written. The structured of protocol-relative clock generator is shown below.

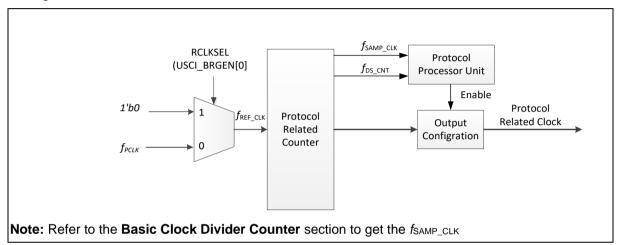


Figure 6.12-8 Protocol-Relative Clock Generator

The protocol related counter contains basic clock divider counter and timing measurement counter. It is based on a divider stages, providing the frequencies needed for the different protocols. It contains:

- The basic clock divider counter provides the protocol relative clock signal and other protocol-related signals (fSAMP_CLK and fDS_CLK).
- The timing measurement counter for time interval measurement, e.g. baud rate detection on UART protocol.
- The output signals of protocol relative clock generator can be made available on pins (e.g USCIx_CLK for SPI).

Basic Clock Divider Counter

The basic clock divider counter is used for an integer division delivering *f*_{REF_CLK2}, *f*_{REF_CLK}, *f*_{DIV_CLK}, *f*_{SCLK}, *and f*_{SAMP_CLK}. The frequencies of this divider are controlled by PTCLKSEL (USCI_BRGEN [1]), CLKDIV (USCI_BRGEN [25:16]), SPCLKSEL (USCI_BRGEN [3:2]).

The basic clock divider counter is used to generate the relative protocol timing signals.

$$f_{\text{DIV}_{\text{CLK}}} = f_{REF_{\text{CLK}}} \times \frac{1}{\text{CLKDIV} + 1} \text{ if PTCLKSEL} = 0$$
$$f_{\text{DIV}_{\text{CLK}}} = f_{REF_{\text{CLK}}} \times \frac{1}{(\text{CLKDIV} + 1) \times 2} \text{ if PTCLKSEL} = 1$$

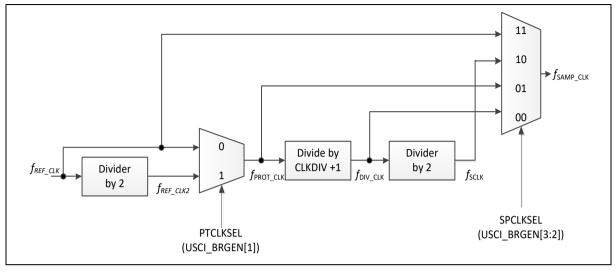


Figure 6.12-9 Basic Clock Divider Counter

Timing Measurement Counter

The timing measurement counter is used for time interval measurement and is enabled by TMCNTEN (USCI_BRGEN [4]) = 1. When TMCNTSRC (USCI_BRGEN [5]) is set to 1, the timer works on $f_{\text{DIV_CLK}}$, otherwise, the timer works independently from $f_{\text{PROT_CLK}}$. Therefore, any serial data reception or transmission can continue while the timer is performing timing measurements. The timer counts the length of protocol-related signals with $f_{\text{PROT_CLK}}$ or $f_{\text{DIV_CLK}}$. It stops counting when it reaches the user-specified value.

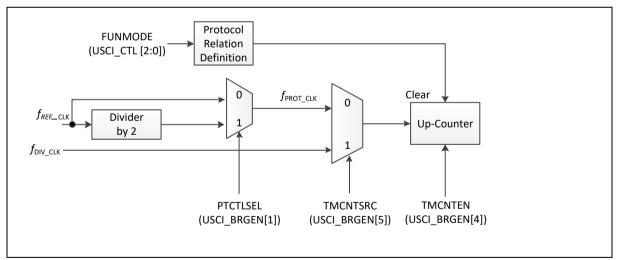


Figure 6.12-10 Block of Timing Measurement Counter

The timing measurement counter is used to perform time-out function or auto-baud rate mechanism. Its functionality depends on the selected protocol as shown below.

- UART: The timing measurement counter is used in auto baud rate detection.
- SPI: The timing measurement counter is used for counting the slave time-out period.
- I²C: The timing measurement counter indicates time-out clock cycle.

Sample Time Counter

A sample time counter associated to the protocol related counter defining protocol specific timings, such shift control signals or bit timings, based on the input frequency *f*_{SAMP_CLK}. The sample time counter

allows generating time intervals for protocol-specific purposes. The period of a sample frequency *f*_{PDS_CNT} is given by the selected input frequency *f*_{SAMP_CLK} and the programmed pre-divider value (PDSCNT (USCI_BRGEN [9:8])). The meaning of the sample time depends on the selected protocol. Please refer to the corresponding chapters for more protocol-specific information.

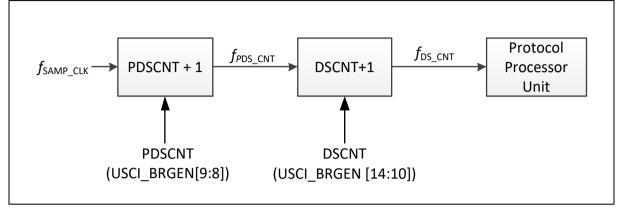


Figure 6.12-11 Sample Time Counter

6.12.4.6 Data Transfer Events and Interrupts

The data transfer events are based on the transmission or reception of a data word. The related indication flags are located in register USCI_PROTSTS. All events can be individually enabled for interrupt generation. If the FUNMODE (USCI_CTL [2:0]) is set to 0, the USCI is disabled. When FUNMODE (USCI_CTL [2:0]) is setting for a protocol port, the internal states will be controlled by logic hardware of the selected protocol.

• Transmit start interrupt event to indicate that a data word has been started:

A transmit start interrupt event occurs when the data is loaded into transmitted shift register. It is indicated by flag TXSTIF (USCI_PROTSTS [1]) and, if enabled, leads to transmit start interrupt.

Transmit end interrupt event to indicate that a data word transmission has been done:

A transmit end interrupt event occurs when the current transmit data in shift register had been finished. It is indicated by flag TXENDIF (USCI_PROTSTS [2]) and, if enabled, leads to transmit end interrupt. This event also indicates when the shift control settings (word length, shift direction, etc.) are internally "frozen" for the current data word transmission. In UART and I²C mode, the transmit data valid is according to TXEMPTY (USCI_BUFSTS [8]) and protocol relative internal signal with the transmit end interrupt event.

• Receiver start event to indicate that a data word reception has started:

When the receive clock edge that shifts in the first bit of a new data word is detected and reception is enabled, a receiver start event occurs. It is indicated by flag RXSTIF (USCI_PROTSTS [3]) and, if enabled, leads to receiver start interrupt.

• Receive event to indicate that a data word has been received:

If a new received word becomes available in the receive buffer, a receive event occurs. It is indicated by flag RXENDIF (USCI_PROTSTS [4]) and, if enabled, leads to receive interrupt.

• Data lost event to indicate a loss of the newest received data word:

If the data word available in register USCI_RXDAT (oldest data word from RX_BUF0 or RX_BUF1) has not been read out and the receive buffer is FULL, the new incoming data will lose and this event occurs. It is indicated by flag RXOVIF (USCI_BUFSTS[3]) and, if enabled, leads to a protocol interrupt.

The general event and interrupt structure is shown in Figure 6.12-12.

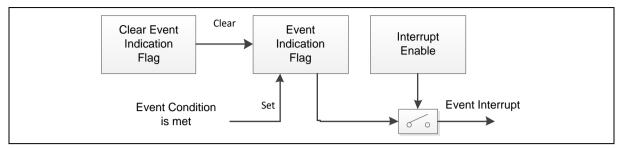


Figure 6.12-12 Event and Interrupt Structure

Each general interrupt enable can set by RXENDIEN, RXSTIEN, TXENDIEN, and TXSTIEN of USCI_INTEN [4:1]. The events are including receive end interrupt event, receive start interrupt event, transmit end interrupt event, and transmit start interrupt event. For protocol-specific interrupt, it is specified in each protocol interrupt enable register.

If a defined condition is met, an event is detected and an event indication flag becomes automatically set. The flag stays set until it is cleared by software. If enabled, an interrupt can be generated if an event is detected.

The registers, bits and bit fields indicate the data transfer events and control the general interrupts of a USCI are shown in Table 6.12-3.

Event	Indication Flag	Indication Cleared By	Interrupt Enabled By
Transmit start interrupt	TXSTIF		TXSTIEN
event	(USCI_PROTSTS [1])		(USCI_INTEN [1])
Transmit end interrupt	TXENDIF	It is cleared by software writes 1 to	TXENDIEN
event	(USCI_PROTSTS [2])		(USCI_INTEN [2])
Receive start interrupt	RXSTIF	corresponding interrupt bit of USCI_PROTSTS.	RXSTIEN
event	(USCI_PROTSTS [3])		(USCI_INTEN [3])
Receive end interrupt event	RXENDIF (USCI_PROTSTS [4])		RXENDIEN (USCI_INTEN [4])

Table 6.12-3 Data Transfer Events and Interrupt Handling

6.12.4.7 Protocol-specific Events and Interrupts

These events are related to protocol-specific actions that are described in the corresponding protocol chapters. The related indication flags are located in register USCI_PROTSTS. All events can be individually enabled for the generation of the common protocol interrupt.

Event	Indication Flag	Indication Cleared By	Interrupt Enabled By
Protocol-specific events in UART mode	USCI_PROTSTS [17:16] and USCI_PROTSTS [11:5]		USCI_PROTIEN[2:1]
Protocol-specific events in SPI mode	USCI_PROTSTS [9:8], USCI_PROTSTS [6:5]	It is cleared by software writes 1 to corresponding interrupt bit of USCI_PROTSTS.	USCI_PROTIEN [3:0]
Protocol-specific events in I ² C mode	USCI_PROTSTS [13:8], USCI_PROTSTS [5]		USCI_PROTIEN [6:0]

Table 6.12-4 Protocol-specific Events and Interrupt Handling

6.12.4.8 Wake-up

The protocol-related wake-up functional information is located in the Wake-up Control Register (USCI_WKCTL) and in the Wake-up Status Register (USCI_WKSTS). These registers are shared between the available protocols. As a consequence, the meaning of the bit positions in these registers is different within the protocols.

6.12.4.9 PDMA

The USCI supports PDMA transfer function. When PDMAEN (USCI_PDMACTL [3]) is set to 1, the PDMA function is enabled.

When TXPDMAEN (USCI_PDMACTL [1]) is set to 1, the controller will issue request to PDMA controller to start the PDMA transmission process automatically.

When RXPDMAEN (USCI_PDMACTL [2]) is set to 1, the controller will start the PDMA reception process. USCI will issue request to PDMA controller automatically when there is data in the receive FIFO buffer.

In UART function, the requirement of RXPDMAEN will be cleared and hold if there is any error condition events including frame error, parity error or break detection. The user shall read out the current data and then the requirement of RXPDMAEN will send to the PDMA module in the next data.

6.13 USCI – UART Mode

6.13.1 Overview

The asynchronous serial channel UART covers the reception and the transmission of asynchronous data frames. It performs a serial-to-parallel conversion on data received from the peripheral, and a parallel-to-serial conversion on data transmitted from the controller. The receiver and transmitter being independent, frames can start at different points in time for transmission and reception.

The UART controller also provides auto flow control. There are two conditions to wake-up the system.

6.13.2 Features

- Supports one transmit buffer and two receive buffer for data payload
- Supports hardware auto flow control function
- Supports programmable baud-rate generator
- Support 9-bit Data Transfer (Support 9-bit RS-485)
- Baud rate detection by built-in capture event of baud rate generator
- Supports PDMA capability
- Supports Wake-up function (Data and nCTS Wakeup Only)

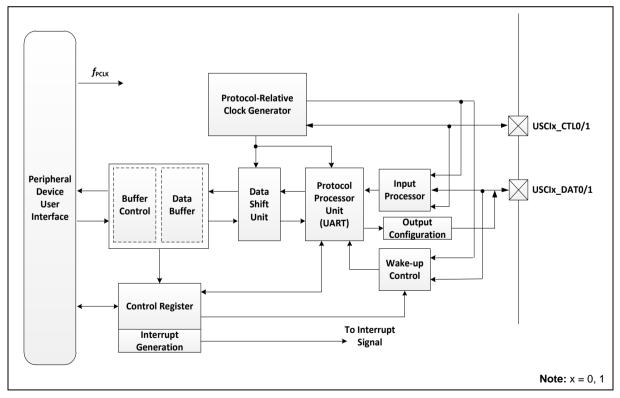


Figure 6.13-1 USCI-UART Mode Block Diagram

6.13.4 Basic Configuration

The basic configurations of USCI0_UART are as follows:

6.13.3 Block Diagram

- Clock Source Configuration
- Enable USCI0 peripheral clock in USCI0CKEN (CLK_APBCLK1[8]).
- Reset USCI0 controller in USCI0RST (SYS_IPRST2[8]).
- Enable USCI0_UART function UUART_CTL[2:0] register, UUART_CTL[2:0]=3'b010.
- Pin Configuration

Group	Pin Name	GPIO	MFP
		PD.7	MFP4
	USCI0_CTL0	PA.0, PA.1, PA.2, PA.3, PA.4, PA.5 PB.4, PB.5, PB.6, PB.7 PC.0, PC.1, PC.2, PC.3, PC.4, PC.5, PC.6, PC.7	MFP13
	USCI0_CTL1	PA.0, PA.2, PA.5 PB.4, PB.6 PC.1, PC.3, PC.5, PC.7	MFP14
USCIO		PD.5	MFP4
	USCI0_DAT0	PA.0, PA.1, PA.2, PA.3, PA.4, PA.5 PB.4, PB.5, PB.6, PB.7 PC.0, PC.1, PC.2, PC.3, PC.4, PC.5, PC.6, PC.7	MFP11
		PD.6	MFP4
	USCI0_DAT1	PA.0, PA.1, PA.2, PA.4, PA.5 PB.4, PB.5, PB.6, PB.7 PC.0, PC.1, PC.2, PC.3, PC.4, PC.5, PC.6, PC.7	MFP12

The basic configurations of USCI1_UART are as follows:

- Clock Source Configuration
- Enable USCI1 peripheral clock in USCI1CKEN (CLK_APBCLK1[9]).
- Reset USCI1 controller in USCI1RST (SYS_IPRST2[9]).
- Enable USCI1_UART function UUART_CTL[2:0] register, UUART_CTL[2:0]=3'b010.
- Pin Configuration

Group	Pin Name	GPIO	MFP
		PD.3	MFP4
		PA.0, PA.1, PA.2, PA.3, PA.4, PA.5 PB.4, PB.5, PB.6, PB.7 PC.0, PC.1, PC.2, PC.3, PC.4, PC.5, PC.6, PC.7	MFP18
USCI1	USCI1_CTL1	PA.1, PA.4 PB.5, PB.7 PC.0, PC.2, PC.4, PC.6	MFP14
		PD.1	MFP4
	USCI1_DAT0	PA.0, PA.1, PA.2, PA.3, PA.4, PA.5	MFP16

	PB.4, PB.5, PB.6, PB.7 PC.0, PC.1, PC.2, PC.3, PC.4, PC.5, PC.6, PC.7	
	PD.2	MFP4
USCI1_DAT1	PA.0, PA.1, PA.2, PA.4, PA.5 PB.4, PB.5, PB.6, PB.7 PC.0, PC.1, PC.2, PC.3, PC.4, PC.5, PC.6, PC.7	MFP17

6.13.5 Functional Description

6.13.5.1 USCI Common Function Description

Please refer to section 6.12.4 for detailed information.

6.13.5.2 Signal Description

An UART connection is characterized by the use of a single connection line between a transmitter and a receiver. The receiver input signal (RXD) is handled by the input stage USCIx_DAT0 and the transmit output (TXD) signal is handled by the output stage of USCIx_DAT1.

For full-duplex communication, an independent communication line is needed for each transfer direction. Figure 6.13-2 shows an example with a point-to-point full-duplex connection between two communication partners UART module A and UART module B.

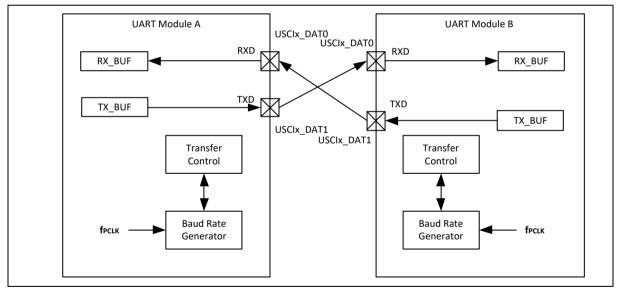


Figure 6.13-2 UART Signal Connection for Full-Duplex Communication

Input Signals

For UART protocol, the number of input signals is shown in Table 6.13-1. Each input signal is handled by an input processor for signal conditioning, such as signal inverse selection control, or a digital input filter. They can be classified according to their meaning for the protocols (see Table 6.13-1).

Selecte	d Protocol	UART
	USCIx_CTL0	nCTS
Control Input	USCIx_CTL1	Х
Data Input	USCIx_DAT0	RX

USCIX_DAT1 X

Table 6.13-1 Input Signals for UART Protocol

Output Signals

For UART protocol, up to each protocol-related output signals are available. The number of actually used outputs depends on the selected protocol. They can be classified according to their meaning for the protocols.

Selected P	rotocol	UART
Control Output	USCIx_CTL0	Х
Control Output	USCIx_CTL1	nRTS
Data Output	USCIx_DAT0	Х
Data Output	USCIx_DAT1	ТХ

 Table 6.13-2 Output Signals for Different Protocol

6.13.5.3 Frame Format

A standard UART frame is shown in Figure 6.13-3. It consists of:

- An idle time with the signal level 1.
- One start of frame bit (SOF) with the signal level 0.
- 6~13 bit data
- A parity bit (P), programmable for either even or odd parity. It is optionally possible to handle frames without parity bit.
- One or two stop bits with the signal level 1.

Figure 6.13-3 UART Standard Frame Format

The protocol specific bits (SOF, P, STOP) are automatically handled by the UART protocol state machine and do not appear in the data flow via the receive and transmit buffers.

<u>Start Bit</u>

The receiver input signal USCIx_DAT0 is checked for a falling edge. An SOF bit is detected when a falling edge occurs while the receiver is idle or after the sampling point of the last stop bit. To increase noise immunity, the SOF bit timing starts with the first falling edge that is detected. If the sampled bit value of the SOF is 1, the previous falling edge is considered to be due to noise and the receiver is considered to be idle again.

Data Field

The length of the data field (number of data bits) can be programmed by the bit field of DWIDTH (UUART_LINECTL[11:8]). It can vary between 6 to 13 data bits.

Note: In UART protocol, the data transmission order is LSB first by setting LSB (UUART_LINECTL[0]) to 1.

Parity Bit

The UART allows parity generation for transmission and parity check for reception on frame base. The type of parity can be selected by bit field PARITYEN (UUART_PROTCTL[1]) and EVENPARITY (UUART_PROTCTL[2]), common for transmission and reception (no parity, even or odd parity). If the parity handling is disabled, the UART frame does not contain any parity bit. For consistency reasons, all communication partners have to be programmed to the same parity mode.

After the last data bit of the data field, the transmitter automatically sends out its calculated parity bit if parity generation has been enabled. The receiver interprets this bit as received parity and compares it to its internally calculated one. The result of the parity check and frame check (STOP bit) are monitored in the protocol status registers (UUART_PROTSTS). The register contains bits to monitor a protocol-related status and protocol-related error indication (FRMERR, PARITYERR).

Stop Bit

Each UART frame is completed by 1 or 2 of stop bits with the signal level 1 (same level as the idle level). The number of stop bits is programmable by bit STOPB (UUART_PROTCTL[0]). A new start bit can be transferred directly after the last stop bit.

Transfer Status Indication

RXBUSY (UUART_PROTSTS[10]) indicates the receiver status.

The receiver status can be monitored by RXBUSY bit. In this case, bit RXBUSY is set during a complete frame reception from the beginning of the start of frame bit to the end of the last stop bit.

6.13.5.4 Operating Mode

To operate the UART protocol, the following issues have to be considered:

Select UART Mode

The UART protocol can be selected by setting FUNMODOE (UUART_CTL[2:0]) to 010B and the UART protocol can be enabled by setting PROTEN (UUART_PROTCTL[31]) to 1. Note that the FUNMODE must be set 0 before protocol changing and it is recommended to configure all parameters of the UART before UART protocol is enabled.

Pin Connections

The USCIx_DAT0 pin is used for UART receive data input signal (RX) in UART protocol. The property of input data signal can be configured in UUART_DATIN0. It is suggested to set EDGEDET (UUART_DATIN0[4:3]) as 10B for start bit detection.

The USCIx_DAT1 pin is used for UART transmit data output signal (TX) in UART protocol. The property of output data signal can be configured in UUART_LINECTL.

The USCIx_CTL0 pin is used for UART clear to send signal (nCTS) in UART protocol. The property of input control signal can be configured in UUART_CTLIN0.

The USCIx_CTL1 pin is used for UART request to send signal (nRTS) in UART protocol. The property of output control signal can be configured in UUART_LINECTL.

Bit Timing Configuration

The desired baud rate setting has to be selected, comprising the baud rate generator and the bit timing.

Frame Format Configuration

The word length, the stop bit number, and the parity mode has to be set up according to the application requirements by programming UUART_LINECTL and the UUART_PROTCTL register. If required by the application, the data input and output signals can be inverted. The data transmission order is LSB first by setting LSB (UUART_LINECTL[0]) to 1.

6.13.5.5 Bit Timing

In UART mode, each frame bit is divided into data sample time in order to provide granularity in the subbit range to adjust the sample point to the application requirements. The number of data sample time per bit is defined by bit fields DSCNT (UUART_BRGEN[14:10]) and the length of a data sample time is given by PDSCNT (UUART_BRGEN[9:8]). In the example given in Figure 6.13-4, one bit time is composed of 16 data sample time DSCNT(UUART_BRGEN[14:10]) = 15. It is not recommended to program less and equal than 4 data sample time per bit time.

The position of the sampling point for the bit value is fixed in 1/2 samples time. It is possible to sample the bit value to take the average of samples.

The bit timing setup (number of data sample time) is common for the transmitter and the receiver because they use the same hardware circuit.

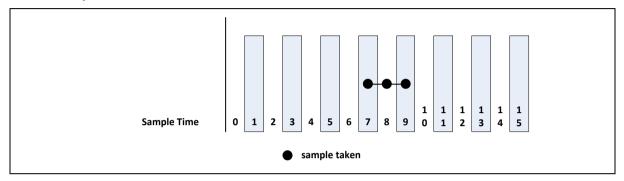


Figure 6.13-4 UART Bit Timing (data sample time)

6.13.5.6 Baud Rate Generation

The baud rate f_{UART} in UART mode depends on the number of data sample time per bit time and their timing. The baud rate setting should only be changed while the transmitter and the receiver are idle. The bits RCLKSEL, SPCLKSEL, PDSCNT, and DSCNT define the baud rate setting:

RCLKSEL (UUART_BRGEN[0])

to define the input frequency fREF_CLK

SPCLKSEL (UUART BRGEN[3:2])

to define the multiple source of the sample clock fsam_clk

PDSCNT (UUART BRGEN[9:8])

to define the length of a data sample time (division of fREF_CLK by 1, 2, 3, or 4)

DSCNT (UUART_BRGEN[14:10])

to define the number of data sample time per bit time

The standard setting is given by RCLKSEL = 0 ($f_{REF_CLK} = f_{PCLK}$), PTCLKSEL = 0 ($f_{PROT_CLK} = f_{REF_CLK}$) and SPCLKSEL = 2'b00 ($f_{SAMP_CLK} = f_{DIV_CLK}$). Under these conditions, the baud rate is given by:

$$f_{\text{UART}} = f_{\text{REF}_{CLK}} \times \frac{1}{\text{CLKDIV} + 1} \times \frac{1}{\text{PDSCNT} + 1} \times \frac{1}{\text{DSCNT} + 1}$$

In order to generate slower frequencies, additional divide-by-2 stages can be selected by PTCLKSEL = 1 (fPROT_CLK = fREF_CLK2), leading to:

$$f_{\text{UART}} = \frac{f_{REF_CLK}}{2} \times \frac{1}{\text{CLKDIV} + 1} \times \frac{1}{\text{PDSCNT} + 1} \times \frac{1}{\text{DSCNT} + 1}$$

If SPCLKSEL = 2'b10 (f_{SAMP_CLK} = f_{SCLK}), and RCLKSEL = 0 (f_{REF_CLK} = f_{PCLK}), PTCLKSEL = 0 (f_{PROT_CLK} = f_{REF_CLK}). The baud rate is given by:

$$f_{\text{UART}} = f_{\text{REF}_CLK} \times \frac{1}{\text{CLKDIV} + 1} \times \frac{1}{2} \times \frac{1}{\text{PDSCNT} + 1} \times \frac{1}{\text{DSCNT} + 1}$$

There is error tolerance for the UART baud rate after setting the baud rate parameter. Table 6.15-1 lists the relative error percentage examples for user to calculate his relative baud rate setting.

HCLK Source	PCLK Source	Expect Baud Rate	CLKDIV (UUART_BRGEN[25:16])	DSCNT (UUART_BRGEN[14:10])			Error Percentage
12 MHz	HCLK	115200	0xC	0x7	0x0	115384	0.16%
12 MHz	HCLK	9600	0x7C	0x9	0x0	9600	0%
12 MHz	HCLK	2400	0x1F3	0x9	0x0	2400	0%

Table 6.13-1 Baud Rate Relationship

Note: {SPCLKSEL, PTCLKSEL, RCLKSEL = 2'b0,1'b0,1'b0}

6.13.5.7 Auto Baud Rate Detection

The UART controller supports auto baud rate detection function. It is used to identify the input baud rate from the receiver signal (USCIx_DAT0) and then revised the baud rate clock divider CLKDIV (UUART_BRGEN[25:16]) after the baud rate function done to meet the detected baud rate information. According the section of Timing Measurement Counter, the timing measurement counter is used for time interval measurement of the input signal (USCIx_DAT0) and the actual timer value is captured into bit field BRDETITV (UUART_PROTCTL[24:16]) in each falling edge of the detected signal.

When the ABREN (UUART_PROTCTL[6]) bit is enabled, the 0x55 data patterns is necessary for auto baud rate detection. The falling edge of input signal starts the baud rate counter and it loads the timing measurement counter value into the BRDETITV (UUART_PROTCTL[24:16]) in the next falling edge. It is suggested to use the $f_{DIV_{CLK}}$ (TMCNTSRC (UUART_BRGEN[5]) =1) as the counter source.

The CLKDIV (UUART_BRGEN[25:16]) will be revised by BRDETITV (UUART_PROTCTL[25:16]) after the auto baud rate function done (the time of 4th falling edge of input signal). If the user want to receive the next successive frame correctly, it is better to set the value of CLKDIV (UUART_BRGEN[25:16]) and DSCNT (UUART_BRGEN[14:10]) as the same value (the value shall be among the rang of 0xF and 0x5 because the DSCNT is used to define the sample counter of each bit and the PDSCNT (UUART_BRGEN[9:8]) is 0x0.

During the auto baud rate detection, the ABRDETIF (UUART_PROTSTS[9]) and the BRDETITV (UUART_PROTCTL[24:16]) will be updated after each falling edge of input signal and the auto baud rate pattern, 0x55, won't be received into the receiver buffer after the frame done. The bit of ABREN will be cleared by hardware after the 4th falling edge of input signal is detected thus the user can read the status of ABREN to know the auto baud rate function is done or not.

If the CLKDIV and DSCNT are not set as the same value in calculation the auto baud rate function, the user shall calculate the proper average baud rate by the value of BRDETITV and CLKDIV after the auto baud rate function done.

If the baud rate of input signal is very slower and the bit time of timing measurement counter can't calculate the correct period of the input bit time, there is a ABERRSTS bit (UUART_PROTSTS[11]) to indicate the error information of the auto baud rate detection. At this time, the user shall revise the value of CLKDIV and require the Host device to send the 0x55 pattern again.

According the limitation of timing measurement counter, the maximum auto baud rate detection is 0x1FE for BRDETITV. The UART Auto Baud Rate Control is shown in Figure 6.13-5.

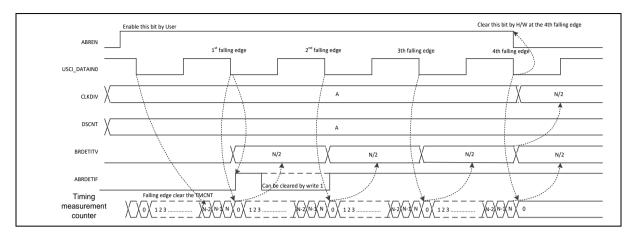


Figure 6.13-5 UART Auto Baud Rate Control

6.13.5.8 Auto Flow Control

The UART supports hardware auto-flow control that provides nRTS flow control by indicator RXFULL (UUART_BUFSTS[1]) on receiver buffer. When the buffer is full (RXFULL = 1), the nRTS is de-asserted.

The UART also provides nCTS flow control on transmitter. The nCTS is used to control the transmitted data is sent out when the nCTS is asserted.

6.13.5.9 RS-485 Support

The UART controller can play the role of the RS-485 master transmitter will identify an address character by setting the parity (9-th bit) to 1. For data characters, the parity is set to 0. Software can use the bit15 of each data to control the parity bit (PARITYEN (UUART_PROTCTL[1]) be set) when the STICKEN (UUART_PROTCTL[26]) is set. For example, if the STICKEN is set to 1 and data sequence are 0x8015, 0x8033, 0x0055, 0x0033 and 0x80AA the transmitted parity of data 0x15, 0x33, 0x55 0x33 and 0xAA will be 1, 1, 0, 0 and 1.

The UART controller can also play as an RS-485 addressable slave, the protocol-related error of PARITYERR (UUART_PROTSTS[5]) can be acted as the address bit detection when the PARITYEN (UUART_PROTCTL[1]), EVENPARITY (UUART_PROTCTL[2]) and STICKEN (UUART_PROTCTL[26]) were set. If the PARITYERR was set, it means that the address bit in the received bus is detected otherwise, the data is received into Buffer.

6.13.5.10 Wake-up Function

The USCI Controller in UART mode supports wake-up system function. The wake-up source includes incoming data and nCTS pin. Each wake-up source description is as follows:

(a) Incoming data wake-up

When system is in power-down and both of the WKEN (UUART_WKCTL[0]) and DATWKEN (UUART_PROTCTL[9]) are set, the toggle of incoming data pin can wake-up the system. In order to receive the incoming data after the system wake-up, the WAKECNT (UUART_PROTCTL[14:11]) shall be set. These bits field of WAKECNT (UUART_PROCTL[14:11]) indicate how many clock cycle selected by fPDS_CNT do the controller can get the 1st bit (start bit) when the device is wakeup from Power-down mode. The incoming data wake-wp is shown in Figure 6.13-6.

	Power-down mode	•	stable count	CPU run
CLK			, 1 1 1 1 1	
USCIx_DA (RXD)	ТО		start	
WKF				
Note: Stable count means	s HCLK source recovery stable count.			

Figure 6.13-6 Incoming Data Wake-Up

(b) nCTS pin wake-up

When system is in power-down and both of the WKEN (UUART_WKCTL[0]) and CTSWKEN (UUART_PROTCTL[10]) are set, the toggle of nCTS pin can wake-up the system. The nCTS wake-wp is shown in Figure 6.13-7 and Figure 6.13-8.

Case 1 (nCTS transition from low to high):

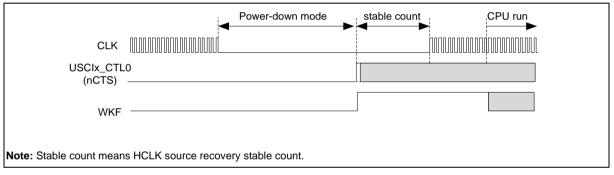


Figure 6.13-7 nCTS Wake-Up Case 1

Case 2 (nCTS transition from high to low):

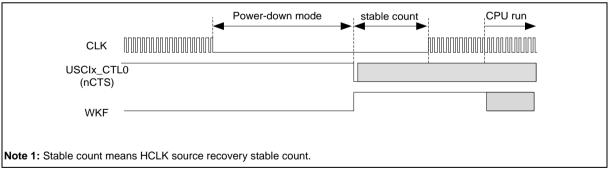


Figure 6.13-8 nCTS Wake-Up Case 2

6.13.5.11 Interrupt Events

The UART provided interrupt for protocol event and data transfer event. The description show below:

Protocol Interrupt Events

The following protocol-related events are generated in UART mode and can lead to a protocol interrupt.

Please note that the bits in register UUART_PROTSTS are not automatically cleared by hardware and have to be cleared by software in order to monitor new incoming events.

Receiver Line Status

The protocol-related error FRMERR (UUART_PROTSTS[6]) or PARITYERR (UUART_PROTSTS[5]) are two flags that are assigned to each received data word in the corresponding receiver buffer status

registers.

In UART mode, the result of the parity check by the protocol-related error indication (0 = received parity bit equal to calculated parity value), and the result of frame check by the protocol-related error indication (0 = received stop bit equal to the format value '1'). This information is elaborated for each data frame.

The break error flag BREAK (UUART_PROTSTS[7]) is assigned when the receive data is 0, the received parity and the stop bit are also 0.

The interrupt indicates that there are parity error, frame error or the break data detection in the BREAK, FRMERR, PARITYERR (UUART_PROTSTS[7:5]) bits.

Auto Baud Rate Detection

The auto baud rate interrupt, ABRDETIF (UUART_PROTSTS[9]), indicates that the timing measurement counter has getting 2-bit duration for auto baud rate capture function.

The auto baud rate detection function will be enabled in the first falling edge of receiver signal. The auto baud rate detection function is measurement after the next following falling is detected and it is finished when the frame transfer done. After the transfer done, the timing measurement counter value divided by twice is equal to the number of sample time per bit. The user can read the value of BRDETITV (UUART_PROTCTL[24:16]) and write into the baud rate generator register CLKDIV (UUART_BRGEN[25:16]).

Data Transfer Interrupt Handling

The data transfer interrupts indicate events related to UART frame handling.

Transmit Start Interrupt

Bit TXSTIF (UUART_PROTSTS[1]) is set after the start bit of a data word. In buffer mode, this is the earliest point in time when a new data word can be written to UUART_TXDAT.

Transmitter Finished

This interrupt indicates that the transmitter has completely finished all data in the buffer. Bit TXENDIF (UUART_PROTSTS[2]) becomes set at the end of the last stop bit.

Receiver Starts Interrupt

Bit RXSTIF (UUART_PROTSTS[3]) is set after the sample point of the start bit.

Receiver Frame Finished

This interrupt indicates that the receiver has completely finished a frame. Bit RXENDIF (UUART_PROTSTS[4]) becomes set at the end of the last receive bit.

6.13.5.12 Programming Example

The following steps are used to configure the UART protocol setting and the data transmission.

- 1. Set FUNMODE (UUART_CTL[2:0]) to 0x2 to select UART protocol.
- 2. Write baud rate generator register UUART_BRGEN to select desired baud rate.
 - Set SPCLKSEL (UUART_BRGEN[3:2]), PTCLKSEL (UUART_BRGEN[1]) and RCLKSEL (UUART_BRGEN[0]) to select the clock source.
 - Configure CLKDIV (UUART_BRGEN[25:16]), DSCNT (UUART_BRGEN[14:10]) and PDSCNT (UUART_BRGEN[9:8]) to determine the baud rate divider.
- 3. Write line control register UUART_LINECTL and protocol control register UUART_PROTCTL to configure the transmission data format and UART protocol setting.
 - Program data field length in DWIDTH (UUART_LINECTL[11:8]).
 - Enable parity bit and determine the parity bit type by setting EVENPARITY (UUART_PROTCTL[2]) and PARITYEN (UUART_PROTCTL[1]).
 - Configure stop bit length by setting STOPB (UUART_PROTCTL[0]).

- Enable LSB (UUART_LINECTL[0]) to select LSB first transmission for UART protocol.
- Set EDGEDET (UUART_DATIN0[4:3]) to "10" to select the detected edge as falling edge for receiver start bit detection.
- 4. Set PROTEN (UUART_PROTCTL[31]) to 1 to enable UART protocol.
- 5. Transmit and receive data.
 - Write transmit data register UUART_TXDAT to transmit data.
 - Wait until TXSTIF(UUART_PROTSTS[1]) is set and then user can write the next data in UUART_TXDAT.
 - When TXENDIF(UUART_PROTSTS[2]) is set, the transmit buffer is empty and the stop bit of the last data has been transmitted.
 - If RXENDIF(UUART_PROTSTS[4]) is set, the receiver has finished a data frame completely. User can get the data by reading receive data register UUART_RXDAT.

6.13.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
USCI_UART Base A UUARTn_BA = 0x40 n= 0, 1	Address: 00D_0000 + (0x1000*n)			
UUART_CTL	UUARTn_BA+0x00	R/W	USCI Control Register	0x0000_0000
UUART_INTEN	UUARTn_BA+0x04	R/W	USCI Interrupt Enable Register	0x0000_0000
UUART_BRGEN	UUARTn_BA+0x08	R/W	USCI Baud Rate Generator Register	0x0000_3C00
UUART_DATIN0	UUARTn_BA+0x10	R/W	USCI Input Data Signal Configuration Register 0	0x0000_0000
UUART_CTLIN0	UUARTn_BA+0x20	R/W	USCI Input Control Signal Configuration Register 0	0x0000_0000
UUART_CLKIN	UUARTn_BA+0x28	R/W	USCI Input Clock Signal Configuration Register	0x0000_0000
UUART_LINECTL	UUARTn_BA+0x2C	R/W	USCI Line Control Register	0x0000_0000
UUART_TXDAT	UUARTn_BA+0x30	W	USCI Transmit Data Register	0x0000_0000
UUART_RXDAT	UUARTn_BA+0x34	R	USCI Receive Data Register	0x0000_0000
UUART_BUFCTL	UUARTn_BA+0x38	R/W	USCI Transmit/Receive Buffer Control Register	0x0000_0000
UUART_BUFSTS	UUARTn_BA+0x3C	R	USCI Transmit/Receive Buffer Status Register	0x0000_0101
UUART_PDMACTL	UUARTn_BA+0x40	R/W	USCI PDMA Control Register	0x0000_0000
UUART_WKCTL	UUARTn_BA+0x54	R/W	USCI Wake-up Control Register	0x0000_0000
UUART_WKSTS	UUARTn_BA+0x58	R/W	USCI Wake-up Status Register	0x0000_0000
UUART_PROTCTL	UUARTn_BA+0x5C	R/W	USCI Protocol Control Register	0x0000_0000
UUART_PROTIEN	UUARTn_BA+0x60	R/W	USCI Protocol Interrupt Enable Register	0x0000_0000
UUART_PROTSTS	UUARTn_BA+0x64	R/W	USCI Protocol Status Register	0x0000_0000

6.13.7 Register Description

USCI Control Register (UUART_CTL)

Register	Offset	R/W	Description	Reset Value
UUART_CTL	UUARTn_BA+0x00	R/W	USCI Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved						FUNMODE			

Bits	Description	
[31:3]	Reserved	Reserved.
		Function Mode
		This bit field selects the protocol for this USCI controller. Selecting a protocol that is not available or a reserved combination disables the USCI. When switching between two protocols, the USCI has to be disabled before selecting a new protocol. Simultaneously, the USCI will be reset when user write 000 to FUNMODE.
[2:0]	FUNMODE	000 = The USCI is disabled. All protocol related state machines are set to idle state.
		001 = The SPI protocol is selected.
		010 = The UART protocol is selected.
		$100 = \text{The } l^2 \text{C} \text{ protocol is selected.}$
		Note: Other bit combinations are reserved.

USCI Interrupt Enable Register (UUART_INTEN)

Register	Offset	R/W	Description	Reset Value
UUART_INTEN	UUARTn_BA+0x04	R/W	USCI Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved			RXENDIEN	RXSTIEN	TXENDIEN	TXSTIEN	Reserved		

Bits	Description	
[31:5]	Reserved	Reserved.
[4]	RXENDIEN	Receive End Interrupt Enable Bit This bit enables the interrupt generation in case of a receive finish event. 0 = The receive end interrupt Disabled. 1 = The receive end interrupt Enabled.
[3]	RXSTIEN	Receive Start Interrupt Enable Blt This bit enables the interrupt generation in case of a receive start event. 0 = The receive start interrupt Disabled. 1 = The receive start interrupt Enabled.
[2]	TXENDIEN	 Transmit End Interrupt Enable Bit This bit enables the interrupt generation in case of a transmit finish event. 0 = The transmit finish interrupt Disabled. 1 = The transmit finish interrupt Enabled.
[1]	TXSTIEN	 Transmit Start Interrupt Enable Bit This bit enables the interrupt generation in case of a transmit start event. 0 = The transmit start interrupt Disabled. 1 = The transmit start interrupt Enabled.
[0]	Reserved	Reserved.

USCI Baud Rate Generator Register (UUART_BRGEN)

Register	Offset	R/W	Description	Reset Value
UUART_BRGEN	UUARTn_BA+0x08	R/W	USCI Baud Rate Generator Register	0x0000_3C00

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	CLKDIV								
15	14	13	12	11	10	9	8		
Reserved	Reserved DSCNT						PDSCNT		
7	6	5	4	3	2	1	0		
Reserved TMCNTSRC TMCNTEN SPCLKSEL					KSEL	PTCLKSEL	RCLKSEL		

Bits	Description					
[31:26]	Reserved	Reserved.				
[25:16]	CLKDIV	Clock DividerThis bit field defines the ratio between the protocol clock frequency $f_{PROT_{CLK}}$ and the clock divider frequency $f_{DIV_{CLK}}$ ($f_{DIV_{CLK}} = f_{PROT_{CLK}} / (CLKDIV+1)$).Note: In UART function, it can be updated by hardware in the 4 th falling edge of the input data 0x55 when the auto baud rate function (ABREN(UUART_PROTCTL[6])) is enabled. The revised value is the average bit time between bit 5 and bit 6. The user can use revised CLKDIV and new BRDETITV (UUART_PROTCTL[24:16]) to calculate the precise baud rate.				
[15]	Reserved	Reserved.				
[14:10]	DSCNT	Denominator for Sample Counter This bit field defines the divide ratio of the sample clock f _{SAMP_CLK} . The divided frequency f _{DS_CNT} = f _{PDS_CNT} / (DSCNT+1). Note: The maximum value of DSCNT is 0xF on UART mode and suggest to set over 4 to confirm the receiver data is sampled in right value.				
[9:8]	PDSCNT	Pre-divider for Sample Counter This bit field defines the divide ratio of the clock division from sample clock f _{SAMP_CLK} . The divided frequency f _{PDS_CNT} = f _{SAMP_CLK} / (PDSCNT+1).				
[7:6]	Reserved	Reserved.				
[5]	TMCNTSRC	Timing Measurement Counter Clock Source Selection 0 = Timing measurement counter with f _{PROT_CLK} . 1 = Timing measurement counter with f _{DIV_CLK} .				
[4]	TMCNTEN	Timing Measurement Counter Enable Bit This bit enables the 10-bit timing measurement counter. 0 = Timing measurement counter is Disabled. 1 = Timing measurement counter is Enabled.				
[3:2]	SPCLKSEL	Sample Clock Source Selection This bit field used for the clock source selection of a sample clock (f _{SAMP_CLK}) for the protocol				

		processor.
		$00 = f_{SAMP_CLK} = f_{DIV_CLK}.$
		$01 = f_{\text{SAMP_CLK}} = f_{\text{PROT_CLK}}$
		$10 = f_{SAMP_{CLK}} = f_{SCLK}$
		$11 = f_{SAMP_{CLK}} = f_{REF_{CLK}}.$
		Protocol Clock Source Selection
[4]	PTCLKSEL	This bit selects the source signal of protocol clock (f _{PROT_CLK}).
[1]		0 = Reference clock f _{REF_CLK} .
		1 = $f_{REF_{CLK2}}$ (its frequency is half of $f_{REF_{CLK}}$).
		Reference Clock Source Selection
[0]		This bit selects the source signal of reference clock (f _{REF_CLK}).
[0]	RCLKSEL	0 = Peripheral device clock f _{PCLK.}
		1 = Reserved.

USCI Input Data Signal Configuration (UUART_DATIN0)

Register	Offset	R/W	Description	Reset Value
UUART_DATIN0	UUARTn_BA+0x10	R/W	USCI Input Data Signal Configuration Register 0	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	Reserved			EDET	ININV	Reserved	SYNCSEL	

Bits	Description	
[31:5]	Reserved	Reserved.
		Input Signal Edge Detection Mode
		This bit field selects which edge actives the trigger event of input data signal.
		00 = The trigger event activation is disabled.
[4:3]	EDGEDET	01 = A rising edge activates the trigger event of input data signal.
		10 = A falling edge activates the trigger event of input data signal.
		11 = Both edges activate the trigger event of input data signal.
		Note: In UART function mode, it is suggested to set this bit field as 10.
		Input Signal Inverse Selection
[0]	ININV	This bit defines the inverter enable of the input asynchronous signal.
[2]		0 = The un-synchronized input signal will not be inverted.
		1 = The un-synchronized input signal will be inverted.
[1]	Reserved	Reserved.
		Input Signal Synchronization Selection
[0]	SYNCSEL	This bit selects if the un-synchronized input signal (with optionally inverted) or the synchronized (and optionally filtered) signal can be used as input for the data shift unit.
		0 = The un-synchronized signal can be taken as input for the data shift unit.
		1 = The synchronized signal can be taken as input for the data shift unit.

USCI Input Control Signal Configuration (UUART_CTLIN0)

Register	Offset	R/W	Description	Reset Value
UUART_CTLIN0	UUARTn_BA+0x20	R/W	USCI Input Control Signal Configuration Register 0	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	7 6 5 4 3 2 1 0								
	Reserved				ININV	Reserved	SYNCSEL		

Bits	Description	Description				
[31:3]	Reserved	Reserved.				
[2]	ININV	Input Signal Inverse Selection This bit defines the inverter enable of the input asynchronous signal. 0 = The un-synchronized input signal will not be inverted. 1 = The un-synchronized input signal will be inverted.				
[1]	Reserved	Reserved.				
[0]	SYNCSEL	 Input Synchronization Signal Selection This bit selects if the un-synchronized input signal (with optionally inverted) or the synchronized (and optionally filtered) signal can be used as input for the data shift unit. 0 = The un-synchronized signal can be taken as input for the data shift unit. 1 = The synchronized signal can be taken as input for the data shift unit. 				

USCI Input Clock Signal Configuration (UUART_CLKIN)

Register	Offset	R/W	Description	Reset Value
UUART_CLKIN	UUARTn_BA+0x28	R/W	USCI Input Clock Signal Configuration Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	Reserved						SYNCSEL	

Bits	Description	scription				
[31:1]	Reserved	Reserved.				
		Input Synchronization Signal Selection				
[0]	SYNCSEL	This bit selects if the un-synchronized input signal or the synchronized (and optionally filtered) signal can be used as input for the data shift unit.				
		0 = The un-synchronized signal can be taken as input for the data shift unit.				
		1 = The synchronized signal can be taken as input for the data shift unit.				

USCI Line Control Register (UUART_LINECTL)

Register	Offset	R/W	Description	Reset Value
UUART_LINECTL	UUARTn_BA+0x2C	R/W	USCI Line Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved				DWIDTH			
7	6	5	4	3	2	1	0	
CTLOINV	Reserved DATOINV			Rese	erved		LSB	

Bits	Description					
[31:12]	Reserved	Reserved.				
		Word Length of Transmission				
		This bit field defines the data word length (amount of bits) for reception and transmission. The data word is always right-aligned in the data buffer. USCI support word length from 4 to 16 bits.				
		0x0: The data word contains 16 bits located at bit positions[15:0].				
		0x1: Reserved.				
[11:8]	DWIDTH	0x2: Reserved.				
[11.0]		0x3: Reserved.				
		0x4: The data word contains 4 bits located at bit positions[3:0].				
		0x5: The data word contains 5 bits located at bit positions[4:0].				
		0xF: The data word contains 15 bits located at bit positions[14:0].				
		Note: In UART protocol, the length can be configured as 6~13 bits.				
		Control Signal Output Inverse Selection				
		This bit defines the relation between the internal control signal and the output control signal.				
[7]	CTLOINV	0 = No effect.				
		1 = The control signal will be inverted before its output.				
		Note: In UART protocol, the control signal means nRTS signal.				
[6]	Reserved	Reserved.				
		Data Output Inverse Selection				
[5]	DATOINV	This bit defines the relation between the internal shift data value and the output data signal of USCIx_DAT1 pin.				
		0 = The value of USCIx_DAT1 is equal to the data shift register.				
		1 = The value of USCIx_DAT1 is the inversion of data shift register.				
[4:1]	Reserved	Reserved.				
[0]	LSB	LSB First Transmission Selection				
[~]		0 = The MSB, which bit of transmit/receive data buffer depends on the setting of DWIDTH,				

	is transmitted/received first.
	1 = The LSB, the bit 0 of data buffer, will be transmitted/received first.

USCI Transmit Data Register (UUART_TXDAT)

Register	Offset	R/W	Description	Reset Value
UUART_TXDAT	UUARTn_BA+0x30	W	USCI Transmit Data Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			тхі	DAT				
7	6	5	4	3	2	1	0	
	TXDAT							

Bits	Description	Description			
[31:16]	Reserved	Reserved.			
[15:0]	TXDAT	Transmit Data Software can use this bit field to write 16-bit transmit data for transmission.			

USCI Receive Data Register (UUART_RXDAT)

Register	Offset	R/W	Description	Reset Value
UUART_RXDAT	AT UUARTn_BA+0x34 R		USCI Receive Data Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			RXI	DAT				
7	6	5	4	3	2	1	0	
	RXDAT							

Bits	Description	Description			
[31:16]	Reserved	eserved Reserved.			
[15:0]	RXDAT	Received Data This bit field monitors the received data which stored in receive data buffer. Note: RXDAT[15:13] indicate the same frame status of BREAK, FRMERR and PARITYERR (UUART_PROTSTS[7:5]).			

USCI Transmitter/Receive Buffer Control Register (UUART_BUFCTL)

Register	Offset	R/W	Description	Reset Value
UUART_BUFCTL	UUARTn_BA+0x38	R/W	USCI Transmit/Receive Buffer Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved					RXRST	TXRST
15	14	13	12	11	10	9	8
RXCLR	RXOVIEN			Rese	erved		
7	6	5	4	3	2	1	0
TXCLR	Reserved						

Bits	Description	
[31:18]	Reserved	Reserved.
		Receive Reset
		0 = No effect.
[17]	RXRST	1 = Reset the receive-related counters, state machine, and the content of receive shift register and data buffer.
		Note 1: It is cleared automatically after one PCLK cycle.
		Note 2: It is suggested to check the RXBUSY (UUART_PROTSTS[10]) before this bit will be set to 1.
		Transmit Reset
		0 = No effect.
[16]	TXRST	1 = Reset the transmit-related counters, state machine, and the content of transmit shift register and data buffer.
		Note: It is cleared automatically after one PCLK cycle.
		Clear Receive Buffer
		0 = No effect.
[15]	RXCLR	1 = The receive buffer is cleared (filling level is cleared and output pointer is set to input pointer value). Should only be used while the buffer is not taking part in data traffic.
		Note: It is cleared automatically after one PCLK cycle.
		Receive Buffer Overrun Error Interrupt Enable Bit
[14]	RXOVIEN	0 = Receive overrun interrupt Disabled.
		1 = Receive overrun interrupt Enabled.
[13:8]	Reserved	Reserved.
		Clear Transmit Buffer
		0 = No effect.
[7]	TXCLR	1 = The transmit buffer is cleared (filling level is cleared and output pointer is set to input pointer value). Should only be used while the buffer is not taking part in data traffic.
		Note: It is cleared automatically after one PCLK cycle.
[6:0]	Reserved	Reserved.

USCI Transmit/Receive Buffer Status Register (UUART_BUFSTS)

Register	Offset	R/W	Description	Reset Value
UUART_BUFSTS	UUARTn_BA+0x3C	R	USCI Transmit/Receive Buffer Status Register	0x0000_0101

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved					TXFULL	TXEMPTY
7	6	5	4	3	2	1	0
	Reserved				Reserved	RXFULL	RXEMPTY

Bits	Description	
[31:10]	Reserved	Reserved.
[9]	TXFULL	Transmit Buffer Full Indicator 0 = Transmit buffer is not full. 1 = Transmit buffer is full.
[8]	ТХЕМРТҮ	Transmit Buffer Empty Indicator 0 = Transmit buffer is not empty. 1 = Transmit buffer is empty.
[7:4]	Reserved	Reserved.
[3]	RXOVIF	 Receive Buffer Over-run Error Interrupt Status This bit indicates that a receive buffer overrun error event has been detected. If RXOVIEN (UUART_BUFCTL[14]) is enabled, the corresponding interrupt request is activated. It is cleared by software writes 1 to this bit. 0 = A receive buffer overrun error event has not been detected. 1 = A receive buffer overrun error event has been detected.
[2]	Reserved	Reserved.
[1]	RXFULL	Receive Buffer Full Indicator 0 = Receive buffer is not full. 1 = Receive buffer is full.
[0]	RXEMPTY	Receive Buffer Empty Indicator 0 = Receive buffer is not empty. 1 = Receive buffer is empty.

USCI PDMA Control Register (UUART_PDMACTL)

Register	Offset	R/W	Description	Reset Value
UUART_PDMACTL	UUARTn_BA+0x40	R/W	USCI PDMA Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved				RXPDMAEN	TXPDMAEN	PDMARST

Bits	Description	
[31:4]	Reserved	Reserved.
[3]	PDMAEN	PDMA Mode Enable Bit 0 = PDMA function Disabled. 1 = PDMA function Enabled.
[2]	RXPDMAEN	PDMA Receive Channel Available 0 = Receive PDMA function Disabled. 1 = Receive PDMA function Enabled.
[1]	TXPDMAEN	PDMA Transmit Channel Available 0 = Transmit PDMA function Disabled. 1 = Transmit PDMA function Enabled.
[0]	PDMARST	PDMA Reset 0 = No effect. 1 = Reset the USCI's PDMA control logic. This bit will be cleared to 0 automatically.

USCI Wake-up Control Register (UUART_WKCTL)

Register	Offset	R/W	Description	Reset Value
UUART_WKCTL	UUARTn_BA+0x54	R/W	USCI Wake-up Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved					Reserved	WKEN

Bits	Description	
[31:3]	Reserved	Reserved.
[2]	PDBOPT	 Power Down Blocking Option 0 = If user attempts to enter Power-down mode by executing WFI while the protocol is in transferring, MCU will stop the transfer and enter Power-down mode immediately. 1 = If user attempts to enter Power-down mode by executing WFI while the protocol is in transferring, the on-going transfer will not be stopped and MCU will enter idle mode immediately.
[1]	Reserved	Reserved.
[0]	WKEN	Wake-up Enable Bit 0 = Wake-up function Disabled. 1 = Wake-up function Enabled.

USCI Wake-up Status Register (UUART_WKSTS)

Register	Offset	R/W	Description	Reset Value
UUART_WKSTS	UUARTn_BA+0x58	R/W	USCI Wake-up Status Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved					WKF		

Bits	Description		
[31:1]	Reserved	Reserved.	
[0]	WKF	Wake-up Flag When chip is woken up from Power-down mode, this bit is set to 1. Software can write 1 to clear this bit.	

USCI Protocol Control Register – UART (UUART_PROTCTL)

Register	Offset	R/W	Description	Reset Value
UUART_PROTCTL	UUARTn_BA+0x5C	R/W	USCI Protocol Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PROTEN	DGE	BCEN	Reserved	Reserved	STICKEN	Reserved	BRDETITV
23	22	21	20	19	18	17	16
			BRDB	ΤΙΤΥ			
15	14	13	12	11	10	9	8
Reserved	Reserved WAKECNT					DATWKEN	Reserved
7	6	5	4	3	2	1	0
Reserved	ABREN	RTSAUDIREN	CTSAUTOEN	RTSAUTOEN	EVENPARITY	PARITYEN	STOPB

Bits	Description	
[31]	PROTEN	UART Protocol Enable Bit 0 = UART Protocol Disabled. 1 = UART Protocol Enabled.
[30]	DGE	Deglitch Enable Bit 0 = Deglitch Disabled. 1 = Deglitch Enabled. Note: When this bit is set to logic 1, any pulse width less than about 300 ns will be considered a glitch and will be removed in the serial data input (RX). This bit acts only on RX line and has no effect on the transmitter logic.
[29]	BCEN	Transmit Break Control Enable Bit 0 = Transmit Break Control Disabled. 1 = Transmit Break Control Enabled. Note: When this bit is set to logic 1, the serial data output (TX) is forced to the Spacing State (logic 0). This bit acts only on TX line and has no effect on the transmitter logic.
[27]	Reserved	Reserved.
[26]	STICKEN	Stick Parity Enable Bit 0 = Stick parity Disabled. 1 = Stick parity Enabled. Note: Refer to RS-485 Support section for detailed information.
[25]	Reserved	Reserved.
[24:16]	BRDETITV	Baud Rate Detection Interval This bit fields indicate how many clock cycle selected by TMCNTSRC (UUART_BRGEN[5]) does the slave calculates the baud rate in one bits. The order of the bus shall be 1 and 0 step by step (e.g. the input data pattern shall be 0x55). The user can read the value to know the current input baud rate of the bus whenever the ABRDETIF (UUART_PROTSTS[9]) is set. Note: This bit can be cleared to 0 by software writing '0' to the BRDETITV.
[15]	Reserved	Reserved.

[14:11]	WAKECNT	Wake-up Counter These bits field indicate how many clock cycle selected by f _{PDS_CNT} do the slave can get the 1 st bit (start bit) when the device is wake-up from Power-down mode.
[40]	OTOWICEN	nCTS Wake-up Mode Enable Bit
[10]	CTSWKEN	0 = nCTS wake-up mode Disabled.
		1 = nCTS wake-up mode Enabled.
		Data Wake-up Mode Enable Bit
[9]	DATWKEN	0 = Data wake-up mode Disabled.
		1 = Data wake-up mode Enabled.
		Auto-baud Rate Detect Enable Bit
		0 = Auto-baud rate detect function Disabled.
[6]	ABREN	1 = Auto-baud rate detect function Enabled.
		Note: When the auto - baud rate detect operation finishes, hardware will clear this bit. The associated interrupt ABRDETIF (UUART_PROTST[9]) will be generated (If ARBIEN (UUART_PROTIEN[1]) is enabled).
		nRTS Auto Direction Enable Bit
		When nRTS auto direction is enabled, if the transmitted bytes in the TX buffer is empty, the UART asserted nRTS signal automatically.
[5]	RTSAUDIREN	0 = nRTS auto direction control Disabled.
		1 = nRTS auto direction control Enabled.
		Note 1: This bit is used for nRTS auto direction control for RS485.
		Note 2: This bit has effect only when the RTSAUTOEN is not set.
		nCTS Auto-flow Control Enable Bit
[4]	CTSAUTOEN	When nCTS auto-flow is enabled, the UART will send data to external device when nCTS input assert (UART will not send data to device if nCTS input is dis-asserted).
1.1		0 = nCTS auto-flow control Disabled.
		1 = nCTS auto-flow control Enabled.
		nRTS Auto-flow Control Enable Bit
		When nRTS auto-flow is enabled, if the receiver buffer is full (RXFULL (UUART_BUFSTS[1] =1), the UART will de-assert nRTS signal.
[3]	RTSAUTOEN	0 = nRTS auto-flow control Disabled.
		1 = nRTS auto-flow control Enabled.
		Note: This bit has effect only when the RTSAUDIREN is not set.
		Even Parity Enable Bit
		0 = Odd number of logic 1's is transmitted and checked in each word.
[2]	EVENPARITY	1 = Even number of logic 1's is transmitted and checked in each word.
		Note: This bit has effect only when PARITYEN is set.
		Parity Enable Bit
		This bit defines the parity bit is enabled in an UART frame.
[1]	PARITYEN	0 = The parity bit Disabled.
		1 = The parity bit Enabled.
		Stop Bits
[0]	STOPB	This bit defines the number of stop bits in an UART frame.
		0 = The number of stop bits is 1.
		1 = The number of stop bits is 2.

USCI Protocol Interrupt Enable Register – UART (UUART_PROTIEN)

Register	Offset	R/W	Description	Reset Value
UUART_PROTIEN	UUARTn_BA+0x60	R/W	USCI Protocol Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved					ABRIEN	Reserved

Bits	Description	Description		
[31:3]	Reserved	Reserved Reserved.		
[2]	RLSIEN	Receive Line Status Interrupt Enable Bit 0 = Receive line status interrupt Disabled. 1 = Receive line status interrupt Enabled. Note: UUART_PROTSTS[7:5] indicates the current interrupt event for receive line status interrupt.		
[1]	ABRIEN	Auto-baud Rate Interrupt Enable Bit 0 = Auto-baud rate interrupt Disabled. 1 = Auto-baud rate interrupt Enabled.		
[0]	Reserved	Reserved.		

USCI Protocol Status Register – UART (UUART_PROTSTS)

Register	Offset	R/W	Description	Reset Value
UUART_PROTSTS	UUARTn_BA+0x64	R/W	USCI Protocol Status Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						CTSSYNCLV
15	14	13	12	11	10	9	8
	Rese	erved		ABERRSTS	RXBUSY	ABRDETIF	Reserved
7	6	5	4	3	2	1	0
BREAK	FRMERR	PARITYERR	RXENDIF	RXSTIF	TXENDIF	TXSTIF	Reserved

Bits	Description	Description				
[31:18]	Reserved	Reserved.				
[17]	CTSLV	nCTS Pin Status (Read Only) This bit used to monitor the current status of nCTS pin input. 0 = nCTS pin input is low level voltage logic state. 1 = nCTS pin input is high level voltage logic state.				
[16]	CTSSYNCLV	 nCTS Synchronized Level Status (Read Only) This bit used to indicate the current status of the internal synchronized nCTS signal. 0 = The internal synchronized nCTS is low. 1 = The internal synchronized nCTS is high. 				
[15:12]	Reserved	Reserved.				
[11]	ABERRSTS	 Auto-baud Rate Error Status This bit is set when auto-baud rate detection counter overrun. When the auto-baud rate counter overrun, the user shall revise the CLKDIV (UUART_BRGEN[25:16]) value and enable ABREN (UUART_PROTCTL[6]) to detect the correct baud rate again. 0 = Auto-baud rate detect counter is not overrun. 1 = Auto-baud rate detect counter is overrun. Note 1: This bit is set at the same time of ABRDETIF. Note 2: This bit can be cleared by writing "1" to ABRDETIF or ABERRSTS. 				
[10]	RXBUSY	RX Bus Status Flag (Read Only) This bit indicates the busy status of the receiver. 0 = The receiver is Idle. 1 = The receiver is BUSY.				
[9]	ABRDETIF	Auto-baud Rate Interrupt Flag This bit is set when auto-baud rate detection is done among the falling edge of the input data. If the ABRIEN (UUART_PROTCTL[6]) is set, the auto-baud rate interrupt will be				

[1]	TXSTIF	 Transmit Start Interrupt Flag 0 = A transmit start interrupt status has not occurred. 1 = A transmit start interrupt status has occurred. Note 1: It is cleared by software writing one into this bit. Note 2: Used for user to load next transmit data when there is no data in transmit buffer.
[2]	TXENDIF	 Transmit End Interrupt Flag 0 = A transmit end interrupt status has not occurred. 1 = A transmit end interrupt status has occurred. Note: It is cleared by software writing 1 into this bit.
[3]	RXSTIF	 Receive Start Interrupt Flag 0 = A receive start interrupt status has not occurred. 1 = A receive start interrupt status has occurred. Note: It is cleared by software writing 1 into this bit.
[4]	RXENDIF	 Receive End Interrupt Flag 0 = A receive finish interrupt status has not occurred. 1 = A receive finish interrupt status has occurred. Note: It is cleared by software writing 1 into this bit.
[5]	PARITYERR	 Parity Error Flag This bit is set to logic 1 whenever the received character does not have a valid "parity bit". 0 = No parity error is generated. 1 = Parity error is generated. Note: This bit can be cleared by writing "1" among the BREAK, FRMERR and PARITYERF bits.
[6]	FRMERR	 Framing Error Flag This bit is set to logic 1 whenever the received character does not have a valid "stop bit (that is, the stop bit following the last data bit or parity bit is detected as logic 0). 0 = No framing error is generated. 1 = Framing error is generated. Note: This bit can be cleared by writing "1" among the BREAK, FRMERR and PARITYERF bits.
[7]	BREAK	 Break Flag This bit is set to logic 1 whenever the received data input (RX) is held in the "spacing state (logic 0) for longer than a full word transmission time (that is, the total time of "start bit" + data bits + parity + stop bits). 0 = No Break is generated. 1 = Break is generated in the receiver bus. Note: This bit can be cleared by writing "1" among the BREAK, FRMERR and PARITYERF bits.
[8]	Reserved	 before the next falling edge of the input bus. 0 = Auto-baud rate detect function is not done. 1 = One Bit auto-baud rate detect function is done. Note: This bit can be cleared by writing "1" to it. Reserved.
		generated. This bit can be set 4 times when the input data pattern is 0x55 and it is cleared

6.14 USCI - SPI Mode

6.14.1 Overview

The SPI protocol of USCI controller applies to synchronous serial data communication and allows full duplex transfer. It supports both master and Slave operation mode with the 4-wire bi-direction interface. SPI mode of USCI controller performs a serial-to-parallel conversion on data received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. The SPI mode is selected by FUNMODE (USPI_CTL[2:0]) = 0x1

This SPI protocol can operate as Master or Slave mode by setting the SLAVE (USPI_PROTCTL[0]) to communicate with the off-chip SPI Slave or master device. The application block diagrams in Master and Slave mode are shown below.

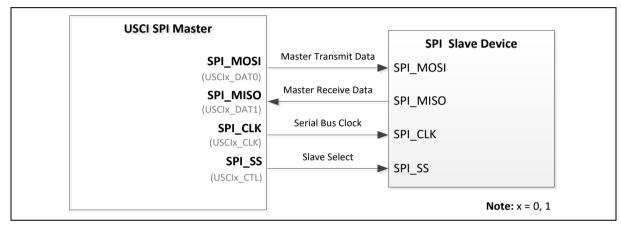


Figure 6.14-1 SPI Master Mode Application Block Diagram

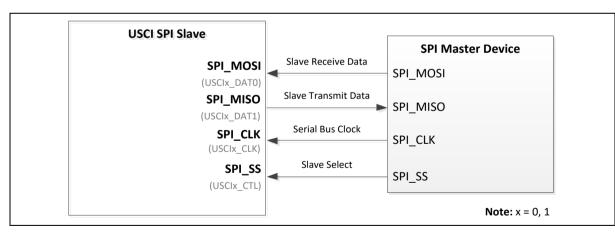


Figure 6.14-2 SPI Slave Mode Application Block Diagram

6.14.2 Features

- Supports Master or Slave mode operation (the maximum frequency -- Master = f_{PCLK} / 2, Slave < f_{PCLK} / 5)
- Configurable bit length of a transfer word from 4 to 16-bit
- Supports one transmit buffer and two receive buffers for data payload
- Supports MSB first or LSB first transfer sequence

- Supports Word Suspend function
- Supports PDMA transfer
- Supports 3-wire, no slave select signal, bi-direction interface
- Supports wake-up function by slave select signal in Slave mode
- Supports one data channel half-duplex transfer

fpclk **Protocol-Relative** USCIx_CLK **Clock Generator** USCIx_CTL0 Peripheral Input Device USCIx_DAT0/1 Data SPI Protocol Processor Buffer Data User Shift Processor Control Buffer Interface Unit Unit Output Configuration Wake-up Control **Control Register** To Interrupt Interrupt Signal Generation Note: x = 0, 1

6.14.3 Block Diagram

Figure 6.14-3 USCI SPI Mode Block Diagram

6.14.4 Basic Configuration

6.14.4.1 USCI0 SPI Basic Configurations

- Clock Source Configuration
 - Enable USCI0 peripheral clock in USCI0CKEN (CLK_APBCLK1[8]).
 - Enable USCI0_SPI function on USCI0 USPI_CTL[2:0] register, USPI_CTL[2:0]=3'b001
- Reset Configuration
 - Reset USCI0 controller in USCI0RST (SYS_IPRST2[8]).
- Pin Configuration

Group	Pin Name	GPIO	MFP
USCIO		PA.0~PA.5, PB.4~PB.7, PC.0~PC.7	MFP10
	USCI0_CLK	PD.4	MFP4

	USCI0_CTL0	PA.0~PA.5, PB.4~PB.7, PC.0~PC.7	MFP13
		PD.7	MFP4
		PA.0~PA.5, PB.4~PB.7, PC.0~PC.7	MFP11
	USCI0_DAT0	PD.5	MFP4
		PA.0~PA.5, PB.4~PB.7, PC.0~PC.7	MFP12
	USCI0_DAT1	PD.6	MFP4

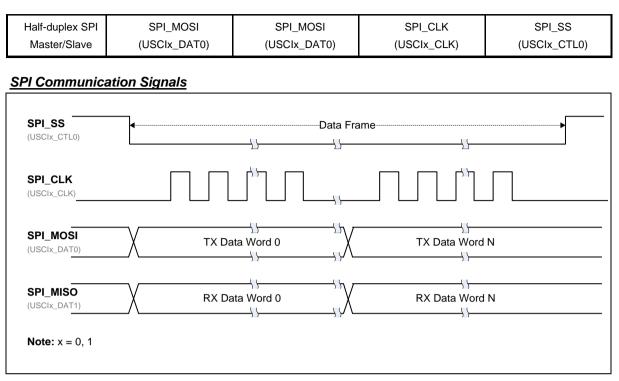
6.14.4.2 USCI1 SPI Basic Configurations

- Clock Source Configuration
 - Enable USCI1 peripheral clock in USCI1CKEN (CLK_APBCLK1[9]).
 - Enable USCI1_SPI function on USCI1 USPI_CTL[2:0] register, USPI_CTL[2:0]=3'b001
- Reset Configuration
 - Reset USCI1 controller in USCI0RST (SYS_IPRST2[9]).
- Pin Configuration

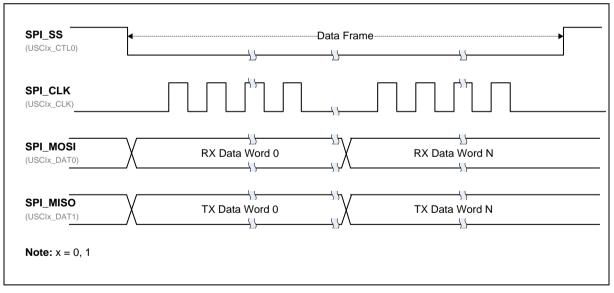
Group	Pin Name	GPIO	MFP
		PA.0~PA.5, PB.4~PB.7, PC.0~PC.7	MFP15
	USCI1_CLK	PD.0	MFP4
	USCI1_CTL0	PA.0~PA.5, PB.4~PB.7, PC.0~PC.7	MFP18
		PD.3	MFP4
USCI1		PA.0~PA.5, PB.4~PB.7, PC.0~PC.7	MFP16
	USCI1_DAT0	PD.1	MFP4
		PA.0~PA.5, PB.4~PB.7, PC.0~PC.7	MFP17
	USCI1_DAT1	PD.2	MFP4

6.14.5 Functional Description

6.14.5.1 USCI Common Function Description


Please refer to section 6.12.4 for detailed information.

6.14.5.2 Signal Description


A device operating in Master mode controls the start and end of a data transfer, as well as the generation of the SPI bus clock and slave select signal. The slave select signal indicates the start and the end of a data transfer, and the master device can use it to enable the transmitting or receiving operations of Slave device. Slave device receives the SPI bus clock and optionally a slave select signal for data transaction. The signals for SPI communication are shown below.

SPI Mode	Receive Data	Transmit Data	Serial Bus Clock	Slave Select
Full-duplex SPI	SPI_MISO	SPI_MOSI	SPI_CLK	SPI_SS
Master	(USCIx_DAT1)	(USCIx_DAT0)	(USClx_CLK)	(USCIx_CTL0)
Full-duplex SPI	SPI_MOSI	SPI_MISO	SPI_CLK	SPI_SS
Slave	(USCIx_DAT0)	(USCIx_DAT1)	(USClx_CLK)	(USCIx_CTL0)

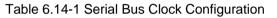
M0A21/M0A23 Series

Figure 6.14-44-Wire Full-Duplex SPI Communication Signals (Master Mode)

Figure 6.14-54-Wire Full-Duplex SPI Communication Signals (Slave Mode)

6.14.5.3 Serial Bus Clock Configuration

The USCI controller needs the peripheral clock to drive the USCI logic unit to perform the data transfer. The peripheral clock frequency is equal to PCLK frequency.


In Master mode, the frequency of the SPI bus clock is determined by protocol-relative clock generator. In general, the SPI bus clock is denoted as SPI clock. The frequency of SPI clock is half of f_{SAMP_CLK} , which can be selected by SPCLKSEL (USPI_BRGEN[3:2]). Refer to section 6.12.4 for details of protocol-relative clock generator.

In Slave mode, the SPI bus clock is provided by an off-chip Master device. The peripheral clock

frequency, f_{PCLK} , of SPI Slave device must be 5-times faster than the serial bus clock rate of the SPI Master device connected together (i.e. the clock rate of serial bus clock < 1/5 peripheral clock f_{PCLK} in Slave mode).

In SPI protocol, SCLKMODE (USPI_PROTCTL[7:6]) defines not only the idle state of serial bus clock but also the serial clock edge used for transmit and receive data. Both Master and Slave devices on the same communication bus should have the same SCLKMODE configuration. The four kinds of serial bus clock configuration are shown below.

SCLKMODE [1:0]	SPI Clock Idle State	Transmit Timing	Receive Timing
0x0	Low	Falling edge	Rising edge
0x1	Low	Rising edge	Falling edge
0x2	High	Rising edge	Falling edge
0x3	High	Falling edge	Rising edge

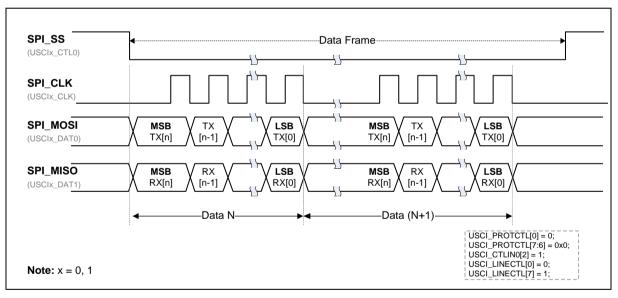


Figure 6.14-6 SPI Communication with Different SPI Clock Configuration (SCLKMODE=0x0)

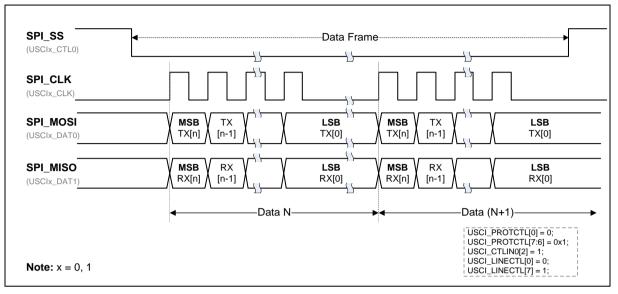
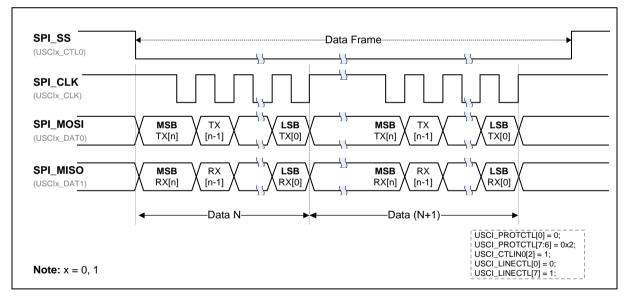
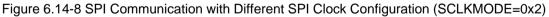




Figure 6.14-7 SPI Communication with Different SPI Clock Configuration (SCLKMODE=0x1)

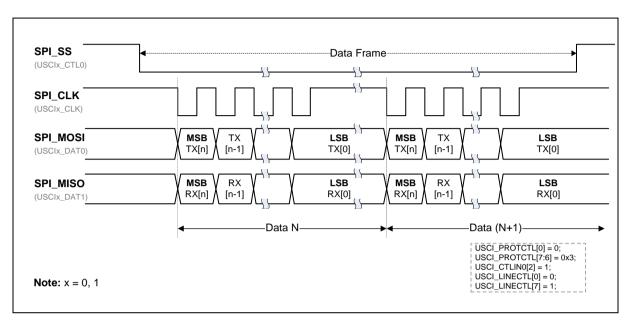


Figure 6.14-9 SPI Communication with Different SPI Clock Configuration (SCLKMODE=0x3)

6.14.5.4 Slave Select Signal

The slave selection signal of SPI protocol is active high by default. In SPI Master mode, the USCI controller can drive the control signal to off-chip SPI Slave device through slave select pin SPI_SS (USCIx_CTL0). In SPI Slave mode, the received slave select signal can be inverted by ININV (USPI_CTLIN0[2]).

If the slave select signal of external SPI Master device is low active, the ININV (USPI_CTLIN0[2]) setting of slave device should be set to 1 for the inversion of input control signal. If USCI operates as SPI Master mode, the output slave select inversion CTLOINV (USPI_LINECTL[7]) is also needed to set as 1 for the external SPI Slave device whose slave select signal is active low.

The duration between the slave select active edge and the first SPI clock input edge shall over 2 USCI peripheral clock cycles.

The input slave select signal of SPI Slave has to be keep inactive for at least 2 USCI peripheral clock cycles between two consecutive frames in order to correctly detect the end of a frame.

6.14.5.5 Transmit and Receive Data

The bit length of a transmit/receive data word in SPI protocol of USCI controller is defined in DWIDTH (USPI_LINECTL[11:8]), and it can be configured up to 16-bit length for transmitting and receiving data in SPI communication.

The LSB bit (USPI_LINECTL[0]) defines the order of transfer data bit. If the LSB bit is set to 1, the transmission data sequence is LSB first. If the LSB bit is cleared to 0, the transmission data sequence is MSB first.

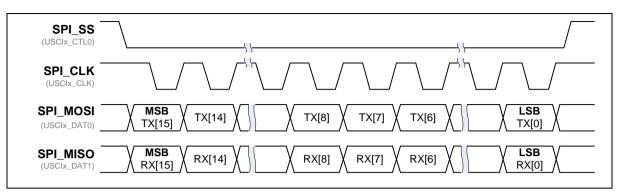
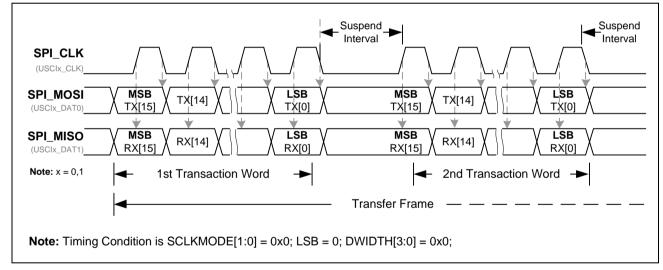
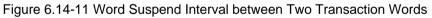




Figure 6.14-1016-bit Data Length in One Word Transaction with MSB First Format

6.14.5.6 Word Suspend

SUSPITV (USPI_PROTCTL[11:8]) provides a configurable suspend interval, 0.5 ~ 15.5 SPI clock periods, between two successive transaction words in Master mode. The definition of the suspend interval is the interval between the last clock edge of the preceding transaction word and the first clock edge of the following transaction word. The default value of SUSPITV (USPI_PROTCTL[11:8]) is 0x3 (3.5 SPI clock cycles).

6.14.5.7 Automatic Slave Select Function

AUTOSS (USPI_PROTCTL[3]) is used for SPI Master mode to enable the automatic slave select function. If the bit AUTOSS (USPI_PROTCTL[3]) is set, the slave select signal will be generated automatically and the setting value of SS (USPI_PROTCTL[2]) will not affect the output slave select (through USCIx_CTL0 line). This means that the slave select signal will be asserted by the USCI controller when the SPI data transfer is started by writing to the transmit buffer. And, it will be de-asserted after either all transaction is finished or one word transaction done if the value of SUSPITV (USPI_PROTCTL[11:8]) is equal to or great than 3.

If the AUTOSS bit (USPI_PROTCTL[3]) is cleared, the slave select on USCIx_CTL0 pin will be asserted/de-asserted by setting/clearing the SS (USPI_PROTCTL[2]). The internal slave select signal is active high and the CTLOINV (USPI_LINECTL[7]) can be used for the inversion of the slave select signal.

In SPI Master mode, if the value of SUSPITV (USPI_PROTCTL[11:8]) is less than 3 and the AUTOSS (USPI_PROTCTL[3]) is set as 1, the slave select signal will be kept at active state between two

successive word transactions.

In SPI Slave mode, to recognize the inactive state of the slave select signal, the inactive period of the received slave select signal must be larger than 2 peripheral clock cycles between two successive transactions.

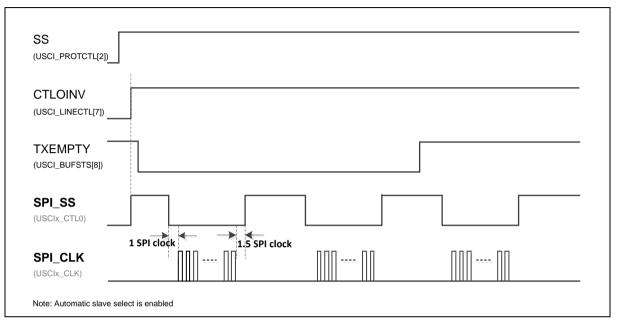


Figure 6.14-12 Auto Slave Select (SUSPITV \geq 0x3)

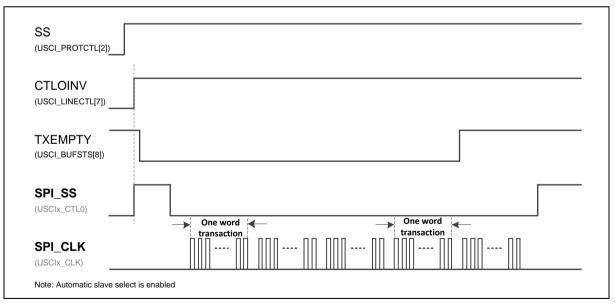


Figure 6.14-13 Auto Slave Select (SUSPITV < 0x3)

6.14.5.8 Slave 3-wire Mode

When the SLV3WIRE (USPI_PROTCTL[1]) is set by software to enable the Slave 3-wire mode, the USCI SPI communication can work with no slave select signal in Slave mode. The SLV3WIRE (USPI_PROTCTL[1]) only takes effect in SPI Slave mode. Only three pins, SPI_CLK (through USCIx_CLK line), SPI_MOSI (through USCIx_DAT0 line), and SPI_MISO (through USCIx_DAT1 line), are required to communicate with a SPI Master. When the SLV3WIRE (USPI_PROTCTL[1]) is set to 1, the SPI Slave will be ready to transmit/receive data after the SPI protocol is enabled by setting

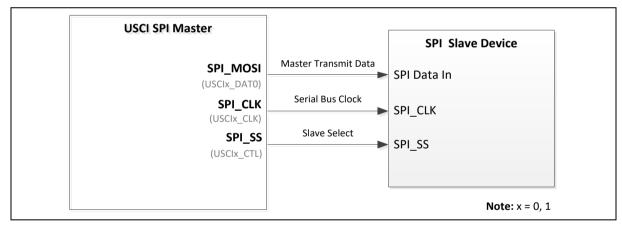
FUNMODE(USPI_CTL [2:0]) to 0x1.

6.14.5.9 Data Transfer Mode

The USCI controller supports full-duplex SPI transfer and one data channel half-duplex SPI transfer.

• Full-duplex SPI transfer

In full-duplex SPI transfer, there are two data pins. One is used for transmitting data and the other is used for receiving data. Thus, data transmission and data reception can be performed simultaneously.


SCLKMODE (USPI_PROTCTL[7:6]) defines the transition timing of the data shift output signal on USCIx_DAT0 pin. The transition may happen at the corresponding edge of SPI bus clock or active edge of slave select signal. The level of the last data bit of a data word is held on USCIx_DAT0 pin until the next data word begins with the next corresponding edge of the serial bus clock.

• One data channel half-duplex SPI transfer

In one data channel half-duplex SPI transfer, there is only one data pin for data transfer. Thus, the data transmission and data reception are at different time interval. The data shift direction is determined by PORTDIR (USPI_TXDAT[16]). Refer to the register description for more detail information.

The function of one data channel half-duplex SPI transfer is similar to the full-duplex SPI protocol. All the transfer data timing is the same as the full-duplex SPI transfer.

Figure 6.14-14 shows the one output data channel and one input data channel half-duplex transfer diagrams with the external device.

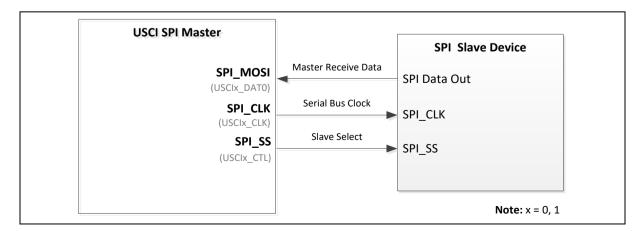


Figure 6.14-15 One Input Data Channel Half-duplex (SPI Master Mode)

The one data channel half-duplex transfer mode can be configured by TSMSEL[2:0] (USPI_PROTCTL[14:12]) and PORTDIR (USPI_TXDAT[16]) settings. When TSMSEL (USPI_PROTCTL[14:12]) is set to 0x4, one data channel half-duplex transfer mode is selected. The PORTDIR (USPI_TXDAT[16]) is used to define the direction of the corresponding transmit data. When the PORTDIR bit is set to 0, the USCI controller will send the corresponding data to external SPI device. When the PORTDIR bit is set to 1, the controller will read the corresponding data from the external SPI device.

For example, in one data channel half-duplex transfer mode with PORTDIR=0, USCI SPI transmits data through USCIx_DAT0 pin; if PORTDIR=1, USCI SPI receives data through USCIx_DAT0 pin.

6.14.5.10 Interrupt

Data Transfer Interrupts

Transmit start interrupt

The interrupt event TXSTIF (USPI_PROTSTS[1]) is set after the start of the first data bit of a transmit data word. It can be cleared only by writing 1 to it.

• Transmit end interrupt

The interrupt event TXENDIF (USPI_PROTSTS[2]) is set after the start of the last data bit of the last transmit data which has been stored in transmit buffer. It can be cleared only by writing 1 to it.

• Receive start interrupt

The interrupt event RXSTIF (USPI_PROTSTS[3]) is set after the start of the first data bit of a receive data word. It can be cleared only by writing 1 to it.

• Receive end interrupt

The interrupt event RXENDIF (USPI_PROTSTS[4]) is set after the start of the last data bit of a receive data word. It can be cleared only by writing 1 to it.

Protocol-Related Interrupts

SPI slave select interrupt

In SPI Slave mode, there are slave select active and in-active interrupt flags, SSACTIF (USPI_PROTSTS[9]) and SSINAIF (USPI_PROTSTS[8]), will be set to 1 when SLAVE (USPI_PROTCTL [0]) is set to 1 and Slave senses the slave select signal active or inactive. The SPI controller will issue an interrupt if SSINAIEN (USPI_PROTIEN[0]) or SSACTIEN (USPI_PROTIEN[1]), are set to 1. Because the internal slave select signal in SPI function is active high, the ININV (USPI_CTLIN0[2]) can be used for inverting the slave select signal comes from an active low device.

• Slave time-out interrupt

In SPI Slave mode, there is Slave time-out function for user to know that there is no serial clock input during the period of one word transaction. The Slave time-out function uses the timing measurement counter for the calculation of Slave time-out period which is defined by SLVTOCNT (USPI_PROTCTL[25:16]). TMCNTSRC (USPI_BRGEN[5]) can be used for clock frequency selection of timing measurement counter to calculate the Slave time-out period.

When the timing measurement counter is enabled by TMCNTEN (USPI_BRGEN[4]) and the setting value of SLVTOCNT (USPI_PROTCTL[25:16]) is not 0 in SPI Slave mode, the timing measurement counter will start counting after the first input serial clock of each received word data. This counter will be reset while receiving the following input serial clock and then keep counting. Finally, the timing measurement counter will be cleared and stopped after the finish of the current word transaction. If the value of the time-out counter

is equal to or greater than the value of SLVTOCNT (USPI_PROTCTL[25:16]) before one word transaction is done, the Slave time-out interrupt event occurs and the SLVTOIF (USPI_PROTSTS[5]) will be set to 1.

Buffer-Related Interrupts

The buffer-related interrupts are available if there is transmit/receive buffer in USCI controller.

• Receive buffer overrun interrupt

If there is receive buffer overrun event, RXOVIF (USPI_BUFSTS[3]) will be set as 1. It can be cleared by write 1 into it.

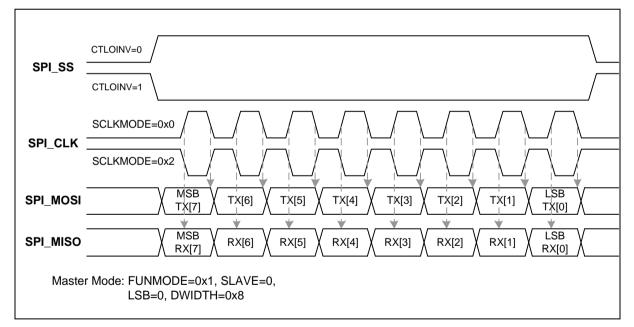
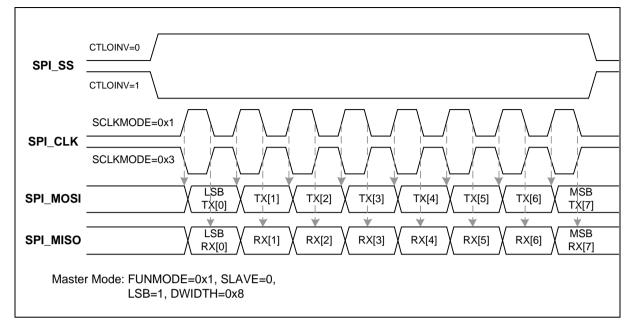
• Transmit buffer under-run interrupt

If there is transmit buffer under-run event, TXUDRIF (USPI_BUFSTS[11]) will be set as 1. It can be cleared by write 1 into it.

6.14.5.11 Timing Diagram

The slave select signal of USCI SPI protocol is active high by default, and it can be inverted by CTLOINV (USPI_LINECTL[7]) setting.

The idle state of serial bus clock and the serial bus clock edge used for transmit/receive data can be configured by setting SCLKMODE (USPI_PROTCTL[7:6]). The bit length of a transaction word data is determined by DWIDTH (USPI_LINECTL[11:8]), and data bit transfer sequence is determined by LSB (USPI_LINECTL[0]). Four SPI timing diagrams for Master/Slave operations and the related settings are shown below.

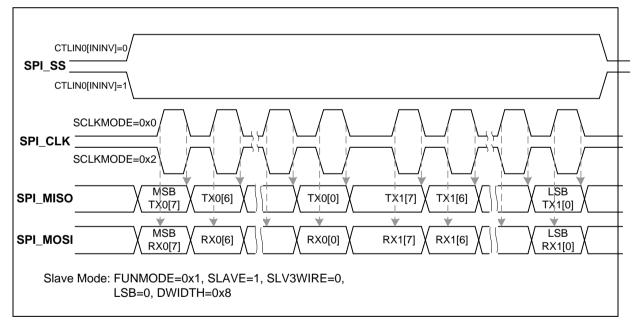


Figure 6.14-16 SPI Timing in Master Mode

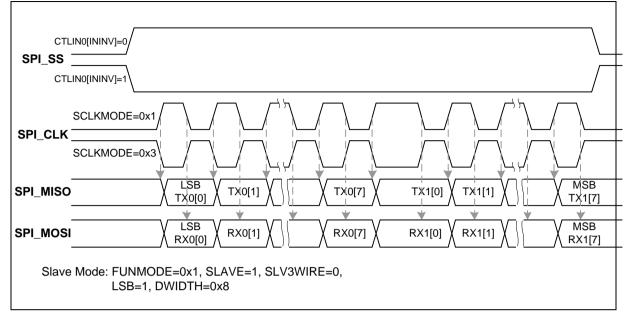


Figure 6.14-19 SPI Timing in Slave Mode (Alternate Phase of Serial Bus Clock)

6.14.5.12 Programming Flow

This section describes the programming flow for USCI SPI data transfer.

For Master mode:

- 1. Enable USCI peripheral clock by setting CLK_APBCLK1 register.
- 2. Configure user-specified pins as USCI function pins by setting corresponding multiple function control registers.
- 3. Set FUNMODE (USPI_CTL[2:0]) to 1 to select SPI mode.
- 4. Set USPI_BRGEN register to determine the SPI bus clock frequency.
- 5. According to the requirements of user's application, configure the settings as follows.
 - CTLOINV (USPI_LINECTL[7]): If the slave selection signal is active low, set this bit to 1; otherwise, set it to 0.
 - DWIDTH (USPI_LINECTL[11:8]): Data width setting.
 - LSB (USPI_LINECTL[0]): LSB first or MSB first.
 - TSMSEL (USPI_PROTCTL[14:12]): Full-duplex SPI transfer or one channel half-duplex SPI transfer.
 - SCLKMODE (USPI_PROTCTL[7:6]): Determine the clock timing.
 - AUTOSS (USPI_PROTCTL[3]): Enable automatic slave select function or not.
 - SLAVE (USPI_PROTCTL[0]): Set to 0 for Master mode.
 - Set PROTEN (USPI_PROTCTL[31]) to 1 to enable SPI protocol.
- 6. If automatic slave select function is disabled (AUTOSS=0), set SS (USPI_PROTCTL[2]) to 1 before data transfer; set SS to 0 to inactivate the slave selection signal by user's application.
- 7. Write USPI_TXDAT register to trigger SPI transfer. In half-duplex SPI transfer, the data pin direction is determined by PORTDIR (USPI_TXDAT[16]) setting.
- 8. User can get the received data by reading USPI_RXDAT register as long as RXEMPTY (USPI_BUFSTS[0]) is 0. The SPI data transfer can be triggered by writing USPI_TXDAT

register as long as TXFULL (USPI_BUFSTS[9]) is 0.

For Slave mode:

- 1. Enable USCI peripheral clock by setting CLK_APBCLK1 register.
- 2. Configure user-specified pins as USCI function pins by setting corresponding multiple function control registers.
- 3. Set FUNMODE (USPI_CTL[2:0]) to 1 to select SPI mode.
- 4. According to the requirements of user's application, configure the settings as follows.
 - ININV (USPI_CTLIN0[2]): If the slave selection signal is active low, set this bit to 1; otherwise, set it to 0.
 - DWIDTH (USPI_LINECTL[11:8]): Data width setting.
 - LSB (USPI_LINECTL[0]): LSB first or MSB first.
 - TSMSEL (USPI_PROTCTL[14:12]): Full-duplex SPI transfer or one channel half-duplex SPI transfer.
 - SCLKMODE (USPI_PROTCTL[7:6]): Determine the clock timing.
 - SLAVE (USPI_PROTCTL[0]): Set to 1 for Slave mode.
- 5. Set PROTEN (USPI_PROTCTL[31]) to 1 to enable SPI protocol.
- 6. Write USPI_TXDAT register for transmission. In half-duplex SPI transfer, the data pin direction is determined by PORTDIR (USPI_TXDAT[16]) setting.
- 7. User can get the received data by reading USPI_RXDAT register as long as RXEMPTY (USPI_BUFSTS[0]) is 0. The next datum for transmission can be written to USPI_TXDAT register as long as TXFULL (USPI_BUFSTS[9]) is 0.

6.14.5.13 Wake-up Function

The USCI Controller in SPI mode supports wake-up system function. The wake-up source in SPI protocol is the transition of input slave select signal.

6.14.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
USCI_SPI Base Address: USPIn_BA = 0x400D_0000 + (0x1000 * n) n= 0, 1							
USPI_CTL	USPIn_BA+0x00	R/W	USCI Control Register	0x0000_0000			
USPI_INTEN	USPIn_BA+0x04	R/W	USCI Interrupt Enable Register	0x0000_0000			
USPI_BRGEN	USPIn_BA+0x08	R/W	USCI Baud Rate Generator Register	0x0000_3C00			
USPI_DATIN0	USPIn_BA+0x10	R/W	USCI Input Data Signal Configuration Register 0	0x0000_0000			
USPI_CTLIN0	USPIn_BA+0x20	R/W	USCI Input Control Signal Configuration Register 0	0x0000_0000			
USPI_CLKIN	USPIn_BA+0x28	R/W	USCI Input Clock Signal Configuration Register	0x0000_0000			
USPI_LINECTL	USPIn_BA+0x2C	R/W	USCI Line Control Register	0x0000_0000			
USPI_TXDAT	USPIn_BA+0x30	W	USCI Transmit Data Register	0x0000_0000			

USPI_RXDAT	USPIn_BA+0x34	R	USCI Receive Data Register	0x0000_0000
USPI_BUFCTL	USPIn_BA+0x38	R/W	USCI Transmit/Receive Buffer Control Register	0x0000_0000
USPI_BUFSTS	USPIn_BA+0x3C	R	USCI Transmit/Receive Buffer Status Register	0x0000_0101
USPI_PDMACTL	USPIn_BA+0x40	R/W	USCI PDMA Control Register	0x0000_0000
USPI_WKCTL	USPIn_BA+0x54	R/W	USCI Wake-up Control Register	0x0000_0000
USPI_WKSTS	USPIn_BA+0x58	R/W	USCI Wake-up Status Register	0x0000_0000
USPI_PROTCTL	USPIn_BA+0x5C	R/W	USCI Protocol Control Register	0x0000_0300
USPI_PROTIEN	USPIn_BA+0x60	R/W	USCI Protocol Interrupt Enable Register	0x0000_0000
USPI_PROTSTS	USPIn_BA+0x64	R/W	USCI Protocol Status Register	0x0000_0000

6.14.7 Register Description

USCI Control Register (USPI_CTL)

Register	Offset	R/W	Description	Reset Value
USPI_CTL	USPIn_BA+0x00	R/W	USCI Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
Reserved					FUNMODE				

Bits	Descriptior	1
[31:3]	Reserved	Reserved.
[2:0]		Function Mode This bit field selects the protocol for this USCI controller. Selecting a protocol that is not available or a reserved combination disables the USCI. When switching between two protocols, the USCI has to be disabled before selecting a new protocol. Simultaneously, the USCI will be reset when user write 000 to FUNMODE. 000 = The USCI is disabled. All protocol related state machines are set to idle state. 001 = The SPI protocol is selected. 010 = The UART protocol is selected. 100 = The I ² C protocol is selected. Note: Other bit combinations are reserved.

USCI Interrupt Enable Register (USPI_INTEN)

Register	Offset	R/W	Description	Reset Value
USPI_INTEN	USPIn_BA+0x04	R/W	USCI Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
Reserved			RXENDIEN	RXSTIEN	TXENDIEN	TXSTIEN	Reserved		

Bits	Description									
[31:5]	Reserved	eserved.								
[4]	RXENDIEN	 Receive End Interrupt Enable Bit This bit enables the interrupt generation in case of a receive finish event. 0 = The receive end interrupt Disabled. 1 = The receive end interrupt Enabled. Note: The receive finish event happens when hardware receives the last bit of RX data into shift data unit. 								
[3]	RXSTIEN	 Receive Start Interrupt Enable Bit This bit enables the interrupt generation in case of a receive start event. 0 = The receive start interrupt Disabled. 1 = The receive start interrupt Enabled. Note: For SPI master mode, the receive start event happens when SPI master sends slave select active and spi clock to the external SPI slave. For SPI slave mode, the receive start event happens when SPI master. 								
[2]	TXENDIEN	 Transmit End Interrupt Enable Bit This bit enables the interrupt generation in case of a transmit finish event. 0 = The transmit finish interrupt Disabled. 1 = The transmit finish interrupt Enabled. Note: The transmit finish event happens when hardware sends the last bit of TX data from shift data unit. 								
[1]	TXSTIEN	 Transmit Start Interrupt Enable Bit This bit enables the interrupt generation in case of a transmit start event. 0 = The transmit start interrupt Disabled. 1 = The transmit start interrupt Enabled. Note: The transmit start event happens when hardware starts to move TX data from data buffer to shift data unit. 								
[0]	Reserved	Reserved.								

USCI Baud Rate Generator Register (USPI_BRGEN)

Register	Offset	R/W	Description	Reset Value
USPI_BRGEN	USPIn_BA+0x08	R/W	USCI Baud Rate Generator Register	0x0000_3C00

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	CLKDIV							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
Rese	erved	TMCNTSRC	TMCNTEN	SPCL	KSEL	PTCLKSEL	RCLKSEL	

Bits	Description						
[31:26]	Reserved	Reserved.					
[25:16]	CLKDIV	Clock Divider This bit field defines the ratio between the protocol clock frequency f_{PROT_CLK} and the clock divider frequency f_{DIV_CLK} (f_{DIV_CLK} = f_{PROT_CLK} / (CLKDIV+1)).					
[15:6]	Reserved	eserved.					
[5]	TMCNTSRC	Time Measurement Counter Clock Source Selection 0 = Time measurement counter with f _{PROT_CLK} . 1 = Time measurement counter with f _{DIV_CLK} .					
[4]	TMCNTEN	Time Measurement Counter Enable Bit This bit enables the 10-bit timing measurement counter. 0 = Time measurement counter Disabled. 1 = Time measurement counter Enabled.					
[3:2]	SPCLKSEL	Sample Clock Source Selection This bit field used for the clock source selection of sample clock (f _{SAMP_CLK}) for the protocol processor. 00 = f _{DIV_CLK} . 01 = f _{PROT_CLK} . 10 = f _{SCLK} . 11 = f _{REF_CLK} .					
[1]	PTCLKSEL	Protocol Clock Source Selection This bit selects the source of protocol clock (f _{PROT_CLK}). 0 = Reference clock f _{REF_CLK} . 1 = f _{REF_CLK2} (its frequency is half of f _{REF_CLK}).					
[0]	RCLKSEL	Reference Clock Source Selection This bit selects the source of reference clock (f _{REF_CLK}). 0 = Peripheral device clock f _{PCLK} . 1 = Reserved.					

USCI Input Data Signal Configuration (USPI_	DATINO)
---	---------

Register	Offset R/W		Description	Reset Value
USPI_DATIN0	USPIn_BA+0x10	R/W	USCI Input Data Signal Configuration Register 0	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	Reserved										
7	6	5	4	3	2	1	0				
	Reserved					Reserved	SYNCSEL				

Bits	Description						
[31:3]	Reserved	Reserved.					
		Input Signal Inverse Selection					
		This bit defines the inverter enable of the input asynchronous signal.					
[2]		0 = The un-synchronized input signal will not be inverted.					
		1 = The un-synchronized input signal will be inverted.					
		Note: In SPI protocol, it is suggested this bit should be set as 0.					
[1]	Reserved	Reserved.					
		Input Signal Synchronization Selection					
		This bit selects if the un-synchronized input signal (with optionally inverted) or the synchronized (and optionally filtered) signal, which is synchronized with PCLK, can be used as input for the data shift unit.					
[0]	SYNCSEL	0 = The un-synchronized signal can be taken as input for the data shift unit.					
		1 = The synchronized signal can be taken as input for the data shift unit.					
		Note: In SPI protocol, it is suggested this bit should be set as 0.					

USCI Input Control Signal Configuration (USPI_CTLIN0)

Register	Offset	R/W	Description	Reset Value
USPI_CTLIN0	USPIn_BA+0x20	R/W	USCI Input Control Signal Configuration Register 0	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	Reserved					Reserved	SYNCSEL			

Bits	Descriptio	n									
[31:3]	Reserved	Reserved.									
[2]	 ININV Input Signal Inverse Selection This bit defines the inverter enable of the input asynchronous signal. 0 = The un-synchronized input signal will not be inverted. 1 = The un-synchronized input signal will be inverted. 										
[1]	Reserved	Reserved.									
[0]	SYNCSEL	Input Synchronization Signal Selection This bit selects if the un-synchronized input signal (with optionally inverted) or the synchronized (and optionally filtered) signal, which is synchronized with PCLK, can be used as input for the data shift unit. 0 = The un-synchronized signal can be taken as input for the data shift unit. 1 = The synchronized signal can be taken as input for the data shift unit. Note: In SPI protocol, it is suggested this bit should be set as 0.									

USCI Input Clock Signal Configuration (USPI_CLKIN)

Register	Offset	R/W	Description	Reset Value
USPI_CLKIN	USPIn_BA+0x28	R/W	USCI Input Clock Signal Configuration Register	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	22 21 20 19 18 17						16				
Reserved											
15	14	13	12	11	10	9	8				
	Reserved										
7	6	5	4	3	2	1	0				
	Reserved										

Bits	Descriptio	Description									
[31:1]	Reserved	d Reserved.									
		Input Synchronization Signal Selection									
		This bit selects if the un-synchronized input signal or the synchronized (and optionally filtered) signal, which is synchronized with PCLK, can be used as input for the data shift unit.									
[0]	SYNCSEL	0 = The un-synchronized signal can be taken as input for the data shift unit.									
		1 = The synchronized signal can be taken as input for the data shift unit.									
		Note: In SPI protocol, it is suggested this bit should be set as 0.									

USCI Line Control Register (USPI_LINECTL)

Register Offset				R/W	Description	escription Reset				
USPI_LINECTL	•	USPIı	n_BA+0x2C		R/W	USCI Line Contro	l Register		0x0000_0000	
31	30		29		28	27	26	25		24
Reserved										
23	23 22 21			20	19	19 18 17			16	
					Re	served				
15	14		13		12	11	10	9		8
	Reserved DWIDTH									
7	6		5		4	3	2	1		0
CTLOINV	Reserv	ed	DATOINV		Reserved					LSB

Bits	Description								
[31:12]	Reserved	Reserved.							
[11:8]	DWIDTH	Word Length of Transmission This bit field defines the data word length (amount of bits) for reception and transmission. The data word is always right-aligned in the data buffer. USCI support word length from 4 to 16 bits. 0x0: The data word contains 16 bits located at bit positions [15:0]. 0x1: Reserved. 0x2: Reserved. 0x3: Reserved. 0x4: The data word contains 4 bits located at bit positions [3:0]. 0x5: The data word contains 5 bits located at bit positions [4:0]. 0xF: The data word contains 15 bits located at bit positions [14:0].							
[7]	CTLOINV	Control Signal Output Inverse Selection This bit defines the relation between the internal control signal and the output control signal. 0 = No effect. 1 = The control signal will be inverted before its output. Note: The control signal has different definitions in different protocol. In SPI protocol, the control signal means slave select signal.							
[6]	Reserved	Reserved.							
[5]	DATOINV	Data Output Inverse Selection This bit defines the relation between the internal shift data value and the output data signal of USCIx_DAT0/1 pins. 0 = Data output values of USCIx_DAT0/1 pins are not inverted. 1 = Data output values of USCIx_DAT0/1 pins are inverted.							
[4:1]	Reserved	Reserved.							
[0]	LSB	LSB First Transmission Selection 0 = The MSB, which bit of transmit/receive data buffer depends on the setting of DWIDTH, is transmitted/received first.							

1 = The LSB, the bit 0 of data buffer, will be transmitted/received first.

USCI Transmit Data Register (USPI_TXDAT)

Register Offset		R/W	Description	Reset Value
USPI_TXDAT	USPIn_BA+0x30	W	USCI Transmit Data Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
	TXDAT									
7	6	5	4	3	2	1	0			
	TXDAT									

Bits	Descriptio	escription							
[31:17]	Reserved	Reserved.							
[16]	PORTDIR	Port Direction Control This bit field is only available while USCI operates in SPI protocol (FUNMODE = 0x1) with half-duplex transfer. It is used to define the direction of the data port pin. When software writes USPI_TXDAT register, the transmit data and its port direction are settled simultaneously. 0 = The data pin is configured as output mode. 1 = The data pin is configured as input mode.							
[15:0]	INDAT	Transmit Data Software can use this bit field to write 16-bit transmit data for transmission. In order to avoid overwriting the transmit data, user have to check TXEMPTY (USPI_BUFSTS[8]) status before writing transmit data into this bit field.							

USCI Receive Data Register (USPI_RXDAT)

Register	Offset	R/W	Description	Reset Value
USPI_RXDAT	USPIn_BA+0x34	R	USCI Receive Data Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	RXDAT								
7	6	5	4	3	2	1	0		
			RXI	DAT					

Bits	Description	Description						
[31:16]	Reserved	Reserved.						
[15:0]	RXDAT	Received Data This bit field monitors the received data which stored in receive data buffer.						

USCI Transmitter/Receive Buffer Control Register (USPI_BUFCTL)

Register	Offset	R/W	Description	Reset Value
USPI_BUFCTL	USPIn_BA+0x38	R/W	USCI Transmit/Receive Buffer Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
RXCLR	RXOVIEN		Reserved							
7	6	5	4	3	2	1	0			
TXCLR	TXUDRIEN		Reserved							

Bits	Description					
[31:18]	Reserved	Reserved.				
[17]	RXRST	Receive Reset 0 = No effect. 1 = Reset the receive-related counters, state machine, and the content of receive shift register and data buffer. Note: It is cleared automatically after one PCLK cycle.				
[16]	Transmit Reset 0 = No effect. 1 = Reset the transmit-related counters, state machine, and the content of transmit shift register and buffer. Note 1: It is cleared automatically after one PCLK cycle. Note 2: Write 1 to this bit will set the output data pin to zero if USPI_PROTCTL[28]=0.					
[15]	RXCLR	Clear Receive Buffer 0 = No effect. 1 = The receive buffer is cleared. Should only be used while the buffer is not taking part in data traffic. Note: It is cleared automatically after one PCLK cycle.				
[14]	RXOVIEN	Receive Buffer Overrun Interrupt Enable Bit 0 = Receive overrun interrupt Disabled. 1 = Receive overrun interrupt Enabled.				
[13:8]	Reserved	Reserved.				
[7]	TXCLR	Clear Transmit Buffer 0 = No effect. 1 = The transmit buffer is cleared. Should only be used while the buffer is not taking part in data traffic. Note: It is cleared automatically after one PCLK cycle.				
[6]	TXUDRIEN	Slave Transmit Under Run Interrupt Enable Bit 0 = Transmit under-run interrupt Disabled. 1 = Transmit under-run interrupt Enabled.				

[5:0] **Rese**

Reserved Reserved.

USCI Transmit/Receive Buffer Status Register (USPI_BUFSTS)

Register	Offset	R/W	Description	Reset Value
USPI_BUFSTS	USPIn_BA+0x3C	R	USCI Transmit/Receive Buffer Status Register	0x0000_0101

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Rese	erved		TXUDRIF	Reserved	TXFULL	TXEMPTY			
7	6	5	4	3	2	1	0			
	Reserved				Reserved	RXFULL	RXEMPTY			

Bits	Descriptio	n						
[31:12]	Reserved	Reserved.						
[11]	TXUDRIF	 Transmit Buffer Under-run Interrupt Status This bit indicates that a transmit buffer under-run event has been detected. If enabled by TXUDRIEN (USPI_BUFCTL[6]), the corresponding interrupt request is activated. It is cleared by software writes 1 to this bit 0 = A transmit buffer under-run event has not been detected. 1 = A transmit buffer under-run event has been detected. 						
[10]	Reserved	eserved.						
[9]	TXFULL	Transmit Buffer Full Indicator 0 = Transmit buffer is not full. 1 = Transmit buffer is full.						
[8]	ТХЕМРТҮ	Transmit Buffer Empty Indicator 0 = Transmit buffer is not empty. 1 = Transmit buffer is empty and available for the next transmission datum.						
[7:4]	Reserved	Reserved.						
[3]	RXOVIF	Receive Buffer Over-run Interrupt Status This bit indicates that a receive buffer overrun event has been detected. If RXOVIEN (USPI_BUFCTL[14]) is enabled, the corresponding interrupt request is activated. It is cleared by software writes 1 to this bit. 0 = A receive buffer overrun event has not been detected. 1 = A receive buffer overrun event has been detected.						
[2]	Reserved	Reserved.						
[1]	RXFULL	Receive Buffer Full Indicator 0 = Receive buffer is not full. 1 = Receive buffer is full.						
[0]	RXEMPTY	Receive Buffer Empty Indicator 0 = Receive buffer is not empty.						

1 = Receive buffer is empty.

USCI PDMA Control Register (USPI_PDMACTL)

Register	Offset	R/W	Description	Reset Value
USPI_PDMACTL	USPIn_BA+0x40	R/W	USCI PDMA Control Register	0x0000_0000

31	30	29	28	27	26	25	24				
Reserved											
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	Reserved										
7	6	5	4	3	2	1	0				
	Rese	erved		PDMAEN	RXPDMAEN	TXPDMAEN	PDMARST				

Bits	Description							
[31:4]	Reserved	Reserved.						
[3]	PDMAEN	PDMA Mode Enable Bit 0 = PDMA function Disabled. 1 = PDMA function Enabled.						
[2]	RXPDMAEN	PDMA Receive Channel Available 0 = Receive PDMA function Disabled. 1 = Receive PDMA function Enabled.						
[1]	TXPDMAEN	PDMA Transmit Channel Available 0 = Transmit PDMA function Disabled. 1 = Transmit PDMA function Enabled.						
[0]	PDMARST	PDMA Reset 0 = No effect. 1 = Reset the USCI's PDMA control logic. This bit will be cleared to 0 automatically.						

USCI Wake-up Control Register (USPI_WKCTL)

Register	Offset	R/W	Description	Reset Value
USPI_WKCTL	USPIn_BA+0x54	R/W	USCI Wake-up Control Register	0x0000_0000

31	30	29	28	28 27		25	24				
Reserved											
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	Reserved										
7	6	5	4	3	2	1	0				
		Reserved	PDBOPT	Reserved	WKEN						

Bits	Descriptio	1						
[31:3]	Reserved	Reserved.						
		Power Down Blocking Option						
[2]		0 = If user attempts to enter Power-down mode by executing WFI while the protocol is in transferring, MCU will stop the transfer and enter Power-down mode immediately.						
		1 = If user attempts to enter Power-down mode by executing WFI while the protocol is in transferring, the on- going transfer will not be stopped and MCU will enter idle mode immediately.						
[1]	Reserved	Reserved.						
		Wake-up Enable Bit						
[0]	WKEN	0 = Wake-up function Disabled.						
		1 = Wake-up function Enabled.						

USCI Wake-up Status Register (USPI_WKSTS)

Register C		Offset		R/W De		Description				Reset Value	
USPI_WKSTS		USPIn_I	JSPIn_BA+0x58		USCI	Wake-up Status	s Register		0x000	0000_000	
31	3	30	29	28		27	26	25		24	
	Reserved										
23	2	22	21	20		19	18	17		16	
					Rese	erved					
15	1	14	13	12		11	10	9		8	
	Reserved										
7		6	5	4		3	2	1		0	
	Reserved									WKF	

Bits	Descriptio	Description						
[31:1]	Reserved	Reserved.						
[0]	WKF	Wake-up Flag When chip is woken up from Power-down mode, this bit is set to 1. Software can write 1 to clear this bit.						

USCI Protocol Control Register – USPI_PROTCTL (SPI)

Register	Offset	R/W	Description	Reset Value
USPI_PROTCTL	USPIn_BA+0x5C	R/W	USCI Protocol Control Register	0x0000_0300

31	30	29	28	27	26	25	24				
PROTEN	Rese	erved	TXUDRPOL	Reserved		SLVTOCNT					
23	22 21		20	19 18		17	16				
	SLVTOCNT										
15	14 13		12	11	10	9	8				
Reserved		TSMSEL		SUSPITV							
7 6 5		4	3	2	1	0					
SCLK	SCLKMODE Rese			AUTOSS	SS	SLV3WIRE	SLAVE				

Bits	Description	
[31]	PROTEN	SPI Protocol Enable Bit 0 = SPI Protocol Disabled. 1 = SPI Protocol Enabled.
[30:29]	Reserved	Reserved.
[28]	TXUDRPOL	Transmit Under-run Data Polarity This bit defines the transmitting data value of USCIx_DAT1 when no data is available for transferring. 0 = The output data value is 0 if TX under run event occurs. 1 = The output data value is 1 if TX under run event occurs. Note: for Slave
[27:26]	Reserved	Reserved.
[25:16]	SLVTOCNT	Slave Mode Time-out Period In Slave mode, this bit field is used for Slave time-out period. This bit field indicates how many clock periods (selected by TMCNTSRC, USPI_BRGEN[5]) between the two edges of input SCLK will assert the Slave time-out event. Writing 0x0 into this bit field will disable the Slave time-out function. Example: Assume SLVTOCNT is 0x0A and TMCNTSRC (USPI_BRGEN[5]) is 1, it means the time-out event will occur if the state of SPI bus clock pin is not changed more than (10+1) periods of f _{DIV_CLK} . Note: Slave only
[15]	Reserved	Reserved.
[14:12]	TSMSEL	Transmit Data Mode Selection This bit field describes how receive and transmit data is shifted in and out. TSMSEL = 000b: Full-duplex SPI. TSMSEL = 100b: Half-duplex SPI. Other values are reserved. Note: Changing the value of this bit field will produce the TXRST and RXRST to clear the TX/RX data buffer automatically.
[11:8]	SUSPITV	Suspend Interval This bit field provides the configurable suspend interval between two successive transmit/receive transaction in a transfer. The definition of the suspend interval is the interval between the last clock edge

	-	
		of the preceding transaction word and the first clock edge of the following transaction word. The default value is 0x3. The period of the suspend interval is obtained according to the following equation.
		(SUSPITV[3:0] + 0.5) * period of SPI_CLK clock cycle
		Example:
		SUSPITV = 0x0 … 0.5 SPI_CLK clock cycle.
		SUSPITV = 0x1 … 1.5 SPI_CLK clock cycle.
		SUSPITV = 0xE 14.5 SPI_CLK clock cycle.
		SUSPITV = 0xF 15.5 SPI_CLK clock cycle. Note: Master only
		Serial Bus Clock Mode
		This bit field defines the SCLK idle status, data transmit, and data receive edge.
		MODE0 = The idle state of SPI clock is low level. Data is transmitted with falling edge and received with rising edge.
[7:6]	SCLKMODE	MODE1 = The idle state of SPI clock is low level. Data is transmitted with rising edge and received with falling edge.
		MODE2 = The idle state of SPI clock is high level. Data is transmitted with rising edge and received with falling edge.
		MODE3 = The idle state of SPI clock is high level. Data is transmitted with falling edge and received with rising edge.
[5:4]	Reserved	Reserved.
		Automatic Slave Select Function Enable
		0 = Slave select signal will be controlled by the setting value of SS (USPI_PROTCTL[2]) bit.
[3]	AUTOSS	1 = Slave select signal will be generated automatically. The slave select signal will be asserted by the SPI controller when transmit/receive is started, and will be de-asserted after each transmit/receive is finished.
		Note: Master only
		Slave Select Control
		If AUTOSS bit is cleared, setting this bit to 1 will set the slave select signal to active state, and setting this bit to 0 will set the slave select back to inactive state.
[2]	SS	If the AUTOSS function is enabled (AUTOSS = 1), the setting value of this bit will not affect the current state of slave select signal.
		Note: In SPI protocol, the internal slave select signal is active high.
		Note: Master only
		Slave 3-wire Mode Selection
		The SPI protocol can work with 3-wire interface (without slave select signal) in Slave mode.
[1]	SLV3WIRE	0 = 4-wire bi-direction interface.
		1 = 3-wire bi-direction interface.
		Note: Slave only
		Slave Mode Selection
[0]	SLAVE	0 = Master mode.
·-1		1 = Slave mode.

USCI Protocol Interrupt Enable Register – USPI_PROTIEN (SPI)

Register	Offset	R/W	Description	Reset Value
USPI_PROTIEN	USPIn_BA+0x60	R/W	USCI Protocol Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15 14 13 12				11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	Reserved				SLVTOIEN	SSACTIEN	SSINAIEN	

Bits	Descriptior	n				
[31:5]	Reserved	Reserved.				
[3]	SLVBEIEN	Slave Mode Bit Count Error Interrupt Enable Bit If data transfer is terminated by slave time-out or slave select inactive event in Slave mode, so that the transmit/receive data bit count does not match the setting of DWIDTH (USPI_LINECTL[11:8]). Bit count error event occurs. 0 = The Slave mode bit count error interrupt Disabled.				
[2]	SLVTOIEN	 1 = The Slave mode bit count error interrupt Enabled. Slave Time-out Interrupt Enable Bit In SPI protocol, this bit enables the interrupt generation in case of a Slave time-out event. 0 = The Slave time-out interrupt Disabled. 1 = The Slave time-out interrupt Enabled. 				
[1]	SSACTIEN	Slave Select Active Interrupt Enable Bit This bit enables/disables the generation of a slave select interrupt if the slave select changes to active. 0 = Slave select active interrupt generation Disabled. 1 = Slave select active interrupt generation Enabled.				
[0]	SSINAIEN	 Slave Select Inactive Interrupt Enable Bit This bit enables/disables the generation of a slave select interrupt if the slave select changes to inactive. 0 = Slave select inactive interrupt generation Disabled. 1 = Slave select inactive interrupt generation Enabled. 				

USCI Protocol Status Register – USPI_PROTSTS (SPI)
--

Register	Offset	R/W	Description	Reset Value
USPI_PROTSTS	USPIn_BA+0x64	R/W	USCI Protocol Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
		Reserved	SLVUDR	BUSY	SSLINE			
15	14	13	12	11	10	9	8	
Reserved						SSACTIF	SSINAIF	
7	6	5	4	3	2	1	0	
Reserved	SLVBEIF	SLVTOIF	RXENDIF	RXSTIF	TXENDIF	TXSTIF	Reserved	

Bits	Descriptio	on				
[31:19]	Reserved	Reserved.				
[18]		Slave Mode Transmit Under-run Status (Read Only) In Slave mode, if there is no available transmit data in buffer while transmit data shift out caused by input serial bus clock, this status flag will be set to 1. This bit indicates whether the current shift-out data of word transmission is switched to TXUDRPOL (USPI_PROTCTL[28]) or not. 0 = Slave transmit under run event does not occur. 1 = Slave transmit under run event occurs.				
[17]	BUSY	Busy Status (Read Only) 0 = SPI is in idle state. 1 = SPI is in busy state. The following listing are the bus busy conditions: a. USPI_PROTCTL[31] = 1 and the TXEMPTY = 0. b. For SPI Master mode, the TXEMPTY = 1 but the current transaction is not finished yet. c. For SPI Slave mode, the USPI_PROTCTL[31] = 1 and there is serial clock input into the SPI core logic when slave select is active. d. For SPI Slave mode, the USPI_PROTCTL[31] = 1 and the transmit buffer or transmit shift register is not empty even if the slave select is inactive.				
[16]	SSLINE	 Slave Select Line Bus Status (Read Only) This bit is only available in Slave mode. It used to monitor the current status of the input slave select signal on the bus. 0 = The slave select line status is 0. 1 = The slave select line status is 1. 				
[15:10]	Reserved	Reserved.				
[9]	SSACTIF	 Slave Select Active Interrupt Flag This bit indicates that the internal slave select signal has changed to active. It is cleared by software writes one to this bit 0 = The slave select signal has not changed to active. 1 = The slave select signal has changed to active. Note: The internal slave select signal is active high. 				

		Note: Slave only
		Slave Select Inactive Interrupt Flag This bit indicates that the internal slave select signal has changed to inactive. It is cleared by software writes 1 to this bit
[8]	SSINAIF	0 = The slave select signal has not changed to inactive.1 = The slave select signal has changed to inactive.
		Note: The internal slave select signal is active high.
		Note: for Slave only
[7]	Reserved	Reserved.
[6]	SLVBEIF	Slave Bit Count Error Interrupt Flag 0 = Slave bit count error event did not occur. 1 = Slave bit count error event occurred. Note: It is cleared by software write 1 to this bit. If the transmit/receive data bit count does not match the setting of DWIDTH (USPI_LINECTL[11:8]), bit count error event occurs. Note: for Slave only
[5]		Slave Time-out Interrupt Flag 0 = Slave time-out event did not occur. 1 = Slave time-out event occurred. Note: It is cleared by software write 1 to this bit Note: for Slave only
[4]	RXENDIF	Receive End Interrupt Flag 0 = Receive end event did not occur. 1 = Receive end event occurred. Note: It is cleared by software write 1 to this bit. The receive end event happens when hardware receives the last bit of RX data into shift data unit.
[3]	RXSTIF	Receive Start Interrupt Flag 0 = Receive start event did not occur. 1 = Receive start event occurred. Note: It is cleared by software write 1 to this bit. For SPI master mode, the receive start event happens when SPI master sends slave select active and spi clock to the external SPI slave. For SPI slave mode, the receive start event happens when slave select of SPI slave is active and spi clock of SPI slave is inputed from the external SPI master.
[2]	TXENDIF	 Transmit End Interrupt Flag 0 = Transmit end event did not occur. 1 = Transmit end event occurred. Note: It is cleared by software write 1 to this bit. The transmit end event happens when hardware sends the last bit of TX data from shift data unit.
[1]	TXSTIF	 Transmit Start Interrupt Flag 0 = Transmit start event did not occur. 1 = Transmit start event occurred. Note: It is cleared by software write 1 to this bit. The transmit start event happens when hardware starts to move TX data from data buffer to shift data unit.
[0]	Reserved	Reserved.

6.15 USCI - I²C Mode

6.15.1 Overview

On I²C bus, data is transferred between a Master and a Slave. Data bits transfer on the SCL and SDA lines are synchronously on a byte-by-byte basis. Each data byte is 8-bit. There is one SCL clock pulse for each data bit with the MSB being transmitted first, and an acknowledge bit follows each transferred byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted as a command (START or STOP). Please refer to Figure 6.15-1 for more detailed I²C BUS Timing.

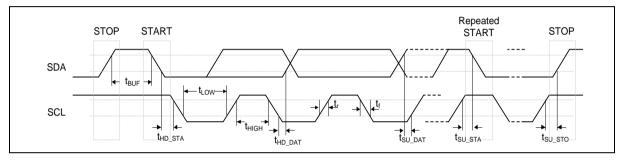


Figure 6.15-1 I²C Bus Timing

The device's on-chip I²C provides the serial interface that meets the I²C bus standard mode specification. The I²C port handles byte transfers autonomously. The I²C mode is selected by FUNMODE (UI2C_CTL [2:0]) = 100B. When enabling this port, the USCI interfaces to the I²C bus via two pins: SDA and SCL. When I/O pins are used as I²C ports, user must set the pins function to I²C in advance.

Note: Pull-up resistor is needed for I²C operation because the SDA and SCL are set to open-drain pins when USCI is selected to I²C operation mode.

6.15.2 Features

- Full master and slave device capability
- Supports of 7-bit addressing, as well as 10-bit addressing
- Communication in standard mode (100 kBit/s) or in fast mode (up to 400 kBit/s)
- Supports multi-master bus
- Supports one transmit buffer and two receive buffer for data payload
- Supports 10-bit bus time-out capability
- Supports bus monitor mode.
- Supports Power down wake-up by data toggle or address match
- Supports setup/hold time programmable
- Supports multiple address recognition (two slave address with mask option)

6.15.3 Block Diagram

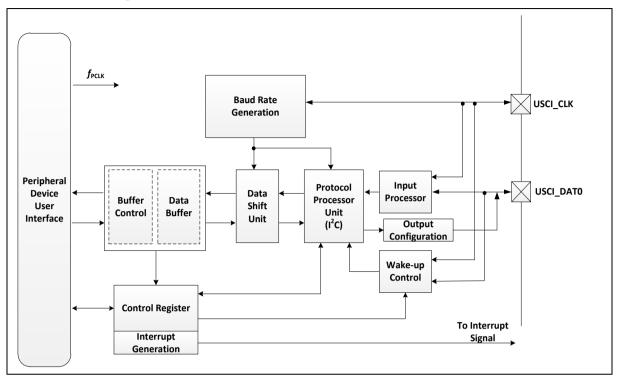


Figure 6.15-2 USCI I²C Mode Block Diagram

6.15.4 Basic Configuration

6.15.4.1 USCI0 PC Basic Configurations

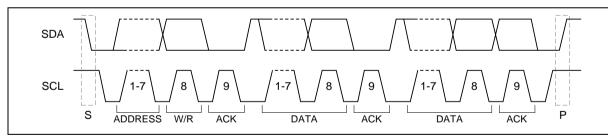
The basic configurations of USCI0_I2C are as follows:

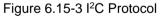
- Clock Source Configuration
 - Enable USCI0 peripheral clock in USCI0CKEN (CLK_APBCLK1[8]).
 - Enable USCI0_I2C function UI2C_CTL[2:0]) register, UI2C_CTL[2:0]=3'b100
- Reset Configuration
 - Reset USCI0 controller in USCI0RST (SYS_IPRST2[8]).
- Pin Configuration

Group	Pin Name	GPIO	MFP
		PA.5, PA.4, PC.5, PC.4, PC.3, PC.6, PC.7, PB.7, PB.6, PB.5, PB.4, PC.2, PC.1, PC.0, PA.2, PA.1, PA.0	
		PD.4	MFP4
USCIO		PA.5, PA.4, PC.5, PC.4, PC.3, PC.6, PC.7, PB.7, PB.6, PB.5, PB.4, PC.2, PC.1, PC.0, PA.2, PA.1, PA.0	
		PD.5	MFP4

6.15.4.2 Functional Description USCI1 I²C Basic Configurations

The basic configurations of USCI1_I2C are as follows:


- Clock Source Configuration
 - Enable USCI1 peripheral clock in USCI1CKEN (CLK_APBCLK1[9]).
 - Enable USCI1_I2C function UI2C_CTL[2:0]) register, UI2C_CTL[2:0]=3'b100
- Reset Configuration
 - Reset USCI1 controller in USCI1RST (SYS_IPRST2[9]).
- Pin Configuration


Group	Pin Name	GPIO	MFP
		PA.5, PA.4, PC.5, PC.4, PC.3, PC.6, PC.7, PB.7, PB.6, PB.5, PB.4, PC.2, PC.1, PC.0, PA.2, PA.1, PA.0	
		PD.0	MFP4
USCI1		PA.5, PA.4, PC.5, PC.4, PC.3, PC.6, PC.7, PB.7, PB.6, PB.5, PB.4, PC.2, PC.1, PC.0, PA.2, PA.1, PA.0	
		PD.1	MFP4

6.15.5 START or Repeated START Signal

Figure 6.15-3 shows the typical I^2C protocol. Normally, a standard communication consists of four parts:

- START or Repeated START signal generation
- Slave address and R/W bit transfer
- Data transfer
- STOP signal generation

When the bus is free/idle, meaning no master device is engaging the bus (both SCL and SDA lines are high), a master can initiate a transfer by sending a START signal. A START signal, usually referred to as the "S" bit, is defined as a HIGH to LOW transition on the SDA line while SCL is HIGH. The START signal denotes the beginning of a new data transmission.

A Repeated START is not a STOP signal between two START signals and usually referred to as the "Sr" bit. The master uses this method to communicate with another slave or the same slave in a different transfer direction (e.g. from writing to a device to reading from a device) without releasing the bus idle flag.

6.15.5.1 STOP Signal

The master can terminate the communication by generating a STOP signal. A STOP signal, usually referred to as the "P" bit, is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH. The section between STOP and START is called bus free.

Figure 6.15-4 shows the waveform of START, Repeat START and STOP.

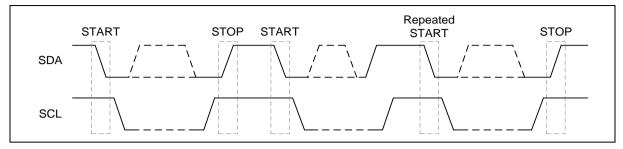


Figure 6.15-4 START and STOP Conditions

6.15.5.2 Slave Address Transfer

After a (repeated) start condition, the master sends a slave address to identify the target device of the communication. The start address can comprise one or two address bytes (for 7-bit or for 10-bit addressing schemes). After an address byte, a slave sensitive to the transmitted address has to acknowledge the reception.

Therefore, the slave's address can be programmed in the device, where it is compared to the received address. In case of a match, the slave answers with an acknowledge (SDA = 0). Slaves that are not targeted answer with a non-acknowledge (SDA = 1). In addition to the match of the programmed address, another address byte value has to be answered with an acknowledge if the slave is capable to handle the corresponding requests. The address byte 00H indicates a general call address that can be acknowledged.

In order to allow selective acknowledges for the different values of the address byte(s), the following control mechanism is implemented:

- If the GCFUNC bit (UI2C_PROTCTL [0]) is set the I²C port hardware will respond to General Call address (00H). Clear GC bit to disable general call function.
- The I²C port is equipped with one device address registers, UI2C_DEVADDRn (n = 0~1). In 7-bit address mode, the first 7 bits of a received first address byte are compared to the programmed slave address (UI2C_DEVADDRn [6:0]). If these bits match, the slave sends an acknowledge.
- For 10 bit addressing mode, if the slave address is programmed to 1111 0XXB, the XX bits are compared to the bits UI2C_DEVADDR [9:8] to check for address match and also sends an acknowledge when ADDR10EN (UI2C_PROTCTL [4]) is set. The slave waits for a second address byte compares it with UI2C_DEVADDR [7:0] and sends an acknowledge accordingly to cover the 10 bit addressing mode. The user has to take care about reserved addresses (refer to I²C specification for more detailed description). Only the address 1111 0XXB is supported. Under each of these conditions, bit SLASEL (UI2C_PROTSTS [14]) will be set when the addressing delivered a match. This SLASEL (UI2C_PROTSTS [14]) bit is cleared automatically by a (Repeated) START or STOP condition.
- The I²C port is equipped multiple address recognition with one address mask registers UI2C_ADDRMSKn (n = 0~1). When the bit in the address mask register is set to 1, it means the received corresponding address bit is "Don't care". If the bit is set to 0, it means the received corresponding register bit should be exactly the same as address register.

6.15.5.3 Data Transfer

When a slave receives a correct address with an R/W bit, the data will follow R/W bit specified to transfer. Each transferred byte is followed by an acknowledge bit on the 9th SCL clock cycle. If the slave signals a Not Acknowledge (NACK), the master can generate a STOP signal to abort the data transfer or generate a Repeated START signal and start a new transfer cycle.

M0A21/M0A23 Series

nuvoTon

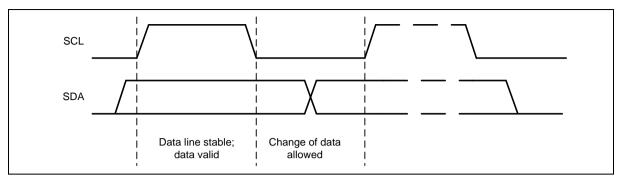


Figure 6.15-5 Bit Transfer on the I²C Bus

If the master received data, does Not Acknowledge (NACK) the slave, the slave releases the SDA line for the master to generate a STOP or Repeated START signal.

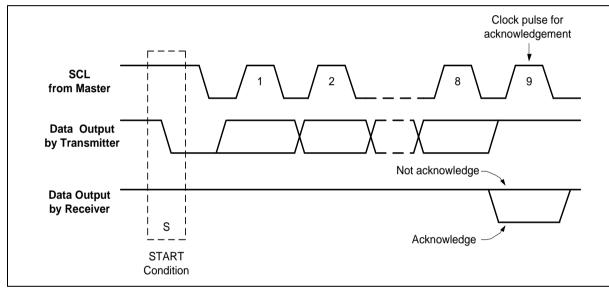


Figure 6.15-6 Acknowledge on the I²C Bus

6.15.5.4 Clock Baud Rate Bits

The data baud rate of I²C is determined by UI2C_BRGEN register when I²C is in Master Mode, and it is not necessary in a Slave mode. In the Slave mode, I²C will automatically synchronize it with any clock frequency from master I²C device. The bits RCLKSEL, SPCLKSEL, PDSCNT, and DSCNT define the baud rate setting:

• RCLKSEL (UI2C_BRGEN [0])

to define the input frequency fREF_CLK

SPCLKSEL (UI2C_BRGEN[3:2])

to define the multiple source of the sample clock $f_{\text{SAMP}_\text{CLK}}$

• PDSCNT (UI2C_BRGEN [9:8])

to define the length of a data sample time (division of $f_{REF_{CLK}}$ by 1, 2, 3, or 4)

• DSCNT (UI2C_BRGEN [14:10])

to define the number of data sample time per bit time

The standard setting is given by RCLKSEL = 0 ($f_{REF_CLK} = f_{PCLK}$), PTCLKSEL = 0 ($f_{PROT_CLK} = f_{REF_CLK}$) and SPCLKSEL = 2'b00 ($f_{SAMP_CLK} = f_{DIV_CLK}$). Under these conditions, the baud

ηυνοτοη

rate is given by:

$$f_{12C} = f_{REF_CLK} \times \frac{1}{\text{CLKDIV} + 1} \times \frac{1}{\text{PDSCNT} + 1} \times \frac{1}{\text{DSCNT} + 1}$$

In order to generate slower frequencies, additional divide-by-2 stages can be selected by PTCLKSEL = 1 (f_{PROT_CLK} = f _{REF_CLK2}), leading to:

$$f_{12C} = \frac{f_{REF_CLK}}{2} \times \frac{1}{\text{CLKDIV} + 1} \times \frac{1}{\text{PDSCNT} + 1} \times \frac{1}{\text{DSCNT} + 1}$$

If SPCLKSEL = 2'b10 (f_{SAMP_CLK} = f_{SCLK}), and RCLKSEL = 0 (f_{REF_CLK2}= f_{PCLK}), PTCLKSEL = 0 (f_{PROT_CLK} = f_{REF_CLK}). The baud rate is given by:

$$f_{12C} = f_{REF_CLK} \times \frac{1}{\text{CLKDIV} + 1} \times \frac{1}{2} \times \frac{1}{\text{PDSCNT} + 1} \times \frac{1}{\text{DSCNT} + 1}$$

6.15.5.5 Byte Stretching

If a device is selected as master/slave transmit mode and should transmit a data byte but the transmit buffer TXDAT does not contain valid data to be transmitted, the device ties down SCL = 0 at the end of the previous acknowledge bit. The waiting period is finished if software writes 1 to PTRG (UI2C_PROTCTL [5]).

6.15.5.6 Multi-master Arbitration

In some applications, there are two or more masters on the same I²C bus to access slaves, and the masters may transmit data simultaneously. The I²C supports multi-master by including collision detection and arbitration to prevent data corruption.

If two masters sometimes initiate I²C command at the same time, the arbitration procedure determines which master wins and can continue with the command. Arbitration is performed on the SDA signal while the SCL signal is high. Each master checks if the SDA signal on the bus corresponds to the generated SDA signal. If the SDA signal on the bus is low but it should be high, then this master has lost arbitration. Master I²C device that has lost arbitration can generate SCL pulses until the byte ends and must then release the bus and go into slave mode. The arbitration procedure can continue until all the data is transferred. This means that in multi-master system each I²C master must monitor the I²C bus for collisions and act accordingly. Figure 6.15-7 describes master1 data and master2 data are compete arbitration.

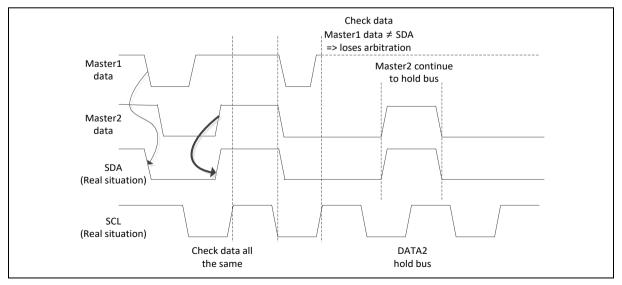


Figure 6.15-7 Arbitration Lost

In this case, during the address and data transmission, the master transmitter checks at the rising edge of SCL for each data bit if the value it is sending is equal to the value read on the SDA line. If yes, master can hold bus continuously. If this is not the case (transmitted value = 1, value read = 0), the master has lost the transmit arbitration. This is indicated by interrupt flag ARBLOIF (UI2C_PROTSTS [11]) and can generate a protocol interrupt if enabled by ARBLOIEN (UI2C_PROTIEN [4]).

When the transmit arbitration has been lost, the software has to initialize the complete frame again, starting with the first address byte together with the START condition for a new master transmit attempt. Arbitration also takes place for the ACK bit. If master arbitration lost and match the device address, then master will turn to slave.

6.15.5.7 Transmission Chain

The I²C bus protocol requiring a kind of in-bit-response during the arbitration phase and while a slave is transmitting, the resulting loop delay of the transmission chain can limit the reachable maximal baud rate, strongly depending on the bus characteristics (bus load, module frequency, etc.).

The shift clock SCL is generated by the master device, output on the wire, then it passes through the input stage and the input filter. Now, the edges can be detected and the SDA data signal can be generated accordingly. The SDA signal passes through the output stage and the wire to the master receiver part. There, it passes through the input stage and the input filter before it is sampled.

This complete loop has to be finished (including all settling times to obtain stable signal levels) before the SCL signal changes again. The delays in this path have to be taken into account for the calculation of the baud rate as a function of fPCLK and fPROT_CLK. We suggest user adopt fPCLK.

6.15.5.8 Non-Acknowledge and Error Conditions

In case of a non-acknowledge (NACKIF (UI2C_PROTSTS [10])) or an error (ERRIF(UI2C_PROTSTS [12])), no further transmission will take place. User software doesn't invalidate the transmit buffer and disable transmissions, before configuring the transmission (by writing TXDAT) again with appropriate values to react on the previous event.

6.15.5.9 PC Protocol Interrupt Events

The following protocol-related events are generated in I²C mode and can lead to a protocol interrupt.

Please note that the bits in register UI2C_PROTSTS are not all automatically cleared by hardware and have to be cleared by software in order to monitor new incoming events.

- START condition received at a correct position in a frame (STARIF (UI2C_PROTSTS [8]))
- STOP condition transferred at a correct position in a frame (STORIF (UI2C_PROTSTS [9]))
- Master arbitration lost (ARBLOIF (UI2C_PROTSTS [11]))
- Slave read requested (SLAREAD (UI2C_PROTSTS [15]))
- Acknowledge received (ACKIF (UI2C_PROTSTS [13]))
- Non-acknowledge received (NACKIF (UI2C_PROTSTS [10]))
- START condition not at the expected position in a frame (ERRIF (UI2C_PROTSTS [12]))
- STOP condition not at the expected position in a frame (ERRIF (UI2C_PROTSTS [12]))

6.15.5.10 Operating the I2C

To operate the I²C protocol, the following issues have to be considered:

Select PC Mode

It is recommended to configure all parameters of the I²C that do not change during run time while

FUNMODE (UI2C_CTL [2:0]) = 000B. The I²C control flow has to be done while FUNMODE (UI2C_CTL [2:0]) = 000B to avoid unintended edges of the input signals and the I²C mode can be enabled by FUNMODE (UI2C_CTL [2:0]) = 100B afterwards.

Step 1. Set FUNMODE (UI2C_CTL [2:0]) = 000B

Step 2. Set FUNMODE (UI2C_CTL [2:0]) = 100B

Pin Connections

The pins used for SDA and SCL have to be set to open-drain mode by USCI controller to support the wired-AND structure of the I²C bus lines.

Note: The step to enable the alternate output port functions should only be done after the I²C mode is enabled, to avoided unintended spikes on the output.

Bit Timing Configuration

In standard mode (100 kBit/s) a minimum module frequency of 2 MHz is necessary, whereas in fast mode (400 kBit/s) a minimum of 10 MHz is required. Additionally, if the digital filter stage should be used to eliminate spikes up to 50 ns, a filter frequency of 20 MHz is necessary. There could be an uncertainty in the SCL high phase timing of maximum $1/f_{PROT_{CLK}}$ if another I²C participant lengthens the SCL low phase on the bus. Note that the SCL maximum frequency is f_{SAMP_CLK}/2 and the SPCLKSEL (UI2C_BRGEN [3:2]) must be set to 0 for selecting f_{SAMP_CLK} = f_{DIV_CLK}.

Data Format Configuration

The data format has to be configured for 8 data bits (DWIDTH (UI2C_LINECTL [11:8]) = 8), and MSB shifted first (LSB (UI2C_LINECTL [0]) = 0). As a result, UI2C_LINECTL has to be set to 0x800.

Control Flow

The on-chip I²C ports support three operation modes, Master, Slave, and General Call Mode.

In a given application, I²C port may operate as a master or as a slave. In Slave mode, the I²C port hardware looks for its own slave address and the general call address. If one of these addresses is detected, and if the slave is willing to receive or transmit data from/to master(by setting the AA(UI2C_PROTCTL[1]) bit), acknowledge pulse will be transmitted out on the 9th clock, hence an interrupt is requested on both master and slave devices if interrupt is enabled. When the microcontroller wishes to become the bus master, hardware waits until the bus is free before entering Master mode so that a possible slave action is not be interrupted. If address arbitration is lost in Master mode, I²C port switches to Slave mode immediately and can detect its own slave address in the same serial transfer.

To control the I²C bus transfer in each mode, user needs to set UI2C_PROTCTL, UI2C_PROTIEN, TXDAT registers according to current status of UI2C_PROTSTS register. In other words, for each I²C bus action, user needs to check current status by UI2C_PROTSTS register, and then set UI2C_PROTCTL, UI2C_PROTIEN, TXDAT registers to take bus action. Finally, check the response status by UI2C_PROTSTS.

The bits, STA, STO and AA in UI2C_PROTCTL register are used to control the next state of the I²C hardware after interrupt signal is cleared. Upon completion of the new action, a new status will be updated in UI2C_PROTSTS register will be set. If the I²C interrupt control bit of UI2C_PROTIEN is set, appropriate action or software branch of the new status can be performed in the Interrupt service routine.

Figure 6.15-8 shows the current I²C STARIF (UI2C_PROTSTS [8]) is set to 1 by hardware, and then set TXDAT = SLA+W (Slave address + Write bit), (PTRG, STA, STO, AA) = (1, 0, 0, x) to send the address to I²C bus, and write 1 to STARIF (UI2C_PROTSTS [8]) to clear flag. If a slave on the bus matches the address and response ACK, the UI2C_PROTSTS will be updated by ACKIF (UI2C_PROTSTS [13]) setting.

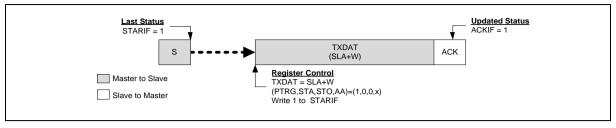
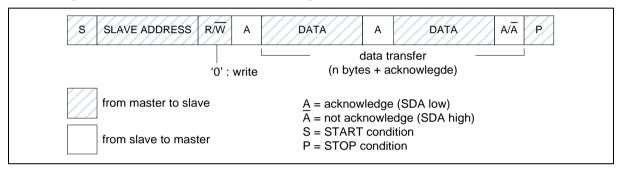


Figure 6.15-8 Control I²C Bus According to Current I²C Status

Data Transfer on the I²C Bus

Figure 6.15-9 shows a master transmits data to slave. A master addresses a slave with a 7-bit address and 1-bit write index to denote that the master wants to transmit data to the slave. The master keeps transmitting data after the slave returns acknowledge to the master.



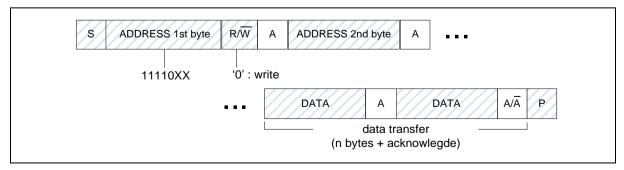

Figure 6.15-9 Master Transmits Data to Slave with a 7-bit Address

Figure 6.15-10 shows a master read data from slave. A master addresses a slave with a 7-bit address and 1-bit read index to denote that the master wants to read data from the slave. The slave will start transmitting data after the slave returns acknowledge to the master.

Figure 6.15-10 Master Reads Data from Slave with a 7-bit Address

Figure 6.15-11 shows a master transmits data to slave by 10-bit address. A master addresses a slave with a 10-bit address. First byte contains 10-bit address indicator (5'b11110) and 2-bit address with write index, second byte contains 8-bit address. The master keeps transmitting data after the second byte end. Note that 7-bit and 10-bit address device can work on the same bus.

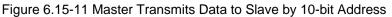


Figure 6.15-12 shows a master read data from slave by 10-bit address. A master addresses a slave with a 10-bit address. First mater transmits 10-bit address to slave, after that master transmits first byte with read index. The slave will start transmitting data after the first byte with read index.

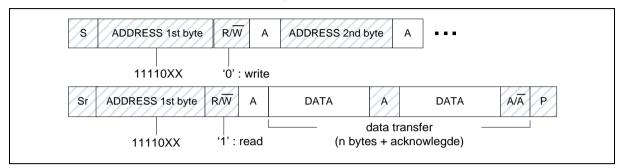


Figure 6.15-12 Master Reads Data from Slave by 10-bit Address

Master Mode

In Figure 6.15-13 and Figure 6.15-14, all possible protocols for I²C master are shown. User needs to follow proper path of the flow to implement required I²C protocol.

In other words, user can send a START signal to bus and I^2C will be in Master Transmitter mode (Figure 6.15-13) or Master receiver mode (Figure 6.15-14) after START signal has been sent successfully and new status register would be set STARIF (UI2C_PROTSTS [8]). Followed by START signal, user can send slave address, read/write bit, data and Repeat START, STOP to perform I^2C protocol.

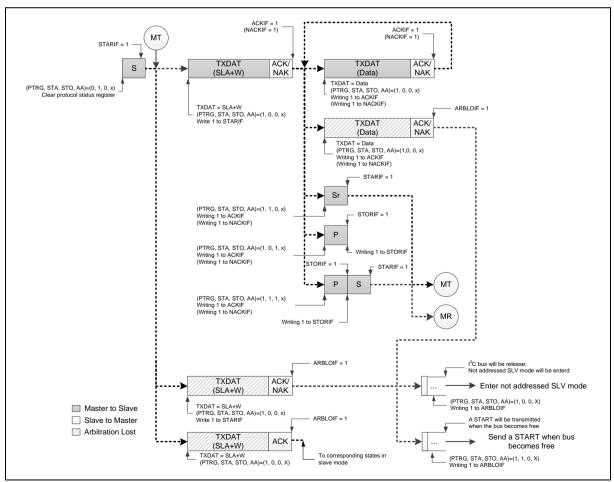


Figure 6.15-13 Master Transmitter Mode Control Flow with 7-bit Address

M0A21/M0A23 Series

nuvoTon

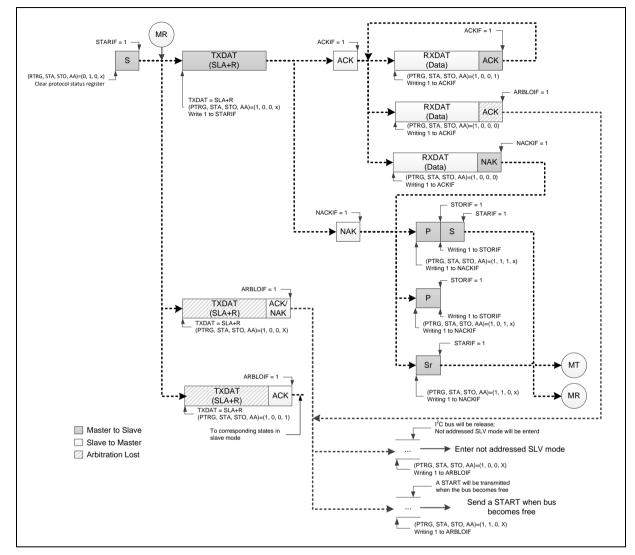


Figure 6.15-14 Master Receiver Mode Control Flow with 7-bit Address

M0A21/M0A23 Series

nuvoTon

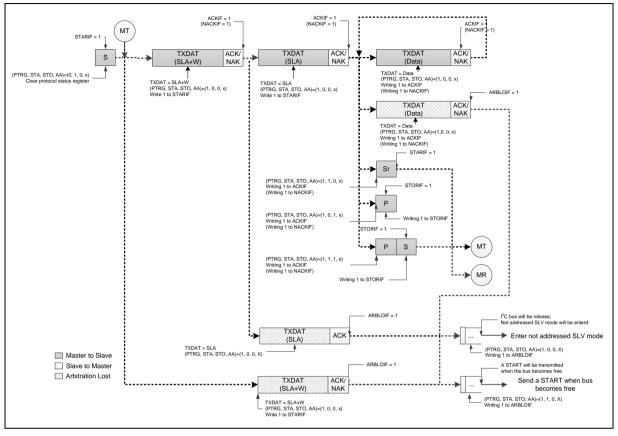


Figure 6.15-15 Master Transmitter Mode Control Flow with 10-bit Address

M0A21/M0A23 Series

nuvoTon

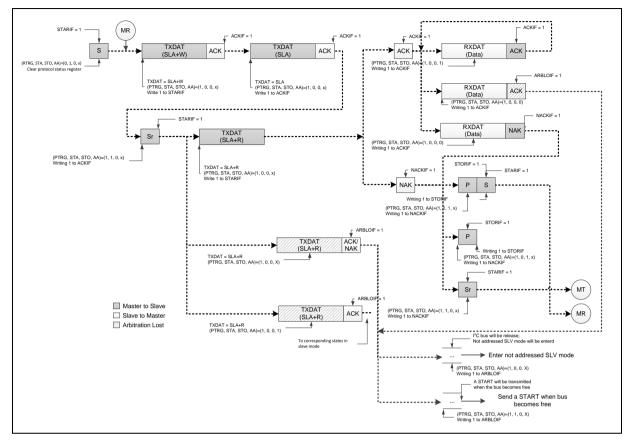


Figure 6.15-16 Master Receiver Mode Control Flow with 10-bit Address

If the l^2C is in Master mode and gets arbitration lost, the bit of ARBLOIF (UI2C_PROTSTS [11]) will be set. User may writing 1 to ARBLOIF (UI2C_PROTSTS [11]) and set (PTRG, STA, STO, AA) = (1, 1, 0, X) to send START to re-start Master operation when bus become free. Otherwise, user may writing 1 to ARBLOIF (UI2C_PROTSTS [11]) and set (PTRG, STA, STO, AA) = (1, 0, 0, X) to release l^2C bus and enter not addressed Slave mode.

Slave Mode

When reset, I^2C is not addressed and will not recognize the address on I^2C bus. User can set device address by UI2C_DEVADDRn and set (PTRG, STA, STO, AA) = (1, 0, 0, 1) to let I^2C recognize the address sent by master. Figure 6.15-17 shows all the possible flow for I^2C in Slave mode. Users need to follow a proper flow (as shown in Figure 6.15-17 to implement their own I^2C protocol.

If bus arbitration is lost in Master mode, I²C port switches to Slave mode immediately and can detect its own slave address in the same serial transfer. If the detected address is SLA+W (Master want to write data to Slave) or SLA+R (Master want to read data from Slave) after arbitration lost, the ARBLOIF will be set to 1.

The I²C controller supports two slave address match flags, are ADMAT0 and ADMAT1 on UI2C_ADMAT[1:0] register. Every control register represent which address is used and set 1 to inform software.

Note: During I²C communication, the SCL clock will be released when writing '1' to PTRG (UI2C_PROTCTL [5]) in Slave mode.

nuvoTon

M0A21/M0A23 Series

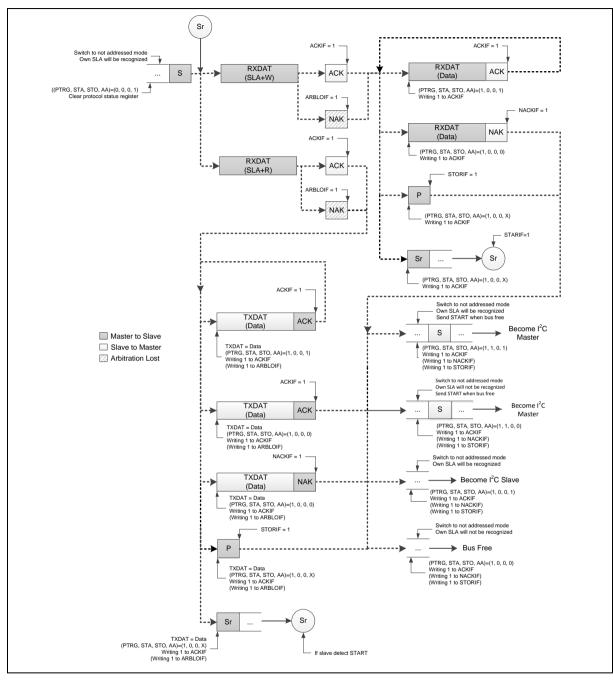


Figure 6.15-17 Save Mode Control Flow with 7-bit Address

nuvoTon

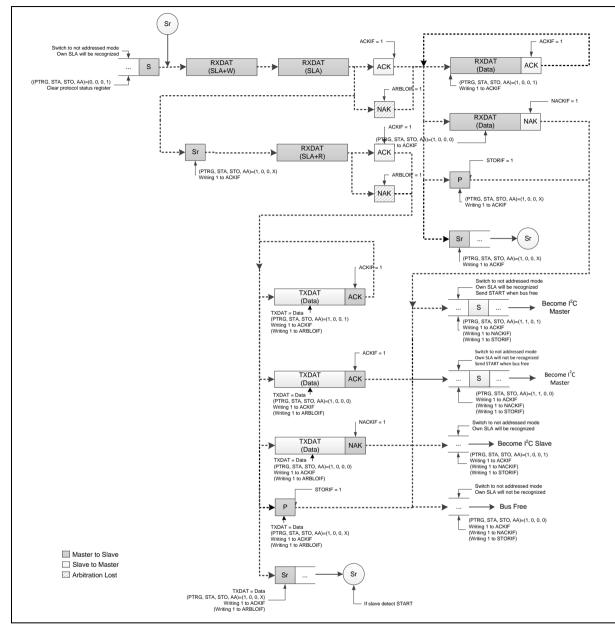


Figure 6.15-18 Save Mode Control Flow with 10-bit Address

If I²C is still transmitting and receiving data in addressed Slave mode but got a STOP or Repeat START, the register STORIF (UI2C_PROTSTS [9]) or STARIF (UI2C_PROTSTS [8]) will be set. User could follow the action for NACKIF (UI2C_PROTSTS [10]) as shown in the above figure when got STARIF (UI2C_PROTSTS [8]) is set.

Note: After slave gets interrupt flag of NACKIF (UI2C_PROTSTS [10]) and start/stop symbol including STARIF (UI2C_PROTSTS [8]) and STORIF (UI2C_PROTSTS [9]), slave can switch to not address mode and own SLA will not be recognized. If setting this interrupt flag, slave will not receive any I²C signal or address from master. At this status, I²C should be reset by setting FUNMODE (UI2C_CTL [2:0]) = 000B to leave this status.

General Call (GC) Mode

If the GCFUNC bit (UI2C_PROTCTL [0]) is set, the I²C port hardware will respond to General Call address (00H). User can clear GC bit to disable general call function. When the GC bit is set and the

 I^2C in slave mode, it can receive the general call address by 0x00 after master send general call address to I^2C bus, and then it also will follow protocol status register.

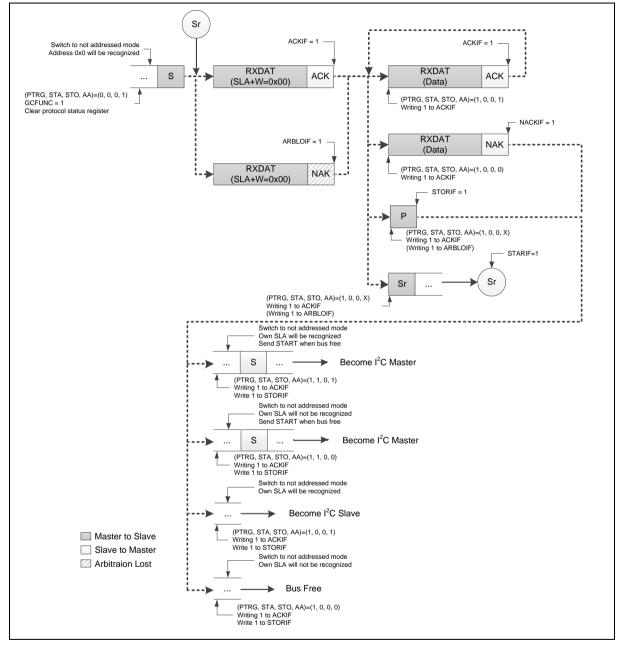


Figure 6.15-19 GC Mode with 7-bit Address

If I²C is still receiving data in GC mode but got a STOP or Repeat START, the STORIF (UI2C_PROTSTS [9]) or STARIF (UI2C_PROTSTS [8]) will be set. User could follow the action for NACKIF (UI2C_PROTSTS [10]) in above figure when got STORIF (UI2C_PROTSTS [9]) or STARIF (UI2C_PROTSTS [8]) is set.

Note: After slave gets interrupt flag of NACKIF (UI2C_PROTSTS [10]) and start/stop symbol including STARIF (UI2C_PROTSTS [8]) and STORIF (UI2C_PROTSTS [9]), slave can switch to not address mode and own SLA will not be recognized. If setting this interrupt flag, slave will not receive any I²C signal or address from master. At this time, I²C controller should be reset by setting FUNMODE (UI2C_CTL [2:0]) = 000B to leave this status.

Protocol Functional Description

Monitor Mode

When I²C enters monitor mode, this device always returns NACK to master after each frame reception even address matching. Moreover, this device will store any receive data including address, command code, and data.

Interrupt in Monitor Mode

All interrupts will occur as normal process when the MONEN (UI2C_PROTCTL [9]) is set. Note that the first interrupt will occur when initial START, it not the same as I²C slave, but the other interrupts are the same.

Subsequent to the address-match detection, interrupts will be generated after each data byte is received as slave mode control flow, or after each byte that the module believes it has transmitted for a slaveread transfer. In this second case, the data register will actually contain data transmitted by some other slave on the bus which was actually addressed by the master. If user wants to watch other device, user can set address mask and monitor.

If the monitor has not had time to respond to interrupt, the SCL signal will be pulled to low when SCLOUTEN (UI2C_PROTCTL [8]) is set to 1. User must set PTRG (UI2C_PROTCTL [5]) to release bus when SCLOUTEN (UI2C_PROTCTL [8]) is set to 1. If SCLOUTEN (UI2C_PROTCTL [8]) is not set to 1, user doesn't need to set PTRG (UI2C_PROTCTL [5]) to 1.

When device address match, but the device response NACK, this address will be received into buffer and NACK interrupt will be generated.

Following all of these interrupts, the processor may read the data register to see what was actually transmitted on the bus.

Loss of Arbitration in Monitor Mode

In monitor mode, the I²C module will not be able to respond to a request for information by the bus master or issue an ACK. Some other slave on the bus will respond instead. Software should be aware of the fact that the module is in monitor mode and should not respond to any loss of arbitration state that is detected.

Programmable Setup and Hold Time

In order to guarantee a correct data setup and hold time, the timing must be configured. By programming HTCTL (UI2C_TMCTL[24:16]) to configure hold time and STCTL (UI2C_TMCTL[8:0]) to configure setup time.

The delay timing refer peripheral clock (PCLK). When device stretch master clock, the setup and hold time configuration value will not affected by stretched.

User should focus the limitation of setup and hold time configuration, the timing setting must follow I²C protocol. Once setup time configuration greater than design limitation, that means if setup time setting make SCL output less than three PCLKs, I²C controller can't work normally due to SCL must sample three times. And once hold time configuration greater than I²C clock limitation, I²C will occur bus error. Suggest that user calculate suitable timing with baud rate and protocol before setting timing. Table 6.15-1 shows the relationship between I²C baud rate and PCLK, the number of table represent one clock duty contain how many PCLKs. Setup and hold time configuration even can program some extreme values in the design, but user should follow I²C protocol standard.

I ² C Baud Rate PCLK	100k	200k	400k	800k	1200k
12 MHz	120	60	30	15	10
24 MHz	240	120	60	30	20

48 MHz	480	240	120	60	40
72 MHz	720	360	180	90	60

Table 6.15-1	Relationship	between	I ² C Baud	Rate and PCLK
--------------	--------------	---------	-----------------------	---------------

For setup time wrong adjustment example, assuming one SCL cycle contains ten PCLKs and set STCTL (UI2C_TMCTL[8:0]) to 3 that stretch three PCLKs for setup time setting. The setup time setting limitation: $ST_{limit} = (UI2C_BRGEN[25:16]+1) - 6.$

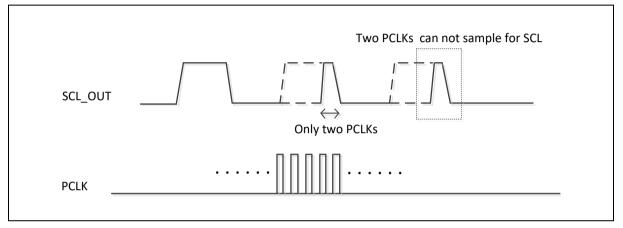


Figure 6.15-20 Setup Time Wrong Adjustment

For hold time wrong adjustment example, use I²C Baud Rate = 1200k and PCLK = 72 MHz, the SCL high/low duty = 60 PCLK. When HTCTL (UI2C_TMCTL[24:16]) is set to 63 and STCTL (UI2C_TMCTL[8:0]) is set to 0, then SDA output delay will over SCL high duty and cause bus error. The hold time setting limitation: $HT_{limit} = (UI2C_BRGEN[25:16]+1) - 9$.

Note: Hold time adjust function can only work in master mode, when slave mode, the USCI-I²C HTCTL (UI2C_TMCTL[24:16]) should set as 0.

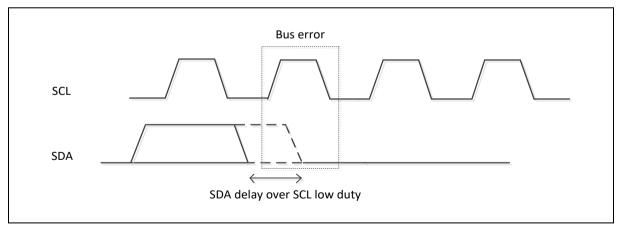


Figure 6.15-21 Hold Time Wrong Adjustment

PC Time-out Function

There is a 10 bits time-out counter TOCNT (UI2C_PROTCTL [25:16]) which can be used to deal with the I²C bus hang-up. If the time-out counter is enabled, the counter starts up counting until it equals TOCNT (UI2C_PROTCTL [25:16]) and generates I²C interrupt to CPU or stops counting by clearing TOIEN (UI2C_PROTIEN [0]) to 0 or setting all I²C interrupt signal (ACKIF, ERRIF, ARBLOIF, NACKIF,

STORIF, STARIF). User may write 1 to clear TOIF(UI2C PROTSTS[5]) to 0. When time-out counter is enabled, writing 1 to the TOIF will reset counter and re-start up counting after TOIF is cleared. Refer to Figure 6.15-22 for the time-out counter TOCNT (UI2C_PROTCTL [25:16]). TTOCNT = (TOCNT (UI2C PROTCTL [25:16]) +1) x32 (5-bit) x TPCLK. Note that the time counter clock source TMCNTSRC (UI2C BRGEN [5]) must be set as 0.

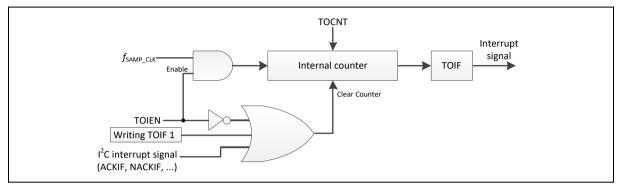


Figure 6.15-22 I²C Time-out Count Block Diagram

Wake-up Function

When chip enters Power-down mode and set WKEN (UI2C WKCTL[0]) to 1, other I²C master can wake up the chip by addressing the I²C device, user must configure the related setting before entering sleep mode. The ACK bit cycle of address match frame is done in power-down. The controller will stretch the SCL to low when the address is matched the device's address and the ACK cycle done. The SCL is stretched until WKAKDONE bit is clear by user. If the frequency of SCL is low speed and the system has wakeup from address match frame, the user shall check this bit to confirm this frame has transaction done and then to do the wake-up procedure. Therefore, when the chip is woken up by address match with one of the device address register (UI2C_DEVADDRn), the user shall check the WKAKDONE (UI2C PROTSTS [16]) bit is set to 1 to confirm the address wakeup frame has done. The WKAKDONE bit indicates that the ACK bit cycle of address match frame is done in power-down. Remind user must clear WKF after clearing the WKAKDONE bit to 0.

The WRSTSWK (UI2C PROTSTS [17]) bit records the Read/Write command on the address match wake-up frame. The user can use read this bit's status to prepare the next transmitted data (WRSTSWK = 1) or to wait the incoming data (WRSTSWK = 0) can be stored in time after the system is wake-up by the address match frame.

When system is woken up by other I²C master device, WKF (UI2C WKSTS [0]) is set to indicate this event. User needs write "1" to clear this bit.

Example for Random Read on EEPROM

The following steps are used to configure the USCI0_I2C related registers when using I²C protocol to read data from EEPROM.

- 1. Set USCI0_I2C the multi-function pin as SCL and SDA pins. The multi-function configuration reference Basic Configuration.
- 2. Enable USCI0 APB clock. Enable clock configuration reference Basic Configuration.
- Set USCI0RST=1 to reset USCI controller then set USCI0RST=0 let USCI controller to normal operation. The reset controller configuration reference Basic Configuration.
- 4. Set FUNMODE =100 to enable USCI0 I2C controller in the "UI2C CTL" register.
- 5. Give USCI0 I2C clock a divided register value for USCI0 I2C clock rate in the "UI2C_BRGEN".
- 6. Enable system USCI0 IRQ in system "NVIC" control register.
- 7. Set ACKIEN, ERRIEN, ARBLOIEN, NACKIEN, STORIEN, STARIEN, and TOIEN to enable

I²C Interrupt in the "UI2C_PROTIEN" register.

8. Set USCI address registers "UI2C_DEVADDR0 ~ UI2C_DEVADDR1".

Random read operation is one of the methods of access EEPROM. The method allows the master to access any address of EEPROM space. Figure 6.15-23 shows the EEPROM random read operation.

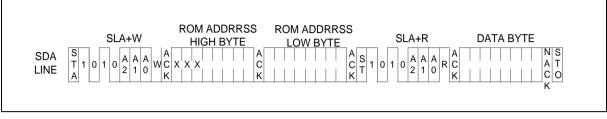


Figure 6.15-23 EEPROM Random Read

Figure 6.15-24 shows how to use I²C controller to implement the protocol of EEPROM random read.

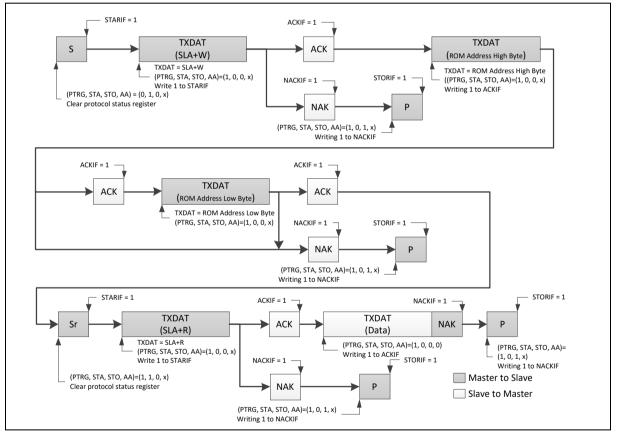


Figure 6.15-24 Protocol of EEPROM Random Read

The I²C controller, which is a master, sends START to bus. Then, it sends a SLA+W (Slave address + Write bit) to EERPOM followed by two bytes data address to set the EEPROM address to read. Finally, a Repeat START followed by SLA+R is sent to read the data from EEPROM.

6.15.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value					
UI2C_I2C Base Address: UI2Cn_BA = 0x400D_0000 + (0x1000 * n) n= 0,1									
UI2C_CTL	UI2Cn_BA+0x00	R/W	USCI Control Register	0x0000_0000					
UI2C_BRGEN	UI2Cn_BA+0x08	R/W	USCI Baud Rate Generator Register	0x0000_3C00					
UI2C_LINECTL	UI2Cn_BA+0x2C	R/W	USCI Line Control Register	0x0000_0000					
UI2C_TXDAT	UI2Cn_BA+0x30	W	USCI Transmit Data Register	0x0000_0000					
UI2C_RXDAT	UI2Cn_BA+0x34	R	USCI Receive Data Register	0x0000_0000					
UI2C_DEVADDR0	UI2Cn_BA+0x44	R/W	USCI Device Address Register 0	0x0000_0000					
UI2C_DEVADDR1	UI2Cn_BA+0x48	R/W	USCI Device Address Register 1	0x0000_0000					
UI2C_ADDRMSK0	UI2Cn_BA+0x4C	R/W	USCI Device Address Mask Register 0	0x0000_0000					
UI2C_ADDRMSK1	UI2Cn_BA+0x50	R/W	USCI Device Address Mask Register 1	0x0000_0000					
UI2C_WKCTL	UI2Cn_BA+0x54	R/W	USCI Wake-up Control Register	0x0000_0000					
UI2C_WKSTS	UI2Cn_BA+0x58	R/W	USCI Wake-up Status Register	0x0000_0000					
UI2C_PROTCTL	UI2Cn_BA+0x5C	R/W	USCI Protocol Control Register	0x0000_0000					
UI2C_PROTIEN	UI2Cn_BA+0x60	R/W	USCI Protocol Interrupt Enable Register	0x0000_0000					
UI2C_PROTSTS	UI2Cn_BA+0x64	R/W	USCI Protocol Status Register	0x0000_0000					
UI2C_ADMAT	UI2Cn_BA+0x88	R/W	I ² C Slave Match Address Register	0x0000_0000					
UI2C_TMCTL	UI2Cn_BA+0x8C	R/W	I ² C Timing Configure Control Register	0x0002_0000					

6.15.7 Register Description

USCI Control Register (UI2C_CTL)

Register	Offset	R/W	Description	Reset Value	
UI2C_CTL	UI2Cn_BA+0x00	R/W	USCI Control Register	0x0000_0000	

31	30	29	28	27	26	25	24				
Reserved											
23	22	21	21 20 19 18 17								
	Reserved										
15	14	13	12	11	10	9	8				
			Rese	erved							
7	6	5	3	2	1	0					
		Reserved	FUNMODE								

Bits	Description									
[31:3]	Reserved	Reserved.								
[2:0]	FUNMODE	Function Mode This bit field selects the protocol for this USCI controller. Selecting a protocol that is not available or a reserved combination disables the USCI. When switching between two protocols, the USCI has to be disabled before selecting a new protocol. Simultaneously, the USCI will be reset when user write 000 to FUNMODE. 000 = The USCI is disabled. All protocol related state machines are set to idle state. 001 = The SPI protocol is selected.								
		 010 = The UART protocol is selected. 100 = The I²C protocol is selected. Note: Other bit combinations are reserved. 								

USCI Baud Rate Generator Register (UI2C_BRGEN)

Register Offset		R/W	Description	Reset Value	
UI2C_BRGEN	UI2Cn_BA+0x08	R/W	USCI Baud Rate Generator Register	0x0000_3C00	

31	30	29	28	27	26	25	24				
Reserved CLKDIV											
23	22	21	20	19	17	16					
	CLKDIV										
15	14	13	12	11 10		9	8				
Reserved			DSCNT			PDSCNT					
7	6	5	4	3	2	1	0				
Rese	erved	TMCNTSRC	TMCNTEN	SPCL	KSEL	PTCLKSEL	RCLKSEL				

Bits	Description							
[31:26]	Reserved	Reserved.						
[25:16]	CLKDIV	Clock Divider This bit field defines the ratio between the protocol clock frequency f_{PROT_CLK} and the clock divider frequency f_{DIV_CLK} ($f_{DIV_CLK} = f_{PROT_CLK} / (CLKDIV+1)$).						
[15]	Reserved	Reserved.						
[14:10]	DSCNT	Denominator for Sample Counter This bit field defines the divide ratio of the sample clock f_{SAMP_CLK} . The divided frequency $f_{DS_CNT} = f_{PDS_CNT} / (DSCNT+1)$.						
[9:8]	PDSCNT	CNT Pre-divider for Sample Counter This bit field defines the divide ratio of the clock division from sample clock f _{SAMP_CLK} . The divided frequen f _{PDS_CNT} = f _{SAMP_CLK} / (PDSCNT+1).						
[7:6]	Reserved	Reserved.						
[5]	TMCNTSRC	Time Measurement Counter Clock Source Selection 0 = Time measurement counter with f _{PROT_CLK} . 1 = Time measurement counter with f _{DIV_CLK} .						
[4]	TMCNTEN	Time Measurement Counter Enable Bit This bit enables the 10-bit timing measurement counter. 0 = Time measurement counter Disabled. 1 = Time measurement counter Enabled.						
[3:2]] Sample Clock Source Selection This bit field used for the clock source selection of a sample clock (f _{SAMP_CLK}) for the protocol process 00 = f _{SAMP_CLK} = f _{DIV_CLK} . 01 = f _{SAMP_CLK} = f _{PROT_CLK} . 10 = f _{SAMP_CLK} = f _{SCLK} . 11 = f _{SAMP_CLK} = f _{REF_CLK} .							
[1]	PTCLKSEL	Protocol Clock Source Selection						

nuvoTon

		This bit selects the source signal of protocol clock (f _{PROT_CLK}).
		0 = Reference clock f _{REF_CLK} .
		1 = $f_{REF_{CLK2}}$ (its frequency is half of $f_{REF_{CLK}}$).
		Reference Clock Source Selection
[0]	RCLKSEL	This bit selects the source signal of reference clock (f _{REF_CLK}).
[0]	RULKSEL	0 = Peripheral device clock f _{PCLK.}
		1 = Reserved.

USCI Line Control Register (UI2C_LINECTL)

Register Offse			Offset R		R/W	Description			Reset Value		
UI2C_LINECTL	-	UI2Cr	n_BA+0x2C		R/W	USCI Line Contro	l Register		0x000	0x0000_0000	
31	30		29	28		27	26	25		24	
Reserved											
23	22 21		21		20	19	18	18 17		16	
					Re	served					
15	15 14 13			12	11	11 10 9			8		
	Reserved DWIDTH										
7	7 6 5			4	3	2	1		0		
	Reserved										

Bits	Descriptio	n							
[31:12]	Reserved	served.							
[11:8]	DWIDTH	Word Length of Transmission This bit field defines the data word length (amount of bits) for reception and transmission. The data word is always right-aligned in the data buffer. USCI support word length from 4 to 16 bits. 0x0: The data word contains 16 bits located at bit positions [15:0]. 0x1: Reserved. 0x2: Reserved. 0x3: Reserved. 0x4: The data word contains 4 bits located at bit positions [3:0]. 0x5: The data word contains 5 bits located at bit positions [4:0]. 							
[7:1]	Reserved	DxF: The data word contains 15 bits located at bit positions [14:0].							
[0]	LSB	LSB First Transmission Selection 0 = The MSB, which bit of transmit/receive data buffer depends on the setting of DWIDTH, is transmitted/received first. 1 = The LSB, the bit 0 of data buffer, will be transmitted/received first.							

USCI Transmit Data Register (UI2C_TXDAT)

Register	Offset	R/W	Description	Reset Value
UI2C_TXDAT	UI2Cn_BA+0x30	W	USCI Transmit Data Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			тхі	DAT					
7	6	5	4	3	2	1	0		
	TXDAT								

Bits	Description					
[31:16]	Reserved	Reserved.				
[15:0]	TXDAT	Transmit Data Software can use this bit field to write 16-bit transmit data for transmission.				

USCI Receive Data Register (UI2C_RXDAT)

Register		Offset		R/W	Description Reset Value			Value		
UI2C_RXDAT		UI2Cn_E	3A+0x34	R	USC	I Receive Data	Register		0x000	0_000
31	3	30	29	28		27	26	25	1	24
					Rese	rved				
23	2	22	21	20		19	18	17		16
					Rese	rved				
15	1	14	13	12		11	10	9		8
	RXDAT									
7		6	5	4	4 3 2		1		0	
	RXDAT									

Bits	Description						
[31:16]	Reserved	leserved.					
		Received Data					
[15:0]	RXDAT	This bit field monitors the received data which stored in receive data buffer.					
		Note: In I ² C protocol, RXDAT[12:8] indicate the different transmission conditions which defined in I ² C.					

USCI Device Address Register (UI2C_DEVADDR)

Register	Offset	R/W Description		Reset Value
UI2C_DEVADDR0	UI2Cn_BA+0x44	R/W	USCI Device Address Register 0	0x0000_0000
UI2C_DEVADDR1	UI2Cn_BA+0x48	R/W	USCI Device Address Register 1	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
		Rese	erved			DEVA	ADDR			
7	6	5	4	3	2	1	0			
	DEVADDR									

Bits	Description							
[31:10]	Reserved	eserved.						
[9:0]	DEVADDR	Device Address In I ² C protocol, this bit field contains the programmed slave address. If the first received address byte are 1111 0AAX _B , the AA bits are compared to the bits DEVADDR[9:8] to check for address match, where the X is R/W bit. Then the second address byte is also compared to DEVADDR[7:0]. Note 1: The DEVADDR [9:7] must be set 3'b000 when I ² C operating in 7-bit address mode. Note 2: When software set 10'h000, the address can not be used.						

nuvoTon

Register	Offset	R/W	Description	Reset Value
UI2C_ADDRMSK0	UI2Cn_BA+0x4C	R/W	USCI Device Address Mask Register 0	0x0000_0000
UI2C_ADDRMSK1	UI2Cn_BA+0x50	R/W	USCI Device Address Mask Register 1	0x0000_0000

USCI Device Address Mask Register (UI2C_ADDRMSK) – for I²C Only

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
		Rese	erved			ADDF	RMSK			
7	6	5	4	3	2	1	0			
	ADDRMSK									

Bits	Description						
[31:10]	Reserved	Reserved.					
		USCI Device Address Mask					
[9:0]	ADDRMSK	0 = Mask Disabled (the received corresponding register bit should be exact the same as address register.).1 = Mask Enabled (the received corresponding address bit is don't care.).					
		USCI support multiple address recognition with two address mask register. When the bit in the address mask register is set to one, it means the received corresponding address bit is don't-care. If the bit is set to zero, that means the received corresponding register bit should be exact the same as address register.					

USCI Wake-up Control Register (UI2C_WKCTL)

Register	Offset	R/W	Description	Reset Value
UI2C_WKCTL	UI2Cn_BA+0x54	R/W	USCI Wake-up Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
Reserved										
15	15 14 13 12 11 10 9 8									
	Reserved									
7 6 5 4 3 2 1										
		WKADDREN	WKEN							

Bits	Description	Description				
[31:2]	Reserved	Reserved Reserved.				
[1]	WKADDREN	Wake-up Address Match Enable Bit 0 = The chip is woken up according data toggle. 1 = The chip is woken up according address match.				
[0]	WKEN	Wake-up Enable Bit 0 = Wake-up function Disabled. 1 = Wake-up function Enabled.				

USCI Wake-up Status Register (UI2C_WKSTS)

Register	Offset	R/W	Description	Reset Value
UI2C_WKSTS	UI2Cn_BA+0x58	R/W	USCI Wake-up Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
Reserved									
15 14 13 12 11 10 9									
Reserved									
7 6 5 4 3 2 1									
	Reserved								

Bits	Descriptio	escription					
[31:1]	Reserved	Reserved.					
[0]	WKF	Wake-up Flag When chip is woken up from Power-down mode, this bit is set to 1. Software can write 1 to clear this bit.					

USCI Protocol Control Register – I²C (UI2C_PROTCTL)

Register	Offset	R/W	Description	Reset Value
UI2C_PROTCTL	UI2Cn_BA+0x5C	R/W	USCI Protocol Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
PROTEN		Reserved TOCNT							
23	22	21	20	19	18	17	16		
	TOCNT								
15	14 13 12 11 10						8		
Reserved							SCLOUTEN		
7	6	5	4	3	2	1	0		
Rese	Reserved PTRG ADDR10EN STA STO AA GCFUN						GCFUNC		

Bits	Description					
[31]	PROTEN	I ² C Protocol Enable Bit 0 = I ² C Protocol Disabled. 1 = I ² C Protocol Enabled.				
[30:26]	Reserved	Reserved.				
[25:16]	TOCNT	Time-out Clock Cycle This bit field indicates how many clock cycle selected by TMCNTSRC (UI2C_BRGEN [5]) when each interrupt flags are clear. The time-out is enable when TOCNT bigger than 0. Note: The TMCNTSRC (UI2C_BRGEN [5]) must be set zero on I ² C mode.				
[15:10]	Reserved	Reserved.				
[9]	MONEN	 Monitor Mode Enable Bit This bit enables monitor mode. In monitor mode the SDA output will be put in high impedance mode. This prevents the I²C module from outputting data of any kind (including ACK) onto the I²C data bus. 0 = The monitor mode Disabled. 1 = The monitor mode Enabled. Note: Depending on the state of the SCLOUTEN bit, the SCL output may be also forced high, preventing the module from having control over the I²C clock line. 				
[8]	SCLOUTEN	 SCL Output Enable Bit This bit enables monitor pulling SCL to low. This monitor will pull SCL to low until it has had time to respond to an I²C interrupt. 0 = SCL output will be forced high due to open drain mechanism. 1 = I²C module may act as a slave peripheral just like in normal operation, the I²C holds the clock line low until it has had time to clear I²C interrupt. 				
[7:6]	Reserved	Reserved.				

		I ² C Protocol Trigger (Write Only)
[5]	PTRG	When a new state is present in the UI2C_PROTSTS register, if the related interrupt enable bits are set, the I ² C interrupt is requested. It must write one by software to this bit after the related interrupt flags are set to 1 and the I ² C protocol function will go ahead until the STOP is active or the PROTEN is disabled.
		0 = I2C's stretch disabled and the I ² C protocol function will go ahead.
		1 = I2C's stretch active.
		Address 10-bit Function Enable Bit
[4]	ADDR10EN	0 = Address match 10 bit function Disabled.
		1 = Address match 10 bit function Enabled.
		I ² C START Control
[3]	STA	Setting STA to logic 1 to enter Master mode, the I ² C hardware sends a START or repeat START condition to bus when the bus is free.
		I ² C STOP Control
[2]	STO	In Master mode, setting STO to transmit a STOP condition to bus then I^2C hardware will check the bus condition if a STOP condition is detected this bit will be cleared by hardware automatically. In a slave mode, setting STO resets I^2C hardware to the defined "not addressed" slave mode when bus error (UI2C_PROTSTS.ERRIF = 1).
		Assert Acknowledge Control
[1]	AA	When AA =1 prior to address or data received, an acknowledged (low level to SDA) will be returned during the acknowledge clock pulse on the SCL line when (1) A slave is acknowledging the address sent from master, (2) The receiver devices are acknowledging the data sent by transmitter. When AA=0 prior to address or data received, a Not acknowledged (high level to SDA) will be returned during the acknowledge clock pulse on the SCL line.
		General Call Function
[0]	GCFUNC	0 = General Call Function Disabled.
		1 = General Call Function Enabled.

	USCI Protocol Interrupt Enable Register – I ² C (UI2	C_PROTIEN)
--	---	------------

Register	Offset	R/W	Description	Reset Value
UI2C_PROTIEN	UI2Cn_BA+0x60	R/W	USCI Protocol Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24				
Reserved											
23	23 22 21 20				18	17	16				
	Reserved										
15	15 14 13 12		12	11	10	9	8				
	Reserved										
7	6	5	4	3	2	1	0				
Reserved	ACKIEN	ERRIEN	ARBLOIEN	NACKIEN	STORIEN	STARIEN	TOIEN				

Bits	Description	
[31:7]	Reserved	Reserved.
[6]	ACKIEN	Acknowledge Interrupt Enable Bit This bit enables the generation of a protocol interrupt if an acknowledge is detected by a master. 0 = The acknowledge interrupt Disabled. 1 = The acknowledge interrupt Enabled.
[5]	ERRIEN	Error Interrupt Enable Bit This bit enables the generation of a protocol interrupt if an I ² C error condition is detected (indicated by ERRIF (UI2C_PROTSTS [12])). 0 = The error interrupt Disabled. 1 = The error interrupt Enabled.
[4]	ARBLOIEN	 Arbitration Lost Interrupt Enable Bit This bit enables the generation of a protocol interrupt if an arbitration lost event is detected. 0 = The arbitration lost interrupt Disabled. 1 = The arbitration lost interrupt Enabled.
[3]	NACKIEN	Non - Acknowledge Interrupt Enable Bit This bit enables the generation of a protocol interrupt if a Non - acknowledge is detected by a master. 0 = The non - acknowledge interrupt Disabled. 1 = The non - acknowledge interrupt Enabled.
[2]	STORIEN	 STOP Condition Received Interrupt Enable Bit This bit enables the generation of a protocol interrupt if a STOP condition is detected. 0 = The stop condition interrupt Disabled. 1 = The stop condition interrupt Enabled.
[1]	STARIEN	 START Condition Received Interrupt Enable Bit This bit enables the generation of a protocol interrupt if a START condition is detected. 0 = The start condition interrupt Disabled. 1 = The start condition interrupt Enabled.

		Time-out Interrupt Enable Bit In I ² C protocol, this bit enables the interrupt generation in case of a time-out event.
[0]	TOIEN	0 = The time-out interrupt Disabled. 1 = The time-out interrupt Enabled.

USCI Protocol Status Register – I²C (UI2C_PROTSTS)

Register	Offset	R/W	Description	Reset Value
UI2C_PROTSTS	UI2Cn_BA+0x64	R/W	USCI Protocol Status Register	0x0000_0000

31	30	29	28	27	26	25	24				
Reserved											
23	22	21	20	19	18	17	16				
	Rese	erved		ERRARBLO	BUSHANG	WRSTSWK	WKAKDONE				
15	14	13	12	11	10	9	8				
SLAREAD	SLASEL	ACKIF	ERRIF	ARBLOIF	NACKIF	STORIF	STARIF				
7	6	5	4	3	2	1	0				
Reserved	ONBUSY	TOIF	Reserved								

Bits	Description	
[31:20]	Reserved	Reserved.
		Error Arbitration Lost
		This bit indicates bus arbitration lost due to bigger noise which is can't be filtered by input processor. The I ² C can send start condition when ERRARBLO is set. Thus this bit doesn't be cared on slave mode.
[19]	ERRARBLO	0 = The bus is normal status for transmission.
		1 = The bus is error arbitration lost status for transmission.
		Note: This bit has no interrupt signal, and it will be cleared automatically by hardware when a START condition is present.
		Bus Hang-up
	BUSHANG	This bit indicates bus hang-up status. There is 4-bit counter count when SCL hold high and refer $f_{SAMP_{CLK}}$. The hang-up counter will count to overflow and set this bit when SDA is low. The counter will be reset by falling edge of SCL signal.
[18]		0 = The bus is normal status for transmission.
		1 = The bus is hang-up status for transmission.
		Note: This bit has no interrupt signal, and it will be cleared automatically by hardware when a START condition is present.
	WRSTSWK	Read/Write Status Bit in Address Wake-up Frame
[17]		0 = Write command be record on the address match wake-up frame.
		1 = Read command be record on the address match wake-up frame.
		Wake-up Address Frame Acknowledge Bit Done
[40]	WKAKDONE	0 = The ACK bit cycle of address match frame isn't done.
[16]	WKAKDONE	1 = The ACK bit cycle of address match frame is done in power-down.
		Note: This bit can't clear when WKF is not be clear.
		Slave Read Request Status
		This bit indicates that a slave read request has been detected.
[15]	SLAREAD	0 = A slave R/W bit is 1 has not been detected.
		1 = A slave R/W bit is 1 has been detected.
		Note: This bit has no interrupt signal, and it will be cleared automatically by hardware.

		Slave Select Status
		This bit indicates that this device has been selected as slave.
[14]	SLASEL	0 = The device is not selected as slave.
		1 = The device is selected as slave.
		Note: This bit has no interrupt signal, and it will be cleared automatically by hardware.
		Acknowledge Received Interrupt Flag
		This bit indicates that an acknowledge has been received in master mode. A protocol interrupt can be generated if UI2C_PROTIEN.ACKIEN = 1.
[13]	ACKIF	0 = An acknowledge has not been received.
		1 = An acknowledge has been received.
		Note: It is cleared by software writing 1 into this bit
		Error Interrupt Flag
		This bit indicates that a Bus Error occurs when a START or STOP condition is present at an illegal position in the formation frame. Example of illegal position are during the serial transfer of an address byte, a data byte or an acknowledge bit. A protocol interrupt can be generated if UI2C_PROTIEN.ERRIEN = 1.
[12]	ERRIF	0 = An I ² C error has not been detected.
		$1 = An I^2C$ error has been detected.
		Note 1: It is cleared by software writing 1 into this bit
		Note 2: This bit is set for slave mode, and user must write 1 into STO register to the defined "not addressed" slave mode.
		Arbitration Lost Interrupt Flag
	ARBLOIF	This bit indicates that an arbitration has been lost. A protocol interrupt can be generated if UI2C_PROTIEN.ARBLOIEN = 1.
[11]		0 = An arbitration has not been lost.
		1 = An arbitration has been lost.
		Note: It is cleared by software writing 1 into this bit
		Non - Acknowledge Received Interrupt Flag
		This bit indicates that a non - acknowledge has been received in master mode. A protocol interrupt can be generated if UI2C_PROTIEN.NACKIEN = 1.
[10]	NACKIF	0 = A non - acknowledge has not been received.
		1 = A non - acknowledge has been received.
		Note: It is cleared by software writing 1 into this bit
		Stop Condition Received Interrupt Flag
		This bit indicates that a stop condition has been detected on the l^2C bus lines. A protocol interrupt can be generated if UI2C_PROTIEN.STORIEN = 1.
[9]	STORIF	0 = A stop condition has not yet been detected.
		1 = A stop condition has been detected.
		Note 1: It is cleared by software writing 1 into this bit
		Start Condition Received Interrupt Flag
		This bit indicates that a start condition or repeated start condition has been detected on master mode. However, this bit also indicates that a repeated start condition has been detected on slave mode.
[8]	STARIF	A protocol interrupt can be generated if UI2C_PROTIEN.STARIEN = 1.
		0 = A start condition has not yet been detected.
		1 = A start condition has been detected.
		Note: It is cleared by software writing 1 into this bit
[7]	Reserved	Reserved.
r. 1		
[6]	ONBUSY	On Bus Busy Indicates that a communication is in progress on the bus. It is set by hardware when a START condition is
		Inducated that a continunication is in provided on the publicity fightwate when a start condition st

		detected. It is cleared by hardware when a STOP condition is detected 0 = The bus is IDLE (both SCLK and SDA High). 1 = The bus is busy.					
[5]	TOIF	 Time-out Interrupt Flag 0 = A time-out interrupt status has not occurred. 1 = A time-out interrupt status has occurred. Note: It is cleared by software writing 1 into this bit 					
[4:0]	Reserved	Reserved.					

USCI Slave Match Address Register (UI2C_ADMAT)

Register	Offset	R/W	Description	Reset Value
UI2C_ADMAT	UI2Cn_BA+0x88	R/W	I ² C Slave Match Address Register	0x0000_0000

31	30	29	28	27	26	25	24				
Reserved											
23	22	21	20	19	18	17	16				
	Reserved										
15	15 14 13 12 11 10					9	8				
	Reserved										
7	1	0									
		ADMAT1	ADMAT0								

Bits	Descriptic	escription							
[31:2]	Reserved	eserved Reserved.							
[1]	ADMAT1	USCI Address 1 Match Status Register When address 1 is matched, hardware will inform which address used. This bit will set to 1, and software can write 1 to clear this bit.							
[0]	ADMAT0	USCI Address 0 Match Status Register When address 0 is matched, hardware will inform which address used. This bit will set to 1, and software can write 1 to clear this bit.							

USCI Timing Configure Control Register (UI2C_TMCTL)

Register	Offset	R/W	Description	Reset Value
UI2C_TMCTL	UI2Cn_BA+0x8C	R/W	I ² C Timing Configure Control Register	0x0002_0000

31	30	29	28	27	26	25	24
Reserved							HTCTL
23	22	21	20	19	18	17	16
HTCTL							
15	14	13	12	11	10	9	8
Reserved						STCTL	
7	6	5	4	3	2	1	0
STCTL							

Bits	Descriptio	Description			
[31:25]	Reserved	Reserved.			
[24:16]	HTCTL	 Hold Time Configure Control This field is used to adjust SDA transfer timing. which master will transfer SDA after SCL fallinng edge. The delay hold time is numbers of peripheral clock = HTCTL x f_{PCLK}. Note: Hold time adjust function can only work in master mode, when slave mode, this field should set as 0 			
[15:9]	Reserved	Reserved.			
[8:0]	STCTL	Setup Time Configure Control This field is used to generate a delay timing between SDA edge and SCL rising edge in transmission mode. The delay setup time is numbers of peripheral clock = STCTL x f _{PCLK} .			

6.16 Controller Area Network (CAN)

6.16.1 Overview

The Bosch CAN (is named as C_CAN) consists of the CAN Core, Message RAM, Message Handler, Control Registers and Module Interface. The CAN Core performs communication according to the CAN protocol version 2.0 part A and B. The bit rate can be programmed to values up to 1 MBit/s. For the connection to the physical layer, additional transceiver hardware is required.

For communication on a CAN network, individual Message Objects are configured. The Message Objects and Identifier Masks for acceptance filtering of received messages are stored in the Message RAM. All functions concerning the handling of messages are implemented in the Message Handler. These functions include acceptance filtering, the transfer of messages between the CAN Core and the Message RAM, and the handling of transmission requests as well as the generation of the module interrupt.

The register set of the C_CAN can be accessed directly by the software through the module interface. These registers are used to control/configure the CAN Core and the Message Handler and to access the Message RAM.

6.16.2 Features

- Supports CAN protocol version 2.0 part A and B
- Bit rates up to 1 MBit/s
- 32 Message Objects
- Each Message Object has its own identifier mask
- Programmable FIFO mode (concatenation of Message Objects)
- Maskable interrupt
- Disabled Automatic Re-transmission mode for Time Triggered CAN applications
- Programmable loop-back mode for self-test operation
- 16-bit module interfaces to the AMBA APB bus
- Supports wake-up function

6.16.3 Block Diagram

The C_CAN interfaces with the AMBA APB bus. Figure 6.16-1 shows the block diagram of the C_CAN.

- CAN Core
 - CAN Protocol Controller and Rx/Tx Shift Register for serial/parallel conversion of messages.
- Message RAM
 - Stores Message Objects and Identifier Masks
- Registers
 - All registers used to control and to configure the C_CAN.
 - Message Handler
 - State Machine that controls the data transfer between the Rx/Tx Shift Register of the CAN Core and the Message RAM as well as the generation of interrupts as programmed in the Control and Configuration Registers.
- Module Interface

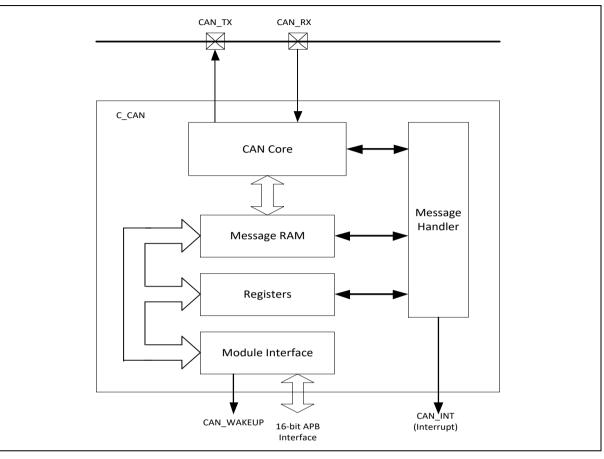


Figure 6.16-1 CAN Peripheral Block Diagram

6.16.4 Basic Configuration

6.16.4.1 CAN Basic Configuration

- Clock source Configuration
 - Enable CAN clock (CAN0CKEN (CLK_APBCLK0[24])).
- Reset Configuration
 - Reset CAN controller (CAN0RST (SYS_IPRST1[24])).
- Pin Configuration

Group	Pin Name	GPIO	MFP
		GPA0, GPA1, GPA2, GPA3, GPA4, GPA5	MFP20
		GPB4, GPB5, GPB6, GPB7	MFP20
CAN0	CAN0_RXD	GPC0, GPC1, GPC2, GPC3, GPC4, GPC5, GPC6, GPC7	MFP20
		GPD3, GPD7	MFP3
		GPA0, GPA1, GPA2, GPA4, GPA5	MFP19
	CAN0_TXD	GPB4, GPB5, GPB6, GPB7	MFP19

GPC0, GPC1, GPC2, GPC3, GPC4, GPC5, GPC6, GPC7	MFP19
GPD2, GPD6	MFP3

6.16.5 Functional Description

6.16.5.1 Software Initialization

The software initialization is started by setting the Init bit (CAN_CON[0]), either by a software or a hardware reset, or by going to bus-off state.

While the Init bit is set, all messages transfer to and from the CAN bus are stopped and the status of the CAN_TX output pin is recessive (HIGH). The Error Management Logic (EML) counters are unchanged. Setting the Init bit does not change any configuration register.

To initialize the CAN Controller, software has to set up the Bit Timing Register and each Message Object. If a Message Object is not required, the corresponding MsgVal bit (CAN_IFn_ARB2[15]) should be cleared. Otherwise, the entire Message Object has to be initialized.

Access to the Bit Timing Register and to the Baud Rate Prescaler Extension Register for configuring bit timing is enabled when both the Init and CCE (CAN_CON[6]) bits are set.

Resetting the Init bit (by software only) finishes the software initialization. Later, the Bit Stream Processor (BSP) (see Section 6.16.7.15: Configuring the Bit Timing) synchronizes itself to the data transfer on the CAN bus by waiting for the occurrence of a sequence of 11 consecutive recessive bits (= Bus Idle) before it can take part in bus activities and start the message transfer.

The initialization of the Message Objects is independent of Init and can be done on the fly, but the Message Objects should all be configured to particular identifiers or set to not valid before the BSP starts the message transfer.

To change the configuration of a Message Object during normal operation, the software has to start by resetting the corresponding MsgVal bit. When the configuration is completed, MsgVal bit is set again.

6.16.5.2 CAN Message Transfer

Once the C_CAN is initialized and Init bit (CAN_CON[0]) is reset to zero, the C_CAN Core synchronizes itself to the CAN bus and starts the message transfer.

Received messages are stored in their appropriate Message Objects if they pass the Message Handler's acceptance filtering. The whole message including all arbitration bits, DLC (CAN_IFn_MCON[3:0]) and eight data bytes (CAN_IFn_DAT_A1/2; CAN_IFn_DAT_B1/2) are stored in the Message Object. If the Identifier Mask is used, the arbitration bits which are masked to "don't care" may be overwritten in the Message Object.

Software can read or write each message any time through the Interface Registers and the Message Handler guarantees data consistency in case of concurrent accesses.

Messages to be transmitted are updated by the application software. If a permanent Message Object (arbitration and control bits are set during configuration) exists for the message, only the data bytes are updated and the TxRqst bit (CAN_IFn_MCON[8]) with NewDat bit (CAN_IFn_MCON[15]) are set to start the transmission. If several transmit messages are assigned to the same Message Object (when the number of Message Objects is not sufficient), the whole Message Object has to be configured before the transmission of this message is requested.

The transmission of any number of Message Objects may be requested at the same time. Message objects are transmitted subsequently according to their internal priority. Messages may be updated or set to not valid any time, even when their requested transmission is still pending. The old data will be discarded when a message is updated before its pending transmission has started.

Depending on the configuration of the Message Object, the transmission of a message may be requested autonomously by the reception of a remote frame with a matching identifier.

Disabled Automatic Retransmission

In accordance with the CAN Specification (see ISO11898, 6.3.3 Recovery Management), the C_CAN provides means for automatic retransmission of frames that have lost arbitration or have been disturbed by errors during transmission. The frame transmission service will not be confirmed to the user before the transmission is successfully completed. This means that, by default, automatic retransmission is enabled. It can be disabled to enable the C_CAN to work within a Time Triggered CAN (TTCAN, see ISO11898-1) environment.

The Disabled Automatic Retransmission mode is enabled by setting the Disable Automatic Retransmission (DAR bit (CAN_CON[5])) to one. In this operation mode, the programmer has to consider the different behavior of bits TxRqst (CAN_IFn_MCON[8]) and NewDat (CAN_IFn_MCON[15]) of the Message Buffers:

- When a transmission starts, bit TxRqst of the respective Message Buffer is cleared, while bit NewDat remains set.
- When the transmission completed successfully, bit NewDat is cleared.
- When a transmission fails (lost arbitration or error), bit NewDat remains set.
- To restart the transmission, the software should set the bit TxRqst again.

6.16.6 Test Mode

Test Mode is entered by setting the Test bit (CAN_CON[7]). In Test Mode, bits Tx1 (CAN_TEST[6]), Tx0 (CAN_TEST[5]), LBack (CAN_TEST[4]), Silent (CAN_TEST[3]) and Basic (CAN_TEST[2]) are writeable. Bit Rx (CAN_TEST[7]) monitors the state of the CAN_RX pin and therefore is only readable. All Test Register functions are disabled when the Test bit is cleared.

6.16.6.1 Silent Mode

The CAN Core can be set in Silent Mode by programming the Silent bit (CAN_TEST[3]) to one. In Silent Mode, the C_CAN is able to receive valid data frames and valid remote frames, but it sends only recessive bits on the CAN bus and it cannot start a transmission. If the CAN Core is required to send a dominant bit (ACK bit, Error Frames), the bit is rerouted internally so that the CAN Core monitors this dominant bit, although the CAN bus may remain in recessive state. The Silent Mode can be used to analyze the traffic on a CAN bus without affecting it by the transmission of dominant bits. Figure 6.16-2 shows the connection of signals CAN_TX and CAN_RX to the CAN Core in Silent Mode.

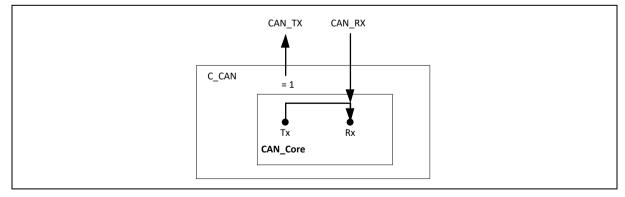


Figure 6.16-2 CAN Core in Silent Mode

6.16.6.2 Loop Back Mode

The CAN Core can be set in Loop Back Mode by programming the Test Register bit LBack (CAN_TEST[4]) to one. In Loop Back Mode, the CAN Core treats its own transmitted messages as received messages and stores them in a Receive Buffer (if they pass acceptance filtering). Figure 6.16-3 shows the connection of signals, CAN_TX and CAN_RX, to the CAN Core in Loop Back Mode.

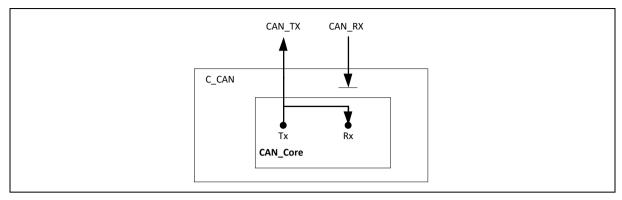


Figure 6.16-3 CAN Core in Loop Back Mode

This mode is provided for self-test functions. To be independent from external stimulation, the CAN Core ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a data/ remote frame) in Loop Back Mode. In this mode, the CAN Core performs an internal feedback from its Tx output to its Rx input. The actual value of the CAN_RX input pin is disregarded by the CAN Core. The transmitted messages can be monitored on the CAN_TX pin.

6.16.6.3 Loop Back Combined with Silent Mode

It is also possible to combine Loop Back Mode and Silent Mode by programming bits LBack (CAN_TEST[4]) and Silent (CAN_TEST[3]) to one at the same time. This mode can be used for a "Hot Selftest", which means that C_CAN can be tested without affecting a running CAN system connected to the CAN_TX and CAN_RX pins. In this mode, the CAN_RX pin is disconnected from the CAN Core and the CAN_TX pin is held recessive. Figure 6.16-4 shows the connection of signals CAN_TX and CAN_RX to the CAN Core in case of the combination of Loop Back Mode with Silent Mode.

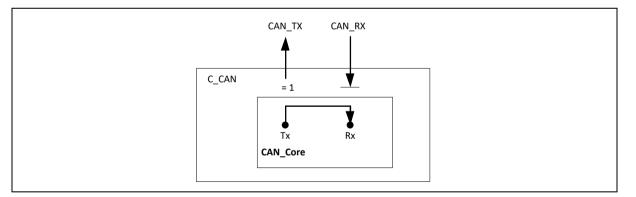


Figure 6.16-4 CAN Core in Loop Back Mode Combined with Silent Mode

6.16.6.4 Basic Mode

The CAN Core can be set in Basic Mode by programming the Basic bit (CAN_TEST[2]) to one. In this mode, the C_CAN runs without the Message RAM.

The IF1 Registers are used as Transmit Buffer. The transmission of the contents of the IF1 Registers is requested by writing the Busy bit (CAN_IFn_CREQ[15]) of the IF1 Command Request Register to one. The IF1 Registers are locked while the Busy bit is set. The Busy bit indicates that the transmission is pending.

As soon as the CAN bus is idle, the IF1 Registers are loaded into the shift register of the CAN Core and the transmission is started. When the transmission has been completed, the Busy bit is reset and the locked IF1 Registers are released.

A pending transmission can be aborted at any time by resetting the Busy bit in the IF1 Command Request Register while the IF1 Registers are locked. If the software has reset the Busy bit, a possible

nuvoTon

retransmission in case of lost arbitration or in case of an error is disabled.

The IF2 Registers are used as a Receive Buffer. After the reception of a message the contents of the shift register is stored into the IF2 Registers, without any acceptance filtering.

Additionally, the actual contents of the shift register can be monitored during the message transfer. Each time a read Message Object is initiated by writing the Busy bit of the IF2 Command Request Register to one, the contents of the shift register are stored into the IF2 Registers.

In Basic Mode, the evaluation of all Message Object related control and status bits and the control bits of the IFn Command Mask Registers are turned off. The message number of the Command request registers is not evaluated. The NewDat (CAN_IFn_MCON[15]) and MsgLst (CAN_IFn_MCON[14]) bits retain their function, DLC3-0 indicates the received DLC (CAN_IFn_MCON[3:0]), and the other control bits are read as '0'.

6.16.6.5 Software Control of CAN_TX Pin

Four output functions are available for the CAN transmit pin, CAN_TX. In addition to its default function (serial data output), the CAN transmit pin can drive the CAN Sample Point signal to monitor CAN_Core's bit timing and it can drive constant dominant or recessive values. The latter two functions, combined with the readable CAN receive pin CAN_RX, can be used to check the physical layer of the CAN bus.

The output mode for the CAN_TX pin is selected by programming the Tx1 (CAN_TEST[6]) and Tx0 (CAN_TEST[5]) bits.

The three test functions of the CAN_TX pin interfere with all CAN protocol functions. CAN_TX must be left in its default function when CAN message transfer or any of the test modes (Loop Back Mode, Silent Mode or Basic Mode) are selected.

6.16.7 CAN Communications

6.16.7.1 Managing Message Objects

The configuration of the Message Objects in the Message RAM (with the exception of the bits MsgVal, NewDat, IntPnd and TxRqst) will not be affected by resetting the chip. All the Message Objects must be initialized by the application software or they must be "not valid" (MsgVal bit = '0') and the bit timing must be configured before the application software clears the Init bit (CAN_CON[0]).

The configuration of a Message Object is done by programming Mask, Arbitration, Control and Data fields of one of the two interface registers to the desired values. By writing to the corresponding IFn Command Request Register, the IFn Message Buffer Registers are loaded into the addressed Message Object in the Message RAM.

When the Init bit is cleared, the CAN Protocol Controller state machine of the CAN_Core and the state machine of the Message Handler control the internal data flow of the C_CAN. Received messages that pass the acceptance filtering are stored into the Message RAM, messages with pending transmission request are loaded into the CAN_Core's Shift Register and are transmitted through the CAN bus.

The application software reads received messages and updates messages to be transmitted through the IFn Interface Registers. Depending on the configuration, the application software is interrupted on certain CAN message and CAN error events.

6.16.7.2 Message Handler State Machine

The Message Handler controls the data transfer between the Rx/Tx Shift Register of the CAN Core, the Message RAM and the IFn Registers.

The Message Handler FSM controls the following functions:

- Data Transfer from IFn Registers to the Message RAM
- Data Transfer from Message RAM to the IFn Registers
- Data Transfer from Shift Register to the Message RAM
- Data Transfer from Message RAM to Shift Register

ηυνοΤοη

- Data Transfer from Shift Register to the Acceptance Filtering unit
- Scanning of Message RAM for a matching Message Object
- Handling of TxRqst flags
- Handling of interrupts.

6.16.7.3 Data Transfer from/to Message RAM

When the application software initiates a data transfer between the IFn Registers and Message RAM, the Message Handler sets the Busy bit (CAN_IFn_CREQ[15]) to '1'. After the transfer has completed, the Busy bit is again cleared (see Figure 6.16-5).

The respective Command Mask Register specifies whether a complete Message Object or only parts of it will be transferred. Due to the structure of the Message RAM, it is not possible to write single bits/bytes of one Message Object. It is always necessary to write a complete Message Object into the Message RAM. Therefore, the data transfer from the IFn Registers to the Message RAM requires a read-modify-write cycle. First, those parts of the Message Object that are not to be changed are read from the Message RAM and then the complete contents of the Message Buffer Registers are written into the Message Object.

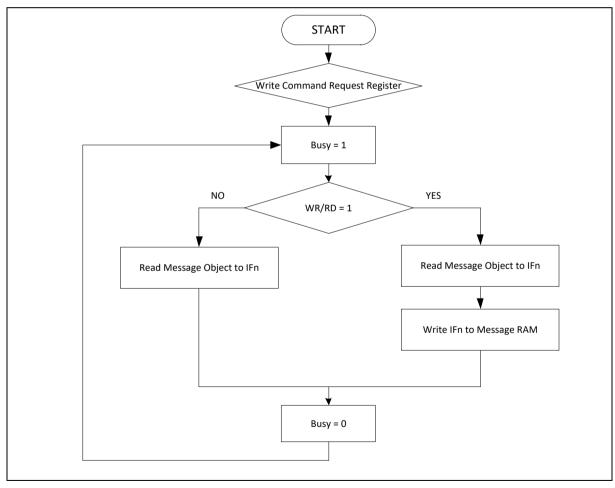


Figure 6.16-5 Data Transfer between IFn Registers and Message

After a partial write of a Message Object, the Message Buffer Registers that are not selected in the Command Mask Register will set the actual contents of the selected Message Object.

After a partial read of a Message Object, the Message Buffer Registers that are not selected in the Command Mask Register will be left unchanged.

6.16.7.4 Message Transmission

If the shift register of the CAN Core cell is ready for loading and if there is no data transfer between the IFn Registers and Message RAM, the MsgVal bit (CAN_IFn_ARB2[15]) and TxRqst bits (CAN_TXREQ1/2) are evaluated. The valid Message Object with the highest priority pending transmission request is loaded into the shift register by the Message Handler and the transmission is started. The NewDat (CAN_IFn_MCON[15]) bit of the Message Object is reset.

After a successful transmission and also if no new data was written to the Message Object (NewDat = '0') since the start of the transmission, the TxRqst bit of the Message Control register (CAN_IFn_MCON[8]) will be reset. If TxIE bit (CAN_IFn_MCON[11]) is set, IntPnd bit (CAN_IFn_MCON[13]) of the Interrupt Identifier register will be set after a successful transmission. If the C_CAN has lost the arbitration or if an error occurred during the transmission, the message will be retransmitted as soon as the CAN bus is free again. Meanwhile, if the transmission of a message with higher priority has been requested, the messages will be transmitted in the order of their priority.

6.16.7.5 Acceptance Filtering of Received Messages

When the arbitration and control field (Identifier + IDE + RTR + DLC) of an incoming message is completely shifted into the Rx/Tx Shift Register of the CAN Core, the Message Handler FSM starts the scanning of the Message RAM for a matching valid Message Object.

To scan the Message RAM for a matching Message Object, the Acceptance Filtering unit is loaded with the arbitration bits from the CAN Core shift register. The arbitration and mask fields (including MsgVal (CAN_IFn_ARB2[15]), UMask (CAN_IFn_MCON[12]), NewDat (CAN_IFn_MCON[15]) and EoB (CAN_IFn_MCON[7])) of Message Object 1 are then loaded into the Acceptance Filtering unit and compared with the arbitration field from the shift register. This is repeated with each following Message Object until a matching Message Object is found or until the end of the Message RAM is reached.

If a match occurs, the scan is stopped and the Message Handler FSM proceeds depending on the type of frame (Data Frame or Remote Frame) received.

Reception of Data Frame

The Message Handler FSM stores the message from the CAN Core shift register into the respective Message Object in the Message RAM. Not only the data bytes, but all arbitration bits and the Data Length Code are stored into the corresponding Message Object. This is done to keep the data bytes connected with the identifier even if arbitration mask registers are used.

The NewDat bit (CAN_IFn_MCON[15]) is set to indicate that new data (not yet seen by the software) has been received. The application software should reset NewDat bit when the Message Object has been read. If at the time of reception, the NewDat bit was already set, MsgLst (CAN_IFn_MCON[14]) is set to indicate that the previous data (supposedly not seen by the software) is lost. If the RxIE bit (CAN_IFn_MCON[10]) is set, the IntPnd bit (CAN_IFn_MCON[13]) is set, causing the Interrupt Register to point to this Message Object.

The TxRqst bit (CAN_IFn_MCON[8]) of this Message Object is reset to prevent the transmission of a Remote Frame, while the requested Data Frame has just been received.

Reception of Remote Frame

When a Remote Frame is received, three different configurations of the matching Message Object have to be considered:

- 1. Dir (CAN_IFn_ARB2[13]) = '1' (direction = transmit), RmtEn (CAN_IFn_MCON[9]) = '1' and UMask (CAN_IFn_MCON[12]) = '1' or '0'
- 2. At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is set. The rest of the Message Object remains unchanged.
- 3. Dir = '1' (direction = transmit), RmtEn = '0' and UMask = '0'
- 4. At the reception of a matching Remote Frame, the TxRqst bit of this Message Object remains

unchanged; the Remote Frame is ignored.

- 5. Dir = '1' (direction = transmit), RmtEn = '0' and UMask = '1'
- 6. At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is reset. The arbitration and control field (Identifier + IDE + RTR + DLC) from the shift register is stored in the Message Object of the Message RAM and the NewDat bit (CAN_IFn_MCON[15]) of this Message Object is set. The data field of the Message Object remains unchanged; the Remote Frame is treated similar to a received Data Frame.

6.16.7.6 Receive/Transmit Priority

The receive/transmit priority for the Message Objects is attached to the message number. Message Object 1 has the highest priority, while Message Object 32 has the lowest priority. If more than one transmission request is pending, they are serviced due to the priority of the corresponding Message Object

6.16.7.7 Configuring a Transmit Object

Table 6.16-1 shows how a Transmit Object should be initialized.

Ms	Arb	Data	Mask	EoB	Dir	NewDat	MsgLst	RxIE	TxIE	IntPnd	RmtEn	TxRqst
1	appl.	appl.	appl.	1	1	0	0	0	appl.	0	appl.	0

Table 6.16-1 Initialization of a Transmit Object

Note: appl. = application software.

The Arbitration Register values (ID28-0 (CAN_IFn_ARB1/2) and Xtd bit (CAN_IFn_ARB2[14])) are provided by the application. They define the identifier and type of the outgoing message. If an 11-bit Identifier ("Standard Frame") is used, it is programmed to ID28 - ID18. The ID17 - ID0 can then be disregarded.

If the TxIE bit (CAN_IFn_MCON[11]) is set, the IntPnd bit (CAN_IFn_MCON[13]) will be set after a successful transmission of the Message Object.

If the RmtEn bit (CAN_IFn_MCON[9]) is set, a matching received Remote Frame will cause the TxRqst bit (CAN_IFn_MCON[8]) to be set; the Remote Frame will autonomously be answered by a Data Frame.

The Data Register values (DLC3-0 (CAN_IFn_MCON[3:0]), Data(0)-(7)) are provided by the application, TxRqst and RmtEn may not be set before the data is valid.

The Mask Registers (Msk28-0, UMask, MXtd and MDir bits) may be used (UMask (CAN_IFn_MCON[12]) = '1') to allow groups of Remote Frames with similar identifiers to set the TxRqst bit. The Dir bit (CAN_IFn_ARB2[13]) should not be masked.

6.16.7.8 Updating a Transmit Object

The software may update the data bytes of a Transmit Object any time through the IFn Interface registers, neither MsgVal bit (CAN_IFn_ARB2[15]) nor TxRqst (CAN_IFn_MCON[8]) have to be reset before the update.

Even if only a part of the data bytes are to be updated, all four bytes of the corresponding IFn Data A Register or IFn Data B Register have to be valid before the contents of that register are transferred to the Message Object. Either the application software has to write all four bytes into the IFn Data Register or the Message Object is transferred to the IFn Data Register before the software writes the new data bytes.

When only the (eight) data bytes are updated, first 0x0087 is written to the Command Mask Register and then the number of the Message Object is written to the Command Request Register, concurrently

updating the data bytes and setting TxRqst.

To prevent the reset of TxRqst at the end of a transmission that may already be in progress while the data is updated, NewDat (CAN_IFn_MCON[15]) has to be set together with TxRqst.

When NewDat is set together with TxRqst, NewDat will be reset as soon as the new transmission has started.

6.16.7.9 Configuring a Receive Object

Table 6.16-2 shows how a Receive Object should be initialized.

Ms	sgVal	Arb	Data	Mask	ЕоВ	Dir	NewDat	MsgLst	RxIE	TxIE	IntPnd	RmtEn	TxRqst
	1	appl.	appl.	appl.	1	0	0	0	appl.	0	0	0	0

Table 6.16-2	Initialization	of a	Receive	Object
10010 0.10 2	milanzation	or a	I CCCCIVC	Object

The Arbitration Registers values (ID28-0 (CAN_IFn_ARB1/2) and Xtd bit (CAN_IFn_ARB2[14])) are provided by the application. They define the identifier and type of accepted received messages. If an 11-bit Identifier ("Standard Frame") is used, it is programmed to ID28 - ID18. Then ID17 - ID0 can be disregarded. When a Data Frame with an 11-bit Identifier is received, ID17 - ID0 will be set to '0'.

If the RxIE bit (CAN_IFn_MCON[10]) is set, the IntPnd bit (CAN_IFn_MCON[13]) will be set when a received Data Frame is accepted and stored in the Message Object.

The Data Length Code (DLC3-0 (CAN_IFn_MCON[3:0])) is provided by the application. When the Message Handler stores a Data Frame in the Message Object, it will store the received Data Length Code and eight data bytes. If the Data Length Code is less than 8, the remaining bytes of the Message Object will be overwritten by unspecified values.

The Mask Registers (Msk28-0, UMask, MXtd and MDir bits) may be used (UMask (CAN_IFn_MCON[12]) = '1') to allow groups of Data Frames with similar identifiers to be accepted. The Dir bit (CAN_IFn_ARB2[13]) should not be masked in typical applications.

6.16.7.10 Handling Received Messages

The application software may read a received message any time through the IFn Interface registers. The data consistency is guaranteed by the Message Handler state machine.

Typically, the software will write first 0x007F to the Command Mask Register and then the number of the Message Object to the Command Request Register. This combination will transfer the whole received message from the Message RAM into the Message Buffer Register. Additionally, the bits NewDat (CAN_IFn_MCON[15]) and IntPnd (CAN_IFn_MCON[13]) are cleared in the Message RAM (not in the Message Buffer).

If the Message Object uses masks for acceptance filtering, the arbitration bits show which of the matching messages have been received.

The actual value of NewDat shows whether a new message has been received since the last time this Message Object was read. The actual value of MsgLst (CAN_IFn_MCON[14]) shows whether more than one message has been received since the last time this Message Object was read. MsgLst will not be automatically reset.

By means of a Remote Frame, the software may request another CAN node to provide new data for a receive object. Setting the TxRqst bit (CAN_IFn_MCON[8]) of a receive object will cause the transmission of a Remote Frame with the receive object's identifier. This Remote Frame triggers the other CAN node to start the transmission of the matching Data Frame. If the matching Data Frame is received before the Remote Frame could be transmitted, the TxRqst bit is automatically reset.

6.16.7.11 Configuring a FIFO Buffer

With the exception of the EoB bit (CAN_IFn_MCON[7]), the configuration of Receive Objects belonging to a FIFO Buffer is the same as the configuration of a (single) Receive Object, see Section 6.5.7.9: Configuring a Receive Object.

To concatenate two or more Message Objects into a FIFO Buffer, the identifiers and masks (if used) of these Message Objects have to be programmed to matching values. Due to the implicit priority of the Message Objects, the Message Object with the lowest number will be the first Message Object of the FIFO Buffer. The EoB bit of all Message Objects of a FIFO Buffer except the last have to be programmed to zero. The EoB bit of the last Message Object of a FIFO Buffer is set to one, configuring it as the End of the Block.

6.16.7.12 Receiving Messages with FIFO Buffers

Received messages with identifiers matching to a FIFO Buffer are stored into a Message Object of this FIFO Buffer starting with the Message Object with the lowest message number.

When a message is stored into a Message Object of a FIFO Buffer, the NewDat bit (CAN_IFn_MCON[15]) of this Message Object is set. By setting NewDat while EoB (CAN_IFn_MCON[7]) is zero, the Message Object is locked for further write access by the Message Handler until the application software has written the NewDat bit back to zero.

Messages are stored into a FIFO Buffer until the last Message Object of this FIFO Buffer is reached. If none of the preceding Message Objects is released by writing NewDat to zero, all further messages for this FIFO Buffer will be written into the last Message Object of the FIFO Buffer and therefore overwrite the previous messages.

6.16.7.13 Reading from a FIFO Buffer

When the application software transfers the contents of a Message Object to the IFn Message Buffer register by writing its number to the IFn Command Request Register, the corresponding Command Mask Register should be programmed in such a way that bits NewDat (CAN_IFn_MCON[15]) and IntPnd (CAN_IFn_MCON[13]) are reset to zero (TxRqst/NewDat (CAN_IFn_CMASK[2]) = '1' and CIrIntPnd (CAN_IFn_CMASK[3]) = '1'). The values of these bits in the Message Control Register always reflect the status before resetting the bits.

To assure the correct function of a FIFO Buffer, the application software should read the Message Objects starting at the FIFO Object with the lowest message number.

Figure 6.16-6 shows how a set of Message Objects which are concatenated to a FIFO Buffer can be handled by the application software.

nuvoTon

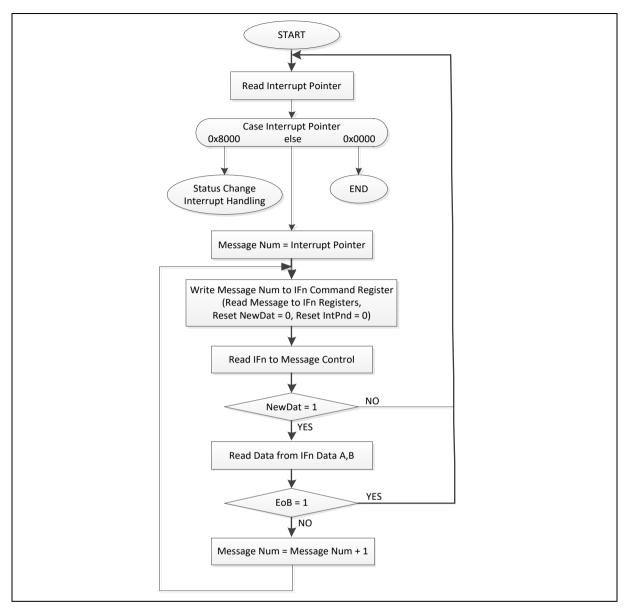


Figure 6.16-6 Application Software Handling of a FIFO Buffer

6.16.7.14 Handling Interrupts

If several interrupts are pending, the CAN Interrupt Register will point to the pending interrupt with the highest priority, disregarding their chronological order. An interrupt remains pending until the application software has cleared it.

The Status Interrupt has the highest priority. Among the message interrupts, interrupt priority of the Message Object decreases with increasing message number.

A message interrupt is cleared by clearing the IntPnd bit (CAN_IFn_MCON[13]) of the Message Object. The Status Interrupt is cleared by reading the Status Register.

The interrupt identifier, Intld, in the Interrupt Register, indicates the cause of the interrupt. When no interrupt is pending, the register will hold the value zero. If the value of the Interrupt Register is different from zero, then there is an interrupt pending and, if IE (CAN_CON[1]) is set, the CAN_INT interrupt signal is active. The interrupt remains active until the Interrupt Register is back to value zero (the cause of the interrupt is reset) or until IE is reset.

The value 0x8000 indicates that an interrupt is pending because the CAN Core has updated (not necessarily changed) the Status Register (Error Interrupt or Status Interrupt). This interrupt has the highest priority. The application software can update (reset) the status bits RxOk (CAN_STATUS[4]), TxOk (CAN_STATUS[3]) and LEC (CAN_STATUS[2:0]), but a write access of the software to the Status Register can never generate or reset an interrupt.

All other values indicate that the source of the interrupt is one of the Message Objects. Intld points to the pending message interrupt with the highest interrupt priority.

The application software controls whether a change of the Status Register may cause an interrupt (bits EIE (CAN_CON[3]) and SIE (CAN_CON[2])) and whether the interrupt line becomes active when the Interrupt Register is different from zero (bit IE in the CAN Control Register). The Interrupt Register will be updated even when IE is reset.

The application software has two possibilities to follow the source of a message interrupt. First, it can follow the Intld in the Interrupt Register and second it can poll the Interrupt Pending Register.

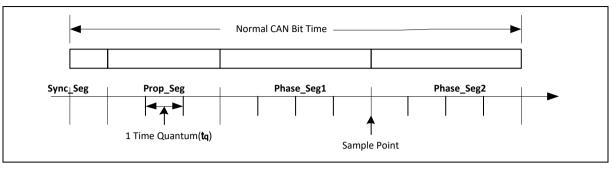
An interrupt service routine that is reading the message that is the source of the interrupt may read the message and reset the Message Object's IntPnd at the same time (bit ClrIntPnd (CAN_IFn_CMASK[3])). When IntPnd is cleared, the Interrupt Register will point to the next Message Object with a pending interrupt.

6.16.7.15 Configuring the Bit Timing

Even if minor errors in the configuration of the CAN bit timing do not result in immediate failure, the performance of a CAN network can be reduced significantly.

In many cases, the CAN bit synchronization will amend a faulty configuration of the CAN bit timing to such a degree that only occasionally an error frame is generated. However, in the case of arbitration, when two or more CAN nodes simultaneously try to transmit a frame, a misplaced sample point may cause one of the transmitters to become error passive.

The analysis of such sporadic errors requires a detailed knowledge of the CAN bit synchronization inside a CAN node and interaction of the CAN nodes on the CAN bus.


6.16.7.16 Bit Time and Bit Rate

CAN supports bit rates in the range of lower than 1 Kbit/s up to 1000 Kbit/s. Each member of the CAN network has its own clock generator, usually a quartz oscillator. The timing parameter of the bit time (i.e. the reciprocal of the bit rate) can be configured individually for each CAN node, creating a common bit rate even though the oscillator periods of the CAN nodes (fosc) may be different.

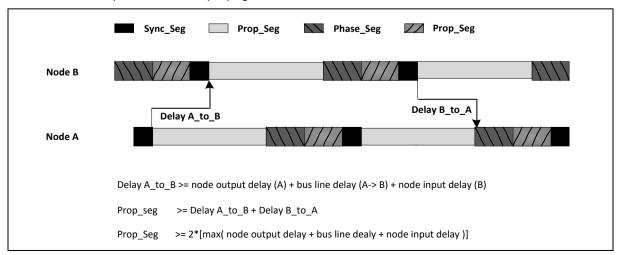
The frequencies of these oscillators are not absolutely stable, small variations are caused by changes in temperature or voltage and by deteriorating components. As long as the variations remain inside a specific oscillator tolerance range (df), the CAN nodes are able to compensate for the different bit rates by re-synchronizing to the bit stream.

According to the CAN specification, the bit time is divided into four segments (see Figure 6.16-7). The Synchronization Segment, the Propagation Time Segment, the Phase Buffer Segment 1 and the Phase Buffer Segment 2. Each segment consists of a specific, programmable number of time quanta (Table 6.16-3). The length of the time quantum (tq), which is the basic time unit of the bit time, is defined by the CAN controller's APB clock fAPB and the BRP bit (CAN_BTIME[5:0]) : tq = BRP / fAPB.

The Synchronization Segment, Sync_Seg, is that part of the bit time where edges of the CAN bus level are expected to occur. The distance between an edge that occurs outside of Sync_Seg, and the Sync_Seg is called the phase error of that edge. The Propagation Time Segment, Prop_Seg, is intended to compensate for the physical delay time within the CAN network. The Phase Buffer Segments Phase_Seg1 and Phase_Seg2 surround the Sample Point. The (Re-)Synchronization Jump Width (SJW) defines how far a re-synchronization may move the Sample Point inside the limits defined by the Phase Buffer Segments to compensate for edge phase errors.

Figure 6.16-7 Bit Timing

Parameter	Range	Remark						
BRP	[132]	Defines the length of the time quantum t_q						
Sync_Seg	1 t _q	Fixed length, synchronization of bus input to APB clock						
Prop_Seg	[18] t _q	Compensates for the physical delay time						
Phase_Seg1	[18] t _q	Which may be lengthened temporarily by synchronization						
Phase_Seg2	[18] t _q	Which may be shortened temporarily by synchronization						
SJW	[14] t _q	Which may not be longer than either Phase Buffer Segment						
This table describes the minimum programmable ranges required by the CAN protocol								


Table 6.16-3 CAN Bit Time Parameters

A given bit rate may be met by different bit time configurations, but for the proper function of the CAN network the physical delay time and the oscillator's tolerance range have to be considered.

6.16.7.17 Propagation Time Segment

This part of the bit time is used to compensate physical delay time within the network. These delay time consist of the signal propagation time on the bus and the internal delay time of the CAN nodes.

Any CAN node synchronized to the bit stream on the CAN bus will be out of phase with the transmitter of that bit stream, caused by the signal propagation time between the two nodes. The CAN protocol's non-destructive bitwise arbitration and the dominant acknowledge bit provided by receivers of CAN messages requires that a CAN node transmitting a bit stream must also be able to receive dominant bits transmitted by other CAN nodes that are synchronized to that bit stream. The example in Figure 6.16-8 shows the phase shift and propagation time between two CAN nodes.

Figure 6.16-8 Propagation Time Segment

In this example, both nodes A and B are transmitters, performing an arbitration for the CAN bus. Node A has sent its Start of Frame bit less than one bit time earlier than node B, therefore node B has synchronized itself to the received edge from recessive to dominant. Since node B has received this edge delay (A_to_B) after it has been transmitted, B's bit timing segments are shifted with respect to A. Node B sends an identifier with higher priority and so it will win the arbitration at a specific identifier bit when it transmits a dominant bit while node A transmits a recessive bit. The dominant bit transmitted by node B will arrive at node A after the delay (B to A).

Due to oscillator tolerances, the actual position of node A's Sample Point can be anywhere inside the nominal range of node A's Phase Buffer Segments, so the bit transmitted by node B must arrive at node A before the start of Phase_Seg1. This condition defines the length of Prop_Seg.

If the edge from recessive to dominant transmitted by node B arrives at node A after the start of Phase_Seg1, it can happen that node A samples a recessive bit instead of a dominant bit, resulting in a bit error and the destruction of the current frame by an error flag.

The error occurs only when two nodes arbitrate for the CAN bus that have oscillators of opposite ends of the tolerance range and that are separated by a long bus line. This is an example of a minor error in the bit timing configuration (Prop_Seg is too short) that causes sporadic bus errors.

Some CAN implementations provide an optional 3 Sample Mode but the C_CAN does not. In this mode, the CAN bus input signal passes a digital low-pass filter, using three samples and a majority logic to determine the valid bit value. This results in an additional input delay of 1 tq, requiring a longer Prop_Seg.

6.16.7.18 Phase Buffer Segments and Synchronization

The Phase Buffer Segments (Phase_Seg1 and Phase_Seg2) and the Synchronization Jump Width (SJW) are used to compensate for the oscillator tolerance. The Phase Buffer Segments may be lengthened or shortened by synchronization.

Synchronizations occur on edges from recessive to dominant, their purpose is to control the distance between edges and Sample Points.

Edges are detected by sampling the actual bus level in each time quantum and comparing it with the bus level at the previous Sample Point. A synchronization may be done only if a recessive bit was sampled at the previous Sample PHardoint and if the bus level at the actual time quantum is dominant.

An edge is synchronous if it occurs inside of Sync_Seg, otherwise the distance between edge and the end of Sync_Seg is the edge phase error, measured in time quanta. If the edge occurs before Sync_Seg, the phase error is negative, else it is positive.

Two types of synchronization exist, Hard Synchronization and Re-synchronization.

A Hard Synchronization is done once at the start of a frame and inside a frame only when Resynchronizations occur.

Hard Synchronization

After a hard synchronization, the bit time is restarted with the end of Sync_Seg, regardless of the edge phase error. Thus hard synchronization forces the edge, which has caused the hard synchronization to lie within the synchronization segment of the restarted bit time.

Bit Re-synchronization

Re-synchronization leads to a shortening or lengthening of the bit time such that the position of the sample point is shifted with regard to the edge.

When the phase error of the edge which causes Re-synchronization is positive, Phase_Seg1 is lengthened. If the magnitude of the phase error is less than SJW, Phase_Seg1 is lengthened by the magnitude of the phase error, else it is lengthened by SJW.

When the phase error of the edge, which causes Re-synchronization is negative, Phase_Seg2 is shortened. If the magnitude of the phase error is less than SJW, Phase_Seg2 is shortened by the magnitude of the phase error, else it is shortened by SJW.

When the magnitude of the phase error of the edge is less than or equal to the programmed value of SJW, the results of Hard Synchronization and Re-synchronization are the same. If the magnitude of the phase error is larger than SJW, the Re-synchronization cannot compensate the phase error completely, an error (phase error - SJW) remains.

Only one synchronization may be done between two Sample Points. The Synchronizations maintain a minimum distance between edges and Sample Points, giving the bus level time to stabilize and filtering out spikes that are shorter than (Prop_Seg + Phase_Seg1).

Apart from noise spikes, most synchronizations are caused by arbitration. All nodes synchronize "hard" on the edge transmitted by the "leading" transceiver that started transmitting first, but due to propagation delay time, they cannot become ideally synchronized. The "leading" transmitter does not necessarily win the arbitration, therefore the receivers have to synchronize themselves to different transmitters that subsequently "take the lead" and that are differently synchronized to the previously "leading" transmitter. The same happens at the acknowledge field, where the transmitter and some of the receivers will have to synchronize to that receiver that "takes the lead" in the transmission of the dominant acknowledge bit.

Synchronizations after the end of the arbitration will be caused by oscillator tolerance, when the differences in the oscillator's clock periods of transmitter and receivers sum up during the time between synchronizations (at most ten bits). These summarized differences may not be longer than the SJW, limiting the oscillator's tolerance range.

The examples in Figure 6.16-9 show how the Phase Buffer Segments are used to compensate for phase errors. There are three drawings of each two consecutive bit timings. The upper drawing shows the synchronization on a "late" edge, the lower drawing shows the synchronization on an "early" edge, and the middle drawing is the reference without synchronization.

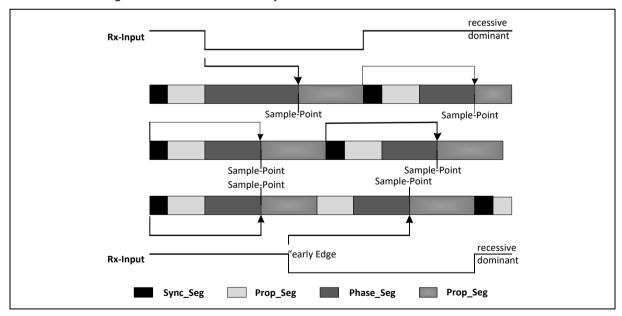


Figure 6.16-9 Synchronization on "late" and "early" Edges

In the first example an edge from recessive to dominant occurs at the end of Prop_Seg. The edge is "late" since it occurs after the Sync_Seg. Reacting to the "late" edge, Phase_Seg1 is lengthened so that the distance from the edge to the Sample Point is the same as it would have been from the Sync_Seg to the Sample Point if no edge had occurred. The phase error of this "late" edge is less than SJW, so it is fully compensated and the edge from dominant to recessive at the end of the bit, which is one nominal bit time long, occurs in the Sync_Seg.

In the second example an edge from recessive to dominant occurs during Phase_Seg2. The edge is "early" since it occurs before a Sync_Seg. Reacting to the "early" edge, Phase_Seg2 is shortened and Sync_Seg is omitted, so that the distance from the edge to the Sample Point is the same as it would have been from an Sync_Seg to the Sample Point if no edge had occurred. As in the previous example, the magnitude of this "early" edge's phase error is less than SJW, so it is fully compensated.

The Phase Buffer Segments are lengthened or shortened temporarily only; at the next bit time, the segments return to their nominal programmed values.

In these examples, the bit timing is seen from the point of view of the CAN implementation's state machine, where the bit time starts and ends at the Sample Points. The state machine omits Sync_Seg when synchronising on an "early" edge because it cannot subsequently redefine that time quantum of Phase_Seg2 where the edge occurs to be the Sync_Seg.

The examples in Figure 6.16-11 show how short dominant noise spikes are filtered by synchronisations. In both examples the spike starts at the end of Prop_Seg and has the length of (Prop_Seg + Phase_Seg1).

In the first example, the Synchronization Jump Width is greater than or equal to the phase error of the spike's edge from recessive to dominant. Therefore the Sample Point is shifted after the end of the spike; a recessive bus level is sampled.

In the second example, SJW is shorter than the phase error, so the Sample Point cannot be shifted far enough; the dominant spike is sampled as actual bus level.

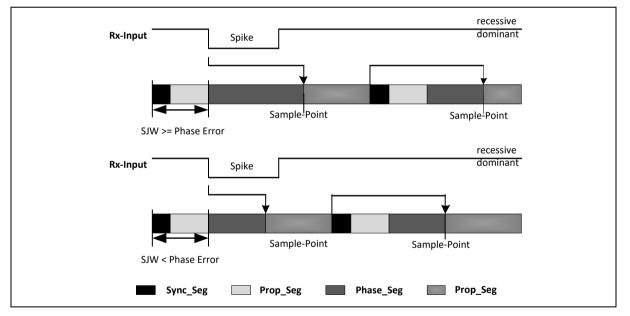


Figure 6.16-10 Filtering of Short Dominant Spikes

6.16.7.19 Oscillator Tolerance Range

The oscillator tolerance range is increased when the CAN protocol is developed from version 1.1 to version 1.2 (version 1.0 was never implemented in silicon). The option to synchronize on edges from dominant to recessive becomes obsolete, only edges from recessive to dominant are considered for synchronization. The protocol update to version 2.0 (A and B) has no influence on the oscillator tolerance.

The tolerance range df for an oscillator frequency fosc around the nominal frequency fnom is:

(1 - df). fnom <= fosc <= (1 + df). fnom

It depends on the proportions of Phase_Seg1, Phase_Seg2, SJW and the bit time. The maximum

tolerance df is the defined by two conditions (both shall be met):

$$I: df \le \frac{\min (Phase_Seg1, Phase_Seg2)}{2 * (13 * bit_time - Phase_Seg2)}$$
$$II: df \le \frac{SJW}{20 * bit tim}$$

Note: These conditions base on the APB cock = *f* osc.

It has to be considered that SJW may not be larger than the smaller of the Phase Buffer Segments and that the Propagation Time Segment limits that part of the bit time that may be used for the Phase Buffer Segments.

The combination $Prop_Seg = 1$ and $Phase_Seg1 = Phase_Seg2 = SJW = 4$ allows the largest possible oscillator tolerance of 1.58%. This combination with a Propagation Time Segment of only 10% of the bit time is not suitable for short bit times; it can be used for bit rates of up to 125 Kbit/s (bit time = 8us) with a bus length of 40 m.

6.16.7.20 Configuring the CAN Protocol Controller

In most CAN implementations and also in the C_CAN, the bit timing configuration is programmed in two register bytes. The sum of Prop_Seg and Phase_Seg1 (as TSEG1 (CAN_BTIME[11:8])) is combined with Phase_Seg2 (as TSEG2 (CAN_BTIME[14:12])) in one byte, SJW (CAN_BTIME[7:6]) and BRP (CAN_BTIME[5:0]) are combined in the other byte.

In these bit timing registers, the four components TSEG1, TSEG2, SJW and BRP have to be programmed to a numerical value that is one less than its functional value. Therefore, instead of values in the range of [1..n], values in the range of [0..n-1] are programmed. That way, e.g. SJW (functional range of [1..4]) is represented by only two bits.

Therefore the length of the bit time is (programmed values) [TSEG1 + TSEG2 + 3] tq or (functional values) [Sync_Seg + Prop_Seg + Phase_Seg1 + Phase_Seg2] tq.

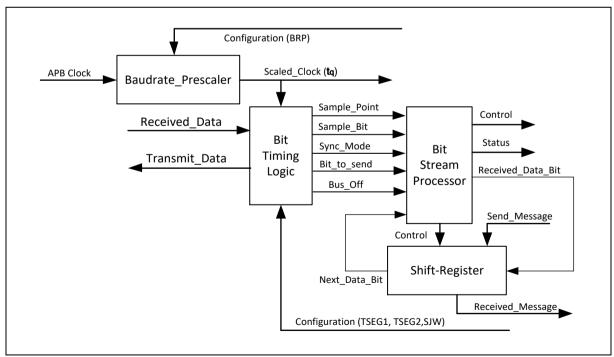


Figure 6.16-11 Structure of the CAN Core's CAN Protocol Controller

The data in the bit timing registers is the configuration input of the CAN protocol controller. The Baud Rate Prescaler (configured by BRP) defines the length of the time quantum, the basic time unit of the

bit time; the Bit Timing Logic (configured by TSEG1, TSEG2 and SJW) defines the number of time quanta in the bit time.

The processing of the bit time, the calculation of the position of the Sample Point, and occasional synchronizations are controlled by the BTL (Bit Timing Logic) state machine, which is evaluated once each time quantum. The rest of the CAN protocol controller, the BSP (Bit Stream Processor) state machine is evaluated once each bit time, at the Sample Point.

The Shift Register sends the messages serially and parallelizes received messages. It's loading and shifting is controlled by the BSP.

The BSP translates messages into frames and vice versa. It generates and discards the enclosing fixed format bits, inserts and extracts stuff bits, calculates and checks the CRC code, performs the error management, and decides which type of synchronization is to be used. It is evaluated at the Sample Point and processes the sampled bus input bit. The time that is needed to calculate the next bit to be sent after the Sample point (e.g. data bit, CRC (Cyclic Redundancy Check) bit, stuff bit, error flag or idle) is called the Information Processing Time (IPT).

The IPT is application specific but may not be longer than 2 tq; the IPT for the C_CAN is 0 tq. Its length is the lower limit of the programmed length of Phase_Seg2. In case of a synchronization, Phase_Seg2 may be shortened to a value less than IPT, which does not affect bus timing.

6.16.7.21 Calculating Bit Timing Parameters

Usually, the calculation of the bit timing configuration starts with a desired bit rate or bit time. The resulting bit time (1/bit rate) must be an integer multiple of the APB clock period.

The bit time may consist of 4 to 25 time quanta, the length of the time quantum tq is defined by the Baud Rate Prescaler with tq = (Baud Rate Prescaler)/fapb_clk. Several combinations may lead to the desired bit time, allowing iterations of the following steps.

First part of the bit time to be defined is the Prop_Seg. Its length depends on the delay time measured in the APB clock. A maximum bus length as well as a maximum node delay has to be defined for expandible CAN bus systems. The resulting time for Prop_Seg is converted into time quanta (rounded up to the nearest integer multiple of tq).

The Sync_Seg is 1 tq long (fixed), leaving (bit time – Prop_Seg – 1) tq for the two Phase Buffer Segments. If the number of remaining tq is even, the Phase Buffer Segments have the same length, Phase_Seg2 = Phase_Seg1, else Phase_Seg2 = Phase_Seg1 + 1.

The minimum nominal length of Phase_Seg2 has to be regarded as well. Phase_Seg2 may not be shorter than the IPT of the CAN controller, which, depending on the actual implementation, is in the range of [0..2] tq.

The length of the Synchronization Jump Width is set to its maximum value, which is the minimum of 4 and Phase_Seg1.

The oscillator tolerance range necessary for the resulting configuration is calculated by the formulas given in Section "Oscillator Tolerance Range".

If more than one configuration is possible, that configuration allowing the highest oscillator tolerance range should be chosen.

CAN nodes with different system clocks require different configurations to come to the same bit rate. The calculation of the propagation time in the CAN network, based on the nodes with the longest delay time, is done once for the whole network.

The oscillator tolerance range of the CAN systems is limited by that node with the lowest tolerance range.

The calculation may shows that bus length or bit rate have to be decreased or that the stability of the oscillator frequency has to be increased in order to find a protocol compliant configuration of the CAN bit timing. The resulting configuration is written into the Bit Timing Register: (Phase_Seg2-1) & (Phase_Seg1+Prop_Seg-1) & (SynchronisationJumpWidth-1) & (Prescaler-1)

Example for Bit Timing at High Baud Rate

In this example, the frequency of APB_CLK is 10 MHz, BRP (CAN_BTIME[5:0]) is 0, and the bit rate is 1 MBit/s.

tq	100 ns	= tapb_clk
delay of bus driver	50n	s
delay of receiver c	ircuit 30n	s
delay of bus line (4	l0m) 220r	าร
tProp	600ns	= 6 • tq
tsjw	100ns	= 1 • tq
t _{TSeg1}	700ns	= t _{Prop} + t _{SJW}
tTSeg2	200ns	= Information Processing Time + $1 \cdot t_q$
tSync-Seg	100ns	= 1 • t _q
bit time	1000ns	= tsync-seg + tTseg1 + tTseg2
tolerance for APB_	CLK 0.399	$\% = \frac{Min(PB1, PB2)}{2 \times 13 \times (bit \ time - PB2))}$

0.1*us*

 $= \frac{2 \times 13 \times (1us - 0.2us))}{2 \times 13 \times (1us - 0.2us)}$

In this example, the concatenated bit time parameters are $(2-1)_3 \& (7-1)_4 \& (1-1)_2 \& (1-1)_6$, and the Bit Timing Register is programmed to 0x1600.

Note:

PB1/2: indicate the phase buffer segment 1/2

The subscript of (2-1)₃ indicates the number of bits in the corresponding bit of Bit Timing Register.

6.16.7.22 CAN Interface Reset State

After the hardware reset, the C_CAN registers hold the reset values which are given in the register description in 0.

Additionally the bus-off state is reset and the output CAN_TX is set to recessive (HIGH). The value 0x0001 (Init = '1') in the CAN Control Register enables the software initialization. The C_CAN does not influence the CAN bus until the application software resets the Init bit (CAN_CON[0]) to '0'.

The data stored in the Message RAM is not affected by a hardware reset. After powered on, the contents of the Message RAM are undefined.

Example for Bit Timing at Low Baud Rate

In this example, the frequency of APB_CLK is 2 MHz, BRP (CAN_BTIME[5:0]) is 1, and the bit rate is 100 Kbit/s.

 $t_q \qquad 1 \quad us = 2 \cdot t_{APB_CLK} \\ \mbox{delay of bus driver} \qquad 200ns \\ \mbox{delay of receiver circuit} \qquad 80ns \\ \mbox{delay of bus line (40m)} \qquad 220ns \\ \mbox{t}_{Prop} \qquad 1us = 1 \cdot t_q \\ \mbox{}$

nuvoTon

tsjw	4us = 4 •	tq
tTSeg1	5us = tprop	ь + tsjw
t _{TSeg2}	4us	= Information Processing Time + $3 \cdot t_q$
tsync-Seg	1us	= 1 • t _q
bit time	10us	= tsync-Seg + tTSeg1 + tTSeg2
tolerance for APB_	CLK 1.58	$\% = \frac{Min(PB1, PB2)}{2 \times 13 \times (bit \ time - PB2))}$
4		

 $=\frac{4us}{2\times(13\times(10us-4us))}$

In this example, the concatenated bit time parameters are $(4-1)_3 \& (5-1)_4 \& (4-1)_2 \& (2-1)_6$, and the Bit Timing Register is programmed to 0x34C1.

6.16.8 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
CAN Base Address CAN_BA = 0x400A_				
CAN_CON	CAN_BA+0x00	R/W	CAN Control Register	0x0000_0001
CAN_STATUS	CAN_BA+0x04	R/W	CAN Status Register	0x0000_0000
CAN_ERR	CAN_BA+0x08	R	CAN Error Counter Register	0x0000_0000
CAN_BTIME	CAN_BA+0x0C	R/W	Bit Timing Register	0x0000_2301
CAN_IIDR	CAN_BA+0x10	R	Interrupt Identifier Register	0x0000_0000
CAN_TEST	CAN_BA+0x14	R/W	Test Register (Register Map Note 1)	0x0000_0080
CAN_BRPE	CAN_BA+0x18	R/W	Baud Rate Prescaler Extension Register	0x0000_0000
CAN_IFn_CREQ n = 1,2	CAN_BA+0x20 + (0x60 *(n-1))	R/W	IFn (Register Map Note 2) Command Request Registers	0x0000_0001
CAN_IFn_CMASK n=1,2	CAN_BA+0x24 + (0x60 *(n-1))	R/W	IFn Command Mask Registers	0x0000_0000
CAN_IFn_MASK1 n=1,2	CAN_BA+0x28 + (0x60 *(n-1))	R/W	IFn Mask 1 Registers	0x0000_FFFF
CAN_IFn_MASK2 n=1,2	CAN_BA+0x2C + (0x60 *(n- 1))	R/W	IFn Mask 2 Registers	0x0000_FFFF
CAN_IFn_ARB1 n=1,2	CAN_BA+0x30 + (0x60 *(n-1))	R/W	IFn Arbitration 1 Registers	0x0000_0000
CAN_IFn_ARB2 n=1,2	CAN_BA+0x34 + (0x60 *(n-1))	R/W	IFn Arbitration 2 Registers	0x0000_0000
CAN_IFn_MCON n=1,2	CAN_BA+0x38 + (0x60 *(n-1))	R/W	IFn Message Control Registers	0x0000_0000
CAN_IFn_DAT_A1 n=1,2	CAN_BA+0x3C + (0x60 *(n- 1))	R/W	IFn Data A1 Registers (Register Map Note 3)	0x0000_0000
CAN_IFn_DAT_A2 n=1,2	CAN_BA+0x40 + (0x60 *(n-1))	R/W	IFn Data A2 Registers (Register Map Note 3)	0x0000_0000
CAN_IFn_DAT_B1 n=1,2	CAN_BA+0x44 + (0x60 *(n-1))	R/W	IFn Data B1 Registers (Register Map Note 3)	0x0000_0000
CAN_IFn_DAT_B2 n=1,2	CAN_BA+0x48 + (0x60 *(n-1))	R/W	IFn Data B2 Registers (Register Map Note 3)	0x0000_0000
CAN_TXREQ1	CAN_BA+0x100	R	Transmission Request Register 1	0x0000_0000
CAN_TXREQ2	CAN_BA+0x104	R	Transmission Request Register 2	0x0000_0000
CAN_NDAT1	CAN_BA+0x120	R	New Data Register 1	0x0000_0000

CAN_NDAT2	CAN_BA+0x124	R	New Data Register 2	0x0000_0000
CAN_IPND1	CAN_BA+0x140	R	Interrupt Pending Register 1	0x0000_0000
CAN_IPND2	CAN_BA+0x144	R	Interrupt Pending Register 2	0x0000_0000
CAN_MVLD1	CAN_BA+0x160	R	Message Valid Register 1	0x0000_0000
CAN_MVLD2	CAN_BA+0x164	R	Message Valid Register 2	0x0000_0000
CAN_WU_EN	CAN_BA+0x168	R/W	Wake-up Enable Control Register	0x0000_0000
CAN_WU_STATUS	CAN_BA+0x16C	R/W	Wake-up Status Register	0x0000_0000

Note:

1. 0x00 & 0br0000000, where r signifies the actual value of the CAN_RX

2. IFn: The two sets of Message Interface Registers – IF1 and IF2, have identical function

3. An/Bn: The two sets of data registers – A1, A2 and B1, B2.

4. CAN_BA, where x = 0 or 1.

CAN Register Map for Each Bit Function

Addr Offset	Register Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
00h	CAN_CON				Rese	erved				Test	CCE	DAR	Res	EIE	SIE	IE	Init
04h	CAN_STATUS				Rese	erved				BOff	EWarn	EPass	RxOk	TxOk	ŎĔ Ĕ		
08h	CAN_ERR	RP			F	REC6-	0						TE	C7-0			
0Ch	CAN_BTIME	Res		TSeg2	2		TSe	eg1		SJ	W			В	RP		
10h	CAN_IIDR				Intid	115-8							Intl	d7-0			
14h	CAN_TEST			Reserved				Rx	Tx1	T×0	LBack	Silent	Basic	Rese	erved		
18h	CAN_BRPE		Reserved											BF	RPE		
20h	CAN_IF1_CRE Q	Busy				R	eserve	ed					М	essag	e Num	lber	
24h	CAN_IF1_CMA SK				Rese	erved				WR/RD	Mask	Arb	Control	ClrIntPnd	TxRqst/	Data A	Data B
28h	CAN_IF1_MAS K1								Msl	<15-0							
2Ch	CAN_IF1_MAS K2	MXtd	MDir	Res						Ν	/lsk28-	16					
30h	CAN_IF1_ARB 1				ID15-0												
34h	CAN_IF1_ARB 2	MsgVal	Xtd	Dir						ID28-16							

nuvoTon

Addr Offset	Register Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
38h	CAN_IF1_MCO N	NewDat	MsgLst MsgLst MsgLst MsgLst MsgLst MsgLst MsgLst MsgLst MsgLst							C3-0							
3Ch	CAN_IF1_DAT_ A1				Dat	a(1)							Da	ta(0)			
40h	CAN_IF1_DAT_ A2				Dat	a(3)							Da	ta(2)			
44h	CAN_IF1_DAT_ B1				Dat	a(5)							Da	ta(4)			
48h	CAN_IF1_DAT_ B2				Data(7) Data(6)												
80h	CAN_IF2_CREQ	Busy			Reserved						Message Number						
84h	CAN_IF2_CMAS K				Rese	erved				WR/RD	Mask	Arb	Control	ClrIntPnd	TxRqst/	Data A	Data B
88h	CAN_IF2_MASK 1								Msl	k15-0							
8Ch	CAN_IF2_MASK 2	MXtd	MDir	Res.						Ν	/lsk28-	16					
90h	CAN_IF2_ARB1								ID	15-0							
94h	CAN_IF2_ARB2	MsgVal	Xtd	Dir		ID28-16											
98h	CAN_IF2_MCO N	NewDat	MsgLst	IntPnd	DFC3-0												
9Ch	CAN_IF2_DAT_ A1				Data(1) Data(0)												

nuvoTon

Addr Offset	Register Name	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
A0h	CAN_IF2_DAT_ A2		Data(3) Data(2)														
A4h	CAN_IF2_DAT_ B1				Dat	a(5)							Da	ata(4)			
A8h	CAN_IF2_DAT_ B2				Dat	a(7)							Da	ata(6)			
100h	CAN_TXREQ1								TxRo	st16-1							
104h	CAN_TXREQ2								TxRq	st32-1	7						
120h	CAN_NDAT1		NewDat16-1														
124h	CAN_NDAT2		NewDat32-17														
140h	CAN_IPND1		IntPnd16-1														
144h	CAN_IPND2								IntPn	d32-17	7						
160h	CAN_MVLD1								Msg\	/al16-1	I						
164h	CAN_MVLD2								MsgV	al32-1	7						
168h	CAN_WU_EN							Re	served	ł							AKUP _EN
16Ch	CAN_WU_STAT US		Reserved									AKUP STS					
170h	CAN_RAM_CEN		Reserved RAM_ CEN								AM_ CEN						
Others	Reserved		Reserved														

Table 6.16-4 CAN Register Map for Each Bit Function

Note: Reserved bits are read as 0' except for IFn Mask 2 Register where they are read as '1'.

Res. = Reserved

6.16.9 Register Description

The C_CAN allocates an address space of 256 bytes. The registers are organized as 16-bit registers.

The two sets of interface registers (IF1 and IF2) control the software access to the Message RAM. They buffer the data to be transferred to and from the RAM, avoiding conflicts between software accesses and message reception/transmission.

CAN Control Register (CAN_CON)

Register	Offset	R/W	Description	Reset Value
CAN_CON	CAN_BA+0x00	R/W	CAN Control Register	0x0000_0001

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7 6 5 4 3 2 1 0							0		
Test	CCE	DAR	Reserved	EIE	SIE	IE	Init		

Bits	Descriptio	n				
[31:8]	Reserved	Reserved.				
[7]	Test	Test Mode Enable Bit 0 = Normal Operation. 1 = Test Mode.				
[6]	CCE	Configuration Change Enable Bit 0 = No write access to the Bit Timing Register. 1 = Write access to the Bit Timing Register (CAN_BTIME) allowed. (while Init bit (CAN_CON[0]) = 1).				
[5]	DAR	Automatic Re-transmission Disable Bit 0 = Automatic Retransmission of disturbed messages Enabled. 1 = Automatic Retransmission Disabled.				
[4]	Reserved	Reserved.				
[3]	EIE	Error Interrupt Enable Bit 0 = Disabled - No Error Status Interrupt will be generated. 1 = Enabled - A change in the bits BOff (CAN_STATUS[7]) or EWarn (CAN_STATUS[6]) in the Status Register will generate an interrupt.				
[2]	SIE	 Status Change Interrupt Enable Bit 0 = Disabled - No Status Change Interrupt will be generated. 1 = Enabled - An interrupt will be generated when a message transfer is successfully completed or a CAN bus error is detected. 				
[1]	IE	Module Interrupt Enable Bit 0 = Funcrion interrupt Disabled.				

	1 = Funcrion interrupt Enabled.
[0]	Init Initialization 0 = Normal Operation. 1 = Initialization is started.

Note: The bus-off recovery sequence (see CAN Specification Rev. 2.0) cannot be shortened by setting or resetting the Init bit (CAN_CON[0]). If the device goes in the bus-off state, it will set Init of its own accord, stopping all bus activities. Once Init has been cleared by the CPU, the device will then wait for 129 occurrences of Bus Idle (129 * 11 consecutive recessive bits) before resuming normal operations. At the end of the bus-off recovery sequence, the Error Management Counters will be reset.

During the waiting time after resetting Init, each time a sequence of 11 recessive bits has been monitored, a Bit0Error code is written to the Status Register, enabling the CPU to readily check up whether the CAN bus is stuck at dominant or continuously disturbed and to monitor the proceeding of the bus-off recovery sequence.

CAN Status Register (CAN_STATUS)

Register	Offset	R/W	Description	Reset Value
CAN_STATUS	CAN_BA+0x04	R/W	CAN Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7 6 5 4 3 2 1 0									
BOff	EWarn	EPass	RxOK	ТхОК	LEC				

Bits	Descriptio	n		
[31:8]	Reserved	Reserved.		
[7]	BOff	Bus-off Status (Read Only) 0 = The CAN module is not in bus-off state. 1 = The CAN module is in bus-off state.		
[6]	EWarn Error Warning Status (Read Only) 0 = Both error counters are below the error warning limit of 96. 1 = At least one of the error counters in the EML has reached the error warning limit of 96.			
[5]	EPass	Error Passive (Read Only) 0 = The CAN Core is error active. 1 = The CAN Core is in the error passive state as defined in the CAN Specification.		
[4]	RxOK	Received a Message Successfully 0 = No message has been successfully received since this bit was last reset by the CPU. This bit is never reset by the CAN Core. 1 = A message has been successfully received since this bit was last reset by the CPU (independent of the result of acceptance filtering).		
[3]	ТхОК	Transmitted a Message Successfully 0 = Since this bit was reset by the CPU, no message has been successfully transmitted. This bit is never reset by the CAN Core. 1 = Since this bit was last reset by the CPU, a message has been successfully (error free and acknowledged by at least one other node) transmitted.		
[2:0]	LEC	Last Error Code (Type of the Last Error to Occur on the CAN Bus) The LEC field holds a code, which indicates the type of the last error to occur on the CAN bus. This field will be cleared to '0' when a message has been transferred (reception or transmission) without error. The unused code '7' may be written by the CPU to check for updates. Table 6.16-5 Last Error Code describes the error code.		

Error Code	Meanings
0	No Error
1	Stuff Error: More than 5 equal bits in a sequence have occurred in a part of a received message where this is not allowed.
2	Form Error: A fixed format part of a received frame has the wrong format.
3	AckError: The message this CAN Core transmitted was not acknowledged by another node.
4	Bit1Error: During the transmission of a message (with the exception of the arbitration field), the device wanted to send a recessive level (bit of logical value '1'), but the monitored bus value was dominant.
5	Bit0Error: During the transmission of a message (or acknowledge bit, or active error flag, or overload flag), though the device wanted to send a dominant level (data or identifier bit logical value '0'), but the monitored Bus value was recessive. During bus-off recovery, this status is set each time a sequence of 11 recessive bits has been monitored. This enables the CPU to monitor the proceedings of the bus-off recovery sequence (indicating the bus is not stuck at dominant or continuously disturbed).
6	CRCError: The CRC check sum was incorrect in the message received, the CRC received for an incoming message does not match with the calculated CRC for the received data.
7	Unused: When the LEC shows the value '7', no CAN bus event was detected since the CPU wrote this value to the LEC.

Table 6.16-5 Last Error Code

Status Interrupts

A Status Interrupt is generated by bits BOff (CAN_STATUS[7]) and EWarn (CAN_STATUS[6]) (Error Interrupt) or by RxOk (CAN_STATUS[4]), TxOk (CAN_STATUS[3]) and LEC (CAN_STATUS[2:0]) (Status Change Interrupt) assumed that the corresponding enable bits in the CAN Control Register are set. A change of bit EPass (CAN_STATUS[5]) or a write to RxOk, TxOk or LEC will never generate a Status Interrupt.

Reading the Status Register will clear the Status Interrupt value (8000h) in the Interrupt Register, if it is pending.

CAN Error Counter Register (CAN_ERR)

Register	Offset	R/W	Description	Reset Value
CAN_ERR	CAN_BA+0x08	R	CAN Error Counter Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
RP				REC						
7 6 5 4 3 2 1 0							0			
	TEC									

Bits	Descriptio	n				
[31:16]	Reserved	d Reserved.				
[15]		Receive Error Passive 0 = The Receive Error Counter is below the error passive level. 1 = The Receive Error Counter has reached the error passive level as defined in the CAN Specification.				
[14:8]	REC	Receive Error Counter Actual state of the Receive Error Counter. Values between 0 and 127.				
[7:0]	TEC	Transmit Error Counter Actual state of the Transmit Error Counter. Values between 0 and 255.				

Bit Timing Register (CAN_BTIME)

Register	Offset	R/W	Description	Reset Value
CAN_BTIME	CAN_BA+0x0C	R/W	Bit Timing Register	0x0000_2301

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Reserved		TSeg2		TSeg1					
7	6	5	4	3	2	1	0		
SJ	SJW		BRP						

Bits	Descriptio	n			
[31:15]	Reserved	Reserved.			
[14:12]	12] Time Segment After Sample Point 0x0-0x7: Valid values for TSeg2 are [07]. The actual interpretation by the hardware of this value is s one more than the value programmed here is used.				
[11:8]	:8] Time Segment Before the Sample Point Minus Sync_Seg 0x01-0x0F: valid values for TSeg1 are [115]. The actual interpretation by the hardware of this value that one more than the value programmed is used.				
[7:6]	SJW	(Re)Synchronization Jump Width 0x0-0x3: Valid programmed values are [03]. The actual interpretation by the hardware of this value is such that one more than the value programmed here is used.			
[5:0]		Baud Rate Prescaler 0x01-0x3F: The value by which the oscillator frequency is divided for generating the bit time quanta. The bit time is built up from a multiple of this quanta. Valid values for the Baud Rate Prescaler are [063]. The actual interpretation by the hardware of this value is such that one more than the value programmed here is used.			

Note: With a module clock APB_CLK of 8 MHz, the reset value of 0x2301 configures the C_CAN for a bit rate of 500 Kbit/s. The registers are only writable if bits CCE (CAN_CON[6]) and Init (CAN_CON[0]) are set.

Interrupt Identify Register (CAN_IIDR)

Register	Offset	R/W	Description	Reset Value
CAN_IIDR	CAN_BA+0x10	R	Interrupt Identifier Register	0x0000_0000

31	30	29	28	27	26	25	24	
			Rese	erved				
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Int	tld				
7	6	5	4	3	2	1	0	
	Intid							

Bits	Descriptio	ription						
[31:16]	Reserved	eserved.						
		Interrupt Identifier (Indicates the Source of the Interrupt)						
[15:0]	Intid	If several interrupts are pending, the CAN Interrupt Register will point to the pending interrupt with the highest priority, disregarding their chronological order. An interrupt remains pending until the application software has cleared it. If IntId is different from 0x0000 and IE (CAN_CON[1]) is set, the IRQ interrupt signal to the EIC is active. The interrupt remains active until IntId is back to value 0x0000 (the cause of the interrupt is reset) or until IE is reset.						
		The Status Interrupt has the highest priority. Among the message interrupts, the Message Object' s interrupt priority decreases with increasing message number.						
		A message interrupt is cleared by clearing the Message Object's IntPnd bit (CAN_IFn_MCON[13]). The Status Interrupt is cleared by reading the Status Register.						

Intid Value	Meanings
0x0000	No Interrupt is Pending
0x0001-0x0020	Number of Message Object which caused the interrupt.
0x0021-0x7FFF	Unused
0x8000	Status Interrupt
0x8001-0xFFFF	Unused

Table 6.16-6 Source of Interrupts

nuvoTon

Test Register (CAN_TEST)

Register	Offset	R/W	Description	Reset Value
CAN_TEST	CAN_BA+0x14	R/W	Test Register (Register Map Note 1)	0x0000_0080

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
Rx	Тх		LBack	Silent	Basic	Rese	erved		

Bits	Description	
[31:8]	Reserved	Reserved.
[7]	Rx	Monitors the Actual Value of CAN_RX Pin (Read Only) *(1) 0 = The CAN bus is dominant (CAN_RX = '0'). 1 = The CAN bus is recessive (CAN_RX = '1').
[6:5]	тх	Tx[1:0]: Control of CAN_TX Pin00 = Reset value, CAN_TX pin is controlled by the CAN Core.01 = Sample Point can be monitored at CAN_TX pin.10 = CAN_TX pin drives a dominant ('0') value.11 = CAN_TX pin drives a recessive ('1') value.
[4]	LBack	Loop Back Mode Enable Bit 0 = Loop Back Mode Disabled. 1 = Loop Back Mode Enabled.
[3]	Silent	Silent Mode 0 = Normal operation. 1 = The module is in Silent Mode.
[2]	Basic	Basic Mode 0 = Basic Mode Disabled. 1= IF1 Registers used as Tx Buffer, IF2 Registers used as Rx Buffer.
[1:0]	Reserved	Reserved.

Reset value: 0000 0000 R000 0000 b (R:current value of RX pin)

Note: Write access to the Test Register is enabled by setting the Test bit (CAN_CON[7]). The different test functions may be combined, but Tx[1-0] "00" (CAN_TEST[6:5]) disturbs message transfer.

Baud Rate Prescaler Extension REGISTER (CAN_BRPE)

Register	Offset	R/W	Description	Reset Value
CAN_BRPE	CAN_BA+0x18	R/W	Baud Rate Prescaler Extension Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved				BR	PE			

Bits	Descriptio	Description						
[31:4]	Reserved	served Reserved.						
		BRPE: Baud Rate Prescaler Extension						
[3:0]	5 2	0x00-0x0F: By programming BRPE, the Baud Rate Prescaler can be extended to values up to 1023. The actual interpretation by the hardware is that one more than the value programmed by BRPE (MSBs) and BTIME (LSBs) is used.						

Message Interface Register Sets

There are two sets of Interface Registers, which are used to control the CPU access to the Message RAM. The Interface Registers avoid conflict between the CPU accesses to the Message RAM and CAN message reception and transmission by buffering the data to be transferred. A complete Message Object or parts of the Message Object may be transferred between the Message RAM and the IFn Message Buffer registers in one single transfer.

The function of the two interface register sets is identical except for the Basic test mode. They can be used the way one set of registers is used for data transfer to the Message RAM while the other set of registers is used for the data transfer from the Message RAM, allowing both processes to be interrupted by each other. Table 6.16-7 provides an overview of the two Interface Register sets.

Each set of Interface Registers consists of Message Buffer Registers controlled by their own Command Registers. The Command Mask Register specifies the direction of the data transfer and which parts of a Message Object will be transferred. The Command Request Register is used to select a Message Object in the Message RAM as target or source for the transfer and to start the action specified in the Command Mask Register.

Address	IF1 Register Set	Address	IF2 Register Set
CAN_BA+0x20	IF1 Command Request	CAN_BA+0x80	IF2 Command Request
CAN_BA+0x24	IF1 Command Mask	CAN_BA+0x84	IF2 Command Mask
CAN_BA+0x28	IF1 Mask 1	CAN_BA+0x88	IF2 Mask 1
CAN_BA+0x2C	IF1 Mask 2	CAN_BA+0x8C	IF2 Mask 2
CAN_BA+0x30	IF1 Arbitration 1	CAN_BA+0x90	IF2 Arbitration 1
CAN_BA+0x34	IF1 Arbitration 2	CAN_BA+0x94	IF2 Arbitration 2
CAN_BA+0x38	IF1 Message Control	CAN_BA+0x98	IF2 Message Control
CAN_BA+0x3C	IF1 Data A 1	CAN_BA+0x9C	IF2 Data A 1
CAN_BA+0x40	IF1 Data A 2	CAN_BA+0xA0	IF2 Data A 2
CAN_BA+0x44	IF1 Data B 1	CAN_BA+0xA4	IF2 Data B 1
CAN_BA+0x48	IF1 Data B 2	CAN_BA+0xA8	IF2 Data B 2

Table 6.16-7 IF1 and IF2 Message Interface Register

IFn Command Request Register (CAN_IFn_CREQ)

Register	Offset	R/W	Description	Reset Value
CAN_IFn_CREQ	CAN_BA+0x20 + (0x60 *(n-1))	R/W	IFn (Register Map Note 2) Command Request Registers	0x0000_0001

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
Busy				Reserved				
7	6	5	4	3	2	1	0	
Rese	Reserved Message Number							

Bits	Description	
[31:16]	Reserved	Reserved.
[15]	Busy	 Busy Flag 0 = Read/write action has finished. 1 = Writing to the IFn Command Request Register is in progress. This bit can only be read by the software.
[14:6]	Reserved	Reserved.
[5:0]	Message Number	Message Number 0x01-0x20: Valid Message Number, the Message Object in the Message RAM is selected for data transfer. 0x00: Not a valid Message Number, interpreted as 0x20. 0x21-0x3F: Not a valid Message Number, interpreted as 0x01-0x1F.

A message transfer is started as soon as the application software has written the message number to the Command Request Register. With this write operation, the Busy bit (CAN_IFn_CREQ[15]) is automatically set to notify the CPU that a transfer is in progress. After a waiting time of 3 to 6 APB_CLK periods, the transfer between the Interface Register and the Message RAM is completed. The Busy bit is cleared.

Note: When a Message Number that is not valid is written into the Command Request Register, the Message Number will be transformed into a valid value and that Message Object will be transferred.

IFn Command Mask Register (CAN_IFn_CMASK)

The control bits of the IFn Command Mask Register specify the transfer direction and select which of the IFn Message Buffer Registers are source or target of the data transfer.

Register	Offset	R/W	Description	Reset Value
CAN_IFn_CMASK	CAN_BA+0x24 + (0x60 *(n-1))	R/W	IFn Command Mask Registers	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
WR/RD	Mask	Arb	Control	CirintPnd	TxRqst/NewDa t	DAT_A	DAT_B	

Bits	Description	
[31:8]	Reserved	Reserved.
		Write / Read Mode
[7]	WR/RD	0 = Read: Transfer data from the Message Object addressed by the Command Request Register into the selected Message Buffer Registers.
		1 = Write: Transfer data from the selected Message Buffer Registers to the Message Object addressed by the Command Request Register.
		Access Mask Bits
		Write Operation:
		0 = Mask bits unchanged.
[6]	Mask	1 = Transfer Identifier Mask + MDir + MXtd to Message Object.
		Read Operation:
		0 = Mask bits unchanged.
		1 = Transfer Identifier Mask + MDir + MXtd to IFn Message Buffer Register.
		Access Arbitration Bits
		Write Operation:
		0 = Arbitration bits unchanged.
[5]	Arb	1 = Transfer Identifier + Dir (CAN_IFn_ARB2[13]) + Xtd (CAN_IFn_ARB2[14]) + MsgVal (CAN_IFn_ARB2[15]) to Message Object.
		Read Operation:
		0 = Arbitration bits unchanged.
		1 = Transfer Identifier + Dir + Xtd + MsgVal to IFn Message Buffer Register.
		Control Access Control Bits
	Control	Write Operation:
[4]		0 = Control Bits unchanged.
		1 = Transfer Control Bits to Message Object.
		Read Operation:

nuvoTon

		0 = Control Bits unchanged.
		1 = Transfer Control Bits to IFn Message Buffer Register.
		Clear Interrupt Pending Bit
		Write Operation:
101	CirintPnd	When writing to a Message Object, this bit is ignored.
[3]	Cirintena	Read Operation:
		0 = IntPnd bit (CAN_IFn_MCON[13]) remains unchanged.
		1 = Clear IntPnd bit in the Message Object.
		Access Transmission Request Bit When Write Operation
		0 = TxRqst bit unchanged.
		1 = Set TxRqst bit.
		Note: If a transmission is requested by programming bit TxRqst/NewDat in the IFn Command Mask Register, bit TxRqst in the IFn Message Control Register will be ignored.
[2]	TxRqst/NewDat	Access New Data Bit when Read Operation.
		0 = NewDat bit remains unchanged.
		1 = Clear NewDat bit in the Message Object.
		Note: A read access to a Message Object can be combined with the reset of the control bits IntPnd and NewDat. The values of these bits transferred to the IFn Message Control Register always reflect the status before resetting these bits.
		Access Data Bytes [3:0]
		Write Operation:
		0 = Data Bytes [3:0] unchanged.
[1]	DAT_A	1 = Transfer Data Bytes [3:0] to Message Object.
	1	Read Operation:
	1	0 = Data Bytes [3:0] unchanged.
		1 = Transfer Data Bytes [3:0] to IFn Message Buffer Register.
		Access Data Bytes [7:4]
	1	Write Operation:
		0 = Data Bytes [7:4] unchanged.
[0]	DAT_B	1 = Transfer Data Bytes [7:4] to Message Object.
		Read Operation:
		0 = Data Bytes [7:4] unchanged.
1		1 = Transfer Data Bytes [7:4] to IFn Message Buffer Register.

IFn Mask 1 Register (CAN_IFn_MASK1)

Register	Offset	R/W	Description	Reset Value
CAN_IFn_MASK1	CAN_BA+0x28 + (0x60 *(n-1))	R/W	IFn Mask 1 Registers	0x0000_FFFF

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			M	sk				
7	6	5	4	3	2	1	0	
	Msk							

Bits	Descriptio	Description				
[31:16]	Reserved	Reserved.				
[15:0]	Msk	Identifier Mask 15-0 0 = The corresponding bit in the identifier of the message object cannot inhibit the match in the acceptance filtering. 1 = The corresponding identifier bit is used for acceptance filtering.				

IFn Mask 2 Register (CAN_IFn_MASK2)

Register	Offset	R/W	Description	Reset Value
CAN_IFn_MASK2	CAN_BA+0x2C + (0x60 *(n-1))	R/W	IFn Mask 2 Registers	0x0000_FFFF

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
MXtd	MDir	Reserved			Msk			
7	6	5	4	3	2	1	0	
	Msk							

Bits	Descriptio	n							
[31:16]	Reserved	Reserved.							
[15]	MXtd	 Mask Extended Identifier 0 = The extended identifier bit (IDE) has no effect on the acceptance filtering. 1 = The extended identifier bit (IDE) is used for acceptance filtering. Note: When 11-bit ("standard") Identifiers are used for a Message Object, the identifiers of received Data Frames are written into bits ID28 to ID18 (CAN_IFn_ARB2[12:2]). For acceptance filtering, only these bits together with mask bits Msk28 to Msk18 (CAN_IFn_MASK2[12:2]) are considered. 							
[14]		Mask Message Direction 0 = The message direction bit (Dir (CAN_IFn_ARB2[13])) has no effect on the acceptance filtering. 1 = The message direction bit (Dir) is used for acceptance filtering.							
[13]	Reserved	Reserved.							
[12:0]	2:0] Identifier Mask 28-16 0 = The corresponding bit in the identifier of the message object cannot inhibit the match in filtering. 1 = The corresponding identifier bit is used for acceptance filtering.								

IFn Arbitration 1 Register (CAN_IFn_ARB1)

Register	Offset	R/W	Description	Reset Value
CAN_IFn_ARB1	CAN_BA+0x30 + (0x60 *(n-1))	R/W	IFn Arbitration 1 Registers	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			I	D				
7	6	5	4	3	2	1	0	
	ID							

Bits	Description					
[31:16]	Reserved	eserved.				
		Message Identifier 15-0				
[15:0]	ID	ID28 - ID0, 29-bit Identifier ("Extended Frame").				
		ID28 - ID18, 11-bit Identifier ("Standard Frame")				

IFn Arbitration 2 Register (CAN_IFn_ARB2)

Register	Offset	R/W	Description	Reset Value
CAN_IFn_ARB2	CAN_BA+0x34 + (0x60 *(n-1))	R/W	IFn Arbitration 2 Registers	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
MsgVal	Xtd	Dir	ID					
7	6	5	4	3	2	1	0	
	ID							

Bits	Descriptio	n						
[31:16]	Reserved	Reserved.						
[15]		 Message Valid 0 = The Message Object is ignored by the Message Handler. 1 = The Message Object is configured and should be considered by the Message Handler. Note: The application software must reset the MsgVal bit of all unused Messages Objects during the initialization before it resets bit Init (CAN_CON[0]). This bit must also be reset before the identifier Id28-0 (CAN_IFn_ARB1/2), the control bits Xtd (CAN_IFn_ARB2[14]), Dir (CAN_IFn_ARB2[13]), or the Data Length Code DLC3-0 (CAN_IFn_MCON[3:0]) are modified, or if the Messages Object is no longer required. 						
[14]	Xtd	Extended Identifier 0 = The 11-bit ("standard") Identifier will be used for this Message Object. 1 = The 29-bit ("extended") Identifier will be used for this Message Object.						
[13]	Dir	 Message Direction 0 = Direction is receive. On TxRqst, a Remote Frame with the identifier of this Message Object is transmitted. On reception of a Data Frame with matching identifier, that message is stored in this Message Object. 1 = Direction is transmit. On TxRqst, the respective Message Object is transmitted as a Data Frame. On reception of a Remote Frame with matching identifier, the TxRqst bit (CAN_IFn_CMASK[2]) of this Message Object is set (if RmtEn (CAN_IFn_MCON[9]) = one). 						
[12:0]	ID	Message Identifier 28-16 ID28 - ID0, 29-bit Identifier ("Extended Frame"). ID28 - ID18, 11-bit Identifier ("Standard Frame")						

IFn Message Control Register (CAN_IFn_MCON)

Register	Offset	R/W	Description	Reset Value
CAN_IFn_MCON	CAN_BA+0x38 + (0x60 *(n-1))	R/W	IFn Message Control Registers	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
NewDat	MsgLst	IntPnd	UMask	TxIE	RxIE	RmtEn	TxRqst
7	6	5	4	3	2	1	0
EoB	EoB Reserved				DI	-C	

Bits	Descriptio	n
[31:16]	Reserved	Reserved.
[15]	NewDat	New Data 0 = No new data has been written into the data portion of this Message Object by the Message Handler since last time this flag was cleared by the application software. 1 = The Message Handler or the application software has written new data into the data portion of this Message Object.
[14]	MsgLst	Message Lost 0 = No message lost since last time this bit was reset by the CPU. 1 = The Message Handler stored a new message into this object when NewDat was still set, the CPU has lost a message. Note: Only valid for Message Objects with direction = receive.
[13]	IntPnd	Interrupt Pending 0 = This message object is not the source of an interrupt. 1 = This message object is the source of an interrupt. The Interrupt Identifier in the Interrupt Register will point to this message object if there is no other interrupt source with higher priority.
[12]	UMask	Use Acceptance Mask 0 = Mask ignored. 1 = Use Mask (Msk28-0, MXtd, and MDir) for acceptance filtering. Note: If the UMask bit is set to one, the Message Object's mask bits have to be programmed during initialization of the Message Object before MsgVal bit (CAN_IFn_ARB2[15]) is set to one.
[11]	TxIE	Transmit Interrupt Enable Bit 0 = IntPnd (CAN_IFn_MCON[13]) will be left unchanged after the successful transmission of a frame. 1 = IntPnd will be set after a successful transmission of a frame.
[10]	RxIE	Receive Interrupt Enable Bit 0 = IntPnd (CAN_IFn_MCON[13]) will be left unchanged after a successful reception of a frame. 1 = IntPnd will be set after a successful reception of a frame.
[9]	RmtEn	Remote Enable Bit 0 = At the reception of a Remote Frame, TxRqst (CAN_IFn_MCON[8]) is left unchanged.

		1 = At the reception of a Remote Frame, TxRqst is set.
[8]	TxRqst	Transmit Request 0 = This Message Object is not waiting for transmission. 1 = The transmission of this Message Object is requested and is not yet done.
[7]	ЕоВ	 End of Buffer 0 = Message Object belongs to a FIFO Buffer and is not the last Message Object of that FIFO Buffer. 1 = Single Message Object or last Message Object of a FIFO Buffer. Note: This bit is used to concatenate two or more Message Objects (up to 32) to build a FIFO Buffer. For
		single Message Objects (not belonging to a FIFO Buffer), this bit must always be set to one.
[6:4]	Reserved	Reserved.
[3:0]	DLC	Data Length Code 0-8: Data Frame has 0-8 data bytes. 9-15: Data Frame has 8 data bytes Note: The Data Length Code of a Message Object must be defined the same as in all the corresponding objects with the same identifier at other nodes. When the Message Handler stores a data frame, it will write the DLC to the value given by the received message. Data(0): 1st data byte of a CAN Data Frame Data(2): 3rd data byte of a CAN Data Frame Data(3): 4th data byte of a CAN Data Frame Data(3): 4th data byte of a CAN Data Frame Data(4): 5th data byte of a CAN Data Frame Data(5): 6th data byte of a CAN Data Frame Data(5): 6th data byte of a CAN Data Frame Data(6): 7th data byte of a CAN Data Frame Data(5): 6th data byte of a CAN Data Frame Data(6): 7th data byte of a CAN Data Frame Data(6): 7th data byte of a CAN Data Frame Data(7): 8th data byte of a CAN Data Frame Note: The Data(0) byte is the first data byte shifted into the shift register of the CAN Core during a reception while the Data(7) byte is the last. When the Message Handler stores a Data Frame, it will write all the eight data bytes into a Message Object. If the Data Length Code is less than 8, the remaining bytes of the Message Object will be overwritten by unspecified values.

IFn Data A1 Register (CAN_IFn_DAT_A1)

Register	jister Offset		Description	Reset Value
CAN_IFn_DAT_A1	CAN_BA+0x3C + (0x60 *(n-1))	R/W	IFn Data A1 Registers (Register Map Note 3)	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Dat	a(1)					
7	6	5	4	3	2	1	0		
			Dat	a(0)					

Bits	Description						
[31:16]	Reserved	Reserved.					
[15:8]	Data(1)	Data Byte 1 2nd data byte of a CAN Data Frame					
[7:0]	Data(0)	Data Byte 0 1st data byte of a CAN Data Frame					

IFn Data A2 Register (CAN_IFn_DAT_A2)

Register	ister Offset		Description	Reset Value
CAN_IFn_DAT_A2	CAN_BA+0x40 + (0x60 *(n-1))	R/W	IFn Data A2 Registers (Register Map Note 3)	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
			Dat	a(3)						
7	6	5	4	3	2	1	0			
			Dat	a(2)						

Bits	Description	Description						
[31:16]	Reserved	Reserved.						
[15:8]	Data(3)	Data Byte 3 4th data byte of CAN Data Frame						
[7:0]	Data(2)	Data Byte 2 3rd data byte of CAN Data Frame						

IFn Data B1 Register (CAN_IFn_DAT_B1)

Register	Offset	R/W	Description	Reset Value
CAN_IFn_DAT_B1 CAN_BA+0x44 + (0x60 *(n-1))		R/W	IFn Data B1 Registers (Register Map Note 3)	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Dat	a(5)					
7	6	5	4	3	2	1	0		
			Dat	a(4)					

Bits	Description					
[31:16]	Reserved	Reserved.				
[15:8]	Data(5)	Data Byte 5 6th data byte of CAN Data Frame				
[7:0]	Data(4)	Data Byte 4 5th data byte of CAN Data Frame				

IFn Data B2 Register (CAN_IFn_DAT_B2)

Register	ister Offset		Description	Reset Value
CAN_IFn_DAT_B2	CAN_BA+0x48 + (0x60 *(n-1))	R/W	IFn Data B2 Registers (Register Map Note 3)	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Dat	a(7)					
7	6	5	4	3	2	1	0		
			Dat	a(6)					

Bits	Description					
[31:16]	Reserved	Reserved.				
[15:8]	Data(7)	Data Byte 7 8th data byte of CAN Data Frame.				
[7:0]	Data(6)	Data Byte 6 7th data byte of CAN Data Frame.				

In a CAN Data Frame, Data [0] is the first, Data [7] is the last byte to be transmitted or received. In CAN's serial bit stream, the MSB of each byte will be transmitted first.

Message Object in the Message Memory

There are 32 Message Objects in the Message RAM. To avoid conflicts between application software access to the Message RAM and CAN message reception and transmission, the CPU cannot directly access the Message Objects, these accesses are handled through the IFn Interface Registers. Table 6.16-8 provides an overview of the structures of a Message Object.

Message Object												
UMask	Msk [28:0]	MXtd	MDir	EoB	NewDat		MsgLst	RxIE	TxIE	IntPnd	RmtEn	TxRqst
MsgVal	ID [28:0]	Xtd	1) (r	DLC [3:0]	Data(0)	Data(1)	Data(2)	Data(3)	Data(4)	Data(5)	Data(6)	Data(7)

 Table 6.16-8 Structure of a Message Object in the Message Memory

The Arbitration Registers ID28-0 (CAN_IFn_ARB1/2), Xtd (CAN_IFn_ARB2[14]) and Dir (CAN_IFn_ARB2[13]) are used to define the identifier and type of outgoing messages and are used (together with the mask registers Msk28-0 (CAN_IFn_MASK1/2), MXtd (CAN_IFn_MASK2[15]) and MDir (CAN_IFn_MASK2[14])) for acceptance filtering of incoming messages. A received message is stored in the valid Message Object with matching identifier and Direction = receive (Data Frame) or Direction = transmit (Remote Frame). Extended frames can be stored only in Message Objects with Xtd = one, standard frames in Message Objects with Xtd = zero. If a received message (Data Frame or Remote Frame) matches with more than one valid Message Object, it is stored into that with the lowest message number.

Message Handler Registers

All Message Handler registers are read only. Their contents (TxRqst (CAN_IFn_MCON[8]), NewDat (CAN_IFn_MCON[15]), IntPnd (CAN_IFn_MCON[13]) and MsgVal (CAN_IFn_ARB2[15]) bits of each Message Object and the Interrupt Identifier) are status information provided by the Message Handler FSM.

Transmission Request Register 1 (CAN_TXREQ1)

These registers hold the TxRqst bits of the 32 Message Objects. By reading the TxRqst bits, the software can check which Message Object in a Transmission Request is pending. The TxRqst bit of a specific Message Object can be set/reset by the application software through the IFn Message Interface Registers or by the Message Handler after reception of a Remote Frame or after a successful transmission.

Register	Offset	R/W	Description	Reset Value
CAN_TXREQ1	CAN_BA+0x100	R	Transmission Request Register 1	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
			TxRq	st16-9							
7	7 6 5 4 3 2 1 0										
			TxRq	st8-1							

Bits	Description	Description						
[31:16]	Reserved	Reserved.						
		Transmission Request Bits 16-1 (of All Message Objects) (Read Only)						
[15:0]	TxRqst16-1	0 = This Message Object is not waiting for transmission.						
		1 = The transmission of this Message Object is requested and is not yet done.						

Transmission Request Register 2 (CAN_TXREQ2)

Register	Offset	R/W	Description	Reset Value
CAN_TXREQ2	CAN_BA+0x104	R	Transmission Request Register 2	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	TxRqst32-25									
7	7 6 5 4 3 2 1 0									
			TxRqs	st24-17						

Bits	Description						
[31:16]	Reserved	Reserved.					
[15:0]	TxRqst32-17	Transmission Request Bits 32-17 (of All Message Objects) (Read Only) 0 = This Message Object is not waiting for transmission. 1 = The transmission of this Message Object is requested and is not yet done.					

New Data Register 1 (CAN_NDAT1)

These registers hold the NewDat bits of the 32 Message Objects. By reading out the NewDat bits, the software can check for which Message Object the data portion was updated. The NewDat bit of a specific Message Object can be set/reset by the software through the IFn Message Interface Registers or by the Message Handler after reception of a Data Frame or after a successful transmission.

Register	Offset	R/W	Description	Reset Value
CAN_NDAT1	CAN_BA+0x120	R	New Data Register 1	0x0000_0000

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
			NewDa	ata16-9							
7	7 6 5 4 3 2 1 0										
			NewD	ata8-1							

Bits	Description						
[31:16]	Reserved Reserved.						
		New Data Bits 16-1 (of All Message Objects)					
[15:0]		0 = No new data has been written into the data portion of this Message Object by the Message Handler since the last time this flag was cleared by the application software.					
	•	1 = The Message Handler or the application software has written new data into the data portion of this Message Object.					

New Data Register 2 (CAN_NDAT2)

Register	Offset	R/W	Description	Reset Value
CAN_NDAT2	CAN_BA+0x124	R	New Data Register 2	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	NewData32-25								
7 6 5 4 3 2 1 0									
			NewDa	ta24-17					

Bits	Description						
[31:16]	6] Reserved Reserved.						
		New Data Bits 32-17 (of All Message Objects)					
[15:0]	NewData32- 17	0 = No new data has been written into the data portion of this Message Object by the Message Handler since the last time this flag was cleared by the application software.					
		1 = The Message Handler or the application software has written new data into the data portion of this Message Object.					

Interrupt Pending Register 1 (CAN_IPND1)

These registers contain the IntPnd bits of the 32 Message Objects. By reading the IntPnd bits, the software can check for which Message Object an interrupt is pending. The IntPnd bit of a specific Message Object can be set/reset by the application software through the IFn Message Interface Registers or by the Message Handler after reception or after a successful transmission of a frame. This will also affect the value of IntId in the Interrupt Register.

Register	Offset	R/W	Description	Reset Value
CAN_IPND1	CAN_BA+0x140	R	Interrupt Pending Register 1	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	IntPnd16-9									
7	6	5	4	3	2	1	0			
		IntPnd8-1								

Bits	Description				
[31:16]	Reserved	Reserved.			
		Interrupt Pending Bits 16-1 (of All Message Objects)			
[15:0] IntPnd16-1	IntPnd16-1	0 = This message object is not the source of an interrupt.			
		1 = This message object is the source of an interrupt.			

Interrupt Pending Register 2 (CAN_IPND2)

Register	Offset	R/W	Description	Reset Value
CAN_IPND2	CAN_BA+0x144	R	Interrupt Pending Register 2	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	IntPnd32-25								
7 6 5 4 3 2 1 0									
			IntPno	124-17					

Bits	Description				
[31:16]	Reserved Reserved.				
		Interrupt Pending Bits 32-17 (of All Message Objects)			
[15:0]	IntPnd32-17	0 = This message object is not the source of an interrupt.			
		1 = This message object is the source of an interrupt.			

Message Valid Register 1 (CAN_MVLD1)

These registers hold the MsgVal bits of the 32 Message Objects. By reading the MsgVal bits, the application software can check which Message Object is valid. The MsgVal bit of a specific Message Object can be set/reset by the application software via the IFn Message Interface Registers.

Register	Offset	R/W	Description	Reset Value
CAN_MVLD1	CAN_BA+0x160	R	Message Valid Register 1	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	MsgVal16- 9									
7 6 5 4 3 2 1 0										
			Msg\	/al8-1						

Bits	Description	Description						
[31:16]	Reserved.							
		Message Valid Bits 16-1 (of All Message Objects) (Read Only)						
	MagValdG	0 = This Message Object is ignored by the Message Handler.						
[15:0]	MsgVal16- 1	1 = This Message Object is configured and should be considered by the Message Handler.						
		Note: CAN_MVLD1[0] means Message object No.1 is valid or not. If CAN_MVLD1[0] is set, message object No.1 is configured.						

Message Valid Register 2 (CAN_MVLD2)

Register	Offset	R/W	Description	Reset Value
CAN_MVLD2	CAN_BA+0x164	R	Message Valid Register 2	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			MsgVa	al32-25				
7	6	5	4	3	2	1	0	
	MsgVal24-17							

Bits	Description				
[31:16]	Reserved	ed Reserved.			
		Message Valid Bits 32-17 (of All Message Objects) (Read Only)			
	MagVal22	0 = This Message Object is ignored by the Message Handler.			
[15:0]	MsgVal32- 17	1 = This Message Object is configured and should be considered by the Message Handler.			
		Note: CAN_MVLD2[15] means Message object No.32 is valid or not. If CAN_MVLD2[15] is set, message object No.32 is configured.			

Wake-up Enable Control Register (CAN_WU_EN)

Register	Offset	R/W	Description	Reset Value
CAN_WU_EN	CAN_BA+0x168	R/W	Wake-up Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
Reserved						WAKUP_EN		

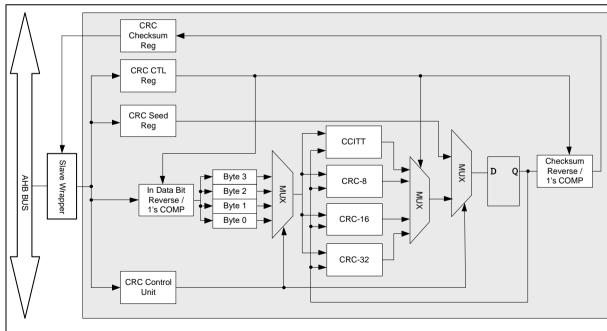
Bits	Description	Description				
[31:1]	Reserved	ed Reserved.				
[0]	WAKUP_EN	Wake-up Enable Bit 0 = The wake-up function Disabled. 1 = The wake-up function Enabled. Note: User can wake up system when there is a falling edge in the CAN_Rx pin.				

Wake-up Status Register (CAN_WU_STATUS)

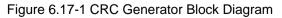
Register	Offset	R/W	Description	Reset Value
CAN_WU_STATUS	CAN_BA+0x16C	R/W	Wake-up Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
Reserved						WAKUP_STS		

Bits	Description			
[31:1]	eserved Reserved.			
[0]	WAKUP_STS	Wake-up Status 0 = No wake-up event occurred. 1 = Wake-up event occurred. Note: This bit can be cleared by writing '0' to it.		


6.17 CRC Controller (CRC)

6.17.1 Overview


The Cyclic Redundancy Check (CRC) generator can perform CRC calculation with four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32 settings.

6.17.2 Features

- Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32
 - CRC-CCITT: X¹⁶ + X¹² + X⁵ + 1
 - CRC-8: $X^8 + X^2 + X + 1$
 - CRC-16: X¹⁶ + X¹⁵ + X² + 1
 - $CRC-32: X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$
- Programmable seed value
- Supports programmable order reverse setting for input data and CRC checksum
- Supports programmable 1's complement setting for input data and CRC checksum
- Supports 8/16/32-bit of data width
 - 8-bit write mode: 1-AHB clock cycle operation
 - 16-bit write mode: 2-AHB clock cycle operation
 - 32-bit write mode: 4-AHB clock cycle operation
- Supports using PDMA to write data to perform CRC operation

6.17.3 Block Diagram

6.17.4 Basic Configuration

Clock Source Configuration

- Enable CRC peripheral clock in CRCCKEN (CLK_AHBCLK[7]).
- Reset Configuration
 - Reset CRC controller in CRCRST (SYS_IPRST0[7]).

6.17.5 Functional Description

CRC generator can perform CRC calculation with four common polynomial settings. The operation polynomial includes CRC-CCITT, CRC-8, CRC-16 and CRC-32; User can choose the CRC operation polynomial mode by setting CRCMODE[1:0] (CRC_CTL[31:30] CRC Polynomial Mode).

The following is a program sequence example.

- 1. Enable CRC generator by setting CRCEN (CRC_CTL[0] CRC Channel Enable Bit).
- 2. Initial setting for CRC calculation.
 - 1) Configure 1's complement for CRC checksum by setting CHKSFMT (CRC_CTL[27] Checksum 1's Complement).
 - Configure bit order reverse for CRC checksum by setting CHKSREV (CRC_CTL[25] Checksum Bit Order Reverse). The funcitonal block is also shown in Figure 6.17-2 CHECKSUM Bit Order Reverse Functional Block
 - 3) Configure 1's complement for CRC write data by setting DATFMT (CRC_CTL[26] Write Data 1's Complement).
 - Configure bit order reverse for CRC write data per byte by setting DATREV (CRC_CTL[24] Write Data Bit Order Reverse). The functional block is also shown in Figure 6.17-3.
- 3. Perform CHKSINIT (CRC_CTL[1] Checksum Initialization) to load the initial checksum value from CRC_SEED register value.
- 4. Write data to CRC_DAT register to calculate CRC checksum.
- 5. Get the CRC checksum result by reading CRC_CHECKSUM register.

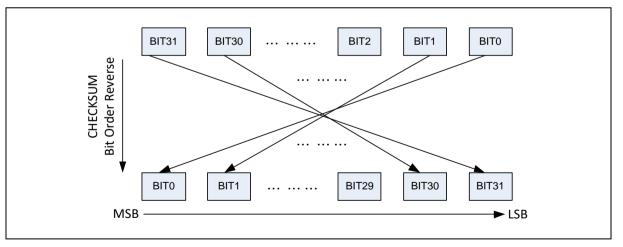


Figure 6.17-2 CHECKSUM Bit Order Reverse Functional Block

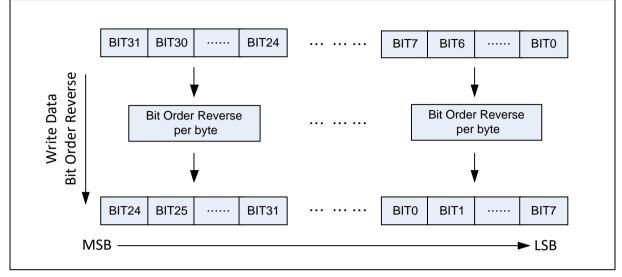


Figure 6.17-3 Write Data Bit Order Reverse Functional Block

6.17.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
CRC Base Address: CRC_BA = 0x4003_1000				
CRC_CTL	CRC_BA+0x00	R/W	CRC Control Register	0x2000_0000
CRC_DAT	CRC_BA+0x04	R/W	CRC Write Data Register	0x0000_0000
CRC_SEED	CRC_BA+0x08	R/W	CRC Seed Register	0xFFFF_FFF
CRC_CHECKSUM	CRC_BA+0x0C	R	CRC Checksum Register	0xFFFF_FFF

6.17.7 Register Description

CRC Control Register (CRC_CTL)

Register	Offset	R/W	Description	Reset Value
CRC_CTL	CRC_BA+0x00	R/W	CRC Control Register	0x2000_0000

31	30	29	28	27	26	25	24
CRCM	IODE	DATLEN		CHKSFMT	DATFMT	CHKSREV	DATREV
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	7 6 5 4 3 2						0
Reserved					CHKSINIT	CRCEN	

Bits	Description	
[31:30]	CRCMODE	CRC Polynomial Mode This field indicates the CRC operation polynomial mode. 00 = CRC-CCITT Polynomial mode. 01 = CRC-8 Polynomial mode. 10 = CRC-16 Polynomial mode. 11 = CRC-32 Polynomial mode.
[29:28]	-	CPU Write Data Length This field indicates the write data length. 00 = Data length is 8-bit mode. 01 = Data length is 16-bit mode. 1x = Data length is 32-bit mode. Note: When the write data length is 8-bit mode, the valid data in CRC_DAT register is only DATA[7:0] bits; if the write data length is 16-bit mode, the valid data in CRC_DAT register is only DATA[15:0].
[27]	СНКЅҒМТ	Checksum 1's Complement This bit is used to enable the 1's complement function for checksum result in CRC_CHECKSUM register. 0 = 1's complement for CRC checksum Disabled. 1 = 1's complement for CRC checksum Enabled.
[26]	DATFMT	Write Data 1's Complement This bit is used to enable the 1's complement function for write data value in CRC_DAT register. 0 = 1's complement for CRC writes data in Disabled. 1 = 1's complement for CRC writes data in Enabled.
[25]	CHKSREV	Checksum Bit Order Reverse This bit is used to enable the bit order reverse function for checksum result in CRC_CHECKSUM register. 0 = Bit order reverse for CRC checksum Disabled. 1 = Bit order reverse for CRC checksum Enabled. Note: If the checksum result is 0xDD7B0F2E, the bit order reverse for CRC checksum is 0x74F0DEBB.

[24]	DATREV	 Write Data Bit Order Reverse This bit is used to enable the bit order reverse function per byte for write data value in CRC_DAT register. 0 = Bit order reversed for CRC write data in Disabled. 1 = Bit order reversed for CRC write data in Enabled (per byte). Note: If the write data is 0xAABBCCDD, the bit order reverse for CRC write data in is 0x55DD33BB.
[23:2]	Reserved	Reserved.
[1]	CHKSINIT	Checksum Initialization 0 = No effect. 1 = Initial checksum value by auto reload CRC_SEED register value to CRC_CHECKSUM register value. Note: This bit will be cleared automatically.
[0]	CRCEN	CRC Channel Enable Bit 0 = No effect. 1 = CRC operation Enabled.

CRC Write Data Register (CRC_DAT)

Register	Offset	R/W	Description	Reset Value
CRC_DAT	CRC_BA+0x04	R/W	CRC Write Data Register	0x0000_0000

31	30	29	28	27	26	25	24			
	DATA									
23	22	21	20	19	18	17	16			
	DATA									
15	14	13	12	11	10	9	8			
	DATA									
7	6	5	4	3	2	1	0			
	DATA									

Bits	Description				
		CRC Write Data Bits			
[31:0]	DATA	User can write data directly by CPU mode or use PDMA function to write data to this field to perform CRC operation.			
[0.10]		Note: When the write data length is 8-bit mode, the valid data in CRC_DAT register is only DATA[7:0] bits; if the write data length is 16-bit mode, the valid data in CRC_DAT register is only DATA[15:0].			

CRC Seed Register (CRC_SEED)

Register	Offset	R/W	Description	Reset Value
CRC_SEED	CRC_BA+0x08	R/W	CRC Seed Register	0xFFFF_FFF
		<u></u>		

31	30	29	28	27	26	25	24			
	SEED									
23	22	21	20	19	18	17	16			
	SEED									
15	14	13	12	11	10	9	8			
	SEED									
7	6	5	4	3	2	1	0			
	SEED									

Bits	Descri	Description					
		CRC Seed Value					
[31:0]	SEED	This field indicates the CRC seed value. Note: This field will be reloaded as checksum initial value (CRC_CHECKSUM register) after perform CHKSINIT					
		(CRC_CTL[1]).					

CRC Checksum Register (CRC_CHECKSUM)

Register	Offset	R/W	Description	Reset Value
CRC_CHECKSUM	CRC_BA+0x0C	R	CRC Checksum Register	0xFFFF_FFF

31	30	29	28	27	26	25	24		
	CHECKSUM								
23	22	21	20	19	18	17	16		
	CHECKSUM								
15	14	13	12	11	10	9	8		
	CHECKSUM								
7	6	5	4	3	2	1	0		
	CHECKSUM								

Bits	Description	escription						
		CRC Checksum Results						
		This field indicates the CRC checksum result.						
		Note: Data in CRC_CHECKSUM register has different length when user chooses different operation polynomial modes.						
[31.0]	CHECKSUM	For example:						
[01:0]	- If	If final checksum result is 0x12 in CRC-8 polynomial mode, the CHECKSUM[31:0] value will be read as 0x12121212, only CHECKSUM[7:0] is valid in this mode.						
		If final checksum result is 0x1234 in CRC-CCITT or CRC-16 mode, the CHECKSUM[31:0] value will be read as 0x12341234, only CHECKSUM[15:0] is valid in this mode.						
		And the CHECKSUM[31:0] is valid for CRC-32 mode.						

6.18 Hardware Divider (HDIV)

6.18.1 Overview

The hardware divider (HDIV) is useful to the high performance application. The hardware divider is a signed, integer divider with both quotient and remainder outputs.

6.18.2 Features

- Signed (two's complement) integer calculation
- 32-bit dividend with 16-bit divisor calculation capacity
- 32-bit quotient and 32-bit remainder outputs (16-bit remainder with sign extends to 32-bit)
- Divided by zero warning flag
- Write divisor to trigger calculation

6.18.3 Basic Configuration

Before using the hardware divider, the clock of hardware divider must be enabled. To enable hardware divider, it needs to set HDIV_EN on AHBCLK[4] to 1.

6.18.4 Functional Description

To use hardware divider, it needs to set dividend first. Then set divisor and the hardware divider will trigger calculation automatically after divisor written. The calculation results including the quotient and remainder could be obtained by reading DIVQUO and DIVREM register. User can read quotient and remainder after one cycle of writing the divisor.

DIV0 flag of DIVSTS will be set if divisor is 0.

The dividend is 32-bit signed integer and divisor is 16-bit signed integer. The quotient is 32-bit signed integer and the remainder is 16-bit signed integer.

Figure 6.18-1 shows the operation flow of hardware divider. To calculation X / Y, CPU needs to write X to DIVIDEND register, and then write Y to DIVISOR. CPU can read DIVQUO and DIVREM registers to get calculation results after DIVISOR been written.

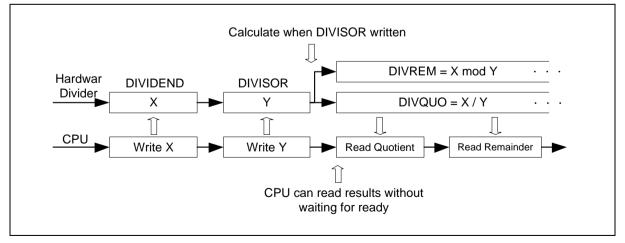


Figure 6.18-1 Hardware Divider Operation Flow

6.18.5 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
HDIV Base Addres HDIV_BA = 0x4001				
DIVIDEND	HDIV_BA+0x00	R/W	Dividend Source Register	0x0000_0000
DIVISOR	HDIV_BA+0x04	R/W	Divisor Source Resister	0x0000_FFFF
DIVQUO	HDIV_BA+0x08	R/W	Quotient Result Resister	0x0000_0000
DIVREM	HDIV_BA+0x0C	R/W	Remainder Result Register	0x0000_0000
DIVSTS	HDIV_BA+0x10	R	Divider Status Register	0x0000_0001

6.18.6 Register Description

Dividend Source Register (DIVIDEND)

Register	Offset	R/W	Description	Reset Value
DIVIDEND	HDIV_BA+0x00	R/W	Dividend Source Register	0x0000_0000

31	30	29	28	27	26	25	24			
	DIVIDEND									
23	22	21	20	19	18	17	16			
	DIVIDEND									
15	14	13	12	11	10	9	8			
	DIVIDEND									
7 6 5 4 3 2 1 0							0			
	DIVIDEND									

Bits	Description	
[31:0]	DIVIDEND	Dividend Source This register is given the dividend of divider before calculation started.

Divisor Source Register (DIVISOR)

Register	Offset	R/W	Description	Reset Value
DIVISOR	HDIV_BA+0x04	R/W	Divisor Source Resister	0x0000_FFFF

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	DIVISOR									
7 6 5 4 3 2 1 0							0			
			DIVI	SOR						

Bits	Description	lescription				
[31:16]	Reserved	Reserved Reserved.				
[15:0]	DIVISOR	Divisor Source This register is given the divisor of divider before calculation starts. Note: When this register is written, hardware divider will start calculation.				

Quotient Result Register (DIVQUO)

Register	Offset	R/W	Description	Reset Value
DIVQUO	HDIV_BA+0x08	R/W	Quotient Result Resister	0x0000_0000

31	30	29	28	27	26	25	24			
	QUOTIENT									
23	22	21	20	19	18	17	16			
	QUOTIENT									
15	14	13	12	11	10	9	8			
	QUOTIENT									
7	7 6 5 4 3 2 1 0									
			QUOT	TIENT						

Bits	Description			
[31:0]	QUOTIENT	Quotient Result This register holds the quotient result of divider after calculation is complete.		

Remainder Result Register (DIVREM)

Register	Offset	R/W	Description	Reset Value
DIVREM	HDIV_BA+0x0C	R/W	Remainder Result Register	0x0000_0000

31	30	29	28	27	26	25	24		
REMAINDER									
23	22	21	20	19	18	17	16		
	REMAINDER								
15	14	13	12	11	10	9	8		
	REMAINDER								
7 6 5 4 3 2 1 0									
	REMAINDER								

Bits	Description	escription					
[31:16]	REMAINDER[31:16]	Sign Extension of REMAINDER[15:0] The remainder of hardware divider is 16-bit sign integer (REMAINDER[15:0]) with sign extension (REMAINDER[31:16]) to 32-bit integer.					
[15:0]	REMAINDER[15:0]	Remainder Result This register holds the remainder result of divider after calculation is complete.					

Divider Status Register (DIVSTS)

Register	Offset	R/W	Description	Reset Value
DIVSTS	DIVSTS HDIV_BA+0x10		Divider Status Register	0x0000_0001

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
Reserved						DIV0	Reserved	

Bits	Descriptio	cription					
[31:2]	Reserved	Reserved.					
[1]	DIV0	Divisor Zero Warning (Read Only) 0 = The divisor is not 0. 1 = The divisor is 0. Note: The DIV0 flag is used to indicate divide-by-zero situation and updated whenever DIVISOR is written. This register is read only.					
[0]	Reserved	Reserved.					

6.19 Analog-to-Digital Converter (ADC)

6.19.1 Overview

The chip contains one 12-bit successive approximation analog-to-digital converter (SAR A/D converter) with twenty one input channels. The A/D converter supports four operation modes: Single, Burst, Single-cycle Scan and Continuous Scan mode. The A/D converter can be started by software, external pin, timer0~3 overflow pulse trigger and PWM trigger.

6.19.2 Features

- Analog input voltage range: 0 ~ AV_{DD} (voltage of V_{DD} pin).
- 12-bit resolution and 10-bit accuracy is guaranteed
- Up to 17 single-end analog input channels or 8 differential analog input channels
- Maximum ADC peripheral clock frequency is 16 MHz
- Up to 800 kSPS sampling rate
- Configurable ADC internal sampling time
- Four operation modes:
 - Single mode: A/D conversion is performed one time on a specified channel.
 - Burst mode: A/D converter samples and converts the specified single channel and sequentially stores the result in FIFO.
 - Single-cycle Scan mode: A/D conversion is performed only one cycle on all specified channels with the sequence from the smallest numbered channel to the largest numbered channel.
 - Continuous Scan mode: A/D converter continuously performs Single-cycle Scan mode until software stops A/D conversion.
- An A/D conversion can be started by:
 - Software Write 1 to ADST bit
 - External pin (STADC)
 - Timer 0~3 overflow pulse trigger
 - PWM trigger with optional start delay period
- Each conversion result is held in data register of each channel with valid and overrun indicators.
- Conversion result can be compared with specified value and user can select whether to generate an interrupt when conversion result matches the compare register setting.
- 4 internal channels, they are band-gap voltage (V_{BG}), temperature sensor (V_{TEMP}), internal reference voltage and DAC0 output
- Support PDMA transfer mode.

Note 1: ADC sampling rate = (ADC peripheral clock frequency) / (total ADC conversion cycle)

Note 2: If the internal channel for temperature sensor is active, the minimum time of sample stage should be $T_{\text{TEMP}ADC}$. Please refer to section 8.5.7 in the relative Datasheet for detailed information.

Note 3: If the internal channel for band-gap voltage is active, the minimum time of sample stage should be T_{VBG_ADC} . Please refer to section 8.2 in the relative Datasheet for detailed information.

6.19.3 Block Diagram

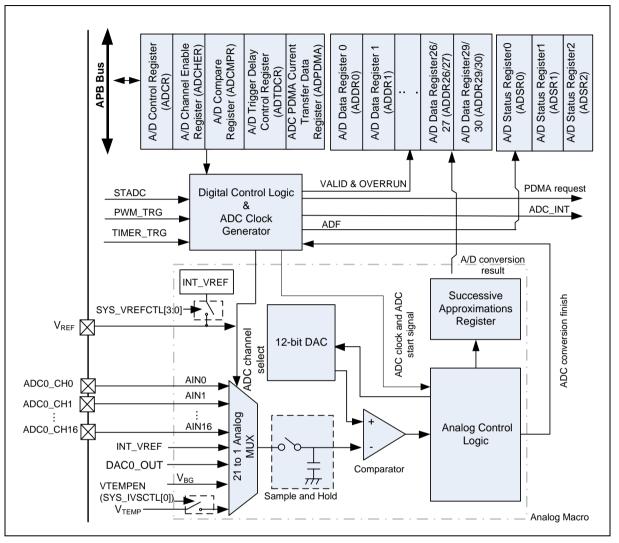


Figure 6.19-1 AD Controller Block Diagram

6.19.4 Basic Configuration

The ADC pin functions are configured in SYS_GPA_MFP0, SYS_GPA_MFP1, SYS_GPB_MFP1, SYS_GPC_MFP0, SYS_GPC_MFP1 registers. It is recommended to disable the digital input path of the analog input pins to avoid the leakage current. User can disable the digital input path by configuring PA_DINOFF, PB_DINOFF, PC_DINOFF registers.

The ADC peripheral clock can be enabled in ADCCKEN(APBCLK0[28]). The ADC peripheral clock source is selected by ADCSEL(CLKSEL2[21:20]). The clock prescalar is determined by ADCDIV(CLKDIV0[23:16]).

6.19.5 Functional Description

The A/D converter operates by successive approximation with 12-bit resolution. The ADC has four operation modes: Single, Burst, Single-cycle Scan mode and Continuous Scan mode. When user wants to change the operation mode or analog input channel, in order to prevent incorrect operation, software must clear ADST(ADC_ADCR[11]) bit to 0 in advance.

6.19.5.1 ADC peripheral Clock Generator

The maximum sampling rate is up to 800K SPS. The ADC has four clock sources selected by ADCSEL (CLKSEL2[21:20]), the ADC peripheral clock frequency is divided by an 8-bit pre-scalar with the following formula:

ADC peripheral clock frequency = (ADC peripheral clock source frequency) / (ADCDIV+1); where the 8-bit ADCDIV is located in register CLKDIV0[23:16].

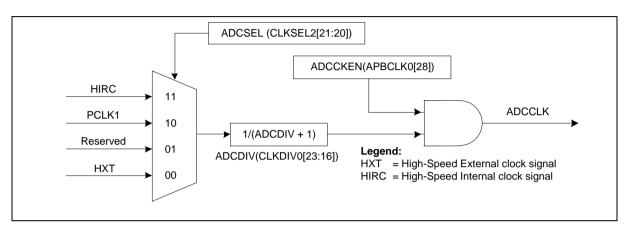
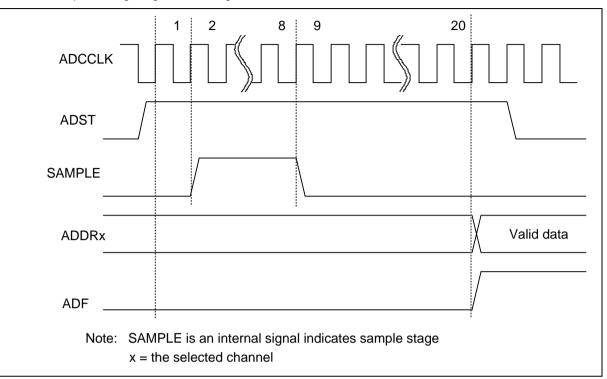


Figure 6.19-2 ADC Peripheral Clock Control


6.19.5.2 Single Mode

In Single mode, A/D conversion is performed only once on the specified single channel. The operations are as follows:

- 1. A/D conversion will be started when the ADST bit of ADC_ADCR register is set to 1 by software or external trigger input.
- 2. When A/D conversion is finished, the result is stored in the ADC data register corresponding to the channel.
- 3. The ADF bit of ADC_ADSR0 register will be set to 1. If the ADIE bit of ADC_ADCR register is set to 1, the ADC interrupt will be asserted.
- 4. The ADST bit remains 1 during A/D conversion. When A/D conversion ends, the ADST bit is automatically cleared to 0 and the A/D converter enters idle state.

Note 1: If software enables more than one channel in Single mode, only the channel with the smallest number will be selected and the other enabled channels will be ignored.

Note 2: If ADST bit is cleared to 0 before ADC conversion done, ADC cannot finish the current conversion, the BUSY bit will be cleared to 0 immediately and A/D converter enters idle state directly.

An example timing diagram for Single mode is shown below.

Figure 6.19-3 Single Mode Conversion Timing Diagram

6.19.5.3 Burst Mode

In Burst mode, A/D converter samples and converts the specified single channel and sequentially stores the result into FIFO (up to 16 samples). The operations are as follows:

- 1. When the ADST bit in ADC_ADCR register is set to 1 by software or external trigger input, A/D conversion is started on the enabled channel with the smallest number.
- 2. When A/D conversion for the specified channel is completed, the result is sequentially transferred to FIFO and can be accessed only from the ADC data register 0.
- 3. When more than or equal to 8 samples in FIFO, the ADF bit in ADC_ADSR0 register is set to 1. If the ADIE bit of ADC_ADCR register is set to 1 at this time, an ADC interrupt is requested after finishing the A/D conversion.
- 4. Steps 2 to 3 are repeated as long as the ADST bit remains 1. When the ADST bit is cleared to 0, ADC cannot finish the current conversion and A/D converter enters idle state directly

An example timing diagram for Burst mode is shown below.

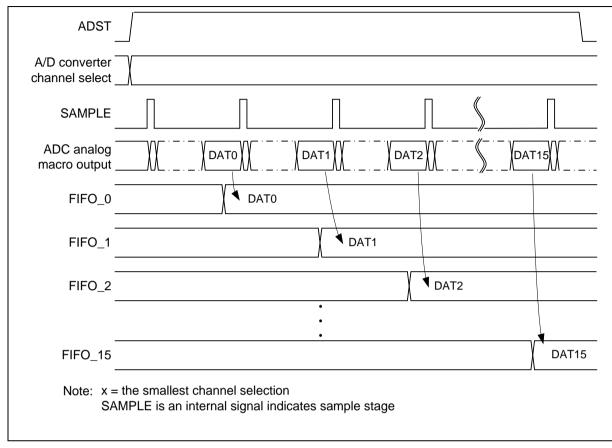


Figure 6.19-4 Burst Mode Conversion Timing Diagram

Note 1: If software enables more than one channel in Burst mode, only the channel with the smallest number is converted and other enabled channels will be ignored.

Note 2: User can obtain the conversion results by reading the ADC data register 0 (ADC_ADDR0) repeatedly until VALIDF (ADC_ADSR0[8]) turns to 0. For example, if there are 8 conversion results at FIFO, it needs to read ADC data register 0 (ADC_ADDR0) 8 times to get all of result.

6.19.5.4 Single-Cycle Scan Mode

In Single-cycle Scan mode, A/D converter samples and converts all of the specified channels once in the sequence from the smallest number enabled channel to the largest number enabled channel. Operations are as follows:

- 1. When the ADST bit in ADC_ADCR register is set to 1 by software or external trigger input, A/D conversion is started on the enabled channel with the smallest number.
- 2. When A/D conversion for each enabled channel is completed, the result is sequentially transferred to the ADC data register corresponding to each channel.
- 3. When the conversions of all the enabled channels are completed, the ADF bit in ADC_ADSR0 register is set to 1. If the ADC interrupt function is enabled, the ADC interrupt occurs.
- 4. After ADC finishes one cycle conversion, the ADST bit is automatically cleared to 0 and the A/D converter enters idle state. If ADST bit is cleared to 0 before all enabled ADC channels conversion done, ADC cannot finish the current conversion and A/D converter enters idle state directly.

An example timing diagram for Single-cycle Scan mode on enabled channels (0, 2, 3 and 7) is shown below.

M0A21/M0A23 Series

nuvoTon

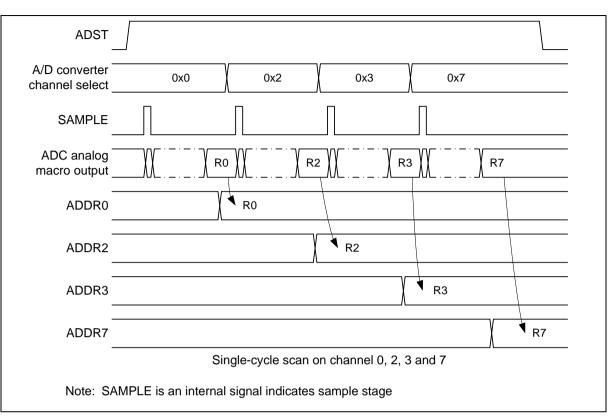


Figure 6.19-5 Single-Cycle Scan Mode on Enabled Channels Timing Diagram

6.19.5.5 Continuous Scan Mode

In Continuous Scan mode, A/D conversion is performed sequentially on the specified channels that enabled by CHEN bits in ADC_ADCHER register (maximum 21 channels for ADC). The operations are as follows:

- 1. When the ADST bit in ADC_ADCR register is set to 1 by software or external trigger input, A/D conversion is started on the enabled channel with the smallest number.
- 2. When A/D conversion for each enabled channel is completed, the result of each enabled channel is stored in the ADC data register corresponding to each enabled channel.
- 3. When A/D converter completes the conversions of all enabled channels sequentially, the ADF bit in ADC_ADSR0 register will be set to 1. If the ADC interrupt function is enabled, the ADC interrupt occurs. The conversion of the enabled channel with the smallest number will start again if software does not clear the ADST bit.
- 4. As long as the ADST bit remains at 1, the step 2 ~ 3 will be repeated. When ADST is cleared to 0, ADC cannot finish the current conversion and A/D converter enters idle state directly.

An example timing diagram for Continuous Scan mode on enabled channels (0, 2, 3 and 7) is shown below.

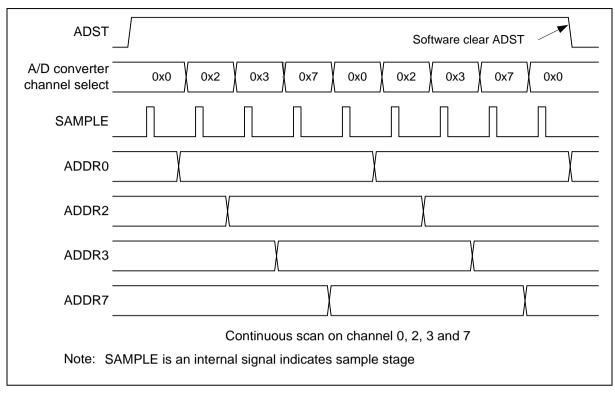


Figure 6.19-6 Continuous Scan Mode on Enabled Channels Timing Diagram

6.19.5.6 External Trigger Input

In Single-cycle Scan mode, A/D conversion can be triggered by external pin request. When the TRGEN bit of ADC_ADCR register is set to 1 to enable ADC external trigger function, setting the TRGS(ADC_ADCR[5:4]) bits to 2'b00 is to select external trigger input from the STADC pin. Software can set TRGCOND(ADC_ADCR[7:6]) to select trigger condition is falling/rising edge or low/high level. If level trigger condition is selected, the STADC pin must be kept at specified state at least 8 PCLKs. The ADST bit will be set to 1 at the 9th PCLK and start to convert. Conversion will keep going if external trigger input is kept at active state in level trigger mode. It is stopped only when external condition trigger condition disappears. If edge trigger condition is selected, the high and low state must be kept at least 4 PCLKs. Pulse that is shorter than this specification will be ignored.

Note: User enables the external trigger function or enables ADC must be at least 4 PCLKs after enabling ADC peripheral clock.

6.19.5.7 Timer trigger

There are 4 Timer trigger sources for ADC. When the TRGEN bit of ADC_ADCR register is set to high to enable ADC external hardware trigger function, setting the TRGS (ADC_ADCR[5:4]) bits to 2'b01 is to select external hardware trigger input source from Timer trigger. The detail trigger conditions of Timer are described descripted at TIMER0_CTL ~ TIMER3_CTL register.

6.19.5.8 PWM trigger

In Single-cycle Scan mode, A/D conversion can be triggered by PWM request. When the TRGEN bit of ADC_ADCR register is set to high to enable ADC external hardware trigger function, setting the TRGS(ADC_ADCR[5:4]) bits to 2'b11 is to select external hardware trigger input source from PWM trigger. When PWM trigger is enabled, setting PTDT (ADC_ADTDCR[7:0]) bits can insert a delay time between PWM trigger condition and ADC start conversion.

6.19.5.9 Conversion Result Monitor by Compare Mode Function

The ADC controller provides two compare registers, ADC_ADCMPRx(x=0,1), to monitor maximum two

specified channels. Software can select which channel to be monitored by setting CMPCH (ADC_ADCMPRx[7:3]). CMPCOND (ADC_ADCMPRx[2]) bit is used to determine the compare condition. If CMPCOND bit is cleared to 0, the internal match counter will increase one when the conversion result is less than the value specified in CMPD (ADC_ADCMPRx[27:16]); if CMPCOND bit is set to 1, the internal match counter will increase one when the conversion result is greater than or equal to the value specified in CMPD (ADC_ADCMPRx[27:16]). When the conversion of the channel specified by CMPCH(ADC_ADCMPRx[7:3]) is completed, the comparing action will be triggered one time automatically. When the compare result meets the setting, compare match counter will increase 1, otherwise, the compare match counter will be cleared to 0. When the match counter reaches the setting of (CMPMATCNT+1) then CMPF0/1 (ADC_ADSR0[1]/[2]) bit will be set to 1, if CMPIE (ADC_ADCMPRx[1]) bit is set then an ADC interrupt request is generated. Software can use it to monitor the external analog input pin voltage transition in scan mode without imposing a load on software. The detailed logic diagram is shown below.

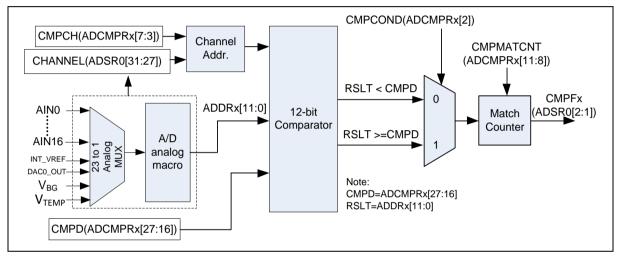


Figure 6.19-7 A/D Conversion Result Monitor Logic Diagram

6.19.5.10 Compare Window Mode

The ADC controller supports a compare window mode. User can set CMPWEN (ADC_ADCMPR0[15]) to enable this function. If user enables this function, CMPF0 (ADC_ADSR0[1]) will be set only when compared conditions of two conversion result monitor logic are matched and CMPF1 (ADC_ADSR0[2]) will always be zero. The range of compare window is between CMPD (ADC_ADCMPR0[27:16]) and CMPD (ADC_ADCMPR1[27:16]).

6.19.5.11 PDMA Transfer Mode

When A/D conversion is finished, the conversion result will be loaded into ADC_ADDRx(x=0~16, 26,27,29,30) register and VALID(ADC_ADDRx[17]) bit will be set to 1. If the PTEN(ADC_ADCR[9]) bit is set, ADC controller will generate a request to PDMA. User can use PDMA to transfer the conversion results to a user-specified memory space without CPU's intervention. The source address of PDMA operation is fixed at ADC_ADPDMA, no matter what channels was selected. When PDMA is transferring the conversion result, ADC will continue converting the next selected channel if the operation mode of ADC is burst mode, single scan mode or continuous scan mode. User can monitor current PDMA transfer data through reading ADC_ADPDMA register. If ADC completes the conversion of a selected channel and the last conversion result of the same channel has not been transferred by PDMA, OVERRUN(ADC_ADSR2[31:0]) bit of the corresponding channel will be set and the last ADC conversion result will be overwritten by the new ADC conversion result. PDMA will transfer the latest data of selected channels to the user-specified destination address.

6.19.5.12 Interrupt Sources

There are three interrupt sources of ADC interrupt. When an ADC operation mode finishes its conversion, the A/D conversion end flag, ADF(ADC_ADSR0[0]), will be set to 1. The

CMPF0(ADC_ADSR0[1]) and CMPF1(ADC_ADSR0[2]) are the compare flags of compare function. When the conversion result meets the settings of ADC_ADCMPR0/1 registers, the corresponding flag will be set to 1. When one of the flags, ADF, CMPF0 and CMPF1, is set to 1 and the corresponding interrupt enable bit, ADIE of ADC_ADCR register and CMPIE of ADC_ADCMPR0/1 registers, is set to 1, the ADC interrupt will be asserted. Software can clear these flags to revoke the interrupt request.

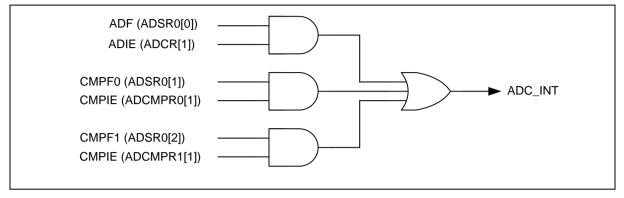


Figure 6.19-8 A/D Controller Interrupt

6.19.6 Register Map

R: read only, W: write only, R/W: both read and write.

Register	Offset	R/W	Description	Reset Value
ADC Base Address: ADC_BA = 0x4004_3	000			
ADC_ADDR0 ADC_BA+0x00			ADC Data Register 0	0x0000_0000
ADC_ADDR1	ADC_BA+0x04	R	ADC Data Register 1	0x0000_0000
ADC_ADDR2	ADC_BA+0x08	R	ADC Data Register 2	0x0000_0000
ADC_ADDR3	ADC_BA+0x0C	R	ADC Data Register 3	0x0000_0000
ADC_ADDR4	ADC_BA+0x10	R	ADC Data Register 4	0x0000_0000
ADC_ADDR5	ADC_BA+0x14	R	ADC Data Register 5	0x0000_0000
ADC_ADDR6	ADC_BA+0x18	R	ADC Data Register 6	0x0000_0000
ADC_ADDR7	ADC_BA+0x1C	R	ADC Data Register 7	0x0000_0000
ADC_ADDR8	ADC_BA+0x20	R	ADC Data Register 8	0x0000_0000
ADC_ADDR9	ADC_BA+0x24	R	ADC Data Register 9	0x0000_0000
ADC_ADDR10	ADC_BA+0x28	R	ADC Data Register 10	0x0000_0000
ADC_ADDR11	ADC_BA+0x2C	R	ADC Data Register 11	0x0000_0000
ADC_ADDR12	ADC_BA+0x30	R	ADC Data Register 12	0x0000_0000
ADC_ADDR13	ADC_BA+0x34	R	ADC Data Register 13	0x0000_0000
ADC_ADDR14	ADC_BA+0x38	R	ADC Data Register 14	0x0000_0000
ADC_ADDR15	ADC_BA+0x3C	R	ADC Data Register 15	0x0000_0000
ADC_ADDR16	ADC_BA+0x40	R	ADC Data Register 16	0x0000_0000
ADC_ADDR26	ADC_BA+0x68	R	ADC Data Register 26	0x0000_0000
ADC_ADDR27	ADC_BA+0x6C	R	ADC Data Register 27	0x0000_0000
ADC_ADDR29	ADC_BA+0x74	R	ADC Data Register 29	0x0000_0000
ADC_ADDR30	ADC_BA+0x78	R	ADC Data Register 30	0x0000_0000
ADC_ADCR	ADC_BA+0x80	R/W	ADC Control Register	0x0005_0000
ADC_ADCHER	ADC_BA+0x84	R/W	ADC Channel Enable Register	0x0000_0000
ADC_ADCMPR0	ADC_BA+0x88	R/W	ADC Compare Register 0	0x0000_0000
ADC_ADCMPR1	ADC_BA+0x8C	R/W	ADC Compare Register 1	0x0000_0000
ADC_ADSR0	ADC_BA+0x90	R/W	ADC Status Register0	0x0000_0000
ADC_ADSR1	ADC_BA+0x94	R	ADC Status Register1	0x0000_0000

ADC_ADSR2 ADC_BA+0x98 R		ADC Status Register2	0x0000_0000	
ADC_ADTDCR ADC_BA+0x9C		R/W	ADC Trigger Delay Control Register	0x0000_0000
ADC_ADPDMA	ADC_BA+0x100	R	ADC PDMA Current Transfer Data Register	0x0000_0000

6.19.7 Register Description

ADC Data Registers (ADC_ADDRx x = 0~16, 26,27,29,30)

Register	Offset	R/W	Description	Reset Value
ADC_ADDR0	ADC_BA+0x00	R	ADC Data Register 0	0x0000_0000
ADC_ADDR1	ADC_BA+0x04	R	ADC Data Register 1	0x0000_0000
ADC_ADDR2	ADC_BA+0x08	R	ADC Data Register 2	0x0000_0000
ADC_ADDR3	ADC_BA+0x0C	R	ADC Data Register 3	0x0000_0000
ADC_ADDR4	ADC_BA+0x10	R	ADC Data Register 4	0x0000_0000
ADC_ADDR5	ADC_BA+0x14	R	ADC Data Register 5	0x0000_0000
ADC_ADDR6	ADC_BA+0x18	R	ADC Data Register 6	0x0000_0000
ADC_ADDR7	ADC_BA+0x1C	R	ADC Data Register 7	0x0000_0000
ADC_ADDR8	ADC_BA+0x20	R	ADC Data Register 8	0x0000_0000
ADC_ADDR9	ADC_BA+0x24	R	ADC Data Register 9	0x0000_0000
ADC_ADDR10	ADC_BA+0x28	R	ADC Data Register 10	0x0000_0000
ADC_ADDR11	ADC_BA+0x2C	R	ADC Data Register 11	0x0000_0000
ADC_ADDR12	ADC_BA+0x30	R	ADC Data Register 12	0x0000_0000
ADC_ADDR13	ADC_BA+0x34	R	ADC Data Register 13	0x0000_0000
ADC_ADDR14	ADC_BA+0x38	R	ADC Data Register 14	0x0000_0000
ADC_ADDR15	ADC_BA+0x3C	R	ADC Data Register 15	0x0000_0000
ADC_ADDR16	ADC_BA+0x40	R	ADC Data Register 16	0x0000_0000
ADC_ADDR26	ADC_BA+0x68	R	ADC Data Register 26	0x0000_0000
ADC_ADDR27	ADC_BA+0x6C	R	ADC Data Register 27	0x0000_0000
ADC_ADDR29	ADC_BA+0x74	R	ADC Data Register 29	0x0000_0000
ADC_ADDR30	ADC_BA+0x78	R	ADC Data Register 30	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	RSLT									
7	6	5	4	3	2	1	0			

RSLT

Bits	Description	cription						
[31:18]	Reserved	Reserved.						
[17]	VALID	 Valid Flag (Read Only) This bit will be set to 1 when the conversion of the corresponding channel is completed. This bit will be cleared to 0 by hardware after ADDR register is read. 0 = Data in RSLT bits is not valid. 1 = Data in RSLT bits is valid. 						
[16]		Overrun Flag (Read Only) If converted data in RSLT bits has not been read before new conversion result is loaded to this register, OVERRUN bit is set to 1. It is cleared by hardware after ADDR register is read. 0 = Data in RSLT bits is not overwrote. 1 = Data in RSLT bits is overwrote.						
[15:0]	RSLT	A/D Conversion Result (Read Only) This field contains conversion result of ADC.						

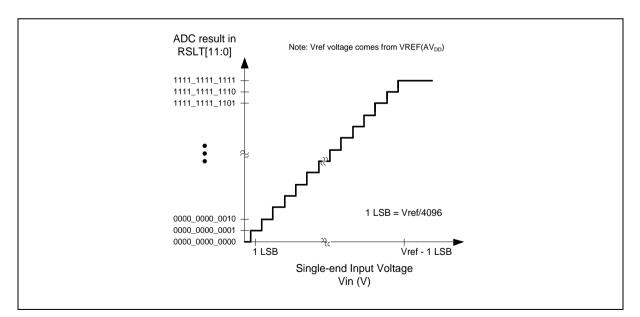


Figure 6.19-9 Conversion Result Mapping Diagram of ADC Single-end Input

M0A21/M0A23 Series

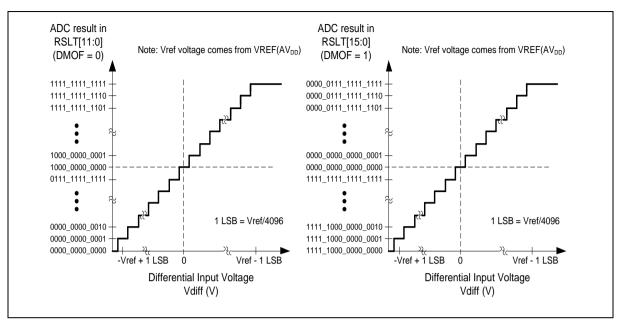


Figure 6.19-10 Conversion Result Mapping Diagram of ADC Differential Input

ADC Control Register (ADC_ADCR)

Register Offset					R/W	W Description		Reset Value		alue
ADC_ADCR		ADC_E	3A+0x80		R/W	ADC Control Register			0x0005_0000	
31	3	0	29		28	27	26		25	24
DMOF					Reserved					
23	22		21		20	19	18		17	16
			Reserved			SMPTSEL				
15	1	4	13		12	11	10		9	8
	Reserved					ADST	DIFFEN	F	TEN	TRGEN
7		6	5		4	3	2		1	0
TRGO	TRGCOND TRGS					AD	MD		ADIE	ADEN

Bits	Description								
		Differential Input Mode Output Format							
[24]	DMOF	If user enables differential input mode, the conversion result can be expressed with binary straight format (unsigned format) or 2's complement format (signed format).							
[31]	DIMOF	0 = A/D Conversion result will be filled in RSLT at ADDRx registers with unsigned format (straight binary format).							
		1 = A/D Conversion result will be filled in RSLT at ADDRx registers with 2's complement format.							
[30:19]	Reserved	Reserved.							
		ADC Internal Sampling Time Selection							
		Total ADC conversion cycle = sampling cycle + 12.							
		000 = 4 ADC clock for sampling; 16 ADC clock for complete conversion.							
		001 = 5 ADC clock for sampling; 17 ADC clock for complete conversion.							
[40,40]	OMPTOFI	010 = 6 ADC clock for sampling; 18 ADC clock for complete conversion.							
[18:16]	SMPTSEL	011 = 7 ADC clock for sampling; 19 ADC clock for complete conversion.							
		100 = 8 ADC clock for sampling; 20 ADC clock for complete conversion.							
		101 = 9 ADC clock for sampling; 21 ADC clock for complete conversion.							
		110 = 10 ADC clock for sampling; 22 ADC clock for complete conversion.							
		111 = 11 ADC clock for sampling; 23 ADC clock for complete conversion.							
[15:12]	Reserved	Reserved.							
		A/D Conversion Start							
[11]	ADST	ADST bit can be set to 1 from four sources: software, external pin STADC, PWM trigger and Timer trigger. ADST bit will be cleared to 0 by hardware automatically at the ends of Single mode and Single-cycle Scan mode. In Continuous Scan mode and Burst mode, A/D conversion is continuously performed until software writes 0 to this bit or chip is reset.							
		0 = Conversion stops and A/D converter enters idle state.							
		1 = Conversion starts.							
		Differential Input Mode Control							
[10]	DIFFEN	Differential input voltage (V_{diff}) = V_{plus} - V_{minus} .							
[.0]		where V_{plus} is the analog input; V_{minus} is the inverted analog input.							
		The V _{plus} of differential input paired channel x is from ADC0_CHy pin; V _{minus} is from ADC0_CHz pin, x=0,17,							

		y=2*x, z=y+1.
		0 = Single-end analog input mode.
		1 = Differential analog input mode.
		Note: In Differential Input mode, only the even number of the two corresponding channels needs to be enabled in ADC_ ADCHER register. The conversion result will be placed to the corresponding data register of the enabled channel.
		Note: The relation between Vplus and Vminus is Vplus + Vminus = Vref
		PDMA Transfer Enable Bit
[9]	PTEN	When A/D conversion is completed, the converted data is loaded into ADDR0~16 ADDR26, ADDR27, ADDR29, ADDR30. Software can enable this bit to generate a PDMA data transfer request.
[9]		0 = PDMA data transfer Disabled.
		1 = PDMA data transfer in ADDR0~16, ADDR26, ADDR27, ADDR29, ADDR30 Enabled.
		Note: When PTEN=1, software must set ADIE=0 to disable interrupt.
		External Trigger Enable Control
101	TRGEN	Enable or disable triggering of A/D conversion by external STADC pin, PWM trigger and Timer trigger. If external trigger is enabled, the ADST bit can be set to 1 by the selected hardware trigger source.
[8]	INGEN	0 = External trigger Disabled.
		1 = External trigger Enabled.
		Note: The ADC external trigger function is only supported in Single-cycle Scan mode.
		External Trigger Condition
		These two bits decide external pin STADC trigger event is level or edge. The signal must be kept at stable state at least 8 PCLKs for level trigger and at least 4 PCLKs for edge trigger.
[7:6]		00 = Low level.
		01 = High level.
		10 = Falling edge.
		11 = Rising edge.
		Hardware Trigger Source
		00 = A/D conversion is started by external STADC pin.
[5:4]	TRGS	01 = Timer0 ~ Timer3 overflow pulse trigger.
[3.4]	11.03	10 = Reserved.
		11 = A/D conversion is started by PWM trigger.
		Note: Software should clear TRGEN bit and ADST bit to 0 before changing TRGS bits.
		A/D Converter Operation Mode Control
		00 = Single conversion.
		01 = Burst conversion.
[3:2]	ADMD	10 = Single-cycle Scan.
		11 = Continuous Scan.
		Note 1: When changing the operation mode, software should clear ADST bit first.
		Note 2: In Burst mode, the A/D result data is always at ADC Data Register 0.
		A/D Interrupt Enable Control
[4]	ADIE	A/D conversion end interrupt request is generated if ADIE bit is set to 1.
[1]	ADIE	0 = A/D interrupt function Disabled.
		1 = A/D interrupt function Enabled.
		A/D Converter Enable Bit
		0 = A/D converter Disabled.
[0]	ADEN	1 = A/D converter Enabled.
		Note: Before starting A/D conversion function, this bit should be set to 1. Clear it to 0 to disable A/D converter
		analog circuit to save power consumption.

ADC Channel Enable Register (ADC_ADCHER)

Register Offset		R/W	Description	Reset Value
ADC_ADCHER	ADC_BA+0x84	R/W	ADC Channel Enable Register	0x0000_0000

31	30	29	28	27	26	25	24			
CHEN										
23	22	21	20	19	18	17	16			
	CHEN									
15	14	13	12	11	10	9	8			
	CHEN									
7	6	5	4	3	2	1	0			
			СН	EN						

Bits	Descri	escription							
		Analog Input Channel Enable Control							
	only the even number channel needs Besides, set ADC_ ADCHER[26], Al internal channel for internal reference Other bits are reserved	Set ADC_ ADCHER[16:0] bits to enable the corresponding analog input channel 16 ~ 0. If DIFFEN bit is set to 1, only the even number channel needs to be enabled.							
		Besides, set ADC_ ADCHER[26], ADC_ ADCHER[27], ADC_ ADCHER[29], ADC_ ADCHER[30] bits will enable internal channel for internal reference voltage, DAC0_OUT, band-gap voltage and temperature sensor respectively. Other bits are reserved.							
[31:0]	CHEN	0 = Channel Disabled.							
		1 = Channel Enabled.							
		Note 1 : If the internal channel for temperature sensor is active, the minimum time of sample stage should be T _{TEMP_ADC} . Please refer to section 8.5.7 in the relative Datasheet for detailed information.							
		Note 2 : If the internal channel for band-gap voltage is active, the minimum time of sample stage should be T _{VBG_ADC} . Please refer to section 8.2 in the relative Datasheet for detailed information.							

ADC Compare Register 0/1 (ADC_ADCMPR0/1)

Register	Offset	R/W	Description	Reset Value
ADC_ADCMPR0	ADC_BA+0x88	R/W	ADC Compare Register 0	0x0000_0000
ADC_ADCMPR1	ADC_BA+0x8C	R/W	ADC Compare Register 1	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved				СМРД			
23	22	21	20	19	18	17	16	
	CMPD							
15	14	13	12	11	10	9	8	
CMPWEN		Reserved		CMPMATCNT				
7	6	5	4	3	2	1	0	
	СМРСН				CMPCOND	CMPIE	CMPEN	

Bits	Description	scription								
[31:28]	Reserved	Reserved.								
[27:16]	CMPD	Comparison Data The 12-bit data is used to compare with conversion result of specified channel. Note: CMPD bits should be filled in unsigned format (straight binary format).								
[15]	1 = Compare Window Mode Enabled. Note: This bit is only presented in ADCMPR0 register.									
[14:12]	Reserved	Reserved.								
[11:8]	11:8] Compare Match Count When the specified A/D channel analog conversion result matches the compare condition CMPCOND bit, the internal match counter will increase 1. When the internal counter reacher (CMPMATCNT +1), the CMPFx bit will be set.									
[7:3]	СМРСН	Compare Channel Selection 00000 = Channel 0 conversion result is selected to be compared. 00001 = Channel 1 conversion result is selected to be compared. 00010 = Channel 2 conversion result is selected to be compared. 00011 = Channel 3 conversion result is selected to be compared. 00100 = Channel 4 conversion result is selected to be compared. 00101 = Channel 5 conversion result is selected to be compared. 00101 = Channel 6 conversion result is selected to be compared. 00110 = Channel 6 conversion result is selected to be compared. 00111 = Channel 7 conversion result is selected to be compared. 01001 = Channel 8 conversion result is selected to be compared. 01001 = Channel 9 conversion result is selected to be compared. 01001 = Channel 9 conversion result is selected to be compared. 01011 = Channel 10 conversion result is selected to be compared.								

		01100 = Channel 12 conversion result is selected to be compared.
		01101 = Channel 13 conversion result is selected to be compared.
		01110 = Channel 14 conversion result is selected to be compared.
		01111 = Channel 15 conversion result is selected to be compared.
		10000 = Channel 16 conversion result is selected to be compared.
		11010 = Internal reference voltage conversion result is selected to be compared
		11011 = DAC0 output conversion result is selected to be compared
		11101 = Band-gap voltage conversion result is selected to be compared.
		11110 = Temperature sensor conversion result is selected to be compared
		Others = Reserved
		Compare Condition
[0]	CMPCOND	0 = Set the compare condition as that when a 12-bit A/D conversion result is less than the 12-bit CMPD bits, the internal match counter will increase one.
[2]		1 = Set the compare condition as that when a 12-bit A/D conversion result is greater than or equal to the 12-bit CMPD bits, the internal match counter will increase one.
		Note: When the internal counter reaches to (CMPMATCNT +1), the CMPFx bit will be set.
		Compare Interrupt Enable Control
[1]	СМРІЕ	If the compare function is enabled and the compare condition matches the setting of CMPCOND and CMPMATCNT, CMPFx bit will be asserted, in the meanwhile, if CMPIE bit is set to 1, a compare interrupt request is generated.
		0 = Compare function interrupt Disabled.
		1 = Compare function interrupt Enabled.
		Compare Enable Control
[0]	CMPEN	Set this bit to 1 to enable ADC controller to compare CMPD (ADCMPRx[27:16]) with specified channel conversion result when converted data is loaded into ADDR register.
		0 = Compare function Disabled.
		1 = Compare function Enabled.

ADC Status Register0 (ADC_ADSR0)

Register	Offset	R/W	Description	Reset Value
ADC_ADSR0	ADC_BA+0x90	R/W	ADC Status Register0	0x0000_0000

31	30	29	28	27	26	25	24
CHANNEL Reserved							
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Reserved				VALIDF
7	7 6 5 4 3 2 1						0
BUSY	BUSY Reserved				CMPF1	CMPF0	ADF

Bits	Description					
[31:27]	CHANNEL	Current Conversion Channel (Read Only) When BUSY=1, this filed reflects current conversion channel. When BUSY=0, it shows the number of the next converted channel.				
[26:17]	Reserved	Reserved.				
[16]	OVERRUNF	verrun Flag (Read Only) any one of OVERRUN (ADDRx[16]) is set, this flag will be set to 1. lote: When ADC is in burst mode and the FIFO is overrun, this flag will be set to 1.				
[15:9]	Reserved	Reserved.				
[8]	VALIDF	Data Valid Flag (Read Only) If any one of VALID (ADDRx[17]) is set, this flag will be set to 1. Note: When ADC is in burst mode and any conversion result is valid, this flag will be set to 1.				
[7]	BUSY	BUSY/IDLE (Read Only) This bit is a mirror of ADST bit in ADCR register. 0 = A/D converter is in idle state. 1 = A/D converter is busy at conversion.				
[6:3]	Reserved	Reserved.				
[2]	CMPF1	Compare Flag 1 When the A/D conversion result of the selected channel meets setting condition in ADCMPR1 register then this bit is set to 1; it is cleared by writing 1 to it 0 = Conversion result in ADDR does not meet ADCMPR1 setting. 1 = Conversion result in ADDR meets ADCMPR1 setting.				
[1]	CMPF0	Compare Flag 0 When the A/D conversion result of the selected channel meets setting condition in ADCMPR0 register then this bit is set to 1. This bit is cleared by writing 1 to it. 0 = Conversion result in ADDR does not meet ADCMPR0 setting. 1 = Conversion result in ADDR meets ADCMPR0 setting.				
[0]	ADF	A/D Conversion End Flag				

A status flag that indicates the end of A/D conversion. Software can write 1 to clear this bit.
ADF bit is set to 1 at the following three conditions:
1. When A/D conversion ends in Single mode.
2. When A/D conversion ends on all specified channels in Single-cycle Scan mode and Continuous Scan mode.
3. When more than or equal to 8 samples in FIFO in Burst mode.

ADC Status Register1 (ADC_ADSR1)

Register	Offset R/W		Description	Reset Value	
ADC_ADSR1	ADC_BA+0x94	R	ADC Status Register1	0x0000_0000	

31	30	29	28	27	26	25	24			
	VALID									
23	22	21	20	19	18	17	16			
			VA	LID						
15	14	13	12	11	10	9	8			
			VA	LID						
7	6	5	4	3	2	1	0			
	VALID									

Bits	Descri	Description							
		Data Valid Flag (Read Only)							
[31:0]		VALID[30:29], VALID[27:26], VALID[16:0] are the mirror of the VALID bits in ADDR30[17], ADDR29[17], ADDR27[17], ADDR26[17], ADDR16[17]~ ADDR0[17]. The other bits are reserved.							
		Note: When ADC is in burst mode and any conversion result is valid, VALID[30:29], VALID[27:26], VALID[16:0] will be set to 1.							

ADC Status Register2 (ADC_ADSR2)

Register	Offset	R/W	Description	Reset Value
ADC_ADSR2	ADC_BA+0x98	R	ADC Status Register2	0x0000_0000

31	30	29	28	27	26	25	24		
	OVERRUN								
23	22	23	22	19	18	17	16		
			OVE	RRUN					
15	14	15	14	11	10	9	8		
	OVERRUN								
7 6 5 4 3 2 1 0									
	OVERRUN								

Bits	Description	Description						
[31:0]	OVERRUN	Overrun Flag (Read Only) OVERRUN[30:29], OVERRUN[27:26], OVERRUN[16:0] are the mirror of the OVERRUN bit in ADDR30[16], ADDR29[16], ADDR27[16], ADDR26[16], ADDR16[16] ~ ADDR0[16]. The other bits are reserved. Note: When ADC is in burst mode and the FIFO is overrun, OVERRUN[30:29], OVERRUN[27:26], OVERRUN[16:0] will be set to 1.						

ADC Trigger Delay Control Register (ADC_ADTDCR)

Register	Offset	R/W	Description	Reset Value
ADC_ADTDCR	ADC_BA+0x9C	R/W	ADC Trigger Delay Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
			PT	DT				

Bits	Description	escription					
[31:8]	Reserved	served Reserved.					
		PWM Trigger Delay Time					
[7:0]	PTDT	Set this field will delay ADC start conversion time after PWM trigger.					
		PWM trigger delay time is (4 * PTDT) * system clock					

ADC PDMA Current Transfer Data Register (ADC_ADPDMA)

Register	Offset	R/W	Description	Reset Value
ADC_ADPDMA	ADC_BA+0x100	R	ADC PDMA Current Transfer Data Register	0x0000_0000

31	30	29	28	27	26	25	24					
Reserved												
23	22	23	22	19	18	17	16					
	Reserved											
15	14	15	14	11	10	9	8					
	CURDAT											
7	6	5	4	3	2	1	0					
			CUR	DAT	CURDAT							

Bits	Descriptio	Description						
[31:18]	Reserved	eserved Reserved.						
[17:0]	CURDAT	ADC PDMA Current Transfer Data Register (Read Only) When PDMA transferring, read this register can monitor current PDMA transfer data. Current PDMA transfer data could be the content of ADDR0 ~ ADDR16 and ADDR26, ADDR27, and ADDR29, ADDR30 registers.						

6.20 Digital to Analog Converter (DAC)

6.20.1 Overview

The DAC module is a 5-bit, voltage output digital-to-analog converter. It can be used in conjunction with the PDMA controller. The DAC integrates a voltage output buffer that can be used to reduce output impendence and drive external loads directly without having to add an external operational amplifier.

6.20.2 Features

- Supports one 5-bit 100k SPS voltage type DAC
- Analog output voltage range: 0~AV_{DD} (voltage of V_{DD} pin)
- Reference voltage from internal reference voltage V_{REF} pin or AV_{DD}.
- DAC maximum conversion updating rate 100k SPS
- Rail to rail settle time 10us
- Supports software and timer0~3 trigger to start DAC conversion.
- Supports PDMA mode.

6.20.3 Block Diagram

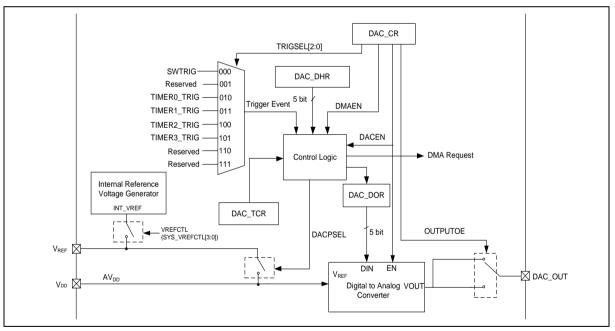


Figure 6.20-1 Digital-to-Analog Converter Block Diagram

6.20.4 Basic Configuration

The DAC output pin is configured in SYS_GPA_MFP0[7:0] Multi-function Register. The DAC Controller clock source is enabled by DACCKEN (CLK_APBCLK1[12]).

6.20.5 Functional Description

6.20.5.1 DAC Output

The DAC is a 5-bit voltage output digital-to-analog converter. The maximum DAC output voltage is limited to the selected reference voltage source.

6.20.5.2 DAC Reference Voltage

The DAC reference voltage is shared with ADC reference voltage and it is configured by VREFCTL(SYS_VREFCTL[3:0]) in system manager control registers. The reference voltage for the DAC can be configured from external reference voltage pin (V_{REF}) or internal reference voltage generator (INT_VREF) or analog power AV_{DD}.

6.20.5.3 DAC Conversion

Any data transfer to the DAC channel is performed by loading the data into DAC_DAT register. Figure 6.20-2 shows the DAC conversion started by software write operation. When user writes the conversion data to data holding register DAC_DAT, the data is loaded into data output register DAC_DATOUT by hardware and DAC starts data conversion Figure 6.20-3 shows the DAC conversion started by hardware trigger (timer trigger event). The data stored in the DAC_DAT register is automatically transferred to the data output buffer DAC_DATOUT after occurring one PCLK (APB clock) the event.

When DAC data output register DAC_DATOUT is loaded with the DAC_DAT contents, the analog output voltage becomes available after specified conversion settling time. The conversion settling time is 10us when 5-bit input code transition from lowest code (0x00) to highest code (0x1F). The DAC controller provides a 10-bit time counter for user to count the conversion time period. In continuous conversion operation, user needs to write appropriate value to SETTLET (DAC_TCTL[9:0]) to define DAC conversion time period. The value must be longer than DAC conversion settling time which is specified in DAC electric characteristic table. For example, when DAC controller APB clock speed is 48 MHz and DAC conversion settling time is 10us, the selected SETTLET value must be greater than 0x1E1. When the conversion is started, the conversion finish flag FINISH (DAC_STATUS[0]) is cleared to 0 by hardware and set to 1 after the time counter counts to SETTLET.

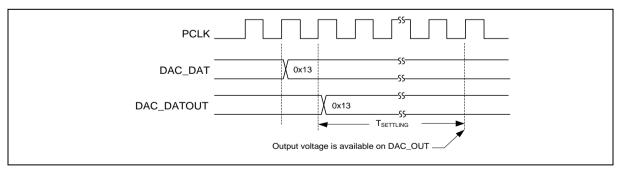


Figure 6.20-2 DAC Conversion Started by Software Write Trigger

6.20.5.4 DAC Output Voltage

Digital inputs are converted to output voltage on a linear conversion between 0 and reference voltage V_{REF} . The analog output voltage on DAC pin is determined by the following equation:

DAC_OUT = VREF x DATOUT[4:0]/32

6.20.5.5 DAC Trigger Selection

The DAC conversion can be started by writing DAC_DAT, software trigger or hardware trigger. When TRGEN (DAC_CTL[4]) is 0, the data conversion is started by writing DAC_DAT register. When TRGEN (DAC_CTL[4]) is 1, the data conversion is started by timer event or software trigger. If the software trigger is selected, the conversion starts once the SWTRG (DAC_SWTRG[0]) is set to 1. The SWTRG is cleared to 0 by hardware automatically when DAC_DATOUT has been loaded with DAC_DAT content. The TRGSEL (DAC_CTL[7:5]) determines which event is selected to start the conversion.

When DAC detects a rising edge on the selected trigger event input, the last data stored in DAC_DAT is transferred into the DAC_DATOUT[4:0] and DAC starts converting once DAC_DATOUT[4:0] is updated.

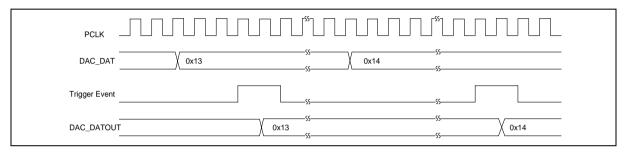


Figure 6.20-3 DAC Conversion Started by Hardware Trigger Event

6.20.5.6 PDMA Operation

DAC to PDMA request is generated when a hardware trigger event occurs while DMAEN (DAC_CTL[2]) is set. The content of DAC_DAT is transferred to the DAC_DATOUT[4:0] and DAC starts data conversion. The new transferred data by PDMA in DAC_DAT will be converted when next trigger event arrives. Figure 6.20-4 shows the DAC PDMA underrun condition, when the second DAC to PDMA request trigger event arrives before the first conversion finish, then no new PDMA request is issued and DMA underrun flag DMAUDR (DAC_STATUS[1]) is set 1 to report the error condition. DMA data transfers are then disabled and no further DMA request is treated and DAC continues to convert last data. An interrupt is also generated if the corresponding DMAURIEN (DAC_CTL[3]) is enabled. User has to change the trigger event frequency in timer and then start DAC conversion again.

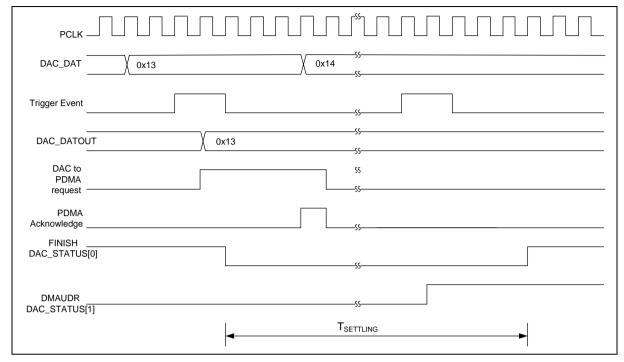


Figure 6.20-4 DAC PDMA Underrun Condition Example

DMA request can also be generated by software enable, user sets DMAEN (DAC_CTL[2]) to 1 and TRGEN (DAC_CTL[4]) to 0, DMA request is generated periodically according to the conversion time defined by SETTLET (DAC_TCTL[9:0]) value. DAC output is updated periodically. When user clears DMAEN (DAC_CTL[2]) to 0, DAC controller will stop issuing next new PDMA transfer request.

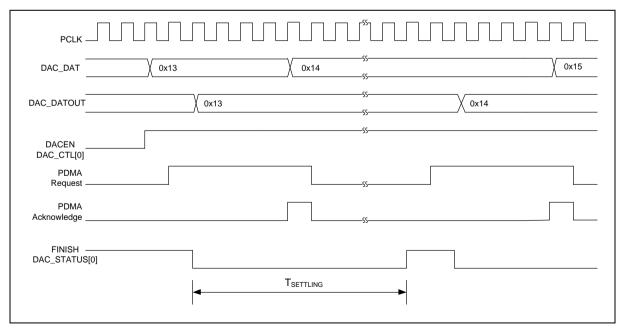


Figure 6.20-5 DAC Continuous Conversion with Software PDMA Mode

6.20.5.7 Interrupt Sources

There are two interrupt sources in DAC controller, one is DAC data conversion finish interrupt and the other is DMA under-run interrupt. When DAC conversion finish, the FINISH (DAC_STATUS[0]) is set to 1 and an interrupt occurs while DACIEN (DAC_CTL[1]) is enabled. If new DMA trigger event occurs during DAC data conversion period, the DMA under run flag DMAUDR (DAC_STATUS[1]) is generated and an interrupt occurs if DMAURIEN (DAC_CTL[3]) is enabled.

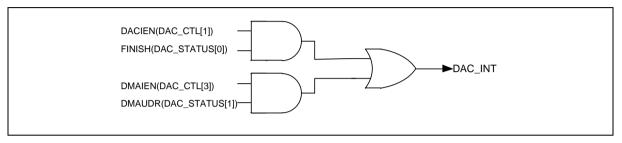


Figure 6.20-6 DAC Interrupt Source

6.20.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
DAC Base Address: DAC_BA = 0x4004_7	DAC Base Address: DAC_BA = 0x4004_7000							
DAC_CTL	DAC_BA+0x00	R/W	DAC Control Register	0x0000_0000				
DAC_SWTRG	DAC_BA+0x04	R/W	DAC Software Trigger Control Register	0x0000_0000				
DAC_DAT	DAC_BA+0x08	R/W	DAC Data Holding Register	0x0000_0000				
DAC_DATOUT	DAC_BA+0x0C	R	DAC Data Output Register	0x0000_0000				
DAC_STATUS	DAC_BA+0x10	R/W	DAC Status Register	0x0000_0000				
DAC_TCTL	DAC_BA+0x14	R/W	DAC Timing Control Register	0x0000_0000				

6.20.7 Register Description

DAC Control Register (DAC_CTL)

Register	Offset	R/W	Description	Reset Value
DAC_CTL	DAC_BA+0x00	R/W	DAC Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
		Rese	erved			DACPSEL	OUTPUTOE		
7	6	5	4	3	2	1	0		
	TRGSEL		TRGEN	DMAURIEN	DMAEN	DACIEN	DACEN		

Bits	Description	
[31:10]	Reserved	Reserved.
[9]	DACPSEL	DAC Reference Voltage Selection $0 = \text{Select AV}_{DD} \text{ (voltage of V}_{DD} \text{ pin)}$ $1 = \text{Select V}_{REF}$
[8]	Ουτρυτοε	DAC Output Enable 1 = DAC otuput to PAD Enabled. 0 = DAC output to PAD disabled.
[7:5]	TRGSEL	Trigger Source Selection 000 = Software trigger. 001 = reserved 010 = Timer 0 trigger. 011 = Timer 1 trigger. 100 = Timer 2 trigger. 101 = Timer 3 trigger. 110 = reserved 111 = reserved
[4]	TRGEN	Trigger Mode Enable Bit 0 = DAC event trigger mode Disabled. 1 = DAC event trigger mode Enabled.
[3]	DMAURIEN	 DMA Under-run Interrupt Enable Bit 0 = DMA underrun interrupt Disabled. 1 = DMA underrun interrupt Enabled.
[2]	DMAEN	DMA Mode Enable Bit 0 = DMA mode Disabled. 1 = DMA mode Enabled.

[1]	DAC Interrupt Enable Bit 0 = Interrupt Disabled. 1 = Interrupt Enabled.
[0]	DAC Enable Bit 0 = DAC Disabled. 1 = DAC Enabled.

DAC Software Trigger Control Register (DAC_SWTRG)

Register	Offset	R/W	Description	Reset Value
DAC_SWTRG	DAC_BA+0x04	R/W	DAC Software Trigger Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved						SWTRG	

Bits	Descriptio	Description						
[31:1]	Reserved	ved Reserved.						
[0]	SWTRG	Software Trigger 0 = Software trigger Disabled. 1 = Software trigger Enabled. User writes this bit to generate one shot pulse and it is cleared to 0 by hardware automatically; Reading this bit will always get 0.						

DAC Data Holding Register (DAC_DAT)

Register	Offset	R/W	Description	Reset Value
DAC_DAT	DAC_BA+0x08	R/W	DAC Data Holding Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved			DACDAT				

Bits	Description					
[31:16]	Reserved	Reserved.				
[4:0]	DACDAT	DAC 5-bit Holding Data These bits are written by user software which specifies 5-bit conversion data for DAC output.				

DAC Data Output Register (DAC_DATOUT)

Register	Offset	R/W	Description	Reset Value
DAC_DATOUT	DAC_BA+0x0C	R	DAC Data Output Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
	Reserved			DATOUT				

Bits	Description				
[31:5]	Reserved.				
		DAC 5-bit Output Data			
[4:0]	DATOUT	These bits are current digital data for DAC output conversion.			
		It is loaded from DAC_DAT register and user cannot write it directly.			

DAC Status Register (DAC_STATUS)

Register	Offset	R/W	Description	Reset Value
DAC_STATUS	DAC_BA+0x10	R/W	DAC Status Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Reserved				BUSY
7	6	5	4	3	2	1	0
Reserved DMAUDR						DMAUDR	FINISH

Bits	Descriptio	n							
[31:9]	Reserved	served.							
[8]		C Busy Flag (Read Only) DAC is ready for next conversion. DAC is busy in conversion. s is read only bit.							
[7:2]	Reserved	Reserved.							
[1]		DMA Under Run Interrupt Flag 0 = No DMA under-run error condition occurred. 1 = DMA under-run error condition occurred. User writes 1 to clear this bit.							
[0]		 DAC Conversion Complete Finish Flag 0 = DAC is in conversion state. 1 = DAC conversion finish. This bit set to 1 when conversion time counter counts to SETTLET. It is cleared to 0 when DAC starts a new conversion. User writes 1 to clear this bit to 0. 							

DAC Timing Control Register (DAC_TCTL)

Register	Offset	R/W	Description	Reset Value
DAC_TCTL	DAC_BA+0x14	R/W	DAC Timing Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
Reserved						SETTLET		
7	6	5	4	3	2	1	0	
SETTLET								

Bits	Descriptio	escription				
[31:10]	Reserved	ed Reserved.				
[9:0] SET T		DAC Output Settling Time				
		User software needs to write appropriate value to these bits to meet DAC conversion settling time base on PCLK (APB clock) speed.				
		For example, DAC controller clock speed is 72 MHz and DAC conversion setting time is 1 us, SETTLET value must be greater than 0x48.				

6.21 Analog Comparator Controller (ACMP)

6.21.1 Overview

The chip provides two comparators. The comparator output is logic 1 when positive input is greater than negative input; otherwise, the output is 0. Each comparator can be configured to generate an interrupt when the comparator output value changes.

6.21.2 Features

- Analog input voltage range: 0 ~ AV_{DD} (voltage of V_{DD} pin)
- Up to two rail-to-rail analog comparators
- Supports hysteresis function
 - Support programmable hysteresis window: 0mV and 30mV
- Supports wake-up function
- Selectable input sources of positive input and negative input
- ACMP0 supports:
 - 3 multiplexed I/O pins at positive sources:
 - ACMP0_P0, Comparator Reference Voltage (CRV), and DAC0 output
 - 5 negative sources:
 - ACMP0_N0, ACMP0_N1, ACMP0_N2, ACMP0_N3
 - Comparator Reference Voltage (CRV)
- ACMP1 supports
 - 3 multiplexed I/O pins at positive sources:
 - ACMP1_P0, Comparator Reference Voltage (CRV), and DAC0 output
 - 5 negative sources:
 - ACMP1_N0, ACMP1_N1, ACMP1_N2, ACMP1_N3
 - Comparator Reference Voltage (CRV)
- Shares one ACMP interrupt vector for all comparators
- Interrupts generated when compare results change (Interrupt event condition is programmable)
- Supports triggers for break events and cycle-by-cycle control for PWM
- Supports window compare mode and window latch mode

6.21.3 Block Diagram

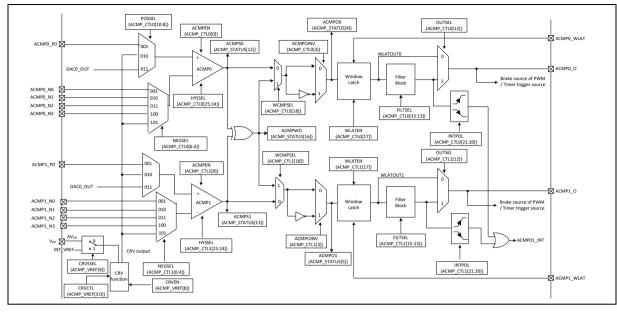


Figure 6.21-1 Analog Comparator Block Diagram

6.21.4 Basic Configuration

6.21.4.1 ACMP0 Basic Configuration

- Clock source Configuration
 - Enable ACMP0 peripheral clock in ACMP01CKEN (CLK_APBCLK0[7]).
- Reset Configuration
 - Reset ACMP0 controller in ACMP01RST (SYS_IPRST1[7]).
- Pin configuration

Group	Pin Name	GPIO	MFP
	ACMP0_P0	PA.0	MFP1
	ACMP0_O	GPIO pins, Except PA.3, PD.0~PD.7	MFP21
	ACMP0_N0	PA.1	MFP1
ACMP0	ACMP0_N1	PC.1	MFP1
	ACMP0_N2	PC.2	MFP1
	ACMP0_N3	PC.3	MFP1
	ACMP0_WLAT	PA.5, PB.7	MFP30

6.21.4.2 ACMP1 Basic Configuration

- Clock Source Configuration
 - Enable ACMP1 peripheral clock in ACMP01CKEN (CLK_APBCLK0[7]).
- Reset Configuration
 - Reset ACMP1 controller in ACMP01RST (SYS_IPRST1[7]).
- Pin Configuration

Group	Pin Name	GPIO	MFP
	ACMP1_P0	PC.0	MFP1
	ACMP1_O	GPIO pins, Except PA.3, PD.0~PD.7	MFP22
	ACMP1_N0	PA.1	MFP1
ACMP1	ACMP1_N1	PC.1	MFP1
	ACMP1_N2	PC.2	MFP1
	ACMP1_N3	PC.3	MFP1
	ACMP1_WLAT	PA.4, PB.6	MFP30

6.21.5 Functional Description

6.21.5.1 Hysteresis Function

The analog comparator provides the hysteresis function to make the comparator to have a stable output transition (referring to Figure 6.21-2). If comparator output is 0, it will not be changed to 1 until the positive input voltage exceeds the negative input voltage by a high threshold voltage. Similarly, if comparator output is 1, it will not be changed to 0 until the positive input voltage drops below the negative input voltage by a low threshold voltage.

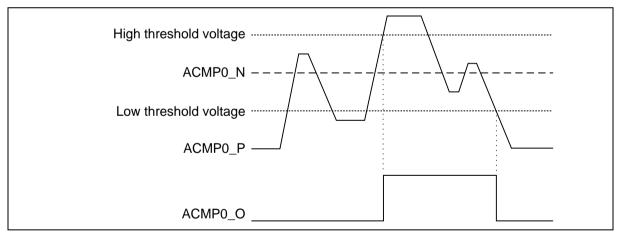


Figure 6.21-2 Comparator Hysteresis Function of ACMP0

6.21.5.2 Window Latch Mode

Figure 6.21-3 shows the comparator operation in window latch mode. Window latch mode can be enabled by setting WLATEN (ACMP_CTL0/1[17]) to 1. When window latch function enabled, ACMP0/1_WLAT pin is used to control the output WLATOUT0/1 .When ACMP0/1_WLAT pin is high, ACMP00/1 passes through to WLATOUT0/1. When ACMP0/1_WLAT pin is low, WLATOUT0/1 will keep last state of WLATOUT0/1.

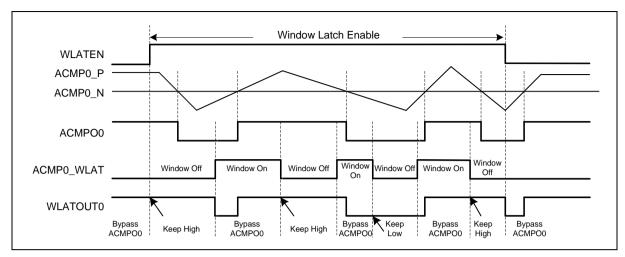


Figure 6.21-3 Window Latch Mode

6.21.5.3 Filter Function

The analog comparator provides filter function to avoid the un-stable state of comparator output.

By setting FILTSEL (ACMP_CTL0[15:13], ACMP_CTL1[15:13]), the comparator output would be sampled by consecutive PCLKs. With longer sample clocks, the comparator output would be more stable. But the sensitivity of comparator output would be reduced.

Figure 6.21-4 shows an example of filter function of ACMP0 with FILTSEL = 3 (4 PCLK). In this example, the comparing result is sampled by PCLK. All result must keep for 4 PCLK clocks before it can be output to ACMP00. If the comparing result is shorter than 4 PCLK, it will be filted.

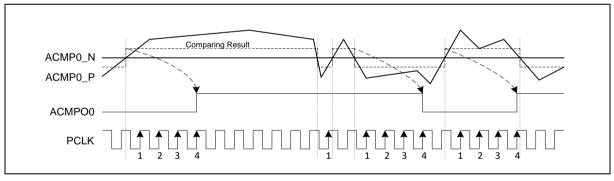


Figure 6.21-4 Filter Function Example

6.21.5.4 Interrupt Sources

The outputs of ACMP0 and ACMP1 are reflected at ACMPO0 (ACMP_STATUS[4]) and ACMPO1 (ACMP_STATUS[5]) respectively. Then they are processed by window latch and filter functions. Finally, the output signal could be utilized to assert interrupts. Refer to Figure 6.21-5, if ACMPIE of ACMP_CTL0/1 register is set to 1, the interrupt will be enabled. If the output state ACMPO0/1 is changed as the setting of INTPOL (ACMP_CTL0/1[9:8]), the comparator interrupt will be asserted and the corresponding flag, ACMPIF0 (ACMP_STATUS[0]) and ACMPIF1 (ACMP_STATUS[1]), will be set to 1. The interrupt flag can be cleared to 0 by writing 1.

If ACMP wakeup function is enabled and system wakeup from power down by ACMP with interrupt enabled (ACMPIE), the WKIF (ACMP_STATUS[8], ACMP_STATUS[9]) will be set that causes interrupt rising.

Figure 6.21-5 shows the interrups of ACMP is coming from ACMPIF or WKIF and enabled or disabled by ACMPIE.

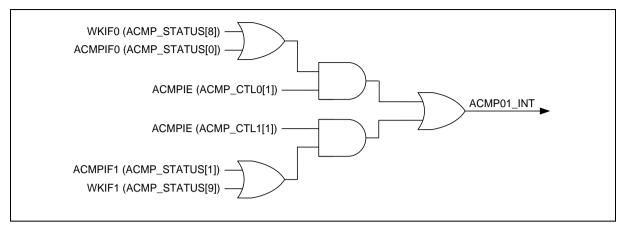


Figure 6.21-5 Comparator Controller Interrupt

6.21.5.5 Comparator Reference Voltage (CRV)

The comparator reference voltage (CRV) module is responsible for generating reference voltage for comparators. The CRV module consists of resistor ladder and analog switch. User can set the CRV output voltage by setting CRVCTL (ACMP_VREF[3:0]). The CRV output voltage can be selected as the negative input of comparator by setting NEGSEL (ACMP_CTL0[6:4], ACMP_CTL1[6:4]). Figure 6.21-6 shows the block diagram of Comparator Reference Voltage.

The resistor ladder will be disabled by hardware to reduce power consumption when NEGSEL (ACMP_CTL0[6:4], ACMP_CTL1[6:4]) is not selected to CRV module. The reference voltage of resistor ladder can be the voltage of AV_{DD} (voltage of V_{DD} pin) or the internal V_{REF} .

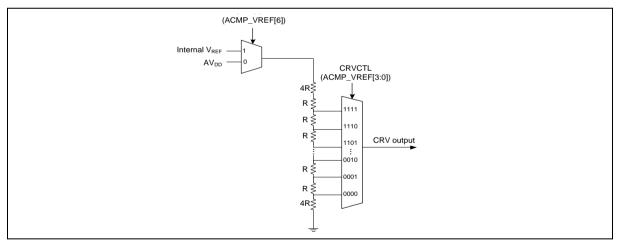


Figure 6.21-6 Comparator Reference Voltage Block Diagram

6.21.5.6 Window Compare Mode

The comparator provides window compare mode. When window compare mode is enabled by setting WCMPSEL (ACMP_CTL0/1[18]) to 1, user can monitor a specific analog voltage source with a designated range. User can connect the specific analog voltage source to either the positive inputs of both comparators or the negative inputs of both comparators. The upper bound and lower bound of the designated range are determined by the voltages applied to the other inputs of both comparators. If the output of a comparator is low and the other comparator outputs high, which means two comparators implies the upper and lower bound. User can directly monitor a specific analog voltage source via ACMPWO (ACMP_STATUS[16]). If ACMPWO is high, it implies a specific analog voltage source is in the range of upper and lower bound, which are called as the analog voltage is in the window.

Figure 6.21-7 illustrates an example of window compare mode. In this example, once window compare

mode is selected, user can choose 1 positive input sources of each comparator and connect these two inputs together outside the chip.

If ACMPS0 outputs high and ACMPS1 outputs low, it means the voltage source is in the range of lower bound and upper bound, which are called as the voltage source is in the window. Otherwise, the voltage source is outside the window.

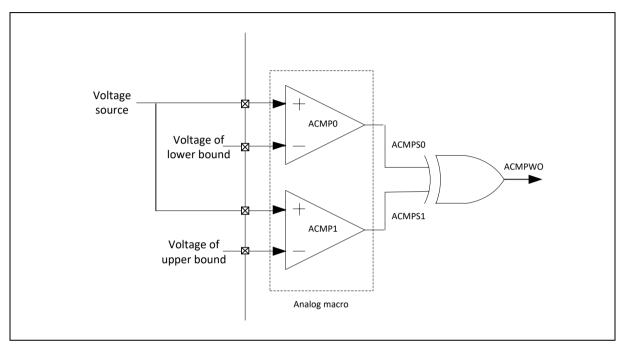


Figure 6.21-7 Example of Window Compare Mode

The comparator window output (ACMPWO) can be shown in ACMP_STATUS[16] and the truth table of window compare logic are shown in Table 6.21-1.

ACMPS0	ACMPS1	ACMPWO
0	0	0
0	1	1
1	1	0
1	0	1

Table 6.21-1 Truth Table of Window Compare Logic

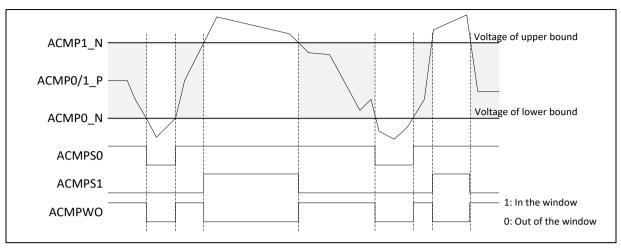


Figure 6.21-8 Example of Window Compare Mode

As shown in Figure 6.21-8, if ACMPWO equals 1, it means positive input voltage is inside the window. Otherwise, the positive input voltage is outside the window. Therefore, ACMPWO can be used to monitor voltage transition of external analog pin. Furthermore, ACMPWO still can be applied to window latch, filter functions and interrupt of ACMP.

Note that negative inputs must choose different source. Otherwise, the function will be meaningless.

6.21.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
ACMP Base Address: ACMP01_BA = 0x4004_5000							
ACMP_CTL0	ACMP01_BA+0x00	R/W	Analog Comparator 0 Control Register	0x0000_0000			
ACMP_CTL1 ACMP01_BA+0x04		R/W	Analog Comparator 1 Control Register	0x0000_0000			
ACMP_STATUS	ACMP01_BA+0x08	R/W	Analog Comparator Status Register	0x0000_0000			
ACMP_VREF	ACMP01_BA+0x0C	R/W	Analog Comparator Reference Voltage Control Register	0x0000_0000			

6.21.7 Register Description

Analog Comparator 0 Control Register (ACMP_CTL0)

Register	Offset	R/W	Description	Reset Value
ACMP_CTL0	ACMP01_BA+0x00	R/W	Analog Comparator 0 Control Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved	HYSBYPASS		Rese	erved		HYS	SEL
23	22	21	21 20		18	17	16
Reserved			POL	Reserved	WCMPSEL	WLATEN	WKEN
15	14	13	13 12		10	9	8
FILTSEL			OUTSEL	Reserved		POSSEL	
7	6	5	4	3	2	1	0
Reserved NEGSEL				ACMPOINV	Reserved	ACMPIE	ACMPEN

Bits	Description						
[31]	Reserved	Reserved.					
[30]	HYSBYPASS	Hysteresis Adjust Function Selection 0 = Enable adjust function 1 = Bypass adjust function					
[29:26]	Reserved	Reserved.					
[25:24]	HYSSEL	Hysteresis Mode Selection 00 = Hysteresis is 0mV. 11 = Hysteresis is 30mV.					
[23:22]	Reserved	Reserved.					
[21:20]	INTPOL	Interrupt Condition Polarity Selection ACMPIF0 will be set to 1 when comparator output edge condition is detected. 00 = Rising edge or falling edge. 01 = Rising edge. 10 = Falling edge. 11 = Reserved.					
[19]	Reserved	Reserved.					
[18]	WCMPSEL	Window Compare Mode Selection 0 = Window Compare Mode Disabled. 1 = Window Compare Mode Selected.					
[17]	WLATEN	Window Latch Mode Enable Bit 0 = Window Latch Mode Disabled. 1 = Window Latch Mode Enabled.					
[16]	WKEN	Power-down Wake-up Enable Bit 0 = Wake-up function Disabled.					

		1 = Wake-up function Enabled.
[15:13]	FILTSEL	Comparator Output Filter Count Selection 000 = Filter function is Disabled. 001 = ACMP0 output is sampled 1 consecutive PCLK. 010 = ACMP0 output is sampled 2 consecutive PCLKs. 011 = ACMP0 output is sampled 4 consecutive PCLKs. 100 = ACMP0 output is sampled 8 consecutive PCLKs. 101 = ACMP0 output is sampled 16 consecutive PCLKs. 110 = ACMP0 output is sampled 32 consecutive PCLKs. 111 = ACMP0 output is sampled 64 consecutive PCLKs.
[12]	OUTSEL	Comparator Output Select 0 = Comparator 0 output to ACMP0_O pin is unfiltered comparator output. 1 = Comparator 0 output to ACMP0_O pin is from filter output.
[11]	Reserved	Reserved.
[10:8]	POSSEL	Comparator Positive Input Selection 000 = All positive input disabled 001 = Input from ACMP0_P0. 010 = Comparator Reference Voltage (CRV) 011 = DAC0 output Others = Reserved
[7]	Reserved	Reserved.
[6:4]	NEGSEL	Comparator Negative Input Selection 000 = All negative input disbaled 001 = ACMP0_N0 010 = ACMP0_N1 011 = ACMP0_N2 100 = ACMP0_N3 101 = Comparator Reference Voltage (CRV) Others = Reserved.
[3]	ACMPOINV	Comparator Output Inverse 0 = Comparator 0 output inverse Disabled. 1 = Comparator 0 output inverse Enabled.
[2]	Reserved	Reserved.
[1]	ACMPIE	Comparator Interrupt Enable Bit 0 = Comparator 0 interrupt Disabled. 1 = Comparator 0 interrupt Enabled. If WKEN (ACMP_CTL0[16]) is set to 1, the wake-up interrupt function will be enabled as well.
[0]	ACMPEN	Comparator Enable Bit 0 = Comparator 0 Disabled. 1 = Comparator 0 Enabled.

Analog Comparator 1 Control Register (ACMP_CTL1)

Register	Offset R/W I		Description	Reset Value
ACMP_CTL1	ACMP01_BA+0x04	R/W	Analog Comparator 1 Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	HYS	SEL					
23	22	21	20	19	18	17	16
Reserved INTPC			POL	Reserved	WCMPSEL	WLATEN	WKEN
15	14	13	12	11	10	9	8
	FILTSEL			Reserved		POSSEL	
7 6 5 4		4	3	2	1	0	
Reserved		NEGSEL		ACMPOINV	Reserved	ACMPIE	ACMPEN

Bits	Description	
[31:26]	Reserved	Reserved.
[25:24]	HYSSEL	Hysteresis Mode Selection 00 = Hysteresis is 0mV. 11 = Hysteresis is 30mV.
[23:22]	Reserved	Reserved.
[21:20]	INTPOL	Interrupt Condition Polarity Selection ACMPIF0 will be set to 1 when comparator output edge condition is detected. 00 = Rising edge or falling edge. 01 = Rising edge. 10 = Falling edge. 11 = Reserved.
[19]	Reserved	Reserved.
[18]	WCMPSEL	Window Compare Mode Selection 0 = Window Compare Mode Disabled. 1 = Window Compare Mode Selected.
[17]	WLATEN	Window Latch Mode Enable Bit 0 = Window Latch Mode Disabled. 1 = Window Latch Mode Enabled.
[16]	WKEN	Power-down Wakeup Enable Bit 0 = Wake-up function Disabled. 1 = Wake-up function Enabled.
[15:13]	FILTSEL	Comparator Output Filter Count Selection 000 = Filter function is Disabled. 001 = ACMP1 output is sampled 1 consecutive PCLK. 010 = ACMP1 output is sampled 2 consecutive PCLKs. 011 = ACMP1 output is sampled 4 consecutive PCLKs.

Bits	Description									
		100 = ACMP1 output is sampled 8 consecutive PCLKs.								
		101 = ACMP1 output is sampled 16 consecutive PCLKs.								
		110 = ACMP1 output is sampled 32 consecutive PCLKs.								
		111 = ACMP1 output is sampled 64 consecutive PCLKs.								
		Comparator Output Select								
[12]	OUTSEL	0 = Comparator 1 output to ACMP1_O pin is unfiltered comparator output.								
		1 = Comparator 1 output to ACMP1_O pin is from filter output.								
[11]	Reserved	Reserved.								
		Comparator Positive Input Selection								
		000 = All positive input disabled								
[10:8]	DOSCEI	001 = Input from ACMP1_P0.								
	POSSEL	010 = Comparator Reference Voltage (CRV)								
		011 = DAC0 output								
		Others = Reserved								
[7]	Reserved	Reserved.								
		Comparator Negative Input Selection								
		000 = All negative input disbaled								
		001 = ACMP1_N0								
[6:4]	NEGSEL	010 = ACMP1_N1								
[0.4]	NEGGEL	011 = ACMP1_N2								
		100 = ACMP1_N3								
		101 = Comparator Reference Voltage (CRV)								
		Others = Reserved.								
		Comparator Output Inverse Control								
[3]	ACMPOINV	0 = Comparator 1 output inverse Disabled.								
		1 = Comparator 1 output inverse Enabled.								
[2]	Reserved	Reserved.								
		Comparator Interrupt Enable Bit								
[1]	ACMPIE	0 = Comparator 1 interrupt Disabled.								
[.]		1 = Comparator 1 interrupt Enabled. If WKEN (ACMP_CTL1[16]) is set to 1, the wake-up interrupt function will be enabled as well.								
		Comparator Enable Bit								
[0]	ACMPEN	0 = Comparator 1 Disabled.								
		1 = Comparator 1 Enabled.								

Analog Comparator Status Register (ACMP_STATUS)

Register	Offset	R/W	Description	Reset Value
ACMP_STATUS	ACMP01_BA+0x08	R/W	Analog Comparator Status Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved					ACMPWO	
15	14	13	12	11	10	9	8
Rese	Reserved		ACMPS0	Rese	erved	WKIF1	WKIF0
7	6	5	4	3	2	1	0
Reserved ACMPC		ACMPO1	ACMPO0	Rese	erved	ACMPIF1	ACMPIF0

Bits	Descriptio	scription			
[31:17]	Reserved	Reserved.			
[16]	ACMPWO	Comparator Window Output This bit shows the output status of window compare mode 0 = The positive input voltage is outside the window. 1 = The positive input voltage is in the window.			
[15:14]	Reserved	Reserved.			
[13]	ACMPS1	Comparator 1 Status Synchronized to the PCLK to allow reading by software. Cleared when the comparator 1 is disabled, i.e. ACMPEN (ACMP_CTL1[0]) is cleared to 0.			
[12]	ACMPS0	Comparator 0 Status Synchronized to the PCLK to allow reading by software. Cleared when the comparator 0 is disabled, i.e. ACMPEN (ACMP_CTL0[0]) is cleared to 0.			
[11:10]	Reserved	Reserved.			
[9]	WKIF1	Comparator 1 Power-down Wake-up Interrupt Flag This bit will be set to 1 when ACMP1 wake-up interrupt event occurs. 0 = No power-down wake-up occurred. 1 = Power-down wake-up occurred. Note: Write 1 to clear this bit to 0.			
[8]	WKIF0	Comparator 0 Power-down Wake-up Interrupt Flag This bit will be set to 1 when ACMP0 wake-up interrupt event occurs. 0 = No power-down wake-up occurred. 1 = Power-down wake-up occurred. Note: Write 1 to clear this bit to 0.			
[7:6]	Reserved	Reserved.			
[5]	ACMPO1	Comparator 1 Output Synchronized to the PCLK to allow reading by software. Cleared when the comparator 1 is disabled, i.e. ACMPEN (ACMP_CTL1[0]) is cleared to 0.			

Bits	Descriptio	Description			
[4]		Comparator 0 Output Synchronized to the PCLK to allow reading by software. Cleared when the comparator 0 is disabled, i.e. ACMPEN (ACMP_CTL0[0]) is cleared to 0.			
[3:2]	Reserved	teserved.			
[1]	ACMPIF1	Comparator 1 Interrupt Flag This bit is set by hardware when the edge condition defined by INTPOL (ACMP_CTL1[21:20]) is detected on comparator 1 output. This will cause an interrupt if ACMPIE (ACMP_CTL1[1]) is set to 1. Note: Write 1 to clear this bit to 0.			
[0]	ACMPIF0	Comparator 0 Interrupt Flag This bit is set by hardware when the edge condition defined by INTPOL (ACMP_CTL0[21:20]) is detected on comparator 0 output. This will generate an interrupt if ACMPIE (ACMP_CTL0[1]) is set to 1. Note: Write 1 to clear this bit to 0.			

ACMP Reference Voltage Control Register (ACMP_VREF)

Register	Offset	R/W	Description	Reset Value
ACMP_VREF	ACMP01_BA+0x0C	R/W	Analog Comparator Reference Voltage Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved					COMPEN	CRVEN
7	6	5	4	3	2	1	0
Reserved	CRVSSEL	Rese	erved		CRV	/CTL	

Bits	Description	Description				
[31:10]	Reserved	Reserved.				
[9]	COMPEN	Comparator Bias Enable Bit 0 = Comparator bias Disabled. 1 = Comparator bias Enabled.				
[8]	CRVEN	CRV Function Enable Bit 0 = CRV function Disabled. 1 = CRV function Enabled.				
[7]	Reserved	Reserved.				
[6]	CRVSSEL	CRV Source Voltage Selection $0 = AV_{DD}$ (voltage of V_{DD} pin)is selected as CRV source voltage. $1 = $ Internal V_{REF} is selected as as CRV source voltage.				
[5:4]	Reserved	Reserved.				
[3:0]	CRVCTL Comparator Reference Voltage Setting CRV = CRV source voltage * (1/6+CRVCTL/24).					

6.22 Peripherals Interconnection

6.22.1 Overview

Some peripherals have interconnections which allow autonomous communication or synchronous action between peripherals without needing to involve the CPU. Peripherals interact without CPU saves CPU resources, reduces power consumption, operates with no software latency and fast response.

6.22.2 Peripherals Interconnect Matrix Table

Source	Destination						
Source	ADC	DAC	PWM	Timer			
LIRC	-	-	-	<u>4</u>			
PWM	1	-	-	-			
Timer	<u>1</u>	2	<u>3</u>	<u>5</u>			

Table 6.22-1 Peripherals Interconnect Matrix Table

6.22.3 Functional Description

6.22.3.1 From PWM, TIMER to ADC

PWM Trigger ADC Conversion

PWM can be one of the ADC conversion trigger source.

Setting the ADC external hardware trigger input source from PWM trigger is described in section 6.19.5.8.

The detailed PWM trigger conditions are described in section 6.10.5.23.

Timer Trigger ADC Conversion

Timer0 ~ Timer3 can be one of the ADC conversion trigger source. When timer counter value matches the timer compared value or when the TMx_EXT pin edge transition meets setting, timer will trigger the ADC to start the conversion.

Setting the ADC external hardware trigger input source from timer trigger is described in section 6.19.5.7.

The detailed Timer trigger conditions are described in section 6.7.6.10.

6.22.3.2 From TIMER to DAC

Timer Trigger DAC Conversion

Timer0 ~ Timer3 can be one of the DAC conversion trigger source. When timer counter value matches the timer compared value or when the TMx_EXT pin edge transition meets setting, timer will trigger the DAC to start the conversion.

Setting the DAC external hardware trigger input source from timer trigger is described in section 6.20.5.5

The detailed Timer trigger conditions are described in section 6.7.6.10.

6.22.3.3 From TIMER to PWM

Timer Generates Trigger Pulses as PWM External Clock Source

Timer0 ~ Timer3 can generate trigger pules as PWM external clock source.

When the timer counter value matches the timer compared value or when the TMx_EXT pin edge transition meets setting, timer can generate a trigger pulse by setting described in section 6.7.6.10.

The setting of PWM clock source is described in section 6.10.3.

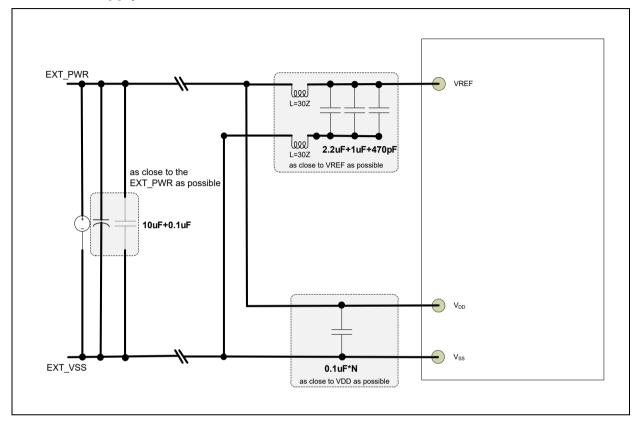
6.22.3.4 From LIRC to Timer Capture Function

Measure the Time Interval of LIRC clock Speed

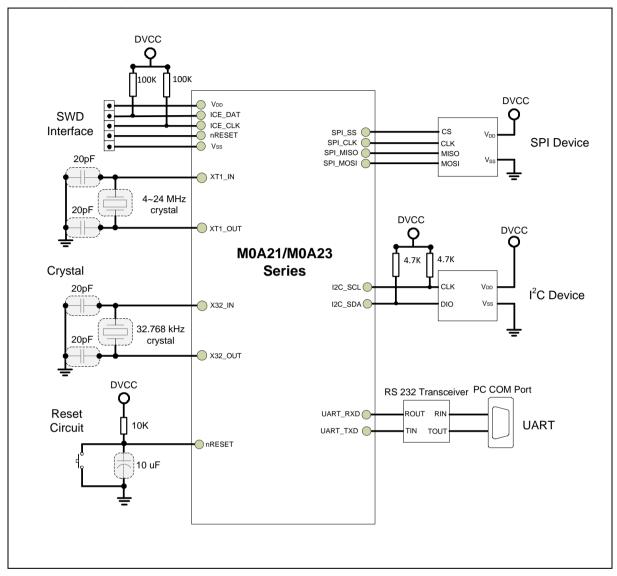
Set the timer capture source from LIRC clock and measure the time interval of the signal by using timer capture function. The results of time interval can be used to trim LIRC through software.

The detailed setting of time capture function is described in section 6.7.6.8.

6.22.3.5 From Timer0/2 to Timer1/3


Inter-Timer Trigger Capture Mode

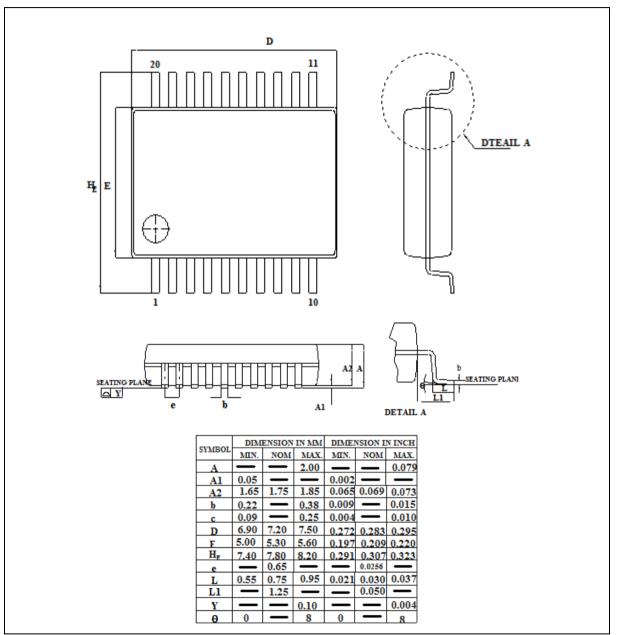
Timer0/2 will be forced in event counting mode, counting with external event, and will generate an internal signal (INTR_TMR_TRG) to trigger Timer1/3 start or stop counting. The Timer1/3 will be forced in capture mode and start/stop trigger-counting by Timer0/2 counter status.


The detail of inter-timer trigger capture mode is described in section 6.7.6.11.

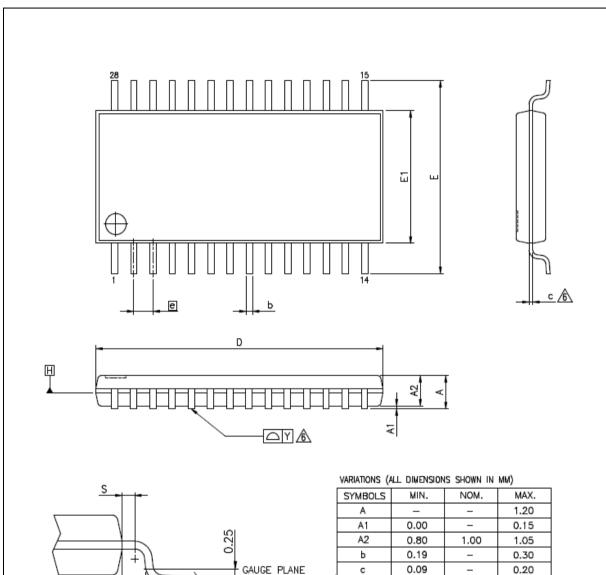
7 APPLICATION CIRCUIT

7.1 Power Supply Scheme

7.2 Peripheral Application Scheme


8 ELECTRICAL CHARACTERISTICS

Please refer to the relative Datasheet for detailed information about the M0A21/M0A23 electrical characteristics.


9 PACKAGE DIMENSIONS

Package is Halogen-free, RoHS-compliant and TSCA-compliant.

9.1 SSOP 20 (5.3x7.2x1.75 mm)

9.2 TSSOP 28 (4.4x9.7x1.0 mm)

SEATING PLANE

10

Т

L1

D

E1

Е

e

L1

L

s

θ

Υ

9.60

4.30

0.45

0.20

0°

9.70

4.40

6.40 BSC

0.65 BSC

1.00 REF

0.60

-

_

0.10

9.80

4.50

0.75

8°

10 ABBREVIATIONS

10.1 Abbreviations

Acronym	Description		
ACMP	Analog Comparator Controller		
ADC	Analog-to-Digital Converter		
AES	Advanced Encryption Standard		
APB	Advanced Peripheral Bus		
АНВ	Advanced High-Performance Bus		
BOD	Brown-out Detection		
CAN	Controller Area Network		
DAP	Debug Access Port		
DES	Data Encryption Standard		
EADC	Enhanced Analog-to-Digital Converter		
EBI	External Bus Interface		
EMAC	Ethernet MAC Controller		
EPWM	Enhanced Pulse Width Modulation		
FIFO	First In, First Out		
FMC	Flash Memory Controller		
FPU	Floating-point Unit		
GPIO	General-Purpose Input/Output		
HCLK	The Clock of Advanced High-Performance Bus		
HIRC	12 MHz Internal High Speed RC Oscillator		
НХТ	4~24 MHz External High Speed Crystal Oscillator		
IAP	In Application Programming		
ICP	In Circuit Programming		
ISP	In System Programming		
LDO	Low Dropout Regulator		
LIN	Local Interconnect Network		
LIRC	10 kHz internal low speed RC oscillator (LIRC)		
MPU	Memory Protection Unit		
NVIC	Nested Vectored Interrupt Controller		
PCLK	The Clock of Advanced Peripheral Bus		
PDMA	Peripheral Direct Memory Access		
PLL	Phase-Locked Loop		
PWM	Pulse Width Modulation		

QEI	Quadrature Encoder Interface		
SD	Secure Digital		
SPI	Serial Peripheral Interface		
SPS	Samples per Second		
TDES	Triple Data Encryption Standard		
ТК	Touch Key		
TMR	Timer Controller		
UART	Universal Asynchronous Receiver/Transmitter		
UCID	Unique Customer ID		
USB	Universal Serial Bus		
WDT	Watchdog Timer		
WWDT	Window Watchdog Timer		

Table 10.1-1 List of Abbreviations

11 REVISION HISTORY

Date	Revision	Description
2020.11.23	1.00	Initial version.
2022.02.23	1.01	• Fixed Figure 6.14-7 and Figure 6.14-8 overlapping.
2022.05.06	1.02	• Fixed the max frequency of HXT from 32 MHz to 24 MHz.
		• Fixed the the description of max ADC sampling rate to 800 kSPS in chapter 1, 2 and section 6.19.2, 6.19.5.1.
2023.03.08	1.03	 Changed the ADC note about using the internal channel for temperature sensor voltage and band-gap voltage in section 6.19.2 and 6.19.7.
		 Added "Package is Halogen-free, RoHS-compliant and TSCA- compliant." section 3.1 and chapter 9.
		• Fixed PA.3 type to input only in section 4.2.1, 4.2.2 and 4.2.3.
2024.01.23	1.04	 Removed non-supported register VTOR and SHPR1 in section 6.2.15.
		• Added PA.3 to ineffective for pull-up selection in section 6.5.7.

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners