

Multicell Battery Stack Monitor IC

KA49511A Product Brief

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation Japan and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing document only for reference purposes of KA49511A Battery Monitoring IC(BM-IC) based system design. Nuvoton assumes no responsibility for errors or omissions. All data and specifications are subject to change without notice.

For additional information or question, please contact Nuvoton Technology Corporation Japan. www.nuvoton.co.jp

■ IMPORTANT NOTICE

Regarding the specifications of this product, it is considered that you have agreed to the quality level and disclaimer described below.

Support for industry standards and quality standards

Functional safety standards for automobiles ISO26262	Νο
AECQ-100	Νο
Market failure rate	50Fit

Disclaimer

- When the application system is designed using this IC, please design the system at your own risk. Please read, consider, and apply appropriate usage notes and description in this standard.
 When designing your application system, please take into the consideration of break down and failure mode occurrence and possibility in semiconductor products. Measures on the systems such as, but not limited to, redundant design, mitigating the spread of fire, or preventing glitch, are recommended in order to prevent physical injury, fire, social damages, etc. in using the Nuvoton Technology Japan Corporation (hereinafter referred to as NTCJ) products.
 - 3. When using this IC, for each actual application systems, verify the systems and the all functionality of this IC as intended in application systems and the safety including the long-term reliability at your own risk
 - 4. Please use this IC in compliance with all applicable laws, regulations and safety-related requirements that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. NTCJ shall not be held responsible for any damage incurred as a result of this IC being used not in compliance with the applicable laws, regulations and safety-related requirements.
 - 5. This IC does not have any security functions using cryptographic algorithms, such as authentication, encryption, tampering detection.
 - 6. Unless this IC is indicated by NTCJ to be used in applications as meeting the requirements of a particular industry standard (e.g., ISO 9001, IATF 16949, ISO 26262, etc.), this IC is neither designed nor intended for use in such environments for that applications. NTCJ shall not be held responsible for not meeting the requirements of a particular industry standard.
 - 7. Using IC that have been indicated as compliant with industry functional safety standards does not warrant that the application meets the requirements of industry functional safety standards. NTCJ shall not be held responsible for the application compliance with requirements of the particular industry functional safety standard.
 - 8. Unless this IC is indicated by NTCJ to be used in applications as meeting the requirements of a particular quality standard (e.g., AECQ-100, etc.), this IC is neither designed nor intended for use in such the environments for that applications. NTCJ shall not be held responsible for not meeting the requirements of a particular quality standard.
 - 9. In case of damages, costs, losses, and/or liabilities incurred by NTCJ arising from customer's noncompliance with above from 1 to 8, customer will indemnify NTCJ against every damages, costs, losses and responsibility.

Table of Contents

Important Notice	 2
Overview	 4
Features	 4
Applications	 4
Package	 4
Туре	 4
Block Diagram	 5
Application Circuit Example	 6
Pin Description	 7
Absolute Maximum Ratings	 9
Operating Supply Voltage Range	 9
Allowable Current and Voltage Range	 10
Electrical Characteristics	 11
Test Circuit Diagram	 19
Usage Notes	 20
Special Attention and Precautions in Using the IC	 20
Notes for Power IC	 20

Multicell Battery Stack Monitor IC

Overview

KA49511A is a multicell battery stack monitor IC.

This IC, capable of voltage measurement of up to 10 battery cells connected in series with maximum 45-V input common mode voltage, is optimized for applications such as batteries for electrical bicycles requiring high-voltage operation.

The IC has the control of the cell balancing switches, the control of the high-side N-channel MOSFET for charge and discharge and a built-in regulator necessary for the peripheral circuits.

Features

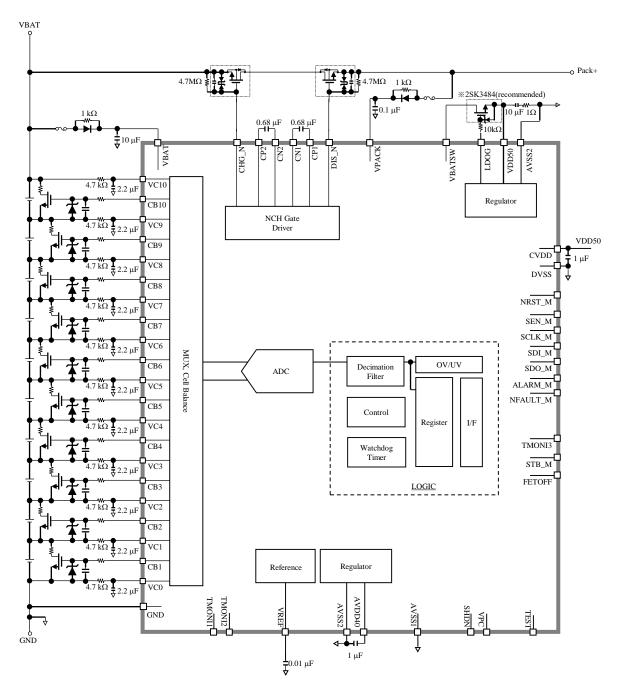
- Voltage measurement of up to 10 battery cells
- High accuracy voltage detection (total 10 cells)
- Control signal output for cell balance switch
- Built-in 14-bit delta-sigma ADC
- High-side N-channel MOSFET control for charge and discharge
- Serial control with microcomputer interface

Applications

• Voltage measurement for lithium-ion battery. (electrical bicycle, power tool, UPS, etc.)

Package

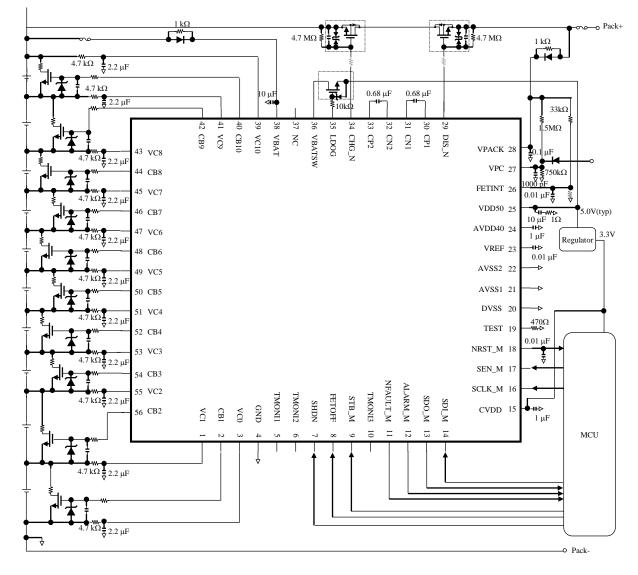
• TQFP 56L (10x10x1mm³, Lead Pitch 0.65mm)


Туре

Bi-CMOS IC

Measurement accuracy: ±10 mV

nuvoTon


Block Diagram

Note) This block diagram is for explaining functions. Some circuit blocks may be omitted, or simplified.

Application Circuit Example

Notes)

- This application circuit is an example. Operation of mass production set is not guaranteed. Perform enough evaluation and verification on the design of mass production set in customer's responsibility.
- \cdot Use external resistors with accuracy of less than ±5%.
- \cdot Use external capacitors with accuracy of less than $\pm 10\%.$

nuvoTon

Pin Description

Pin No.	Name	Туре	Description
1	VC1	Input	Cell 2 voltage input (-)/ cell 1 voltage input (+)
2	CB1	Output	Control pin for the transistor of cell balance
3	VC0	Input	Cell 1voltage input (-)
4	GND	Ground	Ground for analog circuit
5	TMONI1		Test pin 1
6	TMONI2	_	Test pin 2
7	SHDN	Input	Shutdown control signal input ("L": active, "H": shutdown)
8	FETOFF	Input	External FET ON/OFF select ("L": normal, "H": forced OFF)
9	STB_M	Input	Standby control signal input ("L": active, "H": standby)
10	TMONI3	_	Test pin 3
11	NFAULT_M	Output	FAULT output for microcomputer interface
12	ALARM_M	Output	ALARM signal output
13	SDO_M	Output	Serial data output for microcomputer interface
14	SDI_M	Input	Serial data input for microcomputer interface
15	CVDD	Power supply	Supply voltage for digital I/O
16	SCLK_M	Input	Serial clock input for microcomputer interface
17	SEN_M	Input	SPI for microcomputer interface enable ("H": enable)
18	NRST_M	Output	Power-on reset output for microcomputer
19	TEST	Input	Test mode select (* Connect to DVSS fixed.)
20	DVSS	Ground	Ground for digital circuit
21	AVSS1	Ground	Ground for analog circuit
22	AVSS2	Ground	Ground for analog circuit
23	VREF	Output	Reference voltage for ADC: 2.0 V (typ)
24	AVDD40	Output	Internal regulator pin for analog circuit: 4.0 V (typ)
25	VDD50	Output	Sense pin for external high withstand voltage regulator: 5.0 V (typ)
26	FETINT	Input	Internal switch for pre-charge ("L": pre-charge OFF, "H": pre-charge ON)
27	VPC	Input	Wake up control signal input ("L": active, "H": wake up)
28	VPACK	Power supply	Positive voltage of battery pack
29	DIS_N	Output	N-channel FET gate drive (for discharge)
30	CP1	Output	Connection to charge pump capacitor (V _{PACK} -side, positive)
31	CN1	Output	Connection to charge pump capacitor (V _{PACK} -side, negative)
32	CN2	Output	Connection to charge pump capacitor (V _{BAT} -side, negative)
33	CP2	Output	Connection to charge pump capacitor (V _{BAT} -side, positive)
34	CHG_N	Output	N-channel FET gate drive (for charge)

■ Pin Description (continued)

Pin No.	Name	Туре	Description
35	LDOG	Output	Connection to external power transistor (gate)
36	VBATSW	Output	Connection to external power transistor (drain)
37	NC		N.C.
38	VBAT	Power supply	Maximum voltage
39	VC10	Input	Cell 10 voltage input (+)
40	CB10	Output	Control pin for the transistor of cell balance
41	VC9	Input	Cell 10 voltage input (-)/ cell 9 voltage input (+)
42	CB9	Output	Control pin for the transistor of cell balance
43	VC8	Input	Cell 9 voltage input (-)/ cell 8 voltage input (+)
44	CB8	Output	Control pin for the transistor of cell balance
45	VC7	Input	Cell 8 voltage input (-)/ cell 7 voltage input (+)
46	CB7	Output	Control pin for the transistor of cell balance
47	VC6	Input	Cell 7 voltage input (-)/ cell 6 voltage input (+)
48	CB6	Output	Control pin for the transistor of cell balance
49	VC5	Input	Cell 6 voltage input (-)/ cell 5 voltage input (+)
50	CB5	Output	Control pin for the transistor of cell balance
51	VC4	Input	Cell 5 voltage input (-)/ cell 4 voltage input (+)
52	CB4	Output	Control pin for the transistor of cell balance
53	VC3	Input	Cell 4 voltage input (-)/ cell 3 voltage input (+)
54	CB3	Output	Control pin for the transistor of cell balance
55	VC2	Input	Cell 3 voltage input (-)/ cell 2 voltage input (+)
56	CB2	Output	Control pin for the transistor of cell balance

Absolute Maximum Ratings

Note) The absolute maximum ratings are the limit values beyond which the IC may be damaged. Operation is not guaranteed under these conditions.

A No.	Parameter	Symbol	Rating	Unit	Notes
		V _{PACK}	46	V	*1, *2
1	1 Supply voltage	V _{BAT}	46	V	*1, *2
		V _{CVDD}	6.5	V	*1
2	Supply current	I _{CC}	_	А	_
3	Power dissipation	P _D	127	mW	*3
4	Operating ambient temperature	T _{opr}	-40 to +105	°C	*4
5	Storage temperature	T _{stg}	-55 to +125	°C	*4

Notes)

- *1: The values are defined, provided that the IC is used within all of the above absolute maximum ratings including the power dissipation.
- *2: When not using FET driver control functions, supply voltage (absolute maximum rating) is 58 V. In this case, set NPD_FDRV, FET_CHG, FET_CHG (0x01) = [0, 0, 0].
- *3: The power dissipation shown is the value at Ta = 105°C for the independent (unmounted) IC package without a heat sink.

When using this IC, refer to the PD-Ta diagram of the package standard and design the heat radiation with sufficient margin not to exceed the

allowable value based on the conditions of power supply voltage, load, and ambient temperature.

*4: All ratings are at T_a = 25°C, except the power dissipation, operating ambient temperature, and storage temperature.

Operating Supply Voltage Range

Parameter	Symbol	Range	Unit	Notes
Supply voltage range	V _{BAT}	12.5 to 45	V	*1, *2
	V _{PACK}	12.5 to 45	V	*1, *2
	V _{CVDD}	3.2 to V_{DD}	V	*1,*3

Notes)

- *1: The value is defined, provided that the IC is used within all of the above absolute maximum ratings including the power dissipation.
- *2: When not using FET driver control functions, supply voltage range is 12.5 V to 53 V.

In this case, set NPD_FDRV, FET_CHG, FET_CHG (0x01) = [0, 0, 0].

*3: V_{DD} is the voltage of VDD50 pin (No.25 pin). CVDD pin can directly be connected with VDD50 pin.

Allowable Current and Voltage Range

Notes)

- The allowable current and voltage ranges are the limit values beyond which the IC may be damaged. Operation is not guaranteed under these conditions.
- •Rating voltages are voltages on each pin, with respect to the GND. GND is voltage of GND, AVSS1, AVSS2, and DVSS. (GND = AVSS1 = AVSS2 = DVSS)
- Do not apply external current or voltages to any pins except mentioned below.
- •For the circuit currents, "+" denotes current flowing into the IC, and "-" denotes current flowing out from the IC.

Pin No.	Pin Name	Rating Voltage	Unit	Notes
1	VC1	-0.3 to (V _{BAT} + 0.3)	v	*1
2	CB1	-0.3 to (V _{BAT} + 0.3)	v	*1
3	VC0	-0.3 to (V _{BAT} + 0.3)	v	*1
7	SHDN	-0.3 to (V _{CVDD} + 0.3)	v	*2
8	FETOFF	-0.3 to (V _{CVDD} + 0.3)	v	*2
9	STB_M	-0.3 to 6.5	v	
11	NFAULT_M	-0.3 to (V _{CVDD} + 0.3)	v	*2,4
12	ALARM_M	-0.3 to (V _{CVDD} + 0.3)	v	*2,4
13	SDO_M	-0.3 to (V _{CVDD} + 0.3)	v	*2,4
14	SDI_M	-0.3 to 6.5	v	
16	SCLK_M	-0.3 to 6.5	v	
17	SEN_M	-0.3 to 6.5	v	
18	NRST_M	-0.3 to 6.5	v	*4
19	TEST	-0.3 to (V _{CVDD} + 0.3)	v	*2
25	VDD50	-0.3 to 6.5	V	*4
26	FETINT	-0.3 to (V _{PACK} + 0.3)	V	*1
27	VPC	-0.3 to (V _{PACK} + 0.3)	v	*1

e IC, and "-" denotes current flowing out from the IC.									
Pin No.	Pin Name	Rating Voltage	Unit	Notes					
29	DIS_N	-0.3 to 58V	V	*1,4					
30	CP1	-0.3 to 58V	v	*1,4					
31	CN1	-0.3 to (V _{PACK} + 0.3)	v	*1,4					
32	CN2	-0.3 to (V _{BAT} + 0.3)	v	*1,4					
33	CP2	-0.3 to 58V	v	*1,4					
34	CHG_N	-0.3 to 58V	v	*1,4					
39	VC10	-0.3 to (V _{BAT} + 1.2)	v	*1					
40	CB10	-0.3 to (V _{BAT} + 0.3)	v	*1					
41	VC9	-0.3 to (V _{BAT} + 0.3)	v	*1					
42	CB9	-0.3 to (V _{BAT} + 0.3)	v	*1					
43	VC8	-0.3 to (V _{BAT} + 0.3)	v	*1					
44	CB8	-0.3 to (V _{BAT} + 0.3)	v	*1					
45	VC7	-0.3 to (V _{BAT} + 0.3)	v	*1					
46	CB7	-0.3 to (V _{BAT} + 0.3)	v	*1					
47	VC6	-0.3 to (V _{BAT} + 0.3)	v	*1					
48	CB6	-0.3 to (V _{BAT} + 0.3)	v	*1					
49	VC5	-0.3 to (V _{BAT} + 0.3)	v	*1					
50	CB5	-0.3 to (V _{BAT} + 0.3)	v	*1					
51	VC4	-0.3 to (V _{BAT} + 0.3)	v	*1					
52	CB4	-0.3 to (V _{BAT} + 0.3)	v	*1					
53	VC3	-0.3 to (V _{BAT} + 0.3)	V	*1					
54	CB3	-0.3 to (V _{BAT} + 0.3)	V	*1					
55	VC2	-0.3 to (V _{BAT} + 0.3)	V	*1					
56	CB2	-0.3 to (V _{BAT} + 0.3)	V	*1					
_	VC _{n+1} to VC _n	-0.3 to 11	V	*3					
	CB _n to VC _{n-1}	-0.3 to 11	V	*3					
_	VC _n to CB _n	-0.3 to 11	V	*3					

Notes) *1: $(V_{BAT} + 0.3) V$, $(V_{BAT} + 1.2) V$, (VBAT + 16) V, $(V_{PACK} + 0.3) V$ and $(V_{PACK} + 13) V$ must not exceed 58 V. *2: $(V_{CVDD} + 0.3) V$ must not exceed 6.5 V

*3: n = 1 to 10

*4: These pins are output, so you don't apply external voltage.

Electrical Characteristics at $V_{BAT} = V_{PACK} = 37 \text{ V}$ Note) $T_a = 25^{\circ}C \pm 3^{\circ}C$, unless otherwise specified.

В	Deveneter	Cump al	Test	Conditions		Limits		Unit	Natas
No.	Parameter	Symbol	Circuit	it Conditions	Min	Тур	Max	Unit	Notes
Supp	Ny Current (V _{BAT} + V _{PACK} + V _{CVDD})							
A1	Active mode	I _{BAT1}	1	$V_{CVDD} = 5.0V$		9	11	mA	—
A2	Standby mode	I _{BAT2}	1	$V_{CVDD} = 5.0V$	_	250	500	μA	*1
A4	Shutdown (2)	I _{BAT4}	1	$V_{CVDD} = 5.0V$	0		1	μΑ	
LDO									
B1	VDD50 output voltage	V _{DD}	1		4.5	5.0	5.5	v	_
B2	VDD drive current (1)	I _{REG1}	1	Active mode	0		25	mA	—
B3	VDD drive current (2)	I _{REG2}	1	Standby mode	0		5	mA	—
DC E	lias								
B4	AVDD40 pin voltage	V _{AVDD}	1		3.8	4.0	4.2	v	
B5	VREF pin voltage	V _{REF}	1		1.8	2.0	2.2	V	_
Cell	Voltage Monitor								
D1	Input voltage range	ΔVC_n	1		0		5	V	*3
D3	Voltage accuracy (1) Average	V _{ACC_VC1}	1	$\Delta VC_n = 2.5 \text{ V}, 4.5 \text{ V}$	-10	0	10	mV	*4
D4	Voltage accuracy (2) Average	V _{ACC_VC2}	1	$\Delta VC_n = 1.3 V$	-50	0	50	mV	*4
D6	Conversion time	t _{CONV}	1		7	8	9	ms	*5
D7	Effective input current	I _{IN}	1	Active mode $\Delta VC_n = 5.0 V$	-5	0	5	μΑ	
D8	Input leakage current	I _{LK}	1	Shutdown mode $\Delta VC_n = 5.0 V$	-1	0	1	μA	

Notes) *1: The value is defined in low power consumption mode. (see page 22)

*3: Exceeding the voltage described above might generate rush current due to the clamp in the internal circuit.

*4: $V_{BAT} \geq$ 12.5 V, or $V_{BAT} \geq$ 6.5 V and $V_{PACK} \geq$ 12.5 V

*5: The value is required time for voltage measurement of 10 cells.

■ Electrical Characteristics at V_{BAT} = V_{PACK} = 12.5 V to 45 V (reference value for design) Note) Ta= -40°C to 105°C, unless otherwise specified.

Note) These characteristics are reference values for design, and all ICs have not been guaranteed through inspections. If, by any chance, the problem caused by these characteristics occurs, we will respond in good faith to user concerns.

		1	1						
В	Parameter	Symbol	Test	Conditions	Refe	rence v	alues	Unit	Notes
No.		Cynhoer	Circuit	Conditions	Min	Тур	Max		
Supp	ly Current ($V_{BAT} + V_{PACK} + V_{CVDI}$	_D)							
A1	Active mode	I _{BAT1}		$V_{CVDD} = 5.0V$	_	9	11	mA	_
A2	Standby mode	I _{BAT2}		$V_{CVDD} = 5.0V$	_	250	500	μΑ	*1
A3	Shutdown (1)	I _{BAT3}	_	$V_{CVDD} = 5.0V$ $T_a = -40^{\circ}C$ to 105°C	0		5	μA	
A4	Shutdown (2)	I _{BAT4}	_	$V_{CVDD} = 5.0V$ $T_a = -40^{\circ}C$ to $65^{\circ}C$	0		1	μA	_
LDO									
B1	VDD50 output voltage	V _{DD}			4.5	5.0	5.5	v	_
B2	VDD drive current (1)	I _{REG1}		Active mode	0	_	25	mA	
B3	VDD drive current (2)	I _{REG2}		Standby mode	0		5	mA	_
DC B	ias	·							
B4	AVDD40 pin voltage	V _{AVDD}			3.8	4.0	4.2	v	
B5	VREF pin voltage	V _{REF}			1.8	2.0	2.2	v	_
Therr	nal Shutdown			1		1	1		
C1	Shutdown threshold	T _{THUT}		Тј	_	170	_	°C	*2
Cell \	/oltage Monitor				1	1	1		
D1	Input voltage range	ΔVC _n	_		0		5	v	*3
D2	Voltage resolution	V _{RES}	_	0.3 mV/LSB T _a = -30°C to 65°C	_	14		Bits	_
D3	Voltage accuracy (1) Average	V _{ACC_VC1}	_	$\Delta VC_n = 2.5 V \text{ to } 4.5 V$ T _a = -30°C to 65°C	-10	0	10	mV	*4
D4	Voltage accuracy (2) Average	V _{ACC_VC2}	_	$\Delta VC_n = 1.3 V \text{ to } 2.5 V$ $T_a = -30^{\circ}C \text{ to } 65^{\circ}C$	-50	0	50	mV	*4
D5	Voltage accuracy (3) Standard deviation	V _{ACC_VC3}	_	$\Delta VC_n = 2.5 V \text{ to } 4.5 V$ $T_a = -30^{\circ}C \text{ to } 65^{\circ}C$	_		3	mV	*4
D6	Conversion time	t _{CONV}		_	7	8	9	ms	*5
D7	Effective input current	I _{IN}	_	Active mode $\Delta VC_n = 0 V \text{ to } 5.0 V$	-5	0	5	μA	_
D8	Input leakage current	I _{LK}	_	Shutdown mode $\Delta VC_n = 0 V$ to 5.0 V	-1	0	1	μA	_

Notes) *1: The value is defined in low power consumption mode. (see page 22)

*2: When Thermal Shutdown is activated, all circuits are shut down. Therefore, run the wake up sequence again.

*3: Exceeding the voltage described above might generate rush current due to the clamp in the internal circuit.

*4: $V_{BAT} \geq$ 12.5 V, or $V_{BAT} \geq$ 6.5 V and $V_{PACK} \geq$ 12.5 V

*5: The value is required time for voltage measurement of 10 cells.

Electrical Characteristics at $V_{BAT} = V_{PACK} = 37 \text{ V}$ (continued) Note) $T_a = 25^{\circ}C \pm 3^{\circ}C$, unless otherwise specified.

в	Descention	Ourseland	Test	O a stitle s a		Limits		Unit			
No.	Parameter	Symbol	Circui t	Conditions	Min	Тур	Max	Unit	Notes		
Cell I	Cell Balancing Control Output										
G1	Output voltage (High)	V _{CB1}			VC _n - 0.2	VC _n	VC _n + 0.2	v	_		
G2	Output voltage (Low)	V _{CB2}			VC _{n-1} - 0.2	VC _{n-1}	VC _{n-1} + 0.2	V			
G3	Discharge Switch-On Resistance (CB1-9)	R _{CB1}		$\Delta VC_n \gamma 3V$	_	5	6.5	kΩ	_		
G4	Discharge Switch-On Resistance (CB10)	R _{CB2}		$\Delta VC_n \gamma 3V$	_	12.5	16.3	kΩ	_		
N-ch	annel FET Drive			·							
E1	Drive voltage (DIS_N = "H")	V _{ON_DIS}	1	$V_{ON_DIS} = V_{DIS_N} - V_{PACK}$ VGS connect 4.7MΩ	8		13	V	*6		
E2	Drive voltage (CHG_N = "H")	V _{ON_CHG}	1	$V_{ON_CHG} = V_{CHG_N} - V_{BAT}$ VGS connect 4.7MΩ	8	_	13	V	*6		
E3	Drive voltage (DIS_N = "L")	V _{OFF_DIS}	1	$V_{OFF_{DIS}} = V_{DIS_{N}} - V_{PACK}$ VGS connect 4.7M Ω	_		0.2	V	_		
E4	Drive voltage (CHG_N = "L")	V _{OFF_CHG}	1	$V_{OFF_CHG} = V_{CHG_N} - V_{BAT}$ VGS connect 4.7M Ω	_	_	0.2	V	_		
E5	Rise time (DIS_N = "L" to "H")	tr	1	$V_{DIS} = 10\%$ to 90% $C_L = 68nF$	_	1	2	ms	_		
E6	Rise time (CHG_N = "L" to "H")	tr	1	$V_{CHG} = 10\%$ to 90% $C_L = 68nF$		1	2	ms	_		
E7	Fall time (DIS_N = "H" to "L")	tf	1	$V_{DIS} = 90\%$ to 10% $C_L = 68nF$		1	2	ms	_		
E8	Fall time (CHG_N = "H" to "L")	tf	1	$V_{CHG} = 90\%$ to 10% $C_L = 68nF$		1	2	ms	_		

Note) *6: The voltage can be changed by FET_V register setting. (see page 34)

Electrical Characteristics at $V_{BAT} = V_{PACK} = 12.5 \text{ V}$ to 45 V (reference value for design) Note) Ta= -40°C to 105°C, unless otherwise specified.

Note) These characteristics are reference values for design, and all ICs have not been guaranteed through inspections. If, by any chance, the problem caused by these characteristics occurs, we will respond in good faith to user concerns.

В	Deremeter	Symbol	Test	Conditions	Refe	rence va	alues	Unit	Nata
No.	Parameter	Symbol	Circuit	Conditions	Min	Тур	Max	Unit	Notes
Cell I	Balancing Control Output								
G1	Output voltage (High)	V_{CB1}			VC _n - 0.2	VC _n	VC _n + 0.2	V	_
G2	Output voltage (Low)	V _{CB2}			VC _{n-1} - 0.2	VC _{n-1}	VC _{n-1} + 0.2	V	_
G3	Discharge Switch-On Resistance (CB1-9)	R _{CB1}		$\Delta VC_n \gamma 3V$	_	5	6.5	kΩ	_
G4	Discharge Switch-On Resistance (CB10)	R _{CB2}		$\Delta VC_n \gamma 3V$	_	12.5	16.3	kΩ	_
N-ch	annel FET Drive								
E1	Drive voltage (DIS_N = "H")	V _{ON_DIS}		$\begin{split} & V_{ON_DIS} = V_{DIS_N} - V_{PACK} \\ & VGS \ connect \ 4.7 M\Omega \\ & V_{BAT} = V_{PACK} \ \geqq \ 15 V \end{split}$	8		13	V	*6
E2	Drive voltage (CHG_N = "H")	V _{ON_CHG}		$\begin{split} & V_{ON_CHG} = V_{CHG_N} - V_{BAT} \\ & VGS \ connect \ 4.7 M\Omega \\ & V_{BAT} = V_{PACK} \geqq \ 15 V \end{split}$	8	_	13	V	*6
E9	Drive voltage (DIS_N = "H")	V _{ON_DIS}		$\begin{split} & V_{ON_DIS} = V_{DIS_N} - V_{PACK} \\ & VGS \ connect \ 4.7M\Omega \\ & V_{BAT} = V_{PACK} \geqq 12.5V \end{split}$	7		13	V	*6
E10	Drive voltage (CHG_N = "H")	V _{ON_CHG}		$\begin{split} V_{ON_CHG} &= V_{CHG_N} - V_{BAT} \\ VGS \text{ connect } 4.7M\Omega \\ V_{BAT} &= V_{PACK} \geqq 12.5V \end{split}$	7		13	V	*6
E3	Drive voltage (DIS_N = "L")	V _{OFF_DIS}		$\label{eq:V_OFF_DIS} \begin{split} V_{OFF_DIS} &= V_{DIS_N} - V_{PACK} \\ VGS \ connect \ 4.7 M\Omega \end{split}$	_		0.2	V	
E4	Drive voltage (CHG_N = "L")	V _{OFF_CHG}		$V_{OFF_CHG} = V_{CHG_N} - V_{BAT}$ VGS connect 4.7MΩ			0.2	V	_
E5	Rise time (DIS_N = "L" to "H")	tr		$V_{DIS} = 10\%$ to 90% $C_L = 68nF$	_	1	2	ms	_
E6	Rise time (CHG_N = "L" to "H")	tr		$V_{CHG} = 10\%$ to 90% $C_L = 68nF$		1	2	ms	
E7	Fall time (DIS_N = "H" to "L")	tf		$V_{DIS} = 90\%$ to 10% $C_L = 68nF$		1	2	ms	
E8	Fall time (CHG_N = "H" to "L")	tf	_	$V_{CHG} = 90\%$ to 10% $C_L = 68nF$	_	1	2	ms	_

Note) *6: The voltage can be changed by FET_V register setting. (see page 34)

Electrical Characteristics at $V_{BAT} = V_{PACK} = 37 \text{ V}$ (continued) Note) $T_a = 25^{\circ}C \pm 3^{\circ}C$, unless otherwise specified.

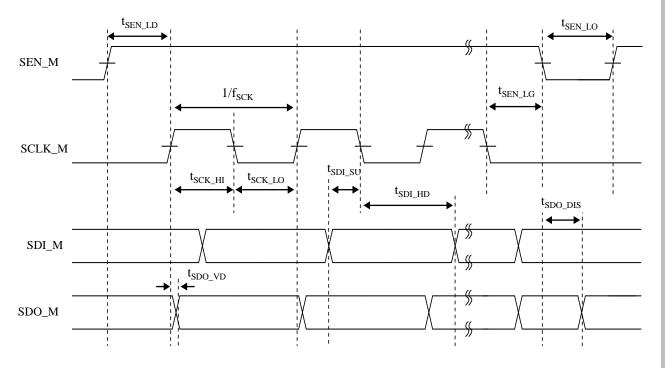
В	Parameter	Symbol	Test			Limits			Natas
No.			Circuit	Conditions	Min	Тур	Max	Unit	Notes
Digital	Input (1) (VPC)								
F1	High-level input voltage	V _{IH}	1		4.0		_	v	_
F2	Low-level input voltage	V _{IL}	1		_	_	0.3	V	-
F3	Pull-down resistance	R _{IL}	1		2.5	7	20	MΩ	_
Digital	I Input (2) (FETINT)								
F4	High-level input voltage	V _{IH}	1	_	3		_	V	_
F5	Low-level input voltage	V _{IL}	1	_			0.1	V	_
Digital	Input (3) (SHDN)								
F6	High-level input voltage	V _{IH}	1	_	3	_	_	V	—
F7	Low-level input voltage	V _{IL}	1		_		0.1	V	_
F8	Pull-down resistance	R _{IL}	1		300	820	2300	kΩ	-
Digital	l Input (4) (SDI_M, SCLK_M, S						1	I	
F9	High-level input voltage	V _{IH}	1	_	$0.8 \times V_{CVDD}$		V _{CVDD}	v	
F10	Low-level input voltage	V _{IL}	1		0		$\begin{array}{c} 0.2 \times \\ V_{CVDD} \end{array}$	V	
F11	Input leakage current	I _{LK}	1	_	-1	0	1	μΑ	_
Digital	Input (5) (STB_M)								
F12	High-level input voltage	V _{IH}	1		$0.8 \times V_{CVDD}$		V _{CVDD}	V	_
F13	Low-level input voltage	V _{IL}	1		0		$\begin{array}{c} 0.2 \times \\ V_{\rm CVDD} \end{array}$	V	
F14	Pull-up resistance	R _{IL}	1	_	50	100	200	kΩ	_
Digital	Output (1) (NAULT_M, SDO	_M, ALARN	/I_M) *7						
F15	High-level output voltage	V _{OH}	1	$I_{OH} = -1 \text{ mA}$	V _{CVDD} - 0.6		V _{CVDD} +0.3	V	
F16	Low-level output voltage	V _{OL}	1	$I_{OL} = +1 \text{ mA}$	- 0.3		0.4	V	—
Digital	Output (2) (NRST_M)								
F17	Low-level output voltage	I _{OL}	1	$I_{OL} = 0 \text{ mA}$	0		0.5	V	*8
F18	Pull-up resistance	R _{IL}	1	_	50	100	200	kΩ	-
CVDD	POR (POWER-ON RESET)		1						
F19	Positive-going input voltage	V _{IH_POR}	1		2.7	2.95		V	
F20	Negative-going input voltage	V _{IL_POR}	1	_	2.2	2.45		V	<u> </u>

Notes) *7: In shutdown mode, each digital pin is set to Hi-Z, and connected to pull-down resistor of 100 kΩ (typ) simultaneously.

*8: Output voltage is divided by the pull-down resistor (10 k Ω) connected to GND and the pull-up resister (100 k Ω , F18) connected to CVDD.

Electrical Characteristics at $V_{BAT} = V_{PACK} = 12.5$ V to 45 V (reference value for design) Note) Ta= -40°C to 105°C, unless otherwise specified.

Note) These characteristics are reference values for design, and all ICs have not been guaranteed through inspections. If, by any chance, the problem caused by these characteristics occurs, we will respond in good faith to user concerns.

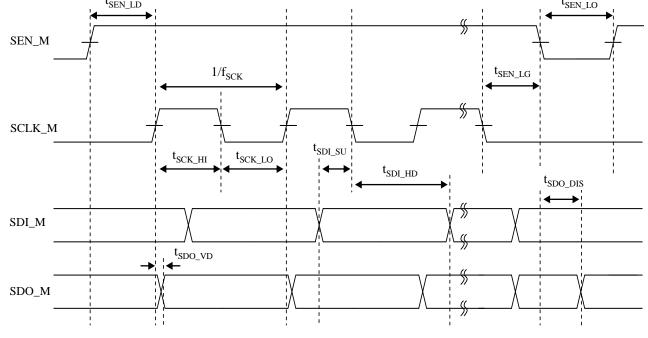

В	Parameter	Symbol	Test Circuit	Conditions	Refe	Unit	Notes		
No.				Conditions	Min	Тур	Max	Unit	Notes
Digital	I Input (1) (VPC)								
F1	High-level input voltage	V _{IH}	_		4.0		_	v	_
F2	Low-level input voltage	V _{IL}	_				0.3	v	_
F3	Pull-down resistance	R _{IL}	_		2.5	7	20	MΩ	_
Digital	l Input (2) (FETINT)								
F4	High-level input voltage	V _{IH}			3		_	v	_
F5	Low-level input voltage	V _{IL}	_	_			0.1	v	_
Digital Input (3) (SHDN)									
F6	High-level input voltage	V _{IH}			3		_	V	_
F7	Low-level input voltage	V _{IL}	_				0.1	V	_
F8	Pull-down resistance	R _{IL}	_		300	820	2300	kΩ	_
Digital	I Input (4) (SDI_M, SCLK_M, S	SEN_M) *7							
F9	High-level input voltage	V _{IH}		_	$0.8 \times V_{CVDD}$		V _{CVDD}	v	
F10	Low-level input voltage	V _{IL}		_	0		$\begin{array}{c c} 0.2 \times \\ V_{CVDD} \end{array}$	v	_
F11	Input leakage current	I _{LK}	_	_	-1	0	1	μΑ	_
Digital	I Input (5) (STB_M)								
F12	High-level input voltage	$V_{\rm IH}$	_	_	$\begin{array}{c} 0.8 \times \\ V_{\rm CVDD} \end{array}$		V _{CVDD}	v	_
F13	Low-level input voltage	V _{IL}	_		0		$egin{array}{c} 0.2 \times \\ V_{CVDD} \end{array}$	v	_
F14	Pull-up resistance	R _{IL}	_		50	100	200	kΩ	_
Digital	Output (1) (NAULT_M, SDO	M, ALARN	∕I_M) *7	1					
F15	High-level output voltage	V _{OH}	_	$I_{OH} = -1 \text{ mA}$	$\begin{array}{c} V_{CVDD} \\ - 0.6 \end{array}$	—	V _{CVDD} +0.3	v	_
F16	Low-level output voltage	V _{OL}	_	$I_{OL} = +1 \text{ mA}$	- 0.3		0.4	V	_
Digital	Output (2) (NRST_M)								
F17	Low-level output voltage	I _{OL}	_	$I_{OL} = 0 \text{ mA}$	0		0.5	v	*8
F18	Pull-up resistance	R _{IL}			50	100	200	kΩ	_
CVDD	POR (POWER-ON RESET)				· · ·		•		
F19	Positive-going input voltage	V _{IH_POR}	_		2.7	2.95	_	v	_
F20	Negative-going input voltage	V _{IL_POR}	_	_	2.2	2.45	_	V	_

Notes) *7: In shutdown mode, each digital pin is set to Hi-Z, and connected to pull-down resistor of 100 kΩ (typ) simultaneously.

*8: Output voltage is divided by the pull-down resistor (10 k Ω) connected to GND and the pull-up resister (100 k Ω , F18) connected to CVDD.

Electrical Characteristics at $V_{BAT} = V_{PACK} = 37 \text{ V}$ (continued) Note) $T_a = 25^{\circ}C \pm 3^{\circ}C$, unless otherwise specified.

в	Parameter	Symphol	Test	Que d'élana	Limits			1.1	
No.	Parameter	Symbol	Circui t	Conditions	Min	Тур	Max	Unit	Notes
Micro	Microcomputer SPI Data Interface								
I1	SCLK_M frequency	f _{SCK}	1		_		500	kHz	
I2	SCLK_M duty cycle	t _{DUTY}	1		45	50	55	%	
13	SEN_M rising to SCLK_M rising	t _{SEN_LD}	1	_	100			ns	
I4	SCLK_M falling to SEN_M falling	t _{SEN_LG}	1		100	_	_	ns	_
15	SEN_M "Low" width	t _{SEN_LO}	1		500			ns	
I6	SDI_M setup time	t _{SDI_SU}	1	SDI_M valid to SCLK_M falling	100			ns	
I7	SDI_M hold time	t _{SDI_HD}	1	SCLK_M falling to SDI_M valid	100			ns	
18	SDO_M valid time	t _{SDO_VD}	1	SCLK_M rising to SDO_M valid $C_L \le 50 \text{ pF}$			400	ns	_
19	SDO_M disable time	t _{SDO_DIS}	1	SEN_M falling to SDO_M disable			400	ns	
I10	WDT	t _{WDT}	1	default = 22 min. (typ)	-10	0	10	%	

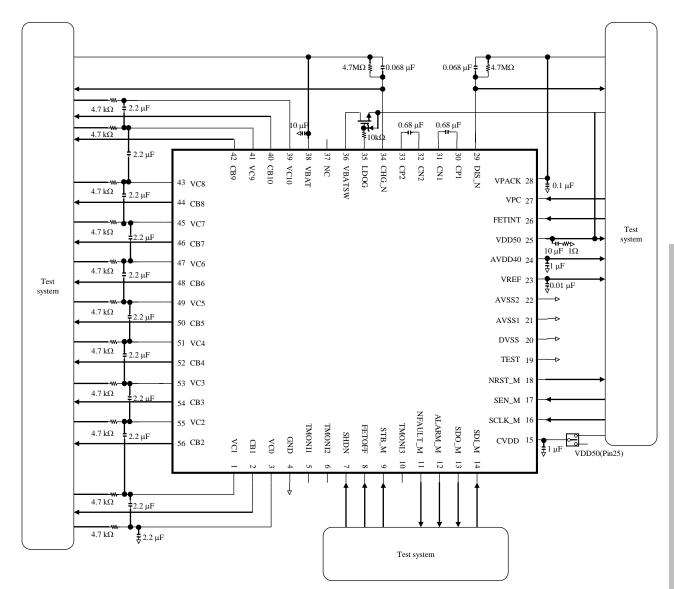

SPI Timing Diagram

Electrical Characteristics at $V_{BAT} = V_{PACK} = 12.5 \text{ V}$ to 45 V (reference value for design) (continued)

Note) Ta= -40°C to 105°C, unless otherwise specified.

Note) These characteristics are reference values for design, and all ICs have not been guaranteed through inspections. If, by any chance, the problem caused by these characteristics occurs, we will respond in good faith to user concerns.

В	Parameter	Symbol	Test Circuit		Reference values					
No.				Conditions	Min	Тур	Max	Unit	Notes	
Micro	Microcomputer SPI Data Interface									
I1	SCLK_M frequency	f _{SCK}	_				500	kHz		
I2	SCLK_M duty cycle	t _{DUTY}	_		45	50	55	%		
I3	SEN_M rising to SCLK_M rising	t _{SEN_LD}		_	100	_	_	ns	_	
I4	SCLK_M falling to SEN_M falling	t _{SEN_LG}		_	100		_	ns	_	
I5	SEN_M "Low" width	t _{SEN_LO}		_	500	_	—	ns		
I6	SDI_M setup time	t _{SDI_SU}		SDI_M valid to SCLK_M falling	100	_	_	ns	_	
I7	SDI_M hold time	t _{SDI_HD}		SCLK_M falling to SDI_M valid	100	_	_	ns	_	
18	SDO_M valid time	t _{SDO_VD}		SCLK_M rising to SDO_M valid $C_L \le 50 \text{ pF}$			400	ns	_	
I9	SDO_M disable time	t _{SDO_DIS}		SEN_M falling to SDO_M disable			400	ns	_	
I10	WDT	t _{WDT}		default = 22 min. (typ)	-10	0	10	%		
	t _{SEN_LD}				"	((¹ _LO	


SPI Timing Diagram

nuvoTon

KA49511A

Test Circuit Diagram

Test Circuit Diagram

Usage Notes

- Special Attention and Precaution in Using the IC
 - 1. This IC might smoke or ignite if it is mounted in the wrong direction onto the PCB (printed circuit board). Pay attention to the direction of it.
 - 2. Pay attention to the pattern layout of PCB in order to prevent damage due to pin-to-pin short. For pin configuration, see the Pin Descriptions.
 - Conduct a visual inspection on PCBs sufficiently prior to supplying power to the IC, to prevent damage due to pinto-pin solder-bridge. Also, conduct a technical verification to the mounting quality sufficiently, to prevent damage due to adhering conductive foreign substance such as solder scrap during transportation.
 - 4. Since this IC might be damaged or occasionally smoke if abnormal state occurs, such as output-VCC short (power supply fault), output-GND short (ground fault), output-to-output short (load short), or pin-to-pin leakage, care must be taken in the use of the IC. Safety measures, such as fuse installation, are recommended in order to avoid such risks.
 - 5. When designing your equipment, comply with the range of absolute maximum ratings and the guaranteed operating conditions (operating power supply voltage and environment, etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off, and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the IC is used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire, or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the IC.
- Notes for Power IC
 - The protection circuit is built in to ensure the safety in abnormal operation. Therefore, when designing your equipment, be careful the protection circuit should not work in normal operation. Especially for thermal protection circuit, the IC might be damaged before it works, in case the temperature of IC exceeds the ASO (Area of Safe Operation) or absolute maximum rating in an instant by short circuit, such as Output-VM (Power Supply Fault) or Output-GND (Ground Fault).
 - 2. Verify risks caused by the malfunction of external components.

Revision History

Date	Revision	Description
2021.1.28	1.00	1. initially issued.
2022 1 26	1.02	1. Added important notice on page2
2022.1.26	1.02	2. Changed the description of usage notes.