8W Mono Class D Amplifier with Klippel Controlled Sound DSP

Description

The NAU83G10 is a mono Class D audio amplifier with integrated Klippel Controlled Sound (KCS) technology based on the nonlinear mirror filter and current sensing for speaker parameter identification. The adaptive, nonlinear control system cancels the DC displacement, harmonic and intermodulation distortion generated by speaker nonlinearities, operates the voice coil at the optimum rest position and compensates for speaker parameter variation due to aging and climate changes. The new hardware and software capabilities in the NAU83G10VG allow to safely operate smaller speakers at the physical limits to generate more acoustical output at higher sound quality while providing reliable protection against thermal and mechanical overload compared to conventional linear algorithms.

The NAU83G10 can deliver up to 8W output power into 4Ω speaker at THDN 10%. It has a highly efficient Class D amplifier with an intelligently adaptive boost converter, which can boost the supply voltage up to 12V with 0.177V step accuracy while producing only 12 uV_{RMS} ultra-low idle output noise for a receiver speaker.

The NAU83G10 has on chip & low latency Tensilica HiFi Audio DSP along with a high quality 24-bit audio ADCs for current and voltage sense at the speaker terminal, where the gain variation of these V-Sense and I-Sense ADCs is minimized to less than +/- 1% over temperature and supply for a precise speaker control. In addition, the accurate AEC reference signal is available to the host processor, which can improve the barge-in performance by cancellation of nonlinear distortion by KCS.

The integrated SAR ADC can monitor the voltage level on the battery supply or external supply, and the audio gain can be controlled automatically by an integrated ALC depending upon the programmable battery threshold. It also support an input peak current limiter to regulate the battery current while preserving audio quality.

The NAU83G10 supports I2C control and I2S/PCM audio interfaces. It operates with analog supply voltages from 1.6V to 1.98V, while the battery supply voltage can operate from 2.9V to 5.5V. The operating temperature range is specified from -40°C to +85°C, and it is available in CSP 50 Ball package with a 0.5mm pitch.

Key HW Features

Powerful Mono Boosted Class-D Amplifier

- 8 W Output Power $@4\Omega$, 10% THD+N, 5V VBat
- 6.5 W Output Power @8 Ω, 10% THD+N, 5V VBat
- 0.021% THD+N @ 8 Ω Load, 1W Output Power
- 12 µV_{RMS} Output Noise in Receiver mode
- $55 \mu V_{RMS}$ Output Noise in Speaker mode
- 92 dB PSRR for 200 mVpp ripple at 217 Hz
- Click-and-Pop Suppression (30 µV_{RMS})

Highly Efficient Class-H Boost Converter

- Programmable Boost Voltage of up to 12V
- Class H Envelope Tracking in 0.177 V step
- 78% Power Efficiency @ 1W Output Power, 5V Battery

Device Protection

- Under/Over Voltage Lock Out
- Over Current Protection
- Over Temperature Protection
- Clock Termination Protection

Programmable Serial Interfaces:

- I2C Interface
- I2S/PCM/TDM Interface

ALC

- Battery Tracking Limiter
- Brownout Prevention
- Battery Supply Current Limiter

Speaker Control Algorithm

- Klippel Controlled Sound (KCS) technology
- Integrated in Tensilica HiFi Audio DSP
- Adaptive nonlinear control based on I/V sensing
- Modeling dominant speaker nonlinearities (electrical, mechanical, acoustical)
- Active cancelation of harmonic distortion (THD), intermodulation (IMD) and DC-displacement generated by speaker nonlinearities
- Detection and compensation of speaker parameter changes due to aging, climate, load
- Measurement of voice coil rest position and active compensation of any coil offset x_{off}
- Predictive protection against mechanical and thermal overload (minimum latency < 0.05 ms)
- On-line diagnostic of the speaker properties (fatigue, speaker failures)

Package

• 50-Ball Wafer Level Chip Scale Package (WLCSP) (0.5 mm Pitch)

Applications

- Smartphones / Tablets
- Notebooks / Personal Computers / All In One PC
- Smart Speakers
- Home Appliances

Block Diagram

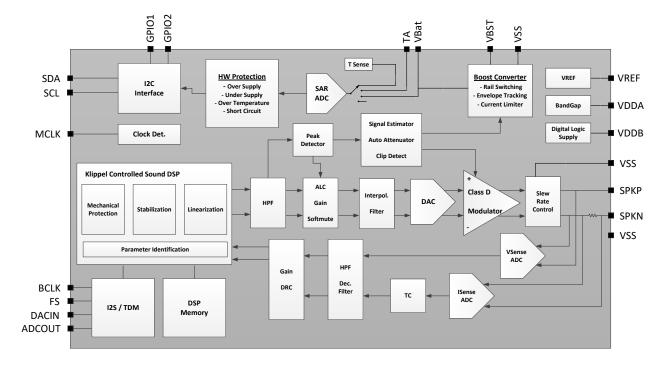


Figure 1: NAU83G10 Block Diagram

Pin Diagram

	A	B	C	D	E	F	G	H		J
5	DCSW	DCSW	VSS	VBAT	VREF	VDDA	VDDA	GPI01	IRQ	DACIN
4	(VBST)	vss	vss	VDDA	VDDA	VDDA	VDDA	VDDA	VDDA	ADC OUT
3	SPKP	VSS	VSS	VSS	vss	VSS	VSS	VSS	VSS	FS
2	(VBST)	VSS	VSS	VSS	VDDA	VDDA	VDDA	VDDA	VDDA	VDDB
1	SPKN	vss	ТА	VSS	VDDA	GPIO2	SDA	SCL	BCLK	MCLK

Figure 2: NAU83G10 Pin Diagram

Pin Descriptions

Pin #	Name	Туре	Description
A1	SPKN	Analog Output (VBST)	Class-D Negative Speaker Output Terminal
A2	VBST	Analog I/O (VBST)	DC-DC Boost Converter Output
A3	SPKP	Analog Output (VBST)	Class-D Positive Speaker Output Terminal
A4	VBST	Analog I/O (VBAT)	DC-DC Boost Converter Output
A5	DCSW	Analog I/O (VBAT)	DC-DC Boost Converter Switch
B1	VSS	Ground	Supply Ground
B2	VSS	Ground	Supply Ground
B3	VSS	Ground	Supply Ground
B4	VSS	Ground	Supply Ground
B5	DCSW	Analog I/O (VBST)	DC-DC Boost Converter Switch
C1	ТА	Analog Input (VDDA)	Ambient Temperature Sense Input, tie to VSS if not used
C2	VSS	Ground	Supply Ground
C3	VSS	Ground	Supply Ground
C4	VSS	Ground	Supply Ground
C5	VSS	Ground	Supply Ground
D1	VSS	Ground	Supply Ground
D2	VSS	Ground	Supply Ground
D3	VSS	Ground	Supply Ground
D4	VDDA	Supply	Analog & Core Supply Voltage
D5	VBAT	Supply	Battery Supply Voltage
E1	VDDA	Supply	Analog & Core Supply Voltage
E2	VDDA	Supply	Analog & Core Supply Voltage
E3	VSS	Ground	Supply Ground
E4	VDDA	Supply	Analog & Core Supply Voltage
E5	VREF	Analog I/O (VDDA)	Internal DAC & ADC Voltage Reference Decoupling I/O
F1	GPIO2	Digital I/O (VDDB)	General Purpose IO2/Address Selection 2
F2	VDDA	Supply	Analog & Core Supply Voltage
F3	VSS	Ground	Supply Ground
F4	VDDA	Supply	Analog & Core Supply Voltage
F5	VDDA	Supply	Analog & Core Supply Voltage
G1	SDA	Digital I/O (VDDB)	Serial Data for I2C

Table 1 NAU83G10 Pin Descriptions

Pin #	Name	Туре	Description
G2	VDDA	Supply	Analog & Core Supply Voltage
G3	VSS	Ground	Supply Ground
G4	VDDA	Supply	Analog & Core Supply Voltage
G5	VDDA	Supply	Analog & Core Supply Voltage
H1	SCL	Digital Input (VDDB)	Serial Data Clock for I2C
H2	VDDA	Supply	Analog & Core Supply Voltage
H3	VSS	Ground	Supply Ground
H4	VDDA	Supply	Analog & Core Supply Voltage
H5	GPIO1	Digital I/O (VDDB)	General Purpose IO1/Address Selection 1
11	BCLK	Digital I/O (VDDB)	Serial Audio Data Bit Clock I2S/PCM Input
12	VDDA	Supply	Analog & Core Supply Voltage
13	VSS	Ground	Supply Ground
14	VDDA	Supply	Analog & Core Supply Voltage
15	IRQ	Digital Output (VDDB)	Programmable Interrupt Output
J1	MCLK	Digital Input (VDDB)	Master Clock
J2	VDDB	Supply	Digital IO Supply
J3	FS	Digital I/O (VDDB)	Frame Sync I2S/PCM Input
J4	ADCOUT	Digital Output (VDDB)	Serial Audio I2S/PCM Data Output
J5	DACIN	Digital Input (VDDB)	Serial Audio Data I2S/PCM Input

Electrical Characteristics

Absolute Maximum Ratings

CAUTION: Do not operate at or near maximum ratings extended periods. Stresses above those listed in Table 2 may cause permanent damage to the device. Exposure to conditions beyond these ratings may adversely affect the life and reliability of the device and result in failures not covered by warranty.

Parameter	Min	Мах	Units
VDDB Digital I/O Supply Range	-0.3	4.0	V
VBAT Battery Supply Range	-0.3	6.0	V
VDDA Analog Supply Range	-0.3	2.2	V
Voltage Input Analog Range	VSS - 0.3	VDDA + 0.3	V
Voltage Input I/O Range	VSS - 0.3	VDDB + 0.3	V
Junction Temperature, TJ	-40	+150	°C
Storage Temperature	-65	+150	°C

Table 2 Absolute Maximum Ratings

Operating Conditions

Table 3	Recommended	Operating	Conditions
---------	-------------	-----------	------------

Condition	Symbol	Min	Typical	Max	Units
Battery Supply Range	VBAT	2.90	4.2	5.50	V
Analog Supply Range	VDDA	1.62	1.8	1.98	V
Digital I/O Supply Range	VDDB	1.62	3.0	3.6	V
Ground	VSS		0		V
Industrial Operating Temperature		-40		+85	°C

CAUTION: The following conditions needed to be followed for regular operation: $V_{BAT} > V_{DD}A - 1.2V$; VDDB > VDDA - 0.6V.

Electrical Parameters

Table 4 Electrical Parameters

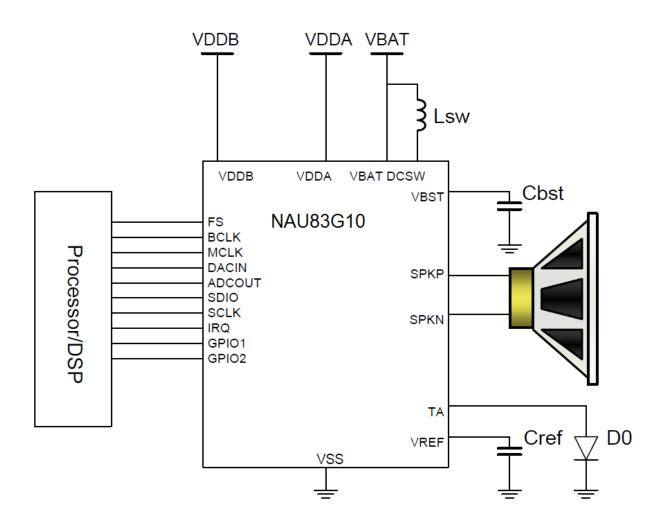
Conditions: $V_{DD}A = V_{DD}B = 1.8V$; $V_{BAT} = 4.2V$. $R_L = 8 \ \Omega + 33 \ \mu H$, f = 1kHz, 48kHz sample rate, MCLK=12.88MHz, Boost Inductor = 1 μH , unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$

Symbol	Parameter		Conditions	Typical	Limit	Units
		V _{DD} A	all clocks off	12.0		
ISD	Shutdown Supply Current	VDDB	all clocks off	0.3	2	μA
		VBAT	all clocks off	0.4	4	
	Standby Mode Supply	V _{DD} A	clocks off, clock gating on	12.0		μΑ
ISB	Current	VDDB	clocks off, clock gating on	0.3		μΑ
		VBAT	clocks off, clock gating on	0.4		μΑ
	Operating Mode Supply	V _{DD} A	idle Channel, DSP off	7.6		mA
IDD	Current	V _{DD} B	idle Channel, DSP off	0.2		mA
		VBAT	idle Channel, DSP off	3		mA
		1	Class-D Channel			
			$RL = 8 \text{ Ohm} + 33 \mu\text{H}$ and Total Harmonic Distortion+Noise (THD+N) = 1%	6		W
Po	o Output Power		$RL = 8 \text{ Ohm} + 33 \mu\text{H}$ and Total Harmonic Distortion+Noise (THD+N) = 10%	6.5		W
10			$RL = 4 \text{ Ohm} + 33 \mu\text{H}$ and Total Harmonic Distortion+Noise (THD+N) = 1%	6.5		W
			$RL = 4 \text{ Ohm} + 33 \mu\text{H}$ and Total Harmonic Distortion+Noise (THD+N) = 10%	8		W
THD+N	Total Harmonic Distortion + Noise		$R_L = 8 \ \Omega + 33 \ \mu H, \ f=1 kHz, \ P_O = 1 \ W$	0.021		%
eos	Output Noise		A-Weighted, 20Hz-20kHz, Receiver mode or Auto attenuate, no DAC input signal, gain = 0dB	12		μVrms
	Sulput Noise		A-Weighted, 20Hz-20kHz, no DAC input signal, gain = 17.5dB	55		μVrms
			DC, $V_{BAT} = 2.9V - 5.5V$, GAIN = 17.5dB	92		dB
			$f_{RIPPLE} = 217 Hz, V_{RIPPLE} = 200 mV_{P_P}$ GAIN = 17.5dB	92		dB
PSRR	Power Supply Rejection Rati	io	$\label{eq:ripple} \begin{array}{l} f_{RIPPLE} = 1020 Hz, \ V_{RIPPLE} = 200 m V_{P_P} \\ GAIN = 17.5 dB \end{array}$	92		dB
			$ f_{RIPPLE} = 4kHz, V_{RIPPLE} = 200mV_{P_P}GAIN $ = 17.5dB	88		dB
Fres	Frequency Response		$ F = 20Hz \sim 20KHz, 1Watt, R_L = 8 \ \Omega + 33 \\ \mu H $	+-0.8		dB
Vos	Output Offset Voltage		Idle Channel, Gain= 0dB	±0.7	±5	mV
Крор	Pop and Click Noise		A-weighted, Idle DAC input, Clock Gating, toggling clocks on/off	0.03		mVrms

Symbol	Parameter	Conditions	Typical	Limit	Units
		A-weighted, Idle DAC input, toggling between -120dBFs DAC In & 2048 zero samples	0.03		mVrms
Rdson-P	Driver P MOS-FET ON-resistance		0.127		Ohm
Rdson-N	Driver N MOS-FET ON- resistance	$V_{BAT}=5.0V. \ R_L=8 \ \Omega+33 \ \mu H, \ DC \ Output \ Clipping$	0.129		Ohm
Fsw	Switching Frequency	Average	300		kHz
		Voltage Sense ADC			
THD+N	ADC Total Harmonic Distortion + Noise	VBAT = 5.5V, +10dBVrms, Class-D off	0.004		%
SNR	Signal to Noise Ratio	Flat, 20Hz – 20kHz	101		dB
FSADC	ADC Full Scale Input Level		15.4		V _{PK}
		Current Sense ADC		1	
THD+N	ADC Total Harmonic Distortion + Noise		0.37		%
SNR	Signal to Noise Ratio	Flat, 20Hz – 20kHz	82		dB
FSADC	ADC Full Scale Input Level		4.04		Арк
		Battery Sense ADC			
INL	Integrated Non-Linearity	V _{BAT} = 2.9V-5.5V (gain & offset compensated)	+/-1		LSB
DNL	Differential Non-Linearity	$V_{BAT}=2.9V-5.5V$	+/-1		LSB
		Boost Converter			•
Fsw	Switching Frequency		2.0		MHz
Vbstmax	Boost Converter Maximum Output Voltage		12		V
Vbstmin	Boost Converter Minimum Output Voltage		2.9		v
Vbststp	Boost Converter Step Voltage		0.177		V
Vovp	Boost Converter Overvoltage Protection Threshold		14		v
Rdson-P	Boost Converter P MOS-FET ON- resistance		0.1		Ohm
Rdson-N	Boost Converter N MOS-FET ON- resistance		0.1		Ohm
	1	Boost Converter + Class-D	1	1	1
		Output Power = 0.45 W, VBAT= 5.0 V	78		%
Neff	Power Efficiency	Output Power = 1.0 W, VBAT = 5.0 V	78		%
		Output Power = 6.0 W, VBAT = 5.0 V	70		%

Digital I/O Characteristics

Table 5 Digital I/O Characteristics


Parameter	Symbol	Commen	ts/Conditions	Min	Max	Units
Input LOW level	VIL	V _{DD}	$\mathbf{B} = 1.8\mathbf{V}$		0.33*V _{DD} B	v
input 20 th lot of	· 112	$V_{DD}B = 3.3V$			0.37*V _{DD} B	·
Input HIGH level	V _{IH}	V _{DD}	$\mathbf{B} = 1.8\mathbf{V}$	$0.67*V_{DD}B$		v
		V _{DD}	$\mathbf{B} = 3.3\mathbf{V}$	0.63*V _{DD} B		
Output HIGH level	Voh	ILoad=1mA	V _{DD} B=1.8V	$0.9*V_{DD}B$		v
			$V_{DD}B = 3.3V$	0.95*V _{DD} B		·
Output LOW level	Vol	ILoad= 1mA	$V_{DD}B = 1.8V$		$0.1*V_{DD}B$	V
	. 01	-2014 11111	V _{DD} B=3.3V		0.05*V _{DD} B	

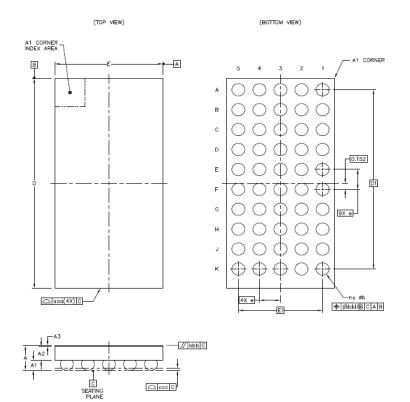
System Diagram

Ordering Information

Table 6 Ordering Information

Part Number	Dimension	Package	Package Material
NAU83G10VG	2.57mm x 5.28mm	WLCSP 50-Balls	Green

NAU83G10VG = Part Name


G = indicates Green Speaker Amplifier based on Klippel Control Sound (KCS)

V = indicates WLCSP packaging WLCSP

G = Lead-Free (Green) Packaging:

Package Information

Figure 4 WLCSP Package Dimentions (50 Balls with 0.5mm Pitch)

		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS		А	0.567	0.625	0.683
STAND OFF		A1	0.22		0.28
WAFER THICKNESS		A2	0.325	0.35	0.375
FILM THICKNESS		A3	0.022	0.025	0.028
BODY SIZE	х	E		2.57	
BODT SIZE	Y	D		5.28	
BALL/BUMP PITCH	х	SE			BSC
BALL/ DOMP FITCH	SD			BSC	
EDGE BALL CENTER TO CENTER	E1	2	2	BSC	
EDGE BALL CENTER TO CENTER	D1	4.5		BSC	
PITCH		е	0.5 B		BSC
BALL DIAMETER (SIZE)			0.3		
BALL/BUMP WIDTH	b	0.28		0.34	
BALL/BUMP COUNT	n		50		
PACKAGE EDGE TOLERANCE		aaa	0.03		
WAFER FLATNESS		bbb	0.06		
COPLANARITY		ccc	0.05		
BALL/BUMP OFFSET (PACKAGE)		ddd		0.015	

Revision History

Table 7: Revision History

Version			Description
#	Date	Page(s)	Description
0.1	Apr 23, 2018	NA	Prelimnary Version
0.2	Sep 25, 2019		Updated
0.3	Oct 11, 2019		Added Klippel Logo, Updated with changes from Klippel
1.0	Apr 24, 2020	All	Update Document Format
1.1	July 17, 2020	1, 2, 12	Corrected the package dimension, and revised the output power SPEC for 40hm load

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.