

Oct 12, 2015 Page 1 of 24 Rev 1.00

AN0011

Application Note for 32-bit NuMicro® Family

Document Information

Abstract This document instructs how to improve execution performance on SPI
Flash through moving critical code/data to SRAM for faster execution.
The BootTemplate samples in the BSP will be taken as examples for

explanation.

Apply to NuMicro® family NUC505 series.

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Improving Execution Performance on SPI Flash of NUC505

http://www.nuvoton.com/

Oct 12, 2015 Page 2 of 24 Rev 1.00

AN0011

Table of Contents

1 INTRODUCTION .. 3

1.1 Intended Audience .. 3

1.2 Associated Registers .. 3

2 MEMORY MODELS .. 4

2.1 Nature of SPI Flash as ROM ... 4

2.1.1 Large Space Capable of Placing Large Program .. 4
2.1.2 Slow Speed Unsuitable to Run Performance-Critical Task ... 4

2.2 Typical (All Programs Located on SPI Flash) .. 4

2.2.1 Memory Address Space .. 4

2.3 Critical on SRAM (Performance-Critical Task Located on SRAM) 5

2.3.1 Memory Address Space .. 5
2.3.2 Improvement after applying this model ... 6
2.3.3 Sample in BSP ... 7

2.4 main() on SRAM (Main Program Located on SRAM) .. 10

2.4.1 Memory Address Space .. 10
2.4.2 Improvement after applying this model ... 11
2.4.3 Sample in BSP ... 11

2.5 Full on SRAM (Loader Program Located on SPI Flash and User Program Fully Located
on SRAM) .. 13

2.5.1 Memory Address Space .. 13
2.5.2 Improvement after applying this model ... 14
2.5.3 Sample in BSP ... 14

2.6 Overlay (Tasks Located at the Same Address of SRAM) ... 16

2.6.1 Memory Address Space .. 16
2.6.2 Improvement after applying this model ... 17
2.6.3 Sample in BSP ... 17

Oct 12, 2015 Page 3 of 24 Rev 1.00

AN0011

1 Introduction

As to the NUC505 series, through the SPIM (SPI master), user can regard the SPI Flash as a
ROM module and place program on it for execution. The SPI Flash, compared to built-in
SRAM, has large memory size but very slow speed. With space and speed taken into
consideration, this document describes how to improve program performance on SPI Flash
through moving critical code/data to SRAM. For easy explanation, the BootTemplate

samples in the BSP will be taken as examples.

1.1 Intended Audience

This document is written for users who would write programs on the NUC505 series but at the
same time must take into consideration of execution performance on SPI Flash.

1.2 Associated Registers

Associated registers include:

 VTOR1 register. Associated with the Critical on SRAM memory model, by which user can

relocate the vector table start address to a different memory location.

 SYS_LVMPADDR and SYS_LVMPLEN registers. Associated with the Full on SRAM

memory model, which are used to set VECMAP2 to map SRAM to 0x00000000.

 SYS_IPRST0 register. Associated with the Full on SRAM memory model, which is used

to reset CPU and make VECMAP setting become effective at the same time.

1 Located in ARM
®

 Cortex
®

-M4 system control block.

2 Mapping mechanism to map one memory block, e.g. IBR or SRAM to 0x00000000.

Oct 12, 2015 Page 4 of 24 Rev 1.00

AN0011

2 Memory Models

With space and speed taken into consideration, user may apply memory models introduced
here to place critical code/data on SRAM for better performance: Typical, Critical on SRAM,
main() on SRAM, Full on SRAM, and Overlay. The Typical memory model arranges read-only
code/data on SPI Flash and the remaining on SRAM, with read/write data differently handled.
Based on the Typical memory model, the Critical on SRAM memory model moves critical
code/data from SPI Flash to SRAM for better performance. The main() on SRAM memory
model makes the idea further by moving all code/data to SRAM except unmovable part.
Same as the main() on SRAM memory model, the Full on SRAM memory model moves all
code/data to SRAM with another approach. The Overlay memory model divides a large
program into multiple pieces of code/data which are loaded into SRAM when required.

2.1 Nature of SPI Flash as ROM

For which memory model to apply, user must first take the nature of SPI Flash and SRAM into
consideration. The SPI Flash has larger size but much slower speed than SRAM. The two
factors are described below.

2.1.1 Large Space Capable of Placing Large Program

If the SPI Flash device embedded in an MCP chip3 has 2 MB, the SPI Flash has 16 times
capacity higher than 128 KB built-in SRAM. Code or read-only data which does not have
performance requirements can be located on SPI Flash.

2.1.2 Slow Speed Unsuitable to Run Performance-Critical Task

The SPI Flash access is non-zero wait state. Depending on SPI bus clock and bit mode,
execution performance on SRAM is ten times faster than on SPI Flash. Code or data which
has performance requirements must be located on SRAM rather than on SPI Flash.

2.2 Typical (All Programs Located on SPI Flash)

This model is a typical ROM memory model, which is listed here as a basis and for
comparison with other improved models.

2.2.1 Memory Address Space

Refer to Figure 2-1 Typical Memory Model for illustration of the typical memory layout.

3 For the type of SPI Flash in an MCP chip, refer to the NUC505 Base Series Naming Rule section in

the NUC505 Series Technical Reference Manual.

Oct 12, 2015 Page 5 of 24 Rev 1.00

AN0011

 Read-only section is located on SPI Flash.

 Read/Write section is placed on SPI Flash at the start and then copied to SRAM at run-

time for being writable.

 Uninitialized section and reserved regions (heap and stack) are located on SRAM.

0x00000000

Read-only

Read/Write

Read/Write

Uninitialized

Heap

0x20000000

Stack

Read-only

0x00000000

Load View Execution View

SRAM

SPI Flash

Figure 2-1 Typical Memory Model

2.3 Critical on SRAM (Performance-Critical Task Located on SRAM)

This model is applied when the whole program is too large to fit into 128 KB SRAM. Only
small, critical code/data can be moved to SRAM for faster speed. To apply this model, user
first needs to analyze his program and find out bottleneck of execution performance. Note that
the analysis approach is not within the scope of this document.

2.3.1 Memory Address Space

Based on the Typical model, critical code/data is moved to SRAM for faster speed (refer to
Figure 2-2 Critical on SRAM Memory Model).

 Original read-only section is split into two parts: non-critical and critical.

 Non-critical part is located on SPI Flash.

 Critical part is placed on SPI Flash at the start and then copied to SRAM at run-time

for faster speed.

 Read/Write section is placed on SPI Flash at the start and then copied to SRAM at run-

time for being writable.

 Uninitialized section and reserved regions (heap and stack) are located on SRAM.

Oct 12, 2015 Page 6 of 24 Rev 1.00

AN0011

0x00000000

Non-critical

Read/Write

Read/Write

Uninitialized

Heap

0x20000000

Stack

Non-critical

0x00000000

Load View Execution View

Critical

Critical

Vector

Vector

SRAM

SPI Flash

Figure 2-2 Critical on SRAM Memory Model

2.3.2 Improvement after applying this model

In the BootTemplate/CriticalOnSRAM sample, the two functions Fibonacci1() and

Fibonacci2() are created to compute Fibonacci sequence. They are located at SPI Flash

and SRAM respectively, and their speed difference matches that of SPI Flash and SRAM. For
better overall improvement, it is necessary to find out critical part through another means.

Oct 12, 2015 Page 7 of 24 Rev 1.00

AN0011

Figure 2-3 Compute Fibonacci Sequence in BootTemplate/CriticalOnSRAM

2.3.3 Sample in BSP

The BootTemplate/CriticalOnSRAM sample gives a complete example of this model.

2.3.3.1 Relocate Vector Table to SRAM

The Vector table is a critical part for speed. At the start, it is located on SPI Flash. For faster
speed, user can relocate it to SRAM by following the steps below:

1. Reserve one memory region4 size of which is equal to the vector table.

2. Copy the vector table from SPI Flash to the reserved region on SRAM.

3. Set the VTOR register with start address of the reserved region.

{

#if defined (__CC_ARM)

 extern uint32_t __Vectors[];

 extern uint32_t __Vectors_Size[];

 extern uint32_t Image$$ER_VECTOR2$$ZI$$Base[];

 memcpy((void *) Image$$ER_VECTOR2$$ZI$$Base, (void *) __Vectors, (unsigned int)
__Vectors_Size);

 SCB->VTOR = (uint32_t) Image$$ER_VECTOR2$$ZI$$Base;

4 Refer to Keil scatter-loading description file and IAR linker configuration file for Keil and IAR

projects respectively.

Oct 12, 2015 Page 8 of 24 Rev 1.00

AN0011

#elif defined (__ICCARM__)

 #pragma section = "VECTOR2"

 extern uint32_t __Vectors[];

 extern uint32_t __Vectors_Size[];

 memcpy((void *) __section_begin("VECTOR2"), (void *) __Vectors, (unsigned int)
__Vectors_Size);

 SCB->VTOR = (uint32_t) __section_begin("VECTOR2");

#endif

 }

2.3.3.2 Keil scatter-loading description file

The following is an example of Keil scatter-loading description file for such model. Portions
related to critical code/data, including vector table are highlighted.

LR_ROM 0x00000000 0x00200000 ; 2MB (SPI FLash)

{

ER_STARTUP +0

{

startup_nuc505Series.o(RESET, +First)

 }

ER_RO +0

{

 *(+RO)

}

; Relocate vector table in SRAM for fast interrupt handling.

ER_VECTOR2 0x20000000 EMPTY 0x00000400

{

 }

; Critical code in SRAM for fast execution. Loaded by ARM C library at startup.

 ER_FASTCODE_INIT 0x20000400

{

 clk.o(+RO); CLK_SetCoreClock() may take a long time if it is run on SPI Flash.

}

ER_RW +0

{

 *(+RW)

}

; Critical code in SRAM for fast execution. Loaded by user.

ER_FASTCODE_UNINIT +0 OVERLAY

{

 *(fastcode)

}

Oct 12, 2015 Page 9 of 24 Rev 1.00

AN0011

}

LR_RAM 0x20010000 0x00010000

{

 ER_ZI +0

 {

 *(+ZI)

 }

}

2.3.3.3 IAR linker configuration file

The following is an example of IAR linker configuration file for such model. Portions
related to critical code/data including vector table are highlighted.

define symbol __ICFEDIT_intvec_start__ = 0x00000000;

/*-Memory Regions-*/

define symbol __ICFEDIT_region_ROM_start__ = 0x00000000;

define symbol __ICFEDIT_region_ROM_end__ = 0x001FFFFF;

define symbol __ICFEDIT_region_RAM_start__ = 0x20000000;

define symbol __ICFEDIT_region_RAM_end__ = 0x2001FFFF;

/*-Sizes-*/

define symbol __ICFEDIT_size_cstack__ = 0x400;

define symbol __ICFEDIT_size_heap__ = 0x800;

define memory mem with size = 4G;

define region ROM_region = mem:[from __ICFEDIT_region_ROM_start__ to
__ICFEDIT_region_ROM_end__];

define region RAM_region = mem:[from __ICFEDIT_region_RAM_start__ to
__ICFEDIT_region_RAM_end__];

define block CSTACK with alignment = 8, size = __ICFEDIT_size_cstack__ { };

define block HEAP with alignment = 8, size = __ICFEDIT_size_heap__ { };

define block VECTOR2 with alignment = 8, size = 0x400 { };

initialize by copy { readwrite, readonly object clk.o };

initialize manually { section fastcode };

do not initialize { section .noinit };

place at address mem:__ICFEDIT_intvec_start__ { readonly section .intvec };

place in ROM_region { readonly };

place at start of RAM_region { block VECTOR2 };

place in RAM_region { readwrite, block CSTACK, block HEAP };

Oct 12, 2015 Page 10 of 24 Rev 1.00

AN0011

2.4 main() on SRAM (Main Program Located on SRAM)

This model is applied when the whole program can fit into 128 KB SRAM. Because program
must boot on SPI Flash, initialization code must still be arranged on SPI Flash. To this end,
the whole program is split into two parts with the call to main() as the dividing line:

init/cstartup and post-init/cstartup. The init/cstartup part is still arranged on SPI

Flash but the post-init/cstartup part is moved to SRAM for faster speed.

2.4.1 Memory Address Space

Based on the Critical on SRAM model, the whole program except the init/cstart part is

moved to SRAM for faster speed (refer to Figure 2-4 main() on SRAM Memory Model).

 Original read-only section is split into two parts: init/cstartup and post-

init/cstartup.

 Init/cstartup part is located on SPI Flash.

 Post-init/cstartup part is placed on SPI Flash at the start and then copied to

SRAM at run-time for faster speed.

 Read/Write section is placed on SPI Flash at the start and then copied to SRAM at run-

time for being writable.

 Uninitialized section and reserved sections (heap and stack) are located on SRAM.

0x00000000

Read/Write

Read/Write

Uninitialized

Heap

0x20000000

Stack

Init/C Startup

0x00000000
Load View Execution View

SRAM

SPI Flash

Main

Main

Init/C Startup

Vector

Vector

Figure 2-4 main() on SRAM Memory Model

Oct 12, 2015 Page 11 of 24 Rev 1.00

AN0011

2.4.2 Improvement after applying this model

This model needs a longer initialization time to copy the post-initialization part to SRAM. After
that, speed will be the best because code/data runs on SRAM.

2.4.3 Sample in BSP

The BootTemplate/MainOnSRAM sample gives a complete example of this model.

2.4.3.1 Keil scatter-loading description file

The following is an example of Keil scatter-loading description file for such model. Portions
related to init/cstartup and post-init/cstartup are highlighted.

LR_ROM 0x00000000

{

 ; Code/data at his point belongs to init/cstartup and must be located on SPI Flash.

 ER_STARTUP +0

 {

 startup_nuc505Series.o(RESET, +First) ; vector table

 *(InRoot$$Sections) ; library init

 startup_nuc505Series.o ; startup

 system_nuc505Series.o(i.SystemInit)

 }

 ; Code/data from this point belongs to post-init/cstartup and is located on SRAM

 ; for fastest speed.

 ; Relocate vector table in SRAM for fast interrupt handling.

 ER_VECTOR2 0x20000000 EMPTY 0x00000400

 {

 }

 ER_RO +0

 {

 *(+RO)

 }

 ER_RW +0

 {

 *(+RW)

 }

 ER_ZI +0

 {

Oct 12, 2015 Page 12 of 24 Rev 1.00

AN0011

 *(+ZI)

 }

}

2.4.3.2 IAR linker configuration file

The following is an example of IAR linker configuration file for such model. Portions related to
critical init/cstartup and post-init/cstartup are highlighted.

define symbol __ICFEDIT_intvec_start__ = 0x00000000;

/*-Memory Regions-*/

define symbol __ICFEDIT_region_ROM_start__ = 0x00000000;

define symbol __ICFEDIT_region_ROM_end__ = 0x001FFFFF;

define symbol __ICFEDIT_region_RAM_start__ = 0x20000000;

define symbol __ICFEDIT_region_RAM_end__ = 0x2001FFFF;

/*-Sizes-*/

define symbol __ICFEDIT_size_cstack__ = 0x400;

define symbol __ICFEDIT_size_heap__ = 0x800;

define memory mem with size = 4G;

define region ROM_region = mem:[from __ICFEDIT_region_ROM_start__ to
__ICFEDIT_region_ROM_end__];

define region RAM_region = mem:[from __ICFEDIT_region_RAM_start__ to
__ICFEDIT_region_RAM_end__];

define block CSTACK with alignment = 8, size = __ICFEDIT_size_cstack__ { };

define block HEAP with alignment = 8, size = __ICFEDIT_size_heap__ { };

define block VECTOR2 with alignment = 8, size = 0x400 { };

/* Split read-only code/data into init/cstartup and post-init/cstartup here. */

initialize by copy { readonly, readwrite } except { readonly object
startup_nuc505Series.o };

place at address mem:__ICFEDIT_intvec_start__ { readonly section .intvec };

place in ROM_region { readonly };

place at start of RAM_region { block VECTOR2 };

place in RAM_region { readwrite, block CSTACK, block HEAP };

Oct 12, 2015 Page 13 of 24 Rev 1.00

AN0011

2.5 Full on SRAM (Loader Program Located on SPI Flash and User
Program Fully Located on SRAM)

Same as the main() on SRAM model, this model is applied when the whole program can fit
into 128 KB SRAM. Because program must boot on SPI Flash, rather than one-program
solution of the main() on SRAM model, there are two programs in this model: loader program
and user program. The loader program is responsible for loading the user program into SRAM
for faster speed.

2.5.1 Memory Address Space

In this model, there are two programs: the user program and loader program.

The user program has all code/data directly arranged on SRAM (refer to Figure 2-5 Full on
SRAM Memory Model).

 Read-only section is located on SRAM.

 Read/Write section is located on SRAM.

 Uninitialized section and reserved regions (heap and stack) are located on SRAM.

Note: In this model, user application must still be located on from 0x000000005 instead of
0x20000000 even on SRAM. Before execution of this program, SRAM will remap from
0x20000000 to 0x00000000 by the loader program as illustrated below.

Figure 2-5 Full on SRAM Memory Model

The loader program usually has the following memory address space (refer to Figure 2-6
Loader Memory Model):

 Read-only section is located on SPI Flash.

5 Mean system address, not SPI Flash address.

Oct 12, 2015 Page 14 of 24 Rev 1.00

AN0011

 Read/write section is placed on SPI Flash and then copied to SRAM at run-time for being

writable.

 User application image is located on SPI Flash at the start and then copied to SRAM at

run-time for execution.

 Uninitialized section and reserved sections (heap and stack) are located on SRAM.

0x00000000

Read-only

Read/Write

Read/Write

Uninitialized

Heap

0x20000000

Stack

Read-only

Load View

(Loader)

Execution View

(Loader)

SRAM

SPI Flash

User App

Image

User App

Image

Read-only

Read/Write

Uninitialized

Heap

Stack

Execution View

(User App)
0x00000000

Figure 2-6 Loader Memory Model

2.5.2 Improvement after applying this model

This model needs a longer initialization time for the loader to copy the user application image
to SRAM. After the user application starts, speed will be the best because code/data runs on
SRAM.

2.5.3 Sample in BSP

The BootTemplate/FullOnSRAM and BootTemplate/Loader samples together give a

complete example of this model.

2.5.3.1 Loader

The loader program is responsible for the following subtasks:

1. Load the user application image from SPI Flash to SRAM.

#if defined (__CC_ARM)

extern uint32_t Load$$ER_RAMIMG$$RO$$Base[];

extern uint32_t Load$$ER_RAMIMG$$RO$$Length[];

extern uint32_t Image$$ER_RAMIMG$$RO$$Base[];

memcpy((void *) Image$$ER_RAMIMG$$RO$$Base, Load$$ER_RAMIMG$$RO$$Base, (unsigned long)
Load$$ER_RAMIMG$$RO$$Length);

#endif

Oct 12, 2015 Page 15 of 24 Rev 1.00

AN0011

2. Remap SRAM 6from 0x20000000 to 0x00000000. This setting will not become effective

until the step immediately following this step.

SYS->LVMPADDR = (uint32_t) g_au8RamImg;

SYS->LVMPLEN = 128; // Map 128 KB

3. Reset CPU, and SRAM remapping to 0x00000000 becomes effective at the same time.

SYS->IPRST0 |= SYS_IPRST0_CPURST_Msk;

2.5.3.2 Generate user application image

To make the user application image built into the loader program, follow the steps below:

1. Create the user application image using the fromelf tool attached with Keil MDK-ARM.

fromelf --bin FullOnSRAM.axf --output FullOnSRAM.bin

2. Convert the user application image file FullOnSRAM.bin to a C-style char array

FullOnSRAM.dat. User may get related tool from the web site:

http://sourceforge.net/projects/bin2header/

3. Compile the C-style char array FullOnSRAM.dat directly into the loader program.

#if defined (__CC_ARM)

static __align(32) const uint8_t g_au8RamImg[] __attribute__((section("ramimg")));

static __align(32) const uint8_t g_au8RamImg[] = {

include "FullOnSRAM.dat"

};

#elif defined (__ICCARM__)

#pragma data_alignment=32

static const uint8_t g_au8RamImg[] @ "ramimg";

static const uint8_t g_au8RamImg[] = {

include "FullOnSRAM.dat"

};

#endif

6 The unit is KB. Change the mapping range based on real memory model of user application.

http://sourceforge.net/projects/bin2header/

Oct 12, 2015 Page 16 of 24 Rev 1.00

AN0011

2.6 Overlay (Tasks Located at the Same Address of SRAM)

This model is applied when the whole program is too large to fit into 128 KB SRAM but it has
some pieces of code/data which can execute independently, just like stages in a game. An
overlay is one of multiple pieces of code/data that can be loaded to a pre-determined memory
region (called overlay region) on demand at runtime. Initially, each overlay is stored on SPI
Flash, and during run-time, an overlay can be copied to a pre-determined address on SRAM
for execution there when required. This can later be replaced by another overlay when
required. Only one overlay can occupy that overlay region at any time.

2.6.1 Memory Address Space

Based on the Typical model, overlay is moved to SRAM on demand for faster execution.
(refer to Figure 2-7 Overlay Memory Model).

 Original read-only section is split into two parts: non-overlay and multiple overlays.

 Non-overlay part is located on SPI Flash.

 An overlay is placed on SPI Flash at the start and then copied to SRAM at run-time

when required.

 Read/Write section is placed on SPI Flash at the start and then copied to SRAM at run-

time for being writable.

 Uninitialized section and reserved regions (heap and stack) are located on SRAM.

Oct 12, 2015 Page 17 of 24 Rev 1.00

AN0011

0x00000000

Non-overlay

Read/Write

Read/Write

Uninitialized

Heap

0x20000000

Stack

Non-overlay

0x00000000

Load View Execution View

SRAM

SPI Flash

Overlay A

Overlay C

Overlay E

Overlay B

Overlay D

Overlay F

Overlay Region 1

Overlay A
Overlay B

Overlay C
Overlay D

Overlay Region 2

Overlay Region 3

Overlay E
Overlay F

Figure 2-7 Overlay Memory Model

2.6.2 Improvement after applying this model

Improvement of this model depends on how a program is divided into overlays. To run an
overlay, it is necessary to load it into SRAM first. This is an unavoidable cost. User must be
careful to design his overlay structure to avoid unnecessary load overlay operations. If a
program can behave like a game which has multiple stages, it is inherently suitable for this
model.

2.6.3 Sample in BSP

The BootTemplate/Overlay sample gives a complete example of this model. The following

lists some notes of this sample:

Oct 12, 2015 Page 18 of 24 Rev 1.00

AN0011

 Define an overlay table in both usrprog_ovly_tab.c and the linker script file. The overlay

table consists of overlays and overlay regions. In this sample, the overlay table is defined

as below:

overlay a/b overlay region 1

overlay c/d/e overlay region 2

overlay f overlay region 3

 Load/exec addresses of an overlay are determined through the linker script file. These

addresses can be acquired through linker-generated symbols. See DEFINE_OVERLAY

in ovlymgr.h for how to access them.

 The function load_overlay() is responsible for loading overlay to overlay region

through SPIM DMA Read mode or memcpy(). All overlay manager code (ovlymgr.c)

must be located in SRAM for running SPIM DMA Read mode.

 User must be responsible for calling load_overlay() to load overlay before its

execution.

 Overlaid program cannot be source-level debugged.

 This sample just demonstrates how to overlay code. Overlay data is not supported.

2.6.3.1 Keil scatter-loading description file

The following is an example of Keil scatter-loading description file for such model. Portions
related to overlay are highlighted.

LR_ROM 0x00000000

{

 ER_STARTUP +0

 {

 startup_nuc505Series.o(RESET, +First) ; vector table

 *(InRoot$$Sections) ; library init

 ; If neither (+ input_section_attr) nor (input_section_pattern) is specified, the
default is +RO.

 startup_nuc505Series.o ; startup

 system_nuc505Series.o(i.SystemInit)

 }

 ER_RO +0

 {

 *(+RO)

 }

 ; Relocate vector table in SRAM for fast interrupt handling.

Oct 12, 2015 Page 19 of 24 Rev 1.00

AN0011

 ER_VECTOR2 0x20000000 EMPTY 0x00000400

 {

 }

 ; Critical code located in SRAM. Loaded by ARM C library at startup.

 ER_FASTCODE_INIT +0

 {

 clk.o(+RO) ; CLK_SetCoreClock() may take a long time if it is run on SPI
Flash.

 ovlymgr.o(+RO) ; Overlay manager itself must locate in SRAM because it will be
responsible for loading code

 ; through SPIM DMA Read.

 }

 ER_RW +0

 {

 *(+RW)

 }

 ER_ZI +0

 {

 *(+ZI)

 }

; Define overlay table:

 ;;;

 ER_OVERLAY_A +0 OVERLAY NOCOMPRESS

 {

 *(overlay_a)

 }

 ER_OVERLAY_B +0 OVERLAY NOCOMPRESS

 {

 *(overlay_b)

 }

 ;;;

 ; Serve to separate overlay regions.

 ER_SEPARATOR_1 +0 EMPTY 0 {}

 ;;;

 ER_OVERLAY_C +0 OVERLAY NOCOMPRESS

Oct 12, 2015 Page 20 of 24 Rev 1.00

AN0011

 {

 *(overlay_c)

 }

 ER_OVERLAY_D +0 OVERLAY NOCOMPRESS

 {

 *(overlay_d)

 }

 ER_OVERLAY_E +0 OVERLAY NOCOMPRESS

 {

 *(overlay_e)

 }

 ;;;

 ; Serve to seperate overlay regions.

 ER_SEPARATOR_2 +0 EMPTY 0 {}

 ;;;

 ER_OVERLAY_F +0 OVERLAY NOCOMPRESS

 {

 *(overlay_f)

 }

 ;;;

 ; Serve to mark end of used SRAM.

 ER_INDICATOR_END +0 EMPTY 0 {}

}

Oct 12, 2015 Page 21 of 24 Rev 1.00

AN0011

2.6.3.2 IAR linker configuration file

The following is an example of IAR linker configuration file for such model. Portions related to
overlay are highlighted.

/*###ICF### Section handled by ICF editor, don't touch! ****/

/*-Editor annotation file-*/

/* IcfEditorFile="$TOOLKIT_DIR$\config\ide\IcfEditor\cortex_v1_0.xml" */

/*-Specials-*/

define symbol __ICFEDIT_intvec_start__ = 0x00000000;

/*-Memory Regions-*/

define symbol __ICFEDIT_region_ROM_start__ = 0x00000000;

define symbol __ICFEDIT_region_ROM_end__ = 0x001FFFFF;

define symbol __ICFEDIT_region_RAM_start__ = 0x20000000;

define symbol __ICFEDIT_region_RAM_end__ = 0x2001FFFF;

/*-Sizes-*/

define symbol __ICFEDIT_size_cstack__ = 0x400;

define symbol __ICFEDIT_size_heap__ = 0x800;

/**** End of ICF editor section. ###ICF###*/

define memory mem with size = 4G;

define region ROM_region = mem:[from __ICFEDIT_region_ROM_start__ to
__ICFEDIT_region_ROM_end__];

define region RAM_region = mem:[from __ICFEDIT_region_RAM_start__ to
__ICFEDIT_region_RAM_end__];

define block CSTACK with alignment = 8, size = __ICFEDIT_size_cstack__ { };

define block HEAP with alignment = 8, size = __ICFEDIT_size_heap__ { };

define block VECTOR2 with alignment = 8, size = 0x400 { };

/* Overlay manager (ovlymgr.c) must locate in SRAM because it is responsible for loading
overlay through SPIM Read mode. */

initialize by copy { readwrite, readonly object clk.o, readonly object ovlymgr.o };

/* Overlays are initially stored in SPI Flash and then copied to SRAM for execution at
run-time when required. */

initialize manually {

 section overlay_a, section overlay_b, section overlay_c, section overlay_d,

 section overlay_e, section overlay_f

};

//initialize by copy with packing = none { section __DLIB_PERTHREAD }; // Required in a
multi-threaded application

do not initialize { section .noinit };

/* Define overlay table:

Oct 12, 2015 Page 22 of 24 Rev 1.00

AN0011

 overlays a/b overlay region 1

 overlays c/d/e overlay region 2

 overlay f overlay region 3 */

define overlay OVERLAY_1 { section overlay_a };

define overlay OVERLAY_1 { section overlay_b };

define overlay OVERLAY_2 { section overlay_c };

define overlay OVERLAY_2 { section overlay_d };

define overlay OVERLAY_2 { section overlay_e };

define overlay OVERLAY_3 { section overlay_f };

place at address mem:__ICFEDIT_intvec_start__ { readonly section .intvec };

place in ROM_region { readonly };

place at start of RAM_region { block VECTOR2 };

place in RAM_region { readwrite, block CSTACK, block HEAP };

place in RAM_region { overlay OVERLAY_1, overlay OVERLAY_2, overlay
OVERLAY_3 };

Oct 12, 2015 Page 23 of 24 Rev 1.00

AN0011

Revision History

Date Revision Description

2015.10.12 1.00 1. Initially issued.

Oct 12, 2015 Page 24 of 24 Rev 1.00

AN0011

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

	1 Introduction
	1.1 Intended Audience
	1.2 Associated Registers

	2 Memory Models
	2.1 Nature of SPI Flash as ROM
	2.1.1 Large Space Capable of Placing Large Program
	2.1.2 Slow Speed Unsuitable to Run Performance-Critical Task

	2.2 Typical (All Programs Located on SPI Flash)
	2.2.1 Memory Address Space

	2.3 Critical on SRAM (Performance-Critical Task Located on SRAM)
	2.3.1 Memory Address Space
	2.3.2 Improvement after applying this model
	2.3.3 Sample in BSP
	2.3.3.1 Relocate Vector Table to SRAM
	2.3.3.2 Keil scatter-loading description file
	2.3.3.3 IAR linker configuration file

	2.4 main() on SRAM (Main Program Located on SRAM)
	2.4.1 Memory Address Space
	2.4.2 Improvement after applying this model
	2.4.3 Sample in BSP
	2.4.3.1 Keil scatter-loading description file
	2.4.3.2 IAR linker configuration file

	2.5 Full on SRAM (Loader Program Located on SPI Flash and User Program Fully Located on SRAM)
	2.5.1 Memory Address Space
	2.5.2 Improvement after applying this model
	2.5.3 Sample in BSP
	2.5.3.1 Loader
	2.5.3.2 Generate user application image

	2.6 Overlay (Tasks Located at the Same Address of SRAM)
	2.6.1 Memory Address Space
	2.6.2 Improvement after applying this model
	2.6.3 Sample in BSP
	2.6.3.1 Keil scatter-loading description file
	2.6.3.2 IAR linker configuration file

