
      

 

Oct. 23, 2019 Page 1 of 14 Rev 1.00 

M480 Series 

 

Example Code Introduction for 32-bit NuMicro®  Family 

 

 

 

Information 

Application 
This sample code uses machine learning to implement keyword 
spotting on the M480. 

BSP Version M480 Series BSP CMSIS V3.04.000 

Hardware NuMaker-PFM-M487 Ver 3.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

The information described in this document is the exclusive intellectual property of 
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton. 

 

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design. 
Nuvoton assumes no responsibility for errors or omissions. 

All data and specifications are subject to change without notice. 

 

For additional information or questions, please contact: Nuvoton Technology Corporation.  

www.nuvoton.com  

M480 Keyword spotting 

 

http://www.nuvoton.com/


      

 

Oct. 23, 2019 Page 2 of 14 Rev 1.00 

M480 Series 

1 Function Description 

1.1 Introduction 

A complete deep learning speech recognition system requires two platforms. As shown in 

Figure 1-1, one is PC platform. User can program the deep learning code and train the model 

by Tensorflow and Python. Due to the supervised learning for the training mode, it is 

necessary to give the system a large amount of training data and labels. Then the user can 

extract the features of speech data and train the model by deep neural networks (DNN). Until 

the system reaches the optimization, the user evaluates the accuracy by modifying the 

training model repeatedly. The other platform is Nuvoton NuMaker-PFM-M487 development 

board. The speech recognition system can be implemented based on the training parameters 

from PC platform. 

 

 
Figure 1-1 The Flow for Speech Recognition System 

 

1.2 Introduction to Deep Learning 

Machine learning is a branch of Artificial Intelligence (AI). The operation process is to use an 

algorithm to train a large amount of data. After the training is completed, a model will be 

generated. When there is new data in the future, user can predict the new data using the 

training model. Machine learning applications are quite extensive, such as recommendation 



      

 

Oct. 23, 2019 Page 3 of 14 Rev 1.00 

M480 Series 

engines, targeted advertising, demand forecasting, spam filtering, medical diagnostics, 

natural languages processing, search engines, fraud detection, securities analysis, visual 

identification, speech recognition, handwriting recognition, and more. 

Deep learning is a branch of machine learning. It is the fastest growing field of artificial 

intelligence. There are several deep learning frameworks, such as Deep Neural Networks 

(DNN) and Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), etc.. 

Actually the answer that the user should use what kind of architectures is not certain. It 

depends on the size, nature, acceptable calculating time, the urgency of learning, and what 

you want to do with this data. Deep learning is particularly effective in applications such as 

visual recognition, speech recognition, natural language processing, and biomedical 

applications. 

Deep learning is to let the machine simulate the working mode of the human brain, and thus 

has the same learning ability as human beings. However, the human neural network is too 

complicated to be simulated. The neurons are divided into multiple levels to simulate the 

neural network. The neural network usually has an input layer, an output layer and a number 

of hidden layers that can be trained. More than 2 hidden layers can be called Deep Learning. 

If the users do not have a basic understanding of deep learning, the course of deep learning 

can be used to get the most out of this document. 

 

1.2.1 Introduction to Deep Neural Networks (DNN) 

Deep Neural Networks (DNN) is the most basic discriminant model for deep learning. It can 

be trained by the backpropagation algorithm. The weights can be updated iteratively by the 

gradient descent method: 

    (   )      ( )   
  

    
 

  is the Learning Rate, C is the Loss Function and the choice of the function is related to the 

Active Function. For this document as example, in order to solve the problem of Multi-Class 

Classification supervised learning, choose Rectified Linear Unit (ReLU) as the activation 

function, and use Cross Entropy as the loss function. The definition of cross entropy is as 

follows: 

   ∑     (  )

 

 



      

 

Oct. 23, 2019 Page 4 of 14 Rev 1.00 

M480 Series 

   represents the target probability of output unit  ,    represents the probability output unit   

after applying the activation function; and the Softmax Function of the output layer is defined 

as follows: 

   
    (  )

∑     (  ) 
 

   represents the probability of category  .    and    are inputs to units   and  , respectively. 

The network architecture of the deep neural networks is shown in Figure 1-2. 

 

Figure 1-2 The Architecture of Deep Neural Networks (DNN) 

 

1.3 Introduction to TensorFlow 

TensorFlow is an open source code library provided by Google. Google has many products 

that use TensorFlow technology to develop deep learning and machine learning functions, 

such as Gmail filtering spam, Google voice recognition, Google image recognition, Google 

Translate, etc. The introduction to deep learning has described the core of deep learning and 

simulate neural networks with tensor (matrix) operations. Accordingly, the main design of 

TensorFlow is to maximize the performance of matrix operations and to develop on different 

platforms. 

 



      

 

Oct. 23, 2019 Page 5 of 14 Rev 1.00 

M480 Series 

1.3.1 TensorFlow Architecture 

 

Figure 1-3 TensorFlow Architecture Diagram 

 
The following describes the details of the above architecture diagram, starting from the 
bottom: 

 Processor: TensorFlow can be executed on CPU, GPU, TPU. 

 CPU:Each computer has a central processing unit (CPU) that can execute 

TensorFlow. It’s enough to use CPU for this speech recognition system. 

 GPU:Graphics processor with thousands of small and high-efficiency cores that 

harness the power of parallel computing. 

 TPU:The Tensor Processing Unit is a proprietary chip developed by Google's 

Artificial Intelligence and has better execution capabilities than the GPU. 

 

 Platform 

TensorFlow is a cross-platform capability that can be implemented on current 

mainstream platforms. This document uses the Windows 10 operating system. 

 

 TensorFlow Distributed Execution Engine 

In deep learning, the most time-consuming is the training of the model, especially the 

large-scale deep learning model, which must be trained with a large amount of data. 

TensorFlow has the ability of distributed computing, which can perform model training on 

hundreds of machines at the same time, greatly shorten the time of model training. 

 

 Low-level APIs 



      

 

Oct. 23, 2019 Page 6 of 14 Rev 1.00 

M480 Series 

TensorFlow is available in a variety of programming languages and Python has a concise, 

easy-to-learn, high-productivity, object-oriented, and functional dynamic language that is 

widely used. The deep learning code of this document is also developed by Python. 

 

 High-order APIs 

TensorFlow is a relatively low-level deep learning APIs. When designing a model, users 

must design the underlying operations such as tensor product and convolution. Therefore, 

this document is matched with the high-order API – Keras, which makes developers use 

more concise and readable codes to construct a variety of complex deep learning models. 

 

1.4 Demo Result 

Connect the microphone and speak the English number and print out the result of the 

identification. 

 



      

 

Oct. 23, 2019 Page 7 of 14 Rev 1.00 

M480 Series 

2 Code Description 

Figure 2-1 shows the program flow of the NuMicro®  M480 series microcontroller. The block in 

the figure is the main function in the program. Users can easily understand the architecture of 

the program. 

 

Figure 2-1 The program flow of the NuMicro®  M480 series microcontroller 

 

2.1.1 KWS main 

/* Output Class */ 

char output_class[12][10] = { "Silence", "Unknown", "One", "Two", "Three", "Four", 
"Five" ,"Six", "Seven", "Eight", "Nine", "Zero"}; 

 

void run_kws() 

{ 

  //Averaging window for smoothing out the output predictions 

  int averaging_window_len = 3;  //i.e. average over 3 inferences or 240ms 

 

  kws->extract_features(2); //extract mfcc features 

  kws->classify();         //classify using dnn 

  kws->average_predictions(averaging_window_len); 

  max_ind = kws->get_top_detection(kws->averaged_output); 

 

  printf("Detected %s\r\n",output_class[max_ind]); 

} 

main() 

run_kws() 

extract_feature() 

classify() 

average_predictions() 

get_top_detection() 

run_nn() 

main.cpp dnn.cpp kws.cpp 

Detect output 



      

 

Oct. 23, 2019 Page 8 of 14 Rev 1.00 

M480 Series 

2.1.2 KWS Function (using MFCC for feature extraction and using DNN model) 

/* This overloaded function is used in streaming audio case */ 

void KWS::extract_features(uint16_t num_frames) 

{ 

  //move old features left  

  memmove(mfcc_buffer,mfcc_buffer+(num_frames*NUM_MFCC_COEFFS),(NUM_FRAMES-
num_frames)*NUM_MFCC_COEFFS); 

  //compute features only for the newly recorded audio 

  int32_t mfcc_buffer_head = (NUM_FRAMES-num_frames)*NUM_MFCC_COEFFS;  

  for (uint16_t f = 0; f < num_frames; f++) { 

    mfcc->mfcc_compute(audio_buffer+(f*FRAME_SHIFT),2,&mfcc_buffer[mfcc_buffer_head]); 

    mfcc_buffer_head += NUM_MFCC_COEFFS; 

  } 

} 

void KWS::classify() 

{ 

  nn->run_nn(mfcc_buffer, output); 

  // Softmax 

  arm_softmax_q7(output,OUT_DIM,output); 

  //do any post processing here 

} 

 

void KWS::average_predictions(int window_len) 

{ 

  //shift right old predictions  

  for(int i=window_len-1;i>0;i--) { 

    for(int j=0;j<OUT_DIM;j++) 

      predictions[i][j]=predictions[i-1][j]; 

  } 

  //add new predictions 

  for(int j=0;j<OUT_DIM;j++) 

    predictions[0][j]=output[j]; 

  //compute averages 

  int sum; 

  for(int j=0;j<OUT_DIM;j++) { 

    sum=0; 

    for(int i=0;i<window_len;i++)  

      sum += predictions[i][j]; 

    averaged_output[j] = (q7_t)(sum/window_len); 

  }    

} 



      

 

Oct. 23, 2019 Page 9 of 14 Rev 1.00 

M480 Series 

 

int KWS::get_top_detection(q7_t* prediction) 

{ 

  int max_ind=0; 

  int max_val=-128; 

  for(int i=0;i<OUT_DIM;i++) { 

    if(max_val<prediction[i]) { 

      max_val = prediction[i]; 

      max_ind = i; 

    }     

  } 

  return max_ind; 

} 

 

2.1.3 NN Function 

void DNN::run_nn(q7_t* in_data, q7_t* out_data) 

{ 

// Run all layers 

 

// IP1  

arm_fully_connected_q7(in_data, ip1_wt, IN_DIM, IP1_OUT_DIM, 1, 7, ip1_bias, ip1_out, 
vec_buffer); 

// RELU1 

arm_relu_q7(ip1_out, IP1_OUT_DIM); 

// IP2  

arm_fully_connected_q7(ip1_out, ip2_wt, IP1_OUT_DIM, IP2_OUT_DIM, 2, 8, ip2_bias, ip2_out, 
vec_buffer); 

// RELU2 

arm_relu_q7(ip2_out, IP2_OUT_DIM); 

// IP3  

arm_fully_connected_q7(ip2_out, ip3_wt, IP2_OUT_DIM, IP3_OUT_DIM, 2, 9, ip3_bias, ip3_out, 
vec_buffer); 

// RELU3 

arm_relu_q7(ip3_out, IP3_OUT_DIM); 

// IP4  

arm_fully_connected_q7(ip3_out, ip4_wt, IP3_OUT_DIM, OUT_DIM, 0, 6, ip4_bias, out_data, 
vec_buffer); 

 

}  



      

 

Oct. 23, 2019 Page 10 of 14 Rev 1.00 

M480 Series 

3 Software and Hardware Environment 

 Software environment 

 BSP version 

 M480 Series BSP CMSIS V3.04.000 

 IDE version 

 Keil uVersion 5.26 

 Hardware environment 

 Circuit components 

 NuMaker-IoT-M487 or other M480 Development Board 

 3.5 mm microphone 

 Diagram 

Connect microphone on NuMaker-PFM-M487. 

 

 

 



      

 

Oct. 23, 2019 Page 11 of 14 Rev 1.00 

M480 Series 

4 Directory Information 

 EC_M480_KWS_V1.00 

 Library Sample code header and source files 

 CMSIS Cortex®  Microcontroller Software Interface Standard 
(CMSIS) by Arm®  Corp. 

 Device CMSIS compliant device header file 

 StdDriver All peripheral driver header and source files 

 ML_PCTool Machine Learning python source files 

 SampleCode  

 ExampleCode Source file of example code 

  



      

 

Oct. 23, 2019 Page 12 of 14 Rev 1.00 

M480 Series 

5 How to Execute Example Code 

1. Browsing into sample code folder by Directory Information (section 4) and double click 

M480_KWS.uvproj 

2. Enter Keil compile mode 

a. Build 

b. Download 

c. Start/Stop debug session 

3. Enter debug mode 

a. Run 

  



      

 

Oct. 23, 2019 Page 13 of 14 Rev 1.00 

M480 Series 

6 Revision History 

Date Revision Description 

Oct. 23, 2019 1.00 1. Initially issued. 

 

  



      

 

Oct. 23, 2019 Page 14 of 14 Rev 1.00 

M480 Series 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Important Notice 
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any 
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. 
Such applications are deemed, “Insecure Usage”.  
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy 
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or 
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and 
other applications intended to support or sustain life.   
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to 
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities 
thus incurred by Nuvoton. 
 

 
 


