MCU Security Features • for IoT Security

Min-Nan Cheng

Program Director, Microcontroller Application Business Group

Content

- Overview to IoT Security
- MCU Security Objectives
- MCU Security Features
- Conclusions

Overview to IoT Security

IoT Device

- Consists of sensor + MCU + actuator
- Generate and transmit data
- Data Assets
 - General
 - Firmware
 - Unique ID
 - Password
 - ...
 - Application-specific
 - Sensor data
 - Control data

Data in an IoT Device

Overview to IoT Security

• IoT Security Layers

MCU Security Objectives

- The Role of MCU in Device Security
 - Implement the Security Features to defend against <u>software attacks</u> and <u>non-invasive hardware attacks</u>

Invasive hardware attacks	 Microprobing FIB (Focused Ion Beam) 	Payment applications or Online banking
Non-invasive hardware attacks	 Side channel attack (Differential Power Analysis) Fault injection attack (Clock glitch, Voltage glitch) 	IoT, medical, and other MCU applications
Software attacks	 Use program coding vulnerabilities E.g. Stack overflow attack (doesn't verify the input parameters when entering a subroutines.) 	

Attacks Types on MCU

MCU Security Objectives

• Briefing of Security Assurance Levels

MCU Security Technology

nuvoTor

- Secure Boot
 - Hardware Root of Trust
 - An immutable ROM code cryptographically verifies firmware's Integrity and Authenticity after system power-on or reset

• Unique Identifier (UID)

- A unique identifier used to identify an individual MCU
 - Device authentication
 - Derive encryption keys
- Type of UID
 - 96-bit or 128-bit number decided during manufacturing stage

NUVO

- Hardware Crypto Accelerators
 - Data Encryption / Decryption
 - AES-128 / AES-256 / GCM mode, CCM mode
 - Data Integrity Check
 - SHA-256 / SHA-512
 - Signature Verification
 - ECDSA
 - RSA
 - Key Exchange
 - ECDH
 - True Random Number

Static Key

Storage

TrustZone

 TrustZone partitions the system into Secure (Trusted) and Normal (Non-trusted) worlds according to memory address.

Secure code and data are protected by hardware isolation

• Tamper Resistant Module

- Detect abnormal situation and take adapted action
 - Tamper events
 - Incorrect pin state (case-open event)
 - Clock : glitch, out of range
 - Voltage : glitch, over/under voltage
 - Temperature : out of range
 - Adapted action
 - Tamper event interrupts
 - Clear backup SRAM or registers

Conclusions

Protecting the data integrity and authenticity of IoT devices is the foundation of IoT security.

MCUs should have hardware security features to defend against software attacks, side-channel attacks, and fault injection attacks.

Joy of innovation

谢谢 謝謝 Děkuji Bedankt Thank you **Kiitos** Merci Danke Grazie ありがとう 감사합니다 Dziękujemy Obrigado Спасибо Gracias Teşekkür ederim Cảm ơn