MA35D1 Evaluation Board Quick Start

Agenda

- Target Platform Introduction
- Overview
- Environment Setup
- Build Image by Buildroot
- Build Image by Yocto
- Image Programming and System Boot
- Fast Application Development

Target Platform Introduction

MA35D1 Application Processor

System

- Dual 64/32-bit Arm[®] Cortex[®]-A35 core running up to 1 GHz with 32/32 KB L1 I/D cache each one, 512 KB shared L2 cache, Arm[®] NEONTM and Arm[®] Trust Zone[®], Trusted Secure Island
- A 32-bit Arm[®] Cortex[®]-M4 core running up to 180 MHz with 16/16 KB I/D cache, FPU/MPU
- Built-in 128/256/512 MB DDR2/DDR3L SDRAM in LQFP/BGA package

Features

- Supports LCD Display controller, 2D Graphic Engine, H.264 decoder for HMI display
- Two CCIR656/601 Camera interfaces
- Two 10/100/1000 Mbps Ethernet MACs
- USB 2.0 high-speed host/device
- Supports AES-256, SHA-512, ECC-571, RSA-4096

- CAN-FD interfaces
- UART, ISO-7816 interfaces, Quad-SPI, SPI, I²C, I²S
- EPWM, 12-bit SAR ADC, 32-bit timers
- RTC (Real Time Clock), 32.768 kHz Oscillator
- WDT (Watchdog Timer), WWDT(Window)
- True Random Number Generator (TRNG)

NuMaker-HMI-MA35D1-S1 Features

Features

- MA35D16A887C (BGA312) MCP package with DDR3L (256 MB)
- 7-inch TFT LCD (1024x600) with touch daughter board
- An on-board eMMC (SD3.0) Flash memory device (16 GB)
- An on-board Quad SPI NAND Flash device (512 MB)
- An on-board NAND Flash device (1 GB)
- Standard-SD (SD2.0) memory card slot
- 2 x Giga Ethernet
- 2 x High Speed USB
- 2 x Camera Capture (CMOS sensor) header connectors
- 1 x Audio codec (NAU88C22)
- 2 x UART, 2 x RS485, 2 x CAN-FD, 8 x EADC channels

NuMaker-IoT-MA35D1-A1 Features

Features

- MA35D16F987C (LQFP216) MCP package with DDR (512MB)
- Run up to 800MHz operating speed
- An on-board Quad SPI NAND Flash device (512 MB)
- An on-board NAND Flash device (1 GB)
- Standard-SD memory card (SD1, supports SD2.0)
- 1 x Giga Ethernet, 1 x 10/100 Ethernet
- 2 x High Speed USB
- 1 x Camera Capture (CMOS sensor) header connectors
- 1 x Audio codec (NAU88C22)
- 1 x SIM Card slot
- 2 x UART, 2 x RS485, 2 x CAN-FD, 8 x EADC channels

Quick Start Material

- Level 1 Quick Start
 - MA35D1 Application Processor
 - Evaluation Board and Demo
 - <u>NuWriter_MA35 Programming</u>
- Level 2 Development Environment
 - Development Environment set up
 - GUI development environment set up
 - Hardware Design Notice
- Level 3 Key Features
 - <u>TF-A</u>
 - OP-TEE
 - Real Time Processor
 - VC8000 Video Decoder

nuvoto

Document

- Nuvoton provides many documents to help users develop quickly
- User Manual
 - UM_NuMaker_HMI_MA35D1_S1
 - UM_NuMaker_IoT_MA35D1_A1
- Schematic, PCB and Gerber file
 - NuMaker-IoT-MA35D1-A1 Schematic, PCB , Gerber file & BOM
- Datasheet
 - MA35D1 Series Datasheet

Πυνοτο

Document

- Software User Manual
 - UM_EN_MA35D1_BSP
 - UM_EN_MA35D1_Buildroot
 - UM_EN_MA35D1_Linux_BSP
 - UM_EN_MA35D1_NAND
 - UM_EN_MA35D1_NuWriter
 - UM_EN_MA35D1_OP-TEE
 - UM_EN_MA35D1_RTP
 - UM_EN_MA35D1_TF-A
 - UM_EN_MA35D1_U-boot
 - UM_EN_MA35D1_Yocto

Document

Application Note

- MA35D1_NAND Chip Support_EN
- MA35D1_Coprocessor_Management_EN
- MA35D1_Hardware_Design_Guide_EN
- MA35D1_PMIC_DA9062-3A_EN
- MA35D1_Secure_Boot_EN
- MA35D1_TSI_EN
- <u>FAQ</u>
 - FAQ_MA35D1_Extend Boot Space
 - FAQ_MA35D1_NuWriter Issue
 - FAQ_MA35D1_Read MAC Address from OTP
 - FAQ_MA35D1_Show Logo when booting by Yocto
 - FAQ_MA35D1_Switch booting source

NUVOTO

Overview

MA35D1 Development Environment Overview

MA35D1 Development Environment

- Development environment
 - Docker container Ubuntu 20.04 : virtual machine in Linux OS
- Development Tools
 - Yocto Project Build a Linux distribution (MA35D1 Kernel) or an application
 - Buildroot Build a Linux distribution (MA35D1 Kernel) or an application
 - OpenWRT Build a Linux distribution (MA35D1 Kernel) or an application
 - NuWriter Nuvoton provides a tool to program image to storage media
 - NuTool-PinConfigure Nuvoton provides a tool to define pin Configure
- Image
 - Kernel Linux 5.10
 - U-Boot v2020.07
 - OPTEE v3.9.0
 - ARM Trusted Firmware v2.3

Quick Start Building

MA35D1 Development Scheme

Development Environment

NuDeveloper Ecosystem – Make the engineers' job easier.

MA35D1 Linux Development Tools – Yocto

- The Yocto Project is an open source collaboration project that helps developers create custom Linuxbased systems regardless of the hardware architecture
- MA35D1 Yocto includes the following Metadata
 - Meta-ma35d1
 - Meta-qt5
 - Meta-virtualization
 - Meta-Pocky

NuDeveloper Ecosystem – Make the engineers' job easier.

Yocto Development Environment – Docker

- Docker can pack up code and its dependencies as a container
- Every container is independent and based on Host OS so they won't affect each other and run faster than virtual machine

MA35D1 Linux Board Support Package

• This BSP supports Linux operating system for MA35D1. The peripheral drivers are also included in the BSP allowing applications to access them

Component	Description
Yocto	Version 3.1.3 (Dunfell). A Linux Foundation collaborative open source project to create the Linux distributions
Buildroot	Buildroot is a simple, efficient and easy-to-use tool to generate embedded Linux systems through cross-compilation
OpenWrt	The OpenWrt Project is a Linux operating system targeting embedded devices
Linux	Version 5.10 An open source operating system based on GPLv2 license
U-Boot	Version 2020.07. An open source bootloader based on GPLv2+ license
OP-TEE	Version 3.9.0. An open source trusted execution environment
TF-A	Version 2.3. A BSD-3-Clause license reference implementation of secure world software
M4 BSP	CMSIS library 4.5.0 and standard driver for RTP BareMetal/FreeRTOS firmware development
NuWriter	A GUI and command line tool supports firmware update and OTP programming for MA35D1

NuDeveloper Ecosystem – Make the engineers' job easier.

MA35D1 Development Tool Optimization

• Nuvoton provides various tools to help users develop their own MA35D1

Name	Description
NuWriter_MA35	Program Image to MA35D1
NuLink-Pro	Debug real time processor
Pin Configure	Define MA35D1 multifunctional pin
AutoWriter	Program Image to MA35D1 by SD/USBH
DDR Tuning	A DDR configure tool, which can fine tune DDR timing according to PCB layout
NuWriter_MA35 1 to 8 Programming	Support 1 to 8 parallel programming for mass production
RMA Tool Board	IC debug tool
NAND Writer	Program Image to NAND Flash

MA35D1 Programming Tool – NuWriter

- Download NuWriter for MA35D1 :
 - https://github.com/OpenNuvoton/MA35D1_NuWriter
- The NuWriter is a programing tool for the MA35D1. The NuWriter application and firmware code are open sourced, and users can add new features or develop new user interfaces per user's application.
- USB host (mass storage) is also supported in mass production version
- The MA35D1 supports the following four system boot-up conditions:
 - **1**. Boot from USB
 - 2. Boot from SD/eMMC
 - 3. Boot from NAND
 - 4. Boot from SPI Flash

		At	tach Down	nload		
Write	DDR/SRAM	NAND	SD/EMMC	SPI NOR	SPI NAND	-
Image file	1					Browse
Image type	O Data O P	ack				
Image addr						
Option	Verify					
Read	Input pa	rameters	for NuWri	ter CLI moo	de	
Save file						Browse
Range			-			
Erase						
Range			-			
	Write		Read		Frase	
			Redu		E doc	

Environment Setup

Environment Setup

• PC Spec:

CPU i5-10400 $\,^{\scriptscriptstyle \wedge}$ 16GB DDR $\,^{\scriptscriptstyle \wedge}$ 1TB SSD

- The Yocto project needs at least 150 GB but we recommend 200 GB up
- If you are a beginner, we recommend Buildroot to build MA35D1 Image
- Nuvoton provides VMware Image which have been installed related packages to build MA35D1 Image
- Download VMware Image

After downloading the virtual machine, you can skip these following steps to <u>Start up with VMware</u> This VMware Image also can be used to build Image by Buildroot

Environment Setup (1/5)

- The necessary packages must be installed before building
- Ubuntu and Debian

\$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib \
build-essential chrpath socat cpio python python3 python3-pip python3-pexpect \
xz-utils debianutils iputils-ping libsdl1.2-dev xterm curl

Environment Setup (2/5)

- This demo is under Ubuntu distribution. If you use virtual machine, ensure your RAM at least 5GB
- Update existing list of packages
 \$ sudo apt-get update
- Install a few prerequisite packages which let apt use packages over HTTPS
 \$ sudo apt install apt-transport-https ca-certificates curl software-properties-common
- Add Docker's official GPG key for the official Docker repository to your system \$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add
- Set up the stable repository, add the Docker repository to APT sources
 \$ sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu focal stable"

nuvo

Environment Setup (3/5)

- 6. Update the package database with the Docker packages from the newly added repo\$ sudo apt-get update
- 7. Install Docker

\$ sudo apt-get install docker-ce docker-ce-cli containerd.io

8. Download the Docker Script for MA35D1

\$ git clone https://github.com/OpenNuvoton/MA35D1_Docker_Script.git

user@ubuntu:~/MA35D1_Docker_Script\$ ls
build.sh Dockerfile join.sh README.md

Πυνότα

Environment Setup (4/5)

- 9. Enter docker-yocto folder, build docker image. It may take one hour to get about 710 files
 - \$./build.sh
- **10.** Enter docker image, and your command line head will be like nuvoton@a24d9e06abe3:~\$

\$./join.sh ma35d1_user nuvoton@a24d9e06abe3:~\$

Start up with VMware

• This VMware Image provides a MA35D1 Linux development environment

User Name: user Password: user

• Yocto:

\$ cd ~/yocto ~/yocto\$ repo sync

• Buildroot:

\$ cd ~/buildroot/MA35D1_Buildroot ~/MA35D1_Buildroot\$ git pull

Build Image by Buildroot

Buildroot Image by Buildroot

• Remember enter the Docker container and download MA35D1 Buildroot

\$ git clone https://github.com/OpenNuvoton/MA35D1_Buildroot.git

- Choose evaluation board which you want to build the Image
- You can find the board information in the /configs folder

\$ make numaker-iot-ma35d16f90_defconfig

• Start to build the Image

\$ make

- After building, the Image will be in the /output/image folder
- Start to program: Image Programming and System Boot

nuvo

Build Image by Yocto

Environment Setup (5/5)

- Create a folder name yocto under /shared nuvoton@a24d9e06abe3:~/share\$ mkdir yocto
- The first time you use repo, you need to set up the GIT environment

nuvoton@a24d9e06abe3:~/shared/yocto\$ git config --global user.email "test@test.test.test" nuvoton@a24d9e06abe3:~/shared/yocto\$ git config --global user.name "test" nuvoton@a24d9e06abe3:~/shared/yocto\$ git config --global http.sslverify false

• Go to /share/yocto to setup repo path

nuvoton@a24d9e06abe3:~/share/yocto\$ repo init -u https://github.com/OpenNuvoton/MA35D1_Yocto-v3.1.3.git -m meta-ma35d1/base/ma35d1.xml

 Download the yocto project and update ma35d1 source code nuvoton@a24d9e06abe3:~/share/yocto\$ repo sync

nuvo

Build Image by Yocto (1/3)

1. Setup building configuration. The DISTRO option we usually use nvt-ma35d1-directfb

~/yocto\$ DISTRO=nvt-ma35d1-directfb MACHINE=numaker-som-ma35d16a81 source sources/init-build-env build

After typing this command and if you want to change this setting, please modify /build/conf/local.conf If you exit the docker container and join the docker container again, source the environment variables

~/yocto\$ source sources/init-build-env build/

- Usage:
 - MACHINE=<machine> DISTRO=<distro> source sources/init-build-env <build-dir>
 <machine> machine name <distro> distro name <build-dir> build directory
- Choose which DISTRO configuration you want to build
 - nvt-ma35d1-directfb (sources/meta-nua3500/conf/distro/nvt-ma35d1-directfb.conf)
- Choose which machine configuration you want to build
 - numaker-som-ma35d16a81 (sources/meta-ma35d1/conf/machine/ numaker-som-ma35d16a81)
 - numaker-iot-ma35d16f70 (sources/meta-ma35d1/conf/machine/ numaker-iot-ma35d16f70)
 - numaker-iot-ma35d16f90 (sources/meta-ma35d1/conf/machine/ numaker-iot-ma35d16f90)

Build Image by Yocto (2/3)

• Choose what Image you want to build

Image name	Target	Layer
core-image-minimal	A small image that only allows a device to boot.	Poky
nvt-image-qt5	Builds ma35d1 image	meta-nua3500

- Here we choose nvt-image-qt5 to build image
- This step take about 3hrs first time (download and compile)
 \$ bitbake nvt-image-qt5
- After compiling completed, you can see image at ~/yocto/build/tmp-glibc/deploy/images/ma35d1-som-ma35d16a81/

Build Image by Yocto (3/3)

• Update Yocto Project

nuvoton@a24d9e06abe3:~/share/yocto\$ repo sync

- Update Linux
- Notice that, the command below will delete all Linux source code and download the newest source code and compile.

nuvoton@a24d9e06abe3:~/share/yocto/build\$ bitbake linux-ma35d1 –c cleanall && bitbake linux-ma35d1

Clean the old Image and build the newer Image
 \$ bitbake nvt-image-qt5 –c cleanall && bitbake nvt-image-qt5

NUVOT

Image Programming and System Boot

Image Programming and System Boot

- Nuvoton provide two method to program Image to evaluation board
 - 1. Program image to SD card
 - 2. Program image to any storage in evaluation board with NuWriter
- First way is a quick way to evaluate application because of programming time less than second way
- The power on setting could be referred to MA35D1 user manual

NUVO

Image Programming and Boot from SD Card

• Leave the Docker container or create a new command window

\$ nuvoton@a24d9e06abe3:~\$ exit

• Format your SD card first and search the SD card number

\$ sudo fdisk -l

```
Disk /dev/sdb: 14.4 GiB, 15489564672 bytes, 30253056 sectors
Units: sectors of 1 * 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes
Disklabel type: dos
Disk identifier: 0x00000000
```

• Copy the image to SD card

\$ sudo dd if=nvt-image-qt5-numaker-som-ma35d16a81.sdcard of=/dev/sdb

- After copying, insert the SD card to evaluation board, switch power setting to SD Booting, and boot
- Login password: root

nuvo

NuWriter Setting and Image Programming (1/5)

- Connect the USB port and switch Power on Setting to USB booting
- Open nuwriterUI.exe or nuwriterUI.py, and attach the DDR parameter
- Step:
 - **1**. Boot from USB
 - 2. Browse DDR File
 - 3. Attach
- Notice:

Remember install WinUSB4NuVCOM.exe and close virtual machine (VMware)

lode Help	0					
	nu	VC	T	Or		
		Attach	Download			
DDR initial	ize code					
DDR File:	MA35D1_NuWriter/d	ddrimg/enc_do	dr3_winbond	1_256mb.bin	Brow	se 1
Info.json:					Brow	se
Use In	fo.json as set info				Set Info	.ison
					Securio	
	,				360 1110	
					Set 1110	
					361 110	
					360 1110	
					Set ino	
					Set into	,
		Atta	ch 2	2	Set ino	
Dummy byte:	1	Atta	ch Z	2	Secano	
Dummy byte: Block per flag	1 h: 4096 c- 64	Atta	ch Z	2	Secano	

NuWriter Setting and Image Programming (2/5)

~/yocto/build/tmp-glibc/deploy/images/numaker-som-ma35d16a81/

- NAND:
 - pack-core-image-minimal-numaker-som-ma35d16a81-nand.bin
- SPI-NAND:
 - pack-core-image-minimal-numaker-som-ma35d16a81-spinand.bin
- SD:
 - pack-core-image-minimal-numaker-som-ma35d16a81-sdcard.bin
- Erase the flash you want to program to (NAND)
 - Choose NAND
 - Erase

le Help			
Attach	Download		
Write	IC SPIN/		
Image file			Browse
Image type () Data () Pack			
Image addr. Ux			
Read			
Save file			Browse
Range: 0x -	0x		
Erase			
Range: 0x -	0x		
Write Rea	ad	E	irase 2
	- <u> </u>		
·~; ####################################	****	########	########
cessfully erased 1 device(s)	0.00:02<00:0	JU, 19.38IUS	0

NuWriter Setting and Image Programming (3/5)

- Program NAND flash
 - Choose Download
 - Choses NAND
 - Browse NAND Package
 - Image: Pack
 - Write

MA:	35D1 NuWr	iter			_		×
de	Help						
		nu	VO	TO	Π		
			Attach Do	wnload			
		NAND	2 D/EMMC	SPI NAND			
Wr	ite						
Im	age file	-minimal-n	umaker-som-ma	35d16a81-nand.b	in	Browse	3
Im	age type	🔿 Data 🔘	D Pack 4				
Im	age addr. Ox	¢					
Rea	ad						
Sa	ve file					Browse	
Ra	nge: ux		- 0	x			-
Era	ise						
Ra	nge: 0x		- 0	x			L
	Write	5	Poad		Er		
	VVIte		Reau		En	ase	
							_
gran	nming 7/8: 10	00%	****	-J ******	####	+ # 1	
0192	20/30801920	[00:14<00:0	0, 2172826.40it/	s]	ππππ	. #	
cess	stully program	nmed 1 device	e(s)				

NUVOTO

NuWriter Setting and Image Programming (4/5)

• Switch the power setting to boot from NAND flash

• Push the reset button, and MA35D1 will boot from NAND flash

Nuvoton Release Distro 5.5-dunfell numaker-som-ma35d16a81 ttySO numaker-som-ma35d16a81 login: root

NuWriter Setting and Image Programming (5/5)

- This method recommend to the advanced developer
- If you want to replace part of Image package like Linux kernel or DTB, refer to below files
 - ~/yocto/build/tmp-glibc/deploy/images/numaker-som-ma35d16a91/nuwriter
 - pack-nand.json
 - pack-sdcard.json
 - pack-spinand.json
- The three files show the details of every part of Linux package

You can replace the part of Image by NuWriter

nuvo

Fast Application Development

Setup Compiler by Yocto (1/2)

- Set up cross-compile environment can reduce some developing time, because you don't need to use Yocto re-build the whole Linux image and program it. After use MA35D1 toolchain to compile and program it to evaluation board, you can execute it directly on evaluation board.
- Make a toolchain installer, and it may take about 1 hour

\$ bitbake nvt-image-qt5 -c populate_sdk

• Go to the following path and execute the shell file

~build/tmp-glibc/deploy/sdk \$./oecore-x86_x64-aarch64-toolcahin-5.5-dunfell.sh

Nuvoton Release Distro SDK installer version 5.5-dunfell Enter target directory for SDK (default: /usr/local/oecore-x86_64): You are about to install the SDK to "/usr/local/oecore-x86_64", P[Y/n]? Extracting SDK done Setting it up . . . Each time you wish to use the SDK in a new shell session, you need to source the environment setup script e.g.

nuvo

Setup Compiler by Yocto (2/2)

• Add toolchain to environment variables

\$ source /usr/local/oecore-x86_64/environment-setup-aarch64-poky-linux

• Create the source code file for this example: helloworld.c

```
#include <stdio.h>
int main() {
    // printf() displays the string inside console
    printf("Hello, World!\n");
    return 0;
}
```

• Compile it

\$ \$CC helloworld.c -o helloworld

• Move the binary file to MA35D1 evaluation board and execute it

nuvo

MA35D1 – Application Programming

- There are many ways to program application to evaluation board. Here Nuvoton demonstrates two methods
 - Network File System Programming
 - USB Flash Drive Programming

Network File System Programming (1/3)

- This can cross-compile the application on PC and execute it on device through NFS rather than build the whole Linux image or use another way to send the application to device.
- The following demo is operate on Ubuntu 20.04 not in the Docker container
- First, install the network file system server on host OS
 \$ sudo apt-get install nfs-kernel-server nfs-common
- Create a folder to put your application code and shared with device
- Modify the network file system setting. Add the following statement in exports

\$ sudo gedit /etc/exports
Add " *(The folder path you want to share)*(EVB's IP ADDRESS)(rw,sync,no_root_squash, no_subtree_check) "

/home/user/yocto/helloworld 192.168.0.100(rw,sync,no_root_squash,no_subtree_check)

• Restart the network file system service

\$ sudo /etc/init.d/nfs-kernel-server restart

Network File System Programming (2/3)

• Enable NFS client in Linux kernel

~/build\$ bitbake linux-ma35d1 -c devshell

~/build/tmp-glibc/work-shared/ma35d1-evb/kernel-source# make menuconfig

- File systems --->
 - [*] Enable POSIX file locking API
 - [*] Network File Systems --->
 - <*> NFS client support
 - <*> NFS client support for NFS version 2
 - <*> NFS client support for NFS version 3
 - [*] NFS client support for the NFSv3 ACL protocol extension
 - <*> NFS client support for NFS version 4
- Leave the kernel setting

~/build/tmp-glibc/work-shared/ma35d1-evb/kernel-source# exit

• Add nfs-utils to image and add the command to /build/conf/local.conf

IMAGE_INSTALL_append = "nfs-utils"

• Re-compile image and program to device

~/build\$ bitbake linux-ma35d1 -C compile

~/build\$ bitbake nvt-image-qt5

nuvo

Network File System Programming (3/3)

• Create a folder in device terminal

root@ma35d1-evb:~# mkdir -p /mnt/nfs

- Check the IP address if device and host are in the same internet domain
- Mount the NFS on device

mount -o nolock -t nfs 192.168.0.103:/home/user/yocto/build/helloworld /mnt/nfs/

• Now, you can find the folder shared with host helloworld folder

root@ma35d1-evb:~# ifconfig eth0 192.168.0.100 root@ma35d1-evb:~# cd /mnt/nfs/ root@ma35d1-evb:/mnt/nfs# ls root@ma35d1-evb:/mnt# mount -o nolock -t nfs 192.168.0.103:/home/user/yocto/buil d/helloworld /mnt/nfs/ [64.473803] NFS: bad mount option value specified: minorversion=1 root@ma35d1-evb:/mnt# cd nfs/ root@ma35d1-evb:/mnt/nfs# ls hello hello.c root@ma35d1-evb:/mnt/nfs# ./hello Hello World!!

Πυνότο

USB Dongle Programming

- After cross-compile the application, you can copy the binary file to USB storage and execute on evaluation board
- Copy the application to USB drive, insert it to evaluation board, and confirm USB device number \$ fdisk -I
- Create a folder named usb for USB device under mnt folder, and mount on USB device \$ mount /dev/sda1 /mnt/usb
- Execute the application

\$./hello

```
root@ma35d1-evb:/mnt/usb/Helloworld Sample# ls
hello
root@ma35d1-evb:/mnt/usb/Helloworld Sample# ./hello
Hello World!!
```

nuvo

Joy of innovation

谢谢 謝謝 Děkuji **Bedankt** Thank you **Kiitos** Merci Danke Grazie ありがとう 감사합니다 Dziękujemy Obrigado Спасибо Gracias Teşekkür ederim Cảm ơn