

NAU88L21

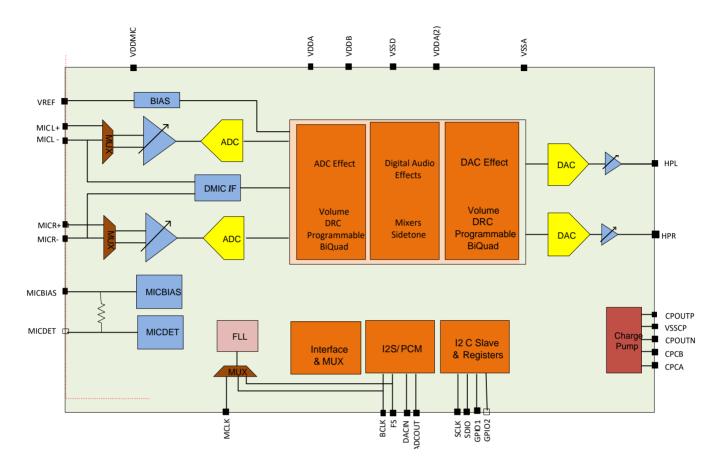
Ultra-Low Power Audio CODEC Ground-Referenced Headphone Amplifier

GENERAL DESCRIPTION

The NAU88L21 is an ultra-low power high performance audio codec that supports both analog and digital audio functions. It includes one I2S/PCM interface, one digital microphone interface, one digital mixer, two high quality DACs and ADC's, and one stereo class G headphone amplifier. The advanced on-chip signal processing engine that includes dynamic range compressor (DRC), programmable biquad filter, as well as an integrated frequency locked loop (FLL) to support various input clocks.

FEATURES

- 1 Digital I2S/PCM I/O port
- Two mono differential or one stereo differential analog microphone inputs, two single-ended microphone inputs or one stereo digital microphone input
- Cap-free Low noise Microphone bias with 7uVrms noise between 20Hz-20kHz, internal pull high resistor for microphone
- Class G Headphone Amplifier (28mW @ 32Ω, 1% THD+N)
- DAC: 105dB SNR, (A-weighted) @ 0dB gain, 1.8V and -88dB THD @ 20mW and RL= 32Ω, DAC playback to headphone output mode
- ADC: 102dB SNR (A-weighted) @ 0dB MIC gain, 1.8V, Fs = 48kHz and -91dB THD, 1.8V, MIC gain 0dB, OSR 256x

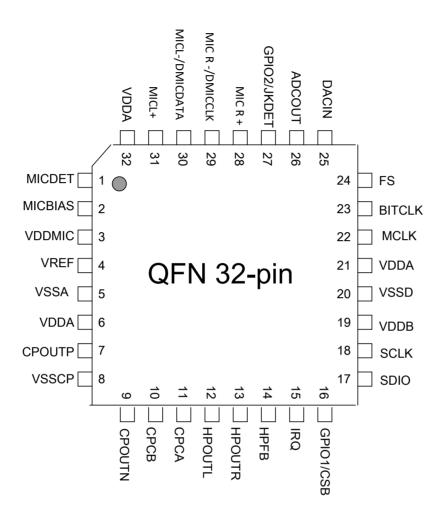

- Sampling rate from 8k to 192 kHz
- Dynamic Range Compressor (DRC)Programmable Biquad filter Integrated DSP with specific functions:Input automatic level control (ALC/AGC)/limiter
- Output dynamic-range-compressor/limiter
- Package: QFN-32
 Package is Halogen-free, RoHS-compliant and TSCA-compliant

APPLICATIONS

- Gaming controller
- Wireless Headset
- Smart Remote Controller

Block Diagram - QFN32

Table of Contents PIN DIAGRAM 6 PIN DESCRIPTION...... 7 ELECTRICAL CHARACTERISTICS......8 GENERAL DESCRIPTION......11 Inputs......11 1.1 1.2 1.3 ADC, DAC and Digital Signal Processing......11 1.4 POWER SUPPLY 12 2.1 2.2 INPUT PATH DETAILED DESCRIPTIONS.......13 3. 3.1 3.2 Digital Microphone Input......14 VRFF 14 3.3 3.4 3.5 3.5.1 ADC DIGITAL BLOCK...... 18 ADC Dynamic Range Compressors (DRC) 18 4.1 4.1.1 Level Estimation 18 4.1.2 4.1.3 4.2 ADC Programmable Biquad Filter21 4.3 4.4 4.5 DAC DIGITAL BLOCK...... 23 5. 5.1 Level Estimation 23 5.1.1 5.1.2 5.2 5.3 5.4 5.5


5.6	Companding	27
5.6		
5.6	5.2 A-law	27
6. C	CLOCKING AND SAMPLE RATES	28
6.1	I2S/PCM Clock Generation	29
6.2	Frequency Locked Loop(FLL)	31
7. C	ONTROL INTERFACES	33
7.1	2-Wire-Serial Control Mode (I ² C Style Interface)	33
7.2	2-Wire Protocol Convention	
7.3	2-Wire Write Operation	34
7.4	2-Wire Read Operation	35
7.5	Digital Serial Interface Timing	36
Tabl	le 13 Digital Serial Interface Timing Parameters	36
7.6	Software Reset	36
8. D	DIGITAL AUDIO INTERFACES	37
8.1	Digital Audio Interface	37
8.1.	1 Right-Justified Audio Data	37
8.1.2	2 Left-Justified Audio Data	37
8.1.3	3 I2S Audio Data	37
8.1.4	4 PCMA Audio Data	38
8.1.5	5 PCMB Audio Data	38
8.1.6	6 PCM Time Slot Audio Data	38
8.1.7	7 TDM I2S Audio Data	39
8.1.8	8 TDM PCMA Audio Data	39
8.1.9	9 TDM PCMB Audio Data	40
8.1.	10 TDM PCM Offset Audio Data	40
	Digital Audio Interface Timing Diagrams	
	1 Digital Audio Interface Slave Mode	
	2 Digital Audio Interface Master Mode	
	3 PCM Audio Interface Slave Mode	
	4 PCM Audio Interface Master Mode	
	5 PCM Time Slot Audio Interface Slave Mode	
	6 PCM Time Slot Audio Interface Master Mode	
9. C	OUTPUTS	
9.1	Class G Headphone Driver and Charge Pump	
10. C	CONTROL AND STATUS REGISTERS	47
11. T	YPICAL APPLICATION DIAGRAM	72

12.	PACKAGE INFORMATION	73
13.	ORDERING INFORMATION	76
14.	REVISION HISTORY	77
IMI	PORTANT NOTICE	79

Pin Diagram

Pin Description

Pin #	Name	Туре	Functionality
1	MICDET	Analog IO	Microphone/button detect, 2kOhm between Mic and Mic Bias
2	MICBIAS	Analog Output	Microphone Bias Output
3	VDDMIC	Supply	Microphone supply
4	VREF	Analog I/O	Internal DAC & ADC voltage reference decoupling I/O
5	VSSA	Ground	Analog Ground
6	VDDA	Supply	Analog Supply
7	CPOUTP	Analog I/O	Charge Pump positive voltage
8	VSSCP	Ground	Charge Pump Supply ground
9	CPOUTN	Analog I/O	Charge Pump negative voltage
10	СРСВ	Analog I/O	Charge Pump switching capacitor node B
11	CPCA	Analog I/O	Charge Pump switching capacitor node A
12	JKTIP(HPL)	Analog Output	Jack Tip; Headphone left channel output
13	JKR1(HPR)	Analog Output	Jack Ring1; Headphone right channel output
14	HPFB	Ground	Headphone Ground
15	IRQ	Digital I/O	IRQ
16	GPIO1/CSB	Digital I/O	General Purpose IO/CSB
17	SDIO	Digital I/O	Serial Data for I2C
18	SCLK	Digital Input	Serial Data Clock for I2C
19	VDDB	Supply	Digital IO Supply
20	VSSD	Ground	Digital IO ground
21	VDDA	Supply	Analog supply
22	MCLK	Digital Input	CODEC Master clock input
23	BCLK	Digital I/O	Serial data bit clock input or output for I2S or PCM data
24	FS	Digital I/O	Frame Sync input or output for I2S or PCM data
25	DACIN	Digital Input	Serial Audio data input for I2S or PCM data
26	ADCOUT	Digital Output	Serial Audio data Output for I2S or PCM data
27	JKDET	Analog Input	Jack detect input
28	MICR+	Analog Input	PGA MICR+ Analog Input
29	MICR-/DMCLK	Analog/Digital Output	PGA MICR- Analog Input / Digital Microphone Clk output
30	MICL-/DMDATA	Analog Input/Digital Input	PGA MICL- Analog Input / Digital Microphone Data input
31	MICL+	Analog Input	PGA MICL+ Analog Input
32	VDDA	Supply	Analog Supply

Electrical Characteristics

Conditions: $V_{DD}A = V_{DD}B = 1.8V$; $V_{DD}MIC = 3.6V$. R_L(Headphone) = 32 Ω , f = 1kHz, MCLK=12.288MHz, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$

Symbol	Parameter	Conditions	Typical	Limit	Units
		V _{DD} A	4	16	
ISD	Shutdown Current	V _{DD} B	0.2	1	μΑ
		V _{DD} MIC	0.2	1	
I _{DD}	Headset Detection Standby Mode	MCLK off, Jack Insertion, IRQ enabled		10	μA
טטו	Active Current Normal Playback Mode	fS = 48kHz, Stereo HP DAC On, HP On, POUT = 0mW. RL(HP) = 32Ω		5	mA
		Headphone Amplifier			
Po	Output Power	Stereo RL = 32Ω, DAC Input, CPVVDD = 1.8V, f=1020Hz, 22kHz BW, THD+N = 1% (QFN package)	28		mW
FO	Output Fower	Stereo RL = 16Ω , DAC Input, CPVVDD = $1.8V$, f= $1020Hz$, $22kHz$ BW, THD+N = 1% (QFN Package)	33		mW
THD+N	Total Harmonic Distortion + Noise	RL = 32Ω, f=1020Hz, PO = 20mW	-88		dB
SNR	Signal to Noise Ratio	VOUT = 1VRMS, DAC Input, DAC_Gain = 0dB, HP_Gain = 0dB, Digital Zero Input, f=1020Hz, A- Weighted)	105		dB
ONIX	Oignal to Noise Natio	VOUT = 1 VRMS, DAC Input, DAC_Gain = 0dB, HP_Gain = 0dB, Digital Zero Input, f=1020Hz, A- Weighted, auto attenuate enabled	108		dB
		fRIPPLE = 217Hz, VRIPPLE = 200mVP_P Input Referred, HP_GAIN = 0dB DAC Input, DAC_Gain = 0dB Ripple Applied to VDDA	90		dB
PSRR	Power Supplys Rejection Ratio	Mono_Gain = 0dB Ripple Applied to VDDA	90		dB
		Stereo Single Ended Input Terminated, Stereo_Gain = 0dB Ripple Applied to VDDA	90		dB
X _{TALK}	Channel Crosstalk	Left Channel to Right Channel, - 1dBFS, Gain = 0dB, f = 1020Hz	70		dB
	Interchannel Level Mismatch		+/- 0.1		dB
	Frequency Response	F = 20Hz ~ 20kHz	+0.1/-0.2		dB
	Pop up Noise			1	mVrms
eos	Output Noise	DAC_Gain = 0dB, HP_Gain = 0dB, fS=48kHz, OSRDAC = 128, A- Weighted	4.4		uV _{RMS}
	Out of Band Noise Level		-60dB		

Symbol	Parameter	Conditions	Typical	Limit	Units
Vos	Output Offset Voltage	HP_Gain = 0dB, DAC_Gain= 0dB, DAC Input		±1	mV
	Power Consunption MP3 Mode	No Load, No Signal, Amp on fS = 48kHz, Stereo DAC On, Amp On, POUT = 0mW. RL = 32Ω	6		mW
	Fs Accuracy (44.1 / 48 kHz)		+/- 0.02%		
	Pop and Click Noise	Plug into or out of DAC to Headphone	1		mVrms
		ADC			1
	ADC Total Harmonia Distortion	MIC Input, MIC_GAIN = 0dB, VIN = 0.8Vrms, f=1020Hz, fs = 48KHz, Mono Differential Input	-91		dB
THD+N	ADC Total Harmonic Distortion + Noise	MIC Input, MIC_GAIN = 30dB, Volume = 0dB, Vin=28.5mVrms, f=1020Hz, Digital Gain = 0dB, Mono Differential Input	-80		dB
	Circulto Naisa Detia	Reference = VOUT(0dBFS), A- Weighted, MIC Input, MIC Gain = 0dB,fs = 48kHz, Mono Differential Input	102		dB
SNR	Signal to Noise Ratio	Reference = VOUT(0dBFS), A- Weighted, MIC Input, MIC Gain = 6dB,fs = 48kHz, Mono Differential Input	101		dB
PSRR	Power Supply Rejection Ratio	VRIPPLE = 200mVPP applied to VDDA, fRIPPLE = 217Hz, Input Referred, MIC_GAIN = 0dB Differential Input	90		dB
CMRR	Common Mode Rejection Ratio	Differential Input 100mVrms, PGA gain = 20dB, frequency sweep from 20Hz to 20KHz	65		dB
FS _{ADC}	ADC Full Scale Input Level	V _{DD} A= 1.8V	1		V _{RMS}
	Minimum Input Impedance		10		kOhm
	Frequency Response	f = 20Hz ~ 20kHz	+0.1/-0.2		dB
	Pop up Noise	TBD	1		mVrms
	Power Consumption	No Signal, ADC on $f_s = 44.1 \text{kHz}$	5		mW
		MICBIAS			
V _{BIAS}	Output Voltage	Programmable 1.8V to 3.0V in 6 steps	2.5		V
Гоит	Output Current			4	mA
e _{os}	Output Noise	Low noise mode, at 1kHz		47	nV/√Hz

Digital I/O

Parameter	Symbol	Commen	ts/Conditions	Min	Max	Units
Input I OW Isval	Ma	V_{DD}	B = 1.8V		0.33*V _{DD} B	\/
Input LOW level	VıL	V_{DD}	B = 3.3V		0.37*V _{DD} B	V
Input HICH lovel	\/	$V_{DD}B = 1.8V$		0.67*V _{DD} B		\/
Input HIGH level	ViH	V_{DD}	B = 3.3V	0.63*V _{DD} B		V
Output HIGH level	Vон	I _{Load} = 1mA	V _{DD} B=1.8V	0.9*V _{DD} B		V
Output High Hevel	VOH	ILoad= IIIIA	$V_{DD}B = 3.3V$	0.95*V _{DD} B		V

Parameter	Symbol	Comments/Conditions		Min	Max	Units
Output LOW level	V _{OL}	I _{Load} = 1mA	$V_{DD}B = 1.8V$		$0.1*V_{DD}B$	\/
Output LOVV level	VOL	I _{Load} = 1mA	V _{DD} B=3.3V		0.05*V _{DD} B	V

Recommended Operating Conditions

Condition	Symbol	Min	Typical	Max	Units
Digital I/O Supply Range	$V_{DD}B$	1.62	3.3	3.6	V
Analog Supply Range	$V_{DD}A$	1.62	1.8	1.98	V
Headphone Supply Range	$V_{DD}A$	1.62	1.8	1.98	V
Microphone Bias Supply Voltage	$V_{DD}MIC$	3.0	3.3	3.6	V
Temperature Range	T _A	-40		+85	°C

Absolute Maximum Ratings

Parameter	Min	Max	Units
Digital Supply Range	-0.3	2.2	V
Digital I/O Supply Range	-0.3	4.0	V
Analog Supply Range	-0.3	2.2	V
Headphone Supply Range	-0.3	2.2	V
Microphone Bias Supply Voltage	-0.3	4.0	V
Voltage Input Digital Range	DGND - 0.3	V _{DD} + 0.3	V
Voltage Input Analog Range	AGND - 0.3	V _{DD} + 0.3	V
Junction Temperature, TJ	-40	+150	°C
Storage Temperature	-65	+150	°C

CAUTION: Do not operate at or near the maximum ratings listed for extended periods. Exposure to such conditions may adversely influence product reliability and result in failures not covered by warranty.

1. General Description

NAU88L21 is an ultra-low power CODECs that has both analog and digital blocks operating at 1.8V. This CODEC includes DSP functions including DRCs (Dynamic Range Compression) and programmable biquad filters. Mic bias supply is upgraded to support voltages up to 3V.

1.1 Inputs

The NAU88L21 provides analog inputs to acquire and process audio signals from microphones with high fidelity and flexibility. There is a stereo input path that can be used to capture signals from single-ended or differential sources. The channel has a fully differential programmable gain amplifier (PGA). The outputs of the PGA connect to the ADC.

The NAU88L21 also has an input for one digital microphone. The NAU88L21 provides a DMCLK, the clock signal for the digital microphones.

The analog and the digital microphone inputs cannot be used simultaneously.

1.2 Outputs

NAU88L21 has one pair of ground-referenced Class G headphone outputs that are fed by two DACs. The headphone amplifier has a gain range of -9dB to 0dB.

The Class G headphone amplifier is powered by the charge pump output voltages CPOUTP and CPOUTN. When there is no loading the CPOUTP is equal to VDDA, and CPOUTN is equal to –VDDA. This headphone output can also be used as a lineout.

1.3 ADC, DAC and Digital Signal Processing

The NAU88L21 has two independent high quality ADC's and DACs. These are high performance 24-bit sigma-delta converters, which are suitable for a very wide range of applications.

The ADCs and DACs have functions that individually support digital mixing and routing. The ADCs and DACs blocks also support advanced digital signal processing subsystems that enable a very wide range of programmable signal conditioning and signal optimizing functions. All digital processing is done with 24-bit precision to minimize processing artifacts and maximize the audio dynamic range supported by the NAU88L21.

The ADCs and DACs digital signal process can support two-point dynamic range compressors (DRCs), programmable biquad filters configurable for low pass filters, high pass filters, Notch filter, Bell, low shelf, and high shelf filters with various gain, Q, and frequency controls. Two-point DRCs can be programmed to limit the maximum output level and/or boost a low output level. The biquad filters can be configured as high pass filters intended for DC-blocking or low frequency noise reduction, such as reducing unwanted ambient noise or "wind noise" on a microphone inputs.

1.4 Digital Interfaces

Command and control of the device is accomplished by using the I2C interface.

The digital audio I/O data streams transfer separately from command and control using either I2S or PCM audio data protocols

These simple but highly flexible interface protocols are compatible with most commonly used serial data protocols, host drivers, and industry standard I2S and PCM devices.

2. Power Supply

This NAU88L21 has been designed to operate reliably using a wide range of power supply conditions and power-on/power-off sequences. Because of this, there are no special requirements for the sequence or rate at which the various power supply pins change. Any supply can rise or fall at any time without harming the device. However, pops and clicks may result from some sequences.

2.1 Power on and off reset

The NAU88L21 includes a power on reset circuit on chip. The circuit resets the internal logic control at VDDA supply power up and this reset function is automatically generated internally when power supplies are too low for reliable operation. The reset threshold is approximately 0.55Vdc and 1.0Vdc for VDDA. It should be noted that these values are much lower than the required voltage for normal operation of the chip.

The reset is held on while the power levels for VDDA are below their respective thresholds. Once the power levels rise above their thresholds, the reset is released. Once the reset is released, the registers are ready to be written to. It is also important to note that all the registers should be kept in their reset state for at least 6µs.

An additional internal RC filter based circuit is added which helps the circuit respond for fast ramp rates (~10µs) and generate the desired reset period width (~10µs at typical corner). This filter is also used to eliminate supply glitches which can generate a false reset condition, typically 50ns.

For reliable operation, it is recommended to write any value to register upon power up. This will reset all registers to the known default state.

Note that when VDDA are below the power on reset threshold, then the digital IO pins will go into a tri-state condition.

2.2 Power up and Start Sequence

The power up sequence to bring up the analog blocks smoothly is illustrated below and involves three different time segments (T1 - T4). The power supply ramp rate depends on a number of factors such as the power source drive strength, board parasitics and the decopling capacitor size on the supply line. Typically, a power supply ramp time can be as fast as 5mS or as slow as 200mS.

During time T1, the power supply ramps-up. The internal PORB reset is generated when V_{DDA} is lower than 1.1V for reliable maintenance of internal logic circuits. While PORB signal is low, it clears internal digital flops. Most of the flops will be cleared to '0' while some flops can be set to '1' during the PORB pulse depending on the required default state of the register.

After time T1, wait another time 1mS so that the power supply is stable before writing to the registers. During time T2, the chip is in stand-by mode and all registers are in a default state. In stand-by, the chip only consumes leakage current and all analog blocks are turned-off. At time T3, the user can start to write data into the registers via the I2C serial bus to setup the chip for their application.

When I2C finished loading register in T3 period, waiting for T4, 1ms period, I2S clocks could input to device.

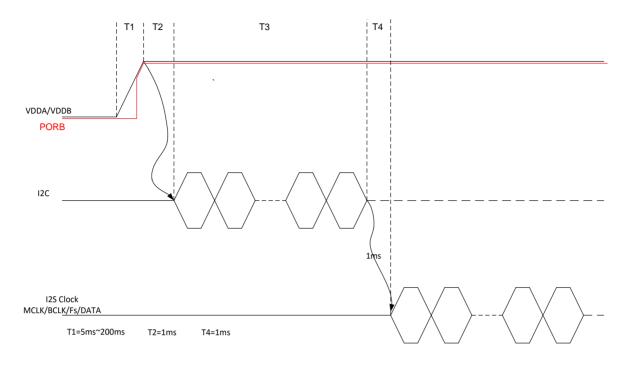


Figure 1: Power up sequence

3. Input Path Detailed Descriptions

NAU88L21 has two low noise, high common mode rejection ratio analog microphone differential input. The microphone inputs MICL+/- & MICR+/- which are followed by -1dB to 36dB PGA gain stages that have a fixed 12kOhm input impedance.

Inputs are maintained at a DC bias of approximately ½ of the VDDA supply voltage. Connections to these inputs should be AC-coupled by means of external DC blocking capacitors suitable for the device application.

The differential microphone input structure is essential in noisy digital systems where amplification of low-amplitude analog signals is necessary such as in portable digital media devices and cell phones. Differential inputs are also very useful to reduce ground noise in systems in which there are ground voltage differences between different chips and components. When properly implemented, the differential input architecture offers an improved power-supply rejection ratio (PSRR) and higher ground noise immunity.

3.1 Analog Microphone Inputs

The analog microphone inputs are routed to the FEPGA (Front End Programmable Gain Amplifier). The input stage can be configured in different modes. The FEPGA gain can be varied from -1dB to 36dB in 1dB steps. The gain stage has a fixed 12kOhm input impedance and can be individually enabled or disabled by using register.

As shown in Figure 1,
For left channel input path
SL1, it is controlled by 0x76[11]DISCHRG and 0x77[14]ACDC_CTRL[0],
SL2, it is controlled by 0x76[11]DISCHRG and 0x77[15]ACDC_CTRL[1],
SL3 and SL4, they are controlled by 0x77[5]FEPGA_MODEL[1],
SL5 and SL6, they are controlled by 0x77[7]FEPGA_MODEL[3],
SL7, it is controlled by 0x6B[3],
SL8, it is controlled by 0x6B[5].

For right channel input path

SR1, it is controlled by 0x76[11]DISCHRG and 0x77[14]ACDC_CTRL[0],

SR2, it is controlled by 0x76[11]DISCHRG and 0x77[15]ACDC_CTRL[1],

SR3 and SR4, they are controlled by 0x77[1]FEPGA_MODER[1],

SR5 and SR6, they are controlled by 0x77[3]FEPGA MODER[3],

SR7, it is controlled by 0x6B[2],

SR8, it is controlled by 0x6B[4].

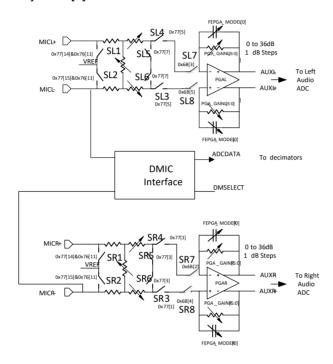


Figure 2: Microphone Input Block Diagram with Registers

3.2 Digital Microphone Input

The MICL- and MICR- pins can be used for the digital microphone input. MICR- is the clock for the digital microphones and the MICL- is the data in.

3.3 VREF

The NAU88L21 includes a mid-supply reference circuit that produces a voltage close to VDDA/2. This "VREF" pin should be decoupled to VSS through an external bypass capacitor. Because VREF is used as a reference voltage inside the NAU88L21, a large capacitance is required to achieve good power supply rejection at low frequency. Typically, a value of 4.7µF should be used. This larger capacitance may introduce longer rise time of VREF and delay the line output signal. However, a pre-charge circuit can be supported to help reduce the rise time. Due to the high

impedance of the VREF pin, it is important to use a low leakage capacitor. A pre-charge circuit has been implemented to reduce the VREF rise time. Once charged, this can be disabled using to save power or prevent rapid changes in level due to fluctuations in VDDA. The below Table 1 shows the VREF tie-off resister selection.

VMIDSEL	VREF Resistor Selection	VREF Impedance
00	Open, no resistor selected	Open, no impedance installed
01	50kOhm	25kOhm
10	250kOhm	125kOhm
11	5kOhm	2.5kOhm

Table 1: VREF Impedance Selection

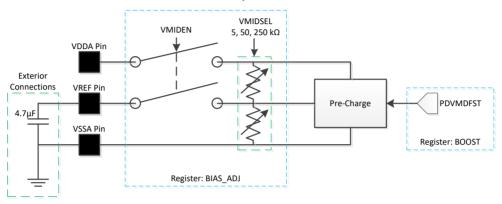


Figure 3: VREF Circuitry

3.4 MIC Bias

The NAU88L21 provides one MIC bias pin, which can be used to power various microphones. The output level of MIC Bias can be set between VDDA and 1.53 X VDDA using register settings.

It is recommended that the microphones do not draw more than 4mA from the MICBIAS pin. There are options for connecting internal 2 Kohm resistor to the microphone and for low noise or low power mode. If MICBIAS is used in low power mode, typically 100nF or 200nF capacitor can be used along with MIC Bias level at VDDA. In the low noise mode, external 1uF or 4.7uF capacitor can be omitted by register settings when MIC Bias is used to power analog microphones.

3.5 MIC detect

The MIC detect block can detect whether a microphone is connected between the MICBIAS output and the MICDET pin. Either the internal 2kOhm resistor or an external 2kOhm resistor can be used to connect the microphone to the MICDET pin and MICBIAS. See Figure 4, where the internal hookup of the MICDET and MICBIAS blocks is shown.

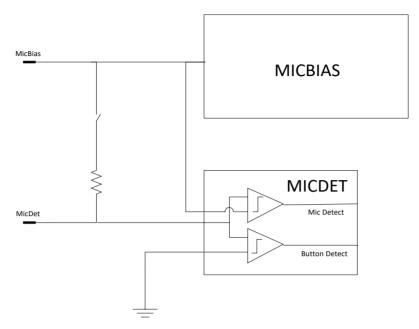


Figure 4. Mic Detect and MICBIAS blocks

Application note: Adding a simple RC on the MICDET pin can help reduce noise coupling. These may be board level related, or component related effects.

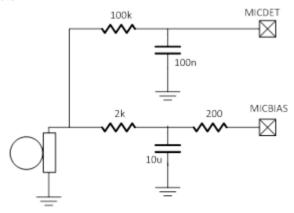


Figure 5. Reducing noise coupling effects

If the optional external 2KOhm resistor is used, then the internal 2K Ohm resistor (Between MICBIAS and MICDET) should be disabled.

3.5.1 Key Release

This feature detects the edge case where the key press interrupt is not followed by a release interrupt until later on in the sequence and clears the x11 register to prepare for further interrupts.

Figure 6. Key Release Flowchart

Note:

- Mic detect current threshold ~ 12.5uA, and voltage threshold = MICBIAS 26mV. Either condition trigger mic detectors
- 2. Button (key) detection current throushold larger than 800uA and voltage threshold is GND + 85mA. Either condition trigger button detection.

4. ADC Digital Block

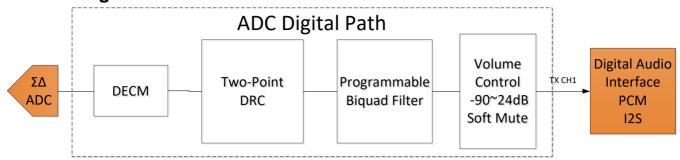


Figure 7: ADC Digital Path

The ADC digital block takes the output of the 24-bit Analog-to-Digital converter and performs signal processing aimed at producing a high quality audio sample stream to the audio path digital interface. The Figure 7 shows the various steps associated with the ADC digital path.

Oversampling is used to improve noise and distortion performance; however this does not affect the final audio sample rate. The oversampling rate configured between 32X and 256X using register settings.

The polarity of either ADC output signal can be changed independently on either ADC logic output as a feature sometimes useful in management of the audio phase. This feature can help minimize any audio processing that may be otherwise required as the data is passed to other stages in the system.

The full-scale input level is proportional to VDDA. For example, with a 1.8V supply voltage, the full-scale level is 1.0VRMS.

4.1 ADC Dynamic Range Compressors (DRC)

The ADC's in the digital signal path each support a two-point dynamic range compressor (DRC) for advanced signal processing. Each DRC can be programmed to limit the maximum output level and/or boost a low output level signal. The DRC's function consists of level estimation and static curve control.

4.1.1 Level Estimation

The NAU88L21 uses Peak level estimation that depends on the attack and decay time settings, which can be programmable by register settings as shown in the Table 2.

BITS	DRC_PK_COEF1_ADC	DRC_PK_COEF2_ADC
0000	Ts	63*Ts
0001	3*Ts	127*Ts
0010	7*Ts	255*Ts
0011	15*Ts	511*Ts
0100	31*Ts	1023*Ts
0101	63*Ts	2047*Ts
0110	127*Ts	4095*Ts
0111	255*Ts	8191*Ts

Table 2: ADC Level Estimation - Attack and Decay Time Register Settings

Please note that Ts is the sampling time given by 1/(Sampling Frequency)

4.1.2 Static Curve

The DRC static curve supports up to five programmable sections as shown in the Figure 8.

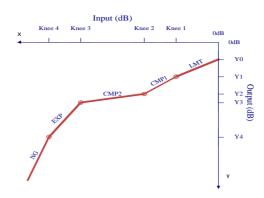


Figure 8: DRC Static Characteristic

Each section on the characteristic (labeled NG, EXP, CMP2, CMP1, and LMT) can be controlled by setting the slope and knee point values, in their respective registers. The table below provides the corresponding register locations.

Static Curve Section	Slope	Knee Point
LMT	0, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1	
CMP1	0, 1/2, 1/4, 1/8, 1/16, 1	0 to -31dB with -1dB step
CMP2	0, 1/2, 1/4, 1/8, 1/16, 1	0 to -63dB with -1dB step
EXP	1, 2, 4	-18 to -81dB with -1dB step
NG	1, 2, 4, 8	-35 to -98dB with -1dB step

Table 3: ADC DRC Static Curve control registers

The output Y values can be determined based on the slopes and knee points selected. Y1 is always equal to Knee 1, as an initial and default condition.

Y1 = Knee 1 Y0 = Y1 - (Knee 1) * (LMT Slope) Y2 = (Knee 2 - Knee 1) * (CMP1 Slope) + Y1 Y3 = (Knee 3 - Knee 2) * (CMP2 Slope) + Y2 Y4 = (Knee 4 - Knee 3) * (EXP Slope) + Y3

The attack time and decay time is programmable as shown in the Table 4. And the smooth knee filter can be also enabled by register setting.

<u>Bits</u>	DRC ATK ADC CH##	DRC DCY ADC CH##
0000	Ts	63*Ts
0001	3*Ts	127*Ts
0010	7*Ts	255*Ts
0011	15*Ts	511*Ts
0100	31*Ts	1023*Ts
0101	63*Ts	2047*Ts
0110	127*Ts	4905*Ts
0111	255*Ts	8191*Ts
1000	511*Ts	16383*Ts
1001	1023*Ts	32757*Ts
1010	2047*Ts	65535*Ts
1011	4095*Ts	
1100	8191*Ts	

Table 4: ADC Attack and Decay Time Register Settings

4.1.3 Limitation

Due to DC offsets from the ADC block, DRC performance may have limitation. Especially when DRC is designed with 3 or 4 knee points, output level variation caused by DC offsets should be taken into consideration. For DRC design with 2 knee points by setting knee2, knee3, knee4 together, DRC output curves of left and right channels typically share the same track as shown below:

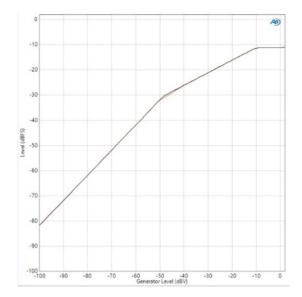


Figure 9: DRC Output Curve with 2 Knee Points

For DRC with 3 or 4 knee points, systematic DC offsets on both channels will become unnegligible. Especially for input level at lower than -50dB, DRC output curves of left and right channels will split into two traces. At -60dB input level, the output level variation may be up to 15dB as shown below:

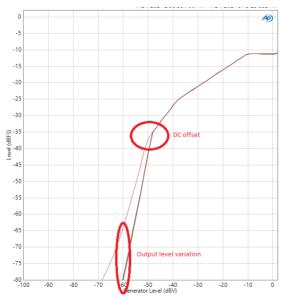
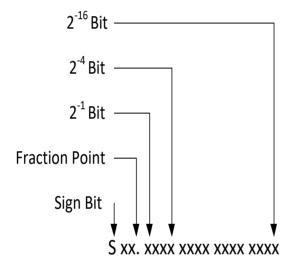


Figure 10: DRC Output Curve with 3 Knee Points

4.2 ADC Digital Volume Control


The digital volume control feature allows adjustment of the audio volume coming from ADC using a two-stage volume control. This allows the gain to be adjusted from -103dB to +24dB. Also included is a mute value that will reduce the output signal of the ADCs to zero.

4.3 ADC Programmable Biquad Filter

The NAU88L21 has 4 dedicated digital biquad filters. Two for the ADC path, and two for the DAC path. The biquad filter is a second-order recursive linear filter with two poles and two zeros. Its transfer function is the Z-domain consists of two quadratic functions:

$$H(z) = \frac{B_0 + B_1 Z^{-1} + B_2 Z^{-2}}{1 + A_1 Z^{-1} + A_2 Z^{-2}}$$

The coefficients A₁, A₂, B₀, B₁, B₂ are represented in the 3.16 format described below

Each Biguad Coefficient has 19 bits in Sxx.16 format where

- S is the sign bit (1 bit),
- xx are integers (2bits)
- 16 fractional bits (16 bits)

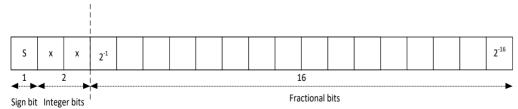


Figure 11: Number format description for biquad filters coefficients

4.4 Companding

Companding is used in digital communication systems to optimize signal-to-noise ratios with reduced data bit rates using non-linear algorithms. The NAU88L21 supports the two main telecommunications companding standards on both transmit and receive sides: A-law and μ -law. The A-law algorithm is primarily used in European communication systems and the μ -law algorithm is primarily used by North America, Japan, and Australia.

4.5 Additional ADC Application Notes

The ADC clock polarity can be inverted if necessary by register setting. It is recommend to match ADC oversampling rate with ADC clock rate as shown in the Table 5.

ADC_RATE	CLK ADC SRC
00(OSR=32)	11(CODEC 1/8)
01(OSR=64)	10(CODEC1/4)
10(OSR=128)	01(CODEC 1/2)
11(OSR=256)	00(CODEC CLK)

Table 5: ADC_RATE and CLK_ADC_SRC Pairs

5. DAC Digital Block

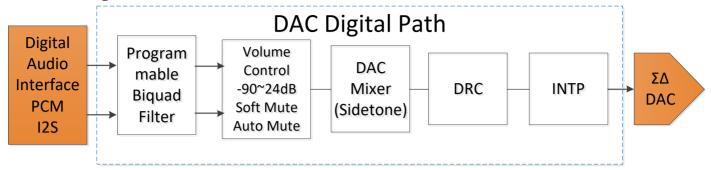


Figure 12: DAC Digital Path

The DAC digital block uses 24-bit signal processing to generate analog audio with a 16-bit digital sample stream input. This block consists of a sigma-delta modulator, digital decimator/filter, programmable biquad filter, and a DRC. The full-scale output level is proportional to VDDA. For example, with a 1.8V supply voltage, the full-scale level is 1.0 VRMS. The oversampling rate of the DAC can be changed from 32x to 256x for improved audio performance at higher power consumption. The DAC output signal polarity can be changed using register setting. This can help minimize any audio processing that may be required as the data is passed from other stages of the system.

5.1 DAC Dynamic Range Control (DRC)

The DAC DRC functions in the same way as the ADC DRC explained in Section 4.1. However, different control registers are used.

5.1.1 Level Estimation

The Table 6 shows the attack and decay times for the peak level estimation. And, the time constant Ts is the the sampling time given by 1/(Sampling Frequency).

Вітѕ	DRC PK COEF1 ADC	DRC_PK_COEF2_ADC		
0000	Ts	63*Ts		
0001	3*Ts	127*Ts		
0010	7*Ts	255*Ts		
0011	15*Ts	511*Ts		
0100	31*Ts	1023*Ts		
0101	63*Ts	2047*Ts		
0110	127*Ts 4095*Ts			
0111	255*Ts 8191*Ts			

Table 6: DAC Level Estimation Attack and Decay Time Register Settings

5.1.2 Static Curve

The DRC static curve supports five programmable sections, and slope and knee points can be configured as shown in the Table 7.

Static Curve Section	Slope	Knee Point		
LMT	0, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1			
CMP1	0, 1/2, 1/4, 1/8, 1/16, 1	0 to -31dB with -1dB step		
CMP2	0, 1/2, 1/4, 1/8, 1/16, 1	0 to -63dB with -1dB step		
EXP	1, 2, 4, 8	-18 to -81dB with -1dB step		
NG	1, 2, 4, 8	-35 to -98dB with -1dB step		

Table 7: DAC DRC Static Curve Control Registers

The Table 8 shows the attack and decay time for DRC. And, it needs to be carefully used combination with cross talk function because DRC is the last blocks in the path after mixer. Small cross-talk signal might be filtered out by DRC. The smooth knee function can be also enabled by register setting.

Вітѕ	DRC ATK DAC	DRC DCY DAC
0000	Ts	63*Ts
0001	3*Ts	127*Ts
0010	7*Ts	255*Ts
0011	15*Ts	511*Ts
0100	31*Ts	1023*Ts
0101	63*Ts	2047*Ts
0110	127*Ts	4095*Ts
0111	255*Ts	8191*Ts
1000	511*Ts	16383*Ts
1001	1023*Ts	32757*Ts
1010	2047*Ts	65535*Ts
1011	4095*Ts	
1100	8191*Ts	

Table 8: DAC Static Curve Attack and Delay Time Register Settings

5.2 DAC Digital Volume Control, Mute and Channel selection

DACL and DACR both have separate digital volume controls that allow the user to adjust the gain from -103dB to +24dB in 0.5dB steps as well as mutes. Left and Right channels can be adjusted separately and control is accessed through register settings.

5.3 DAC Soft Mute

The soft mute function ramps the DAC digital volume down to zero when enabled. When disabled, the volume increases to the register specified volume level for each channel. This feature provides a tool that is useful for using the DAC without introducing pop and click sounds.

5.4 DAC Auto Attenuate

Auto-attenuate can greatly increase the perceived SNR during playback of silence. The last analog output stage is attenuated such that the noise contribution of the preceding stages is eliminated. The use of auto-attenuate by attenuating the analog output on a DAC path when the digital input represents a zero signal needs to be done gradually in order to avoid audible pops due to sudden offset changes. It is desirable to slowly ramp down the gain of the analog output stage to the maximum attenuation level. This function will be referred to as auto-attenuate. The auto-attenuate feature is used to increase the Signal to Noise Ratio. In addition, the auto attenuate logic can be used to attenuate the analog output manually,saving some software routines and allowing pop-less ramp up and down of the analog outputs with little register writes.

The auto-attenuate function can be enabled manually or automatically. In the automatic mode, if both the left and right channel receive 1024 consecutive samples of "0", then it will read and store the value of the headset driver volume control into internal temporary registers and then attenuate the headset driver output by 1dB for every 128 samples, until -54dB is reached (54 steps maximum). If , at any time, the I2S DACIN signal receives non-zero signal samples, the headset output driver gain is increased by 1dB per step and in 1, 16, 32 or 128 samples per step (programmable by register) until the gain will be stepped up until the original gain setting is reached. In the manual mode, once enabled, it will immediately start saving the volume control into temporary registers and attenuate signals by 1dB for every 128 samples untile -54dB is reached. If the manual attenuate is disabled, the gain will be fully recovered by 1dB step in 1, 16, 32, or 128 samples per step.

5.5 DAC Path Digital Mixer with Side tone

The NAU88L21 implements a channel based digital mixer architecture. Each DAC outputs can be selected between the different inputs. The ADC input channels, I2S channels are capable of being mixed into either output of the DAC. The figure below shows a block diagram of how the mixer works along with the related registers.

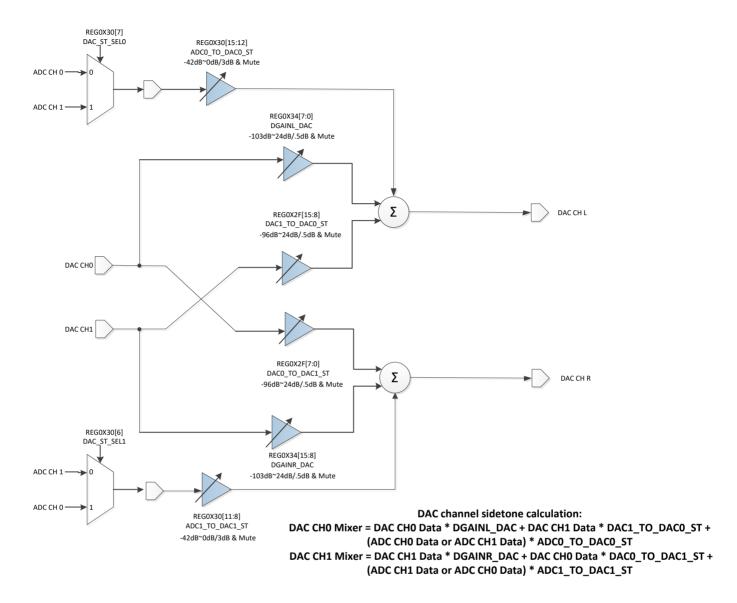


Figure 13: DAC Path Digital Mixer with Side tone.

5.6 Companding

Companding is used in digital communication systems to optimize signal-to-noise ratios with reduced data bit rates using non-linear algorithms. The NAU88L21 supports the two main telecommunications companding standards on both transmit and receive sides: A-law and μ -law. The A-law algorithm is primarily used in European communication systems and the μ -law algorithm is primarily used by North America, Japan, and Australia.

Companding converts 14 bits (µ-law) or 13 bits (A-law) to 8 bits using non-linear quantization resulting in 1 sign bit, 3 exponent bits and 4 mantissa bits. When the companding mode is enabled, 8 bit word operation must be enabled.

Sections 5.6.1 and 5.6.2 contain the compression equations set by the ITU-T G.711 standard and implemented in the NAU88L21.

5.6.1 µ-law

$$F(x) = \frac{\ln (1 + \mu \times |x|)}{\ln (1 + \mu)},$$

$$\mu = 255$$

5.6.2 A-law

$$F(x) = \frac{A \times |x|}{(1 + \ln(A))'}$$

$$F(x) = \frac{(1 + \ln(A \times |x|)}{(1 + \ln(A))}, \qquad \frac{1}{A} \le x \le 1$$

A = 87.6

6. Clocking and Sample Rates

The internal clocks for the NAU88L21 are derived from a common internal clock source. This master system clock can set directly by the MCLK pin input or it can be generated from a Frequency Locked Loop (FLL) using the MCLK_PIN, BCLK or FS as a reference. While most of the common audio sample rates can be derived directly from typical MCLK frequencies, the FLL provides additional flexibility for a wide range of MCLK inputs or as a free running clock in the absence of an external reference.

The figures below is a block diagram illustrating how the various register settings can be used to adjust/select the MCLK, BCLK, FS, and ADC CLK clock frequency.

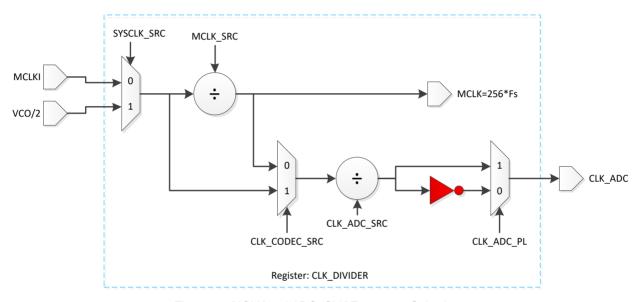


Figure 14: MCLK and ADC_CLK Frequency Selection

Bits	MCLK SRC
0000	Divide by 1
0001	Invert
0010	Divide by 2
0011	Divide by 4
0100	Divide by 8
0101	Divide by 16
0110	Divide by 32
0111	Divide by 3
1001	Invert
1010	Divide by 6
1011	Divide by 12
1100	Divide by 24
1101	Divide by 48
1110	Divide by 96
1111	Divide by 5

Table 9: Register Settings

Bits	CLK_ADC_SRC
00	Divide by 1
01	Divide by 2
10	Divide by 4
11	Divide by 8

Table 10: Register Settings

The internal clock frequency MCLK must be running at 256*Fs (Fs = sample rate in Hz) in order to achieve the best performance. The internal clock frequency MCLK can also run at 400*Fs, which may give a slightly lower performance. For example, when targeting 48 kHz sample rate audio, the MCLK must be set to 256*48k = 12.288MHz, 400*48k = 19.2MHz. When the input clock MCLKI is higher than this speed, register CLK_DIVIDER.MCLK_SRC_REG0x03[3:0] provides a flexible divider selection to meet this requirement. The FLL can also be used to generate an MCLK that meets this requirement.

The OSR (over sampling rate) is defined as CLK_ADC frequency divided by the audio sample rate.

$$OSR = \frac{CLK_ADC}{Fs}$$

Available over-sampling rates are 32, 64, 128 or 256 as set in the <u>ADC_RATE.ADC_RATE REG0X2B[1:0]</u> register. CLK_ADC frequency is set by <u>CLK_DIVIDER.CLK_CODEC_SRC REG0X03[13]</u> and <u>CLK_DIVIDER.CLK_ADC_SRC REG0X03[7:6]</u> registers.

It should be noted that the OSR and Fs must be selected so that the max frequency of CLK_ADC is less than or equal to 6.144MHz. When CLK_ADC is determined, <u>ADC_RATE.ADC_RATE REG0X2B[1:0]</u> should be set to provide appropriate down sampling through digital filters.

There are two special cases in which the OSR will be 100. If MCLK is 400 times the input sample rate of the DAC or the output sample rate of the ADC, the OSR will be 100. In the first case, set

CLK_DIVIDER.CLK_ADC_SRC_REG0X3[7:6]=2'b10 (1/4) for ADC path, and DAC path need to set CLK_DIVIDER.CLK_DAC_SRC_REG0X3[5:4]=2'b10 (1/4) and

DAC_RATE.DAC_CTRL1_REG0X2C[2:0]=3b'000 , in the second case the clock to the ADC and DAC will be adjusted automatically.

Example 1:

To configure Fs = 48 kHz, MCLK = (256 *Fs) = 12.288 MHz, and CLK_ADC = 6.144 MHZ Set:

- SYSCLK SRC = MCLK
- CLK ADC SRC = 1/2
- ADC OSR = 128

Example 2:

To configure Fs = 16 kHz, MCLKI = 12.288MHz, and CLK_ADC = 4.096MHz Set:

- SYSCLK_SRC = MCLK
- MCLK_SRC = 1/3
- CLK_ADC_SRC = 1
- ADC OSR = 256

6.1 I2S/PCM Clock Generation

In master mode, BCLK can be derived from MCLK via a programmable divider, and the FS can be derived from BCLK via another programmable divider.

To select specific Fs values, both dividers must be set according to the block diagram and the equation below. $BCLK = Fs \times data\ length \times channels$

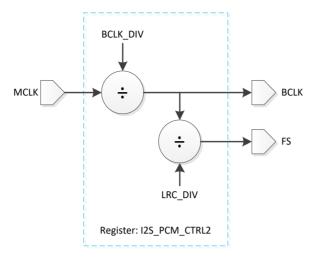


Figure 15: BCLK and FS Frequency Selection

Bits	BCLK_DIV
000	Divided by 1
001	Divided by 2
010	Divided by 4
011	Divided by 8
100	Divided by 16
101	Divided by 32

Table 11: Register Settings

Bits	LRC_DIV
00	Divided by 256
01	Divided by 128
10	Divided by 64
11	Divided by 32

Table 12: Register Settings

Example 1:

If we want an Fs of 48 kHz and 16 bit data is to be sent to the I2S bus (2 channel)

- BCLK = 48000*16*2 = 1.536MHz and MCLK = 48000*256 = 12.288MHz
- Set BCLK_DIV = 1/8
- Set LRC_DIV = 1/32

Or 32 bit data is to be sent

- BCLK = 48000*32*2 = 3.073MHz and MCLK = 48000*256 = 12.288MHz
- Set BCLK_DIV = 1/4
- Set LRC_DIV = 1/64

Example 2:

If we want an Fs of 16 kHz and 16 bit data is to be sent to the I2S bus (2 channel)

- BCLK = 16000*16*2 = 512kHz and MCLK = 16000*256 = 4.096MHz
- Set BCLK_DIV = 1/8
- Set LRC_DIV = 1/32

32 bit data is to be sent,

BCLK = 16000*32*2 = 1.024MHz and MCLK = 16000*256 = 4.096MHz
 Feb 1, 2023 Page 30 of 79

- Set BCLK DIV = 1/4
- Set LRC_DIV = 1/64
- •

Example 3:

If we want an Fs of 16 kHz and 32 bit data is to be sent to the I2S TDM bus (4 channels)

- BCLK = 16000*32*4 = 2.048MHz and MCLK = 16000*256 = 4.096MHz
- Set BCLK_DIV = 1/2
- Set LRC DIV = 1/128

6.2 Frequency Locked Loop(FLL)

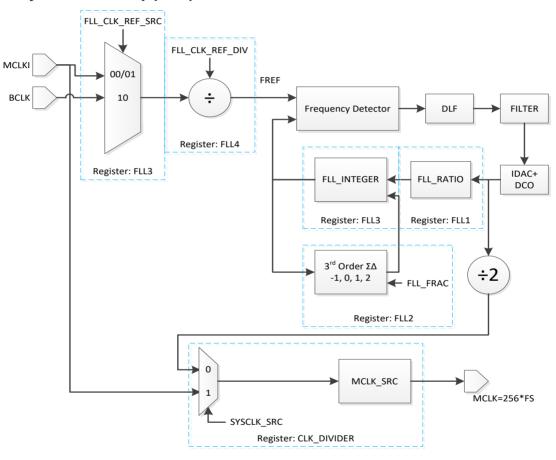


Figure 16: FLL Block diagram

The integrated FLL can be used to generate a SYSMCLK from a wide variety of reference sources such as, MCLK, BCLK, and FS or as a free running clock in the absence of an external reference. It can also create a stable SYSMCLK from less stable sources due to its tolerance of jitter.

The FLL output frequency is determined by the following parameters.

- FLL_RATIO based on input clock frequency
- MCLK_SRC Divider
- FLL_INTEGER: 10 bit Integer Input
- FLL_FRAC: 16 bit Fractional Input
- FLL_CLK_REF_DIV Divider

To determine these settings, the following output frequency equations are used.

- 1. FDCO = (FREF / FLL_CLK_REF_DIV) X FLL_INTEGER.FLL_FRAC X FLL_RATIO
- 2. MCLK = (FDCO X MCLK SRC) / 2

Where FREF is the reference clock frequency for FLL, MCLK is the desired system frequency, and FDCO is the frequency of DCO in decimal.

Example:

If the reference frequency (FREF) is 12MHz, the desired sampling rate (Fs) is 48 kHz, and SYSCLK = 256Fs, what are the output frequency parameters?

Using these requirements, the following can be determined.

- MCLK = 256 x 48kHz = 12.288MHz
- Using Equation 2:
 - o FDCO = 2 X MCLK / MCLK SRC = 2 X 12.288MHz X MCLK SRC
 - For FDCO to remain between 90MHz 100MHz, MCLK_SRC must be chosen to be 1/4. This and other values for MCLK_SRC can be seen on the register tables.
 - o FDCO = $(2 \times 12.288MHz) / (1/4) = 98.304MHz$
- Using Equation 1:
 - FLL INTEGER.FLL FRAC = FDCO X FLL CLK REF DIV / (FREF X FLL RATIO)
 - FDCO = 98.304MHz
 - FLL RATIO = 1 because of FREF ≥ 512 kHz.
 - FLL_CLK_REF_DIV = 1 since FREF = MCLKI (12MHz)
 - o FLL INTEGER.FLL FRAC = 98.304MHz X 1 / (12MHz X 1) = 8.192
- Now retrieve or convert the parameter values into their corresponding HEX values
 - o FLL RATIO = 1 (for input clock frequency ≥ 512Khz)
 - o MCLK SRC = 1/4
 - o FLL INTEGER = 8
 - o FLL_FRAC = 0.192 = 3,221,225 (0.192 x 2^24) = 24'h3126E9

Please Note:

- FLL_CLK_REF_DIV can be used to reduce the reference frequency for SYSMCLK by dividing the input by 1, 2, 4, or 8. Use this to ensure the reference clock frequency is less than or equal to 13.5MHz.
- FDCO must be within the 90MHz 100MHz or the FLL cannot be guaranteed across the full range of operation.
- FLL FRAC must be set to 0 for low power mode.
- FLL6.SDM_EN REG0X09[14] to create decimal part of frequency, if (DCO frequency)/(FLL input reference frequency) is not a integer. If the ratio is integer, it still can be on for lower noise output but higher power consumption.
- When FLL uses free running mode, NAU88L21 needs to be set as a master in I2S_PCM_CTRL2.MS0 REG0X1D[3]=1
- Set FLL6.CHB_FILTER_EN REG0X08[14] = '1' to enable FLL Loop Filter. Select filter clock source by FLL6.CHB_FILTER¬_EN REG0X08[13]. Select DCO input by FLL6.FILTER_SW REG0X08[12]. FLL6.CUTOFF500 REG0X09[13] & FLL6.CUTOFF600 REG0X09[12] can be used to define FLL cuttoff frequency at 500KHz or 600KHz. 500KHz will provide the best FLL performance but consume more power.
- set FLL6.FLL_FLTR_DITHER_SEL REG0X09[7:6] = '01' or '10' or '11' as 1LSB / 2LSB / 3LSB random bits to Randomize the number of Filter Output Bits to average out output noise. If '00', there is no dither.

7. Control Interfaces

The NAU88L21 includes a serial control bus that provides access to all the device control registers, it may be configured as a 2-wire interface that conforms to industry standard implementations of the I²C serial bus protocol.

7.1 2-Wire-Serial Control Mode (I²C Style Interface)

The 2-wire bus is a bidirectional serial bus protocol. This protocol defines any device that sends data onto the bus as a transmitter (or master), and any device receiving data as the receiver (or slave). The NAU88L21 can function only as a slave when in the 2-wire interface configuration.

To enable 2-wire I2C Style interface,

- (1) Set register 0x1A &= 0xFF00 (Set 0x1A[7:0] = 8'b00000000)
- (2) Externally pull GPIO1/CSB pin = LOW (0V), I2C device address = 0x1B; Or externally pull GPIO1/CSB pin = HIGH (3.3V), I2C device address = 0x54

7.2 2-Wire Protocol Convention

All 2-Wire interface operations must begin with a START condition, which is a HIGH-to-LOW transition of SDIO while SCLK is HIGH. All 2-Wire interface operations are terminated by a STOP condition, which is a LOW to HIGH transition of SDIO while SCLK is HIGH. A STOP condition at the end of a read or write operation places the device in a standby mode.

An acknowledge (ACK), is a software convention used to indicate a successful data transfer. To allow for the ACK response, the transmitting device releases the SDIO bus after transmitting eight bits. During the ninth clock cycle, the receiver pulls the SDIO line LOW to acknowledge the reception of the eight bits of data.

Following a START condition, the master must output a device address byte. This consists of a 7-bit device address, and the LSB of the device address byte is the R/W (Read/Write) control bit. When R/W=1, this indicates the master is initiating a read operation from the slave device, and when R/W=0, the master is initiating a write operation to the slave device. If the device address matches the address of the slave device, the slave will output an ACK during the period when the master allows for the ACK signal.



Figure 17: Valid START Condition

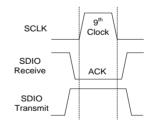


Figure 18: Valid Acknowledge

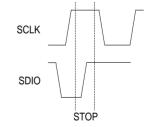


Figure 19: Valid STOP Condition

Please Note:

• Sometimes, I2C needs to use level shifter between different supplies domains. During Acknowledge, receiver side (CODEC) will pull low, and transmit side (MCU) is disable and pull high by pull high resistor. Because NAU88L21 SDIO can sink 2mA by default setting (maximum up to 8mA,) shown as below Figure 20, R_{PU1} and R_{PU2} need to be select such that total current VDDB/R_{PU1}+ VDD_MCU/R_{PU2} during Acknowledge should not be too large to exceed SDIO sinking capability.

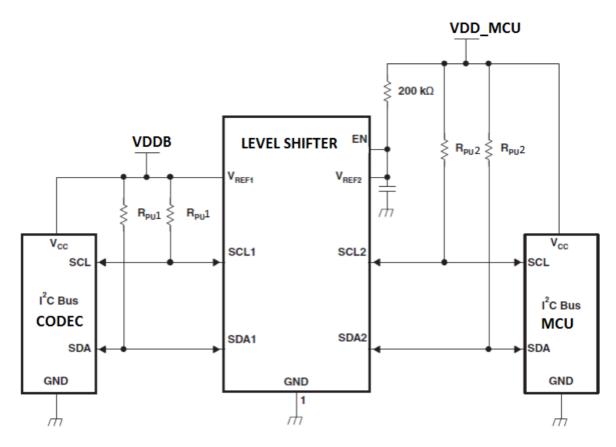


Figure 20: Typical I2C level shifter circuit

7.3 2-Wire Write Operation

A Write operation consists of a three-byte instruction followed by one or more Data Bytes. A Write operation requires a START condition, followed by a valid device address byte with R/W=0, a valid control address byte, data byte(s), and a STOP condition.

The Device Address of the NAU88L21 is either 0x1B (CSB=0) or 0x54 (CSB=1). If the Device Address matches this value, the NAU88L21 will respond with the expected ACK signaling as it accepts the data being transmitted to it.

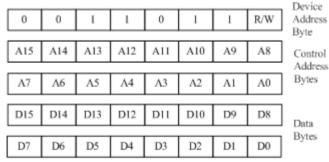


Figure 21: Slave Address Byte, Control Address Byte, and Data Byte

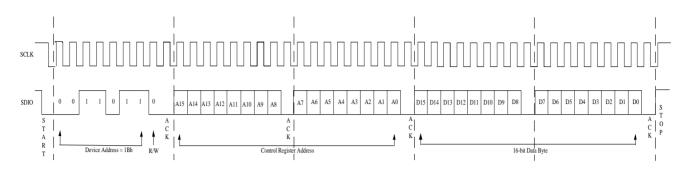


Figure 22:2-Wire Write Sequence

7.4 2-Wire Read Operation

A Read operation consists of a three-byte Write instruction followed by a Read instruction of one or more data bytes. The bus master initiates the operation issuing the following sequence: a START condition, device address byte with the R/W bit set to "0", and a Control Register Address byte. This indicates to the slave device which of its control registers is to be accessed.

If the device address matches this value, the NAU88L21 will respond with the expected ACK signaling as it accepts the Control Register Address being transmitted into it. After this, the master transmits a second START condition, and a second instantiation of the same device address, but now with R/W=1.

After again recognizing its device address, the NAU88L21 transmits an ACK, followed by a two byte value containing the 16 bits of data from the selected control register inside the NAU88L21.

During this phase, the master generates the ACK signaling with each byte transferred from the NAU85L40. If there is no STOP signal from the master, the NAU88L21 will internally auto-increment the target Control Register Address and then output the two data bytes for this next register in the sequence.

This process will continue as long as the master continues to issue ACK signaling. If the Control Register Address being indexed inside the NAU88L21 reaches the value 0xFFFF (hexadecimal) and the value for this register is output, the index will roll over to 0x0000. The data bytes will continue to be output until the master terminates the read operation by issuing a STOP condition.

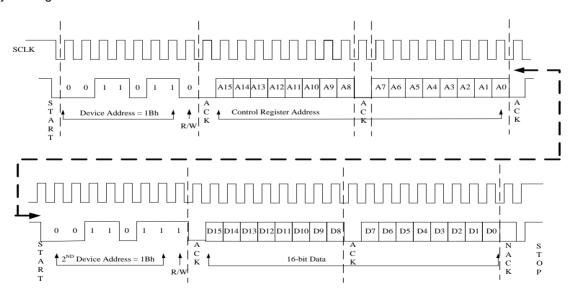


Figure 23:2-Wire Read Sequence

7.5 Digital Serial Interface Timing

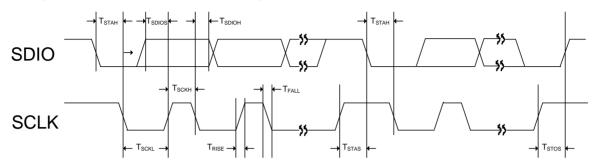


Figure 24: Two-wire Control Mode Timing

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNIT
T _{STAH}	SDIO falling edge to SCLK falling edge hold timing in START / Repeat START condition	600	-	-	ns
T _{STAS}	SCLK rising edge to SDIO falling edge setup timing in Repeat START condition	600	-	-	ns
Тѕтоѕ	SCLK rising edge to SDIO rising edge setup timing in STOP condition	600	-	-	ns
Тѕскн	SCLK High Pulse Width	600	-	-	ns
T _{SCKL}	SCLK Low Pulse Width	1,300	-	-	ns
T _{RISE}	Rise Time for all 2-wire Mode Signals	-	-	300	ns
T _{FALL}	Fall Time for all 2-wire Mode Signals	-	-	300	ns
T _{SDIOS}	SDIO to SCLK Rising Edge DATA Setup Time	100	-	-	ns
T _{SDIOH}	SCLK falling Edge to SDIO DATA Hold Time	0	-	600	ns

Table 13 Digital Serial Interface Timing Parameters

7.6 Software Reset

The NAU88L21 and all of its control registers can be reset to "default", initial conditions by writing any value to REG0X00 using the two-wire interface mode.

8. Digital Audio Interfaces

The NAU88L21 can be configured as either the master or the slave, and the Slave mode is the default if this bit is not written. In master mode, NAU88L21 outputs both Frame Sync (FS) and the audio data bit clock (BCLK) and has full control of the data transfer. In the slave mode, an external controller supplies BCLK and FS. Data is latched on the rising edge of BCLK; SDO clocks out ADC data, while SDI clocks in data for the DACs.

When not transmitting data, SDO pulls LOW in the default state. Depending on the application, the output can be configured to pull up or pull down. When the time slot function is enabled (see below), there are additional output state modes including controlled tristate capability.

NAU88L21 supports six audio formats; right justified, left justified, I2S, PCMA, PCMB, and PCM Time Slot.

8.1 Digital Audio Interface

8.1.1 Right-Justified Audio Data

In right-justified mode, the LSB is clocked on the last BCLK rising edge before FS transitions. When FS is HIGH, channel_0 data is transmitted and when FS is LOW, channel_1 data is transmitted. This can be seen in the image below.

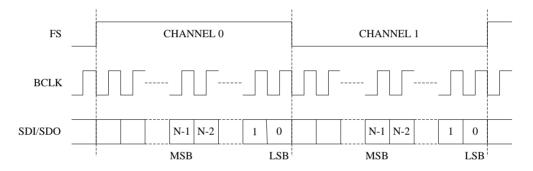


Figure 25: Right-Justified Audio Interface

8.1.2 Left-Justified Audio Data

In left-justified mode, the MSB is clocked on the first BCLK rising edge after FS transitions. When FS is HIGH, channel_0 data is transmitted and when FS is LOW, channel_1 data is transmitted. This can be seen in the figure below.

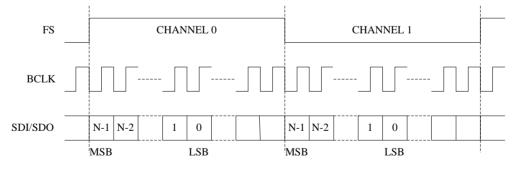


Figure 26: Left-Justified Audio Interface

8.1.3 I2S Audio Data

In I²S mode, the MSB is clocked on the second BCLK rising edge after FS transitions. When FS is LOW, left channel data is transmitted and when FS is HIGH, right channel data is transmitted. This can be seen in the figure below.

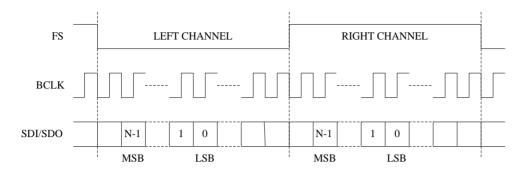


Figure 27: I2S Audio Interface

8.1.4 PCMA Audio Data

In the PCM A mode, channel 0 data is transmitted first followed immediately by channel 1 data. The channel 0 MSB is clocked on the second BCLK rising edge after the FS pulse rising edge, and channel 1 MSB is clocked on the next BCLK after the left channel LSB. This can be seen in the figure below.

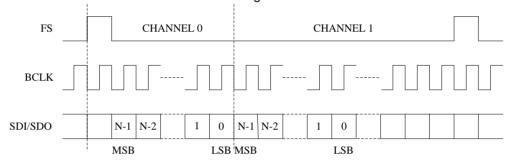


Figure 28: PCMA Audio Interface

8.1.5 PCMB Audio Data

In the PCMB mode, channel_0 data is transmitted first followed immediately by channel_1 data. Channel 0 MSB is clocked on the first BCLK rising edge after the FS pulse rising edge, and channel_1 MSB is clocked on the next BCLK after channel_0 LSB. This can be seen in the figure below.

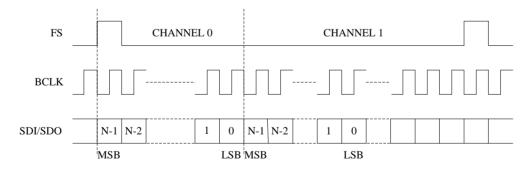


Figure 29: PCMB Audio Interface

8.1.6 PCM Time Slot Audio Data

The PCM time slot mode is used to allocate different time slots for ADC and DAC data. This can be useful when multiple NAU88L21 chips or other devices are sharing the same audio bus. This will allow each chip"s audio to be delayed around each other without interference.

Normally, the DAC and ADC data are clocked immediately after the Frame Sync (FS), however, in the PCM time slot mode; the audio data can be delayed by left / right channel PCM time slot start value in the registers. These delays can be seen before the MSB in the figure below.

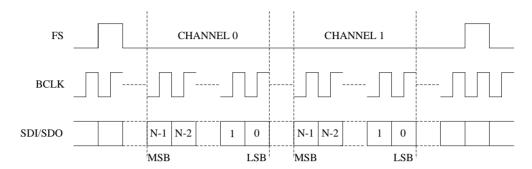


Figure 30: PCM Time Slot Audio Interface

The PMC time slot mode can be also used to swap channel 0 and channel 1 audio or cause both channels to use the same data. When using the NAU88L21 with other driver chips, the SDO pin can be set to pull up or pull down or high impedance during no transmission. Tri-stating on the negative edge allows the transmission of data by multiple sources in adjacent timeslots with reduced risk of bus driver contention.

8.1.7 TDM I2S Audio Data

In I2S mode, the MSB is clocked on the second BCLK rising edge after FS transitions. When FS is LOW, channel_0 then channel_2 data is transmitted and when FS is HIGH, channel_1 then channel_3 data is transmitted. This is shown in the figure below.

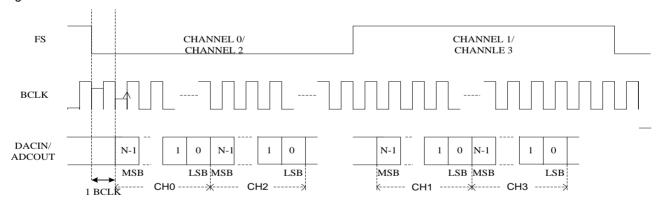


Figure 31: TDM I2S Audio Format

8.1.8 TDM PCMA Audio Data

In the PCMA mode, channel_0 data is transmitted first followed sequentially by channel_1, 2, and 3 immediately after. The channel_0 MSB is clocked on the second BCLK rising edge after the FS pulse rising edge, and the subsequent channel's MSB is clocked on the next BCLK after the previous channel's LSB. This is shown in the figure below.

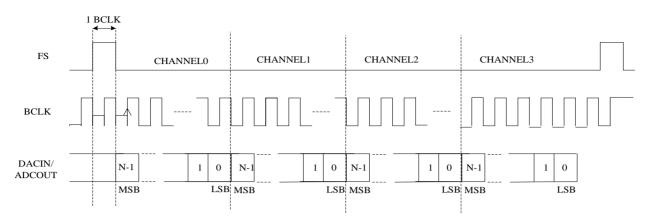


Figure 32: TDM PCMA Audio Format

8.1.9 TDM PCMB Audio Data

In TDM PCMB mode, channel_0 data is transmitted first followed immediately by channel_1 data. The channel_0 MSB is clocked on the first BCLK rising edge after the FS pulse rising edge, and channel_1 MSB is clocked on the next SCLK after channel_0 LSB.

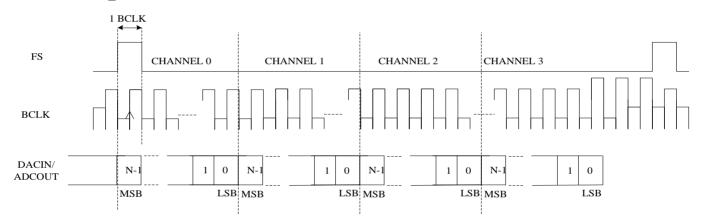
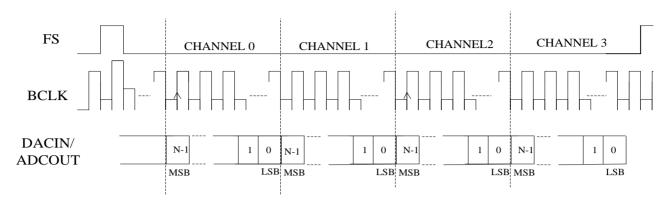


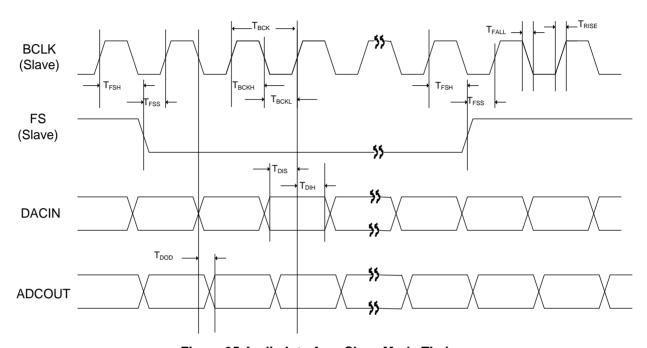
Figure 33: TDM PCMB Audio Format

8.1.10 TDM PCM Offset Audio Data

The PCM offset mode is used to delay the time at which DAC data is clocked. This increases the flexibility of the NAU88L21 to be used in a wide range of system designs. One key application of this feature is to enable multiple NAU88L21 or other devices to share the audio data bus, thus enabling more than four channels of audio. This feature may also be used to swap channel data, or to cause multiple channels to use the same data.

Normally, the DAC data are clocked immediately after the Frame Sync (FS). In this mode audio data is delayed by a delay count specified in the device control registers. The channel 0 MSB is clocked on the BCLK rising edge defined by the delay count set in .This can be seen in the figure below.




Figure 34: TDM PCM Offset Audio Format

8.2 Digital Audio Interface Timing Diagrams

8.2.1 Digital Audio Interface Slave Mode

Figure 20 provides the timing for Audio Interface Slave Mode.

Figure 35 Audio Interface Slave Mode Timing

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNIT
T _{BCK}	BCLK Cycle Time in Slave Mode	50	-	-	ns
Твскн	BCLK High Pulse Width in Slave Mode	20	-	-	ns
T _{BCKL}	BCLK Low Pulse Width in Slave Mode	20	-	-	ns
T _{FSS}	FS to BCLK Rising Edge Setup Time in Slave Mode	20	-	-	ns
T _{FSH}	BCLK Rising Edge to FS Hold Time in Slave Mode	20	-	-	ns
T _{RISE}	Rise Time for All Audio Interface Signals	-	-	0.135T _{BCK}	ns
T _{FALL}	Fall Time for All Audio Interface Signals	-	-	0.135T _{BCK}	ns
T _{DIS}	DACIN to BCLK Rising Edge Setup Time	15	-	-	ns
T _{DIH}	BCLK Rising Edge to DACIN Hold Time	15	-	-	ns
T _{DOD}	BCLK Falling Edge to ADCOUT Delay Time	-	-	10	ns

Table 14 Audio Interface Slave Mode Timing Parameters

8.2.2 Digital Audio Interface Master Mode

provides the timinig for Audio Interface Master Mode

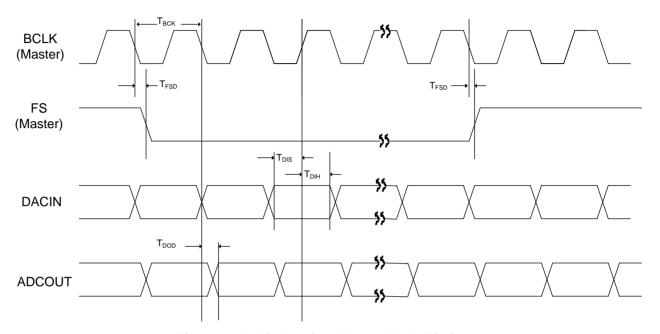


Figure 36 Audio Interface Master Mode Timing

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNIT
Твск	BCLK Cycle Time in Master Mode	50	60	-	ns
T _{FSD}	BCLK Falling Edge to FS Delay Time in Master Mode	-	-	10	ns
T _{DIS}	DACIN to BCLK Rising Edge Setup Time	15	-	-	ns
T _{DIH}	BCLK Rising Edge to DACIN Hold Time	15	-	-	ns
T _{DOD}	BCLK Falling Edge to ADCOUT Delay Time	-	-	10	ns

Table 15 Audio Interface Master Mode Timing Parameters

8.2.3 PCM Audio Interface Slave Mode

I2S or PCM Audio Data can be processed using either Slave Mode or Master Mode. The timing diagram for PCM Audio Data in Slave Mode is shown in Figure 20.

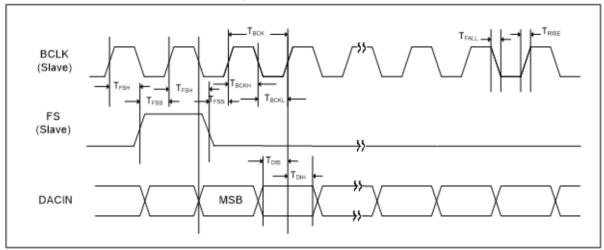


Figure 37 PCM Audio Interface Slave Mode

8.2.4 PCM Audio Interface Master Mode

I2S or PCM Audio Data can be processed using either Master or Slave Mode. The timing diagram for PCM Audio Data in Master Mode is shown in Figure 20.

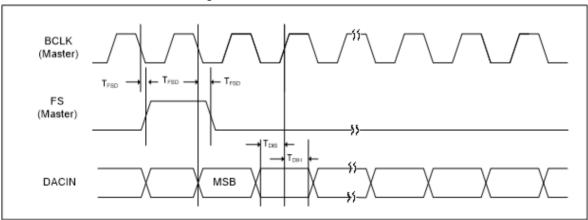


Figure 38 PCM Audio Interface Master Mode Timing

8.2.5 PCM Time Slot Audio Interface Slave Mode

PCM Time Slot Data can be processed using either Slave Mode or Master Mode. The timing diagram for PCM Time Slot Audio Data in Slave Mode is shown in Figure 2039.

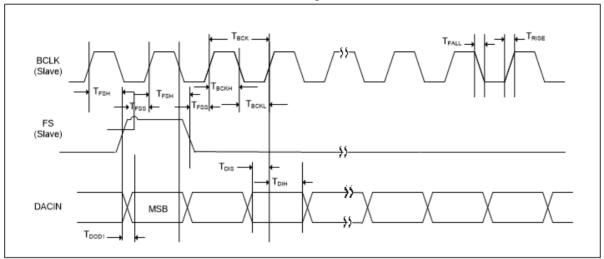


Figure 39 PCM Time Slot Audio Interface Slave Mode Timing

8.2.6 PCM Time Slot Audio Interface Master Mode

The timing diagram for PCM Time Slot Audio Data in Master Mode is shown in Figure 2040.

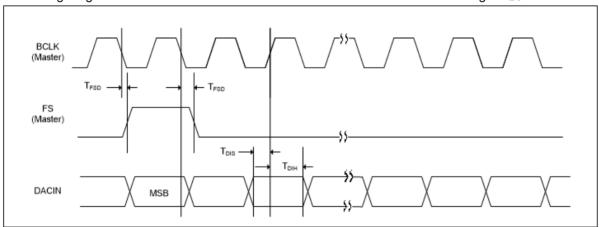
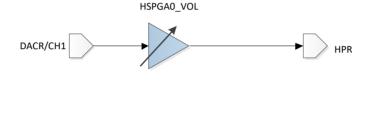


Figure 40 PCM Time Slot Audio Interface Master Mode Timing

9. Outputs

The NAU88L21 provides a pair of Class G ground-reference headphone outputs.


9.1 Class G Headphone Driver and Charge Pump

The NAU88L21 uses Class G speaker drivers powered by a charge pump for the headphones. For typical operation with large and small signals the charge pump provides ± 1.8 V and ± 0.9 V, respectively. These output drivers are driven by dedicated left and right DACs and can provide 30mW of power to a 32 Ω load (in CSP package).

Three capacitors are needed to generate the negative voltage from the positive 1.8V. Typically, 2µF ceramic capacitors are used.

- The Fly Back capacitor is connected between pins CPCA and CPCB.
- The Positive Output Decoupling capacitor is applied from pin CPVOUTP to ground (VSSCP).
- The Negative Output Decoupling capacitor is applied from pin CPOUTN to ground (VSSCP).

The Class G will be turned on only if DAC signal level is bigger than the threshold in the register settings, and the peak output can be also configured differently by register settings.

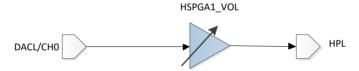


Figure 41: DAC to Headphone out path diagram

10. Control and Status Registers

		or arru 5					<u> </u>												
R										В	it								
E	Function	Name	1 5	1 4	1	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
0	HARDWA RE_RST	HARDWARE_ RESET																	Hardware Reset (Write any value <i>once</i> to reset all the registers.)
		CMLCK_ENB																	PGA Common Mode Lock Enable Control 0 = Enable (DEFAULT) 1 = Disable
		CLK_DAC_IN V																	DAC Clock Inversion In Analog Domain Enable Control 0 = Disable (DEFAULT) 1 = Enable
		RDACEN																	Right Channel DAC Enable Control 0 = Disable (DEFAULT) 1 = Enable
		LDACEN																	Left Channel DAC Enable Control 0 = Disable (DEFAULT) 1 = Enable
		RADCEN																	Right Channel ADC Enable Control 0 = Disable (DEFAULT) 1 = Enable
		LADCEN																	Left Channel ADC Enable Control 0 = Disable (DEFAULT) 1 = Enable
1	ENA_CTR L	DCLK_ADC_E N																	ADC Clock Enable Control 0 = Disable 1 = Enable (DEFAULT)
		DCLK_DAC_E N																	DAC Clock Enable Control 0 = Disable 1 = Enable (DEFAULT)
		CLK_IMM_EN																	IMM Clock Enable Control 0 = Disable 1 = Enable (DEFAULT) 12S Clock Enable Control
		CLK_I2S_EN																	125 Clock Enable Control 0 = Disable 1 = Enable (DEFAULT) BIST Clock Enable Control
		CLK_BIST_E N																	0 = Disable 1 = Enable (DEFAULT) OTP (One Time Programming) Clock Enable
		CLK_OTP_EN																	Control 0 = Disable 1 = Enable (DEFAULT)
		CLK_DRC_EN																	DRC Clock Enable Control 0 = Disable 1 = Enable (DEFAULT)
		DEFAULT	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0x00FF
		SYSCLK_SRC																	Master Clock Source Select 0 = MCLK_PIN (DEFAULT) 1 = ½ DCO_CLK
		CLK_CODEC_ SRC																	ADC & DAC Clock Source Select 0 = From internal MCLK (DEFAULT) 1 = From MCLK_PIN or ½ DCO_CLK
3	CLK_DIVI DER	CLK_DAC_PL																	DAC Clock Polarity 0 = Non-inverted (DEFAULT) 1 = Inverted
		CLK_ADC_PL																	ADC Clock Polarity 0 = Non-inverted (DEFAULT) 1 = Inverted
		CLK_GPIO_S RC																	Scaling Divider For GPIO Clock From MCLK 00 = 1/8 (DEFAULT) 01 = 1 10 = 1/2 11 = 1/4

_										В	it								
R E G	Function	Name	1 5	1 4	1	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		CLK_ADC_SR C											 .						Scaling Divider For ADC Clock From CODEC_SRC 00 = 1 01 = 1/2 (DEFAULT) 10 = 1/4 11 = 1/8
		CLK_DAC_SR C																	Scaling Divider For DAC Clock From CODEC_SRC 00 = 1 01 = 1/2 (DEFAULT) 10 = 1/4 11 = 1/8
		MCLK_SRC	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	Scaling Divider For MCLK From SYSCLK_SRC 0000 = 1 (DEFAULT) 0001 = Inverted 0010 = 1/2 0011 = 1/4 0100 = 1/8 0101 = 1/16 0110 = 1/32 0111 = 1/3 1000 = 1 1001 = Inverted 1010 = 1/6 1011 = 1/12 1100 = 1/24 1101 = 1/48 1110 = 1/96 1111 = 1/5 0x0050
		FLLISELDAC																	Increase Drive Strength Of FLL DAC
		ICTRL_LATC H																	FLL Latch Drive Strength Multiplier (When FLL running at high frequency with long decimal number, DSP needs to operate at high speed. By adjusting ICTRL_LATCH, FLL DSP can optimize between performance and power consumption (111 has highest power consumption for FLL DSP.) On the other hand, (DCO frequency)/(FLL input reference frequency)=integer, default setting can be used to reduce power. This register is using thermometer coding.) 000 = (DEFAULT) 001 = 1x 011 = 2x 111 = 3x
4	FLL1	ICTRL_V2I																	Amp Half Bias-Current Select (Amp bias current must be reduced to 50% of its nominal value.) 00 = No power reduction (DEFAULT) 01 = Half bias current on FLL_BIAS_AMP2X 10 = Half bias current on FLL_BIAS_AMP 11 = Half current on both amps
		FLL_LOCK_B P																	Manual Force of FLL Lock Enable Control 0 = Disable (DEFAULT) 1 = Enable
		FLL_RATIO																	Input Clock Frequency Select 0000001 = For input clock frequency ≥ 512KHz 0000010 = For input clock frequency ≥ 256KHz 0000100 = For input clock frequency ≥ 128KHz 0001000 = For input clock frequency ≥ 64KHz 0010000 = For input clock frequency ≥ 32KHz 1000000 = For input clock frequency ≥ 8KHz
H		DEFAULT DOUT2DCO_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
5	FLL2	RSV DEFAULT	0	0	0	0	0	0	0	0	1	0	1	1	1	1	0	0	FLL DCO Frequency Free-running Mode 0x00BC
6	FLL3	GAIN_ERR			3				3										FLL Gain Error (The threshold is comparison between DCO and target frequency. 1111 has the most accurate DCO to target frequency. However, the gain error setting conditionally and inversely depends on FLL input reference clock rate. Higher FLL reference input frequency can only set lower gain error, such as 0000 for input reference from MCLK=12.288MHz. On the other side, if FLL reference input is from Frame sync, 48KHz, higher error gain can apply such as 1111.) 0000 = (DEFAULT) 0001 = x1 0010 = x2 0011 = x3 0100 = x4 0101 = x5 0110 = x6 0111 = x8

R										В	it								
E	Function	Name	1 5	1 4	1 3	1 2	1	1	9	8	7	6	5	4	3	2	1	0	Description
																			1000 = x9 1010 = x12 1010 = x12 1100 = x17 1110 = x20 101 = x10 1011 = x16 1101 = x18 1111 = x24
		FLL_CLK_RE F_SRC																	FLL Reference CLK Source Select 00 = MCLK pin (DEFAULT) 01 = MCLK pin 10 = BCLK pin
		FLL_INTEGE R																	FLL 10-bit Integer Input
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0x0008
		HIGHBWE																	High Bandwidth Enable Control 0 = Disable (DEFAULT) 1 = Enable
		FLL_CLK_RE F_DIV_4CHK																	FLL CLK_REF Divider For Accurate Lock Detection 000 = 1 (DEFAULT) 001 = 1/2 010 = 1/4 011 = 1/8 100 = 1/16 101 = 1/32
7	FLL4	FLL_CLK_RE F_DIV																	FLL Pre-Scale Divider 00 = 1 (DEFAULT)
		FLL_N2																	FLL 10-bit Integer DCO Divider For FLL Filter Clock (The value is in orders of 2. When 0x8[13]=1, it selects DCO clock as FLL filter clock. The filter clock rate needs to be less than 1Mhz. With setting proper value, filter clock can be divided down from DCO clock. For example, DCO runs at 96Mhz, by setting value 0x60=96, filter clock becomes 1MHz.)
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0x0010
		PDB_DACICT RL																	FLL Loop Filter To Reduce FLL Output Noise Enable Control (Especially, (DCO frequency)/(FLL input reference frequency) is not an integer.) 0 = Disable (DEFAULT) 1 = Enable (By REG0x09[13:12])
		CHB_FILTER_ EN																	Select Filter Clock Source Select 0 = Select REFCLK 1 = Select divided DCO clock based on register FLL_N2 (DEFAULT)
8	FLL5	CLK_FILTER_ SW																	IDAC Input Select 0 = Select filter output (DEFAULT) 1 = Select accumulator output when feedback divider is integer, it can use for saving power but more jitter
		FILTER_SW																	FLL Loop Filter Enable Control 0 = Disable (DEFAULT) 1 = Enable
		FLL_LOCK_L ENGTH																	Set FLL Lock-In Length (Set the time that FLL must stay within the lock-in range before lock signal goes high.)
L		DEFAULT	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x4000
		DCO_EN																	FLL Free-running Mode Enable Control (Need to enable 0x76[12] BIASEN) 0 = Disable (DEFAULT) 1 = Enable
9	FLL6	SDM_EN																	FLL Sigma-Delta Modulator Enable Control (To create decimal part of frequency, if (DCO frequency)/(FLL input reference frequency) is not a integer. If the ratio is integer, it still can be on for lower noise output but higher power consumption.) 0 = Disable 1 = Enable (DEFAULT)

R										В	it								
E	Function	Name	1 5	1 4	1 3	1 2	1	1	9	8	7	6	5	4	3	2	1	0	Description
		CUTOFF500										••••							FLL 500KHz Cut-off Frequency Enable Control (If 0x8[14]=1, it sets loop filter cutoff frequency at 600Khz. It will give the best FLL performance with the highest power consumption.) 0 = Disable 1 = Enable (DEFAULT)
		CUTOFF600																	FLL 600KHz Cut-off Frequency Enable Control (If 0x8[14]=1, it sets loop filter cutoff frequency at 600Khz. It will give a moderate FLL performance with moderate power consumption.) 0 = Disable (DEFAULT) 1 = Enable
		VREFSEL																	VREF Select 00 = 1.8V 01 = 1.56V 10 = 1.65V (DEFAULT) 11 = 1.75V
		CHKFS256_E N																	Samples/frame Sync Enable Control 0 = Disable (DEFAULT) 1 = Enable the function to check for 256 Frame Sync Select
		FS8X_SEL										_							0 = Total samples per 4 frame sync 1 = Total samples per 8 frame sync (DEFAULT) Filter Output Random Bit Select
		FLL_FLTR_DI THER_SEL																	00 = No dither (DEFAULT) 01 = The LSB is a random bit 10 = Two LSBs are random bits 11 = Three LSBs are random bits
		FLL_SD_DITH ER_SEL																	Input Of SD Modulator Random Bit Select 00 = No dither (DEFAULT) 01 = The LSB is a random bit 10 = Two LSBs are random bits 11 = Three LSBs are random bits
		DLR								_									FLL Dynamic Lock Range 0000 = (DEFAULT)
┢		DEFAULT	0	1	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0x6900 MSB Portion Of FLL 24-bit Fractional Input
А	FLL7	FLL_FRAC_H DEFAULT	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	FLL_FRAC[23:16] 0x0031
					Ū	Ū	Ū					Ť			Ü				LSB Portion Of FLL 24-bit Fractional Input
В	FLL8	FLL_FRAC_L						1			1	_							FLL_FRAC[15:0]
		DEFAULT MANU_SPKR	0	0	1	0	0	1	1	0	1	1	1	U	1	0	0	1	0x26E9 Manual Access SPKR_DWN1R
		_DWN1R MANU_SPKR																	0 = Pull down (DEFAULT) Manual Access SPKR_DWN1L O Dull down (DEFAULT)
		_DWN1L JK_1_PL																	0 = Pull down (DEFAULT) Jack Detection Source 1 Configuration 00 = From GPIO2JD1 (DEFAULT) 01 = From inverted GPIO2JD1 10 = Ignore the input and set to 0 11 = Ignore the input and set to 1
D	JACK_DE T_CTRL	JD_RESTART																	Manual Restart Jack Detection (Toggle this bit to 1 and then to 0 to restart the jack detection.)
	_	DB_BP_MOD E																	Jack Detect De-bounce Bypass 0 = Enable de-bounce circuit (need to set REG4B[0] = 1 to enable the CLK) (DEFAULT) 1 = Bypass the de-bounce circuit
		INSERT_DT																	Insertion De-bounce Time 2^(INSERT_DT +2) ms
		EJECT_DT																	Ejection De-bounce Time 2^(EJECT_DT +2) ms
		JKDET_PL																	Jack Insertion/ Detection Logic Polarity 0 = Falling edge (DEFAULT) 1 = Rising edge

										В	it								
R E G	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		JKDET_LOGI C											••••				••••		Jack Detection Logic Control 0 = OR gate (DEFAULT) 1 = AND gate
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		IRQ_PL																	IRQ Pin Logic Select 0 = Active low (DEFAULT) 1 = Active high
		IRQ_PS																	IRQ Pin Pull Select 0 = Pull down (DEFAULT) 1 = Pull up
		IRQ_PE																	IRQ Pin Pull Enable Control 0 = Disable (DEFAULT) 1 = Enable
		IRQ_DS																	IRQ Pin Drive Current Select 0 = Low drive current (DEFAULT) 1 = High drive current
		IRQ_OE																	IRQ Pin Output Enable Control 0 = Disable (DEFAULT) 1 = Enable
		APR_EMRGE NCY_SHTDW N1_INTP_MA SK																	APR Emergency Shutdown Interrupt Mask 0 = Unmask interrupt; turn off IRQ pad, but interrupt register status is controlled by 0x12[9] (DEFAULT) 1 = Mask interrupt; turn on IRQ pad
		RMS_INTP_M ASK																	RMS Interrupt Mask 0 = Unmask interrupt; turn off IRQ pad, but interrupt register status is controlled by 0x12[8] (DEFAULT) 1 = Mask the interrupt; turn on IRQ pad
F	INTERRU PT_MASK	KEY_RELEAS E_INTP_MAS K																	Key Release Interrupt Mask 0 = Unmask interrupt; turn off IRQ pad, but interrupt register status is controlled by 0x12[7] (DEFAULT) 1 = Mask the interrupt; turn on IRQ pad
		KEY_INTP_M ASK																	Key Pressed Interrupt Mask 0 = Unmask interrupt; turn off IRQ pad, but interrupt register status is controlled by 0x12[6] (DEFAULT) 1 = Mask the interrupt; turn on IRQ pad
		MCLKDET_IN TP_MASK																	Missing MCLK Detection Interrupt Mask 0 = Unmask interrupt; turn off IRQ pad, but interrupt register status is controlled by 0x12[5] (DEFAULT) 1 = Mask the interrupt; turn on IRQ pad
		MIC_DET_INT P_MASK																	MIC Detection Interrupt Mask 0 = Unmask interrupt; turn off IRQ pad, but interrupt register status is controlled by 0x12[4] (DEFAULT) 1 = Mask the interrupt; turn on IRQ pad
		JK_EJECT_IN TP_MASK																	Jack Ejection Interrupt Mask 0 = Unmask interrupt; turn off IRQ pad, but interrupt register status is controlled by 0x12[2] (DEFAULT) 1 = Mask the interrupt; turn on IRQ pad
		JK_DET_INTP _MASK																	Jack Insertion Interrupt Mask 0 = Unmask interrupt; turn off IRQ pad, but interrupt register status is controlled by 0x12[0] (DEFAULT) 1 = Mask the interrupt; turn on IRQ pad
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		APR_EMRG_ SHTDWN																	APR Emergency Short Circuit Shutdown IRQ Status
		RMS_INT																	Impedance Measurement IRQ Status
		KEY_RELEAS E_INT																	Key Release For Key Detection IRQ Status
		KEY_INT																	Key Detection IRQ Status
1 0	IRQ_STA TUS	MCLK_DET_I NT																	Missing MCLK Detection IRQ Status
		MIC_DET_INT																	MIC Detection IRQ Status
		JACK_EJCT_I RQ																	Jack Ejection IRQ Status 00 = Cleared state 01 = Jack ejection detected 10 = A jack eject interrupt was cleared due to a jack insertion 11 = Undefined

										В	is								
R E G	Function	Name	1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		JACK_DET_I RQ DEFAULT							X	x	X	x	X	X	X	Х	X	X	Jack insertion IRQ status 00 = Cleared state 01 = Jack insertion detected 10 = A jack insert interrupt was cleared due to a jack ejection 11 = Undefined READ ONLY
		22.7.02.	7.					, , ,			, ·	Ť	Ä		Ä				Write Operation
1	INT_CLR_ KEY_STA TUS	INT_CLR_KE Y_STATUS																	(Write bits[15:0] clear corresponding REG10 [15:0] Write 1s to bits that you want to reset to 0, except) Bit0 or Bit1 = clear Jack insertion interrupt Bit2 or Bit3 = clear Jack ejection interrupt
		DEFAULT	Х	Х	Х	Х	Х	Х	Х	Χ	Х	X	Х	Х	X	Х	Х	Х	READ/WRITE
		APR_EMRG_ SHTDWN _INT_DIS																	APR Emergency Short Circuit Shutdown Interrupt Disable Control 0 = Enable interrupt; interrupt status read from register or IRQ pad 1 = Disable interrupt and IRQ pad (DEFAULT) RMS Impedance Measurement Interrupt Disable Control 0 = Enable interrupt; interrupt status read from register or IRQ pad
																			1 = Disable interrupt and IRQ pad (DEFAULT) Key Release Interrupt Disable Control
		KEY_RELEAS E_INT_DIS																	0 = Enable interrupt; interrupt status read from register or IRQ pad 1 = Disable interrupt and IRQ pad (DEFAULT)
1	INTERRU PT_DIS_C TRL	KEY_INT_DIS																	Key Interrupt Disable Control 0 = Enable interrupt; interrupt status read from register or IRQ pad 1 = Disable interrupt and IRQ pad (DEFAULT)
2	(WRITE MODE)	MCLKDET_IN T_DIS																	MCLK Detection Interrupt Disable Control 0 = Enable interrupt; interrupt status read from register or IRQ pad 1 = Disable interrupt and IRQ pad (DEFAULT)
		MIC_DET_INT _DIS																	MIC Detection/Headset Configuration Interrupt Disable Control 0 = Enable interrupt; interrupt status read from register or IRQ pad
		JACK_EJCT_I NT_DIS																	Disable interrupt and IRQ pad (DEFAULT) Jack Ejection Interrupt Disable Control Enable interrupt; interrupt status read from register or IRQ pad Disable interrupt and IRQ pad (DEFAULT)
		JACK_DET_I NT_DIS																	Jack Insertion/Detection Interrupt Disable Control 0 = Enable interrupt; interrupt status read from register or IRQ pad
		DEFAULT	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 = Disable interrupt and IRQ pad (DEFAULT) 0xFFFF
		DMIC_DS																	DMIC Clock Drive Current Select (For high <i>Cload</i> > 20pF, enable high drive current.) 0 = Low drive current (DEFAULT) 1 = High drive current
		DMIC_SLEW																	DMIC Clock Slew Rate Select (For high Cload > 20pF, use faster slew rate.) 000 = Slowest slew rate (DEFAULT) The statest slew rate
3	DMIC_CT RL	CLK_DMIC_S RC																	DMIC Clock Speed Select 00 = ADC clock (DEFAULT) 01 = ADC clock / 2 10 = ADC clock / 4 11 = ADC clock / 8
		DMICEN																	Digital Microphone Mode Enable Control 0 = Disable (DEFAULT) 1 = Enable
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000

R										В	it								
EG	Function	Name	1 5	1 4	1 3	1 2	1	1	9	8	7	6	5	4	3	2	1	0	Description
		GPIO2OUT																	GPIO2 Programmable Output
		GPIO2_PS																	GPIO2JD1 Pull Select 0 = Pull up (DEFAULT) 1 = Pull down
		GPIO2_DS																	GPIO2JD1 Drive Current Select 0 = Low drive current (DEFAULT) 1 = High drive current
		GPIO2_PE																	GPIO2JD1 Pin Pull Enable Control 0 = Enable (DEFAULT) 1 = Disable
		GPIO2_OE																	GPIO2JD1 Output Enable Control 0 = Disable (DEFAULT) 1 = Enable
		GPIO1POL																	GPIO1 Polarity 0 = Non-inverted (DEFAULT) 1 = Inverted logic of the CSB/GPIO1 function output selected by GPIO1SEL
1 A	GPIO12_ CTRL	GPIO1SEL																	CSB/GPIO1 Function Select 000 = output 0 (DEFAULT) 001 = Jack status from the AND/OR logic 010 = SCLK_I 011 = SD_I 100 = output divided FLL clock 101 = FLL locked condition (logic 1 = PLL locked) 110 = SD_O 111 = OSC_CLK
		GPIO1_PS																	GPIO1CSB Pull Select (If GPIO1_PE=1) 0 = Pull up (DEFAULT) 1 = Pull down
		GPIO1_DS																	GPIO1CSB Drive Current Select 0 = Low drive current (DEFAULT) 1 = High drive current
		GPIO1_PE																	GPIO1CSB Pin Pull Enable Control 0 = Disable (DEFAULT) 1 = Enable
		GPIO1_OE													_				GPIO1CSB Output Enable Control 0 = Disable (DEFAULT) 1 = Enable
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		TDM																	TDM Enable Control 0 = Disable (DEFAULT) 1 = Enable
		PCM_OFFSET _MODE_CTRL																	PCM Offset In TDM Enable Control 0 = Disable (DEFAULT) 1 = Enable
1	TDM_CTR	ADCPHS0																	ADC Audio Data Left-right Ordering Select 0 = Left ADC data in left phase of LRP (DEFAULT) 1 = Left ADC data in right phase of LRP (left-right reversed)
В	L	DACPHS1																	DAC Right Channel Audio Data Left-right Ordering Select 0 = Right DAC data in right phase of LRP (DEFAULT) 1 = Right DAC data in left phase of LRP (left-right reversed)
		DACPHS0																	DAC Left Channel Audio Data Left-right Ordering Select 0 = Left DAC data in left phase of LRP (DEFAULT) 1 = Left DAC data in right phase of LRP (left-right reversed)

										В	it								
R E G	Function	Name	1 5	1 4	1 3	1 2	1	1	9	8	7	6	5	4	3	2	1	0	Description
		DAC_LEFT_S EL																	DAC Left Channel Source Under TDM Mode (TDM = 1 & PCM_OFFSET_MODE_CTRL = 0) 12S: 000 = From Slot 0 001= From Slot 1 (DEFAULT) 010 = From Slot 2 101 = From Slot 3 100 = RESERVED 110 = RESERVED 111 = RESERVED PCM: 000 = From slot 0 (DEFAULT) 010 = From slot 2 110 = From slot 3 100 = From slot 4 101 = From slot 5 110 = From slot 6 111 = From slot 7
		DAC_RIGHT_ SEL																	DAC Right Channel Source Under TDM Mode 12S: 000 = From Slot 0 (DEFAULT) 010 = From Slot 2 100 = RESERVED 110 = RESERVED 111 = RESERVED PCM: 000 = From slot 0 (DEFAULT) 010 = From slot 2 111 = From slot 1 (DEFAULT) 010 = From slot 2 110 = From slot 3 100 = From slot 4 110 = From slot 5 110 = From slot 6 111 = From slot 7
		ADC_TX_SEL _L																	ADC Left Channel Source Under TDM/I2S Mode 00 = From slot 0 (DEFAULT) 01 = From slot 2 10 = From slot 4 11 = From slot 6
		ADC_TX_SEL _R																	ADC Right Channel Source Under TDM/I2S Mode 00 = From slot 1 (DEFAULT) 01 = From slot 3 10 = From slot 5 11 = From slot 7
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		DACCM0																	DAC Companding Mode Select 00 = Off (DEFAULT - Normal linear operation) 01 = RESERVED 10 = µ-law companding 11 = A-law companding
		ADCCM0																	ADC Companding Mode Select 00 = Off (DEFAULT - Normal linear operation) 01 = RESERVED 10 = μ-law companding 11 = A-law companding
		ADDAP0																	ADC Output Data Stream Directly Routed To DAC Input Data Path Enable Control 0 = Disable (DEFAULT) 1 = Enable
1 C	I2S_PCM_ CTRL1	CMB8_0																	8-bit Word For Companding Mode Of Operation Enable Control 0 = Normal operation (DEFAULT - No companding) 1 = 8-bit operation for companding mode
		UA_OFFSET										_							uLaw Offset Select 0 = 1's complement (DEFAULT) 1 = 2's complement
		BCP0																	Bit Clock Phase Inversion Option For BCLK 0 = Non-inverted (DEFAULT) 1 = Inverted
		LRP0																	PCMA & PCMB Left-right Word Ordering Select 0 = Right Justified/Left Justified/I2S/PCMA mode (DEFAULT) 1 = PCMB Mode Enable - MSB is valid on 1st rising edge of BCLK after rising edge of FS
		WLEN0										_							Word Length of Audio Data Stream Select 00 = 16-bit word length 01 = 20-bit word length

										В	:4								
R E G	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	it 7	6	5	4	3	2	1	0	Description
				-		-													10 = 24-bit word length (DEFAULT) 11 = 32-bit word length
		AIFMT0																	Audio Interface Data Format Select 00 = Right justified 01 = Left justified 10 = Standard I2S format (DEFAULT) 11 = PCMA or PCMB audio data format option
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0x000A
		I2S_TRI																	I2S Tri State Enable Control 0 = Normal mode 1 = Output high Z (DEFAULT)
		I2S_DRV																	I2S Drive Enable Control 0 = Normal mode (DEFAULT) 1 = Always out
		LRC_DIV																	LRC(FS) Divider From BCLK Frequency 00 = 1/256 (DEFAULT)
		PCM_TS_EN0																	PCM Time Slot Function Enable Control (Only PCM_A_MODE or PCM_B_MODE (STEREO Only) can be used when PCM Mode is selected.) 0 = Disable time slot function for PCM mode (DEFAULT) 1 = Enable time slot function for PCM mode
		TRI0																	Without TDM Mode 0 = Drive the full clock of LSB (DEFAULT) 1 = Tri-state the 2nd half of LSB
1 D	I2S_PCM_ CTRL2	PCM8BIT0																	8-Bit PCM Select 0 = Use I2S PCM CTRL.WLEN to select word length (DEFAULT) 1 = PCM select 8-bit word length
		PCM_TS_SEL																	RESERVED
		ADCDAT0_PE																	ADCDAT IO Pull Enable Control 0 = Disable (DEFAULT) 1 = Enable
		ADCDAT0_PS																	ADCDAT IO Pull Up/Down Enable Control 0 = Pull down (DEFAULT) 1 = Pull up
		ADCDAT0_OE																	ADCDAT IO Output Enable Control 0 = ADCDAT not always out (when no data out, ADCOUT pin becomes high.) 1 = ADCDAT always out (DEFAULT)
		MS0																	Master/Slave Mode Enable Control 0 = Slave mode (DEFAULT) 1 = Master mode
		BCLK_DIV																	BCLK Divider From MCLK Frequency 000 = 1 (DEFAULT) 001 = 1/2 010 = 1/4 011 = 1/8 100 = 1/16 101 = 1/32
		DEFAULT	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0x8010
		FS_ERR_CMP _SEL																	Triggers Short Frame Sync Signal (If frame sync is less than) 00 = 252 x MCLK (DEFAULT) 10 = 254 x MCLK 11 = 255 x MCLK
1 E	LEFT_TIM E_SLOT	DIS_FS_SHO RT_DET																	Short Gram Sync Detection Logic Enable Control 0 = Enable (DEFAULT) 1 = Disable
		TSLOT_L0																	Left channel PCM Time Slot Start Value / PCM TDM Offset Mode Slot Start Value
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
1 F	RIGHT_TI ME_SLOT	TSLOT_R0	_		•		•	•					_				_	_	Right channel PCM Time Slot Start Value / unused for PCM TDM Offset Mode
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		BIQ0_A1_L																	Program ADC BIQ0_A1 Parameter Bit[15:0]

R E	Function	Name								В	it								Description
Ğ	Tanonon	Nume	1 5	1 4	1	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
2 1	BIQ0_ COF1	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
2	BIQ0_	BIQ0_A1_H																	Program ADC BIQ0_A1 Parameter Bit[18:16]
2	COF2	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
2	BIQ0_ COF3	BIQ0_A2_L																	Program ADC BIQ0_A2 Parameter Bit[15:0]
Ĺ	COF3	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
2 4	BIQ0_ COF4	BIQ0_A2_H DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Program ADC BIQ0_A2 Parameter Bit[18:16] 0x0000
			U	U	Ů	U	U	U	•	U	U	Ů	Ů	U	<u> </u>	U	U	U	
2 5	BIQ0_ COF5	BIQ0_B0_L DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Program ADC BIQ0_B0 Parameter Bit[15:0] 0x0000
	2100	BIQ0_B0_H		_	_							_	_					Ū	Program ADC BIQ0_B0 Parameter Bit[18:16]
2 6	BIQ0_ COF6	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
2	BIQ0	BIQ0_B1_L																	Program ADC BIQ0_B1 Parameter Bit[15:0]
7	COF7	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
2	BIQ0	BIQ0_B1_H																	Program ADC BIQ0_B1 Parameter Bit[18:16]
8	COF8	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
2	BIQ0	BIQ0_B2_L																	Program ADC BIQ0_B2 Parameter Bit[15:0]
9	COF9	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
2	BIQ0_	BIQ0_EN																	BIQ0 ADC Path Enable Control 0 = Disable (DEFAULT) 1 = Enable
Α	COF10	BIQ0_B2_H																	Program ADC BIQ0_B2 Parameter Bit[18:16]
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000 R/W
		ADC_L_SRC																	In Non-DMIC Mode 0 = Latch left channel analog data input into the left channel filter (DEFAULT) 1 = Latch right channel analog data input into the left channel filter In DMIC Mode 0 = Left channel in rising edge (DEFAULT) 1 = Left channel in falling edge
2 B	ADC_RAT E	ADC_R_SRC SMPL_RATE																	ADC Right Channel Source Select In Non-DMIC Mode 0 = Latch right channel analog data input into the right channel filter (DEFAULT) 1 = Latch left channel analog data input into the right channel filter In DMIC Mode 0 = Right channel in falling edge (DEFAULT) 1 = Right channel in rising edge Generating 2.048MKHz based on Sample Rates 000 = 48K (DEFAULT) 001 = 32K 110 = 96K 111 = 192K
		GAINCMP																	RESERVED
		ADC_RATE		•	•				•			•	•	•	•		4		ADC SINC Down Select 00 = Down 32
٦	DAC CTD	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0x0002
2 C	DAC_CTR L1	CICCLP_OFF																	0 = (DEFAULT)

R										В	it								
EG	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		CIC_GAIN_AD J																	Gain Adjustment (Fine tunes the DAC output)
		DAC_RATE																	DAC Oversample Rate Select 000 = 64 001 = 256 010 = 128 (DEFAULT) 100 = 32
		DEFAULT	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0x0082
		RESERVED																	RESERVED
2 D	DAC_TRL 2	SDMOD_DITH ER																	Bit Numbers Of Dithering On SD Modulator (Step size is 1bit.) 000000 = No dithering (DEFAULT) 000010 = 1 00010 = 2 00011 = 3 00100 = 4 001010 = 5 00110 = 6 00111 = 7 01000 = 8 01001 = 9 01010 = 10 01011 = 11 01100 = 12 01101 = 13
		RESERVED																	RESERVED
		RESERVED																	RESERVED
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
2	DAC_DG	DAC1_TO_DA C0_ST																	DAC CH1 to DAC CH0 Crosstalk Suppression Sidetone Select (Step size is 0.5dB.) 0XFF = +24dB 0XFE = +23.5dB V 0XCF = 0dB V 0X43 = -70dB 0X42 = RESERVED V 0X0F = RESERVED 0X0E = Mute 0X00 = Mute (DEFAULT)
F	AIN_CTR L	DAC0_TO_DA C1_ST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	DAC CH0 to DAC CH1 Crosstalk Suppression Sidetone Select (Step size is 0.5dB.) 0XFF = +24dB 0XFE = +23.5dB 0XCF = 0dB 0X43 = -70dB 0X42 = RESERVED 0XOF = RESERVED 0XOF = RESERVED 0XOE = Mute 0X00 = Mute (DEFAULT)
H		DEI AUET	Ť			<u> </u>	Ů		<u>, </u>	J	J	J		<u> </u>	<u> </u>				
3 0	ADC_DG AIN_CTR L	ADC_TO_DA C_ST0																	ADC to DAC CH0 Sidetone Select (Step size is 3dB.) 0x00 = Mute (DEFAULT) 0x01 = -42dB 0x0E = -3dB 0x0F = 0dB

										В	it								
R E G	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		ADC_TO_DA C_ST1																	ADC to DAC CH1 Sidetone Select (Step size is 3dB.) 0x00 = Mute (DEFAULT) 0x01 = -42dB v 0x0E = -3dB 0x0F = 0dB
		DAC_ST_SEL																	DAC CH0 Sidetone Source Select 0 = Select ADC CH0 as the side tone source of the DAC CH0 (DEFAULT) 1 = Select ADC CH1 as the side tone source of the DAC CH0
		DAC_ST_SEL									•			,					DAC CH1 Sidetone Source Select 0 = Select ADC CH1 as the side tone source of the DAC CH1 (DEFAULT) 1 = Select ADC CH0 as the side tone source of the DAC CH1
H		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		PGA_SMUTE_ STEP																	Analog Attn Mute Step Select 00 = 128 sample
		DAC_SLOW_ UM																	DAC Slow Soft Unmute Enable Control 0 = Disable (16 MCLK per step soft unmute) (DEFAULT) 1 = Enable (512 MCLK per step soft unmute)
		DAC_ZC_UP_ EN																	DAC Zero Crossing Enable Control 0 = Disable (DEFAULT) 1 = Enable
		AMUTE_EN																	Auto Mute Enable Control (Generate null output to analog circuitry when 1024 consecutive zeros are detected. De-assert as soon as first non-zero sample is detected.) 0 = Disable (DEFAULT) 1 = Enable
3	MUTE_CT RL	AMUTE_CTRL																	Auto Mute Control 0 = Both DAC channels must have 0 values for 1024 samples before AMUTE turns on (DEFAULT) 1 = Either Ch0 or Ch1 must have 1024 consecutive zero samples
		SMUTE_EN																	Soft Mute Enable Control 0 = Gradually increase DAC volume to volume register setting (DEFAULT) 1 = Gradually lower DAC volume to zero
		SUMTE_CTRL																	DAC Limiter Output Enable Control 0 = (DEFAULT) 1 = (When soft mute is enabled, DAC limiter output is also muted to remove any DC offset produced by the audio processing block.)
		ADC_ZC_UP_ EN																	ADC Zero Crossing Enable Control 0 = Disable (DEFAULT) 1 = Enable
		ADC_SMUTE_ EN																	ADC Soft Mute Enable Control 0 = Disable (DEFAULT) 1 = Enable
II		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		HSPGA_ATTN _EN																	Headphone Diver Manual Attn Enable Control (With HSPGA_ATTN_EN and AMUTE_EN enabled) 0 = Disable (DEFAULT) 1 = Enable
3 2	HSVOL_C TRL	HSPGA_ATTN _AUTO_MOD E																	Headphone Driver Auto Attn Enable Control (With HSPGA_ATTN_AUTO_MODE and AMUTE_EN enabled) 0 = Disable (DEFAULT) 1 = Enable
		MUTE_HSPG A2																	Right Channel Headphone Driver Manual Mute Enable Control 0 = Disable (DEFAULT)

R										В	it								
E	Function	Name	1 5	1 4	1	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		MUTE_HSPG A1																	1 = Enable Left Channel Headphone Driver Manual Mute Enable Control 0 = Disable (DEFAULT) 1 = Enable
		HSPGA1_VOL																	Left Channel Headphone Driver Volume Control 00 = 0dB (DEFAULT) 01 = -3dB 10 = -6dB 11 = -9dB
		HSPGA2_VOL																	Right Channel Headphone Driver Volume Control 00 = 0dB (DEFAULT) 01 = -3dB 10 = -6dB 11 = -9dB
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
3	DAC_CTR	DGAINR_DAC																	DAC Right Volume Control (Step size is 0.5dB.) 0xFF = +24dB 0xFE = +23.5dB V 0xCF = 0dB (DEFAULT) V 0x4B = -66dB 0x4A = RESERVED V 0x0F = RESERVED 0x0E = Mute 0x00 = Mute
4	L	DGAINL_DAC																	DAC Left Volume Control (Step size is 0.5dB.) 0XFF = +24dB 0XFE = +23.5dB V 0XCF = 0dB (DEFAULT) V 0X4B = -66dB 0X4A = RESERVED V 0X0F = RESERVED 0X0E = Mute 0X00 = Mute
		DEFAULT	1	1	0	0	1	1	1	1	1	1	0	0	1	1	1	1	0xCFCF
	ADC_DG	DGAINR_ADC																	ADC Right Volume Control (Step size is 0.5dB.) 0xFF = +24dB 0xFE = +23.5dB V 0xCF = 0dB (DEFAULT) V 0x4B = -66dB 0x4A = RESERVED V 0x0F = RESERVED 0x0F = RESERVED 0x0E = Mute 0x00 = Mute
3 5	AIN_CTR L1	DGAINL_ADC	1	1	0	0	1	1	1	1	1	1	0	0	1	1	1	1	ADC Left Volume Control (Step size is 0.5dB.) 0xFF = +24dB 0xFE = +23.5dB V 0xCF = 0dB (DEFAULT) V 0x4B = -66dB 0x4A = RESERVED V 0x0F = RESERVED 0x0E = Mute 0x0FCF

Rev 3.1

R										В	it								
E G	Function	Name	1 5	1 4	1	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		DRC_ENA_A DC																	DRC ADC Channel Enable Control 0 = Disable (DEFAULT) 1 = Enable
	ADC_DR	DRC_KNEE2_ IP_ADC																	DRC ADC Knee Point 2 Select (Step size is 1dB.) 0x00 = 0dB 0x01 = -1dB ▼ 0x14 = -20dB (DEFAULT) ▼ 0x3E = -62dB 0x3F = -63dB
3 6	C_KNEE_ IP12	DRC_SMTH_E NA_ADC																	DRC ADC Smooth Filter Enable Control 0 = Disable 1 = Enable (DEFAULT)
		DRC_KNEE1_ IP_ADC																	DRC ADC Knee Point 1 Select (Step size is 1dB.) 0x00 = 0dB 0x01 = -1dB ▼ 0x06 = -6dB (DEFAULT) ▼ 0x1E = -30dB 0x1F = -31dB
		DEFAULT	0	0	0	1	0	1	0	0	1	0	0	0	0	1	1	0	0x1486
3 7	ADC_DR C_KNEE_ IP34	DRC_KNEE4_ IP_ADC DRC_KNEE3_ IP_ADC												100					DRC ADC Knee Point 4 Select (Step size is 1dB.) 0x00 = -35dB 0x01 = -36dB vol = -50dB (DEFAULT) vol = -65dB 0x1F = -65dB 0x1F = -66dB DRC ADC Knee Point 3 Select (Step size is 1dB.) 0x00 = -18dB 0x01 = -19dB vol = -36dB (DEFAULT) vol = -36dB (DEFAULT) vol = -48dB 0x1F = -49dB
_		DEFAULT	0	0	0	0	1	1	1	1	0	0	0	1	0	0	1	0	0x0F12
3 8	ADC_DR C_SLOPE S	DRC_NG_SLP_ADC DRC_EXP_SL P_ADC DRC_CMP2_S LP_ADC DRC_CMP1_S LP_ADC DRC_LMT_SL P_ADC																	DRC ADC Noise Gate Slope 00 = 1:1
		DEFAULT	0	0	1	0	0	1	0	1	1	1	1	1	1	1	1	1	110 = 1:64

R										В	it								
EG	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		DRC_PK_CO EF1_ADC																	DRC ADC Peak Detection Attack Time (Ts = 1/SMPL_RATE) 0000 = Ts 0001 = 3*Ts 0010 = 7*Ts 0011 = 15*Ts (DEFAULT) 0100 = 31*Ts 0101 = 63*Ts 0110 = 127*Ts 0111 = 255*Ts 1001 = 511*Ts
		DRC_PK_CO EF2_ADC																	DRC ADC Peak Detection Release Time (Ts = 1/SMPL_RATE) 0000 = 63*Ts 0001 = 127*Ts 0010 = 255*Ts 0011 = 511*Ts 0100 = 1023*Ts 0101 = 2047*Ts (DEFAULT) 0110 = 4095*Ts 1001 = 16383*Ts
3 9	ADC_DR C_ATKDC Y	DRC_ATK_AD C																	DRC ADC Attack Time (Ts = 1/SMPL_RATE) 0000 = Ts 0001 = 3*Ts 0010 = 7*Ts 0011 = 15*Ts 0100 = 31*Ts 0101 = 63*Ts (DEFAULT) 0110 = 127*Ts 0111 = 255*Ts 1000 = 511*Ts 1001 = 1023*Ts 1010 = 2047*Ts 1011 = 4095*Ts 1100 = 8191*Ts
		DRC_DCY_A DC																	DRC ADC Decay Time (Ts = 1/SMPL_RATE) 0000 = 63*Ts 0001 = 127*Ts 0010 = 255*Ts 0011 = 511*Ts 0100 = 1023*Ts 0101 = 2047*Ts 0110 =4095*Ts 0111 = 8191*Ts (DEFAULT) 1000 = 16383*Ts 1001 = 32757*Ts 1010 = 65535*Ts
		DEFAULT	0	0	1	1	0	1	0	0	0	1	0	1	0	1	1	1	0x3457
		DRC_ENA_D AC																	DRC DAC Channel Enable Control 0 = Disable (DEFAULT) 1 = Enable
	D40 DD	DRC_KNEE2_ IP_DAC																	DRC DAC Knee Point 2 Select (Step size is 1dB.) 0x00 = 0dB 0x01 = -1dB V 0x14 = -20dB (DEFAULT) V 0x1E = -62dB 0x1F = -63dB
3 A	DAC_DR C_KNEE_ IP12	DRC_SMTH_E NA_DAC																	DRC DAC Smooth Filter Enable Control 0 = Disable 1 = Enable (DEFAULT)
		DRC_KNEE1_ IP_DAC																	DRC DAC Knee Point 1 Select (Step size is 1dB.) 0x00 = 0dB 0x01 = -1dB V 0x06 = -6dB (DEFAULT) V 0x1E = -30dB 0x1F = -31dB
		DEFAULT	0	0	0	1	0	1	0	0	1	0	0	0	0	1	1	0	0x1486
3 B	DAC_DR C_KNEE_ IP34	DRC_KNEE4_ IP_DAC																	DRC DAC Knee Point 4 Select (Step size is 1dB.) 0x00 = -35dB 0x01 = -36dB ▼ 0x0F = -50dB (DEFAULT) ▼ 0x1E = -65dB 0x1F = -66dB

0										В	it								
R E G	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		DRC_KNEE3_ IP_DAC																	DRC DAC Knee Point 3 Select (Step size is 1dB.) 0x00 = -18dB 0x01 = -19dB v 0x12 = -36dB (DEFAULT) v 0x1E = -48dB
		DEFAULT	0	0	0	0	1	1	1	1	0	0	0	1	0	0	1	0	0x1F = -49dB 0x0F12
		DRC_NG_SLP _DAC																	DRC DAC Noise Gate Slope 00 = 1:1
		DRC_EXP_SL P_DAC																	DRC DAC Expansion Slope 00 = 1:1
3	DAC_DR C SLOPE	DRC_CMP2_S LP_DAC																	DRC DAC Compressor Slope (Lower Region) 000 = 0 001 = 1:2 010 = 1:4 011 = 1:8 100 = 1:16 101-110 = RESERVED 111 = 1 (DEFAULT)
С	S S	DRC_CMP1_S LP_DAC																	DRC DAC Compressor Slope (Higher Region) 000 = 0 001 = 1:2 010 = 1:4 011 = 1:8 100 = 1:16 101-110 = RESERVED 111 = 1 (DEFAULT)
		DRC_LMT_SL P_DAC																	DRC DAC Limiter Slope 000 = 0
		DEFAULT	0	0	1	0	0	1	0	1	1	1	1	1	1	0	0	1	0x25F9
		DRC_PK_CO EF1_DAC																	DRC DAC Peak Detection Attack Time (Ts = 1/SMPL_RATE) 0000 = Ts
		DRC_PK_CO EF2_DAC																	DRC DAC Peak Detection Release Time (Ts = 1/SMPL_RATE) 0000 = 63*Ts
3 D	DAC_DR C_ATKDC Y	DRC_ATK_DA C																	DRC DAC Attack Time (Ts = 1/SMPL_RATE) 0000 = Ts 0011 = 15*Ts 0100 = 31*Ts 0101 = 63*Ts (DEFAULT) 0110 = 127*Ts 1000 = 511*Ts 1001 = 1023*Ts 1100 = 2047*Ts 1100 = 8191*Ts
		DRC_DCY_D AC																	DRC DAC Decay Time (Ts = 1/SMPL_RATE) 0000 = 63*Ts
		DEFAULT	0	0	1	1	0	1	0	0	0	1	0	1	0	1	1	1	0x3457
4	BIQ1_ COF1	BIQ1_A1_L																	Program DAC BIQ1_A1 Parameter Bit[15:0]

										D	it								
R E G	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
4	BIQ1	BIQ1_A1_H																	Program DAC BIQ1_A1 Parameter Bit[18:16]
2	COF2	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
4	BIQ1_	BIQ1_A2_L																	Program DAC BIQ1_A2 Parameter Bit[15:0]
3	COF3	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
4	BIQ1_CO	BIQ1_A2_H																	Program DAC BIQ1_A2 Parameter Bit[18:16]
4	F4	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
4	BIQ1_	BIQ1_B0_L																	Program DAC BIQ1_B0 Parameter Bit[15:0]
5	COF5	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
4	BIQ1_	BIQ1_B0_H																	Program DAC BIQ1_B0 Parameter Bit[18:16]
6	COF6	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
4 7	BIQ1_ COF7	BIQ1_B1_L																	Program DAC BIQ1_B1 Parameter Bit[15:0]
Ľ	COF1	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
4	BIQ1_CO	BIQ1_B1_H																	Program DAC BIQ1_B1 Parameter Bit[18:16]
8	F8	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
4	BIQ1_ COF9	BIQ1_B2_L																	Program DAC BIQ1_B2 Parameter Bit[15:0]
	COF	DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
4	BIQ1 CO	BIQ1_EN																	BIQ1 DAC Path Enable Control 0 = Disable (DEFAULT) 1 = Enable
A	F10	BIQ1_B2_H																	Program DAC BIQ1_B2 Parameter Bit[18:16]
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		CLASSG_CLK _SRC																	Class G Function Clock Divider 00 = Clock 2MHz
		CLASSG_TIM ER																	Define The Number Of Milliseconds (When a Class-G mode signal to go low after it has been below the threshold.) 000001 = 1ms 000100 = 8ms 001000 = 16ms 010000 = 32ms 100000 = 64ms
4 B	CLASSG_ CTRL	CLASSG_THR SLD																	Threshold for DAC Signal Level Comparison To Generate Class-G Mode Signal 00 = 1/16 Full Scale 01 = 1/8 Full Scale (DEFAULT) 10 = 3/16 Full Scale 11 = 1/4 Full Scale
		CLASSG_CM P_EN																	Class-G Compare Path Enable Bit (Each bit enables according DAC path.) 0 = Disable (DEFAULT) 1 = Enable Bit0 = Left DAC Bit1 = Right DAC
		CLASSG_EN																	Class-G Function Enable Control 0 = Disable (DEFAULT) 1 = Enable
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		RESERVED																	RESERVED

										В	it								
REG	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		IMM_THRESH OLD																	Impedance Measurement Threshold To Avoid False Detection (Each increase raises the floor of the ADC requiring higher signal levels before activation.) 0x00 = [23:0] Full Range (DEFAULT) 0x01 = [23:1] V 0x14 = [23:20] 0x15 = [23:21]
	IMM MOD	IMM_GEN_VO L																	Signal Level Of The 23Hz Sinewave Generation For Impedance Measurement 00 = 1/2 Full Scale 01 = 1/4 Full Scale (DEFAULT) 10 = 1/8 Full Scale 11 = 1/16 Full Scale
4 C	E_CTRL	IMM_CYCLE_ CNT																	Number Of MCLK (Used to calculate the impedance) 00 = 1024 01 = 2048 (DEFAULT) 10 = 4096 11 = 8192
		IMM_MODE																	Impedance Measurement Mode Enable Conrol 0 = Disable (DEFAULT) 1 = Enable
		DACIN_SRC																	DAC Filter Input Source Selection (IMM_MODE enabled from built-in sine generator) 00 = From DRC DAC Output (DEFAULT) 01 = From DAC Mixer Output 10 = From u/A-law decode output 11 = None
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
4 D	IMM_RMS _L	DEFAULT	v		Х	Х	X	Х	Х	х	Х	Х	Х	х	Х	v	х	X	Left Headset Speaker Impedance Readout (It is recommended to characterize this before use with known Impedance values.) READ ONLY
		DEFAULT	Х	Х	^	^	^	^	^	^	^	_	^	^	_	Х	^	^	
4 E	FUSE_CT RL2	FUSEIN_L																	The Lower 16 bits Of The FUSEIN (These register bits are OR ed with the Fuse latches and can be used for test characterization except during reset or after power on reset.)
		DEFAULT	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0x0000
		RESERVED																	RESERVED
4 F	FUSE_CT RL3	FUSEIN_H																	The Higher 2 Bits Of The FUSEIN (These register bits are OR ed with the Fuse latches and can be used for test characterization except during reset or after power on reset.)
			0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0x0000 Set eFuse mode
		FUSE_PRG_ MODE																	0 = Not in the programming mode (DEFAULT) 1 = In the programming mode Set Bank of 32 eFuse Used For Programming The
		FUSWBNKIN																	eFuse 0 = Bank 0 (DEFAULT) 1 = Bank 1
5	FUSE_CT	FUSEPRGBN K																	(Set this signal to 1 will instantly program the eFuse that selects the bank of 32 eFuses during a read operation.)
1	RL1	FUSEPRGEN																	(Set this signal to 1 will program the selected eFuse.) (Set this signal to 1 will read the bank of 32 eFuses
		RUSEREAD																	selected by the fuse bank eFuse.)
		FUSERESETB																	(Set this signal to 0 will reset the 32 eFuse latches. This signal should be 1 after any read cycle.)
		FUSESEL																	(The eFuse address bus for programming. Only one bit can be programmed at a time.)
		DEFAULT	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0x0400
5	OTPDOU	OTPDOUT_L																	OTP Read Out Data Low 16 Bits
3	T_1	DEFAULT	X	X	X	X	X	X	Χ	X	X	Х	X	X	X	X	X	X	READ ONLY

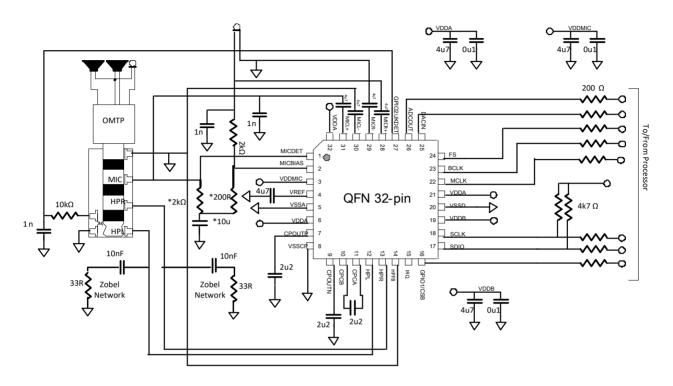
										В	it								
REG	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
5	OTPDOU	OTPDOUT_H																	OTP Read Out Data High 2 Bits
4	T_2	DEFAULT	Х	X	X	X	X	Χ	Χ	X	Χ	X	X	X	X	Х	Х	Х	READ ONLY
		RAM_TEST_S TART																	Ram Test Enable Control 0 = Disable (DEFAULT) 1 = Enable
5 5	MISC_CT RL	D2A_LOOP																	ADC To DAC Loop 0 = Disable (DEFAULT) 1 = Enable (use ADC decimation filter output as DAC Left filter input)
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		I2C_DEVICE_I D																	I2C Device ID Read In
5	I2C_DEVI	KEYDET																	Key Detect Status Bit
8	CE_ID	MICDET																	MICDETECT Status Bit
		SILICON REVISION ID																	Silicon Revision Bits
		DEFAULT	Х	0	0	1	1	0	1	Χ	0	0	1	0	0	0	0	0	READ ONLY
		RATM_TEST_ FINISH																	RAM Test Status Bit 0 = Test not finished 1 = Test finished
5 9	SARDOU T_RAM_S	RAM_TEST_F AIL																	RAM Test Result Bit 0 = Test passed 1 = Test failed
3	TATUS	ANALOG_MU TE																	Analog Mute Flag Bit 0 = Disable 1 = Enable
		DEFAULT	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	READ ONLY
5 A	SOFTWA RE_RST	SW_RESET																	Software Reset (Write any value <i>twice</i> to reset all internal states without resetting the config registers.)
		TESTRL																	Headphone Impedance Enable Control (Test/ IMM_MODE) 0 = Disable (DEFAULT) 1 = Enable
		MUTEL																	Left PGA Mute Enable Control 0 = Disable (DEFAULT) 1 = Enable
		MUTER																	Right PGA Mute Enable Control 0 = Disable (DEFAULT) 1 = Enable
		TESTDAC																	DAC Right, Left Test Only
		RESERVED																	RESERVED
6	BIAS_AD J	VMIDEN																	VMID Enable Control 0 = Disable (DEFAULT) 1 = Enable
		VMIDSEL																	VMID Tie-off Impedance Select 00 = Open (DEFAULT) 10 = 125 KOhms 01 = 25 KOhms 11 = 2.5 KOhms
		RESERVED														Г			RESERVED
		RESERVED																	RESERVED
		BIASADJ																	PGA Master Bias Current Power Select 00 = Normal operation (DEFAULT) 01 = 9% reduced bias current from normal 10 = 17% reduced bias current from normal 11 = 11% increased bias current from normal
Ш		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
6 8	TRIM_SE TTINGS	RESERVED																	RESERVED

										В	it								
R E G	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		TESTDACIN					I.												DAC Test Signal 00 & 11 = GND (DEFAULT) 01 & 10 = High & Low
		PULLUP_ GPIO2																	GPIO2JD1 Pull Up Select 0 = 1MOhm (DEFAULT) 1 = 100KOhm
		GPIO2THL																	GPIO2 JKDET1 Threshold Low Select 00 = 0.22 × VDDA (DEFAULT) 10 = 0.40 × VDDA 11 = 0.5 × VDDA GPIO2 JKDET1 Threshold High Select
6 9	ANALOG _CONTR OL_1	GPIO2THH																	00 = 0.85 x VDDA (DEFAULT) 10 = 0.78 x VDDA 11 = 0.6 x VDDA
		RESERVED																	RESERVED
		JD1POL																	JKDETL JD1 Polarity 0 = Non-inverted (DEFAULT) 1 = Inverted
		JKDETLPOL																	JKDETL Output Polarity 0 = Non-inverted (DEFAULT) 1 = Inverted
		ENJKDETL																	Enable Jack Tip Insertion Detection Circuit
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
																			Headphone Driver Class-AB Bias Current Adjust In Non-Class-G Mode 0 = Normal (DEFAULT) 1 = 2x
																			Headphone Driver Bias Current Adjust In Class-G Mode 0 = Normal (DEFAULT) 1 = 0.5x
		ANALOG_CO NTROL																	Headphone Driver Bias Current Adjust In non Class-G Mode 0 = Normal (DEFAULT) 1 = 2.5x
6 A	ANALOG _CONTR OL_2																		Headphone Out Boost Driver Bias Current Adjust in Class-G Mode 1 0 = Normal (DEFAULT) 1 = Low
	OL_2																		Headphone Out Boost Driver Bias Current Adjust in Class-G Mode 2 0 = Normal (DEFAULT) 1 = Low
		HP_AB_ADJ																	Headphone Driver Bias Adjust In Class-AB 0 = Normal (DEFAULT) 1 = Increase bias
		RESERVED																	RESERVED
		CAPMSB																	DAC Reference Decoupling Capacitor Enable MSB
		CAPLSB																	DAC Reference Decoupling Capacitor Enable LSB
L		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
6 B		MUTENL																	MICLN Input to PGA Mute Enable Control 0 = Disable (DEFAULT) 1 = Enable When enabling one of MICNL or MICPL mute, PGAL becomes a single-ended configuration, and PGAL gain becomes doubled. When both MICL and MICLP muted, the PGAL has no input. Same operation as MUTENR and MUTEPR.
		MUTENR																	MICRN Input to PGA Mute Enable Control 0 = Disable (DEFAULT) 1 = Enable
		MUTEPL																	MICLP Input to PGA Mute Enable Control 0 = Disable (DEFAULT) 1 = Enable

										В	it								
REG	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		MUTEPR																	MICRP Input to PGA Mute Enable Control 0 = Disable (DEFAULT) 1 = Enable
		RESERVED																	RESERVED
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		RESERVED																	RESERVED
7	ANALOG _ADC_1	PDMICDET																	MIC Detection Power Down Control 0 = Power on MIC detection (DEFAULT) 1 = Power down MIC detection
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0x0011
		RESERVED																	RESERVED
		ADC_UPL																	Left Channel PGA Bias Current Increase Enable Control (For driving ADC at high sample rates) 0 = Disable (DEFAULT) 1 = Enable
		ADC_UPR																	Right Channel PGA Bias Current Increase Enable Control (For driving ADC at high sample rates) 0 = Disable (DEFAULT) 1 = Enable
7 2	ANALOG _ADC_2	BIAS																	ADC Bias Current Select 00 = Nominal (DEFAULT) 01 = Double 10 = Half 11 = Quarter
		VREFSEL																	ADC VREF Select 00 = Analog supply (DEFAULT) 01 = VMID 10 = VMID + 0.5dB 11 = VMID + 1dB
		RESERVED																	RESERVED
		PDNOTL																	Left ADC Analog Power Enable Control 0 = Disable (DEFAULT) 1 = Enable
		PDNOTR																	Right ADC Analog Power Enable Control 0 = Disable (DEFAULT) 1 = Enable
		DEFAULT	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0x0020
		DAC_EN																	DAC Enable Control 0 = Disable (DEFAULT) 1 = Enable Bit0 = Left DAC Bit1 = Right DAC
		CLK_DAC_EN																	DAC Clock Enable Control 0 = Disable (DEFAULT) 1 = Enable Bit0 = Left DAC Bit1 = Right DAC
7	RDAC	FC_CTR																	DAC Smoothing Filter On HS Output Enable Control 0 = Disable (DEFAULT) 1 = Enable
		CLK_DAC_DE LAY																	DAC Clock Delay Select 000 = Delay 0 nsec (DEFAULT) 100 = Delay 4 nsec 001 = Delay 1 nsec 101 = Delay -3 nsec 010 = Delay 2 nsec (Recommended) 110 = Delay -2 nsec 011 = Delay 3 nsec 111 = Delay -1 nsec

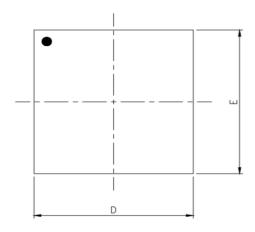
										В	it								
R E G	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		DACVREFSEL																	DAC Full Scale Reference Voltage Select (By setting this value, it will change DAC full scale output. For best performance, use default value.) 00 = External VDDA 01 = 1.5V 10 = 1.6V (DEFAULT) 11 = 1.7V
_		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0x0008
		INT2KA																	MICBIAS1 Internal 2K Ohm Resistor For MCGND Enable Control 0 = Disable (DEFAULT) 1 = Enable
		LOWNOISE																	Low Power / Low Noise Mode Select 0 = Low power mode (DEFAULT) 1 = Low noise mode
7	MIC_BIAS	POWERUP																	MICBIAS1 Power Enable Control 0 = Disable (DEFAULT) 1 = Enable
4	MIC_BIAS	MICBIASLVL1																	MICBIAS1 Output Level Select 000 = VDDA 001 = 1x 010 = 1.1x 011 = 1.2x 100 = 1.3x 101 = 1.4x 110 = 1.53x 111 = 1.53x
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0x0006
		CLR_APR_EM RGENCY_SH TDWN STG2_SEL																	Clear Headset Short Circuit Shutdown IRQ 0 = (DEFAULT) 1 = Reset (Momentary) PGA In Class-A Mode Of Operation Enable Instead Of Class-AB Enable Control
		0102_022																	0 = Disable (DEFAULT) 1 = Enable VMID Pre-charge Disable Control
		PDVMDFST																	0 = Disable (DEFAULT) 1 = Enable
		BIASEN																	Global Analog Bias Enable Control 0 = Disable (DEFAULT) 1 = Enable
7 6	BOOST	DISCHRG																	Charge Input Enable Control 0 = Disable (DEFAULT) 1 = Enable
		BYPS_IBCTR																	Bypass PGA Current Control Enable Control 0 = Disable (DEFAULT) 1 = Enable
		BOOSTDIS																	HP Boost Driver Disable Control 0 = Enable (DEFAULT) 1 = Disable
		BOOSTGDIS																	HP Boost Driver In Class-G Mode Disable Control 0 = Enable (DEFAULT) 1 = Disable
		SHRT_SHTD WN_DIG_EN	_																Short Circuit Shut Down Digital Part Enable Control 0 = Disable (DEFAULT) 1 = Enable

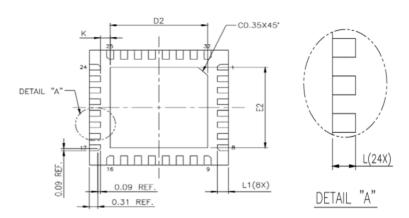
R										В	it								
E G	Function	Name	1 5	1 4	1 3	1 2	1	1 0	9	8	7	6	5	4	3	2	1	0	Description
		EN_SHRT_SH TDWN																	Automatic Short-circuit Shutdown Enable Control 0 = (Driver shuts down after 16.3 µsec debounce when shortage detected. IRQ pin Interrupt is generated. When SHRT_SHTDWN_DIG_EN = 0, APR_EMRGNCY_SHTDWN is cleared if the IRQ pin Interrupt cleared. Users need to clear IRQ pin interrupt. When SHRT_SHTDWN_DIG_EN = 1, APR_EMRGNCY_SHTDWN is cleared 1630 µsec after shortage removed. Users need to clear IRQ pin interrupt.)
		HS_SHRT_TH RESHLD																	1 = (Headset driver power will be down immediately when shortage detected. No interrupt will be generated.) Headset Short Circuit Protection Limit 00= 115mA at +FS (DEFAULT) 11= 155mA at +FS
		PAMP_THRS HLD																	Adjust HS Boost P-driver Bias Current 00 = Normal (DEFAULT) 11 = Decrease current
		NAMP_THRS HLD																	Adjust HS Boost N-driver Bias Current 00 = Normal (DEFAULT) 11 = Decrease current
Ш		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		ACDC_CTRL																	Charge Input To VREF Enable Control (Effective when DISCHRG = 1) 0 = Disable (DEFAULT) 1 = Enable Bit0 = Charges MICP to VREF Bit1 = Charges MICN to VREF
		CMLCK_ADJ																	PGA Common Mode Threshold Lock Adjust 00 = (DEFAULT)
		IB_LOOP_CT R																	PGA Current Trim 0 = (DEFAULT)
		IBCTR_CODE																	PGA Current Trim 000 = (DEFAULT)
7 7	FEPGA	FEPGA_MOD EL																	Left PGA Mode Select 0 = Disable (DEFAULT) 1 = Enable MODE[0] = Anti-aliasing filter adjust MODE[1] = Disconnects MICP & MICN MODE[2] = No function MODE[3] = Shorts the inputs and terminates with 12kOhm differentially
		FEPGA_MOD ER																	Right PGA Mode Select 0 = Disable (DEFAULT) 1 = Enable MODE[0] = Anti-aliasing filter adjust MODE[1] = Disconnects MICP & MICN MODE[2] = No function MODE[3] = Shorts the inputs and terminates with 12kOhm differentially
Щ		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
7 E	PGA_GAI N	PGA_GAINL																	Left PGA Gain Control (Step size is 1dB.) 0x00 = -1dB (DEFAULT) 0x01 = 0dB 0x24 = 35dB 0x25 = 36dB

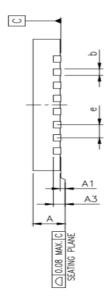

R										В	it								
E	Function	Name	1 5	1 4	1 3	1 2	1	1	9	8	7	6	5	4	3	2	1	0	Description
		PGA_GAINR																	Right PGA Gain Control (Step size is 1dB.) 0x00 = -1dB (DEFAULT) 0x01 = 0dB V 0x24 = 35dB 0x25 = 36dB
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		PUPL																	Left PGA Power Enable Control 0 = Disable (DEFAULT) 1 = Enable
		PUPR																	Right PGA Power Enable Control 0 = Disable (DEFAULT) 1 = Enable
	POWER	PUP_INTEG																	Output Integrator Power Enable Control 0 = Disable (DEFAULT) 1 = Enable Bit0 = Left HP driver Bit1 = Right HP driver
7 F	UP_CONT ROL	PUP_DRV_IN STG																	Output Driver Power Enable Control (To reduce pop noise, turn on this <i>first</i> , then turn on PUP_MAIN_DRV) 0 = Disable (DEFAULT) 1 = Enable Bit0 = Left HP driver Bit1 = Right HP driver
		PUP_MAIN_D RV																	Main Driver Power Enable Control 0 = Disable (DEFAULT) 1 = Enable Bit0 = Left HP driver Bit1 = Right HP driver
		DEFAULT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0x0000
		RESERVED																	RESERVED
		BCLK_DS																	BCLK IO Drive Strength Control 0 = Normal (DEFAULT) 1 = Stronger
		FS_DS																	FS IO Drive Strength Control 0 = Normal (DEFAULT) 1 = Stronger
		ADCDAT_DS																	ADCDAT IO Drive Strength Control 0 = Normal (DEFAULT) 1 = Stronger
		SDA_DS																	SDA IO Drive Strength Control 0 = Normal 1 = Stronger (DEFAULT)
	CHARGE _PUMP_A	JAMNODCLW																	RESERVED
8 0	ND_POW ER_DOW N_CONTR	PDB_DAC																	DAC Right / Left Power Down Bar Enable Control 00 = Disable 11 = Enable (DEFAULT)
	OL	JAMFORCE2																	Register Output Force 1 Control (Charge pump clock to fast) 0 = Disable (DEFAULT) 1 = Enable
		JAMFORCE1																	Register Output Force 2 Control (Charge pump clock to fast) 0 = Disable (DEFAULT) 1 = Enable
		RNIN																	Charge Pump Enable Control 0 = Disable (DEFAULT) 1 = Enable
		PRECHARGE																	VPOS Pre-charge Enable Control (For faster startup) 0 = Disable (DEFAULT) 1 = Enable

R										В	it								
E G	Function	Name	1 5	1 4	1	1 2	1	1	9	8	7	6	5	4	3	2	1	0	Description
		DISCHARGEV EE																	VEE Pad Discharge Enable Control 0 = Disable (DEFAULT) 1 = Enable
		DISCHARGEV POS																	VPOS Pad Discharge Enable Control 0 = Disable (DEFAULT) 1 = Enable
		SHCIRSEL2																	Charge Up Current Limit 2 0 = Low (DEFAULT) 1 = High
		SHCIRSEL1																	Charge Up Current Limit 1 0 = Low (DEFAULT) 1 = High
Щ		DEFAULT	0	0	0	0	1	0	1	1	0	0	0	0	0	0	0	0	0x0B00
		APR_EMRGN CY_SHTDWN																	APR Emergency Short Circuit Shutdown IRQ
		MODE1BUF																	Monitor MODE1 State Of Charge Pump Block
	CHARGE PUMP I	NODCBUF																	Monitor Charge Pump Drawing DC Current 0 = Drawing 1 = Not drawing (DEFAULT)
8		RN2BUF																	Monitor Charge Pump Enable Status 0 = Off (DEFAULT) 1 = On
1	_FOMF_I NPUT_RE AD	VPOSOK																	Monitor High Voltage Status Of VPOS 0 = Possible short circuit (DEFAULT) 1 = Max output (Normal operation)
		VCOMPBUF																	Monitor Low Voltage & Low Current Status Of Charge Pump 0 = No current 1 = With current (DEFAULT)
		FORCE1BUF																	Monitor Charge Pump Frequency Status 0 = Normal 1 = Max frequency (DEFAULT)
		DEFAULT	X	Χ	Χ	Х	X	Χ	Χ	Χ	Χ	X	X	X	Х	X	Χ	Х	READ ONLY 0x0013
		JK_EJECT_IN TR																	JACK Ejection Interrupt
		JK_INSERT_I NTR																	JACK Insertion Interrupt
		JKDET_ON																	Pre-debounce JACK Status
8	GENERA L STATU	JKDETL					_												JKDETL
2	S S	FUSEBNKOU T																	Fuse Bank Select Output
		GPIO2_IN																	GPIO2 Input
		GPIO1_IN																	GPIO1 Input
		DEFAULT	X	Х	Χ	Х	X	Х	X	Χ	Х	X	X	X	X	X	Х	Х	READ ONLY 0x0020

11. Typical Application Diagram




Note: * indicates optional components for improved noise reduction (refer to section 3.5)



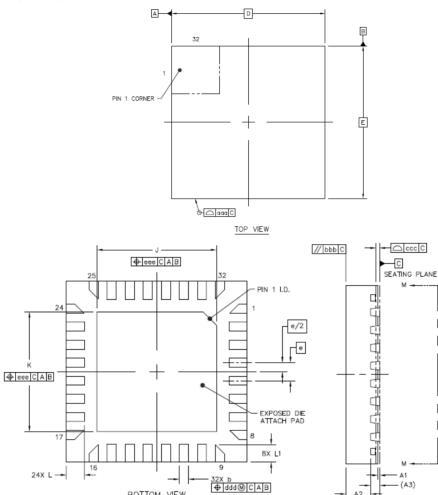
12. Package Information

32-lead plastic QFN 32L; 5X5mm2, 0.8mm thickness, 0.5mm lead pitch (Saw Type) EP SIZE 3.5X3.5 mm

JEDEC OUTLINE	N	/O-22	0						
PKG CODE	WQ	WQFN(X532)							
SYMBOLS	MIN.	NOM.	MAX.						
Α	0.70	0.75	0.80						
A1	0.00	0.02	0.05						
A3	0.203 REF.								
ь	0.18	0.25	0.30						
D	4.90	5.00	5.10						
E	4.90	5.00	5.10						
е	0	.50 BS	SC SC						
L	0.35	0.40	0.45						
L1	0.33	0.40	0.43						
K	0.20	ı	_						

PAD SIZE		D2			E2		LEAD	FINISH	JEDEC CODE
FAD SIZE	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	Pure Tin	PPF	OLDEC CODE
150X15* MIL	3.45	3.50	3.55	3.45	3.50	3.55	٧	Χ	W(V)HHD-5

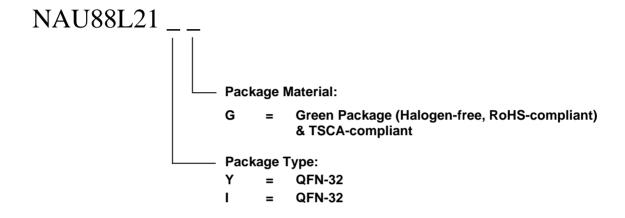
[&]quot;*"表示汎用字元,此汎用字元可能被其它不同字元所取代,實際的字元請參照bonding diagram所示.


NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- DIMENSION 6 APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15mm AND 0.30mm FROM THE TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION 6 SHOULD NOT BE MEASURED IN THAT RADIUS AREA.
- BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

[&]quot;*" is an universal character, which means maybe replaced by specific character, the actual character please refers to the bonding diagram.

32-lead plastic QFN 32L; 4X4mm2, 0.8mm(Max) thickness, 0.4mm lead pitch (Saw Type) EP SIZE 3.5X3.5 mm


BOTTOM VIEW
VIEW M-M

		SYMBOL	MIN	NOM	MAX			
TOTAL THICKNESS		Α	0.7	0.75	0.8			
STAND OFF		A1	0	0.035	0.05			
MOLD THICKNESS		A2		0.55	0.57			
L/F THICKNESS		A3		0.203 REF				
LEAD WIDTH	ь	0.15	0.2	0.25				
BODY SIZE	X	D		4 BS	С			
BODT SIZE	Y	E	4 BSC					
LEAD PITCH		е	0.4 BSC					
EP SIZE	Х	J	2.55	2.65	2.75			
EP SIZE	Y	К	2.55	2.65	2.75			
LEAD LENGTH		L	0.35	0.4	0.45			
LEAD LENGTH		L1	0.332	0.432				
PACKAGE EDGE TOLE	RANCE	000	0.1					
MOLD FLATNESS		bbb	0.1					
COPLANARITY		ccc	80.0					
LEAD OFFSET		ddd	0.1					
EXPOSED PAD OFFSE	Т	eee		0.1				
		 	•					

13. ORDERING INFORMATION

Part Number	Dimension	Package	Package Material
NAU88L21YG	5x5 mm	QFN-32	Green
NAU88L21IG	4x4 mm	QFN-32	Green

14. REVISION HISTORY

REVISION	DATE	DESCRIPTION
1.0	Feb 18, 2019	Initial Release
1.1	Mar 8, 2019	Add Cap-free and internal Resistor in MICBIAS
1.2	Jun 12, 2019	Add Zebol Network in Application circuit.
1.3	Sep 22, 2019	Added RC for MICDET – noise coupling.
1.4	Oct 17, 2019	Modified Figure 42:2-Wire Read Sequence.
1.5	Nov 8, 2019	Add QFN4x4mm2 IC package
1.6	Jan 17, 2020	Enhance FLL application note
1.7	Feb 24, 2020	Changed VDDC to VDDA Updated headphone performance MIPS400/500 informatin added Register 0x6[11:10] Device ID Reg0x58[5:2]=0x1823
1.8	Apl 5, 2020	Pin 21 VDDA pin description change VDDA ISD change Headset standby mode current consumption changed HeadPHone offset voltage change ADC SNR Fs change Vih change for VDDA Register 0x58 changed Register setting for DAC OSR cases Register 0x2C DAC OSR description Enrich FLL register description
1.9	Jun 4, 2020	Whole register map updated
2.0	Nov 2, 2020	Digital Audio Interface timing digrams
2.1	Dec 8, 2020	FEPGA input path enriched
2.2	Jan 20, 2021	Remove Reg55 SPI description Add I2C initial configuration content
2.3	Jan 22, 2021	Reg58 device ID bits adjustment Removal OSR=500
2.4	Jun 11, 2021	Adding descrption for DACVREF 0x72[8:9] Adding descrption for DACVREF 0x73[3:2]
2.5	Aug 3, 2021	Sec 2.2 Power up and start sequence Figure 7 ADC digital path Figure 12 DAC digital path Update 5x5 mm^2 pakcage information Update ADC DRC limitation
2.6	Aug 20, 2021	Update Reg0x31[8]
2.7	Sep 27, 2021	Update Reg0x68 Update Reg0x13[11:8] Update Register Table Format
2.8	Feb 28, 2022	Add MIC and button detection threshold conditions Update Reg0x0F[9:0] description Update Reg0x12[9:0] description
2.9	Nov 4, 2022	Upate Figure 2 with 0x6B register addition 0x6B register descritpion
3.0	Dec 22, 2022	Update ADC DAC parameter table

		Update Halogen-free, RoHS-compliant and TSCA-compliant description
3.1	Feb 1, 2023	Update REG0x37, REG0x3B

IMPORTANT NOTICE

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners