Table of Contents-

1. GENERAL DESCRIPTION 2
2. FEATURES 2
3. PIN DESCRIPTION 4
4. BLOCK DIAGRAM 5
5. FUNCTIONAL DESCRIPTION 5
5.1 SPI 5
$5.2 \quad \mathrm{BP} 0 / \mathrm{BP} 1 / \mathrm{BP} 2$ 9
5.3 Speedup Groups 13
5.4 Wakeup 13
5.5 256-Level Output 15
6. CONTROL AND STATUS REGISTERS 17
6.1 I/O port 17
6.2 AND 19
6.3 OR 20
6.4 XOR 21
7. ELECTRICAL CHARACTERISTICS 23
7.1 Absolute maximum ratings 23
7.2 DC Characteristics 23
7.3 AC Characteristics 23
8. TYPICAL APPLICATION CIRCUIT 25
9. PACKAGE INFORMATION 26
10. DEMO BOARD 30
11. ORDERING INFORMATION 31
12. REVISION HISTORY 31

1. GENERAL DESCRIPTION

The W55P241 is a general purpose programmable I/O device usable with many different microprocessors through SPI interface. The W55P241 contains three 8-bit ports (BP0, BP1 and BP2). There are 24 I/O pins which may be individually programmed for 4 separate command groups. The W55P241 features logical operating capability AND/OR/XOR for each bit of internal configuration register to speed up access. These I/O pins can drive LED directly with high-current applications. A dedicated counter is in charge of 256 -level output functions.

2. FEATURES

- Wide range of operating voltage:
$>2.2 \sim 5.5 \mathrm{~V}$
- SPI interface in mode 0
> 4 SPI pins for communication
- /CS as chip select pin (low active)
- CLK for data synchronization (up to 10 MHz)
- DI for W55P241 to receive commands and data
- DO for the microcontroller to receive data
- 1 wakeup pin for the microcontroller
- 24 l/O pins
> 24 bi-directional I/O pins with 25 mA of sink current
> Status of each pin independently controlled
- Input
- Floating
- Pull high
- Pull low
- Dynamic pull low
- Dynamic pull high
- Output
- CMOS high/low
- Inverted CMOS high/low
- Inverted open-drain NMOS output
- Open-drain PMOS output
> Any pin can be selected to wake up the chip
> Logic AND/OR/XOR to execute high-speed operations for each of these $1 / O$ control register bits
- Built-in 8 LED outputs with 256 -level brightness control in the BP0 port
> Internal ring oscillator @ 8MHz
> 4 clock sources
- Clock/512, /256, /64, /16
- Reset management
> Power-on reset
> S/W reset
- Standby current <1uA
- Connection of up to 2 W55P241 devices
- Available package form:
- COB
- LQFP48
- QFN32 (no support BP07, BP17, BP26, BP27)

3. PIN DESCRIPTION

PIN NAME	TYPE	FUNCTION
BP00~BP07	I/O	General input/output pins. When used as output pins, they can be open-drain or CMOS-type and can sink 25mA for high-current applications. When used as input pins, they have a pull-high option and can generate an interrupt request to release the IC from STOP mode. The default is input floating in the BPO port. The BPO port provides 8 LED outputs with 256-level brightness control.
BP10~BP17	I/O	General input/output pins. When used as output pins, they can be open-drain or CMOS type and can sink 25mA for high-current applications. When used as input pins, they have a pull-high option and can generate an interrupt request to release the IC from STOP mode. The default is input floating in the BP1 port.
BP20~BP27	I/O	General input/output pins. When used as output pins, they can be open-drain or CMOS type and can sink 25mA for high-current applications. When used as input pins, they have a pull-high option and can generate an interrupt request to release the IC from STOP mode. The default is input floating in the BP2 port.
ITS	I	SPI chip select (low active)
CLK	I	SPI clock
DI	I	SPI data input (MOSI)
DO	O	SPI data output (MISO)
DIS	I	Device ID setting(default is floating)
WAKEUP	O	Host wakeup
VDD	P	Positive power supply for logical device
VSS	P	Negative power supply for logical device
VDDIO1	P	Positive power supply for IO
VSSIO1	P	Negative power supply for IO
VDDIO2	P	Positive power supply for IO
VSSIO2	P	Negative power supply for IO

4. BLOCK DIAGRAM

Figure 1 W55P241 Block Diagram

5. FUNCTIONAL DESCRIPTION

The W55P241 provides up to three bi-directional ports. Each bi-directional port has 8 pins (BP00~07, BP10~17, or BP20~27) and each bi-directional pin can be configured as an output pin or input pin independently. One dedicated wakeup pin forcibly releases the microcontroller from the standby mode. When selected as an input pin, the state change on each pin can trigger interrupt request, if the corresponding interrupt enabling bit is set. These three bi-directional ports, when programmed as an output port, can sink at least $25-\mathrm{mA}$ current in order to drive LED directly. With an embedded 256 -level output circuit, motor speed control and LED brightness are available in BP00~BP07.

5.1 SPI

SPI is a direct and simple interface that uses 4 pads (/CS, CLK, DI and DO) for data exchange between master and slave. W55P241 operates in the slave mode and up to 2 W55P241 devices can function simultaneously. The master identifies the slaves which are differentiated by the DIS pad. Because W55P241 operates in mode 0 only, the CLK idle state is always " 0 ", "receive data" is always latched at the rising edge of CLK, and "transmit data" is always changed (if at all) at the falling edge of CLK. To control one SFR of W55P241, 16 bits of serial data must be transmitted from the master. 16 bits of serial data consist of 1 command byte and 1 data byte. Basically, 4 groups of commands are defined and the IO port group suffices to generate all possible IO statuses. Users may use 3 other speedup groups to minimize microcontroller load.

5.1.1 Physical Connection

The uC master may connect up to 2 slave devices as shown in the following figure. The W55P241 always operates in the slave mode. The master can be a microcontroller with 4 I/O pads or a dedicated SPI H/W. Each time the master wants to talk to one of the slaves, bit6 of command byte must be correctly specified. Slaves are identified by the DIS pad status. The master communicates with the slave via 4 SPI pads. In addition to bit6 of command byte, /CS must be asserted (low active) for W55P241 to receive the command. The W55P241 CLK runs on up to 10MHz. DI (master data output, slave data input) and DO (master data input, slave data output) exchange data between the microcontroller and the W55P241. To wake up the microcontroller, the WAKEUP or DO pad may connect to its one additional wakeup-enabled pad.

Figure 2 Connection of Master and Slave

5.1.2 Mode 0

Generally, the master's dedicated SPI H/W (hardware) may support up to 4 SPI operation modes, which are determined by the CLK's idle state and phase (rising edge and falling edge). In the W55P241, only mode 0 is supported. For both master and slave, data is transmitted on the falling edge of CLK and data is received (sampled) on the rising edge of CLK. CLK keeps " 0 " before the $1^{\text {st }}$ rising edge and after the last falling edge.
 (MSB first)

Sample
Data

Figure 3 SPI mode 0 (MSB first)

5.1.3 Command Protocol

One SPI transfer consists of one command byte and one data byte. Because the $1^{\text {st }} 8$ bits of "transmit data" are regarded as command byte after the falling edge of /CS, it is not possible that /CS remains " 0 ' during two successive SPI transfers. The last 8 bits of "transmit data" in one SPI transfer are regarded as data bytes. For both command byte and data byte to be identified by the W55P241, MSB (Most Significant Bit) is transferred first. When the microcontroller writes data to W55P241, DO remains in high impedance state during the whole SPI transfer. When the microcontroller reads data from the W55P241, DO remains in high impedance state until the data byte is generated.

Cn: command bit. Wn: write data bit. Rn: read data bit.
$H Z$: high impedance. X : don't care. 7 -> 0 : MSB -> LSB.

Figure 4 Write command and read command

The command byte's Bit7 determines "write data to W55P241" or "read data from W55P241". The command byte's Bit6 selects slave device 0 or slave device 1 . Bit5 and bit4 of command byte specify the command group while Bit3~bit0 of command byte control some Special Function Registers (SFR) in one specific group. The following table roughly lists all the commands.

Command	Read/write	Device	Group		Special Function Register			
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Write	1	0 or 1	SFR of one specific group					
Read	0	0 or 1	SFR of one specific group					
Reset	0xFF							
No response	Settings except write, read and reset commands							

Table 1 Command list

5.2 BP0/BP1/BP2

Each bi-directional pin can be controlled independently and IO status (or function) is determined by Buffer bit, Direction bit and Attribute bit. In input mode, reading the Pin bit reveals the status of the corresponding I/O pin. The combinations are listed in the following table. For simplicity, B stands for Buffer, D stands for Direction, A stands for Attribute, and P stands for Pin.

ATTRIBUTE	DIRECTION	BUFFER	10 status	Function
0	0	0	Floating(default)	Floating input
0	0	1	Pull low	Pull-low input
1	0	1	Pull high	Pull-high input
0	1	0	Output low	Buffer output
0	1	1	Output high	
1	0	0	Floating	Open-drain PMOS output
1	1	0	Output high	
1	0	1	Pull high	Wire AND (inverted)
1	1	1	Output low	
0	1	0	Output low	Open-drain NMOS output (inverted)
0	0	0	Floating	
0	0	1	Pull low	Wired OR
0	1	1	Output high	
0	0	0	Floating	Dynamic pull-low input
0	0	1	Pull low	
1	0	0	Floating	Dynamic pull-high input
1	0	1	Pull high	
1	1	0	Output high	Inverted buffer output
1	1	1	Output low	

Table 2 Combination of IO status

5.2.1 Input with High Impedance

When Attribute bit $=0$ or 1 , Direction bit $=0$ and Buffer bit $=0$, the pad is in floating input mode. Value of the Pin bit depends on the corresponding pad.

Pad

Input with high impedance

$A=0$ or $1, D=0, B=0$

Input with pull-low resistor

$A=0, D=0, B=1$
PIN

Pad

Figure 5 Pure input

5.2.2 Input With Pull-High Resistor

When Attribute bit $=1$, Direction bit $=0$ and Buffer bit $=1$, the pad is in pull-high input mode. Pin bit is 1 when no external H/W is connected or the pad is forced to " 1 " by external H/W. Pin bit is 0 when the pad is forced to " 0 " by external H/W.

5.2.3 Input With Pull-Low Resistor

When Attribute bit $=0$, Direction bit $=0$ and Buffer bit $=1$, the pad is in pull-low input mode. Pin bit is 0 when no external H/W is connected or the pad is forced to " 0 " by external H/W. Pin bit is 1 when the pad is forced to 1 by external H/W.

5.2.4 CMOS Output

When Attribute bit $=0$ and Direction bit $=1$, the pad is in CMOS output mode and the Buffer bit determines the state of the pad. If Buffer bit $=0$, the pad will be set to " 0 ". If Buffer bit $=1$, the pad will be set to " 1 ". Pin bit directly indicates pad status.

Figure 6 Normal and inverted CMOS output

5.2.5 Inverted CMOS Output

When Attribute bit = 1 and Direction bit $=1$, the pad is in inverted CMOS output mode and the Buffer bit determines pad state. Unlike CMOS output mode, pad state is indirectly controlled by the Buffer bit in inverted CMOS output mode. If Buffer bit $=0$, the pad will be set to " 1 ." If Buffer bit $=1$, the pad will be set to " 0 ." Pin bit directly indicates pad status.

5.2.6 Inverted Open-Drain NMOS Output

When Attribute bit $=0$ and Buffer bit $=0$, the pad is in inverted open-drain NMOS output mode. If Direction bit is 0 , the pad will be floating. In this case, the pad functions like floating input. If Direction bit is 1 , the pad will be set to " 0 ." Pin bit directly indicates pad status.

Figure 7 Inverted open-drain NMOS output and open-drain PMOS output

5.2.7 Open-Drain PMOS Output

When Attribute bit $=1$ and Buffer bit $=0$, the pad is in open-drain PMOS output mode. If Direction bit is 0 , the pad will be floating. In this condition, the pad functions like floating input. If Direction bit is 1 , the pad will be set to " 1 ." Pin bit directly indicates pad status.

5.2.8 Dynamic Pull-Low Input

When Attribute bit $=0$ and Direction bit $=0$, the pad is in dynamic pull-low input mode. If Buffer bit $=$ 0 , the pad will be floating. In this case, the pad functions like floating input. If Buffer bit $=1$, the pad will be internally pulled low. Pin bit directly indicates pad status.

5.2.9 Dynamic Pull-High Input

When Attribute bit $=1$ and Direction bit $=0$, the pad is in dynamic pull-high input mode. If Buffer bit $=$ 0 , the pad will be floating. In this case, the pad functions like floating input. If Buffer bit $=1$, the pad will be internally pulled high. Pin bit directly indicates status of the pad.

5.3 Speedup Groups

Although IO port alone suffices to generate all possible IO status, 3 other speedup groups aid to minimize microcontroller load. Accessing these speedup groups generates specific change of IO status such as OR, AND or XOR with some data in output mode.

5.4 Wakeup

In addition to 4 SPI pads for communication between master and slave, one specific W55P241 pad, WAKEUP, is able to wake up the microcontroller. By controlling WAKEN, KCOEN, KC1EN and KC2EN bits, the status change of any W55P241 I/O pad can wake up the microcontroller. Note that the
wakeup-enabled I/O pad must be in "input floating," "input pull high" or "input pull low" state. The supported wakeup modes are listed in the following table.

WAKEN	KCnEN	ATTRIBUTE	DIRECTION	BUFFER	1 O status	Wakeup
0	0	0	0	0	Floating(default)	
		0	0	1	Pull low	
		0	1	0	Output low	
		0	1	1	Output high	
		1	0	0	Floating	
		1	0	1	Pull high	
		1	1	0	Output high	
		1	1	1	Output low	
	1	0	0	0	Floating	
		0	0	1	Pull low	
		0	1	0	Output low	
		0	1	1	Output high	
		1	0	0	Floating	
		1	0	1	Pull high	
		1	1	0	Output high	
		1	1	1	Output low	
1	0	0	0	0	Floating	
		0	0	1	Pull low	
		0	1	0	Output low	
		0	1	1	Output high	
		1	0	0	Floating	
		1	0	1	Pull high	
		1	1	0	Output high	
		1	1	1	Output low	
	1	0	0	0	Floating	Supported
		0	0	1	Pull low	Supported
		0	1	0	Output low	
		0	1	1	Output high	
		1	0	0	Floating	
		1	0	1	Pull high	Supported
		1	1	0	Output high	
		1	1	1	Output low	

Table 3 Supported wakeup mode
There are 2 ways to wake up the host (e.g. microcontroller). In way 1, DO suffices to wake up the
host and no dedicated WAKEUP pad is needed. By reading from WKCTL (\$0F), the last data bit (bit0) is forced to " 0 " until the wakeup conditions match. After wakeup conditions match (any input pad with change of status), the rising edge on DI pad can wake up the host. Users can read data from WKCTL (\$0F) to find the cause of wakeup port and then check BPOP (\$0C), BP1P (\$0D) or BP2P (\$0E) for the dedicated pad. Note that after wakeup conditions match, the WAKEN bit (KC0EN, KC1EN and KC2EN bits are not affected) is automatically set to " 0 ." WAKEN bit must be enabled again if wakeup is to be used later. Reading BPOP sets the P0C bit to " 0. ." Reading BP1P sets the P1C bit to "0." Reading BP2P sets the P2C bit to " 0 ." Only when P0C, P1C and P2C bits are all " 0 "s is the WKFLG bit set to " 0 ."

Cn: command bit. Rn: read data bit.
$H Z$: high impedance. X : don't care. 7 -> 0 : MSB -> LSB.

Figure 8 Wakeup method 1

In way 2, a dedicated WAKEUP pad (instead of the DO pad) wakes up the host. The WAKEUP pad keeps floating until wakeup conditions match. After wakeup conditions match, the WAKEUP pad is forced to " 0 ." When the WKFLG bit is set to " 0 ," the WAKEUP pad is not forced to " 0 " and remains floating until wakeup conditions match again. Because the WAKEUP pad is not pulled by any internal resistor, the host or the system board must have a pull-high resistor for wakeup to work smoothly.

5.5 256-Level Output

The W55P241 provides 8256 -level output controls in BP00~BP07 respectively. A dedicated counter is in charge of the 256 -level output function. It is also used in motor control. The internal ring oscillator runs @ 8 MHz and one PWM period consists of 256 PWM clocks whose frequencies are derived by dividing the original ring oscillator clock by 16, 64, 256 or 512 . The basic PWM period can be selected by PWMCK. BP03, BP02, BP01 and BP00 have one identical PWM period while BP07, BP06, BP05 and BP04 may have another identical PWM period. Because the default statuses of BP0[7:0] are general

IO pads, PWMEN enables both internal ring oscillator and PWM output. Any bit of PWMEN can enable the internal ring oscillator. In addition to PWMEN, the corresponding BPOD bit must be set to 1 to generate PWM output. The duty ratio is determined by PWMn, where $n=0 \sim 7$. When PWMn is larger than or equal to the internal counter, the PWM output will be " 1 " if the corresponding BPOA and BPOB bits are not equal. Therefore, PWM output must keep "1" for at least one PWM clock. The PWM output will be made inverse if the corresponding BPOA and BPOB bits are equal. Note that except for poweron reset, the internal PWM counter may not count from zero once it is enabled. Software reset initializes the status of I/O (input, floating), not the PWM counter's status. Note that in software reset, bit6 of command byte must be 1 whatever the DIS pad status.

When the corresponding bits of $B P O B$ and BPOA are not equal

Counter \quad| 255 | 0 | 1 | $\ldots \ldots \ldots \ldots .$. | 126 | 127 | 128 | $\ldots \ldots \ldots \ldots$. | 254 | 255 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

(1)

Comparator $=0$
Output

(2)

Comparator = 127
Output

(3)

Comparator $=255$
Output

Figure 9 Normal PWM output (B0x bit is not equal to A0x bit)

When the corresponding bits of $B P O B$ and $B P O A$ are equal

Counter

(1)

Comparator $=0$
Output

(2)

Comparator $=127$
Output

(3)

Comparator $=255$ "1"
Output

Figure 10 Inverted PWM output (B0x bit is equal to A 0 x bit)

For the chip to enter standby mode, all PWM channels have to be disabled in addition to keeping /CS "1".

6. CONTROL AND STATUS REGISTERS

SFRs (Special Function Registers) are basically divided into 4 groups. Note that " $\$$ " stands for hexadecimal format.

6.1 I/O port

I/O port SFRs control I/O status.

Address	Register	7	6	5	4	3	2	1	0	Attribute	Default
$\$ 00$	BP0B	B07	B06	B05	B04	B03	B02	B01	B00	R/W	0000_0000
$\$ 01$	BP1B	B17	B16	B15	B14	B13	B12	B11	B10	R/W	$0000 _0000$

\$02	BP2B	B27	B26	B25	B24	B23	B22	B21	B20	R/W	0000_0000
\$03											
\$04	BPOD	D07	D06	D05	D04	D03	D02	D01	D00	R/W	0000_0000
\$05	BP1D	D17	D16	D15	D14	D13	D12	D11	D10	R/W	0000_0000
\$06	BP2D	D27	D26	D25	D24	D23	D22	D21	D20	R/W	0000_0000
\$07											
\$08	BPOA	A07	A06	A05	A04	A03	A02	A01	A00	R/W	0000_0000
\$09	BP1A	A17	A16	A15	A14	A13	A12	A11	A10	R/W	0000_0000
\$0A	BP2A	A27	A26	A25	A24	A23	A22	A21	A20	R/W	0000_0000
\$0B											
\$0C	BPOP	P07	P06	P05	P04	P03	P02	P01	P00	R/W	0000_0000
\$0D	BP1P	P17	P16	P15	P14	P13	P12	P11	P10	R/W	0000_0000
\$0E	BP2P	P27	P26	P25	P24	P23	P22	P21	P20	R/W	0000_0000
\$0F	WKCTL	WAKEN	KCOEN	KC1EN	KC2EN	POC	P1C	P2C	WKFLG	R	0000_0000
\$0F	WKCTL	waken	KCOEN	KC1EN	KC2EN					W	

BOn	BUFFER data of BPO: $\mathrm{n}=0(\mathrm{LSB}) \sim 7(\mathrm{MSB})$.
B1n	BUFFER data of BP1
B2n	BUFFER data of BP2
DOn	DIRECTION data of BPO
D1n	DIRECTION data of BP1
D2n	DIRECTION data of BP2
AOn	ATTRIBUTE data of BP0
A1n	ATTRIBUTE data of BP1
A2n	ATTRIBUTE data of BP2
POn	PIN data of BPO
P1n	PIN data of BP1
P2n	PIN data of BP2.
WAKEN	Wakeup enabling bit. It is set to 0 when wakeup matches. 1: enable. 0 : disable.
KCOEN	Wakeup enabling bit of BP0. 1: enable. 0 : disable.
KC1EN	Wakeup enabling bit of BP1. 1: enable. 0: disable.
KC2EN	Wakeup enabling bit of BP2. 1: enable. 0 : disable.
POC	Change bit of BPO. It is set to 0 after reading BPOP. 1: change. 0 : no change.
P1C	Change bit of BP1. It is set to 0 after reading BP1P. 1: change. 0 : no change.
P2C	Change bit of BP2. It is set to 0 after reading BP2P. 1: change. 0 : no change.
WKFLG	ORing of P0C, P1C and P2C bits. 1: WAKEUP pad is forced low. 0 : floating.

6.2 AND

AND group SFRs speed up AND operation of BUFFER, DIRECTION or ATTRIBUTE bit. BPmB = $B P m B$ AND NBPmB. $B M m D=B P m D$ AND NBPmD. $B P m A=B P m A$ AND NBPmA. $m=0,1,2$.

Address	Register	7	6	5	4	3	2	1	0	Attribute	Default
$\$ 10$	NBP0B	NB07	NB06	NB05	NB04	NB03	NB02	NB01	NB00	W	
$\$ 11$	NBP1B	NB17	NB16	NB15	NB14	NB13	NB12	NB11	NB10	W	
$\$ 12$	NBP2B	NB27	NB26	NB25	NB24	NB23	NB22	NB21	NB20	W	
$\$ 13$											
$\$ 14$	NBP0D	ND07	ND06	ND05	ND04	ND03	ND02	ND01	ND00	W	
$\$ 15$	NBP1D	ND17	ND16	ND15	ND14	ND13	ND12	ND11	ND10	W	
$\$ 16$	NBP2D	ND27	ND26	ND25	ND24	ND23	ND22	ND21	ND20	W	
$\$ 17$											
$\$ 18$	NBP0A	NA07	NA06	NA05	NA04	NA03	NA02	NA01	NA00	W	
$\$ 19$	NBP1A	NA17	NA16	NA15	NA14	NA13	NA12	NA11	NA10	W	
$\$ 1 A$	NBP2A	NA27	NA26	NA25	NA24	NA23	NA22	NA21	NA20	W	
$\$ 1 B$											
$\$ 1 C$	PWM0	P0D7	P0D6	P0D5	P0D4	P0D3	P0D2	P0D1	P0D0	W	
$\$ 1 D$	PWM1	P1D7	P1D6	P1D5	P1D4	P1D3	P1D2	P1D1	P1D0	W	
$\$ 1 E$	PWM2	P2D7	P2D6	P2D5	P2D4	P2D3	P2D2	P2D1	P2D0	W	
\&1F	PWM3	P3D7	P3D6	P3D5	P3D4	P3D3	P3D2	P3D1	P3D0	W	

NBOn	AND data of BPOB: $\mathrm{n}=0(\mathrm{LSB}) \sim 7(\mathrm{MSB})$
NB1n	AND data of BP1B
NB2n	AND data of BP2B
NDOn	AND data of BPOD
ND1n	AND data of BP1D
ND2n	AND data of BP2D
NAOn	AND data of BP0A
NA1n	AND data of BP1A
NA2n	AND data of BP2A
PmDn	PWM channel m data[n]: $m=0 \sim 3 . n=0(L S B) \sim 7(M S B)$.

6.3 OR

OR group SFRs speed up OR operation of BUFFER, DIRECTION or ATTRIBUTE bit. $\mathrm{BPmB}=$ BPmB OR OBPmB. $\mathrm{BPmD}=\mathrm{BPmD}$ OR OBPmD. BPmA $=\mathrm{BPmA} O R$ OBPmA. $\mathrm{m}=0,1,2$.

Address	Register	7	6	5	4	3	2	1	0	Attribute	Default
$\$ 20$	OBP0B	OB07	OB06	OB05	OB04	OB03	OB02	OB01	OB00	W	
$\$ 21$	OBP1B	OB17	OB16	OB15	OB14	OB13	OB12	OB11	OB10	W	
$\$ 22$	OBP2B	OB27	OB26	OB25	OB24	OB23	OB22	OB21	OB20	W	
$\$ 23$											
$\$ 24$	OBP0D	OD07	OD06	OD05	OD04	OD03	OD02	OD01	OD00	W	
$\$ 25$	OBP1D	OD17	OD16	OD15	OD14	OD13	OD12	OD11	OD10	W	
$\$ 26$	OBP2D	OD27	OD26	OD25	OD24	OD23	OD22	OD21	OD20	W	
$\$ 27$											
$\$ 28$	OBP0A	OA07	OA06	OA05	OA04	OA03	OA02	OA01	OA00	W	
$\$ 29$	OBP1A	OA17	OA16	OA15	OA14	OA13	OA12	OA11	OA10	W	
$\$ 2 A$	OBP2A	OA27	OA26	OA25	OA24	OA23	OA22	OA21	OA20	W	
$\$ 2 B$											
$\$ 2 C$	PWM4	P4D7	P4D6	P4D5	P4D4	P4D3	P4D2	P4D1	P4D0	W	
$\$ 2 D$	PWM5	P5D7	P5D6	P5D5	P5D4	P5D3	P5D2	P5D1	P5D0	W	
$\$ 2 E$	PWM6	P6D7	P6D6	P6D5	P6D4	P6D3	P6D2	P6D1	P6D0	W	
\&2F	PWM7	P7D7	P7D6	P7D5	P7D4	P7D3	P7D2	P7D1	P7D0	W	

OB0n	OR data of BPOB: $\mathrm{n}=0(\mathrm{LSB}) \sim 7(\mathrm{MSB})$
OB1n	OR data of BP1B
OB2n	OR data of BP2B
OD0n	OR data of BPOD
OD1n	OR data of BP1D
OD2n	OR data of BP2D
OA0n	OR data of BP0A
OA1n	OR data of BP1A
OA2n	OR data of BP2A
PmDn	PWM channel m data[n]: $m=4 \sim 7 . n=0($ LSB $) \sim 7$ (MSB).

6.4 XOR

XOR group SFRs speed up XOR operation of BUFFER, DIRECTION or ATTRIBUTE bit. BPmB =

Address	Register	7	6	5	4	3	2	1	0	Attribute	Default
$\$ 30$	XBP0B	XB07	XB06	XB05	XB04	XB03	XB02	XB01	XB00	W	
$\$ 31$	XBP1B	XB17	XB16	XB15	XB14	XB13	XB12	XB11	XB10	W	
$\$ 32$	XBP2B	XB27	XB26	XB25	XB24	XB23	XB22	XB21	XB20	W	
$\$ 33$											
$\$ 34$	XBP0D	XD07	XD06	XD05	XD04	XD03	XD02	XD01	XD00	W	
$\$ 35$	XBP1D	XD17	XD16	XD15	XD14	XD13	XD12	XD11	XD10	W	
$\$ 36$	XBP2D	XD27	XD26	XD25	XD24	XD23	XD22	XD21	XD20	W	
$\$ 37$											
$\$ 38$	XBP0A	XA07	XA06	XA05	XA04	XA03	XA02	XA01	XA00	W	
$\$ 39$	XBP1A	XA17	XA16	XA15	XA14	XA13	XA12	XA11	XA10	W	
$\$ 3 A$	XBP2A	XA27	XA26	XA25	XA24	XA23	XA22	XA21	XA20	W	
$\$ 3 B ~$											
$\$ 3 C ~$	PWMEN	EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0	R/W	
$\$ 3 D ~$	PWMCK	TEST	X	X	X	MOD3	MOD2	MOD1	MOD0	R/W	
$\$ 3 E ~$											
\&3F	RESET	X	X	X	X	X	X	X	X	W	

XBOn	XOR data of BPOB: $\mathrm{n}=0$ (LSB) $\sim 7(\mathrm{MSB})$
XB1n	XOR data of BP1B
XB2n	XOR data of BP2B
XDOn	XOR data of BPOD
XD1n	XOR data of BP1D
XD2n	XOR data of BP2D
XAOn	XOR data of BPOA
XA1n	XOR data of BP1A
XA2n	XOR data of BP2A
ENn	1: enables PWM channel. 0 : disable. $\mathrm{n}=0 \sim 7$.
MOD[1:0]	$00: \mathrm{BPO}[3: 0]$ clock is derived by dividing 8 MHz clock by 16.
	01: $\mathrm{BPO}[3: 0]$ clock is derived by dividing 8 MHz clock by 64.
	10: $\mathrm{BPO}[3: 0]$ clock is derived by dividing 8 MHz clock by 256 .
	11: $\mathrm{BPO} 03: 0]$ clock is derived by dividing 8 MHz clock by 512 .
MOD[3:2]	$00: \mathrm{BPO}[7: 4]$ clock is derived by dividing 8 MHz clock by 16 .

01: $\mathrm{BPO}[7: 4]$ clock is derived by dividing 8 MHz clock by 64 .
10: $\mathrm{BPO} 0[7: 4]$ clock is derived by dividing 8 MHz clock by 256 .
11: BPO[7:4] clock is derived by dividing 8 MHz clock by 512 .

7. ELECTRICAL CHARACTERISTICS

7.1 Absolute maximum ratings

PARAMETER	SYMBOL	CONDITIONS	RATED VALUE	UNIT
Power Supply	VDD-Vss	-	-0.3 to +7.0	V
Input Voltage	VIN	All Inputs	Vss -0.3 to VDD +0.3	V
Storage Temp.	TSTG	-	-55 to +150	${ }^{\circ} \mathrm{C}$
Operating Temp.	TOPR	-	0 to +70	${ }^{\circ} \mathrm{C}$

Note: Exposure to conditions beyond those listed under the Absolute Maximum Ratings table may adversely affect the life and reliability of the device.

7.2 DC Characteristics

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating voltage	$V_{\text {D }}$		2.2	-	5.5	V
Operating current	lop1	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$, CLK @ 10 MHz	-		800	uA
Standby current (STOP)	$\mathrm{I}_{\mathrm{DD} 1}$	$\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, / \mathrm{CS}=\mathrm{V}_{\mathrm{DD}}$	-	1	2	μA
Input low voltage	V_{IL}	All Input Pins	$\mathrm{V}_{\text {SS }}$	-	$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
Input high voltage	V_{IH}	All Input Pins	$0.7 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{D D}$	V
Input pull-high resistor	lin1	$\mathrm{VDD}=3.0 \mathrm{~V}$	360	450	540	$K \Omega$
Input pull-low resistor	IIN2	$\mathrm{VDD}=3.0 \mathrm{~V}$	360	450	540	$K \Omega$
Output current	l L	$\mathrm{V}_{\text {DD }}=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.4 \mathrm{~V}$	8	12	-	mA
	$\mathrm{IOH}^{\text {H }}$	$\mathrm{V}_{\text {DD }}=3 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.6 \mathrm{~V}$	-4	-6	-	mA
	l L	$\mathrm{V}_{\text {DD }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.0 \mathrm{~V}$	-	25	-	mA
	$\mathrm{IOH}^{\text {O}}$	$\mathrm{V}_{\text {DD }}=4.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.6 \mathrm{~V}$	-	-12	-	mA

7.3 AC Characteristics

($\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise specified)

PARAMETER	SYM.	CONDITIONS	MIN.	TYP.	MAX.	UNIT
CLK Clock frequency	$\mathrm{f}_{\mathrm{CLK}}$		-	-	10	MHz
Input rise time	t_{R}		-	-	5	$n S$
Input fall time	t_{F}		-	-	5	nS
CLK high time	t_{WH}		45	-	-	$n S$
CLK low time	t_{WL}		45	-	-	$n S$
/CS high time	t_{CS}		100	-	-	nS
/CS setup time	$\mathrm{t}_{\mathrm{CSS}}$		50	-	-	nS
/CS hold time	$\mathrm{t}_{\mathrm{CSH}}$		50	-	-	nS
Data in setup time	t_{SU}		5	-	-	nS

Data in hold time	t_{H}		5	-	-	nS
Output valid time	t_{V}		-	-	45	nS
Output hold time	t_{HO}		0	-	-	nS
Output disable time	t_{DS}		-	-	100	nS

Figure 11 SPI Timing

8. TYPICAL APPLICATION CIRCUIT

Figure 12 Application circuit

Figure 13 Connection of Master and Slave

9. PACKAGE INFORMATION

LQFP48 Pin assignment

LQFP48 Package dimension

COTROL DIMENSIONS ARE IN MILLIMETERS.

SYMBOL	MILLIMETER			INCH		
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	-	-	1.60	-	-	0.063
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
D1	6.90	7.00	7.10	0.272	0.276	0.260
E1	6.90	7.00	7.10	0.272	0.276	0.260
e	0.35	0.50	0.65	0.014	0.020	0.260
D	8.9	9.00	9.10	0.350	0.354	0.358
E	8.9	9.00	9.10	0.350	0.354	0.358
L	0.45	0.60	0.75	0.018	0.024	0.030
L1	-	1.00	-	-	0.039	-
C	0.09	-	0.20	0.0035	-	0.0079
θ	0°	-	7°	0°	-	7°
b	0.17	0.22	0.27	0.007	0.0087	0.011

QFN32 Pin assignment

Note: No support BP07, BP17, BP26 and BP27

QFN32 Package dimension

10. DEMO BOARD

PIN NAME	PIN Number	PIN NAME	PIN Number
/CS	2	BP14	22
DIS	3	BP15	23
VDD	4	BP16	24
WAKEUP	5	BP17	25
VDDIO1	6	VDDIO2	26
BP00	7	BP20	27
BP01	8	BP21	28
BP02	9	BP22	29
BP03	10	BP23	30
BP04	11	BP24	31
BP05	12	BP25	32
BP06	13	BP26	33
BP07	14	BP27	34
VSSIO1	15	VSSIO2	35
BP10	16	VSS	36
BP11	17	DI	37
BP12	18	CLK	38
BP13	19	DO	39

11. ORDERING INFORMATION

A. Dies: W55P241
B. Package of LQFP48: W55P241DG
C. Package of QFN32: W55P241N32G

12. REVISION HISTORY

REVISION	DATE	MODIFICATIONS	
A1.0	Feb. 2008	$>$	Preliminary release.
		$>$	Change part \# from W55IO241 to W55P241
A1.1		$>$	Add Section 5 Function Description
	May 2008	$>$	Add Section 6 Control and Status Registers
		$>$	Add application circuit
A2.0		$>$	Add Section 9 Demo board Pin List
			$>$
			Add Figure13

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

