nuvoton

NuMicro[™] NUC122 Series Technical Reference Manual

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro[™] microcontroller based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

TABLE OF CONTENTS

LIST	r of fig	URES		6
LIST	Γ OF TAE	BLES		9
1	GEN	ERAL DI	ESCRIPTION	10
2	FEAT	URES		11
	2.1	NuMic	cro [™] NUC122 Features	11
3	PART	S INFO	RMATION LIST AND PIN CONFIGURATION	14
	3.1	NuMic	cro [™] NUC122 Products Selection Guide	14
	3.2	Pin Co	onfiguration	15
		3.2.1	NuMicro [™] NUC122 Pin Diagram	15
	3.3	Pin De	escription	18
		3.3.1	NuMicro [™] NUC122 Pin Description	18
4	BLOO	CK DIAG	GRAM	22
	4.1	NuMic	cro [™] NUC122 Block Diagram	22
5	FUN		L DESCRIPTION	23
	5.1	ARM®	[®] Cortex [®] -M0 Core	23
	5.2		m Manager	
	-	5.2.1	Overview	
		5.2.2	System Reset	-
		5.2.3	System Power Distribution	
		5.2.4	System Memory Map	
		5.2.5	System Manager Control Registers	29
		5.2.6	System Timer (SysTick)	52
		5.2.7	Nested Vectored Interrupt Controller (NVIC)	57
		5.2.8	System Control Register	
	5.3	Clock	Controller	89
		5.3.1	Overview	89
		5.3.2	Clock Generator	
		5.3.3	System Clock and SysTick Clock	
		5.3.4	Peripherals Clock	
		5.3.5	Power Down Mode Clock	
		5.3.6	Register Map	
	5.4	5.3.7 FLAS	Register Description H MEMORY CONTROLLER (FMC)	
		5.4.1	Overview	
		5.4.2	Features	
		5.4.3	Block Diagram	
		5.4.4	Flash Memory Organization	
		5.4.5	Boot Selection	
		5.4.6	Data Flash	114
		5.4.7	User Configuration	115
		5.4.8	In System Program (ISP)	117

	•	gister Map	
		egister Description	
5.5		urpose I/O (GPIO) 1	
		erview and Features	
	5.5.2 Fun	ction Description	128
	5.5.3 Reg	jister Map	130
	5.5.4 Reg	gister Description	134
5.6	Timer Con	troller (TMR)1	46
	5.6.1 Ove	erview	146
	5.6.2 Fea	tures	146
	5.6.3 Bloc	ck Diagram	147
	5.6.4 Fun	ction Description	148
	5.6.5 Reg	jister Map	150
	-	jister Description	
5.7	-	erator and Capture Timer (PWM)	
		erview	
		itures	
		ck Diagram	
		iction Description	
		jister Map	
	-	jister Description	
5.8	-	Timer (WDT)	
5.6	-		
		tures	
		ck Diagram	
	-	jister Map	
		jister Description	
5.9	Real Time	Clock (RTC)	94
	5.9.1 Ove	erview	194
	5.9.2 Fea	tures	194
	5.9.3 Bloc	ck Diagram	195
	5.9.4 Fun	ction Description	196
	5.9.5 Reg	jister Map	198
	5.9.6 Reg	jister Description	199
5.10	UART Inte	rface Controller (UART)2	213
	5.10.1 Ov	/erview	213
		atures	
		ock Diagram	
		DA Mode	
		S-485 Function Mode	
		egister Map	
		egister Description	
5.11		ce Controller (PS2D)	
0			
		verview	
		atures	
	5.11.3 Blo	ock Diagram	249

Jan. 0	9, 2015		Page 4 of 350	Revision 1.11
	7.1	64L LQ	FP (7x7x1.4mm footprint 2.0 mm)	345
7	PACK		IENSIONS	
		6.5.1	Dynamic Characteristics of Data Input and Output Pin	343
	6.5	SPI Dy	namic Characteristics	
			Specification of USB PHY	
		6.4.4	Specification of Power-On Reset	341
			Specification of Brownout Detector	
		- Y	Specification of Low Voltage Reset	
		6.4.1	Specification of LDO and Power Management	
	6.4		Characteristics	
			Internal 10 KHz Low Speed Oscillator	
			Internal 22.1184 MHz High Speed Oscillator	
			External 32.768 KHz Low Speed Crystal	
			External 4~24 MHz High Speed Crystal AC Electrical Characteristics	
			External 4~24 MHz High Speed Crystal AC Electrical Characteristics	
	6.3		ctrical Characteristics	
		6.2.1	NuMicro [™] NUC122 DC Electrical Characteristics	
	6.2	DC Ele	ctrical Characteristics	334
	6.1	Absolut	te Maximum Ratings	333
6	ELECT	RICAL (CHARACTERISTICS	333
		5.14.6	Register Description	316
		5.14.5	Register Map	314
		5.14.4	Function Description	
		5.14.3	Block Diagram	
		5.14.2	Features	
		5.14.1	Overview	
	5.14	USB De	evice Controller (USB)	
		5.13.7	Register Description	
		5.13.6	Register Map	
		5.13.4 5.13.5	Programming Examples	
		5.13.3 5.13.4	Block Diagram Function Description	
		5.13.2	Features	
		5.13.1	Overview	
	5.13		Peripheral Interface (SPI)	
	5 10	5.12.6 Sorial F	Data Transfer Flow in Five Operating Modes	
		5.12.5	Modes of Operation	
		5.12.4	Register Description	
		5.12.3	Register Map	
		5.12.2	Protocol Registers	
		5.12.1	Overview	
	5.12	I ² C Ser	ial Interface Controller (Master/Slave) (I ² C)	263
		5.11.6	Register Description	
		5.11.5	Register Map	255
		5.11.4	Functional Description	250

	7.2	48L LQFP (7x7x1.4mm footprint 2.0 mm)	346
	7.3	33L QFN (5x5x0.8mm)	347
8	REVIS	ION HISTORY	348

nuvoTon

List of Figures

Jan. 09, 2015 Page 6 of 350	Revision 1.11
Figure 5-34 UART Block Diagram	
Figure 5-33 UART Clock Source Diagram	
Figure 5-32 RTC Block Diagram	195
Figure 5-31 Watchdog Timer Block Diagram	
Figure 5-30 Watchdog Timer Clock Source Diagram	
Figure 5-29 Timing of Interrupt and Reset Signals	
Figure 5-28 PWM Group A PWM-Timer Interrupt Architecture Diagram	
Figure 5-27 Capture Operation Timing	163
Figure 5-26 Paired-PWM Output with Dead Zone Generation Operation	
Figure 5-25 PWM Controller Output Duty Ratio	
Figure 5-24 PWM Double Buffering Illustration	
Figure 5-23 PWM-Timer Operation Timing	
Figure 5-22 Legend of Internal Comparator Output of PWM-Timer	
Figure 5-21 PWM Generator 2 Architecture Diagram	
Figure 5-20 PWM Generator 2 Clock Source Control	
Figure 5-19 PWM Generator 0 Architecture Diagram	
Figure 5-18 PWM Generator 0 Clock Source Control	
Figure 5-17 Continuous Counting Mode	
Figure 5-16 Timer Controller Block Diagram	
Figure 5-15 Timer Controller Clock Source Diagram	
Figure 5-14 Quasi-bidirectional I/O Mode	
Figure 5-13 Open-Drain Output	
Figure 5-12 Push-Pull Output	
Figure 5-11 ISP Flow Chart	
Figure 5-10 ISP Operation Timing	
Figure 5-9 Flash Memory Structure	
Figure 5-8 Flash Memory Organization	
Figure 5-7 Flash Memory Control Block Diagram	
Figure 5-6 SysTick Clock Control Block Diagram	
Figure 5-5 System Clock Block Diagram	
Figure 5-4 Clock Generator Block Diagram	
Figure 5-3 Clock Generator Global View Diagram	
Figure 5-2 NuMicro [™] NUC122 Power Distribution Diagram	
Figure 5-1 Functional Controller Diagram	
Figure 4-1 NuMicro [™] NUC122 Block Diagram	

Figure 5-35 Auto Flow Control Block Diagram	218
Figure 5-36 IrDA Block Diagram	
Figure 5-37 IrDA TX/RX Timing Diagram	220
Figure 5-38 Structure of RS-485 Frame	
Figure 5-39 PS/2 Device Block Diagram	
Figure 5-40 Data Format of Device-to-Host	
Figure 5-41 Data Format of Host-to-Device	
Figure 5-42 PS/2 Bit Data Format	
Figure 5-43 PS/2 Bus Timing	
Figure 5-44 PS/2 Data Format	
Figure 5-45 I ² C Bus Timing	
Figure 5-46 I ² C Protocol	
Figure 5-47 Master Transmits Data to Slave	
Figure 5-48 Master Reads Data from Slave	
Figure 5-49 START and STOP Condition	
Figure 5-50 Bit Transfer on the I ² C bus	
Figure 5-51 Acknowledge on the I ² C bus	
Figure 5-52 I ² C Data Shifting Direction	
Figure 5-53 I ² C Time-out Counter Block Diagram	
Figure 5-54 Legend for the following four figures	
Figure 5-55 Master Transmitter Mode	
Figure 5-56 Master Receiver Mode	
Figure 5-57 Slave Transmitter Mode	
Figure 5-58 Slave Receiver Mode	
Figure 5-59 GC Mode	
Figure 5-60 SPI Block Diagram	
Figure 5-61 SPI Master Mode Application Block Diagram	
Figure 5-62 SPI Slave Mode Application Block Diagram	
Figure 5-63 Variable Serial Clock Frequency	
Figure 5-64 32-Bit in one Transaction	290
Figure 5-65 Two Transactions in One Transfer (Burst Mode)	
Figure 5-66 Byte Reorder	
Figure 5-67 Timing Waveform for Byte Suspend	
Figure 5-68 SPI Timing in Master Mode	
Figure 5-69 SPI Timing in Master Mode (Alternate Phase of SPICLK)	
Figure 5-70 SPI Timing in Slave Mode	

Figure 5-71 SPI Timing in Slave Mode (Alternate Phase of SPICLK)	295
Figure 5-72 USB Block Diagram	309
Figure 5-73 Wake-up Interrupt Operation Flow	311
Figure 5-74 Endpoint SRAM Structure	312
Figure 5-75 Setup Transaction Followed by Data in Transaction	313
Figure 5-76 Data Out Transfer	313
Figure 6-1 Typical Crystal Application Circuit	338
Figure 6-2 SPI Master Mode Timing	344
Figure 6-3 SPI Slave Mode Timing	344

nuvoTon

List of Tables

Table 1-1 Connectivity Supported Table
Table 5-1 Address Space Assignments for On-Chip Controller 28
Table 5-2 Exception Model
Table 5-3 System Interrupt Map 59
Table 5-4 Vector Table Format 60
Table 5-5 Power Down Mode Control Table
Table 5-6 ISP Mode
Table 5-7 Watchdog Timer Time-out Interval Selection 187
Table 5-8 UART Baud Rate Equation
Table 5-9 UART Baud Rate Setting Table
Table 5-10 UART Interrupt Sources and Flags Table In Software Mode
Table 5-11 Byte Order and Byte Suspend Conditions

1 GENERAL DESCRIPTION

The NuMicro[™] NUC122 series are 32-bit microcontrollers with Cortex®-M0 core runs up to 60 MHz, up to 32K/64K-byte embedded flash, 4K/8K-byte embedded SRAM, and 4K-byte loader ROM for the In System Program (ISP) function. It also integrates Timers, Watchdog Timer, RTC, UART, SPI, I²C, PWM Timer, GPIO, USB 2.0 Full Speed Device, Low Voltage Reset Controller and Brownout Detector.

			- NY /			
Product Line	UART	SPI	I ² C	USB	PS/2	
NUC122	Y	Y	Y	Y	Y	

Table 1-1 Connectivity Supported Table

nuvoTon

2 FEATURES

2.1 NuMicro[™] NUC122 Features

- Core
 - ARM[®] Cortex[®]-M0 core runs up to 60 MHz
 - One 24-bit system timer
 - Support low power sleep mode
 - Single-cycle 32-bit hardware multiplier
 - NVIC for the 32 interrupt inputs, each with 4-levels of priority
 - Serial Wire Debug supports with 2 watchpoints/4 breakpoints
- Wide operating voltage ranges from 2.5 V to 5.5 V
- Flash Memory
 - 32K/64K bytes Flash for program code
 - 4KB Flash for ISP loader
 - Support In System Program (ISP) function to update Application code
 - 512 bytes page erase for Flash
 - 4KB Data Flash
 - Support 2 wire In Circuit Program (ICP) function to update code through SWD/ICE interface
 - Support fast parallel programming mode by external programmer
- SRAM Memory
 - 4K/8K bytes embedded SRAM
- Clock Control
 - Flexible selection from different clock sources
 - Built-in 22.1184 MHz high speed OSC for system operation
 - Trimmed to \pm 1 % at +25 °C and V_{DD} = 3.3 V
 - Trimmed to \pm 5 % at -40 °C ~ +85 °C and V_{DD} = 2.5 V ~ 5.5 V
 - Built-in 10 KHz low speed OSC for Watchdog Timer and Wake-up operation
 - Support one PLL, up to 60 MHz, for high performance system operation
 - External 4~24 MHz high speed crystal input for USB and precise timing operation
 - External 32.768 KHz low speed crystal input for RTC function and low power system operation

GPIO

- Four I/O modes:
 - Quasi bi-direction
 - Push-Pull output
 - Open-Drain output
 - Input only with high impendence
 - TTL/Schmitt trigger input selectable
- I/O pin can be configured as interrupt source with edge/level setting
- High driver and high sink IO mode support
- Timers
 - 4 sets of 32-bit timers with 24-bit counters and one 8-bit prescaler
 - Counter auto reload

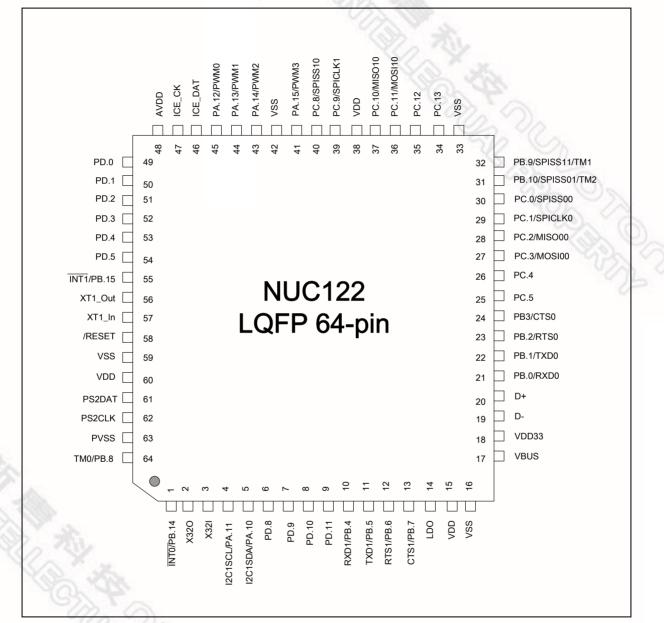
- Watchdog Timer
 - Multiple clock sources
 - 8 selectable time-out period from 1.6 ms ~ 26.0 sec (depends on clock source)
 - WDT can wake-up chip from power down or idle mode
 - Interrupt or reset selectable while Watchdog Timer time-out
- RTC
 - Support software compensation by setting frequency compensate register (FCR)
 - Support RTC counter (second, minute, hour) and calendar counter (day, month, year)
 - Support Alarm registers (second, minute, hour, day, month, year)
 - 12-hour or 24-hour mode
 - Automatic leap year recognition
 - Support time tick interrupt
 - Support wake-up function
- PWM/Capture
 - Built-in up to two 16-bit PWM generators provide four PWM outputs or two complementary paired PWM outputs
 - Each PWM generator equipped with one clock source selector, one clock divider, one 8-bit prescaler and one Dead-Zone generator for complementary paired PWM
 - Up to four 16-bit digital Capture timers (shared with PWM timers) provide four rising/falling capture inputs
 - Support Capture interrupt
- UART
 - Two UART controllers
 - UART ports with flow control (TXD, RXD, CTS and RTS)
 - UART ports with 14-byte FIFO for standard device
 - Support IrDA (SIR) function
 - Support RS-485 9-bit mode and direction control
 - Programmable baud-rate generator up to 1/16 system clock
- SPI
 - Up to two sets of SPI device
 - Master up to 25 MHz, and Slave up to 12 MHz (chip is working @ 5 V)
 - Support SPI master/slave mode
 - Full duplex synchronous serial data transfer
 - Variable length of transfer data from 1 to 32 bits
 - MSB or LSB first data transfer
 - 2 slave/device select lines when it is as the master, and 1 slave/device select line when it is as the slave
 - Byte suspend mode in 32-bit transmission

- I²C
 - One set of I²C device
 - Master/Slave mode
 - Bidirectional data transfer between masters and slaves
 - Multi-master bus (no central master)
 - Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
 - Serial clock synchronization allows devices with different bit rates to communicate via one serial bus
 - Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer
 - Programmable clocks allow versatile rate control
 - I²C-bus controller supports multiple address recognition (four slave address with mask option)
- USB 2.0 Full-Speed Device
 - One set of USB 2.0 FS Device 12 Mbps
 - On-chip USB Transceiver
 - Provide 1 interrupt source with 4 interrupt events
 - Support Control, Bulk In/Out, Interrupt and Isochronous transfers
 - Auto suspend function when no bus signaling for 3 ms
 - Provide 6 programmable endpoints
 - Include 512 bytes internal SRAM as USB buffer
 - Provide remote wake-up capability
- Brownout Detector
 - With 4 levels: 4.5 V/3.8 V/2.7 V/2.2 V
 - Support Brownout Interrupt and Reset options
- One built-in LDO
- Low Voltage Reset
- Operating Temperature: -40 °C ~ 85 °C
- Packages:
 - All Green package (RoHS)
 - LQFP 64-pin (7mmX7mm)
 - LQFP 48-pin
 - QFN 33-pin

3 PARTS INFORMATION LIST AND PIN CONFIGURATION

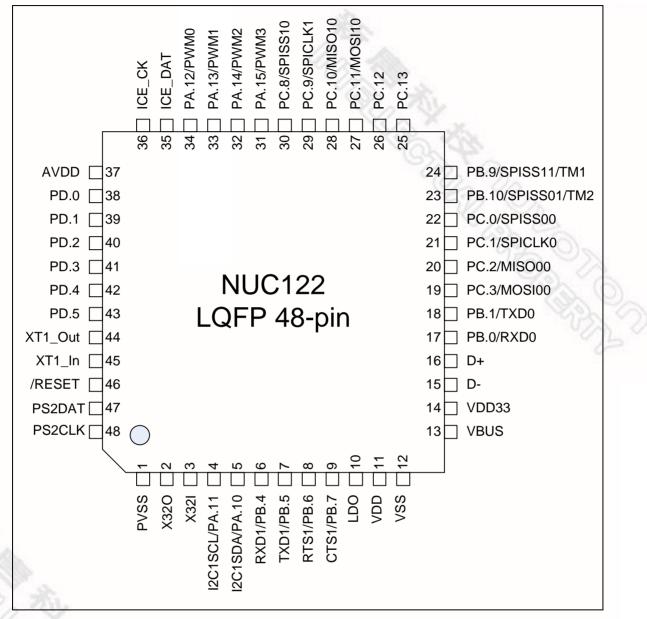
Part number	Flash	ISP ROM	SRAM	I/O	Timer		С	onne	ctivity	1	×.	1 ² 6	Comp.			DTC	ISP	Package
Part number		(KB)	(KB)	1/0	rimer	UART	SPI	I ² C	USB	LIN	PS/2	13	comp.		ADC	RIC	ICP	гаскауе
NUC122ZD2AN	64 KB	4KB	8 KB	up to 18	4x32-bit	1	2	1	1	X	E.	-	25	-	-	-	v	QFN33
NUC122ZC1AN	32 KB	4KB	4 KB	up to 18	4x32-bit	1	2	1	1	-	Ya	2	12	-	-	-	v	QFN33
NUC122LD2AN	64 KB	4KB	8 KB	up to 30	4x32-bit	2	2	1	1	-	1	2	25	4	-	v	v	LQFP48
NUC122LC1AN	32 KB	4KB	4 KB	up to 30	4x32-bit	2	2	1	1	-	1	-	SU	4	5	v	v	LQFP48
NUC122SD2AN	64 KB	4KB	8 KB	up to 41	4x32-bit	2	2	1	1	-	1	-	-55	4	-11	V	v	LQFP64
NUC122SC1AN	32 KB	4KB	4 KB	up to 41	4x32-bit	2	2	1	1	-	1	-		4	2	v	v	LQFP64

3.1 NuMicro[™] NUC122 Products Selection Guide


Jan. 09, 2015

nuvoTon

3.2 Pin Configuration


3.2.1 NuMicro[™] NUC122 Pin Diagram

3.2.1.1 NuMicro[™] NUC122 LQFP 64-pin

Figure 3-1 NuMicro[™] NUC122 LQFP 64-pin Pin Diagram

3.2.1.2 NuMicro[™] NUC122 LQFP 48-pin

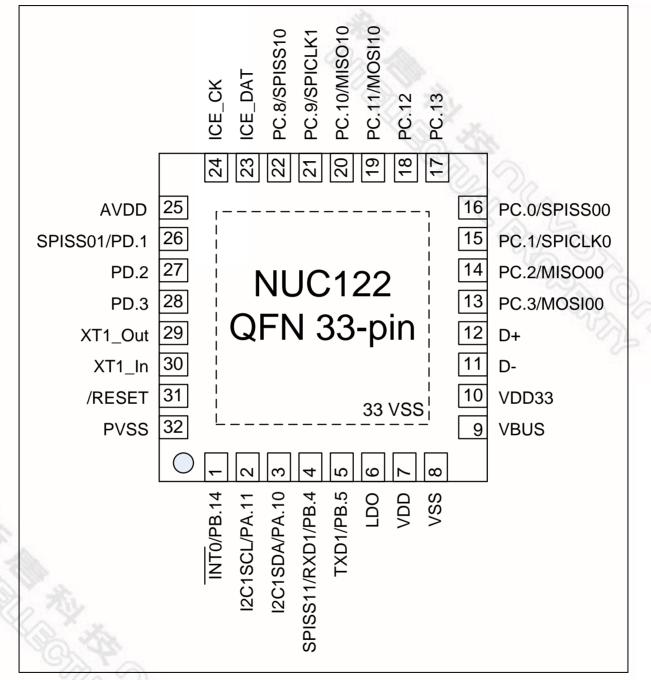


Figure 3-3 NuMicro[™] NUC122 QFN 33-pin Pin Diagram

3.3 Pin Description

3.3.1 NuMicro[™] NUC122 Pin Description

3.3.1.1 NuMicro[™] NUC122 Pin Description for LQFP64/LQFP48/QFN33

	Pin No.			1	be Description			
LQFP 64	LQFP 48	QFN 33	Pin Name	Pin Type				
4		4	PB.14	I/O	General purpose input/output digital pin			
1		1	/INT0	I	/INT0: External interrupt1 input pin			
2	2		X32O	0	32.768 KHz low speed crystal output pin			
3	3		X32I	I	32.768 KHz low speed crystal input pin			
4	4	0	PA.11	I/O	General purpose input/output digital pin			
4	4	2	I2C1SCL	I/O	I2C1SCL: I ² C1 clock pin			
-	_		PA.10	I/O	General purpose input/output digital pin			
5	5	3	I2C1SDA	I/O	I2C1SDA: I ² C1 data input/output pin			
6			PD.8	I/O	General purpose input/output digital pin			
7			PD.9	I/O	General purpose input/output digital pin			
8			PD.10	I/O	General purpose input/output digital pin			
9			PD.11	I/O	General purpose input/output digital pin			
			PB.4	I/O	General purpose input/output digital pin			
10	6	6	4	RXD1	I	RXD1: Data receiver input pin for UART1		
3			SPISS11	I/O	SPISS11: SPI1 2 nd slave select pin (for QFN33 only)			
11	7	5	PB.5	I/O	General purpose input/output digital pin			
		TXD1: Data transmitter output pin for UART1						
12	0		PB.6	I/O	General purpose input/output digital pin			
12	8		RTS1	0	RTS1: Request to Send output pin for UART1			
13	9		PB.7	I/O	General purpose input/output digital pin			
13	200	Da	CTS1	I	CTS1: Clear to Send input pin for UART1			
14	10	6	LDO	Р	LDO output pin			
15	11	274	VDD	Р	Power supply for I/O ports and LDO source for internal PLL and digital function			
16	12	8	VSS	Р	Ground			
17	13	9	VBUS	Р	POWER SUPPLY: From USB Host or HUB.			

nuvoton

	Pin No.						
LQFP LQFP QFN 64 48 33			Pin Name	Pin Type	Description		
18	14	10	VDD33	P	Internal Power Regulator Output 3.3 V Decoupling Pin		
19	15	11	D-	USB	USB Differential Signal D-		
20	16	12	D+	USB	USB Differential Signal D+		
04	47		PB.0	I/O	General purpose input/output digital pin		
21	17		RXD0	I	RXD0: Data Receiver input pin for UART0		
	40		PB.1	I/O	General purpose input/output digital pin		
22	18		TXD0	0	TXD0: Data transmitter output pin for UART0		
			PB.2	I/O	General purpose input/output digital pin		
23			RTS0	0	RTS0: Request to Send output pin for UART0		
24			PB.3	I/O	General purpose input/output digital pin		
24			CTS0	I	CTS0: Clear to Send input pin for UART0		
25			PC.5	I/O	General purpose input/output digital pin		
26			PC.4	I/O	General purpose input/output digital pin		
07	10	13	PC.3	I/O	General purpose input/output digital pin		
27	19		MOSI00	0	MOSI00: SPI0 MOSI (Master Out, Slave In) pin		
28	20	14	PC.2	I/O	General purpose input/output digital pin		
20	20		MISO00	I	MISO00: SPI0 MISO (Master In, Slave Out) pin		
20	21	15	PC.1	I/O	General purpose input/output digital pin		
29 21		15	SPICLK0	I/O	SPICLK0: SPI0 serial clock pin		
30	22	16	PC.0	I/O	General purpose input/output digital pin		
30	22	10	SPISS00	I/O	SPISS00: SPI0 slave select pin		
No?	1 . J.		PB.10	I/O	General purpose input/output digital pin		
31	23		TM2	0	TM2: Timer2 external counter input		
6	25-4	Da	SPISS01	I/O	SPISS01: SPI0 2 nd slave select pin		
	Sh	S	PB.9	I/O	General purpose input/output digital pin		
32	24	D. L	TM1	0	TM1: Timer1 external counter input		
		22	SPISS11	I/O	SPISS11: SPI1 2 nd slave select pin		
33		No.	VSS	Р	Ground		
34	25	17	PC.13	I/O	General purpose input/output digital pin		

Pin No.					
LQFP 64	LQFP QFN 48 33		Pin Name F	Pin Type	Description
35	26	18	PC.12	I/O	General purpose input/output digital pin
20	07	10	PC.11	I/O	General purpose input/output digital pin
36	27	19	MOSI10	0	MOSI10: SPI1 MOSI (Master Out, Slave In) pin
07	20	20	PC.10	I/O	General purpose input/output digital pin
37	28	20	MISO10	I	MISO10: SPI1 MISO (Master In, Slave Out) pin
38			VDD	Р	Power supply for I/O ports
		01	PC.9	I/O	General purpose input/output digital pin
39	29	21	SPICLK1	I/O	SPICLK1: SPI1 serial clock pin
40			PC.8	I/O	General purpose input/output digital pin
40	30	22	SPISS10	I/O	SPISS10: SPI1 slave select pin
			PA.15	I/O	General purpose input/output digital pin
41	31		PWM3	0	PWM3: PWM output pin
42			VSS	Р	Ground
40	22		PA.14	I/O	General purpose input/output digital pin
43	32		PWM2	0	PWM2: PWM output pin
	00		PA.13	I/O	General purpose input/output digital pin
44	33		PWM1	0	PWM1: PWM output pin
			PA.12	I/O	General purpose input/output digital pin
45	34		PWM0	0	PWM0: PWM output pin
46	35	23	ICE_DAT	I/O	Serial Wired Debugger Data pin
47	36	24	ICE_CK	I	Serial Wired Debugger Clock pin
48	37	25	AVDD	AP	Power supply for internal analog circuit
49	38		PD.0	I/O	General purpose input/output digital pin
- YG			PD.1	I/O	General purpose input/output digital pin
50 0	39	26	SPISS01	I/O	SPISS01: SPI0 2 nd slave select pin (for QFN33 only)
51	40	27	PD.2	I/O	General purpose input/output digital pin
52	41	28	PD.3	I/O	General purpose input/output digital pin
53	42	(0)	PD.4	I/O	General purpose input/output digital pin
54	43	23	PD.5	I/O	General purpose input/output digital pin

nuvoTon

	Pin No.				
LQFP 64	LQFP 48	QFN 33	Pin Name Pin Type		Description
55			PB.15	I/O	General purpose input/output digital pin
55			/INT1	1.2	/INT1: External interrupt 1 input pin
56	44	29	XT1_OUT	0	Crystal output pin
57	45	30	XT1_IN	I	Crystal input pin
58	46	31	/RESET	I	External reset input: Low active, set this pin low reset chip to initial state. With internal pull-up.
59		33	VSS	Р	Ground
60			VDD	Р	Power supply for I/O ports
61	47		PS2DAT	I/O	PS/2 data pin
62	48		PS2CLK	I/O	PS/2 clock pin
63	1	32	PVSS	Р	PLL Ground
64			PB.8	I/O	General purpose input/output digital pin
04			TM0	0	TM0: Timer0 external counter input

Note: Pin Type I=Digital Input, O=Digital Output; AI=Analog Input; P=Power Pin; AP=Analog Power

Jan. 09, 2015

Page 21 of 350

4 **BLOCK DIAGRAM**

NuMicro[™] NUC122 Block Diagram 4.1

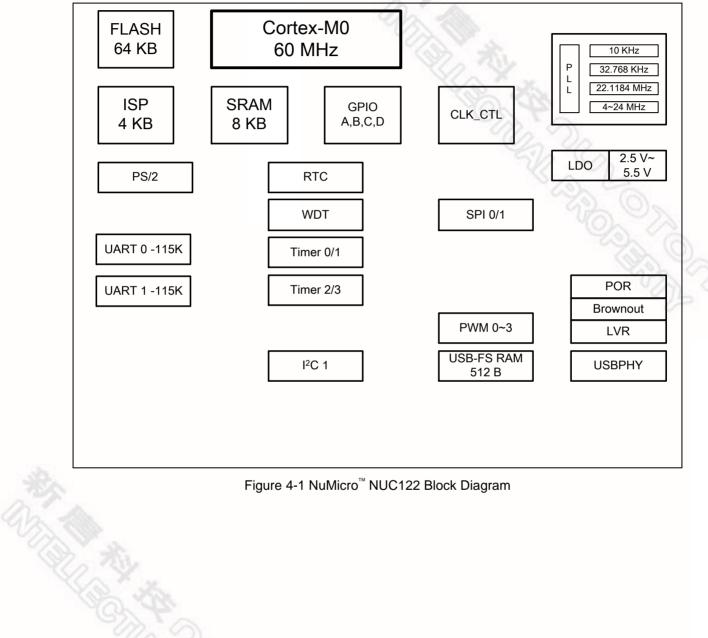


Figure 4-1 NuMicro[™] NUC122 Block Diagram

5 FUNCTIONAL DESCRIPTION

5.1 ARM[®] Cortex[®]-M0 Core

The Cortex®-M0 processor is a configurable, multistage, 32-bit RISC processor. It has an AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug functionality. The processor can execute Thumb code and is compatible with other Cortex®-M profile processor. Following figure shows the functional controllers of processor.

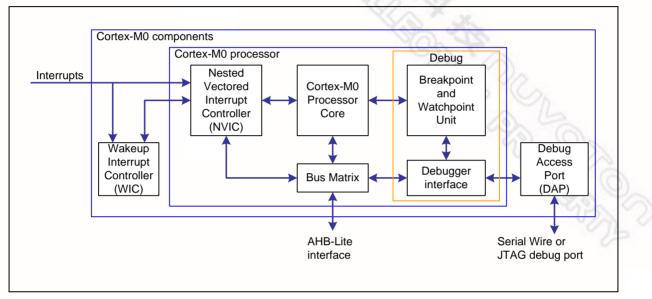


Figure 5-1 Functional Controller Diagram

The implemented device provides:

- A low gate count processor that features:
 - The ARM[®] v6-M Thumb[®] instruction set
 - Thumb-2 technology
 - ARM[®]v6-M compliant 24-bit SysTick timer
 - A 32-bit hardware multiplier
 - The system interface supports little-endian data accesses
 - The ability to have deterministic, fixed-latency, and interrupt handling
 - Load/store-multiples and multicycle-multiplies that can be abandoned and restarted to facilitate rapid interrupt handling
 - C Application Binary Interface compliant exception model. This is the ARM[®] v6-M, C
 Application Binary Interface (C-ABI) compliant exception model that enables the use of pure C functions as interrupt handlers
 - Low power sleep mode entry using Wait For Interrupt (WFI), Wait For Event (WFE) instructions, or the return from interrupt sleep-on-exit feature
- NVIC that features:
 - 32 external interrupt inputs, each with four levels of priority
 - Dedicated Non-Maskable Interrupt (NMI) input.
 - Support for both level-sensitive and pulse-sensitive interrupt lines
 - Wake-Up Interrupt Controller (WIC), providing ultra-low power sleep mode support.

- Debug support
 - Four hardware breakpoints.
 - Two watchpoints.
 - Program Counter Sampling Register (PCSR) for non-intrusive code profiling.
 - Single step and vector catch capabilities.
- Bus interfaces:
 - Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all system peripherals and memory.
 - Single 32-bit slave port that supports the DAP (Debug Access Port).

nuvoTon

5.2 System Manager

5.2.1 Overview

System management includes these following sections:

- System Resets
- System Memory Map
- System management registers for Part Number ID, chip reset and on-chip controllers reset, multi-functional pin control
- System Timer (SysTick)
- Nested Vectored Interrupt Controller (NVIC)
- System Control registers

5.2.2 System Reset

The system reset can be issued by one of the below listed events. These reset event flags can be read from RSTSRC register.

- The Power-On Reset
- The low level on the /RESET pin
- Watchdog Timer Time-Out Reset
- Low Voltage Reset
- Brownout Detector Reset
- Cortex®-M0 Reset
- System Reset

Both System Reset and Power-On Reset can reset the whole chip including all peripherals. The difference between System Reset and Power-On Reset is external Crystal circuit and ISPCON.BS bit. System Reset doesn't reset external Crystal circuit and ISPCON.BS bit, but Power-On Reset does.

5.2.3 System Power Distribution

In this chip, the power distribution is divided into three segments.

- Analog power from AVDD and AVSS provides the power for analog components operation.
- Digital power from VDD and VSS supplies the power to the internal regulator which provides a fixed 1.8 V power for digital operation and I/O pins.
- USB transceiver power from VBUS offers the power for operating the USB transceiver.

The outputs of internal voltage regulators, LDO and VDD33, require an external capacitor which should be located close to the corresponding pin. Analog power (AVDD) should be the same voltage level of the digital power (VDD). The following diagram shows the power distribution of this chip.

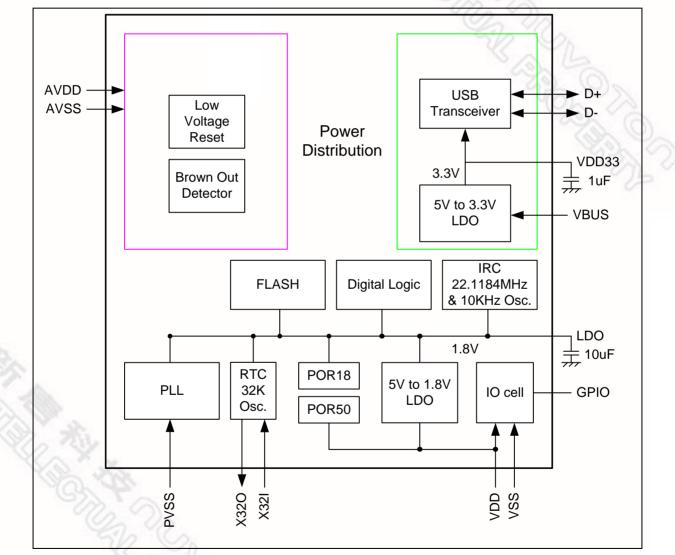


Figure 5-2 NuMicro[™] NUC122 Power Distribution Diagram

5.2.4 System Memory Map

NuMicro[™] NUC122 Series provides 4G-byte addressing space. The memory locations assigned to each on-chip controllers are shown in the following table. The detailed register definition, memory space, and programming detailed will be described in the following sections for each on-chip peripherals. NuMicro[™] NUC122 Series only supports little-endian data format.

Address Space	Token	Controllers
Flash & SRAM Memory Space	9	NO X M
0x0000_0000 – 0x0000_FFFF	FLASH_BA	FLASH Memory Space (64KB)
0x2000_0000 - 0x2000_1FFF	SRAM_BA	SRAM Memory Space (8KB)
AHB Controllers Space (0x50	00_0000 – 0x50	01F_FFFF)
0x5000_0000 – 0x5000_01FF	GCR_BA	System Global Control Registers
0x5000_0200 - 0x5000_02FF	CLK_BA	Clock Control Registers
0x5000_0300 - 0x5000_03FF	INT_BA	Interrupt Multiplexer Control Registers
0x5000_4000 – 0x5000_7FFF	GPIO_BA	GPIO Control Registers
0x5000_C000 – 0x5000_FFFF	FMC_BA	Flash Memory Control Registers
APB1 Controllers Space (0x4	000_0000 ~ 0x4	loof_FFFF)
0x4000_4000 - 0x4000_7FFF	WDT_BA	Watchdog Timer Control Registers
0x4000_8000 – 0x4000_BFFF	RTC_BA	Real Time Clock (RTC) Control Register
0x4001_0000 – 0x4001_3FFF	TMR01_BA	Timer0/Timer1 Control Registers
0x4003_0000 – 0x4003_3FFF	SPI0_BA	SPI0 with Master/Slave Function Control Registers
0x4003_4000 - 0x4003_7FFF	SPI1_BA	SPI1 with Master/Slave Function Control Registers
0x4004_0000 - 0x4004_3FFF	PWMA_BA	PWM0/1/2/3 Control Registers
0x4005_0000 - 0x4005_3FFF	UART0_BA	UART0 Control Registers
0x4006_0000 - 0x4006_3FFF	USBD_BA	USB 2.0 FS Device Controller Registers
APB2 Controllers Space (0x4	010_0000 ~ 0x4	lo1F_FFFF)
0x4010_0000 - 0x4010_3FFF	PS2_BA	PS/2 Interface Control Registers
0x4011_0000 – 0x4011_3FFF	TMR23_BA	Timer2/Timer3 Control Registers
0x4012_0000 - 0x4012_3FFF	I2C1_BA	I ² C1 Interface Control Registers
0x4015_0000 – 0x4015_3FFF	UART1_BA	UART1 Control Registers

0xE000_E010 - 0xE000_E0FF	SCS_BA	System Timer Control Registers
0xE000_E100 - 0xE000_ECFF	SCS_BA	External Interrupt Controller Control Registers
0xE000_ED00 - 0xE000_ED8F	SCS_BA	System Control Registers

Table 5-1 Address Space Assignments for On-Chip Controller

5.2.5 System Manager Control Registers

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
GCR_BA = 0x	5000_0000			
PDID	GCR_BA+0x00	R	Part Device Identification Number Register	0x0014_0018 ^[1]
RSTSRC	GCR_BA+0x04	R/W	System Reset Source Register	0x0000_00XX
IPRSTC1	GCR_BA+0x08	R/W	Peripheral Reset Control Register 1	0x0000_0000
IPRSTC2	GCR_BA+0x0C	R/W	Peripheral Reset Control Register 2	0x0000_0000
BODCR	GCR_BA+0x18	R/W	Brownout Detector Control Register	0x0000_008X
PORCR	GCR_BA+0x24	R/W	Power-On Reset Control Register	0x0000_00XX
GPA_MFP	GCR_BA+0x30	R/W	GPIOA Multiple Function and Input Type Control Register	0x0000_0000
GPB_MFP	GCR_BA+0x34	R/W	GPIOB Multiple Function and Input Type Control Register	0x0000_0000
GPC_MFP	GCR_BA+0x38	R/W	GPIOC Multiple Function and Input Type Control Register	0x0000_0000
GPD_MFP	GCR_BA+0x3C	R/W	GPIOD Multiple Function and Input Type Control Register	0x0000_0000
ALT_MFP	GCR_BA+0x50	R/W	Alternative Multiple Function Pin Control Register	0x0000_0000
REGWRPROT	GCR_BA+0x100	R/W	Register Write Protect Register	0x0000_0000

Note: [1] Dependents on part number.

evice ID Code R	egister (PDID)						
Offset	R/W	Description	escription					
GCR_BA+0x00	R	Part Device Identifi	cation Number F	Register		0x0014_0018 ^[1]		
/ part number has a u	inique defai	ult reset value.	The way					
30	29	28	27	26	25	24		
-		Part Num	ber[31:24]	N. K.	24			
22	21	20	19	18	17	16		
		Part Num	ber[23:16]	- Ch-	2			
14	13	12	11	10	9	8		
-		Part Num	nber[15:8]	0	° AD	50		
6	5	4	3	2	1	0		
		Part Nur	nber[7:0]		Y	2,0		
	Offset GCR_BA+0x00 / part number has a u 30 22 14	Offset R/W GCR_BA+0x00 R r part number has a unique defau 30 29 22 21 14 13	GCR_BA+0x00 R Part Device Identifier y part number has a unique default reset value. 28 30 29 28 Part Num 22 21 22 21 20 Part Num 14 13 14 13 12 Part Num 6 5	Offset R/W Description GCR_BA+0x00 R Part Device Identification Number F r part number has a unique default reset value. Part Device Identification Number F 30 29 28 21 20 19 Part Number[23:16] Part Number[23:16] 14 13 12	OffsetR/WDescriptionGCR_BA+0x00RPart Device Identification Number Registerr part number has a unique default reset value.302928302928Part Number[31:24]222120141312141312654302	OffsetR/WDescriptionGCR_BA+0x00RPart Device Identification Number Registerr part number has a unique default reset value.302928272625Part Number[31:24]222120191817Part Number[23:16]Part Number[23:16]Part Number[15:8]654321		

Bits	Descriptions	
[31:0]	PDID	Part Device Identification Number This register reflects device part number code. S/W can read this register to identify which device is used.

Jan. 09, 2015

System Reset Source Register (RSTSRC)

This register provides specific information for software to identify this chip's reset source from last operation.

Register	Offset	R/W	Description	Reset Value
RSTSRC	GCR_BA+0x04	R/W	System Reset Source Register	0x0000_00XX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
			Rese	erved		100	1			
7	6	5	4	3	2	1	0			
RSTS_CPU	Reserved	RSTS_SYS	RSTS_BOD	RSTS_LVR	RSTS_WDT	RSTS_RESET	RSTS_POR			

Bits	Descriptions	Descriptions						
[31:8]	Reserved	Reserved						
		The RSTS_CPU flag is set by hardware if software writes CPU_RST (IPRSTC1[1]) 1 to reset Cortex®-M0 CPU kernel and Flash memory controller (FMC).						
[7]	RSTS_CPU	1 = The Cortex®-M0 CPU kernel and FMC are reset by software setting CPU_RST to 1.						
		0 = No reset from CPU						
2		Software can write 1 to clear this bit to zero.						
[6]	Reserved	Reserved						
0		The RSTS_SYS flag is set by the "reset signal" from the Cortex®-M0 kernel to indicate the previous reset source.						
[5]	RSTS_SYS	1 = The Cortex®-M0 had issued the reset signal to reset the system by software writing 1 to bit SYSRESETREQ(AIRCR[2], Application Interrupt and Reset Control Register, address = 0xE000ED0C) in system control registers of Cortex®-M0 kernel.						
1	200	0 = No reset from Cortex®-M0						
1	20.0	Software can write 1 to clear this bit to zero.						
	and the second	The RSTS_BOD flag is set by the "reset signal" from the Brownout Detector to indicate the previous reset source.						
[4]	RSTS_BOD	1 = The BOD had issued the reset signal to reset the system						
	- 30	0 = No reset from BOD						
	20	Software can write 1 to clear this bit to zero.						
[3]	RSTS_LVR	The RSTS_LVR flag is set by the "reset signal" from the Low-Voltage-Reset controller to						

		indicate the previous reset source.
		1 = The LVR controller had issued the reset signal to reset the system.
		0 = No reset from LVR
		Software can write 1 to clear this bit to zero.
		The RSTS_WDT flag is set by the "reset signal" from the Watchdog Timer to indicate the previous reset source.
[2]	RSTS_WDT	1 = The Watchdog Timer had issued the reset signal to reset the system.
		0 = No reset from Watchdog Timer
		Software can write 1 to clear this bit to zero.
		The RSTS_RESET flag is set by the "reset signal" from the /RESET pin to indicate the previous reset source.
[1]	RSTS_RESET	1 = The Pin /RESET had issued the reset signal to reset the system.
		0 = No reset from /RESET pin
		Software can write 1 to clear this bit to zero.
		The RSTS_POR flag is set by the "reset signal" from the Power-On Reset (POR) controller or bit CHIP_RST (IPRSTC1[0]) to indicate the previous reset source.
[0]	RSTS_POR	1 = The Power-On Reset (POR) or CHIP_RST had issued the reset signal to reset the system.
		0 = No reset from POR or CHIP_RST
		Software can write 1 to clear this bit to zero.

nuvoTon

Peripheral Reset Control Register 1 (IPRSTC1)

Register	Offset	R/W	Description	Reset Value
IPRSTC1	GCR_BA+0x08	R/W	Peripheral Reset Control Register 1	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	a x		
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						à
7	6	5	4	3	2	1	0
		Rese	erved	·		CPU_RST	CHIP_RST

Bits	Descriptions				
[31:2]	Reserved	Reserved			
		CPU Kernel One Shot Reset (write-protection bit)			
		Setting this bit will only reset the CPU kernel and Flash Memory Controller(FMC), an this bit will automatically return to 0 after the 2 clock cycles			
[1]	CPU_RST	This bit is the protected bit, It means programming this bit needs to write "59h", "16h "88h" to address 0x5000_0100 to disable register protection. Reference the register REGWRPROT at address GCR_BA+0x100			
		1 = CPU one shot reset			
S		0 = CPU normal operation			
		CHIP One Shot Reset (write-protection bit)			
		Setting this bit will reset the whole chip, including CPU kernel and all peripherals, and thi bit will automatically return to 0 after the 2 clock cycles.			
	<u> </u>	The CHIP_RST is same as the POR reset, all the chip controllers is reset and the chi setting from flash are also reload.			
[0]	CHIP_RST	About the difference between CHIP_RST and SYSRESETREQ, please refer to sectio 5.2.2			
	- E.N	This bit is the protected bit. It means programming this bit needs to write "59h", "16h "88h" to address 0x5000_0100 to disable register protection. Reference the register REGWRPROT at address GCR_BA+0x100			
	XS A	1 = CHIP one shot reset			
	~%	0 = CHIP normal operation			

Peripheral Reset Control Register 2 (IPRSTC2)

Setting these bits 1 will generate asynchronous reset signals to the corresponding peripheral controller. Users need to set these bits to 0 to release corresponding peripheral controller from reset state.

Register	Offset	R/W	Description	Reset Value
IPRSTC2	GCR_BA+0x0C	R/W	Peripheral Reset Control Register 2	0x0000_0000

31	30	29	28	27	26	25	24
	Rese	erved		USBD_RST	° O	Reserved	
23	22	21	20	19	18	17	16
PS2_RST	Reserved	Reserved	PWM03_RST	Reserved	Reserved	UART1_RST	UART0_RST
15	14	13	12	11	10	9	8
Reserved	Reserved	SPI1_RST	SPI0_RST	Rese	erved	I2C1_RST	Reserved
7	6	5	4	3	2	1	0
Rese	erved	TMR3_RST	TMR2_RST	TMR1_RST	TMR0_RST	GPIO_RST	Reserved

Bits	Descriptions				
[31:28]	Reserved	Reserved			
		USB Device Controller Reset			
[27]	USBD_RST	1 = USB device controller reset			
		0 = USB device controller normal operation			
[26:24]	Reserved	Reserved			
F.		PS/2 Controller Reset			
[23]	PS2_RST	1 = PS/2 controller reset			
	325	0 = PS/2 controller normal operation			
[22:21]	Reserved	Reserved			
XS	200	PWM03 Controller Reset			
[20]	PWM03_RST	1 = PWM03 controller reset			
	On Do	0 = PWM03 controller normal operation			
[19:18]	Reserved	Reserved			
	~ los	UART1 Controller Reset			
[17]	UART1_RST	1 = UART1 controller reset			
	de	0 = UART1 controller normal operation			
[16]	UART0_RST	UART0 Controller Reset			

		1 = UART0 controller reset
		0 = UART0 controller normal operation
[15:14]	Reserved	Reserved
		SPI1 Controller Reset
[13]	SPI1_RST	1 = SPI1 controller reset
		0 = SPI1 controller normal operation
		SPI0 Controller Reset
[12]	SPI0_RST	1 = SPI0 controller reset
		0 = SPI0 controller normal operation
[11:10]	Reserved	Reserved
		I ² C1 Controller Reset
[9]	I2C1_RST	$1 = I^2 C1$ controller reset
		$0 = I^2 C1$ controller normal operation
[8:6]	Reserved	Reserved
		Timer3 Controller Reset
[5]	TMR3_RST	1 = Timer3 controller reset
-		0 = Timer3 controller normal operation
		Timer2 Controller Reset
[4]	TMR2_RST	1 = Timer2 controller reset
-		0 = Timer2 controller normal operation
		Timer1 Controller Reset
[3]	TMR1_RST	1 = Timer1 controller reset
		0 = Timer1 controller normal operation
8		Timer0 Controller Reset
[2]	TMR0_RST	1 = Timer0 controller reset
		0 = Timer0 controller normal operation
82.7	20	GPIO Controller Reset
[1]	GPIO_RST	1 = GPIO controller reset
	3 242	0 = GPIO controller normal operation
		Reserved

Brownout Detector Control Register (BODCR)

Partial of the BODCR control registers values are initiated by the flash configuration and writeprotected by the lock function. Programming these bits needs to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Reference the register REGWRPROT at address GCR_BA+0x100

Register	Offset	R/W	Description	Reset Value
BODCR	GCR_BA+0x18	R/W	Brownout Detector Control Register	0x0000_008X

31	30	29	28	27	26	25	24
			Rese	erved	57	2 Con	
23	22	21	20	19	18	17	16
			Rese	erved		32	20%
15	14	13	12	11	10	9	8
			Rese	erved		<	20 00
7	6	5	4	3	2	1	0
LVR_EN	BOD_OUT	BOD_LP	BOD_INTF	BOD_RSTEN	BOD	D_VL	BOD_EN

Bits	Descriptions						
[31:8]	Reserved	Reserved					
		Low Voltage Reset Enable (write-protection bit)					
		The LVR function reset the chip when the input power voltage is lower than LVR circuit setting. LVR function is enabled in default.					
[7]	LVR_EN	1 = Enabled Low Voltage Reset function – After enabling the bit, the LVR function will be active with 100uS delay for LVR output stable. (default).					
A		0 = Disabled Low Voltage Reset function					
	光.	This bit is the protected bit. It means programming this needs to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Reference the register REGWRPROT at address GCR_BA+0x100					
1	20 6	Brownout Detector Output Status					
[6]	BOD_OUT	1 = Brownout Detector output status is 1. It means the detected voltage is lower than BOD_VL setting. If the BOD_EN is 0, BOD function disabled , this bit always responds 0					
	and the second	0 = Brownout Detector output status is 0. It means the detected voltage is higher than BOD_VL setting or BOD_EN is 0					
	N/S	Brownout Detector Low Power Mode (write-protection bit)					
	5	1 = Enable the BOD low power mode					
[5]	BOD_LPM	0 = BOD operate in normal mode (default)					
		The BOD consumes about 100 uA in normal mode, the low power mode can reduce the current to about 1/10 but slow the BOD response.					

nuvoton

		to address 0x500		ning this needs to write "59h", "16 ster protection. Reference the		
		Brownout Detecto	r Interrupt Flag			
[4]	BOD INTF	1 = When Brownout Detector detects the VDD is dropped down through the voltage of BOD_VL setting or the VDD is raised up through the voltage of BOD_VL setting, this bit is set to 1 and the brownout interrupt is requested if brownout interrupt is enabled.				
			ector does not detect any of BOD_VL setting.	voltage draft at VDD down throug	gh or up	
		Software can write	1 to clear this bit to zero	3 the		
		Brownout Reset E	nable (write-protection bit)	Co.Do		
		1 = Enable the brow	vnout "RESET" function			
		is enabled (BOD_R		ed (BOD_EN high) and BOD reset rt a signal to reset chip when the high).		
		0 = Enable the brov	vnout "INTERRUPT" functio	n Ost		
[3] BOD_RSTEN	BOD_RSTEN	While the BOD function is enabled (BOD_EN high) and BOD interrupt function is enabled (BOD_RSTEN low), BOD will assert an interrupt if BOD_OUT is high. BOD interrupt will keep till to the BOD_EN set to 0. BOD interrupt can be blocked by disabling the NVIC BOD interrupt or disabling BOD function (set BOD_EN low).				
		The default value is set by flash controller user configuration register config0 bit[20].				
		to address 0x500		ning this needs to write "59h", "16 ster protection. Reference the		
		Brownout Detecto	r Threshold Voltage Selec	ction (write-protection bits)		
		The default value is	set by flash controller user	configuration register config0 bit[2	2:21]	
		to address 0x500		ning this needs to write "59h", "16 ster protection. Reference the		
[2:1]	BOD_VL	BOV_VL[1]	BOV_VL[0]	Brownout voltage		
		1	1	4.5 V		
		1	0	3.8 V		
	×.	0	1	2.7 V		
	Sec. 2	0	0	2.2 V		
1	0	Brownout Detecto	r Enable (write-protection b	pit)		
	m.		· ·	configuration register config0 bit[2	31	
	Sol C	(A.C.)	tor function is enabled			
[0]	BOD_EN	0 = Brownout Detec	tor function is disabled			
	1	0 = Brownout Detector function is disabled This bit is the protected bit. It means programming this needs to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Reference the register REGWRPROT at address GCR_BA+0x100.				

Power-On Reset Control Register (PORCR)

Register	Offset	R/W	Description	Reset Value
PORCR	GCR_BA+0x24	R/W	Power-On Reset Control Register	0x0000_00XX

31	30	29	28	27	26	25	24		
			Rese	erved	90 00				
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			POR_DIS_0	CODE[15:8]		201	0		
7	6	5	4	3	2	1	0		
	-		POR_DIS_	CODE[7:0]		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	D. O.		
							2.50 /0		

	Descriptions				
[31:16]	Reserved	Reserved			
		The register is used for the Power-On Reset enable control (write-protection bits)			
		When power on, the POR circuit generates a reset signal to reset the whole chip funct but noise on the power may cause the POR active again. User can disable internal P circuit to avoid unpredictable noise to cause chip reset by writing 0x5AA5 to this field.			
[15:0]	POR_DIS_CODE	The POR function will be active again when this field is set to another value or chi reset by other reset source, including:			
		/RESET pin, Watchdog Timer Time-Out reset, LVR reset, BOD reset, ICE recommand and the software-chip reset function			
		This bit is the protected bit. It means programming this needs to write "59h", "16h", "8 to address 0x5000_0100 to disable register protection. Reference the regist REGWRPROT at address GCR_BA+0x100.			

nuvoTon

Multiple Function Pin GPIOA Control Register (GPA_MFP)

Register	Offset	R/W	Description	Reset Value
GPA_MFP	GCR_BA+0x30	R/W	GPIOA Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
GPA_TYPE[15:8]										
23	22	21	20	19	18	17	16			
	GPA_TYPE[7:0]									
15	14	13	12	11	10	9	8			
			GPA_M	FP[15:8]		20	2			
7	6	5	4	3	2	1	0			
	-		GPA_M	FP[7:0]		29	0.0			

Bits	Descriptions								
[31:16]	GPA_TYPEn	0 = Disable GPIOA[15:0] I/O input Schmitt Trigger function							
		GPA[9:0] are rese	erved						
		PA.15 Pin Functio	n Selection						
		The pin function de	pends on GPA_MF	P15 and ALT_MFP[9]					
[45]		ALT_MFP[9]	GPA_MFP[15]	PA.15 function]				
[15]	GPA_MFP15	x	0	GPIO					
		0	1	PWM3 (PWM)					
A.		1	1	Reserved					
AV.	334	PA.14 Pin Function Selection							
Xn?	2	The pin function de							
¥3	100	ALT_MFP[11]	GPA_MFP[14]	PA.14 function]				
[14]	GPA_MFP14	x	0	GPIO					
	ON DO	0	1	PWM2 (PWM)					
	NR C	1	1	Reserved					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	PA.13 Pin Function Selection							
[13]	GPA_MFP13	The pin function de	The pin function depends on GPA_MFP13 and ALT_MFP[11].						
		ALT_MFP[11]	GPA_MFP[13]	PA.13 function					

### nuvoTon

		x	0	GPIO	
		0	1	PWM1 (PWM)	1
		1	1	Reserved	
		PA.12 Pin Functio	n Selection	100	
		The pin function de	pends on GPA_MF	P12 and ALT_MFP[11].	
		ALT_MFP[11]	GPA_MFP[12]	PA.12 function	
12] <b>GPA_N</b>	//FP12	x	0	GPIO	
		0	1	PWM0 (PWM)	
		1	1	Reserved	0.
		PA.11 Pin Functio	n Selection	Ca.	1h
		The pin function de	pends on GPA_MF	P11 and ALT_MFP[11].	
441		ALT_MFP[11]	GPA_MFP[11]	PA.11 function	20
11] <b>GPA_N</b>	NFP11	x	0	GPIO	No.
		0	1	SCL1 (l ² C)	The second
		1	1	Reserved	19
10] <b>GPA_N</b>	GPA_MFP10	The pin function de ALT_MFP[11] x	pends on GPA_MF GPA_MFP[10] 0	P10 and ALT_MFP[11]. PA.10 function GPIO	
		0	1	SDA1 (I ² C)	
		1	1	Reserved	_
9:0] Reserv	/ed	Reserved	I		
9:0] Reserv	/ed	1 Reserved	1	Reserved	

# nuvoTon

#### Multiple Function Pin GPIOB Control Register (GPB_MFP)

Register	Offset	R/W	Description	Reset Value
GPB_MFP	GCR_BA+0x34	R/W	GPIOB Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
GPB_TYPE[15:8]										
23	22	21	20	19	18	17	16			
	GPB_TYPE[7:0]									
15	14	13	12	11	10	9	8			
			GPB_M	FP[15:8]		200	2			
7	6	5	4	3	2	1	0			
	GPB_MFP[7:0]									

Descriptions							
	1 = Enable GPIOB[15:0] I/O input Schmitt Trigger function						
GPB_TYPEn	0 = Disable GPIC	0 = Disable GPIOB[15:0] I/O input Schmitt Trigger function					
	GPB[13:11],are r	reserved					
	PB.15 Pin Funct	tion Selection					
	The pin function	depends on GPB_M	IFP15				
GPB_MFP15	GPB_MFP[15]	PB.14 function					
	0	GPIO					
	1	/INT1					
	PB.14 Pin Funct	tion Selection		1			
ŝ.	The pin function	depends on GPB_M	IFP14 and AL	.T_MFP[3]			
2.55	ALT_MFP[3]	GPB_MFP[14]	PB.14 fund	ction			
GPB_MFP14	x	0	GPIO				
On Do	0	1	/INTO				
No C	1	1	Reserved				
Reserved	Reserved	1			4		
GPB_MFP10	Sol YO		IFP10 and PE	310 S01 (ALT MFF	2[0]).		
	GPB_MFP15 GPB_MFP14 Reserved	GPB_TYPEn       1 = Enable GPIC         0 = Disable GPIC       0 = Disable GPIC         GPB[13:11],are r       PB.15 Pin Funct         GPB_MFP15       GPB_MFP[15]         0       1         PB.14 Pin Funct       0         1       PB.14 Pin Funct         GPB_MFP14       X         0       1         Reserved       Reserved         GPB MFP10       PB.10 Pin Funct	GPB_TYPEn       1 = Enable GPIOB[15:0] I/O input Sc         0 = Disable GPIOB[15:0] I/O input Sc       0 = Disable GPIOB[15:0] I/O input Sc         GPB_13:11],are reserved       PB.15 Pin Function Selection         GPB_MFP15       GPB_MFP[15]       PB.14 function         0       GPIO         1       /INT1         PB.14 Pin Function Selection         The pin function depends on GPB_M         0       GPIO         1       /INT1         PB.14 Pin Function Selection         The pin function depends on GPB_M         ALT_MFP[3]       GPB_MFP[14]         X       0         0       1         1       1         Reserved       Reserved         GPB MFP10       PB.10 Pin Function Selection	GPB_TYPEn       1 = Enable GPIOB[15:0] I/O input Schmitt Trigger         0 = Disable GPIOB[15:0] I/O input Schmitt Trigger         GPB_13:11],are reserved         PB.15 Pin Function Selection         The pin function depends on GPB_MFP15         GPB_MFP15         GPB_MFP15         GPB_MFP[15]         PB.14 function         0       GPIO         1       /INT1         PB.14 Pin Function Selection         The pin function depends on GPB_MFP14 and AL         ALT_MFP[3]       GPB_MFP[14]         PB.14 function depends on GPB_MFP14 and AL         ALT_MFP[3]       GPB_MFP[14]         PB.14 function       0         GPB_MFP14       ALT_MFP[3]         GPB_MFP14       Reserved         Reserved       Reserved         PB.10 Pin Function Selection	GPB_TYPEn       1 = Enable GPIOB[15:0] I/O input Schmitt Trigger function         0 = Disable GPIOB[15:0] I/O input Schmitt Trigger function         GPB_13:11],are reserved         PB.15 Pin Function Selection         The pin function depends on GPB_MFP15         GPB_MFP15       GPB_MFP[15]       PB.14 function         0       GPIO         1       /INT1         PB.14 Pin Function Selection         The pin function depends on GPB_MFP14 and ALT_MFP[3]         GPB_MFP14       ALT_MFP[3]       GPB_MFP[14]       PB.14 function         GPB_MFP14       ALT_MFP[3]       GPB_MFP[14]       PB.14 function         GPB_MFP14       Reserved       Reserved       Reserved         Reserved       Reserved       PB.10 Pin Function Selection		

# nuvoTon

		PB10_S01	GPB_MFP[10]	PB.10 function	
		x	0	GPIO	
		0	257	TM2	
			- MA	SPISS01 (SPI0)	
		1	1	(the validity of this function is depended on part no)	
		PB.9 Pin Function	Selection	You the	
		The pin function de	pends on GPB_MF	P9 and PB9_S11 (ALT_MFP[1]).	
		PB9_S11	GPB_MFP[9]	PB.9 function	
[9]	GPB_MFP9	x	0	GPIO	
		0	1	TM1	
				SPISS11 (SPI1)	
		1	1	(the validity of this function is depended on part no)	
		PB.8 Pin Function	Selection		MB2 6
		The pin function de	pends on GPB_MF	FP8	
[8]	GPB_MFP8	GPB_MFP[8]	PB.8 function		
		0	GPIO		
		1	тмо		
		PB.7 Pin Function	Selection		
		The pin function de	pends on GPB_MF	P7 and ALT_MFP[16].	
		ALT_MFP[16]	GPB_MFP[7]	PB.7 function	
[7]	GPB_MFP7	0	0	GPIO	
		0	1	CTS1 (UART1)	
	P	1	х	Reserved	
S)	永	PB.6 Pin Function	Selection		
		The pin function de	pends on GPB_MF	FP6 and ALT_MFP[17].	
		ALT_MFP[17]	GPB_MFP[6]	PB.6 function	
[6]	GPB_MFP6	0	0	GPIO	
	Sh C	0	1	RTS1 (UART1)	
	XS A	1	х	Reserved	
	- Co	PB. 5 Pin Functior	n Selection	1	
[5]	GPB_MFP5	1 = The UART1 TX	D function is selec	ted to the pin PB.5	
		0 = The GPIOB[5] i	s selected to the pi	n PB.5	

### nuvoTon

[4]		ALT_MFP[15]	PB.4 function	1				
	GPB_MFP4	x	GPB_MFP[4]	GPIO				
		0	1	RXD (UART1)				
				<b>SPISS11</b> (SPI1)				
		1	1	(the validity of this function is depended on part no)				
		PB.3 Pin Function	Selection	S A	5			
		The pin function dep	pends on GPB_MF	FP3 and ALT_MFP[11].				
		ALT_MFP[11]	GPB_MFP[3]	PB.3 function				
[3]	GPB_MFP3	x	0	GPIO	XI, O,			
		0	1	<b>CTS0</b> (UART0)	N/S			
		1	1	Reserved	15			
			pends on GPB_MF	P2 and ALT_MFP[11].	1			
[2]	GPB_MFP2	ALT_MFP[11]	GPB_MFP[2] 0	GPIO				
		x 0	0	RTS0 (UART0)				
		1	1	Reserved				
~		PB.1 Pin Function	Selection					
[1]	GPB_MFP1	1= The UART0 TXD 0= The GPIOB[1] is						
S)	<b>米</b>	PB.0 Pin Function Selection						
100	GPB_MFP0	1= The UART0 RXD function is selected to the pin PB.0						
[0]		0= The GPIOB[0] is						

#### Multiple Function Pin GPIOC Control Register (GPC_MFP)

Register	Offset	R/W	Description	Reset Value
GPC_MFP	GCR_BA+0x38	R/W	GPIOC Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
GPC_TYPE[15:8]									
23	22	21	20	19	18	17	16		
GPC_TYPE[7:0]									
15	14	13	12	11	10	9	8		
			GPC_M	FP[15:8]		200	2		
7	6	5	4	3	2	1	0		
	GPC_MFP[7:0]								

Bits	Descriptions								
		1 = Enable GPIOC[15:0] I/O input Schmitt Trigger function							
[31:16]	GPC_TYPEn	0 = Disable GPIOC	[15:0] I/O input Scł	nmitt Trigger function					
		GPC[15:14], GPC[7	7:6] are reserved						
[15:14]	Reserved	Reserved							
		PC.13 Pin Functio	n Selection						
[13]	GPC_MFP13	Both GPC_MFP[13 PC.13.	Both GPC_MFP[13] and ALT_MFP[21] are needed to set 0 for GPIOC[13] function of PC.13.						
23		PC.12 Pin Functio	n Selection						
[12]	GPC_MFP12	Both GPC_MFP[12] and ALT_MFP[13] are needed to set 0 for GPIOC[12] function on PC.12.							
2	a.	PC.11 Pin Functio	n Selection						
Stor .	The second second	The pin function depends on GPC_MFP[11] and ALT_MFP[19].							
- XS	2.36	ALT_MFP[19]	GPC_MFP[11]	PC.11 function					
[11]	GPC_MFP11	x	0	GPIO					
	C Do	0	1	MOSI10 (SPI1)					
	5/2 6	2 1	1	Reserved					
	~ Qa	PC.10 Pin Functio	n Selection						
	Tr.	The pin function de	pends on GPC_MF	FP[10] and ALT_MFP[18].					
[10]	GPC_MFP10	ALT_MFP[18]	GPC_MFP[10]	PC.10 function					
		x	0	GPIO					

# nuvoTon

		0	1	MISO10 (SPI1)					
		1	1	Reserved					
		<b>PC.9 Pin Function Selection</b> The pin function depends on GPC_MFP[9] and ALT_MFP[17].							
		ALT_MFP[17]	GPC_MFP[9]	PC.9 function					
9]	GPC_MFP9	x	0	GPIO	_				
		0	1	SPICLK1 (SPI1)	_				
		1	1	Reserved					
		PC.8 Pin Function	Selection	5200	5.				
		The pin function de	pends on GPC_M	FP[8] and ALT_MFP[16].					
		ALT_MFP[16]	GPC_MFP[8]	PC.8 function	0.				
8]	GPC_MFP8	x	0	GPIO					
		0	1	SPISS10 (SPI1)	- XI (O)				
		1	1	Reserved	- VBL "				
7:6]	Reserved	Reserved			SP.				
		PC.5 Pin Function	Selection						
[5]	GPC_MFP5	GPC_MFP[5] is needed to set 0 for GPIOC[5] function on PC.5.							
[4]	GPC_MFP4	PC.4 Pin Function Selection							
[4]	Gro_mr+	GPC_MFP[4] is needed to set 0 for GPIOC[4] function on PC.4.							
		PC.3 Pin Function Selection							
		ALT_MFP[8] and G	ALT_MFP[8] and GPC_MFP[3] determine the PC.3 function.						
101	GPC_MFP3	ALT_MFP[8]	GPC_MFP[3]	PC.3 function					
[3]	GPC_MIFP3	x	0	GPIO					
	e e	0	1	MOSI00 (SPI0)					
	永.	1	1	Reserved					
V.	N	PC.2 Pin Function	Selection						
	S SS	ALT_MFP[7] and G	PC_MFP[2] deterr	nine the PC.2 function.					
	Sol a	ALT_MFP[7]	GPC_MFP[2]	PC.2 function					
[2]	GPC_MFP2	x	0	GPIO					
	No.	0	1	MISO00 (SPI0)					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	01	1	Reserved					
	000	PC.1 Pin Function	Selection						
[1]	GPC_MFP1	ALT_MFP[6] and G	PC MFP[1] deterr	nine the PC 1 function					

nuvoton

		ALT_MFP[6]	GPC_MFP[1]	PC.1 function				
		x	0	GPIO				
		0	5	SPICLK0 (SPI0)				
		1	1	Reserved				
		PC.0 Pin Function Selection						
		ALT_MFP[5] and G	PC_MFP[0] detern	nine the PC.0 function.				
101		ALT_MFP[5]	GPC_MFP[0]	PC.0 function				
[0]	GPC_MFP0	x	0	GPIO				
		0	1	SPISS00 (SPI0)				
		1	1	Reserved				

nuvoTon

Multiple Function Pin GPIOD Control Register (GPD_MFP)

Register	Offset	R/W	Description	Reset Value
GPD_MFP	GCR_BA+0x3C	R/W	GPIOD Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
GPD_TYPE[15:8]									
23	22	21	20	19	18	17	16		
GPD_TYPE[7:0]									
15	14	13	12	11	10	9	8		
			GPD_M	FP[15:8]	~	200	2		
7	6	5	4	3	2	1	0		
GPD_MFP[7:0]						-29	20		

Bits	Descriptions					
		1 = Enable GPIOD[15:0] I/O input Schmitt Trigger function				
[31:16]	GPD_TYPEn	0 = Disable GPIOD[15:0] I/O input Schmitt Trigger function				
		GPIOD[15:12], GPIOD[7:6] are reserved				
[15:12]	Reserved	Reserved				
		PD.11 Pin Function Selection				
[11]	GPD_MFP11	Both GPD_MFP[11] and ALT_MFP[21] are needed to set 0 for GPIOD[11] function on PD.11				
2		PD.10 Pin Function Selection				
[10]	GPD_MFP10	Both GPD_MFP[10] and ALT_MFP[20] are needed to set 0 for GPIOD[10] function on PD.10				
[0]		PD.9 Pin Function Selection				
[9]	GPD_MFP9	Both GPD_MFP[9] and ALT_MFP[19] are needed to set 0 for GPIOD[9] function on PD.9				
101	GPD MFP8	PD.8 Pin Function Selection				
[8]	GFD_WIFF8	Both GPD_MFP[8] and ALT_MFP[18] are needed to set 0 for GPIOD[8] function on PD.8				
[7:6]	Reserved	Reserved				
[6]		PD.5 Pin Function Selection				
[5]	GPD_MFP5	GPD_MFP[5] is needed to set 0 for GPIOD[5] function on PD.5				
[4]		PD.4 Pin Function Selection				
[4]	GPD_MFP4	GPD_MFP[4] is needed to set 0 for GPIOD[4] function on PD.4				
[3]	GPD_MFP3	PD.3 Pin Function Selection				

		GPD_MFP[3] is needed to set 0 for GPIOD[3] function on PD.3
[2]	GPD_MFP2	PD.2 Pin Function Selection GPD_MFP[2] is needed to set 0 for GPIOD[2] function on PD.2
[1]	GPD_MFP1	 PD.1 Pin Function Selection 1 = The SPI0 SS01 function is selected to the pin PD.1(the validity of this function is depended on part no) 0 = The GPIOD[1] is selected to the pin PD.1
[0]	GPD_MFP0	PD.0 Pin Function Selection GPD_MFP[0] is needed to set 0 for GPIOD[0] function on PD.0

Alternative Multiple Function Pin Control Register (ALT MFP)

Register	Offset	R/W	Description	Reset Value
ALT_MFP	GCR_BA+0x50	R/W	Alternative Multiple Function Pin Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
Rese	erved			ALT_MF	P[21:16]					
15	14	13	12	11	10	9	8			
			ALT_M	FP[15:8]						
7	6	5	4	3	2	1	0			
	ALT_MFP[7:2]						PB10_S01			

Bits	Descriptions							
[31:22]	Reserved	They are necessa	They are necessary to set 0					
[21:16]	ALT_MFP[21:16]	They are necessa	ary to set 0					
YS	Sec.	The PB.4 pin fund	The PB.4 pin function depends on GPB_MFP4 and ALT_MFP[15].					
	3.42	ALT_MFP[15]	GPB_MFP4	PB.4 function				
	On Do	x	0	GPIO				
[15]	ALT_MFP[15]	0	1	UART1 RX				
	~?s)	01	1	SPISS11 (SPI1)				
	0			Note: For QFN33 only.				

nuvoTon

		Bits PB9_S11 and GPB_MFP[9] determine the PB.9 function.						
		PB9_S11	GPB_MFP[9]	PB.9 function				
[1]	PB9_S11	x	0	GPIO				
		0	1	TM1				
		1	1 ~ 🔇	SPISS11 (SPI1)				
		Bits PB10_S01 and GPB_MFP[10] determine the PB.10 function.						
	PB10_S01	PB10_S01	GPB_MFP[10]	PB.10 function				
[0]		x	0	GPIO				
		0	1	TM2	6			
		1	1	SPISS01 (SPI0)	5			

Register Write-Protection Control Register (REGWRPROT)

Some of the system control registers need to be protected to avoid inadvertent write and disturb the chip operation. These system control registers are protected after the power on reset till user to disable register protection. For user to program these protected registers, a register protection disable sequence needs to be followed by a special programming. The register protection disable sequence is writing the data "59h", "16h" "88h" to the register REGWRPROT address at 0x5000_0100 continuously. Any different data value, different sequence or any other write to other address during these three data writing will abort the whole sequence.

After the protection is disabled, user can check the protection disable bit at address 0x5000_0100 bit0, 1 is protection disable, and 0 is protection enable. Then user can update the target protected register value and then write any data to the address "0x5000_0100" to enable register protection.

This register is write for disable/enable register protection and read for the REGPROTDIS status

Register	Offset	R/W	Description	Reset Value
REGWRPROT	GCR_BA+0x100	R/W	Register Write-Protection Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			SY .
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	·	R	EGWRPROT[7:	1]			REGWRPRO [0] REGPROTDIS

Bits	Descriptions	Descriptions					
[31:16]	Reserved	Reserved					
XA	St ste	Register Write-Protection Code (Write only)					
[7:0]	REGWRPROT	Some registers have write-protection function. Writing these registers have to disable the protected function by writing the sequence value "59h", "16h", "88h" to this field. After this sequence is completed, the REGPROTDIS bit will be set to 1 and write-protection registers can be normal write.					
	K ~~	Register Write-Protection Disable Index (Read only)					
	693	1 = Write-protection is disabled for writing protected registers					
[0]	REGPROTDIS	0 = Write-protection is enabled for writing protected registers. Any write to the protected register is ignored.					
		The Protected registers are:					

IPRSTC1: address 0x5000_0008
BODCR: address 0x5000_0018
PORCR: address 0x5000_0024
PWRCON : address 0x5000_0200 (bit[6] is not protected for power wake-up interrupt clear)
APBCLK bit[0]: address 0x5000_0208 (bit[0] is Watchdog Timer clock enable)
CLK_SEL0: address 0x5000_0210 (for HCLK and CPU STCLK clock source select)
CLK_SEL1 bit[1:0]: address 0x5000_0214 (for Watchdog Timer clock source select)
NMI_SEL bit[7]: address 0x5000_0380 (for interrupt test mode)
ISPCON: address 0x5000_C000 (Flash ISP Control register)
WTCR: address 0x4000_4000
FATCON: address 0x5000_C018

5.2.6 System Timer (SysTick)

The Cortex®-M0 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit

clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example 100 Hz) and invokes a SysTick routine.
- A high speed alarm timer using Core clock.
- A variable rate alarm or signal timer the duration range dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

When enabled, the timer will count down from the value in the SysTick Current Value Register (SYST_CVR) to zero, and reload (wrap) to the value in the SysTick Reload Value Register (SYST_RVR) on the next clock cycle, then decrement on subsequent clocks. When the counter transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to zero before enabling the feature. This ensures the timer will count from the SYST_RVR value rather than an arbitrary value when it is enabled.

If the SYST_RVR is zero, the timer will be maintained with a current value of zero after it is reloaded with this value. This mechanism can be used to disable the feature independently from the timer enable bit.

For more detailed information, please refer to the documents "ARM[®] Cortex®-M0 Technical Reference Manual" and "ARM[®] v6-M Architecture Reference Manual".

5.2.6.1 System Timer Control Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
SCS_BA = 0x	E000_E000			
SYST_CSR	SCS_BA+0x10	R/W	SysTick Control and Status Register	0x0000_0000
SYST_RVR	SCS_BA+0x14	R/W	SysTick Reload Value Register	0xXXXX_XXXX
SYST_CVR	SCS_BA+0x18	R/W	SysTick Current Value Register	0xXXXX_XXXX

5.2.6.2 System Timer Control Register Description

SysTick Control and Status (SYST CSR)					
Register	Offset	R/W	Description	Reset Value	
SYST_CSR	SCS_BA+0x10	R/W	SysTick Control and Status Register	0x0000_0000	

31	30	29	28	27	26	25	24
			Rese	erved	163	2	
23	22	21	20	19	18	17	16
			Reserved		51	2 5	COUNTFLAG
15	14	13	12	11	10	9	8
			Rese	erved		NO.	S.
7	6	5	4	3	2	1	0
		Reserved			CLKSRC	TICKINT	ENABLE
							V. (A) ()

Bits	Descriptions	Descriptions					
[31:17]	Reserved Reserved						
		Returns 1 if timer counted to 0 since last time this register w	vas read.				
[16]	COUNTFLAG	COUNTFLAG is set by a count transition from 1 to 0.					
		COUNTFLAG is cleared on read or by a write to the Curren	t Value register.				
[15:3]	Reserved	Reserved					
[0]	CLKSRC	1= Core clock used for SysTick.					
[2]	CLRSRC	0= Clock source is (optional) external reference clock					
[1]	TICKINT	1= Counting down to 0 will cause the SysTick exception SysTick Current Value register by a register write in softwar pended.					
×.	St.	0= Counting down to 0 does not cause the SysTick exce can use COUNTFLAG to determine if a count to zero has o					
[0]	ENABLE	1= The counter will operate in a multi-shot manner					
[0]	ENABLE	0= The counter is disabled					
Jan.	09, 2015	Page 54 of 350	Revision 1.11				

nuvoTon

<u>SysTic</u>	k Reload Value I	Register	r(SYST_RVR)					
Register	Offset	R/W	Description	Description				
SYST_RVR	SCS_BA+0x14	R/W	SysTick Reload Va	lue Register	2		0xXXXX_XXXX	
				N/A/				
31	30	29	28	27	26	25	24	
	•		Rese	erved	Se a			
23	22	21	20	19	18	17	16	
	- -		RELOA	D[23:16]		n.		
15	14	13	12	11	10	9	8	
	- -		RELOA	D[15:8]		CON !	2	
7	6	5	4	3	2	1	0	
			RELO	AD[7:0]		2	200	
							and they	

Bits	Descriptions	escriptions					
[31:24]	Reserved	Reserved					
[23:0]	RELOAD	Value to load into the Current Value register when the counter reaches 0.					

SysTick Current Value Register (SYST_CVR)

Register	Offset	R/W	Description	Reset Value
SYST_CVR	SCS _BA+0x18	R/W	SysTick Current Value Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	CURRENT[23:16]								
15	14	13	12	11	10	9	8		
			CURREI	NT[15:8]		200	6		
7	6	5	4	3	2	1	0		
	CURRENT[7:0]								

Bits	Descriptions	
[31:24]	Reserved	Reserved
[23:0]	CURRENT	Current counter value. This is the value of the counter at the time it is sampled. The counter does not provide read-modify-write protection. The register is write-clear. A software write of any value will clear the register to 0.

5.2.7 Nested Vectored Interrupt Controller (NVIC)

Cortex®-M0 provides an interrupt controller as an integral part of the exception mode, named as "Nested Vectored Interrupt Controller (NVIC)". It is closely coupled to the processor kernel and provides following features:

- Nested and Vectored interrupt support
- Automatic processor state saving and restoration
- Dynamic priority changing
- Reduced and deterministic interrupt latency

The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in "Handler Mode". This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority. All of the interrupts and most of the system exceptions can be configured to different priority levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the current running one's priority. If the priority of the new interrupt is higher than the current one, the new interrupt handler will override the current handler.

When any interrupts is accepted, the starting address of the interrupt service routine (ISR) is fetched from a vector table in memory. There is no need to determine which interrupt is accepted and branch to the starting address of the correlated ISR by software. While the starting address is fetched, NVIC will also automatically save processor state including the registers "PC, PSR, LR, R0~R3, R12" to the stack. At the end of the ISR, the NVIC will restore the mentioned registers from stack and resume the normal execution. Thus it will take less and deterministic time to process the interrupt request.

The NVIC supports "Tail Chaining" which handles back-to-back interrupts efficiently without the overhead of states saving and restoration and therefore reduces delay time in switching to pending ISR at the end of current ISR. The NVIC also supports "Late Arrival" which improves the efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will give priority to the higher one without delay penalty. Thus it advances the real-time capability.

For more detailed information, please refer to the documents "ARM[®] Cortex®-M0 Technical Reference Manual" and "ARM[®] v6-M Architecture Reference Manual".

5.2.7.1 Exception Model and System Interrupt Map

The following table lists the exception model supported by NuMicro[™] NUC122 Series. Software can set four levels of priority on some of these exceptions as well as on all interrupts. The highest user-configurable priority is denoted as "0" and the lowest priority is denoted as "3". The default priority of all the user-configurable interrupts is "0". Note that priority "0" is treated as the fourth priority on the system, after three system exceptions "Reset", "NMI" and "Hard Fault".

Exception Name	Vector Number	Priority
Reset	1	-3
NMI	2	-2
Hard Fault	3	0,0,1
Reserved	4 ~ 10	Reserved
SVCall	11	Configurable
Reserved	12 ~ 13	Reserved
PendSV	14	Configurable
SysTick	15	Configurable
Interrupt (IRQ0 ~ IRQ31)	16 ~ 47	Configurable

Table 5-2 Exception Model

Vector Number	Interrupt Number (Bit in Interrupt Registers)	Interrupt Name	Source IP	Interrupt description
0 ~ 15	-	-	-	System exceptions
16	0	BOD_OUT	Brownout	Brownout low voltage detected interrupt
17	1	WDT_INT	WDT	Watchdog Timer interrupt
18	2	EINT0	GPIO	External signal interrupt from PB.14 pin
19	3	EINT1	GPIO	External signal interrupt from PB.15 pin
20	4	GPAB_INT	GPIO	External signal interrupt from PA[15:0]/PB[13:0]
21	5	GPCD_INT	GPIO	External interrupt from PC[15:0]/PD[15:0]
22	6	PWMA_INT	PWM0~3	PWM0, PWM1, PWM2 and PWM3 interrupt
23	7	Reserved	Reserved	Reserved
24	N 8 Sh	TMR0_INT	TMR0	Timer 0 interrupt
25	9	TMR1_INT	TMR1	Timer 1 interrupt
26	10	TMR2_INT	TMR2	Timer 2 interrupt
27	11	TMR3_INT	TMR3	Timer 3 interrupt
28	12	UART0_INT	UART0	UART0 interrupt

nuvoTon

29	13	UART1_INT	UART1	UART1 interrupt
30	14	SPI0_INT	SPI0	SPI0 interrupt
31	15	SPI1_INT	SPI1	SPI1 interrupt
32	16	Reserved	Reserved	Reserved
33	17	Reserved	Reserved	Reserved
34	18	Reserved	Reserved	Reserved
35	19	I2C1_INT	I ² C1	I ² C1 interrupt
36	20	Reserved	Reserved	Reserved
37	21	Reserved	Reserved	Reserved
38	22	Reserved	Reserved	Reserved
39	23	USB_INT	USBD	USB 2.0 FS Device interrupt
40	24	PS2_INT	PS/2	PS/2 interrupt
41	25	Reserved	Reserved	Reserved
42	26	Reserved	Reserved	Reserved
43	27	Reserved	Reserved	Reserved
44	28	PWRWU_INT	CLKC	Power Down Wake-up interrupt
45	29	Reserved	Reserved	Reserved
46	30	Reserved	Reserved	Reserved
47	31	RTC_INT	RTC	Real time clock interrupt

Table 5-3 System Interrupt Map

5.2.7.2 Vector Table

When any interrupts is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For ARM[®] v6-M, the vector table base address is fixed at 0x00000000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with exception handler entry as illustrated in previous section.

Vector Table Word Offset	Description
0	SP_main – The Main stack pointer
Vector Number	Exception Entry Pointer using that Vector Number

Table 5-4 Vector Table Format

5.2.7.3 Operation Description

NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current enabled state of the corresponding interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the interrupt will not activate. If an interrupt is Active when it is disabled, it remains in its Active state until cleared by reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt.

NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current pended state of the corresponding interrupts. The Clear-Pending Register has no effect on the execution status of an Active interrupt.

NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting four interrupts).

The general registers associated with the NVIC are all accessible from a block of memory in the System Control Space and will be described in next section.

5.2.7.4 NVIC Control Registers

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
SCS_BA = 0	kE000_E000			
NVIC_ISER	SCS_BA+0x100	R/W	IRQ0 ~ IRQ31 Set-Enable Control Register	0x0000_0000
NVIC_ICER	SCS_BA+0x180	R/W	IRQ0 ~ IRQ31 Clear-Enable Control Register	0x0000_0000
NVIC_ISPR	SCS_BA+0x200	R/W	IRQ0 ~ IRQ31 Set-Pending Control Register	0x0000_0000
NVIC_ICPR	SCS_BA+0x280	R/W	IRQ0 ~ IRQ31 Clear-Pending Control Register	0x0000_0000
NVIC_IPR0	SCS_BA+0x400	R/W	IRQ0 ~ IRQ3 Priority Control Register	0x0000_0000
NVIC_IPR1	SCS_BA+0x404	R/W	IRQ4 ~ IRQ7 Priority Control Register	0x0000_0000
NVIC_IPR2	SCS_BA+0x408	R/W	IRQ8 ~ IRQ11 Priority Control Register	0x0000_0000
NVIC_IPR3	SCS_BA+0x40C	R/W	IRQ12 ~ IRQ15 Priority Control Register	0x0000_0000
NVIC_IPR4	SCS_BA+0x410	R/W	IRQ16 ~ IRQ19 Priority Control Register	0x0000_0000
NVIC_IPR5	SCS_BA+0x414	R/W	IRQ20 ~ IRQ23 Priority Control Register	0x0000_0000
NVIC_IPR6	SCS_BA+0x418	R/W	IRQ24 ~ IRQ27 Priority Control Register	0x0000_0000
NVIC_IPR7	SCS_BA+0x41C	R/W	IRQ28 ~ IRQ31 Priority Control Register	0x0000_0000

IRQ0 ~ IRQ31 Set-Enable Control Register (NVIC_ISER)

Register	Offset	R/W	Description	Reset Value
NVIC_ISER	SCS _BA+0x100	R/W	IRQ0 ~ IRQ31 Set-Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
SETENA[31:24]								
23	22	21	20	19	18	17	16	
			SETEN	A[23:16]	° On	No.		
15	14	13	12	11	10	9	8	
			SETEN	A[15:8]		200	0	
7	6	5	4	3	2	1	0	
	SETENA[7:0]							

Bits	Descriptions	
		Enable one or more interrupts within a group of 32. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47).
[31:0]	SETENA	Writing 1 will enable the associated interrupt.
		Writing 0 has no effect.
		The register reads back with the current enable state.

nuvoTon

IRQ0 ~ IRQ31 Clear-Enable Control Register (NVIC_ICER)

Register	Offset	R/W	Description	Reset Value
NVIC_ICER	SCS _BA+0x180	R/W	IRQ0 ~ IRQ31 Clear-Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
CLRENA[31:24]									
23	22	21	20	19	18	17	16		
CLRENA[23:16]									
15	14	13	12	11	10	9	8		
			CLREN	A[15:8]	~	200	à		
7	6	5	4	3	2	1	0		
	CLRENA[7:0]						66		

Bits	Descriptions	
		Disable one or more interrupts within a group of 32. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47).
[31:0] CL	CLRENA	Writing 1 will disable the associated interrupt.
		Writing 0 has no effect.
		The register reads back with the current enable state.

IRQ0 ~ IRQ31 Set-Pending Control Register (NVIC_ISPR)

Register	Offset	R/W	Description	Reset Value
NVIC_ISPR	SCS _BA+0x200	R/W	IRQ0 ~ IRQ31 Set-Pending Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
SETPEND[31:24]									
23	22	21	20	19	18	17	16		
SETPEND[23:16]									
15	14	13	12	11	10	9	8		
SETPEND[15:8]									
7	6	5	4	3	2	1	0		
	SETPEND[7:0]								

Bits	Descriptions	
[31:0]	SETPEND	Writing 1 to a bit to set pending state of the associated interrupt under software control. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from $16 \sim 47$).
		Writing 0 has no effect.
		The register reads back with the current pending state.

nuvoTon

IRQ0 ~ IRQ31 Clear-Pending Control Register (NVIC_ICPR)

Register	Offset	R/W	Description	Reset Value
NVIC_ICPR	SCS _BA+0x280	R/W	IRQ0 ~ IRQ31 Clear-Pending Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
CLRPEND[31:24]									
23	22	21	20	19	18	17	16		
CLRPEND[23:16]									
15	14	13	12	11	10	9	8		
CLRPEND[15:8]									
7	6	5	4	3	2	1	0		
	CLRPEND[7:0]								

Bits	Descriptions	
[31:0]	CLRPEND	 Writing 1 to a bit to remove the pending state of associated interrupt under software control. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Writing 0 has no effect. The register reads back with the current pending state.

IRQ0 ~ IRQ3 Interrupt Priority Register (NVIC_IPR0)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR0	SCS_BA+0x400	R/W	IRQ0 ~ IRQ3 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PR	I_3			Reso	erved		
23	22	21	20	19	18	17	16
PR	I_2			Reso	erved	200	
15	14	13	12	11	10	9	8
PR	I_1			Rese	erved	200	0
7	6	5	4	3	2	1	0
PR	I_0			Reso	erved	29	06

Bits	Descriptions							
[31:30]	PRI_3							
[29:24]	Reserved	Reserved						
[23:22]	PRI_2	Priority of IRQ2 "0" denotes the highest priority and "3" denotes lowest priority						
[21:16]	Reserved	Reserved						
[15:14]	PRI_1	Priority of IRQ1 "0" denotes the highest priority and "3" denotes lowest priority						
[13:8]	Reserved	Reserved						
[7:6]	PRI_0	Priority of IRQ0 "0" denotes the highest priority and "3" denotes lowest priority						
[5:0]	Reserved	Reserved						
Jan.	09, 2015	Page 66 of 350	Revision 1.11					

nuvoTon

IRQ4 ~ IRQ7 Interrupt Priority Register (NVIC_IPR1)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR1	SCS_BA+0x404	R/W	IRQ4 ~ IRQ7 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PR	1_7		-	Rese	erved		-
23	22	21	20	19	18	17	16
PR	I_6		-	Rese	erved	No.	-
15	14	13	12	11	10	9	8
PR	I_5			Rese	erved	200	0
7	6	5	4	3	2	1	0
PR	1_4			Rese	erved	29	06

Bits	Descriptions							
[31:30]	PRI_7	Priority of IRQ7 "0" denotes the highest priority and "3" denotes lowest priority						
[29:24]	Reserved	Reserved						
[23:22]	PRI_6	Priority of IRQ6 "0" denotes the highest priority and "3" denotes lowest priority						
[21:16]	Reserved	Reserved						
[15:14]	PRI_5	Priority of IRQ5 "0" denotes the highest priority and "3" denotes lowest priority						
[13:8]	Reserved	Reserved						
[7:6]	PRI_4	Priority of IRQ4 "0" denotes the highest priority and "3" denotes lowest priority						
[5:0]	Reserved	Reserved						
Jan.	09, 2015	Page 67 of 350	Revision 1.11					

IRQ8 ~ IRQ11 Interrupt Priority Register (NVIC_IPR2)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR2	SCS_BA+0x408	R/W	IRQ8 ~ IRQ11 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_11			Rese	erved		
23	22	21	20	19	18	17	16
PRI	_10			Rese	erved	200	
15	14	13	12	11	10	9	8
PR	I_9			Rese	erved	200	6
7	6	5	4	3	2	1	0
PR	I_8			Rese	erved	29	66

Bits	Descriptions							
[31:30]	PRI_11	Priority of IRQ11 "0" denotes the highest priority and "3" denotes lowest priority						
[29:24]	Reserved	Reserved						
[23:22]	PRI_10	Priority of IRQ10 "0" denotes the highest priority and "3" denotes lowest priority						
[21:16]	Reserved	Reserved						
[15:14]	PRI_9	Priority of IRQ9 "0" denotes the highest priority and "3" denotes lowest priority						
[13:8]	Reserved	Reserved						
[7:6]	PRI_8	Priority of IRQ8 "0" denotes the highest priority and "3" denotes lowest priority						
[5:0]	Reserved	Reserved						
Jan.	09, 2015	Page 68 of 350	Revision 1.11					

nuvoTon

IRQ12 ~ IRQ15 Interrupt Priority Register (NVIC_IPR3)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR3	SCS_BA+0x40C	R/W	IRQ12 ~ IRQ15 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_15			Rese	erved		
23	22	21	20	19	18	17	16
PRI	_14		-	Rese	rved	No.	
15	14	13	12	11	10	9	8
PRI	_13			Rese	rved	200	6
7	6	5	4	3	2	1	0
PRI	_12			Rese	erved	29	06

Bits	Descriptions							
[31:30]	PRI_15	Priority of IRQ15 "0" denotes the highest priority and "3" denotes lowest priority						
[29:24]	Reserved	Reserved						
[23:22]	PRI_14	Priority of IRQ14 "0" denotes the highest priority and "3" denotes lowest priority						
[21:16]	Reserved	Reserved						
[15:14]	PRI_13	Priority of IRQ13 "0" denotes the highest priority and "3" denotes lowest priority						
[13:8]	Reserved	Reserved						
[7:6]	PRI_12	Priority of IRQ12 "0" denotes the highest priority and "3" denotes lowest priority						
[5:0]	Reserved	Reserved						
Jan.	09, 2015	Page 69 of 350	Revision 1.11					

IRQ16 ~ IRQ19 Interrupt Priority Register (NVIC_IPR4)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR4	SCS_BA+0x410	R/W	IRQ16 ~ IRQ19 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_19		-	Rese	erved		
23	22	21	20	19	18	17	16
PRI	_18		-	Rese	erved	No.	
15	14	13	12	11	10	9	8
PRI	_17		-	Rese	erved	20 7	6
7	6	5	4	3	2	1	0
PRI	_16			Rese	erved	29	20

Bits	Descriptions							
[31:30]	PRI_19	Priority of IRQ19 "0" denotes the highest priority and "3" denotes lowest priority						
[29:24]	Reserved	Reserved						
[23:22]	PRI_18	Priority of IRQ18 "0" denotes the highest priority and "3" denotes lowest priority						
[21:16]	Reserved	Reserved						
[15:14]	PRI_17	Priority of IRQ17 "0" denotes the highest priority and "3" denotes lowest priority						
[13:8]	Reserved	Reserved						
[7:6]	PRI_16	Priority of IRQ16 "0" denotes the highest priority and "3" denotes lowest priority						
[5:0]	Reserved	Reserved						
Jan.	09, 2015	Page 70 of 350	Revision 1.11					

nuvoTon

IRQ20 ~ IRQ23 Interrupt Priority Register (NVIC_IPR5)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR5	SCS_BA+0x414	R/W	IRQ20 ~ IRQ23 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_23			Rese	erved		
23	22	21	20	19	18	17	16
PRI	_22			Rese	erved	No.	
15	14	13	12	11	10	9	8
PRI	_21			Rese	erved	200 7	6
7	6	5	4	3	2	1	0
PRI	_20			Rese	erved	29	06

Bits	Descriptions						
[31:30]	PRI_23	Priority of IRQ23 "0" denotes the highest priority and "3" denotes lowest priority					
100.041							
[29:24]	Reserved	Reserved					
[23:22]	PRI_22	Priority of IRQ22					
		"0" denotes the highest priority and "3" denotes lowest priority					
[21:16]	Reserved	Reserved					
[45.44]	PRI_21	Priority of IRQ21					
[15:14]	FRI_21	"0" denotes the highest priority and "3" denotes lowest priority					
[13:8]	Reserved	Reserved					
	PRI_20	Priority of IRQ20					
[7:6]		"0" denotes the highest priority and "3" denotes lowest priority					
[5:0]	Reserved	Reserved					

IRQ24 ~ IRQ27 Interrupt Priority Register (NVIC_IPR6)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR6	SCS_BA+0x418	R/W	IRQ24 ~ IRQ27 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_27			Reso	erved		
23	22	21	20	19	18	17	16
PRI	_26			Reso	erved	No.	
15	14	13	12	11	10	9	8
PRI	_25			Reso	erved	200	6
7	6	5	4	3	2	1	0
PRI	_24			Reso	erved	29	06

Bits	Descriptions					
[31:30]	PRI_27 PRI_27 Priority of IRQ27 "0" denotes the highest priority and "3" denotes lowest priority					
[29:24]	Reserved	Reserved				
[23:22]	PRI_26	Priority of IRQ26 "0" denotes the highest priority and "3" denotes lowest priority				
[21:16]	Reserved	Reserved				
[15:14]	PRI_25	Priority of IRQ25 "0" denotes the highest priority and "3" denotes lowest priority				
[13:8]	Reserved	Reserved				
[7:6]	PRI_24	Priority of IRQ24 "0" denotes the highest priority and "3" denotes lowest priority				
[5:0]	Reserved	Reserved				
Jan.	09, 2015	Page 72 of 350	Revision 1.11			

nuvoTon

IRQ28 ~ IRQ31 Interrupt Priority Register (NVIC_IPR7)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR7	SCS_BA+0x41C	R/W	IRQ28 ~ IRQ31 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
PRI	_31		Reserved						
23	22	21	20	19	18	17	16		
PRI_30 Reserved				200					
15	14	13	12	11	10	9	8		
PRI	_29			Reso	erved	200	6		
7	6	5	4	3	2	1	0		
PRI	_28			Rese	erved	29	20		

Bits	Descriptions							
[31:30]	PRI_31							
[29:24]	Reserved	Reserved						
[23:22]	PRI_30	Priority of IRQ30 "0" denotes the highest priority and "3" denotes lowest priority						
[21:16]	Reserved	Reserved						
[15:14]	PRI_29	Priority of IRQ29 "0" denotes the highest priority and "3" denotes lowest priority						
[13:8]	Reserved	Reserved						
[7:6]	PRI_28	Priority of IRQ28 "0" denotes the highest priority and "3" denotes lowest priority						
[5:0]	Reserved	Reserved						
Jan.	09, 2015	Page 73 of 350	Revision 1.11					

5.2.7.5 Interrupt Source Control Registers

Besides the interrupt control registers associated with the NVIC, NuMicro[™] NUC122 Series also implement some specific control registers to facilitate the interrupt functions, including "interrupt source identification", "NMI source selection" and "interrupt test mode". They are described as below.

Register	Offset	R/W	Description	Reset Value
NT_BA = 0x5	000_0300		YO, 75	
IRQ0_SRC	INT_BA+0x00	R	IRQ0 (BOD) Interrupt Source Identity	0xXXXX_XXXX
IRQ1_SRC	INT_BA+0x04	R	IRQ1 (WDT) Interrupt Source Identity	0xXXXX_XXXX
IRQ2_SRC	INT_BA+0x08	R	IRQ2 (EINT0) Interrupt Source Identity	0xXXXX_XXXX
IRQ3_SRC	INT_BA+0x0C	R	IRQ3 (EINT1) Interrupt Source Identity	0xXXXX_XXXX
IRQ4_SRC	INT_BA+0x10	R	IRQ4 (GPA/B) Interrupt Source Identity	0xXXXX_XXXX
IRQ5_SRC	INT_BA+0x14	R	IRQ5 (GPC/D) Interrupt Source Identity	0xXXXX_XXXX
IRQ6_SRC	INT_BA+0x18	R	IRQ6 (PWMA) Interrupt Source Identity	0xXXXX_XXXX
IRQ7_SRC	INT_BA+0x1C	R	IRQ7 (Reserved) Interrupt Source Identity	0xXXXX_XXXX
IRQ8_SRC	INT_BA+0x20	R	IRQ8 (TMR0) Interrupt Source Identity	0xXXXX_XXXX
IRQ9_SRC	INT_BA+0x24	R	IRQ9 (TMR1) Interrupt Source Identity	0xXXXX_XXXX
IRQ10_SRC	INT_BA+0x28	R	IRQ10 (TMR2) Interrupt Source Identity	0xXXXX_XXXX
IRQ11_SRC	INT_BA+0x2C	R	IRQ11 (TMR3) Interrupt Source Identity	0xXXXX_XXXX
IRQ12_SRC	INT_BA+0x30	R	IRQ12 (UART0) Interrupt Source Identity	0xXXXX_XXXX
IRQ13_SRC	INT_BA+0x34	R	IRQ13 (UART1) Interrupt Source Identity	0xXXXX_XXXX
IRQ14_SRC	INT_BA+0x38	R	IRQ14 (SPI0) Interrupt Source Identity	0xXXXX_XXXX
IRQ15_SRC	INT_BA+0x3C	R	IRQ15 (SPI1) Interrupt Source Identity	0xXXXX_XXXX
IRQ16_SRC	INT_BA+0x40	R	IRQ16 (Reserved) Interrupt Source Identity	0xXXXX_XXXX
IRQ17_SRC	INT_BA+0x44	R	IRQ17 (Reserved) Interrupt Source Identity	0xXXXX_XXXX
IRQ18_SRC	INT_BA+0x48	R	IRQ18 (Reserved) Interrupt Source Identity	0xXXXX_XXXX
IRQ19_SRC	INT_BA+0x4C	R	IRQ19 (I ² C1) Interrupt Source Identity	0xXXXX_XXXX
IRQ20_SRC	INT_BA+0x50	R	IRQ20 (Reserved) Interrupt Source Identity	0xXXXX_XXX
IRQ21_SRC	INT_BA+0x54	R	IRQ21 (Reserved) Interrupt Source Identity	0xXXXX_XXXX
IRQ22_SRC	INT_BA+0x58	R	IRQ22 (Reserved) Interrupt Source Identity	0xXXXX_XXXX
IRQ23_SRC	INT_BA+0x5C	R	IRQ23 (USBD) Interrupt Source Identity	0xXXXX_XXXX

R: read only, W: write only, R/W: both read and write

IRQ24_SRC	INT_BA+0x60	R	IRQ24 (PS/2) Interrupt Source Identity	0xXXXX_XXXX
IRQ25_SRC	INT_BA+0x64	R	IRQ25 (Reserved) Interrupt Source Identity	0xXXXX_XXXX
IRQ26_SRC	INT_BA+0x68	R	IRQ26 (Reserved) Interrupt Source Identity	0xXXXX_XXXX
IRQ27_SRC	INT_BA+0x6C	R	IRQ27 (Reserved) Interrupt Source Identity	0xXXXX_XXXX
IRQ28_SRC	INT_BA+0x70	R	IRQ28 (PWRWU) Interrupt Source Identity	0xXXXX_XXXX
IRQ29_SRC	INT_BA+0x74	R	IRQ29 (Reserved) Interrupt Source Identity	0xXXXX_XXXX
IRQ30_SRC	INT_BA+0x78	R	IRQ30 (Reserved) Interrupt Source Identity	0xXXXX_XXXX
IRQ31_SRC	INT_BA+0x7C	R	IRQ31 (RTC) Interrupt Source Identity	0xXXXX_XXXX
NMI_SEL	INT_BA+0x80	R/W	NMI Source Interrupt Select Control Register	0x0000_0000
MCU_IRQ	INT_BA+0x84	R/W	MCU IRQ Number Identity Register	0x0000_0000

Interrupt Source Identity Register (IRQn_SRC)

Register	Offset	R/W	Description	Reset Value	
	INT_BA+0x00		IRQ0 (BOD) Interrupt Source Identity		
IRQn_SRC		R	92	0xXXXX_XXXX	
	INT_BA+0x7C		IRQ31 (RTC) Interrupt Source Identity		

31	30	29	28	27	26	25	24			
					~/~~ *					
	Reserved									
23	22	21	20	19	18	17	16			
-			-	-			-			
	Reserved									
15	14	13	12	11	10	9	8			
	14	10		••		Ŭ	v			
			Rese	erved			6			
7	6	5	4	3	2	1	0			
	Rese	erved		INT_SRC[3]		INT_SRC[2:0]	022.0			

Bits	Address	INT-Num	Descriptions
			Bit2: 0
[2:0]	INT_BA+0x00	0	Bit1: 0
			Bit0: BOD_INT
			Bit2: 0
[2:0]	INT_BA+0x04	1	Bit1: 0
2			Bit0: WDT_INT
			Bit2: 0
[2:0]	INT_BA+0x08	2	Bit1: 0
S.	1. Ke		Bit0: EINT0 – external interrupt 0 from PB.14
S.	SK.,		Bit2: 0
[2:0]	INT_BA+0x0C	3	Bit1: 0
	SATA		Bit0: EINT1 – external interrupt 1 from PB.15
	0500	1 5.	Bit2: 0
[2:0]	INT_BA+0x10	4	Bit1: GPB_INT
	~ Dr	42	Bit0: GPA_INT
	- TP	202	Bit2: 0
[2:0]	INT_BA+0x14	5	Bit1: GPD_INT
		as l	Bit0: GPC_INT

			Bit3: PWM3_INT
			Bit2: PWM2_INT
[3:0]	INT_BA+0x18	6	Bit1: PWM1_INT
			Bit0: PWM0_INT
			Bit3: 0
[2:0]		7	Bit2: 0
[3:0]	INT_BA+0x1C	7	Bit1: 0
			Bit0: 0
			Bit2: 0
[2:0]	INT_BA+0x20	8	Bit1: 0
			Bit0: TMR0_INT
			Bit2: 0
[2:0]	INT_BA+0x24	9	Bit1: 0
			Bit0: TMR1_INT
			Bit2: 0
[2:0]	INT_BA+0x28	10	Bit1: 0
			Bit0: TMR2_INT
			Bit2: 0
[2:0]	INT_BA+0x2C	11	Bit1: 0
			Bit0: TMR3_INT
			Bit2: 0
[2:0]	INT_BA+0x30	12	Bit1: 0
			Bit0: UART0_INT
2			Bit2: 0
[2:0]	INT_BA+0x34	13	Bit1: 0
			Bit0: UART1_INT
S.Y	Sec.		Bit2: 0
[2:0]	INT_BA+0x38	14	Bit1: 0
Xa	100		Bit0: SPI0_INT
	SATA		Bit2: 0
[2:0]	INT_BA+0x3C	15	Bit1: 0
	Sh C	26	Bit0: SPI1_INT
	" (D)	62	Bit2: 0
[2:0]	INT_BA+0x40	16	Bit1: 0
	N.C.	20.4	Bit0: 0
[2:0]	INT_BA+0x44	17	Bit2: 0

			Bit1: 0
			Bit0: 0
			Bit2: 0
[2:0]	INT_BA+0x48	18	Bit1: 0
			Bit0: 0
			Bit2: 0
[2:0]	INT_BA+0x4C	19	Bit1: 0
			Bit0: I ² C1_INT
			Bit2: 0
[2:0]	INT_BA+0x50	20	Bit1: 0
			Bit0: 0
[2:0]	INT_BA+0x54	21	Reserved
[2:0]	INT_BA+0x58	22	Reserved
			Bit2: 0
[2:0]	INT_BA+0x5C	23	Bit1: 0
			Bit0: USB_INT
			Bit2: 0
[2:0]	INT_BA+0x60	24	Bit1: 0
			Bit0: PS2_INT
			Bit2: 0
[2:0]	INT_BA+0x64	25	Bit1: 0
			Bit0: 0
			Bit2: 0
[2:0]	INT_BA+0x68	26	Bit1: 0
2			Bit0: 0
7 . N			Bit2: 0
[2:0]	INT_BA+0x6C	27	Bit1: 0
S.V.	50.		Bit0: 0
XO-	2		Bit2: 0
[2:0]	INT_BA+0x70	28	Bit1: 0
X	2.12		Bit0: PWRWU_INT
	no De		Bit2: 0
[2:0]	INT_BA+0x74	29	Bit1: 0
	SA	The	Bit0: 0
[2:0]	INT_BA+0x78	30	Reserved
	6	oh 2	Bit2: 0
[2:0]	INT_BA+0x7C	31	Bit1: 0
		6.80	Bit0: RTC_INT

nuvoTon

NMI Interrupt Source Selection Control Register (NMI_SEL)

Register	Offset	R/W	Description	Reset Value
NMI_SEL	INT_BA+0x80	R/W	NMI Interrupt Source Selection Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
Reserved									
15	14	13	12	11	10	9	8		
			Rese	erved		201	0		
7	6	5	4	3	2	1	0		
INT_TEST	Reserved			NMI_SEL[4:0]					
	•		•				CALL CON		

Bits	Descriptions	
[31:8]	Reserved	Reserved
[7]	INT_TEST	Interrupt Test Mode (write-protection bit)
[6:5]	Reserved	Reserved
		NMI Interrupt Source Selection
[4:0]	NMI_SEL	The NMI interrupt to Cortex®-M0 can be selected from one of the peripheral interrupts setting NMI_SEL.

MCU Interrupt Request Source Register (MCU_IRQ)

Register	Offset	R/W	Description	Reset Value
MCU_IRQ	INT_BA+0x84	R/W	MCU Interrupt Request Source Register	0x0000_0000

31	30	29	28	27	26	25	24
			MCU_IR	Q[31:24]	de a		
23	22	21	20	19	18	17	16
			MCU_IR	Q[23:16]	° On	Nr.	
15	14	13	12	11	10	9	8
			MCU_IR	Q[15:8]		200	à
7	6	5	4	3	2	1	0
			MCU_II	RQ[7:0]		207	20

Bits	Descriptions				
		MCU IRQ Source Register			
		The MCU_IRQ collects all the interrupts from the peripherals and generates the synchronous interrupt to Cortex-M0. There are two modes to generate interrupt Cortex-M0, the normal mode and test mode.			
[31:0]	MCU_IRQ	The MCU_IRQ collects all interrupts from each peripheral and synchronizes them the interrupts the Cortex-M0.			
		When the MCU_IRQ[n] is 0: Set MCU_IRQ[n] 1 will generate an interrupt to Cortex_N NVIC[n].			
		When the MCU_IRQ[n] is 1 (mean an interrupt is assert), set 1 to the MCU_IRQ[n] v clear the interrupt and set MCU_IRQ[n] 0 : no any effect.			

5.2.8 System Control Register

Cortex®-M0 status and operating mode control are managed System Control Registers. Including CPUID, Cortex®-M0 interrupt priority and Cortex®-M0 power management can be controlled through these system control register

For more detailed information, please refer to the documents "ARM[®] Cortex®-M0 Technical Reference Manual" and "ARM[®] v6-M Architecture Reference Manual".

Register	Offset	R/W	Description	Reset Value
SCS_BA = 0)xE000_E000		En la	
CPUID	SCS_BA+0xD00	R	CPUID Register	0x410C_C200
ICSR	SCS_BA+0xD04	R/W	Interrupt Control and State Register	0x0000_0000
AIRCR	SCS_BA+0xD0C	R/W	Application Interrupt and Reset Control Register	0xFA05_0000
SCR	SCS_BA+0xD10	R/W	System Control Register	0x0000_0000
SHPR2	SCS_BA+0xD1C	R/W	System Handler Priority Register 2	0x0000_0000
SHPR3	SCS_BA+0xD20	R/W	System Handler Priority Register 3	0x0000_0000

R: read only, W: write only, R/W: both read and write

CPUID Register (CPUID)

Register	Offset	R/W	Description	Reset Value
CPUID	SCS_BA+0xD00	R	CPUID Register	0x410C_C200

31 30 29 28 27 26 25 IMPLEMENTER[7:0]	24
IMPLEMENTER[7:0]	_
23 22 21 20 19 18 17	16
Reserved PART[3:0]	
15 14 13 12 11 10 9	8
PARTNO[11:4]	
7 6 5 4 3 2 1	0
PARTNO[3:0] REVISION[3:0]	0

Bits	Descriptions	
[31:24]	IMPLEMENTER	Implementer code assigned by ARM. (ARM = 0x41)
[23:20]	Reserved	Reserved
[19:16]	PART	Reads as 0xC for ARM [®] v6-M parts
[15:4]	PARTNO	Reads as 0xC20.
[3:0]	REVISION	Reads as 0x0

nuvoTon

Interrupt Control State Register (ICSR)

Register	Offset	R/W	Description	Reset Value
ICSR	SCS_BA+0xD04	R/W	Interrupt Control and State Register	0x0000_0000

30	29	28	27	26	25	24
Rese	rved	PENDSVSET	PENDSVCLR	PENDSTSET	PENDSTCLR	Reserved
22	21	20	19	18	17	16
ISRPENDING		Rese	erved		VECTPEN	DING[5:4]
14	13	12	11	10	9	8
VECTPEN	DING[3:0]	L		Rese	erved	2
6	5	4	3	2	1	0
erved			VECTAC	TIVE[5:0]	29	06
	Rese 22 ISRPENDING 14 VECTPEN 6	Reserved2221ISRPENDING141413VECTPENDING[3:0]665	ReservedPENDSVSET222120ISRPENDINGRese141312VECTPENDING[3:0]654	Reserved PENDSVSET PENDSVCLR 22 21 20 19 ISRPENDING Reserved 14 13 12 11 VECTPENDING[3:0] 6 5 4 3	Reserved PENDSVSET PENDSVCLR PENDSTSET 22 21 20 19 18 ISRPENDING Reserved 14 13 12 11 10 VECTPENDING[3:0] Reserved 6 5 4 3 2	Reserved PENDSVSET PENDSVCLR PENDSTSET PENDSTCLR 22 21 20 19 18 17 ISRPENDING Reserved VECTPEN 14 13 12 11 10 9 VECTPENDING[3:0] Reserved Reserved 11

Bits	Descriptions				
		NMI set-pending bit			
		Write:			
		0 = no effect			
	NMIPENDSET	1 = changes NMI exception state to pending.			
[31]		Read:			
[51]		0 = NMI exception is not pending			
		1 = NMI exception is pending.			
		Because NMI is the highest-priority exception, normally the processor enters the NMI exception handler as soon as it detects a write of 1 to this bit. Entering the handler then clears this bit to 0. This means a read of this bit by the NMI exception handler returns 1 only if the NMI signal is reasserted while the processor is executing that handler.			
[30:29]	Reserved	Reserved			
No.	N.	PendSV set-pending bit.			
- YS	2 Sta	Write:			
~	3	0 = no effect			
[28]	PENDSVSET	1 = changes PendSV exception state to pending.			
[20]	FENDOVOLI	Read:			
	X A	0 = PendSV exception is not pending			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 = PendSV exception is pending.			
	40	Writing 1 to this bit is the only way to set the PendSV exception state to pending.			
[27]	PENDSVCLR	PendSV clear-pending bit.			
[ <i>∠1</i> ]	PENDOVCER	Write:			

		This is a write only bit. When you want to clear PENDSV bit, you must "write 0 to
		PENDSVSET and write 1 to PENDSVCLR" at the same time.
		SysTick exception set-pending bit.
		Write:
		0 = no effect
[26]	PENDSTSET	1 = changes SysTick exception state to pending.
		Read:
		0 = SysTick exception is not pending
		1 = SysTick exception is pending.
		SysTick exception clear-pending bit.
		Write:
[25]	PENDSTCLR	0 = no effect
[25]	FENDSIGER	1 = removes the pending state from the SysTick exception.
		This is a write only bit. When you want to clear PENDST bit, you must "write 0 to PENDSTSET and write 1 to PENDSTCLR" at the same time.
[24]	Reserved	Reserved
2001		If set, a pending exception will be serviced on exit from the debug halt state.
[23]	ISRPREEMPT	This is a read only bit.
		Interrupt pending flag, excluding NMI and Faults:
1001		0 = interrupt not pending
[22]	ISRPENDING	1 = interrupt pending.
		This is a read only bit.
[21:18]	Reserved	Reserved
8		Indicates the exception number of the highest priority pending enabled exception:
[17:12]	VECTPENDING	0 = no pending exceptions
	2	Nonzero = the exception number of the highest priority pending enabled exception.
[11:6]	Reserved	Reserved
	365	Contains the active exception number
NO.		
[5:0]	VECTACTIVE	0 = Thread mode

## nuvoTon

#### Application Interrupt and Reset Control Register (AIRCR)

Register	Offset	R/W	Description	Reset Value
AIRCR	SCS_BA+0xD0C	R/W	Application Interrupt and Reset Control Register	0xFA05_0000

31	30	29	28	27	26	25	24
			VECTORI	KEY[15:8]	Ser av		
23	22	21	20	19	18	17	16
			VECTOR	KEY[7:0]	° On	Dr.	
15	14	13	12	11	10	9	8
			Rese	erved		200	1
7	6	5	4	3	2	1	0
	-	Reserved			SYSRESETR EQ	VECTCLKAC TIVE	Reserved

Bits	Descriptions		
[31:16]	VECTORKEY	When write this register, this field should be 0x05FA, c unpredictable.	therwise the write action will b
[15:3]	Reserved	Reserved	
[2]	SYSRESETREQ	Writing this bit 1 will cause a reset signal to be asserted requested.	to the chip to indicate a reset
		The bit is a write only bit and self-clears as part of the res	set sequence.
5		Set this bit to 1 will clears all active state informa exceptions.	tion for fixed and configurab
[1]	VECTCLRACTIVE	The bit is a write only bit and can only be written when th	of the reset sequence. information for fixed and configurable when the core is halted.
		Note: It is the debugger's responsibility to re-initialize the	stack.
[0]	Reserved	Reserved	
Jan.	00.0045	Page 85 of 350	Revision 1.11

#### System Control Register (SCR)

Register	Offset	R/W	Description	Reset Value
SCR	SCS_BA+0xD10	R/W	System Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	rved	ar as		
23	22	21	20	19	18	17	16
	•		Rese	rved	C)	Do	
15	14	13	12	11	10	9	8
			Rese	rved	<u></u>	200	1
7	6	5	4	3	2	1	0
	Reserved		SEVONPEND	Reserved	SLEEPDEEP	SLEEPONEXI T	Reserved

Bits	Descriptions	
[31:5]	Reserved	Reserved
		Send Event on Pending bit:
		0 = only enabled interrupts or events can wakeup the processor, disabled interrupts are excluded
[4]	SEVONPEND	1 = enabled events and all interrupts, including disabled interrupts, can wakeup the processor.
2		When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not waiting for an event, the event is registered and affects the next WFE.
A.		The processor also wakes up on execution of an SEV instruction or an external event.
[3]	Reserved	Reserved
Sto.	N.	Controls whether the processor uses sleep or deep sleep as its low power mode:
[2]	SLEEPDEEP	0 = sleep
10	200	1 = deep sleep
2	00:00	Indicates sleep-on-exit when returning from Handler mode to Thread mode:
	20.00	0 = do not sleep when returning to Thread mode.
[1]	SLEEPONEXIT	1 = enter sleep, or deep sleep, on return from an ISR to Thread mode.
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.
[0]	Reserved	Reserved

nuvoTon

System Handler Priority Register 2 (SHPR2)

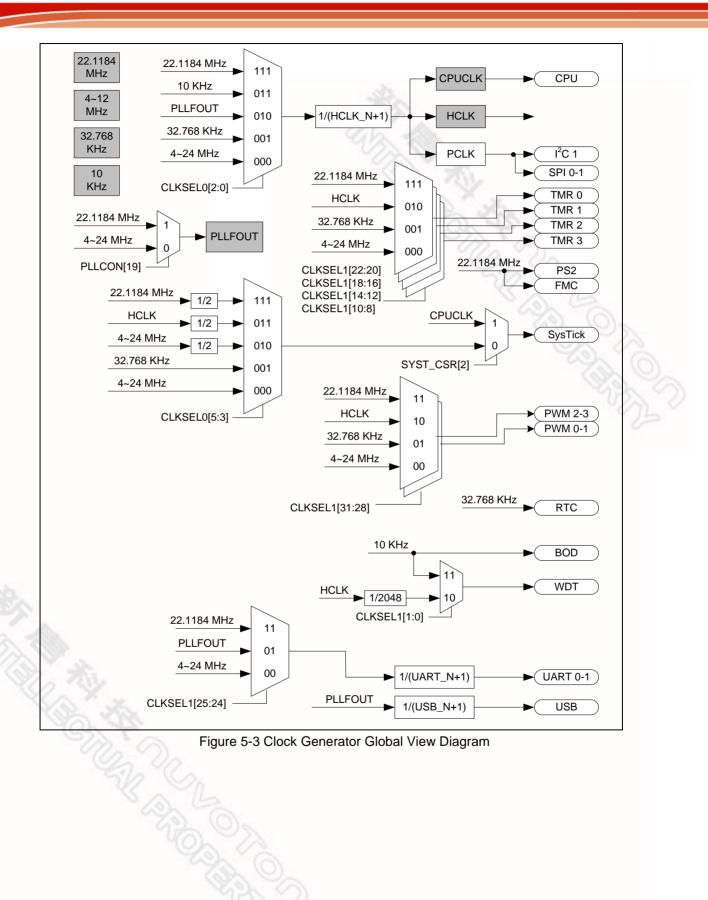
Register	Offset	R/W	Description	Reset Value
SHPR2	SCS_BA+0xD1C	R/W	System Handler Priority Register 2	0x0000_0000

31	30	29	28	27	26	25	24
PR	I_11			Reso	erved	Ç	
23	22	21	20	19	18	17	16
			Rese	erved	Q)	200	
15	14	13	12	11	10	9	8
			Rese	erved		20.0	0)~
7	6	5	4	3	2	1	0
			Rese	erved	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	D. O.

Bits	Descriptions	
[31:30]	PRI 11	Priority of system handler 11 – SVCall "0" denotes the highest priority and "3" denotes lowest priority
[29:0]	Reserved	Reserved

System Handler Priority Register 3 (SHPR3)

Register	Offset	R/W	Description	Reset Value
SHPR3	SCS_BA+0xD20	R/W	System Handler Priority Register 3	0x0000_0000


31	30	29	28	27	26	25	24
PR	l_15			Res	erved		
23	22	21	20	19	18	17	16
PR	I_14			Res	erved	20	
15	14	13	12	11	10	9	8
			Rese	erved		20 7	6
7	6	5	4	3	2	1	0
			Rese	erved		209	00

	Descriptions		
[31:30]	PRI_15	Priority of system handler 15 – SysTick "0" denotes the highest priority and "3" denotes lowest priority	
[29:24]	Reserved	Reserved	
[23:22]	PRI_14	Priority of system handler 14 – PendSV "0" denotes the highest priority and "3" denotes lowest priority	
[21:0]	Reserved	Reserved	

5.3 Clock Controller

5.3.1 Overview

The clock controller generates the clocks for the whole chip, including system clocks and all peripheral clocks. The clock controller also implements the power control function with the individually clock ON/OFF control, clock source selection and clock divider. The chip will not enter power down mode until CPU sets the power down enable bit (PWR_DOWN_EN) and Cortex®-M0 core executes the WFI instruction. After that, chip enters power down mode and wait for wake-up interrupt source triggered to leave power down mode. In the power down mode, the clock controller turns off the external 4~24 MHz high speed crystal and internal 22.1184 MHz high speed oscillator to reduce the overall system power consumption.

nuvoTon

5.3.2 Clock Generator

The clock generator consists of 5 clock sources which are listed as below:

- One external 32.768 KHz low speed crystal
- One external 4~24 MHz high speed crystal
- One programmable PLL FOUT (PLL source consists of external 4~24 MHz high speed crystal and internal 22.1184 MHz high speed oscillator)
- One internal 22.1184 MHz high speed oscillator
- One internal 10 KHz low speed oscillator

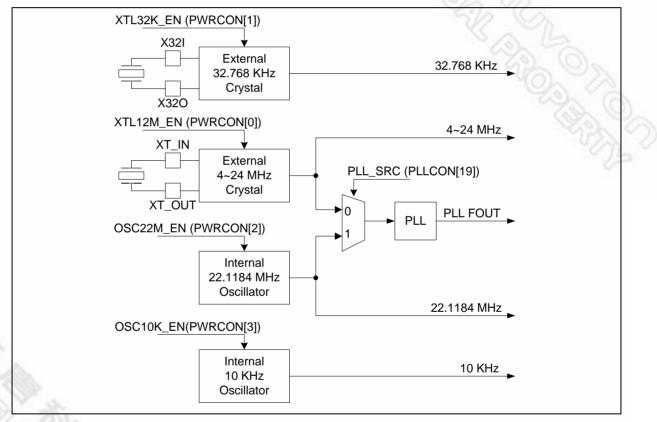


Figure 5-4 Clock Generator Block Diagram

5.3.3 System Clock and SysTick Clock

The system clock has 5 clock sources which were generated from clock generator block. The clock source switch depends on the register HCLK_S (CLKSEL0[2:0]). The block diagram is listed below.

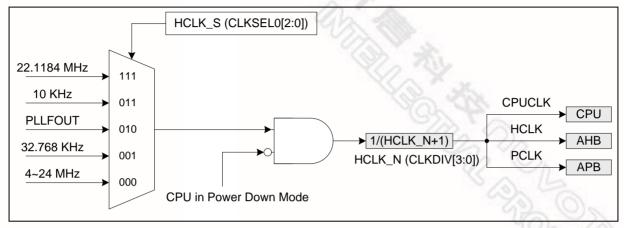


Figure 5-5 System Clock Block Diagram

The clock source of SysTick in Cortex®-M0 core can use CPU clock or external clock (SYST_CSR[2]). If using external clock, the SysTick clock (STCLK) has 5 clock sources. The clock source switch depends on the setting of the register STCLK_S (CLKSEL0[5:3]. The block diagram is listed below.

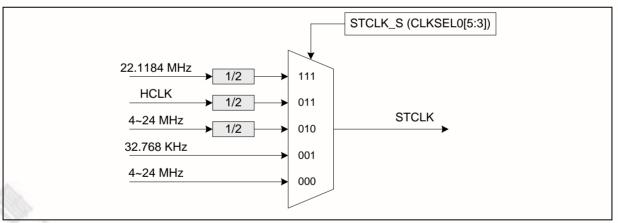


Figure 5-6 SysTick Clock Control Block Diagram

5.3.4 Peripherals Clock

The peripherals clock had different clock source switch setting which depends on the different peripheral. Please refer the CLKSEL1 register description in 5.3.7.

5.3.5 Power Down Mode Clock

When chip enters into power down mode, system clocks, some clock sources, and some peripheral clocks will be disabled. Some clock sources and peripherals clock are still active in power down mode.

These clocks which still keep activity that are listed as below:

- Clock Generator
 - Internal 10 KHz low speed oscillator clock
 - External 32.768 KHz low speed crystal clock
- Peripherals Clock (When WDT adopts 10 KHz low speed as clock source and RTC adopts 32.768 KHz low speed as clock source)

5.3.6 Register Map

R: read only, W: write only, R/W: both read and write

Offset	R/W	Description	Reset Value
5000_0200			
CLK_BA+0x00	R/W	System Power Down Control Register	0x0000_001X
CLK_BA+0x04	R/W	AHB Devices Clock Enable Control Register	0x0000_000D
CLK_BA+0x08	R/W	APB Devices Clock Enable Control Register	0x0000_000X
CLK_BA+0x0C	R/W	Clock Status Monitor Register	0x0000_00XX
CLK_BA+0x10	R/W	Clock Source Selection Control Register 0	0x0000_003X
CLK_BA+0x14	R/W	Clock Source Selection Control Register 1	0xFFFF_FFF
CLK_BA+0x18	R/W	Clock Divider Register	0x0000_0000
CLK_BA+0x20	R/W	PLL Control Register	0x0005_C22E
	5000_0200 CLK_BA+0x00 CLK_BA+0x04 CLK_BA+0x08 CLK_BA+0x0C CLK_BA+0x10 CLK_BA+0x14 CLK_BA+0x18	5000_0200 CLK_BA+0x00 R/W CLK_BA+0x04 R/W CLK_BA+0x08 R/W CLK_BA+0x0C R/W CLK_BA+0x10 R/W CLK_BA+0x14 R/W	io00_0200 CLK_BA+0x00 R/W System Power Down Control Register CLK_BA+0x04 R/W AHB Devices Clock Enable Control Register CLK_BA+0x08 R/W APB Devices Clock Enable Control Register CLK_BA+0x00 R/W Clock Status Monitor Register CLK_BA+0x10 R/W Clock Source Selection Control Register 0 CLK_BA+0x14 R/W Clock Source Selection Control Register 1 CLK_BA+0x18 R/W Clock Divider Register

5.3.7 Register Description

Power Down Control Register (PWRCON)

Except the BIT[6], all the other bits are protected, program these bits need to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Reference the register REGWRPROT at address GCR_BA+0x100

Register	Offset	R/W	Description	Reset Value
PWRCON	CLK_BA+0x00	R/W	System Power Down Control Register	0x0000_001X

31	30	29	28	27	26	25	24
			Rese	erved	K	A	2
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
		•	Reserved				PD_WAIT_CPU
7	6	5	4	3	2	1	0
PWR_DOWN_ EN	PD_WU_STS	PD_WU_INT_ EN	PD_WU_DLY	OSC10K_EN	OSC22M_EN	XTL32K_EN	XTL12M_EN

Bits	Descriptions					
[31:9]	Reserved	Reserve				
		This Bit Control the Power Down Entry Condition (write-protection bit)				
[8]	PD_WAIT_CPU	1 = Chip enter power down mode when the both PD_WAIT_CPU and PWR_DOWN_EN bits are set to 1 and CPU run WFI instruction.				
A		0 = Chip entry power down mode when the PWR_DOWN_EN bit is set to 1				
2 Car		System Power Down Enable (write-protection bit)				
X.	×.	When this bit is set to 1, the chip power down mode is enabled and chip power down behavior will depends on the PD_WAIT_CPU bit				
X		(a) If the PD_WAIT_CPU is 0, then the chip enters power down mode immediately after the PWR_DOWN_EN bit set.				
[7]	PWR DOWN EN	(b) if the PD_WAIT_CPU is 1, then the chip keeps active till the CPU sleep mode is also active and then the chip enters power down mode				
[7]	FWR_DOWN_EN	When chip be woken-up from power down mode, this bit is auto cleared. Users need to set this bit again for next power down.				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	When in power down mode, external 4~24 MHz high speed crystal and the 22.1184 MHz high speed OSC will be disabled in this mode, but the 32.768 KHz low speed crystal and 10 KHz low speed OSC is not controlled by power down mode.				
		When in power down mode, the PLL and system clock are disabled, and ignored the clock source selection. The clocks of peripheral are not controlled by power down mode, if the peripheral clock source is from 32.768 KHz low speed crystal or the 10 KHz low				

		speed oscillator.
		1 = Chip enters the power down mode instant or wait CPU sleep command WFI
		0 = Chip is operating normally or chip is in idle mode because of WFI command
		Power Down Mode Wake-Up Interrupt Status
		Set by "power down wake-up event", it indicates that resume from power down mode"
[6]	PD_WU_STS	The flag is set if the GPIO, USB, UART, WDT, BOD or RTC wake-up occurred
		Write 1 to clear the bit to zero.
		Note: This bit is effective only if PD_WU_INT_EN (PWRCON[5]) be set to 1.
		Power Down Mode Wake-Up Interrupt Enable (write-protection bit)
[6]	PD_WU_INT_EN	0 = Disable
[5]		1 = Enable
		The interrupt will occur when both PD_WU_STS and PD_WU_INT_EN are high.
		Wake-Up Delay Counter Enable (write-protection bit)
		When the chip be woken-up from power down mode, the clock control will delay certain clock cycles to wait system clock is stable.
[4]	PD_WU_DLY	The delayed clock cycle is 4096 clock cycles when chip work at external 4~24 MHz high speed crystal, and 256 clock cycles when chip work at 22.1184 MHz high speed oscillator.
		1 = Enable clock cycles delay
		0 = Disable clock cycles delay
		Internal 10 KHz Low Speed Oscillator Enable (write-protection bit)
[3]	OSC10K_EN	1 = Enable 10 KHz low speed oscillator
		0 = Disable 10 KHz low speed oscillator
		Internal 22.1184 MHz High Speed Oscillator Enable (write-protection bit)
[2]	OSC22M_EN	1 = Enable 22.1184 MHz high speed oscillator
2		0 = Disable 22.1184 MHz high speed oscillator
	2	External 32.768 KHz Low Speed Crystal Enable (write-protection bit)
[1]	XTL32K_EN	1 = Enable 32.768 KHz low speed crystal (Normal operation)
\$20	20	0 = Disable 32.768 KHz low speed crystal
1	Sec. 6	External 4~24 MHz High Speed Crystal Enable (write-protection bit)
[0]	XTL12M_EN	The bit default value is set by flash controller user configuration register config0 [26:24]. When the default clock source is from external 4~24 MHz high speed crystal, this bit is set to 1 automatically
	Sp Cs	1 = Enable external 4~24 MHz high speed crystal
	No.	0 = Disable external 4~24 MHz high speed crystal

# nuvoTon

Register/Instruction	PWR_DOWN_EN	PD_WAIT_CPU	CPU run WFI	Clock Disable
Mode		3		
Normal operation	0	0	NO	All clocks are disabled by control register
Idle mode	0	0	YES	Only CPU clock is disabled
(CPU in sleep mode)			S. 1	Sec.
Power down mode	1	0	NO	Most clocks are disabled except 10 KHz/32.768 KHz, only RTC/WDT peripheral clocks are still enabled.
Power down mode (CPU in deep sleep mode)	1	1	YES	Most clocks are disabled except 10 KHz/32.768 KHz, only RTC/WDT peripheral clocks are still enabled.

 Table 5-5 Power Down Mode Control Table

When chip enter power down mode, user can wake-up chip by some interrupt sources. User should enable related interrupt sources and NVIC IRQ enable bits (NVIC_ISER) before setting PWR_DOWN_EN bit in PWRCON[7] to ensure chip can enter power down and be woken-up successfully.

#### AHB Devices Clock Enable Control Register (AHBCLK)

These bits of this register are used to enable/disable clock for system clock

Register	Offset	R/W	Description	Reset Value
AHBCLK	CLK_BA+0x04	R/W	AHB Devices Clock Enable Control Register	0x0000_000D

31	30	29	28	27	26	25	24
			Rese	erved	AN TON	~	
23	22	21	20	19	18	17	16
			Rese	erved	SU	Sh	
15	14	13	12	11	10	9	8
			Rese	erved	•	NO.	2
7	6	5	4	3	2	1	0
		Reserved			ISP_EN	Rese	erved
							11/22 /

	Descriptions					
[31:3]	Reserved	Reserved				
		Flash ISP Controller Clock Enable Control				
[2]	ISP_EN	1 = Enable the Flash ISP engine clock				
		0 = Disable the Flash ISP engine clock				
[1:0]	Reserved	Reserved				

#### APB Devices Clock Enable Control Register (APBCLK)

These bits of this register are used to enable/disable clock for peripheral controller clocks.

Register	Offset	R/W	Description	Reset Value
APBCLK	CLK_BA+0x08	R/W	APB Devices Clock Enable Control Register	0x0000_000X

31	30	29	28	27	26	25	24
PS2_EN	Reserved	Reserved	Reserved	USBD_EN	Rese	erved	Reserved
23	22	21	20	19	18	17	16
Reserved	Reserved	PWM23_EN	PWM01_EN	Reserved	Reserved	UART1_EN	UART0_EN
15	14	13	12	11	10	9	8
Reserved	Reserved	SPI1_EN	SPI0_EN	Rese	erved	I2C1_EN	Reserved
7	6	5	4	3	2	1	0
Reserved	Reserved	TMR3_EN	TMR2_EN	TMR1_EN	TMR0_EN	RTC_EN	WDT_EN
	1	1	1		1	1	"OB

Bits	Descriptions				
		PS2 Clock Enable			
[31]	PS2_EN	1 = Enable PS/2 clock			
		0 = Disable PS/2 clock			
[30:28]	Reserved	Reserved			
		USB 2.0 FS Device Controller Clock Enable			
[27]	USBD_EN	1 = Enable USB clock			
		0 = Disable USB clock			
[26:22]	Reserved	Reserved			
051		PWM_23 Clock Enable			
[21]	PWM23_EN	1 = Enable PWM23 clock			
	38	0 = Disable PWM23 clock			
KS	200	PWM_01 Clock Enable			
[20]	PWM01_EN	1 = Enable PWM01 clock			
	and so	0 = Disable PWM01 clock			
[19:18]	Reserved	Reserved			
	N/S	UART1 Clock Enable			
[17]	UART1_EN	1 = Enable UART1 clock			
	0(	0 = Disable UART1 clock			
[16]	UART0_EN	UART0 Clock Enable			
[10]	UARTU_EN	1 = Enable UART0 clock			

		0 = Disable UART0 clock
[15:14]	Reserved	Reserved
		SPI1 Clock Enable
[13]	SPI1_EN	1 = Enable SPI1 clock
		0 = Disable SPI1 clock
		SPI0 Clock Enable
[12]	SPI0_EN	1 = Enable SPI0 clock
		0 = Disable SPI0 clock
[11:10]	Reserved	Reserved
		I ² C1 Clock Enable
[9]	I2C1_EN	1 = Enable I ² C1 clock
		0 = Disable I ² C1 clock
[8:6]	Reserved	Reserved
		Timer3 Clock Enable
[5]	TMR3_EN	1 = Enable Timer3 clock
		0 = Disable Timer3 clock
		Timer2 Clock Enable
[4]	TMR2_EN	1 = Enable Timer2 clock
		0 = Disable Timer2 clock
		Timer1 Clock Enable
[3]	TMR1_EN	1 = Enable Timer1 clock
		0 = Disable Timer1 clock
		Timer0 Clock Enable
[2]	TMR0_EN	1 = Enable Timer0 clock
		0 = Disable Timer0 clock
		Real-Time-Clock APB interface Clock Enable
[1]	RTC_EN	This bit is used to control the RTC APB clock only, The RTC engine clock source is from the 32768 Hz crystal.
Star 1	18 C	1 = Enable RTC clock
	26.2	0 = Disable RTC clock
S	222	Watchdog Timer Clock Enable (write-protection bit)
[0]	WDT_EN	This bit is the protected bit. It means programming this needs to write "59h", "16h", "88h' to address 0x5000_0100 to disable register protection. Reference the register REGWRPROT at address GCR_BA+0x100.
	Y.	1 = Enable Watchdog Timer clock
	~ 60	0 = Disable Watchdog Timer clock

# nuvoTon

#### Clock Status Register (CLKSTATUS)

These bits of this register are used to monitor if the chip clock source stable or not, and whether clock switch failed.

Register	Offset	R/W	Description	Reset Value
CLKSTATUS	CLK_BA+0x0C	R/W	Clock Status Monitor Register	0x0000_00XX

31	30	29	28	27	26	25	24
			Rese	erved	- Ch-	$\mathcal{D}_{\mathcal{D}}$	
23	22	21	20	19	18	17	16
			Rese	erved	0	2.4	1
15	14	13	12	11	10	9	8
			Rese	erved		Y)	20
7	6	5	4	3	2	1	0
CLK_SW_FAI L	Rese	erved	OSC22M_ST B	OSC10K_STB	PLL_STB	XTL32K_STB	XTL12M_STB

Bits	Descriptions						
[31:8]	Reserved	Reserved					
		Clock Switching Fail Flag (write-protection bit)					
		1 = Clock switching failure					
[7]	CLK SW FAIL	0 = Clock switching success					
		This bit is updated when software switches system clock source. If switch target clock is stable, this bit will be set to 0. If switch target clock is not stable, this bit will be set to 1.					
A		Write 1 to clear the bit to zero.					
[6:5]	Reserved	Reserved					
Sto.	200	Internal 22.1184 MHz High Speed Oscillator Clock Source Stable Flag					
[4]	OSCOOM STR	1 = Internal 22.1184 MHz high speed oscillator clock is stable					
[4]	OSC22M_STB	0 = Internal 22.1184 MHz high speed oscillator clock is not stable or disabled					
2	man S.	This is read only bit					
	Sp C	Internal 10 KHz Low Speed Oscillator Clock Source Stable Flag					
[0]	OSCIAK STR	1 = Internal 10 KHz low speed oscillator clock is stable					
[3]	OSC10K_STB	0 = Internal 10 KHz low speed oscillator clock is not stable or disabled					
	- UCC	This is read only bit					
101		Internal PLL Clock Source Stable Flag					
[2]	PLL_STB	1 = Internal PLL clock is stable					

		0 = Internal PLL clock is not stable or disabled
		This is read only bit
		External 32.768 KHz Low Speed Crystal Clock Source Stable Flag
[1]	XTL32K STB	1 = External 32.768 KHz low speed crystal clock is stable
[1]		0 = External 32.768 KHz low speed crystal clock is not stable or disabled
		This is read only bit
		External 4~24 MHz High Speed Crystal Clock Source Stable Flag
[0]	XTL12M STB	1 = External 4~24 MHz high speed crystal clock is stable
		0 = External 4~24 MHz high speed crystal clock is not stable or disabled
		This is read only bit

## nuvoTon

#### Clock Source Selection Control Register 0 (CLKSEL0)

Register	Offset	R/W	Description	Reset Value
CLKSEL0	CLK_BA+0x10	R/W	Clock Source Selection Control Register 0	0x0000_003X

31	30	29	28	27	26	25	24
	<u> </u>		Rese	rved	ar so		-
23	22	21	20	19	18	17	16
			Rese	rved	0	200	
15	14	13	12	11	10	9	8
			Rese	rved		200 7	0
7	6	5	4	3	2	1	0
Rese	erved	STCLK_S HCLK_S					20

Bits	Descriptions						
[31:6]	Reserved	Reserved					
		Cortex®-M0 SysTick Clock Source Selection (write-protection bits)					
		If SYST_CSR[2]=0, SysTick uses listed clock source below					
		These bits are protected bit. It means programming this bit needs to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Reference the register REGWRPROT at address GCR_BA+0x100.					
[5:3]	STCLK_S	000 = Clock source from external 4~24 MHz high speed crystal clock					
[0.0]		001 = Clock source from external 32.768 KHz low speed crystal clock					
2		010 = Clock source from external 4~24 MHz high speed crystal clock/2					
A		011 = Clock source from HCLK/2					
90 1		111 = Clock source from internal 22.1184 MHz high speed oscillator clock/2					
	<u>*</u>	Others = reserved					
V.	N. 14	HCLK Clock Source Selection (write-protection bits)					
No.	S STR	Note:					
	200	<ol> <li>Before clock switching, the related clock sources (both pre-select and new-select) must be turn on</li> </ol>					
[2:0]	HCLK_S	2. The 3-bit default value is reloaded from the value of CFOSC ( <u>Config0[</u> 26:24]) in user configuration register of Flash controller by any reset. Therefore the default value is either 000b or 111b.					
	- No	3. These bits are protected bit, It means programming this bit needs to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Reference the register REGWRPROT at address GCR_BA+0x100.					
		000 = Clock source from external 4~24 MHz high speed crystal clock					

001 = Clock source from external 32.768 KHz low speed crystal clock
010 = Clock source from PLL clock
011 = Clock source from internal 10 KHz low speed oscillator clock
111 = Clock source from internal 22.1184 MHz high speed oscillator clock
Others = reserved

#### Clock Source Selection Control Register 1 (CLKSEL1)

Before clock switching, the related clock sources (pre-select and new-select) must be turned on.

Register	Offset	R/W	Description	Reset Value
CLKSEL1	CLK_BA+0x14	R/W	Clock Source Selection Control Register 1	0xFFFF_FFFF

31	30	29	28	27	26	25	24
PWM	PWM23_S PWM01_S			Reserved		UART_S	
23	22	21	20	19	18	17	16
Reserved	TMR3_S			Reserved	5%		
15	14	13	12	11	10	9	8
Reserved		TMR1_S		Reserved		TMR0_S	2
7	6	5	4	3	2	1	0
	Reserved			Rese	rved	WD	T_S
							V CAA C

Bits	Descriptions	Descriptions						
		PWM2 and PWM3 Clock Source Selection						
		PWM2 and PWM3 uses the same Engine clock source, both of them use the same prescaler						
[31:30]	PWM23_S	00 = Clock source from external 4~24 MHz high speed crystal clock						
		01 = Clock source from external 32.768 KHz low speed crystal clock						
k.		10 = Clock source from HCLK						
		11 = Clock source from internal 22.1184 MHz high speed oscillator clock						
		PWM0 and PWM1 Clock Source Selection						
	PWM01_S	PWM0 and PWM1 uses the same Engine clock source, both of them use the same prescaler						
[29:28]		00 = Clock source from external 4~24 MHz high speed crystal clock						
		01 = Clock source from external 32.768 KHz low speed crystal clock						
XQ		10 = Clock source from HCLK						
(	SATA	11 = Clock source from internal 22.1184 MHz high speed oscillator clock						
[27:26]	Reserved	Reserved						
	N.	UART Clock Source Selection						
[05.04]		00 = Clock source from external 4~24 MHz high speed crystal clock						
[25:24]	UART_S	01 = Clock source from PLL clock						
		11 = Clock source from internal 22.1184 MHz high speed oscillator clock						
[23]	Reserved	Reserved						

		TIMER3 Clock Source Selection				
[22:20]		000 = Clock source from external 4~24 MHz high speed crystal clock				
		001 = Clock source from external 32.768 KHz low speed crystal clock				
	TMR3_S	010 = Clock source from HCLK				
		011 = Reserved				
		111 = Clock source from internal 22.1184 MHz high speed oscillator clock				
[19]	Reserved	Reserved				
		TIMER2 Clock Source Selection				
		000 = Clock source from external 4~24 MHz high speed crystal clock				
[40.40]		001 = Clock source from external 32.768 KHz low speed crystal clock				
[18:16]	TMR2_S	010 = Clock source from HCLK				
		011 = Reserved				
		111 = Clock source from internal 22.1184 MHz high speed oscillator clock				
[15]	Reserved	Reserved				
	TMR1_S	TIMER1 Clock Source Selection				
		000 = Clock source from external 4~24 MHz high speed crystal clock				
[4.4.4.0]		001 = Clock source from external 32.768 KHz low speed crystal clock				
[14:12]		010 = Clock source from HCLK				
		011 = Reserved				
		111 = Clock source from internal 22.1184 MHz high speed oscillator clock				
[11]	Reserved	Reserved				
	TMR0_S	TIMER0 Clock Source Selection				
		000 = Clock source from external 4~24 MHz high speed crystal clock				
[10:8]		001 = Clock source from external 32.768 KHz low speed crystal clock				
[10.0]		010 = Clock source from HCLK				
		011 = Reserved				
		111 = Clock source from internal 22.1184 MHz high speed oscillator clock				
[7:2]	Reserved	Reserved				
Sta 7	WDT_S	Watchdog Timer Clock Source Selection (write-protection bits)				
[1:0]		These bits are protected-bit, program this need to write "59h", "16h", "88h" to addre 0x5000_0100 to disable register protection. Reference the register REGWRPROT address GCR_BA+0x100.				
		00 = Reserved				
		01 = Reserved				
		10 = Clock source from HCLK/2048 clock				
		11 = Clock source from internal 10 KHz low speed oscillator clock				

# nuvoTon

#### Clock Divider Register (CLKDIV)

Register	Offset	R/W	Description	Reset Value
CLKDIV	CLK_BA+0x18	R/W	Clock Divider Register	0x0000_0000

31	30	29	28	27	26	25	24
Rese	erved			Rese	erved	Ç	
23	22	21	20	19	18	17	16
			Rese	erved	S.	200	
15	14	13	12	11	10	9	8
Reserved					UAR	T_N	0.
7	6	5	4	3	2	1	0
	USB_N				HCL	K_N	D.O.

31:12] 11:8]	Reserved					
11:8]		Reserved				
11.0]		UART Clock Divider from UART Clock Source				
	UART_N	The UART clock frequency = (UART clock source frequency ) / (UART_N + 1)				
7.41		USB Clock Divider from PLL Clock Source				
7:4]	USB_N	The USB clock frequency = (PLL frequency ) / (USB_N + 1)				
3:0]	HCLK_N	HCLK Clock Divider from HCLK Clock Source				
5.0]		The HCLK clock frequency = (HCLK clock source frequency) / (HCLK_N + 1)				

#### PLL Control Register (PLLCON)

The PLL reference clock input is from the external 4~24 MHz high speed crystal clock input or from the internal 22.1184 MHz high speed oscillator. These registers are use to control the PLL output frequency and PLL operating mode.

Register	Offset	R/W	Description	Reset Value
PLLCON	CLK_BA+0x20	R/W	PLL Control Register	0x0005_C22E

31	30	29	28	27	26	25	24
			Rese	erved	° On	20	
23	22	21	20	19	18	17	16
	Rese	erved		PLL_SRC	OE	BP	PD
15	14	13	12	11	10	9	8
OU [.]	T_DV			IN_DV		23	FB_DV
7	6	5	4	3	2	1	0
			FB_	_DV		1	1975

Bits	Descriptions				
[31:20]	Reserved	Reserved			
		PLL Source Clock Selection			
[19]	PLL_SRC	1 = PLL source clock from internal 22.1184 MHz high speed oscillator			
		0 = PLL source clock from external 4~24 MHz high speed crystal			
5.		PLL OE (FOUT enable)			
[18]	OE	0 = PLL FOUT enable			
		1 = PLL FOUT is fixed low			
SV.	335	PLL Bypass Control			
[17]	BP	0 = PLL is in normal mode (default)			
- XS	S. Stor	1 = PLL clock output is same as clock input (XTALin)			
N.	C'AR A	Power Down Mode			
[16]	PD	If set the PWR_DOWN_EN bit to 1 in PWRCON register, the PLL will enter power down mode too.			
	N.	0 = PLL is in normal mode			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 = PLL is in power down mode (default)			
[15:14]		PLL Output Divider			
	OUT_DV	Refer to the formulas below the table.			
[13:9]	IN_DV	PLL Input Divider			

		Refer to the formulas below the table.				
10.01	FB DV	PLL Feedback Divider				
		Refer to the formulas below the table.				

Output Clock Frequency Setting

$$FOUT = FIN \times \frac{NF}{NR} \times \frac{1}{NO}$$

Constrain:

1.
$$3.2MHz < FIN < 150MHz$$

2.
$$800KHz < \frac{FIN}{2*NR} < 7.5MHz$$

3.
$$100MHz < FCO = FIN \times \frac{NF}{NR} < 500MHz$$

Symbol	Description
FOUT	Output Clock Frequency
FIN	Input (Reference) Clock Frequency
NR	Input Divider (IN_DV + 2)
NF	Feedback Divider (FB_DV + 2)
NO	OUT_DV = "00" : NO = 1 OUT_DV = "01" : NO = 2 OUT_DV = "10" : NO = 2 OUT_DV = "11" : NO = 4

Default Frequency Setting

The default value : 0xC22EFIN = 12 MHz NR = (1+2) = 3 NF = (46+2) = 48 NO = 4 FOUT = 12/4 x 48 x 1/3 = 48 MHz

48 MHz	50 MHz	60 MHz
0xC22E	0xC230	0xC23A

5.4 FLASH MEMORY CONTROLLER (FMC)

5.4.1 Overview

NuMicro[™] NUC122 Series equips with 64/32K bytes on-chip embedded Flash for application program memory (APROM) that can be updated through ISP procedure. In System Programming (ISP) function enables user to update program memory when chip is soldered on PCB. After chip power on, Cortex[™]-M0 CPU fetches code from APROM or LDROM decided by boot select (CBS) in Config0. By the way, NuMicro[™] NUC122 Series also provides additional DATA Flash for user to store some application dependent data before chip power off. For 64K/32K bytes APROM device, the data flash is fixed at 4K bytes.

5.4.2 Features

- Run up to 60 MHz with zero wait state for continuous address read access
- 64/32KB application program memory (APROM)
- 4KB in system programming (ISP) loader program memory (LDROM)
- Fixed 4KB data flash with 512 bytes page erase unit
- In System Program (ISP) to update on chip Flash

nuvoTon

5.4.3 Block Diagram

The flash memory controller consist of AHB slave interface, ISP control logic, writer interface and flash macro interface timing control logic. The block diagram of flash memory controller is shown as following:

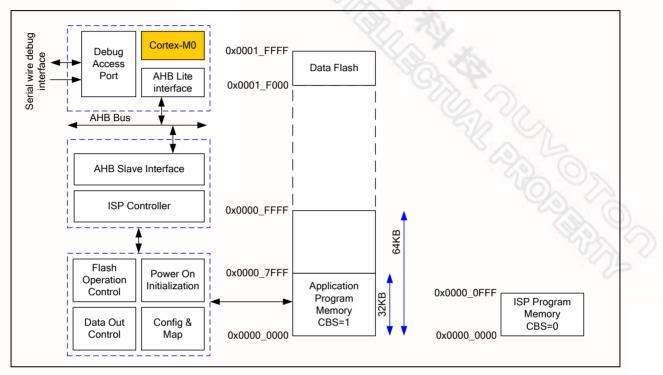


Figure 5-7 Flash Memory Control Block Diagram

Jan. 09, 2015

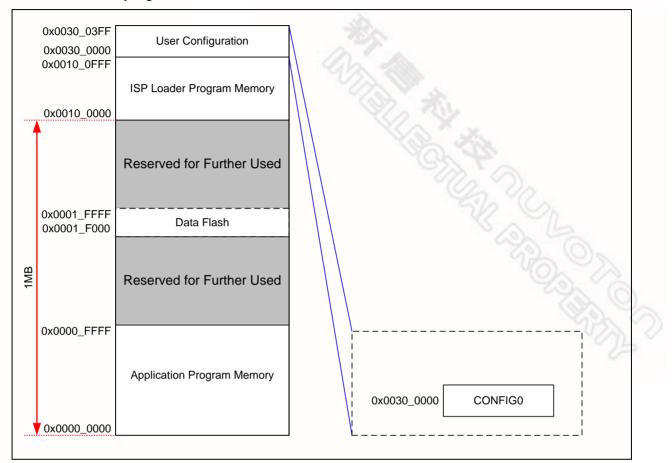
5.4.4 Flash Memory Organization

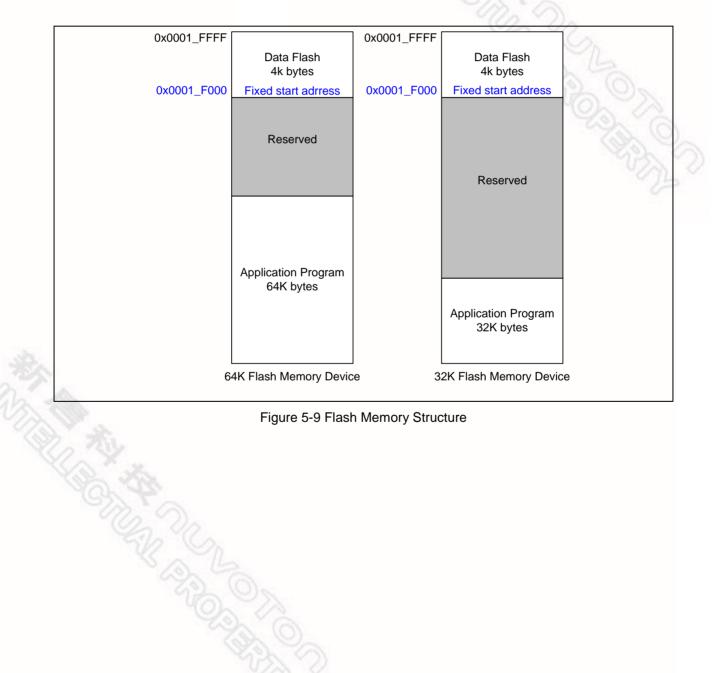
NuMicro[™] NUC122 Series flash memory consists of Program memory (64/32 KB), data flash, ISP loader program memory, user configuration. User configuration block provides several bytes to control system logic, like flash security lock, boot select, brownout voltage level, and so on. It works like a fuse for power on setting. It is loaded from flash memory to its corresponding control registers during chip power on. User can set these bits according to application request by writer before chip is mounted on PCB. For 64/32 KB APROM devices, its size of data flash is 4 KB and start address is fixed at 0x0001_F000.

Block Name	Size	Start Address	End Address
AP-ROM	32/64 KB	0x0000_0000	0x0000_7FFF (32 KB) 0x0000_FFFF (64 KB)
Reserved for future use	960 KB	0x0001_0000	0x000F_FFFF
Data Flash	4 KB	0x0001_F000	0x0001_FFFF
LD-ROM	4 KB	0x0010_0000	0x0010_0FFF
User Configuration	1 word	0x0030_0000	0x0030_0000

nuvoTon

The Flash memory organization is shown as below:




Figure 5-8 Flash Memory Organization

5.4.5 Boot Selection

NuMicro[™] NUC122 Series provides in system programming (ISP) feature to enable user to update program memory when chip is mounted on PCB. A dedicated 4 KB program memory is used to store ISP firmware. Users can select to start program fetch from APROM or LDROM by (CBS) in Config0.

5.4.6 Data Flash

NuMicro[™] NUC122 Series provides data flash for user to store data. It is read/write through ISP procedure. The size of each erase unit is 512 bytes. When a word will be changed, all 128 words need to be copied to another page or SRAM in advance. For 64/32 KB APROM devices, the size of data flash is 4 KB and start address is fixed at 0x0001_F000.

nuvoTon

5.4.7 User Configuration

5.4.7.1 Config0 (Address = 0x0030_0000)

31	30	29	28	27	26	25	24
	Reserved		CKF	Reserved		CFOSC	
23	22	21	20	19	18	17	16
CBODEN	CBOV1	CBOV0	CBORST	×.	Res	erved	
15	14	13	12	11	10	9	8
	•		Rese	erved	- U	2	
7	6	5	4	3	2	1	0
CBS			Reserved	· · · · · ·	10	LOCK	Reserved
						2.31.11	

Bits	Descriptions							
[31:29]	Reserved	Reserved	Reserved					
		XT1 Clock Filt	er Enable		"ALO			
[28]	CKF	0 = Disable XT	1 clock filter		6			
		1 = Enable XT	1 clock filter					
[27]	Reserved	Reserved						
		CPU Clock So	ource Selection A	fter Reset				
		FOSC[2:0]	Clock Source					
		000	External 4~24 clock	MHz high speed crystal				
[26:24]	CFOSC	111	Internal RC 2 oscillator clock	22.1184 MHz high speed				
		Others	Reserved					
	术	The value of C reset occurs.	The value of CFOSC will be load to CLKSEL0.HCLK_S[2:0] in system register after an reset occurs.					
XA	1 34	Brownout Det	ector Enable					
[23]	CBODEN	0= Enable brow	0= Enable brownout detecting function after power on					
2	Con S	1= Disable brownout detecting function after power on						
	Sh (Brownout Vol	tage Selection					
	No.	CBOV1	CBOV0	Brownout voltage				
[22:21]	CBOV1-0	01	1	4.5 V				
	0	9 1	0	3.8 V				
		0	1	2.7 V				

		0	0	2.2 V			
		Brownout Rese	et Enable	R.			
[20]	CBORST	0 = Enable brow	nout reset after p	ower on			
		1 = Disable brow	vnout reset after p	power on			
[19:8]	Reserved	Reserved		See as			
		Chip Boot Sele	ction	San Maria			
[7]	CBS	0 = Chip boot from LDROM					
		1 = Chip boot fro	om APROM		80		
[6:2]	Reserved	Reserved		Q.	00-		
		Security Lock		R.	Sh-		
		0 = Flash data is	locked		2 6		
[1]	LOCK	1 = Flash data is	s not locked		22 02		
		ICP through ser		evice ID, Config0 and Config1 e. Others data is locked as 0 K bit value.			
[0]	Reserved	Reserved			ST 0		

5.4.8 In System Program (ISP)

The program memory and data flash supports both in hardware programming and in system programming (ISP). Hardware programming mode uses gang-writers to reduce programming costs and time to market while the products enter into the mass production state. However, if the product is just under development or the end product needs firmware updating in the hand of an end user, the hardware programming mode will make repeated programming difficult and inconvenient. ISP method makes it easy and possible. NuMicro[™] NUC122 Series supports ISP mode allowing a device to be reprogrammed under software control. Furthermore, the capability to update the application firmware makes wide range of applications possible.

ISP is performed without removing the microcontroller from the system. Various interfaces enable LDROM firmware to get new program code easily. The most common method to perform ISP is via UART along with the firmware in LDROM. General speaking, PC transfers the new APROM code through serial port. Then LDROM firmware receives it and re-programs into APROM through ISP commands. Nuvoton provides ISP firmware and PC application program for NuMicro[™] NUC122 Series. It makes users quite easy perform ISP through Nuvoton ISP tool.

5.4.8.1 ISP Procedure

NuMicro[™] NUC122 Series supports booting from APROM or LDROM initially defined by user configuration bit (CBS). If user wants to update application program in APROM, he can write BS=1 and starts software reset to make chip boot from LDROM. The first step to start ISP function is write ISPEN bit to 1. S/W is required to write REGWRPROT register in Global Control Register (GCR, 0x5000_0100) with 0x59, 0x16 and 0x88 before writing ISPCON register. This procedure is used to protect flash memory from destroying owning to unintended write during power on/off duration.

Several error conditions are checked after software writes ISPGO bit. If error condition occurs, ISP operation is not been started and ISP fail flag will be set instead of. ISPFF flag is cleared by s/w, it will not be over written in next ISP operation. The next ISP procedure can be started even ISPFF bit keeps at 1. It is recommended that s/w to check ISPFF bit and clear it after each ISP operation if it is set to 1.

When ISPGO bit is set, CPU will wait for ISP operation finished, during this period; peripheral still keeps working as usual. If any interrupt request occurs, CPU will not service it till ISP operation is finished.

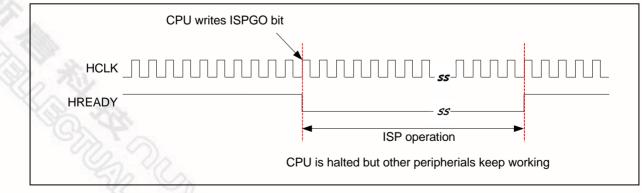


Figure 5-10 ISP Operation Timing

Note that NuMicro[™] NUC122 Series allows user to update CONFIG value by ISP.

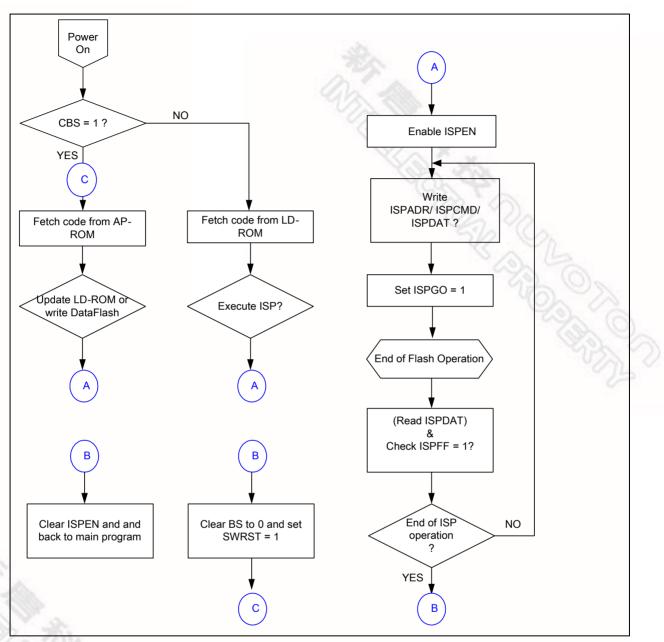


Figure 5-11 ISP Flow Chart

nuvoTon

	ISPCMD			ISPADR			ISPDAT
ISP Mode	FOEN	FCEN	FCTRL[3:0]	A21	A20	A[19:0]	D[31:0]
FLASH Page Erase	1	0	0010	0	A20	Address in A[19:0]	x
FLASH Program	1	0	0001	0	A20	Address in A[19:0]	Data in D[31:0]
FLASH Read	0	0	0000	0	A20	Address in A[19:0]	Data out D[31:0]
CONFIG Page Erase	1	0	0010	1	1	Address in A[19:0]	x
CONFIG Program	1	0	0001	1	1	Address in A[19:0]	Data in D[31:0]
CONFIG Read	0	0	0000	1	1	Address in A[19:0]	Data out D[31:0]

Table 5-6 ISP Mode

Jan. 09, 2015

5.4.9 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
Base Address (FMC_BA) : 0x5000_C000								
ISPCON	FMC_BA+0x000	R/W	ISP Control Register	0x0000_0000				
ISPADR	FMC_BA+0x004	R/W	ISP Address Register	0x0000_0000				
ISPDAT	FMC_BA+0x008	R/W	ISP Data Register	0x0000_0000				
ISPCMD	FMC_BA+0x00C	R/W	ISP Command Register	0x0000_0000				
ISPTRG	FMC_BA+0x010	R/W	ISP Trigger Register	0x0000_0000				
FATCON	FMC_BA+0x018	R/W	Flash Access Window Control Register	0x0000_0000				

nuvoTon

5.4.10 Register Description

ISP Control Register	(ISPCON)
----------------------	----------

Register	egister Offset R/W		Description	Reset Value
ISPCON	FMC_BA+0x00	R/W	ISP Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Reserved				
23	22	21	20	19	18	17	16
			Rese	erved	K	- A	~
15	14	13	12	11	10	9	8
Reserved		ET		Reserved	Reserved PT		
7	6	5	4	3	2	1	0
Reserved	ISPFF	LDUEN	CFGUEN	Rese	rved	BS	ISPEN
		1		1		1	1 Cm

Bits	Descriptions					
[31:15]	Reserved	Reserved	ł			
		Flash Er	ase Time (write-prote	ction bits)	
		ET[2]	ET[1]	ET[0]	Erase Time (ms)	
		0	0	0	20 (default)	
	ET[2:0]	0	0	1	25	
44.401		0	1	0	30	
[14:12]	ET[2:0]	0	1	1	35	
	₩ ₩	1	0	0	3	
		1	0	1	5	
		1	1	0	10	
		1	1	1	15	
[11]	Reserved	Reserved	ł	1		
	20	Flash Pr	otection bits)			
	NO.	PT[2]	PT[1]	PT[0]	Program Time (us)	
[8:10]	PT[2:0]	0	0	0	40	
		0	0	1	45	
		0	1	0	50	

		0	1	1	55				
		1	0	0	20				
		1	0	1	25				
		1	1	0	30				
		1	1	1	35				
[7]	Reserved	Reserve	ed			36.			
		ISP Fai	I Flag (wri	te-protectio	on bit)	120			
		This bit	is set by h	ardware w	hen a triggered ISP mee	ts any of the following conditions:			
			OM writes		e c	25.90			
6]	ISPFF		OM writes						
.•]					ammed if CFGUEN is set	to 0			
					egal, such as over an ava				
			to clear.		egal, such as over all ava	anable range			
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
			-		ite-protection bit)				
[5]	LDUEN	LDROM update enable bit. 1 = LDROM can be updated when the chip runs in APROM							
[0]		1 = LDF	ROM can b	e updated	when the chip runs in AF	PROM			
		0 = LDF	ROM can n	ot be upda	ated				
		Enable	Config-bi	ts Update	by ISP (write-protection	bit)			
[4]	CFGUEN	1 = Ena	ble ISP ca	in update o	config-bits				
		0 = Disa	able ISP ca	an update	config-bits				
[3:2]	Reserved	Reserve	ed						
		Boot S	elect (write	e-protection	n bit)				
						APROM, respectively. This bit als			
		functions as chip booting status flag, which can be used to check where chip boote							
[1]	BS	from. This bit is initiated with the inversed value of CBS in Config0 after any reset happened except CPU reset (RSTS_CPU is 1) or system reset (RSTS_SYS) happened.							
	-3C	1 = boot from LDROM							
	32	0 = boo	t from APF	ROM					
X	6 200	ISP En	able (write	-protection	bit)				
	SYNT	ISP fun	ction enab	le bit. Set t	his bit to enable ISP fund	ction.			
	ISPEN	1 = Enable ISP function							
[0]	V///		able ISP fu						

## nuvoTon

#### ISP Address (ISPADR)

Register	Offset		R/W Description				Reset Value	
SPADR FMC_BA+ 0x04			R/W	ISP Addr	ess Register	0x0000_0000		
			_		1/201	P		
31	30	29		28	27	26	25	24
				ISPADR[	31:24]	a so		
23	22	21	20		19	18	17	16
	•		_	ISPADR[	23:16]		Nr.	
15	14	13		12	11	10	9	8
	•			ISPADR	[15:8]		No.	A
7	6	5	5 4			2	1	0
	-			ISPADR	R[7:0]		2	en les

Bits	Descriptions	
[31:0]	ISPADR	ISP Address NuMicro [™] NUC122 Series equips with a maximum 16Kx32 embedded flash, it supports word program only. ISPADR[1:0] must be kept 00b for ISP operation.

Jan. 09, 2015

#### ISP Data Register (ISPDAT)

Register	Offset		R/W Description				Reset Value	
SPDAT FMC_BA+ 0x08			R/W	ISP Data	Register	0x0000_0000		
					N/N	1		
31	30	29		28	27	26	25	24
			_	ISPDAT[	31:24]	a x		•
23	22	21	20		19	18	17	16
				ISPDAT[	23:16]		Nr.	
15	14	13		12	11	10	9	8
			_	ISPDAT	[15:8]	<u></u>	a.	- A
7	6	5	4		3	2	1	0
				ISPDAT	[7:0]		7	20, 0

Bits	Descriptions	
		ISP Data
[31:0]	ISPDAT	Write data to this register before ISP program operation
		Read data from this register after ISP read operation

## nuvoTon

#### **ISP Command (ISPCMD)**

Register	Offset		R/W I	Description	ription				
ISPCMD	FMC_BA+	0x0C	R/W		0x0000_0000				
				N/AN					
31	30	29	28	8 27	26	25	24		
				Reserved	a x				
23	22	21	20	0 19	18	17	16		
				Reserved	0	n.			
15	14	13	12	2 11	10	9	8		
				Reserved	<u></u>	No.	2		
7	6	5	4	3	2	1	0		
Res	erved	FOEN	FCE	EN	FCTR	L[3:0]	200		

FOEN,       ISP Command         ISP command table is showed below:         Operation Mode       FOEN         FOEN,	FOEN,         FOEN,         FOEN,         FOEN,         FOEN,         FOEN,         FOEN,         FOEN,         Program         ISP command table is showed below:         ISP command table is showed below:	Bits	Descriptions								
[5:0] FOEN, FCEN, FCTRL ISP command table is showed below: Operation Mode FOEN FCEN FCTRL[3:0] Read 0 0 0 0 0 0 0 0 Program 1 0 0 0 0 0 1	[5:0] FOEN, FCEN, FCTRL ISP command table is showed below: Operation Mode FOEN FCEN FCTRL[3:0] Read 0 0 0 0 0 0 0 0 Program 1 0 0 0 0 0 1	[31:6]	Reserved	Reserved							
FOEN, FCEN, FCTRL         Operation Mode         FOEN         FCEN         FCTRL[3:0]           Program         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <	FOEN, FCEN, FCTRL         Operation Mode         FOEN         FCEN         FCTRL[3:0]           Program         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         1         0         0         0         0         1         0         0         0         0         0         1         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         <			ISP Command							
[5:0] FCEN, FCTRL Read 0 0 0 0 0 0 0 0 Program 1 0 0 0 0 0 1	[5:0] FCEN, FCTRL Read 0 0 0 0 0 0 0 0 Program 1 0 0 0 0 1			ISP command table is	showed below	w:					
FCTRL         Read         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         1	FCTRL         Read         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         1	15 01		Operation Mode	FOEN	FCEN	FCT	RL[3:0]	]		
Program 1 0 0 0 1	Program 1 0 0 0 1	[5:0]		Read	0	0	0	0	0	0	
Page Erase         1         0         0         1         0	Page Erase         1         0         0         1         0		I OIKL	Program	1	0	0	0	0	1	
				Page Erase	1	0	0	0	4		
										0	
Jan. 09, 2015 Page <b>125</b> of <b>350</b> Revision 1.											

<b>D</b>	0//		D 44		Description					
Register	Offset		R/W	Descript		Reset Value				
ISPTRG	FMC_BA+	- 0x10	R/W	ISP Trig		0x0000_0000				
			_		2000	P.c.		_		
31	30	29		28	27	26	25	24		
				Reser	ved	a zo				
23	22	21		20	19	18	17	16		
				Reser	ved	° On	Do.			
15	14	13		12	11	10	9	8		
				Reser	ved		100	The second		
7	6	5		4	3	2	1	0		
			Re	served			4	ISPGO		

Bits	Descriptions	ions						
[31:1]	Reserved	Reserved						
	] ISPGO	ISP Start Trigger						
[0]		Write 1 to start ISP operation and this bit will be cleared to 0 by hardware automatically when ISP operation is finished.						
		1 = ISP is on going						
		0 = ISP operation is finished						

Flash A	ccess Time C	ontrol Regis	ster (FA	TCON)				
Register	Offset		R/W	Descrip	tion		Reset Value	
FATCON	N FMC_BA + 0x18 R/W Flash Access Time Control Register							0x0000_0000
					1 AN			
31	30	29		28	27	26	25	24
				Rese	rved	a s		
23	22	21		20	19	18	17	16
				Rese	rved	° On	n.	
15	14	13		12	11	10	9	8
				Rese	rved	<u></u>	CO.	2
7	6	5		4	3	2	1	0
Reserved	MFOM	Reserved	L	FOM		Rese	erved	30.0

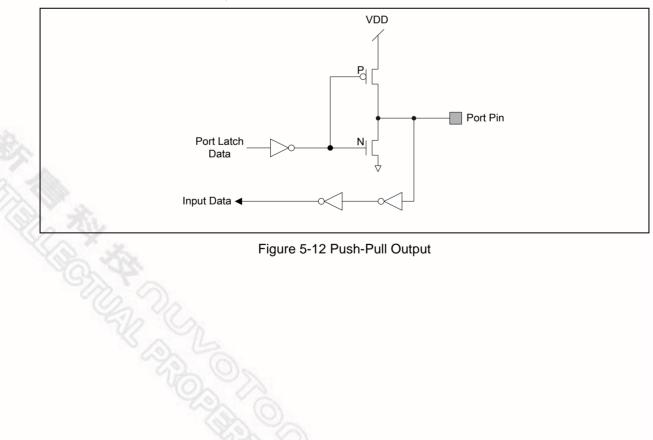
	Descriptions	Descriptions				
[31:7]	Reserved	Reserved	Reserved			
		Middle Frequency Optimization Mode (write-protection bit)				
[6]	мгом	If chip operation frequency is between 20 MHz ~ 40 MHz, chip can work more e when this bit is set to 1.	fficien			
		If chip operation frequency is > 40 MHz, both of LFOM and MFOM have to set to	zero.			
[5]	Reserved	Reserved				
25.4		Low Frequency Optimization Mode (write-protection bit)				
[4]	LFOM	If chip operation frequency lower than 20 MHz, chip can work more efficiently w bit is set to 1.	hen tl			
		If chip operation frequency is > 40 MHz, both of LFOM and MFOM have to set to	zero.			
[3:0]	Reserved	Reserved				

#### 5.5 General Purpose I/O (GPIO)

#### 5.5.1 Overview and Features

NuMicro[™] NUC122 Series has up to 41 General Purpose I/O pins can be shared with other function pins; it depends on the chip configuration. These 41 pins are arranged in 4 ports named with GPIOA, GPIOB, GPIOC and GPIOD. Each port equips maximum 16 pins. Each one of the 41 pins is independent and has the corresponding register bits to control the pin mode function and data.

The I/O type of each of I/O pins can be configured by software individually as input, output, open-drain or quasi-bidirectional mode. After reset, the I/O type of all pins stay in quasi-bidirectional mode and port data register GPIOx_DOUT[15:0] resets to 0x0000_FFFF. Each I/O pin equips a very weakly individual pull-up resistor which is about 110 K $\Omega \sim 300$  K $\Omega$  for V_{DD} is from 5.5 V to 2.5 V.


#### 5.5.2 Function Description

5.5.2.1 Input Mode Explanation

Set GPIOx_PMD (PMDn[1:0]) to 00b the GPIOx port [n] pin is in Input mode and the I/O pin is in tri-state (high impedance) without output drive capability. The GPIOx_PIN value reflects the status of the corresponding port pins.

#### 5.5.2.2 Output Mode Explanation

Set GPIOx_PMD (PMDn[1:0]) to 01b the GPIOx port [n] pin is in Output mode and the I/O pin supports digital output function with source/sink current capability. The bit value in the corresponding bit [n] of GPIOx_DOUT is driven on the pin.



#### 5.5.2.3 Open-Drain Mode Explanation

Set GPIOx_PMD (PMDn[1:0]) to 10b the GPIOx port [n] pin is in Open-Drain mode and the digital output function of I/O pin supports only sink current capability, an additional pull-up resister is needed for driving high state. If the bit value in the corresponding bit [n] of GPIOx_DOUT is 0, the pin drive a "low" output on the pin. If the bit value in the corresponding bit [n] of GPIOx_DOUT is 1, the pin output drives high that is controlled by external pull high resistor.

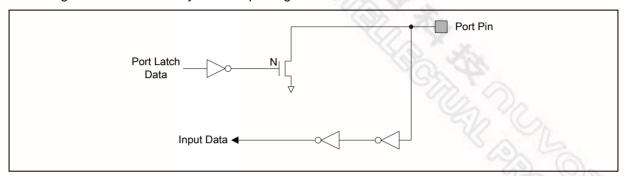



Figure 5-13 Open-Drain Output

#### 5.5.2.4 Quasi-bidirectional Mode Explanation

Set GPIOx_PMD (PMDn[1:0]) to 11b the GPIOx port [n] pin is in Quasi-bidirectional mode and the I/O pin supports digital output and input function at the same time but the source current is only up to hundreds uA. Before the digital input function is performed the corresponding bit in GPIOx_DOUT must be set to 1. The quasi-bidirectional output is common on the 80C51 and most of its derivatives. If the bit value in the corresponding bit [n] of GPIOx_DOUT is 0, the pin drive a "low" output on the pin. If the bit value in the corresponding bit [n] of GPIOx_DOUT is 1, the pin will check the pin value. If pin value is high, no action takes. If pin state is low, then pin will drive strong high with 2 clock cycles on the pin and then disable the strong output drive and then the pin status is control by internal pull-up resistor. Note that the source current capability in quasi-bidirectional mode is only about 200 uA to 30 uA for VDD is form 5.0 V to 2.5 V.

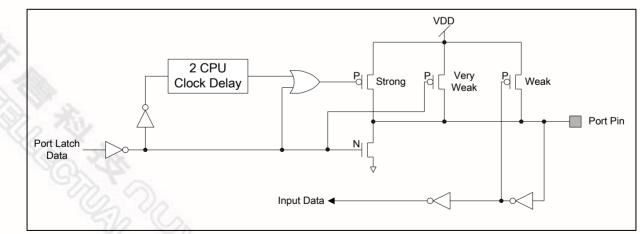



Figure 5-14 Quasi-bidirectional I/O Mode

#### 5.5.3 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
GP_BA = 0x5000	_4000	_		
GPIOA_PMD	GP_BA+0x000	R/W	GPIO Port A Pin I/O Mode Control	0xFFFF_FFF
GPIOA_OFFD	GP_BA+0x004	R/W	GPIO Port A Pin OFF Digital Enable	0x0000_0000
GPIOA_DOUT	GP_BA+0x008	R/W	GPIO Port A Data Output Value	0x0000_FFFF
GPIOA_DMASK	GP_BA+0x00C	R/W	GPIO Port A Data Output Write Mask	0x0000_0000
GPIOA_PIN	GP_BA+0x010	R	GPIO Port A Pin Value	0x0000_XXXX
GPIOA_DBEN	GP_BA+0x014	R/W	GPIO Port A De-bounce Enable	0x0000_0000
GPIOA_IMD	GP_BA+0x018	R/W	GPIO Port A Interrupt Mode Control	0x0000_0000
GPIOA_IEN	GP_BA+0x01C	R/W	GPIO Port A Interrupt Enable	0x0000_0000
GPIOA_ISRC	GP_BA+0x020	R/W	GPIO Port A Interrupt Source Flag	0xXXXX_XXXX
GPIOB_PMD	GP_BA+0x040	R/W	GPIO Port B Pin I/O Mode Control	0xFFFF_FFF
GPIOB_OFFD	GP_BA+0x044	R/W	GPIO Port B Pin OFF Digital Enable	0x0000_0000
GPIOB_DOUT	GP_BA+0x048	R/W	GPIO Port B Data Output Value	0x0000_FFFF
GPIOB_DMASK	GP_BA+0x04C	R/W	GPIO Port B Data Output Write Mask	0x0000_0000
GPIOB_PIN	GP_BA+0x050	R	GPIO Port B Pin Value	0x0000_XXXX
GPIOB_DBEN	GP_BA+0x054	R/W	GPIO Port B De-bounce Enable	0x0000_0000
GPIOB_IMD	GP_BA+0x058	R/W	GPIO Port B Interrupt Mode Control	0x0000_0000
GPIOB_IEN	GP_BA+0x05C	R/W	GPIO Port B Interrupt Enable	0x0000_0000
GPIOB_ISRC	GP_BA+0x060	R/W	GPIO Port B Interrupt Source Flag	0xXXXX_XXXX
GPIOC_PMD	GP_BA+0x080	R/W	GPIO Port C Pin I/O Mode Control	0xFFFF_FFF
GPIOC_OFFD	GP_BA+0x084	R/W	GPIO Port C Pin OFF Digital Enable	0x0000_0000
GPIOC_DOUT	GP_BA+0x088	R/W	GPIO Port C Data Output Value	0x0000_FFFF
GPIOC_DMASK	GP_BA+0x08C	R/W	GPIO Port C Data Output Write Mask	0x0000_0000
GPIOC_PIN	GP_BA+0x090	R	GPIO Port C Pin Value	0x0000_XXXX
GPIOC_DBEN	GP_BA+0x094	R/W	GPIO Port C De-bounce Enable	0x0000_0000
GPIOC_IMD	GP_BA+0x098	R/W	GPIO Port C Interrupt Mode Control	0x0000_0000
GPIOC_IEN	GP_BA+0x09C	R/W	GPIO Port C Interrupt Enable	0x0000_0000

GPIOC_ISRC	GP_BA+0x0A0	R/W	GPIO Port C Interrupt Source Flag	0xXXXX_XXXX
GPIOD_PMD	GP_BA+0x0C0	R/W	GPIO Port D Pin I/O Mode Control	0xFFFF_FFFF
GPIOD_OFFD	GP_BA+0x0C4	R/W	GPIO Port D Pin OFF Digital Enable	0x0000_0000
GPIOD_DOUT	GP_BA+0x0C8	R/W	GPIO Port D Data Output Value	0x0000_FFFF
GPIOD_DMASK	GP_BA+0x0CC	R/W	GPIO Port D Data Output Write Mask	0x0000_0000
GPIOD_PIN	GP_BA+0x0D0	R	GPIO Port D Pin Value	0x0000_XXXX
GPIOD_DBEN	GP_BA+0x0D4	R/W	GPIO Port D De-bounce Enable	0x0000_0000
GPIOD_IMD	GP_BA+0x0D8	R/W	GPIO Port D Interrupt Mode Control	0x0000_0000
GPIOD_IEN	GP_BA+0x0DC	R/W	GPIO Port D Interrupt Enable	0x0000_0000
GPIOD_ISRC	GP_BA+0x0E0	R/W	GPIO Port D Interrupt Source Flag	0xXXXX_XXXX
DBNCECON	GP_BA+0x180	R/W	De-bounce Cycle Control	0x0000_0020
GPIOA0_DOUT	GP_BA+0x200	R/W	GPIO PA.0 Bit Output/Input Value	0x0000_0001
GPIOA1_DOUT	GP_BA+0x204	R/W	GPIO PA.1 Bit Output/Input Value	0x0000_0001
GPIOA2_DOUT	GP_BA+0x208	R/W	GPIO PA.2 Bit Output/Input Value	0x0000_0001
GPIOA3_DOUT	GP_BA+0x20C	R/W	GPIO PA.3 Bit Output/Input Value	0x0000_0001
GPIOA4_DOUT	GP_BA+0x210	R/W	GPIO PA.4 Bit Output/Input Value	0x0000_0001
GPIOA5_DOUT	GP_BA+0x214	R/W	GPIO PA.5 Bit Output/Input Value	0x0000_0001
GPIOA6_DOUT	GP_BA+0x218	R/W	GPIO PA.6 Bit Output/Input Value	0x0000_0001
GPIOA7_DOUT	GP_BA+0x21C	R/W	GPIO PA.7 Bit Output/Input Value	0x0000_0001
GPIOA8_DOUT	GP_BA+0x220	R/W	GPIO PA.8 Bit Output/Input Value	0x0000_0001
GPIOA9_DOUT	GP_BA+0x224	R/W	GPIO PA.9 Bit Output/Input Value	0x0000_0001
GPIOA10_DOUT	GP_BA+0x228	R/W	GPIO PA.10 Bit Output/Input Value	0x0000_0001
GPIOA11_DOUT	GP_BA+0x22C	R/W	GPIO PA.11 Bit Output/Input Value	0x0000_0001
GPIOA12_DOUT	GP_BA+0x230	R/W	GPIO PA.12 Bit Output/Input Value	0x0000_0001
GPIOA13_DOUT	GP_BA+0x234	R/W	GPIO PA.13 Bit Output/Input Value	0x0000_0001
GPIOA14_DOUT	GP_BA+0x238	R/W	GPIO PA.14 Bit Output/Input Value	0x0000_0001
GPIOA15_DOUT	GP_BA+0x23C	R/W	GPIO PA.15 Bit Output/Input Value	0x0000_0001
GPIOB0_DOUT	GP_BA+0x240	R/W	GPIO PB.0 Bit Output/Input Value	0x0000_0001
GPIOB1_DOUT	GP_BA+0x244	R/W	GPIO PB.1 Bit Output/Input Value	0x0000_0001
GPIOB2_DOUT	GP_BA+0x248	R/W	GPIO PB.2 Bit Output/Input Value	0x0000_0001

GPIOB3_DOUT	GP_BA+0x24C	R/W	GPIO PB.3 Bit Output/Input Value	0x0000_0001
GPIOB4_DOUT	GP_BA+0x250	R/W	GPIO PB.4 Bit Output/Input Value	0x0000_0001
GPIOB5_DOUT	GP_BA+0x254	R/W	GPIO PB.5 Bit Output/Input Value	0x0000_0001
GPIOB6_DOUT	GP_BA+0x258	R/W	GPIO PB.6 Bit Output/Input Value	0x0000_0001
GPIOB7_DOUT	GP_BA+0x25C	R/W	GPIO PB.7 Bit Output/Input Value	0x0000_0001
GPIOB8_DOUT	GP_BA+0x260	R/W	GPIO PB.8 Bit Output/Input Value	0x0000_0001
GPIOB9_DOUT	GP_BA+0x264	R/W	GPIO PB.9 Bit Output/Input Value	0x0000_0001
GPIOB10_DOUT	GP_BA+0x268	R/W	GPIO PB.10 Bit Output/Input Value	0x0000_0001
GPIOB11_DOUT	GP_BA+0x26C	R/W	GPIO PB.11 Bit Output/Input Value	0x0000_0001
GPIOB12_DOUT	GP_BA+0x270	R/W	GPIO PB.12 Bit Output/Input Value	0x0000_0001
GPIOB13_DOUT	GP_BA+0x274	R/W	GPIO PB.13 Bit Output/Input Value	0x0000_0001
GPIOB14_DOUT	GP_BA+0x278	R/W	GPIO PB.14 Bit Output/Input Value	0x0000_0001
GPIOB15_DOUT	GP_BA+0x27C	R/W	GPIO PB.15 Bit Output/Input Value	0x0000_0001
GPIOC0_DOUT	GP_BA+0x280	R/W	GPIO PC.0 Bit Output/Input Value	0x0000_0001
GPIOC1_DOUT	GP_BA+0x284	R/W	GPIO PC.1 Bit Output/Input Value	0x0000_0001
GPIOC2_DOUT	GP_BA+0x288	R/W	GPIO PC.2 Bit Output/Input Value	0x0000_0001
GPIOC3_DOUT	GP_BA+0x28C	R/W	GPIO PC.3 Bit Output/Input Value	0x0000_0001
GPIOC4_DOUT	GP_BA+0x290	R/W	GPIO PC.4 Bit Output/Input Value	0x0000_0001
GPIOC5_DOUT	GP_BA+0x294	R/W	GPIO PC.5 Bit Output/Input Value	0x0000_0001
GPIOC6_DOUT	GP_BA+0x298	R/W	GPIO PC.6 Bit Output/Input Value	0x0000_0001
GPIOC7_DOUT	GP_BA+0x29C	R/W	GPIO PC.7 Bit Output/Input Value	0x0000_0001
GPIOC8_DOUT	GP_BA+0x2A0	R/W	GPIO PC.8 Bit Output/Input Value	0x0000_0001
GPIOC9_DOUT	GP_BA+0x2A4	R/W	GPIO PC.9 Bit Output/Input Value	0x0000_0001
GPIOC10_DOUT	GP_BA+0x2A8	R/W	GPIO PC.10 Bit Output/Input Value	0x0000_0001
GPIOC11_DOUT	GP_BA+0x2AC	R/W	GPIO PC.11 Bit Output/Input Value	0x0000_0001
GPIOC12_DOUT	GP_BA+0x2B0	R/W	GPIO PC.12 Bit Output/Input Value	0x0000_0001
GPIOC13_DOUT	GP_BA+0x2B4	R/W	GPIO PC.13 Bit Output/Input Value	0x0000_0001
GPIOC14_DOUT	GP_BA+0x2B8	R/W	GPIO PC.14 Bit Output/Input Value	0x0000_0001
GPIOC15_DOUT	GP_BA+0x2BC	R/W	GPIO PC.15 Bit Output/Input Value	0x0000_0001
GPIOD0_DOUT	GP_BA+0x2C0	R/W	GPIO PD.0 Bit Output/Input Value	0x0000_0001

GPIOD1_DOUT	GP_BA+0x2C4	R/W	GPIO PD.1 Bit Output/Input Value	0x0000_0001
GPIOD2_DOUT	GP_BA+0x2C8	R/W	GPIO PD.2 Bit Output/Input Value	0x0000_0001
GPIOD3_DOUT	GP_BA+0x2CC	R/W	GPIO PD.3 Bit Output/Input Value	0x0000_0001
GPIOD4_DOUT	GP_BA+0x2D0	R/W	GPIO PD.4 Bit Output/Input Value	0x0000_0001
GPIOD5_DOUT	GP_BA+0x2D4	R/W	GPIO PD.5 Bit Output/Input Value	0x0000_0001
GPIOD6_DOUT	GP_BA+0x2D8	R/W	GPIO PD.6 Bit Output/Input Value	0x0000_0001
GPIOD7_DOUT	GP_BA+0x2DC	R/W	GPIO PD.7 Bit Output/Input Value	0x0000_0001
GPIOD8_DOUT	GP_BA+0x2E0	R/W	GPIO PD.8 Bit Output/Input Value	0x0000_0001
GPIOD9_DOUT	GP_BA+0x2E4	R/W	GPIO PD.9 Bit Output/Input Value	0x0000_0001
GPIOD10_DOUT	GP_BA+0x2E8	R/W	GPIO PD.10 Bit Output/Input Value	0x0000_0001
GPIOD11_DOUT	GP_BA+0x2EC	R/W	GPIO PD.11 Bit Output/Input Value	0x0000_0001
GPIOD12_DOUT	GP_BA+0x2F0	R/W	GPIO PD.12 Bit Output/Input Value	0x0000_0001
GPIOD13_DOUT	GP_BA+0x2F4	R/W	GPIO PD.13 Bit Output/Input Value	0x0000_0001
GPIOD14_DOUT	GP_BA+0x2F8	R/W	GPIO PD.14 Bit Output/Input Value	0x0000_0001
GPIOD15_DOUT	GP_BA+0x2FC	R/W	GPIO PD.15 Bit Output/Input Value	0x0000_0001

#### 5.5.4 Register Description

#### GPIO Port [A/B/C/D] I/O Mode Control (GPIOx_PMD)

Register	Offset	R/W	Description	Reset Value
GPIOA_PMD	GP_BA+0x000	R/W	GPIO Port A Pin I/O Mode Control	0xFFFF_FFF
GPIOB_PMD	GP_BA+0x040	R/W	GPIO Port B Pin I/O Mode Control	0xFFFF_FFF
GPIOC_PMD	GP_BA+0x080	R/W	GPIO Port C Pin I/O Mode Control	0xFFFF_FFFF
GPIOD_PMD	GP_BA+0x0C0	R/W	GPIO Port D Pin I/O Mode Control	0xFFFF_FFF

31	30	29	28	27	26	25	24		
РМ	D15	PMD14		PMD13		PMI	012		
23	22	21	20	19	18	17	16		
РМ	D11	PM	PMD10 PM		PMD10 PMD		ID9	PM	D8
15	14	13	12	11	10	9	8		
PN	PMD7 PMD6		ID6	PN	ID5	PM	D4 /2		
7	6	5	4	3	2	1	0		
PN	ID3	PMD2		PN	ID1	PM	D0		

Bits	Description	s	
		GPIOx I/O Pin[n] Mode Control	
		Determine each I/O type of GPIOx pins.	
[2n+1:2n]	PMDn	00 = GPIO port [n] pin is in INPUT mode	
[211+1.211]		01 = GPIO port [n] pin is in OUTPUT mode	
100		10 = GPIO port [n] pin is in Open-Drain mode	
a va		11 = GPIO port [n] pin is in Quasi-bidirectional mode	
lan 00	2015	Page 124 of 250	Povision 1.11

# nuvoTon

#### GPIO Port [A/B/C/D] Pin OFF Digital Resistor Enable (GPIOx_OFFD)

Register	Offset	R/W	Description	Reset Value
GPIOA_OFFD	GP_BA+0x004	R/W	GPIO Port A Pin OFF Digital Enable	0x0000_0000
GPIOB_OFFD	GP_BA+0x044	R/W	GPIO Port B Pin OFF Digital Enable	0x0000_0000
GPIOC_OFFD	GP_BA+0x084	R/W	GPIO Port C Pin OFF Digital Enable	0x0000_0000
GPIOD_OFFD	GP_BA+0x0C4	R/W	GPIO Port D Pin OFF Digital Enable	0x0000_0000

31	30	29	28	27	26	25	24	
OFFD								
23	22	21	20	19	18	17	16	
OFFD							2	
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
Reserved								

	Descriptions	Descriptions			
[31:16]	OFFD	<ul> <li>GPIOx Pin[n] OFF Digital Input Path Enable</li> <li>Each of these bits is used to control if the input path disabled. If input is analog signal, users can OFF digital in 1 = Disable IO digital input path (digital input tied to low)</li> <li>0 = Enable IO digital input path</li> </ul>	of corresponding GPIO pin nput path to avoid <b>creepage</b> ,		
[15:0]	Reserved	Reserved			

#### GPIO Port [A/B/C/D] Data Output Value (GPIOx_DOUT)

Register	Offset	R/W	Description	Reset Value
GPIOA_DOUT	GP_BA+0x008	R/W	GPIO Port A Data Output Value	0x0000_FFFF
GPIOB_DOUT	GP_BA+0x048	R/W	GPIO Port B Data Output Value	0x0000_FFFF
GPIOC_DOUT	GP_BA+0x088	R/W	GPIO Port C Data Output Value	0x0000_FFFF
GPIOD_DOUT	GP_BA+0x0C8	R/W	GPIO Port D Data Output Value	0x0000_FFFF

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	0								
15	14	13	12	11	10	9	8		
			DOUT	[15:8]		0	3350		
7	6	5	4	3	2	1	0		
	DOUT[7:0]								

Bits	Descriptions				
[31:16]	Reserved	Reserved			
		GPIOx Pin[n] Output Value			
		Each of these bits control the status of a GPIO pin output, open-drain and quasi-mode.	when the GPIO pin is configures as		
[n]	DOUT[n]	1 = GPIO port [A/B/C/D] Pin[n] will drive High if the GPIO pin is configures as oppen-drain and quasi-mode.			
		0 = GPIO port [A/B/C/D] Pin[n] will drive Low if the open-drain and quasi-mode.	e GPIO pin is configures as output		
Jan. C					

## nuvoTon

#### GPIO Port [A/B/C/D] Data Output Write Mask (GPIOx _DMASK)

Register	Offset	R/W	Description	Reset Value
GPIOA_DMASK	GP_BA+0x00C	R/W	GPIO Port A Data Output Write Mask	0xXXXX_0000
GPIOB_DMASK	GP_BA+0x04C	R/W	GPIO Port B Data Output Write Mask	0xXXXX_0000
GPIOC_DMASK	GP_BA+0x08C	R/W	GPIO Port C Data Output Write Mask	0xXXXX_0000
GPIOD_DMASK	GP_BA+0x0CC	R/W	GPIO Port D Data Output Write Mask	0xXXXX_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	-		Rese	rved		0	3			
15	14	13	12	11	10	9	8			
	DMASK[15:8]									
7	6	5	4	3	2	1	0			
	DMASK[7:0]									

Bits	Descriptions				
[31:16]	Reserved	Reserved			
		Port [A/B/C/D] Data Output Write Mask			
		These bits are used to protect the corresponding register of GPIOx_DOUT bit[n]. Where the DMASK bit[n] to 1, the corresponding GPIOx_DOUT[n] bit is protected. The we signal is masked, write data to the protect bit is ignored			
[n]	DMASK[n]	1 = The corresponding GPIOx_DOUT[n] bit is protected			
		0 = The corresponding GPIOx_DOUT[n] bit can be updated			
N.A.	ŧ.	Note: This function only protect corresponding GPIOx_DOUT[ corresponding bit control register (GPIOAx_DOUT, GPIOBx_ GPIODx_DOUT).			
lan (	19 2015	Page 137 of 350	Revision 1 11		

#### GPIO Port [A/B/C/D] Pin Value (GPIOx _PIN)

Register	Offset	R/W	Description	Reset Value
GPIOA_PIN	GP_BA+0x010	R	GPIO Port A Pin Value	0x0000_XXXX
GPIOB_PIN	GP_BA+0x050	R	GPIO Port B Pin Value	0x0000_XXXX
GPIOC_PIN	GP_BA+0x090	R	GPIO Port C Pin Value	0x0000_XXXX
GPIOD_PIN	GP_BA+0x0D0	R	GPIO Port D Pin Value	0x0000_XXXX

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
Reserved									
15	14	13	12	11	10	9	8		
	PIN[15:8]								
7	6	5	4	3	2	1	0		
PIN[7:0]									

Bits	Descriptions				
[31:16]	Reserved	Reserved			
		Port [A/B/C/D] Pin Values			
[n]	PIN[n]	Each bit of the register reflects the actual status of the respective GPIO pin If bit is indicates the corresponding pin status is high, else the pin status is low			

## nuvoTon

#### GPIO Port [A/B/C/D] De-bounce Enable (GPIOx _DBEN)

Register	Offset	R/W	Description	Reset Value
GPIOA_DBEN	GP_BA+0x014	R/W	GPIO Port A De-bounce Enable	0xXXXX_0000
GPIOB_DBEN	GP_BA+0x054	R/W	GPIO Port B De-bounce Enable	0xXXXX_0000
GPIOC_DBEN	GP_BA+0x094	R/W	GPIO Port C De-bounce Enable	0xXXXX_0000
GPIOD_DBEN	GP_BA+0x0D4	R/W	GPIO Port D De-bounce Enable	0xXXXX_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
	DBEN[15:8]									
7	6	5	4	3	2	1	0			
DBEN[7:0]										

Bits	Descriptions	Descriptions							
[31:16]	Reserved	Reserved Reserved							
		Port [A/B/C/D] Input Signal De-bounce Enable							
F		DBEN[n]used to enable the de-bounce function for e signal pulse width can't be sampled by continuous input signal transition is seen as the signal bounce ar de-bounce clock source is controlled by DBNCECO is controlled by DBNCECON[3:0]	two de-bounce sample cycle The nd will not trigger the interrupt. The						
[n]	DBEN[n]	The DBEN[n] is used for "edge-trigger" interrupt only, and ignored for "level trigger" interrupt							
St. 7.	SU-	1 = The bit[n] de-bounce function is enabled							
	S. 85.	0 = The bit[n] de-bounce function is disabled							
C	3 France	The de-bounce function is valid for edge triggered interrupt. If the interrupt mode is level triggered, the de-bounce enable bit is ignored.							
Jan. 0	9, 2015	Page 139 of 350	Revision 1.11						

#### GPIO Port [A/B/C/D] Interrupt Mode Control (GPIOx _IMD)

Register	Offset	R/W	Description	Reset Value
GPIOA_IMD	GP_BA+0x018	R/W	GPIO Port A Interrupt Mode Control	0xXXXX_0000
GPIOB_IMD	GP_BA+0x058	R/W	GPIO Port B Interrupt Mode Control	0xXXXX_0000
GPIOC_IMD	GP_BA+0x098	R/W	GPIO Port C Interrupt Mode Control	0xXXXX_0000
GPIOD_IMD	GP_BA+0x0D8	R/W	GPIO Port D Interrupt Mode Control	0xXXXX_0000

					411-0	× 31			
31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
			Rese	erved		·Q;	2		
15	14	13	12	11	10	9	8		
			IMD[	15:8]			NY V		
7	6	5	4	3	2	1	0		
IMD[7:0]									

Bits	Descriptions								
[31:16]	Reserved	d Reserved							
		Port [A/B/C/D] Edge or Level Detection Interrupt C	Control						
		IMD[n] is used to control the interrupt is by level interrupt is by edge trigger, the trigger source can interrupt is by level trigger, the input source is s generates the interrupt.	be controlled by de-bounce. If the						
		1 = Level trigger interrupt							
[n]	IMD[n]	0 = Edge trigger interrupt							
N. TY	Y KA	If set pin as the level trigger interrupt, then only one level can be set on the registers GPIOx_IEN. If set both the level to trigger interrupt, the setting is ignored and no interrupt will occur							
~G	30.	The de-bounce function is valid for edge triggered intertriggered, the de-bounce enable bit is ignored.	errupt. If the interrupt mode is level						
	S.C. S.S.								
Jan. 09	9, 2015	Page 140 of 350	Revision 1.11						

# nuvoTon

#### GPIO Port [A/B/C/D] Interrupt Enable Control (GPIOx _IEN)

Register	Offset	R/W	Description	Reset Value
GPIOA_IEN	GP_BA+0x01C	R/W	GPIO Port A Interrupt Enable	0x0000_0000
GPIOB_IEN	GP_BA+0x05C	R/W	GPIO Port B Interrupt Enable	0x0000_0000
GPIOC_IEN	GP_BA+0x09C	R/W	GPIO Port C Interrupt Enable	0x0000_0000
GPIOD_IEN	GP_BA+0x0DC	R/W	GPIO Port D Interrupt Enable	0x0000_0000

31	30	29	28	27	26	25	24	
			IR_EN	I[15:8]	N	Sh.		
23	22	21	20	19	18	17	16	
IR_EN[7:0]								
15	14	13	12	11	10	9	8	
IF_EN[15:8]								
7	6	5	4	3	2	1	0	
			IF_EI	N[7:0]				

Bits	Descriptions						
		Port [A/B/C/D] Interrupt Enable by Input Rising Edge or Input Level High					
		IR_EN[n] used to enable the interrupt for each of the corresponding input GPIO_PIN Set bit to 1 also enable the pin wake-up function					
[n+16]		When set the IR_EN[n] bit to 1:					
	IR_EN[n]	If the interrupt is level trigger, the input PIN[n] state at level "high" will generate the interrupt.					
		If the interrupt is edge trigger, the input PIN[n] state change from "low-to-high" will generate the interrupt.					
	25	1 = Enable the PIN[n] level-high or low-to-high interrupt					
CO.	SP-	0 = Disable the PIN[n] level-high or low-to-high interrupt					
Ko	1 . Mar.	Port [A/B/C/D] Interrupt Enable by Input Falling Edge or Input Level Low					
NC	3 Ta	IF_EN[n] used to enable the interrupt for each of the corresponding input GPIO_PIN[n]. Set bit to 1 also enable the pin wake-up function					
	20	When set the IF_EN[n] bit to 1:					
[n]	IF_EN[n]	If the interrupt is level trigger, the input PIN[n] state at level "low" will generate the interrupt.					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	If the interrupt is edge trigger, the input PIN[n] state change from "high-to-low" will generate the interrupt.					
	1	1 = Enable the PIN[n] state low-level or high-to-low change interrupt					
		0 = Disable the PIN[n] state low-level or high-to-low change interrupt					

GPIO Port [A/B/C/D] Interrupt Trigger Source (GPIOx _ISRC)

Register	Offset	R/W	Description	Reset Value
GPIOA_ISRC	GP_BA+0x020	R/W	GPIO Port A Interrupt Trigger Source Indicator	0x0000_0000
GPIOB_ISRC	GP_BA+0x060	R/W	GPIO Port B Interrupt Trigger Source Indicator	0x0000_0000
GPIOC_ISRC	GP_BA+0x0A0	R/W	GPIO Port C Interrupt Trigger Source Indicator	0x0000_0000
GPIOD_ISRC	GP_BA+0x0E0	R/W	GPIO Port D Interrupt Trigger Source Indicator	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
IF_ ISRC[15:8]										
7	6	5	4	3	2	1	0			
IF_ ISRC[7:0]										

Bits	Descriptions								
[31:16]	Reserved	Reserved	Reserved						
		Port [A/B/C/D] Interrupt Trigger Source Indicator	Port [A/B/C/D] Interrupt Trigger Source Indicator						
		Read :							
2		1 = Indicates GPIOx[n] generate an interrupt							
[n]	ISRC[n]	0 = No interrupt at GPIOx[n]							
15 1		Write :							
SY 3	10	1= Clear the correspond pending interrupt							
VI.	¥	0= No action							
Jan. 09	9, 2015	Page 142 of 350	Revision 1.11						

nuvoTon

Interrupt De-bounce Cycle Control (DBNCECON)

Register	Offset	R/W	Description	Reset Value
DBNCECON	GP_BA+0x180	R/W	External Interrupt De-bounce Control	0x0000_0020

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
			Rese	erved		200	à			
7	6	5	4	3	2	1	0			
Rese	erved	ICLK_ON	DBCLKSRC	RC DBCLKSEL			01			

Bits	Descriptions					
		Interrupt Clock On Mode				
[5]	ICLK_ON	Set this bit to 0 will disable the interrupt generate circuit clock, if the pin[n] interrupt is disabled				
		1 = Interrupt ge	nerated circuit clock always enable			
		0 = Disable the	clock if the GPIOA/B/C/D[n] interrupt is disabled			
		De-bounce Co	unter Clock Source Selection			
[4]	DBCLKSRC	1 = De-bounce	counter clock source is the internal 10 KHz low speed clock			
S		0 = De-bounce counter clock source is the HCLK				
P.		De-bounce Sa	mpling Cycle Selection			
		DBCLKSEL	Description			
SY's	6	0	Sample interrupt input once per 1 clocks			
	×	1	Sample interrupt input once per 2 clocks			
X	and the	2	Sample interrupt input once per 4 clocks			
[3:0]	DBCLKSEL	3	Sample interrupt input once per 8 clocks			
	Show Color	4	Sample interrupt input once per 16 clocks			
	No.	5	Sample interrupt input once per 32 clocks			
	20	6	Sample interrupt input once per 64 clocks			
	C	7	Sample interrupt input once per 128 clocks			
		8	Sample interrupt input once per 256 clocks			

nuvoton

9	Sample interrupt input once per 2*256 clocks	
10	Sample interrupt input once per 4*256clocks	
11	Sample interrupt input once per 8*256 clocks	
12	Sample interrupt input once per 16*256 clocks	
13	Sample interrupt input once per 32*256 clocks	
14	Sample interrupt input once per 64*256 clocks	
15	Sample interrupt input once per 128*256 clocks	

nuvoTon

GPIO Port [A/B/C/D] I/O Bit Output/Input Control (GPIOxx_DOUT)

Register	Offset	R/W	Description	Reset Value
	GP_BA+0x200		In the	
GPIOAx_DOUT	-	R/W	GPIO Port A Pin I/O Bit Output/Input Control	0x0000_0001
	GP_BA+0x23C			
	GP_BA+0x240			
GPIOBx_DOUT	-	R/W	GPIO Port B Pin I/O Bit Output/Input Control	0x0000_0001
	GP_BA+0x27C		Contra to	
	GP_BA+0x280		C C C C C C C C C C C C C C C C C C C	
GPIOCx_DOUT	-	R/W	GPIO Port C Pin I/O Bit Output/Input Control	0x0000_0001
	GP_BA+0x2BC		Non C	2
	GP_BA+0x2C0		22	NO2
GPIODx_DOUT	-	R/W	GPIO Port D Pin I/O Bit Output/Input Control	0x0000_0001
	GP_BA+0x2FC			9 V V

							011	
31	30	29	28	27	26	25	24	
			Rese	erved				
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
		•	Rese	erved		•		
7	6	5	4	3	2	1	0	
Reserved							GPIOxx_DOU T	
Bits	Description	s						

Bits	Descriptions			
- YS	S. Ster	GPIOxx I/O Pin Bit Output/Input Control		
NG.	21.12	Write this bit can control one GPIO pin output value		
~ ~	- m - D -	1 = Set corresponding GPIO pin to high		
[0]	GPIOxx_DOUT	0 = Set corresponding GPIO pin to low		
	8 ~ 1	Read this register to get IO pin status.		
	~?p_	For example: write GPIOA0_DOUT will reflect the written value to bit GPIOA_DOUT[0], read GPIOA0_DOUT will return the value of GPIOA_PIN[0].		

5.6 Timer Controller (TMR)

5.6.1 Overview

The timer controller includes four 32-bit timers, TIMER0~TIMER3, which allows user to easily implement a timer control for applications. The timer can perform functions like frequency measurement, event counting, interval measurement, clock generation, delay timing, and so on. The timer can generates an interrupt signal upon timeout, or provide the current value during operation.

5.6.2 Features

- 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit pre-scale counter
- Independent clock source for each timer
- Provides one-shot, periodic, toggle and continuous counting operation modes
- Time out period = (Period of timer clock input) * (8-bit pre-scale counter + 1) * (24-bit TCMP)
- Maximum counting cycle time = $(1 / T MHz) * (2^8) * (2^{24})$, T is the period of timer clock
- 24-bit timer value is readable through TDR (Timer Data Register)
- Support event counting function to count the event from external pin

5.6.3 Block Diagram

Each channel is equipped with an 8-bit pre-scale counter, a 24-bit up-timer, a 24-bit compare register and an interrupt request signal. There are four options of clock sources for each channel. Figure 5-15 Timer Controller Clock Source Diagram illustrates the clock source control function. Refer to Figure 5-16 Timer Controller Block Diagram for the Timer controller block diagram. Software can program the 8-bit pre-scale counter to decide the clock period to 24-bit up timer.

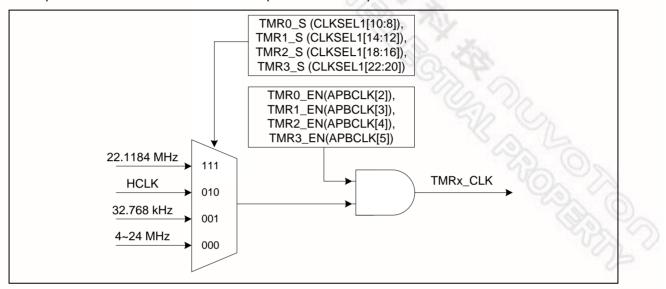
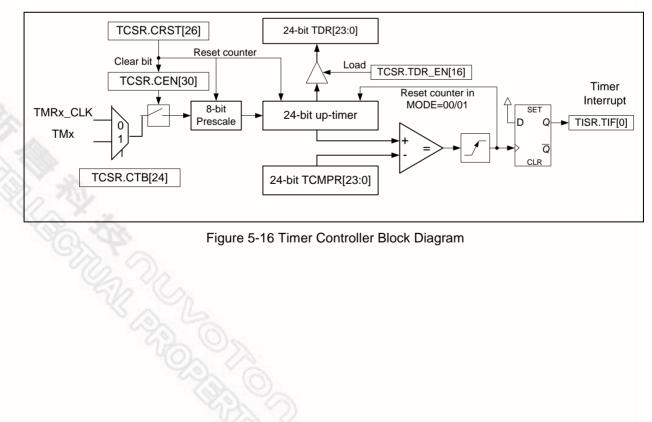



Figure 5-15 Timer Controller Clock Source Diagram

5.6.4 Function Description

Timer controller provides one-shot, period, toggle and continuous counting operation modes. It also provides the event counting function to count the event from external pin. Each operating function mode is shown as following:

5.6.4.1 One – Shot Mode

If timer is operated at one-shot mode and CEN (TCSR[30] timer enable bit) is set to 1, the timer counter starts up counting. Once the timer counter value reaches timer compare register (TCMPR) value, if IE (TCSR[29] interrupt enable bit) is set to 1, then the timer interrupt flag is set and the interrupt signal is generated and sent to NVIC to inform CPU. It indicates that the timer counting overflow happens. If IE (TCSR[29] interrupt enable bit) is set to 0, no interrupt signal is generated. In this operating mode, once the timer counter value reaches timer compare register (TCMPR) value, the timer counter value goes back to counting initial value and CEN (timer enable bit) is cleared to 0 by timer controller. Timer counting operation stops, once the timer counter value reaches timer operates timer counter counter only one time after programming the timer compare register (TCMPR) value and CEN (timer enable bit) is set to 1. So, this operating mode is called One-Shot mode.

5.6.4.2 Periodic Mode

If timer is operated at period mode and CEN (TCSR[30] timer enable bit) is set to 1, the timer counter starts up counting. Once the timer counter value reaches timer compare register (TCMPR) value, if IE (TCSR[29] interrupt enable bit) is set to 1, then the timer interrupt flag is set and the interrupt signal is generated and sent to NVIC to inform CPU. It indicates that the timer counting overflow happens. If IE (TCSR[29] interrupt enable bit) is set to 0, no interrupt signal is generated. In this operating mode, once the timer counter value reaches timer compare register (TCMPR) value, the timer counter value goes back to counting initial value and CEN is kept at 1 (counting enable continuously). The timer counter operates up counting again. If the interrupt flag is cleared by software, once the timer counter value reaches timer compare register (TCMPR) value and IE (interrupt enable bit) is set to 1'b1, then the timer interrupt flag is set and the interrupt signal is generated and sent to NVIC to inform CPU again. That is to say, timer operates timer counting and compares with TCMPR value function periodically. The timer counting operation doesn't stop until the CEN is set to 0. The interrupt signal is also generated periodically. So, this operating mode is called Periodic mode.

5.6.4.3 Toggle Mode

If timer is operated at toggle mode and CEN (TCSR[30] timer enable bit) is set to 1, the timer counter starts up counting. Once the timer counter value reaches timer compare register (TCMPR) value, if IE (TCSR[29] interrupt enable bit) is set to 1, then the timer interrupt flag is set and the interrupt signal is generated and sent to NVIC to inform CPU. It indicates that the timer counting overflow happens. The associated toggle output (tout) signal is set to 1. In this operating mode, once the timer counter value reaches timer compare register (TCMPR) value, the timer counter value goes back to counting initial value and CEN is kept at 1 (counting enable continuously). The timer counter operates up counting again. If the interrupt flag is cleared by software, once the timer counter value reaches timer compare register (TCMPR) value and IE (interrupt enable bit) is set to 1, then the timer interrupt flag is set and the interrupt signal is generated and sent to NVIC to inform CPU again. The associated toggle output (tout) signal is set to 0. The timer counting operation doesn't stop until the CEN is set to 0. Thus, the toggle output (tout) signal is changing back and forth with 50% duty cycle. So, this operating mode is called Toggle mode.

5.6.4.4 Continuous Counting Mode

If the timer is operated at continuous counting mode and CEN (TCSR[30] timer enable bit) is set to 1, the associated interrupt signal is generated depending on TDR = TCMPR if IE (TCSR[29]

interrupt enable bit) is enabled. User can change different TCMPR value immediately without disabling timer counting and restarting timer counting. For example, TCMPR is set as 80, first. (The TCMPR should be less than 2²⁴ and be greater than 1). The timer generates the interrupt if IE is enabled and TIF (timer interrupt flag) will set to 1 then the interrupt signal is generated and sent to NVIC to inform CPU when TDR value is equal to 80. But the CEN is kept at 1 (counting enable continuously) and TDR value will not goes back to 0, it continues to count 81, 82, 83, • • to 2²⁴ -1, 0, 1, 2, 3, • • to 2²⁴ -1 again and again. Next, if user programs TCMPR as 200 and the TIF is cleared to 0, then timer interrupt occurred and TIF is set to 1 then the interrupt signal is generated and sent to NVIC to inform CPU again when TDR value reaches to 200. At last, user programs TCMPR as 500 and clears TIF to 0 again, then timer interrupt occurred and TIF sets to 1 then the interrupt signal is generated and sent to NVIC to inform CPU when TDR value reaches to 500. From application view, the interrupt is generated depending on TCMPR. In this mode, the timer counting is continuous. So, this operation mode is called as continuous counting mode.

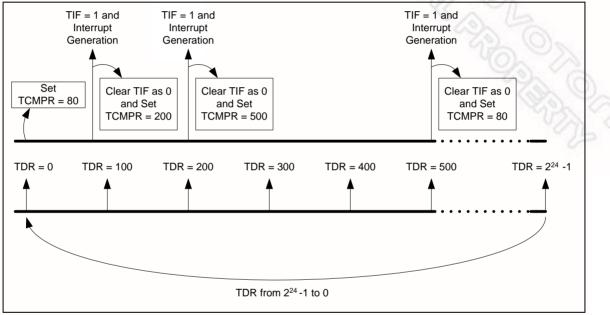


Figure 5-17 Continuous Counting Mode

5.6.4.5 Event Counting Function

It also provides an application which can count the event from TM0~TM3 pins. It is called as event counting mode. In event counting mode, the clock source of timer controller, TMRx_CLK, in Figure 5-15 should be set as HCLK. And, the event count source operating frequency should be less than 1/3 HCLK frequency.

5.6.5 Register Map

R: read only, W: write only, R/W: both read and write

_		No and Alexandree	
_BA01+0x00			
_			
_BA01+0x04	R/W	Timer0 Control and Status Register	0x0000_000
	R/W	Timer0 Compare Register	0x0000_000
_BA01+0x08	R/W	Timer0 Interrupt Status Register	0x0000_000
BA01+0x0C	R	Timer0 Data Register	0x0000_000
_BA01+0x20	R/W	Timer1 Control and Status Register	0x0000_000
_BA01+0x24	R/W	Timer1 Compare Register	0x0000_000
BA01+0x28	R/W	Timer1 Interrupt Status Register	0x0000_000
_BA01+0x2C	R	Timer1 Data Register	0x0000_000
_BA23+0x00	R/W	Timer2 Control and Status Register	0x0000_000
_BA23+0x04	R/W	Timer2 Compare Register	0x0000_000
_BA23+0x08	R/W	Timer2 Interrupt Status Register	0x0000_000
_BA23+0x0C	R	Timer2 Data Register	0x0000_000
BA23+0x20	R/W	Timer3 Control and Status Register	0x0000_000
_BA23+0x24	R/W	Timer3 Compare Register	0x0000_000
_BA23+0x28	R/W	Timer3 Interrupt Status Register	0x0000_000
_BA23+0x2C	R	Timer3 Data Register	0x0000_000
	BA01+0x20 BA01+0x24 BA01+0x28 BA01+0x2C BA23+0x00 BA23+0x04 BA23+0x08 BA23+0x0C BA23+0x20 BA23+0x24 BA23+0x28	BA01+0x20 R/W BA01+0x24 R/W BA01+0x28 R/W BA01+0x2C R BA01+0x2C R BA23+0x00 R/W BA23+0x04 R/W BA23+0x08 R/W BA23+0x02 R BA23+0x20 R/W BA23+0x28 R/W	BA01+0x20R/WTimer1 Control and Status RegisterBA01+0x24R/WTimer1 Compare RegisterBA01+0x28R/WTimer1 Interrupt Status RegisterBA01+0x2CRTimer1 Data RegisterBA01+0x2CRTimer2 Control and Status RegisterBA23+0x00R/WTimer2 Compare RegisterBA23+0x04R/WTimer2 Interrupt Status RegisterBA23+0x08R/WTimer2 Interrupt Status RegisterBA23+0x00RTimer2 Data RegisterBA23+0x02RTimer3 Control and Status RegisterBA23+0x20R/WTimer3 Compare RegisterBA23+0x24R/WTimer3 Compare RegisterBA23+0x28R/WTimer3 Interrupt Status Register

nuvoTon

5.6.6 Register Description

Timer Control and Status Register (TCSR)

Register	Offset	R/W	Description	Reset Value				
TCSR0	TMR_BA01+0x00	R/W	Timer0 Control and Status Register	0x0000_0005				
TCSR1	TMR_BA01+0x20	R/W	Timer1 Control and Status Register	0x0000_0005				
TCSR2	TMR_BA23+0x00	R/W	Timer2 Control and Status Register	0x0000_0005				
TCSR3	TMR_BA23+0x20	R/W	Timer3 Control and Status Register	0x0000_0005				

31	30	29	28	27	26	25	24	
DBGACK_TM R	CEN	IE	MOD	E[1:0]	CRST	CACT	СТВ	
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7 6 5 4 3 2 1								
	PRESCALE[7:0]							

Bits	Descriptions	
		ICE Debug Mode Acknowledge Disable (write-protection bit)
2		0 = ICE debug mode acknowledgement effects TIMER counting.
[31]	DBGACK_TMR	TIMER counter will be held while ICE debug mode acknowledged.
A		1 = ICE debug mode acknowledgement disabled.
105 1		TIMER counter will keep going no matter ICE debug mode acknowledged or not.
	CEN	Timer Enable Bit
×22		1 = Starts counting
Xa		0 = Stops/Suspends counting
[30]		Note1: In stop status, and then set CEN to 1 will enables the 24-bit up-timer keeps up counting from the last stop counting value.
	So C	Note2: This bit is auto-cleared by hardware in one-shot mode (MODE [28:27] =00) when the associated timer interrupt is generated (IE [29] =1).
	~ Cor	Interrupt Enable Bit
	32	1 = Enable timer Interrupt
[29]	IE (C	0 = Disable timer Interrupt
		If timer interrupt is enabled, the timer asserts its interrupt signal when the associated up- timer value is equal to TCMPR.

		Timer Operating Mode					
		MODE	Timer Operating Mode				
		00	The timer is operating in the one-shot mode. The associated interrupt signal is generated once (if IE is enabled) and CEN is automatically cleared by hardware.				
[28:27]	MODE	01	The timer is operating in the periodic mode. The associated interrupt signal is generated periodically (if IE is enabled).				
		10	The timer is operating in the toggle mode. The interrupt signal is generated periodically (if IE is enabled). And the associated signal (tout) is changing back and forth with 50 % duty cycle.				
		11	The timer is operating at continuous counting mode. The associated interrupt signal is generated when TDR = TCMPR (if IE is enabled). However, the 24-bit up-timer counts continuously. Please refer to Figure 5-17 for detail description about continuous counting mode operation.				
		Timer Reset	Bit				
[26]	CRST	Set this bit will reset the 24-bit up-timer, pre-scale and also force CEN to 0.					
[20]		0 = No effect					
		1 = Reset Timer's pre-scale counter, internal 24-bit up-timer and CEN bit					
		Timer Active Status Bit (Read only)					
[25]	CACT	This bit indicates the up-timer status.					
[20]		0 = Timer is not active					
		1 = Timer is active					
		Counter Mod	de Enable Bit				
[24]	СТВ	should be se	e counter mode enable bit. When Timer is used as an event counter, this b t to 1 and Timer will work as an event counter. The event is triggered b om external pin.				
		1 = Enable co	punter mode				
		0 = Disable c	ounter mode				
[23:17]	Reserved	Reserved					
87.7	20	Data Load Enable					
[16]	TDR_EN	When TDR_EN is set, TDR (Timer Data Register) will be updated continuously with the 24-bit up-timer value as the timer is counting.					
	SA PA	1 = Timer Data Register update enable					
	Cardos	0 = Timer Da	ta Register update disable				
[15:8]	Reserved	Reserved					
	200	Pre-scale Co	punter				
[7:0]	PRESCALE	Clock input is divided by PRESCALE+1 before it is fed to the counter. If PRESCALE =0, then there is no scaling.					

nuvoTon

Timer Compare Register (TCMPR)

Register	Offset	R/W	Description	Reset Value
TCMPR0	TMR_BA01+0x04	R/W	Timer0 Compare Register	0x0000_0000
TCMPR1	TMR_BA01+0x24	R/W	Timer1 Compare Register	0x0000_0000
TCMPR2	TMR_BA23+0x04	R/W	Timer2 Compare Register	0x0000_0000
TCMPR3	TMR_BA23+0x24	R/W	Timer3 Compare Register	0x0000_0000

						V. 11		
31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	TCMP[23:16]							
15	14	13	12	11	10	9	8	
	TCMP[15:8]							
7	6	5	4	3	2	1	0	
TCMP[7:0]								

	Bits	Descriptions	Descriptions				
	[31:24]	Reserved	Reserved				
			Timer Compared Value				
1000	~		TCMP is a 24-bit compared register. When the internal 24-bit up-timer counts and i value is equal to TCMP value, a Timer Interrupt is requested if the timer interrupt enabled with TCSR.IE[29]=1. The TCMP value defines the timer counting cycle time.				
	[23:0]	тсмр	Time-out period = (Period of timer clock input) * (8-bit PRESCALE	+ 1) * (24-bit TCMP)			
2		2 2 2 3 3	Note1: Never write 0x0 or 0x1 in TCMP, or the core will run into un	known state.			
			Note2: When timer is operating at continuous counting mode, t count continuously if software writes a new value into TCMP. If tim modes, the 24-bit up-timer will restart counting and using newest compared value if software writes a new value into TCMP.	er is operating at other			
	Jan. 09,	2015	Page 153 of 350	Revision 1.11			

Timer Interrupt Status Register (TISR)

Register	Offset	R/W	Description	Reset Value
TISR0	TMR_BA01+0x08	R/W	Timer0 Interrupt Status Register	0x0000_0000
TISR1	TMR_BA01+0x28	R/W	Timer1 Interrupt Status Register	0x0000_0000
TISR2	TMR_BA23+0x08	R/W	Timer2 Interrupt Status Register	0x0000_0000
TISR3	TMR_BA23+0x28	R/W	Timer3 Interrupt Status Register	0x0000_0000

						1 mm	
31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
Reserved							
7	6	5	4	3	2	1	0
	Reserved						

Bits	Descriptions	Descriptions						
[31:1]	Reserved	Reserved Reserved						
		Timer Interrupt Flag						
0]	TIF	This bit indicates the interrupt status of Timer.						
		TIF bit is set by hardware when the up counting valu timer compared value (TCMP). It is cleared by writing	e of internal 24-bit timer matches th g 1 to this bit.					
~								

nuvoTon

Timer Data Register (TDR)

Register	Offset	R/W	Description	Reset Value
TDR0	TMR_BA01+0x0C	R/W	Timer0 Data Register	0x0000_0000
TDR1	TMR_BA01+0x2C	R/W	Timer1 Data Register	0x0000_0000
TDR2	TMR_BA23+0x0C	R/W	Timer2 Data Register	0x0000_0000
TDR3	TMR_BA23+0x2C	R/W	Timer3 Data Register	0x0000_0000

Reserved	
23 22 21 20 19 18 17 2	24
TDR[23-16]	16
151(20.10)	1
15 14 13 12 11 10 9	8
TDR[15:8]	0
7 6 5 4 3 2 1	0
TDR[7:0]	

Bits	Descriptions	
[31:24]	Reserved	Reserved
		Timer Data Register
[23:0]	TDR	When TCSR.TDR_EN is set to 1, the internal 24-bit up-timer value will be loaded into TDR. User can read this register for the up-timer value.
*		

5.7 PWM Generator and Capture Timer (PWM)

5.7.1 Overview

NuMicro[™] NUC122 only support 1 set of PWM group supports total 2 sets of PWM Generators which can be configured as 4 independent PWM outputs, PWM0~PWM3, or as 2 complementary PWM pairs, (PWM0, PWM1) and (PWM2, PWM3) with 2 programmable dead-zone generators.

Each PWM Generator has one 8-bit prescaler, one clock divider with 5 divided frequencies (1, 1/2, 1/4, 1/8, 1/16), two PWM Timers including two clock selectors, two 16-bit PWM down-counters for PWM period control, two 16-bit comparators for PWM duty control and one dead-zone generator. The 4 sets of PWM Generators provide eight independent PWM interrupt flags which are set by hardware when the corresponding PWM period down counter reaches zero. Each PWM interrupt source with its corresponding enable bit can cause CPU to request PWM interrupt. The PWM generators can be configured as one-shot mode to produce only one PWM cycle signal or auto-reload mode to output PWM waveform continuously.

When PCR.DZEN01 is set, PWM0 and PWM1 perform complementary PWM paired function; the paired PWM period, duty and dead-time are determined by PWM0 timer and Dead-zone generator 0. Similarly, the complementary PWM pairs of (PWM2, PWM3), are controlled by PWM2, timer and Dead-zone generator 2. Refer to figures bellowed for the architecture of PWM Timers.

To prevent PWM driving output pin with unsteady waveform, the 16-bit period down counter and 16-bit comparator are implemented with double buffer. When user writes data to counter/comparator buffer registers the updated value will be load into the 16-bit down counter/ comparator at the time down counter reaching zero. The double buffering feature avoids glitch at PWM outputs.

When the 16-bit period down counter reaches zero, the interrupt request is generated. If PWM-timer is set as auto-reload mode, when the down counter reaches zero, it is reloaded with PWM Counter Register (CNRx) automatically then start decreasing, repeatedly. If the PWM-timer is set as one-shot mode, the down counter will stop and generate one interrupt request when it reaches zero.

The value of PWM counter comparator is used for pulse high width modulation. The counter control logic changes the output to high level when down-counter value matches the value of compare register.

The alternate feature of the PWM-timer is digital input Capture function. If Capture function is enabled the PWM output pin is switched as capture input mode. The Capture0 and PWM0 share one timer which is included in PWM0 and the Capture1 and PWM1 share PWM1 timer, and etc. Therefore user must setup the PWM-timer before enable Capture feature. After capture feature is enabled, the capture always latched PWM-counter to Capture Rising Latch Register (CRLR) when input channel has a rising transition and latched PWM-counter to Capture Falling Latch Register (CFLR) when input channel has a falling transition. Capture channel 0 interrupt is programmable by setting CCR0.CRL_IE0[1] (Rising latch Interrupt enable) and CCR0.CFL_IE0[2]] (Falling latch Interrupt enable) to decide the condition of interrupt occur. Capture channel 1 has the same feature by setting CCR0.CRL_IE1[17] and CCR0.CFL_IE1[18]. And capture channel 2 to channel 3 have the same feature by setting the corresponding control bits in CCR2. For each group, whenever Capture issues Interrupt 0/1/2/3, the PWM counter 0/1/2/3 will be reload at this moment.

The maximum captured frequency that PWM can capture is confined by the capture interrupt latency. When capture interrupt occurred, software will do at least three steps, they are: Read PIIRx to get interrupt source and Read CRLRx/CFLRx(x=0~3) to get capture value and finally write 1 to clear PIIRx to zero. If interrupt latency will take time T0 to finish, the capture signal mustn't transition during this interval (T0). In this case, the maximum capture frequency will be 1/T0. For example:

HCLK = 50 MHz, PWM_CLK = 25 MHz, Interrupt latency is 900 ns

So the maximum capture frequency will be 1/900 ns ≈ 1000 KHz

nuvoTon

5.7.2 Features

5.7.2.1 *PWM function features:*

- PWM group has two PWM generators. Each PWM generator supports one 8-bit prescaler, one clock divider, two PWM-timers (down counter), one dead-zone generator and two PWM outputs.
- Up to 16 bits resolution
- PWM Interrupt request synchronized with PWM period
- One-shot or Auto-reload mode PWM
- Support 4 PWM channels or 2 PWM paired channels

5.7.2.2 Capture Function Features:

- Timing control logic shared with PWM Generators
- 4 Capture input channels shared with 4 PWM output channels
- Each channel supports one rising latch register (CRLR), one falling latch register (CFLR) and Capture interrupt flag (CAPIFx)

5.7.3 Block Diagram

The following figures illustrate the architecture of PWM in pair (PWM-Timer 0&1 are in one pair and PWM-Timer 2&3 are in another one).

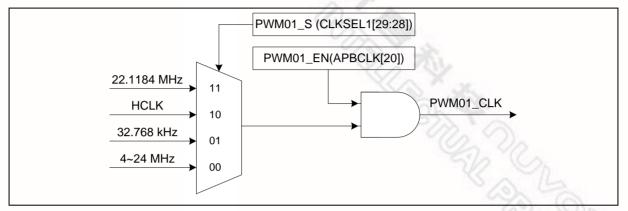


Figure 5-18 PWM Generator 0 Clock Source Control

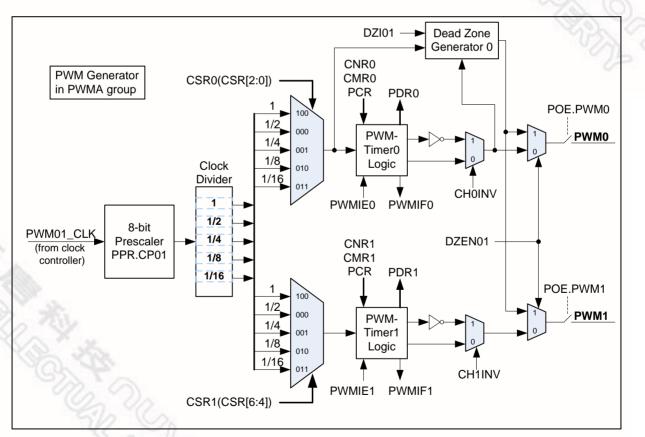


Figure 5-19 PWM Generator 0 Architecture Diagram

nuvoTon

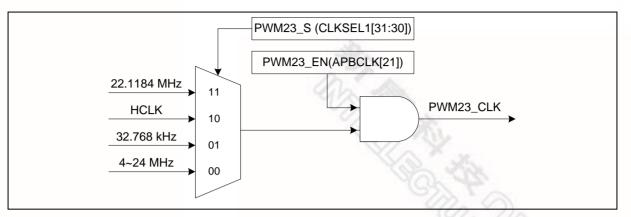


Figure 5-20 PWM Generator 2 Clock Source Control

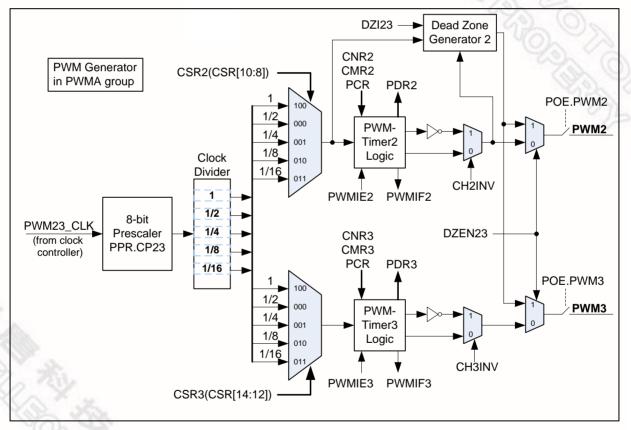


Figure 5-21 PWM Generator 2 Architecture Diagram

5.7.4 Function Description

5.7.4.1 PWM-Timer Operation

The PWM period and duty control are configured by PWM down-counter register (CNR) and PWM comparator register (CMR). The PWM-timer timing operation is shown in Figure 5-23. The pulse width modulation follows the formula as below and the legend of PWM-Timer Comparator is shown as Figure 5-22. Note that the corresponding GPIO pins must be configured as PWM function (enable POE and disable CAPENR) for the corresponding PWM channel.

- PWM frequency = PWMxy_CLK/[(prescale+1)*(clock divider)*(CNR+1)]; where xy, could be 01, or 23, depends on selected PWM channel.
- Duty ratio = (CMR+1)/(CNR+1)
- CMR >= CNR: PWM output is always high
- CMR < CNR: PWM low width= (CNR-CMR) unit^[1]; PWM high width = (CMR+1) unit
- CMR = 0: PWM low width = (CNR) unit; PWM high width = 1 unit

Note: [1] Unit = one PWM clock cycle.

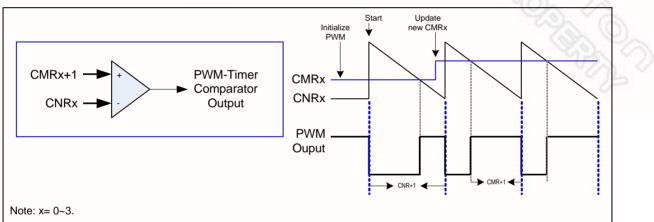
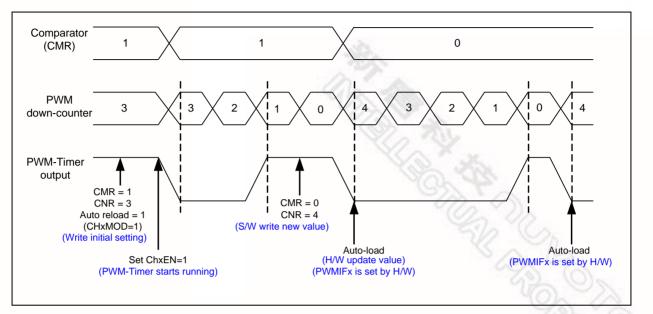



Figure 5-22 Legend of Internal Comparator Output of PWM-Timer

nuvoton

5.7.4.2 PWM Double Buffering, Auto-reload and One-shot Operation

PWM Timers have double buffering function the reload value is updated at the start of next period without affecting current timer operation. The PWM counter value can be written into CNRx and current PWM counter value can be read from PDRx.

The bit CH0MOD in PWM Control Register (PCR) defines PWM0 operates in auto-reload or one-shot mode If CH0MOD is set to one, the auto-reload operation loads CNR0 to PWM counter when PWM counter reaches zero. If CNR0 are set to zero, PWM counter will be halt when PWM counter counts to zero. If CH0MOD is set as zero, counter will be stopped immediately. PWM1~PWM3 performs the same function as PWM0.

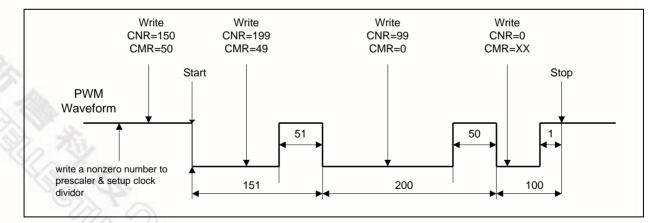


Figure 5-24 PWM Double Buffering Illustration

5.7.4.3 Modulate Duty Ratio

The double buffering function allows CMRx written at any point in current cycle. The loaded value will take effect from next cycle.

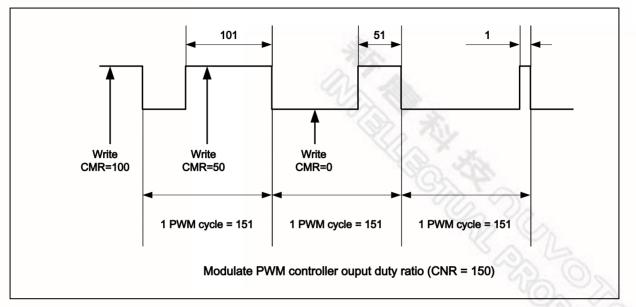


Figure 5-25 PWM Controller Output Duty Ratio

5.7.4.4 Dead-Zone Generator

PWM controller is implemented with Dead Zone generator. They are built for power device protection. This function generates a programmable time gap to delay PWM rising output. User can program PPRx.DZI to determine the Dead Zone interval.

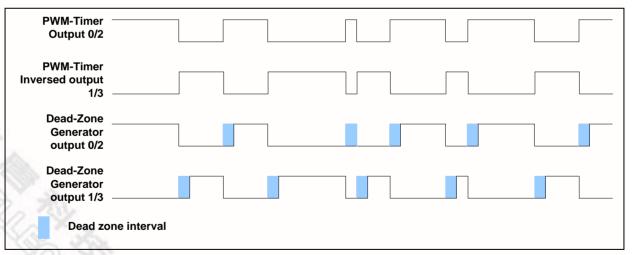


Figure 5-26 Paired-PWM Output with Dead Zone Generation Operation

5.7.4.5 Capture Operation

The Capture 0 and PWM 0 share one timer that included in PWM 0; and the Capture 1 and PWM 1 share another timer, and etc. The capture always latches PWM-counter to CRLRx when input channel has a rising transition and latches PWM-counter to CFLRx when input channel has a falling transition. Capture channel 0 interrupt is programmable by setting CCR0[1] (Rising latch Interrupt enable) and CCR0[2] (Falling latch Interrupt enable) to decide the condition of interrupt occur. Capture channel 1 has the same feature by setting CCR0[17] and CCR0[18], and etc. Whenever the Capture controller issues a capture interrupt, the corresponding PWM counter will be reloaded with CNRx at this moment. Note that the corresponding GPIO pins must be configured as capture function (disable POE and enable CAPENR) for the corresponding capture channel.

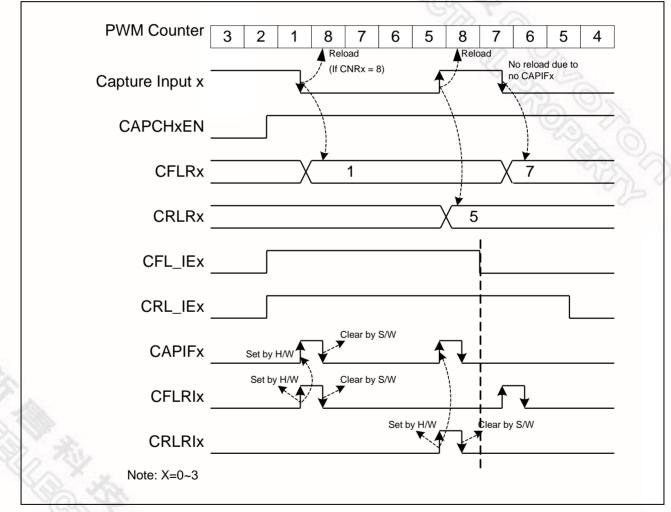


Figure 5-27 Capture Operation Timing

At this case, the CNR is 8:

- 1. The PWM counter will be reloaded with CNRx when a capture interrupt flag (CAPIFx) is set.
- 2. The channel low pulse width is (CNR + 1 CRLR).
- 3. The channel high pulse width is (CNR + 1 CFLR).

5.7.4.6 *PWM-Timer Interrupt Architecture*

There are four PWM interrupts, PWM0_INT~PWM3_INT, which are combined into PWMA_INT for Advanced Interrupt Controller (AIC). PWM 0 and Capture 0 share one interrupt, PWM1 and Capture 1 share the same interrupt and so on. Therefore, PWM function and Capture function in the same channel cannot be used at the same time. Figure 5-28 demonstrates the architecture of PWM-Timer interrupts.

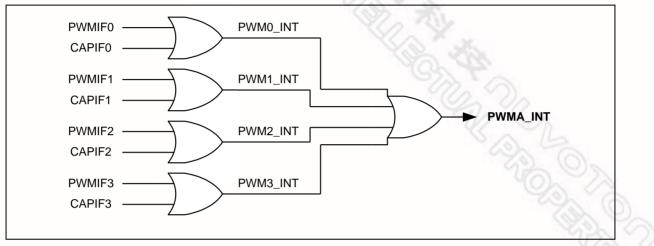


Figure 5-28 PWM Group A PWM-Timer Interrupt Architecture Diagram

nuvoTon

5.7.4.7 PWM-Timer Start Procedure

The following procedure is recommended for starting a PWM drive.

- 1. Setup clock selector (CSR)
- 2. Setup prescaler (PPR)
- 3. Setup inverter on/off, dead zone generator on/off, auto-reload/one-shot mode and Stop PWMtimer (PCR)
- 4. Setup comparator register (CMR) for setting PWM duty.
- 5. Setup PWM down-counter register (CNR) for setting PWM period.
- 6. Setup interrupt enable register (PIER)
- 7. Setup corresponding GPIO pins as PWM function (enable POE and disable CAPENR) for the corresponding PWM channel.
- 8. Enable PWM timer start running (Set CHxEN = 1 in PCR)

5.7.4.8 PWM-Timer Stop Procedure

Method 1:

Set 16-bit down counter (CNR) as 0, and monitor PDR (current value of 16-bit down-counter). When PDR reaches to 0, disable PWM-Timer (CHxEN in PCR). *(Recommended)*

Method 2:

Set 16-bit down counter (CNR) as 0. When interrupt request happened, disable PWM-Timer (CHxEN in PCR). *(Recommended)*

Method 3:

Disable PWM-Timer directly ((CHxEN in PCR). (Not recommended)

The reason why method 3 is not recommended is that disable CHxEN will immediately stop PWM output signal and lead to change the duty of the PWM output, this may cause damage to the control circuit of motor

5.7.4.9 Capture Start Procedure

- 1. Setup clock selector (CSR)
- 2. Setup prescaler (PPR)
- 3. Setup channel enabled, rising/falling interrupt enable and input signal inverter on/off (CCR0, CCR2)
- 4. Setup PWM down-counter (CNR)
- 5. Setup corresponding GPIO pins as capture function (disable POE and enable CAPENR) for the corresponding PWM channel.
- 6. Enable PWM timer start running (Set CHxEN = 1 in PCR)

5.7.5 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset R/W Description		Description	Reset Value
PWMA_BA :	= 0x4004_0000 (PWN	group	A)	
PPR	PWMA_BA+0x00	R/W	PWM Group A Pre-scale Register	0x0000_0000
CSR	PWMA_BA+0x04	R/W	PWM Group A Clock Selection Register	0x0000_0000
PCR	PWMA_BA+0x08	R/W	PWM Group A Control Register	0x0000_0000
CNR0	PWMA_BA+0x0C	R/W	PWM Group A Counter Register 0	0x0000_0000
CMR0	PWMA_BA+0x10	R/W	PWM Group A Comparator Register 0	0x0000_0000
PDR0	PWMA_BA+0x14	R	PWM Group A Data Register 0	0x0000_0000
CNR1	PWMA_BA+0x18	R/W	PWM Group A Counter Register 1	0x0000_0000
CMR1	PWMA_BA+0x1C	R/W	PWM Group A Comparator Register 1	0x0000_0000
PDR1	PWMA_BA+0x20	R	PWM Group A Data Register 1	0x0000_0000
CNR2	PWMA_BA+0x24	R/W	PWM Group A Counter Register 2	0x0000_0000
CMR2	PWMA_BA+0x28	R/W	PWM Group A Comparator Register 2	0x0000_0000
PDR2	PWMA_BA+0x2C	R	PWM Group A Data Register 2	0x0000_0000
CNR3	PWMA_BA+0x30	R/W	PWM Group A Counter Register 3	0x0000_0000
CMR3	PWMA_BA+0x34	R/W	PWM Group A Comparator Register 3	0x0000_0000
PDR3	PWMA_BA+0x38	R	PWM Group A Data Register 3	0x0000_0000
PIER	PWMA_BA+0x40	R/W	PWM Group A Interrupt Enable Register	0x0000_0000
PIIR	PWMA_BA+0x44	R/W	PWM Group A Interrupt Indication Register	0x0000_0000
CCR0	PWMA_BA+0x50	R/W	PWM Group A Capture Control Register 0	0x0000_0000
CCR2	PWMA_BA+0x54	R/W	PWM Group A Capture Control Register 2	0x0000_0000
CRLR0	PWMA_BA+0x58	R/W	PWM Group A Capture Rising Latch Register (Channel 0)	0x0000_0000
CFLR0	PWMA_BA+0x5C	R/W	PWM Group A Capture Falling Latch Register (Channel 0)	0x0000_0000
CRLR1	PWMA_BA+0x60	R/W	PWM Group A Capture Rising Latch Register (Channel 1)	0x0000_0000
CFLR1	PWMA_BA+0x64	R/W	PWM Group A Capture Falling Latch Register (Channel 1)	0x0000_0000
CRLR2	PWMA_BA+0x68	R/W	PWM Group A Capture Rising Latch Register (Channel 2)	0x0000_0000
CFLR2	PWMA_BA+0x6C	R/W	PWM Group A Capture Falling Latch Register (Channel 2)	0x0000_0000
CRLR3	PWMA_BA+0x70	R/W	PWM Group A Capture Rising Latch Register (Channel 3)	0x0000_0000

nuvoTon

CFLR3	PWMA_BA+0x74	R/W	PWM Group A Capture Falling Latch Register (Channel 3)	0x0000_0000
CAPENR	PWMA_BA+0x78	R/W	PWM Group A Capture Input 0~3 Enable Register	0x0000_0000
POE	PWMA_BA+0x7C	R/W	PWM Group A Output Enable for Channel 0~3	0x0000_0000

5.7.6 Register Description

PWM Pre-Scale Register (PPR)						
Register	Offset	R/W	Description	Reset Value		
PPR	PWMA_BA+0x00	R/W	PWM Group A Pre-scale Register	0x0000_0000		

31	30	29	28	27	26	25	24		
DZI23									
23	22	21	20	19	18	17	16		
DZI01									
15	14	13	12	11	10	9	8		
	CP23						~~~		
7	6	5	4	3	2	1	0		
			CF	? 01		3	132.0		
•							011		

Channel3 (PWM2 and PWM3 pair for corresponding CSR bits. Channel 1 (PWM0 and PWM1 pair for
Channel 1 (PWM0 and PWM1 pair fo
corresponding CSR bits.
to the corresponding PWM-timer
ck will be stopped. So corresponding
to the corresponding PWM-timer
ck will be stopped. So corresponding

nuvoTon

PWM Clock Selector Register (CSR)

Register	Offset	R/W	Description	Reset Value
CSR	PWMA_BA+0x04	R/W	PWM Group A Clock Selection Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
Reserved									
15	14	13	12	11	10	9	8		
Reserved	erved CSR3			Reserved	2	CSR2			
7	6	5	4	3	2	1	0		
Reserved		CSR1		Reserved		CSR0	- Co		

Bits	Descriptions								
[31:15]	Reserved	Reserved Reserved							
		PWM Timer 3 Clock	PWM Timer 3 Clock Source Selection (PWM timer 3 for group A)						
		Select clock input for PWM timer.							
		CSR3 [14:12]	Input clock divided by						
		100	1						
[14:12]	CSR3	011	16						
		010	8						
		001	4						
		000	2						
[11]	Reserved	Reserved							
QY.	CSR2	PWM Timer 2 Clock Source Selection (PWM timer 2 for group A)							
[10:8]		Select clock input for PWM timer.							
		(Table is the same as	S CSR3)						
[7]	Reserved	Reserved							
	Card)	PWM Timer 1 Clock Source Selection (PWM timer 1 for group A)							
[6:4]	CSR1	Select clock input for PWM timer.							
	NS A	(Table is the same as	S CSR3)						
[3]	Reserved	Reserved							
	0	PWM Timer 0 Clock Source Selection (PWM timer 0 for group A)							
[2:0]	CSR0	Select clock input for	PWM timer.						
		(Table is the same as	(Table is the same as CSR3)						

PWM Control Register (PCR)

Register	Offset	R/W	Description	Reset Value
PCR	PWMA_BA+0x08	R/W	PWM Group A Control Register (PCR)	0x0000_0000

31	30	29	28	27	26	25	24
	Rese	erved		СНЗМОД	CH3INV	Reserved	CH3EN
23	22	21	20	19	18	17	16
	Rese	erved		CH2MOD	CH2INV	Reserved	CH2EN
15	14	13	12	11	10	9	8
	Rese	erved		CH1MOD	CH1INV	Reserved	CH1EN
7	6	5	4	3	2	1	0
Reserved DZEN23 DZEN01			CH0MOD	CHOINV	Reserved	CHOEN	
							ASL 6

Bits	Descriptions						
[31:28]	Reserved Reserved						
		PWM-Timer 3 Auto-reload/One-Shot Mode (PWM timer 3 for group A)					
[07]	СНЗМОД	1 = Auto-reload Mode					
[27]	CHSWIOD	0 = One-Shot Mode					
		Note: If there is a transition at this bit, it will cause CNR3 and CMR3 be clear.					
		PWM-Timer 3 Output Inverter Enable (PWM timer 3 for group A)					
[26] CH3	CH3INV	1 = Inverter enable					
		0 = Inverter disable					
[25]	Reserved	Reserved					
9071		PWM-Timer 3 Enable (PWM timer 3 for group A)					
[24]	CH3EN	1 = Enable corresponding PWM-Timer Start Run					
		0 = Stop corresponding PWM-Timer Running					
[23:20]	Reserved	Reserved					
1	2250	PWM-Timer 2 Auto-reload/One-Shot Mode (PWM timer 2 for group A)					
[10]	CH2MOD	1 = Auto-reload Mode					
[19]	CHZWIOD	0 = One-Shot Mode					
	N/S	Note: If there is a transition at this bit, it will cause CNR2 and CMR2 be clear.					
	4	PWM-Timer 2 Output Inverter Enable (PWM timer 2 for group A)					
[18]	CH2INV	1 = Inverter enable					
		0 = Inverter disable					

nuvoTon

[17]	Reserved	Reserved
		PWM-Timer 2 Enable (PWM timer 2 for group A)
[16]	CH2EN	1 = Enable corresponding PWM-Timer Start Run
		0 = Stop corresponding PWM-Timer Running
[15:12]	Reserved	Reserved
		PWM-Timer 1 Auto-reload/One-Shot Mode (PWM timer 1 for group A)
[44]	CH1MOD	1 = Auto-load Mode
[11]	CHIMOD	0 = One-Shot Mode
		Note: If there is a transition at this bit, it will cause CNR1 and CMR1 be clear.
		PWM-Timer 1 Output Inverter Enable (PWM timer 1 for group A)
[10]	CH1INV	1 = Inverter enable
		0 = Inverter disable
[9]	Reserved	Reserved
		PWM-Timer 1 Enable (PWM timer 1 for group A)
[8]	CH1EN	1 = Enable corresponding PWM-Timer Start Run
		0 = Stop corresponding PWM-Timer Running
[7:6]	Reserved	Reserved
	DZEN23	Dead-Zone 2 Generator Enable (PWM2 and PWM3 pair for PWM group A)
		1 = Enable
[5]		0 = Disable
		Note: When Dead-Zone Generator is enabled, the pair of PWM2 and PWM3 becomes a complementary pair for PWM group A.
		Dead-Zone 0 Generator Enable (PWM0 and PWM1 pair for PWM group A)
		1 = Enable
[4]	DZEN01	0 = Disable
F.A.		Note: When Dead-Zone Generator is enabled, the pair of PWM0 and PWM1 becomes a complementary pair for PWM group A
100		PWM-Timer 0 Auto-reload/One-Shot Mode (PWM timer 0 for group A)
[3]	СНОМОД	1 = Auto-reload Mode
	CITOMOD	0 = One-Shot Mode
Xa	202	Note: If there is a transition at this bit, it will cause CNR0 and CMR0 be clear.
	5000	PWM-Timer 0 Output Inverter Enable (PWM timer 0 for group A
[2]	CHOINV	1 = Inverter enable
	50	0 = Inverter disable
[1]	Reserved	Reserved
	4	PWM-Timer 0 Enable (PWM timer 0 for group A)
[0]	CH0EN	1 = Enable corresponding PWM-Timer Start Run
		0 = Stop corresponding PWM-Timer Running

nuvoTon

PWM Counter Register 3-0 (CNR3-0)

Register	Offset	R/W	Description	Reset Value
CNR0	PWMA_BA+0x0C	R/W	PWM Group A Counter Register 0	0x0000_0000
CNR1	PWMA_BA+0x18	R/W	PWM Group A Counter Register 1	0x0000_0000
CNR2	PWMA_BA+0x24	R/W	PWM Group A Counter Register 2	0x0000_0000
CNR3	PWMA_BA+0x30	R/W	PWM Group A Counter Register 3	0x0000_0000

					4110	Y III		
31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
			Rese	erved		·Q;	2	
15	14	13	12	11	10	9	8	
CNRx[15:8]								
7	6	5	4	3	2	1	0	
CNRx[7:0]								

Bits	Descriptions						
[31:16]	Reserved	Reserved					
		PWM Timer Loaded Value					
		CNR determines the PWM period.					
~		 PWM frequency = PWMxy_CLK/((prescale+1)*(clock divider)*(CNR+1)); where xy, could be 01, or 23, depends on selected PWM channel. 					
1		• Duty ratio = $(CMR+1)/(CNR+1)$.					
[15:0]	CNRx	• CMR >= CNR: PWM output is always high.					
22	2.	• CMR < CNR: PWM low width = (CNR-CMR) unit; PWM high width = (CMR+1) unit.					
N/A	S States	• CMR = 0: PWM low width = (CNR) unit; PWM high width = 1 unit					
No.	201	(Unit = one PWM clock cycle)					
2	Con all	Note: Any write to CNR will take effect in next PWM cycle.					
Jan.	09, 2015	Page 172 of 350 Revision 1.11					

nuvoTon

PWM Comparator Register 3-0 (CMR3-0)

Register	Offset	R/W	Description	Reset Value
CMR0	PWMA_BA+0x10	R/W	PWM Group A Comparator Register 0	0x0000_0000
CMR1	PWMA_BA+0x1C	R/W	PWM Group A Comparator Register 1	0x0000_0000
CMR2	PWMA_BA+0x28	R/W	PWM Group A Comparator Register 2	0x0000_0000
CMR3	PWMA_BA+0x34	R/W	PWM Group A Comparator Register 3	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	CMRx[15:8]							
7	6	5	4	3	2	1	0	
CMRx[7:0]								

Bits	Descriptions					
[31:16]	Reserved	Reserved				
		PWM Comparator Register				
		CMR determines the PWM duty.				
		 PWM frequency = PWMxy_CLK/(prescale+1)*(clock divider)/(CNR+1); where xy, could be 01, or 23, depends on selected PWM channel. 				
1		• Duty ratio = (CMR+1)/(CNR+1).				
[15:0]	CMRx	 CMR >= CNR: PWM output is always high. 				
Stor 1	20	• CMR < CNR: PWM low width = (CNR-CMR) unit; PWM high width = (CMR+1) unit.				
XA	S States	• CMR = 0: PWM low width = (CNR) unit; PWM high width = 1 unit				
No.	21.12	(Unit = one PWM clock cycle)				
2	CO CO	Note: Any write to CMR will take effect in next PWM cycle.				
Jan.	09, 2015	Page 173 of 350 Revision 1.11				

nuvoTon

PWM Data Register 3-0 (PDR 3-0)

Register	Offset	R/W	Description	Reset Value
PDR0	PWMA_BA+0x14	R	PWM Group A Data Register 0	0x0000_0000
PDR1	PWMA_BA+0x20	R	PWM Group A Data Register 1	0x0000_0000
PDR2	PWMA_BA+0x2C	R	PWM Group A Data Register 2	0x0000_0000
PDR3	PWMA_BA+0x38	R	PWM Group A Data Register 3	0x0000_0000

					411-0	~ 11	
31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
			PDR	15:8]			1222
7	6	5	4	3	2	1	0
PDR[7:0]							

Bits Descriptions			
[31:16]	Reserved	Reserved	
[15:0]	PDRx	PWM Data Register	
[15.0]	F DRX	User can monitor PDR to know the current value in 16-bit dow	n counter.

nuvoTon

PWM Interrupt Enable Register (PIER)

Register	Offset	R/W	Description	Reset Value
PIER	PWMA_BA+0x40	R/W	PWM Group A Interrupt Enable Register	0x0000_0000

31 30 29 28 27 26 25 24 Reserved 23 22 21 20 19 18 17 16 Reserved 15 14 13 12 11 10 9 8						
23 22 21 20 19 18 17 16 Reserved						
Reserved						
Star. 9/2						
15 14 13 12 11 10 9 8						
Reserved						
7 6 5 4 3 2 1 0						
Reserved PWMIE 3 PWMIE 2 PWMIE 1 PWMIE0						

-

PWM Interrupt Indication Register (PIIR)

Register	Offset	R/W	Description	Reset Value
PIIR	PWMA_BA+0x44	R/W	PWM Group A Interrupt Indication Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
Reserved							2	
7	6	5	4	3	2	1	0	
	Rese	erved		PWMIF3	PWMIF2	PWMIF1	PWMIF0	

Bits	Descriptions	
[31:4]	Reserved	Reserved
[3]	PWMIF3	PWM Channel 3 Interrupt Status This bit is set by hardware when PWM3 down counter reaches zero and PWM3 interrupt enable bit (PWMIE3) is 1, software can write 1 to clear this bit to zero.
[2]	PWMIF2	PWM Channel 2 Interrupt Status This bit is set by hardware when PWM2 down counter reaches zero and PWM2 interrupt enable bit (PWMIE2) is 1, software can write 1 to clear this bit to zero.
[1]	PWMIF1	PWM Channel 1 Interrupt Status This bit is set by hardware when PWM1 down counter reaches zero and PWM1 interrupt enable bit (PWMIE1) is 1, software can write 1 to clear this bit to zero.
[0]	PWMIF0	PWM Channel 0 Interrupt Status This bit is set by hardware when PWM0 down counter reaches zero and PWM0 interrupt enable bit (PWMIE0) is 1, software can write 1 to clear this bit to zero.

clear e. Note: User can clear each interrupt flag by writing 1 to corresponding bit in PIIR.

nuvoTon

Capture Control Register (CCR0)

Register	Offset	R/W	Description	Reset Value
CCR0	PWMA_BA+0x50	R/W	PWM Group A Capture Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	ar so		
23	22	21	20	19	18	17	16
CFLRI1	CRLRI1	Reserved	CAPIF1	CAPCH1EN	CFL_IE1	CRL_IE1	INV1
15	14	13	12	11	10	9	8
			Rese	erved		200	1
7	6	5	4	3	2	1	0
CFLRI0	CRLRI0	Reserved	CAPIF0	CAPCH0EN	CFL_IE0	CRL_IE0	INV0

Bits	Descriptions	
[31:24]	Reserved	Reserved
		CFLR1 Latched Indicator Bit
[23]	CFLRI1	When PWM group input channel 1 has a falling transition, CFLR1 was latched with the value of PWM down-counter and this bit is set by hardware.
		Write 1 to clear this bit to zero
		CRLR1 Latched Indicator Bit
[22]	CRLRI1	When PWM group input channel 1 has a rising transition, CRLR1 was latched with the value of PWM down-counter and this bit is set by hardware.
3		Write 1 to clear this bit to zero
[21]	Reserved	Reserved
[20] CAPIF1	0.	Channel 1 Capture Interrupt Indication Flag
	CAPIF1	If PWM group channel 1 rising latch interrupt is enabled (CRL_IE1=1), a rising transition occurs at PWM group channel 1 will result in CAPIF1 to high; Similarly, a falling transition will cause CAPIF1 to be set high if PWM group channel 1 falling latch interrupt is enabled (CFL_IE1=1).
	22.0	Write 1 to clear this bit to zero
	Sol Cl	Channel 1 Capture Function Enable
	No.	1 = Enable capture function on PWM group channel 1
	493	0 = Disable capture function on PWM group channel 1
[19]	CAPCH1EN	When Enable, Capture latched the PWM-counter and saved to CRLR (Rising latch) and CFLR (Falling latch).
		When Disable, Capture does not update CRLR and CFLR, and disable PWM group channel 1 Interrupt.
		1 31723 (7)

		Channel 1 Falling Latch Interrupt Enable			
		1 = Enable falling latch interrupt			
[18]	CFL_IE1	0 = Disable falling latch interrupt			
		When Enable, if Capture detects PWM group channel 1 has falling transition, Captur issues an Interrupt.			
		Channel 1 Rising Latch Interrupt Enable			
		1 = Enable rising latch interrupt			
[17]	CRL_IE1	0 = Disable rising latch interrupt			
	When Enable, if Capture detects PWM group channel 1 has rising transition, Capture issues an Interrupt.				
		Channel 1 Inverter Enable			
[16]	INV1	1 = Inverter enable. Reverse the input signal from GPIO before fed to Capture timer			
		0 = Inverter disable			
[15:8]	Reserved	Reserved			
		CFLR0 Latched Indicator Bit			
[7] CFLRIO	When PWM group input channel 0 has a falling transition, CFLR0 was latched with value of PWM down-counter and this bit is set by hardware.				
	Write 1 to clear this bit to zero.				
	CRLR0 Latched Indicator Bit				
[6]	CRLRI0	When PWM group input channel 0 has a rising transition, CRLR0 was latched with the value of PWM down-counter and this bit is set by hardware.			
		Write 1 to clear this bit to zero.			
[5]	Reserved	Reserved			
		Channel 0 Capture Interrupt Indication Flag			
[4]	CAPIF0	If PWM group channel 0 rising latch interrupt is enabled (CRL_IE0=1), a rising transition occurs at PWM group channel 0 will result in CAPIF0 to high; Similarly, a falling transition will cause CAPIF0 to be set high if PWM group channel 0 falling latch interrupt is enabled (CFL_IE0=1).			
		Write 1 to clear this bit to zero			
8	えい	Channel 0 Capture Function Enable			
	1.2	1 = Enable capture function on PWM group channel 0.			
	200	0 = Disable capture function on PWM group channel 0			
[3]	CAPCHOEN	When Enable, Capture latched the PWM-counter value and saved to CRLR (Rising latch and CFLR (Falling latch).			
	Stor C	When Disable, Capture does not update CRLR and CFLR, and disable PWM grou channel 0 Interrupt.			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Channel 0 Falling Latch Interrupt Enable			
[2]	CFL_IE0	1 = Enable falling latch interrupt			
[2]		0 = Disable falling latch interrupt			
		When Enable, if Capture detects PWM group channel 0 has falling transition, Captur			

## nuvoTon

		issues an Interrupt.
[1]	CRL_IE0	Channel 0 Rising Latch Interrupt Enable
		1 = Enable rising latch interrupt
		0 = Disable rising latch interrupt
		When Enable, if Capture detects PWM group channel 0 has rising transition, Capture issues an Interrupt.
[0]	INVO	Channel 0 Inverter Enable
		1 = Inverter enable. Reverse the input signal from GPIO before fed to Capture timer
		0 = Inverter disable

### Capture Control Register (CCR2)

Register	Offset	R/W	Description	Reset Value
CCR2	PWMA_BA+0x54	R/W	PWM Group A Capture Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	de a		
23	22	21	20	19	18	17	16
CFLRI3	CRLRI3	Reserved	CAPIF3	<b>CAPCH3EN</b>	CFL_IE3	CRL_IE3	INV3
15	14	13	12	11	10	9	8
Reserved							
7	6	5	4	3	2	1	0
CFLRI2	CRLRI2	Reserved	CAPIF2	CAPCH2EN	CFL_IE2	CRL_IE2	INV2

Bits	Descriptions	Descriptions		
[31:24]	Reserved	Reserved		
		CFLR3 Latched Indicator Bit		
[23]	CFLRI3	When PWM group input channel 3 has a falling transition, CFLR3 was latched with the value of PWM down-counter and this bit is set by hardware.		
		Write 1 to clear this bit to zero.		
[22]		CRLR3 Latched Indicator Bit		
	CRLRI3	When PWM group input channel 3 has a rising transition, CRLR3 was latched with the value of PWM down-counter and this bit is set by hardware.		
		Write 1 to clear this bit to zero.		
[21]	Reserved	Reserved		
[20]	-	Channel 3 Capture Interrupt Indication Flag		
	CAPIF3	If PWM group channel 3 rising latch interrupt is enabled (CRL_IE3=1), a rising transition occurs at PWM group channel 3 will result in CAPIF3 to high; Similarly, a falling transition will cause CAPIF3 to be set high if PWM group channel 3 falling latch interrupt is enabled (CFL_IE3=1).		
	22.0	Write 1 to clear this bit to zero		
[19]	So Cl	Channel 3 Capture Function Enable		
	No.	1 = Enable capture function on PWM group channel 3		
	493	0 = Disable capture function on PWM group channel 3		
	CAPCH3EN	When Enable, Capture latched the PWM-counter and saved to CRLR (Rising latch) and CFLR (Falling latch).		
		When Disable, Capture does not update CRLR and CFLR, and disable PWM group channel 3 Interrupt.		
	1	11223 E.		

# nuvoTon

		Channel 3 Falling Latch Interrupt Enable					
		1 = Enable falling latch interrupt					
[18]	CFL_IE3	0 = Disable falling latch interrupt					
		When Enable, if Capture detects PWM group channel 3 has falling transition, Capture issues an Interrupt.					
		Channel 3 Rising Latch Interrupt Enable					
		1 = Enable rising latch interrupt					
[17]	CRL_IE3	0 = Disable rising latch interrupt					
		When Enable, if Capture detects PWM group channel 3 has rising transition, Capture issues an Interrupt.					
		Channel 3 Inverter Enable					
[16]	INV3	1 = Inverter enable. Reverse the input signal from GPIO before fed to Capture timer					
		0 = Inverter disable					
[15:8]	Reserved	Reserved					
		CFLR2 Latched Indicator Bit					
[7]	CFLRI2	When PWM group input channel 2 has a falling transition, CFLR2 was latched with the value of PWM down-counter and this bit is set by hardware.					
	Write 1 to clear this bit to zero.						
		CRLR2 Latched Indicator Bit					
[6]	CRLRI2	When PWM group input channel 2 has a rising transition, CRLR2 was latched with the value of PWM down-counter and this bit is set by hardware.					
		Write 1 to clear this bit to zero.					
[5]	Reserved	Reserved					
		Channel 2 Capture Interrupt Indication Flag					
[4]	CAPIF2	If PWM group channel 2 rising latch interrupt is enabled (CRL_IE2=1), a rising transitio occurs at PWM group channel 2 will result in CAPIF2 to high; Similarly, a falling transition will cause CAPIF2 to be set high if PWM group channel 2 falling latch interrupt is enabled (CFL_IE2=1).					
		Write 1 to clear this bit to zero					
82	えし	Channel 2 Capture Function Enable					
	100	1 = Enable capture function on PWM group channel 2					
1	200	0 = Disable capture function on PWM group channel 2					
[3]	CAPCH2EN	When Enable, Capture latched the PWM-counter value and saved to CRLR (Rising latch and CFLR (Falling latch).					
	Stor C	When Disable, Capture does not update CRLR and CFLR, and disable PWM grou channel 2 Interrupt.					
	620	Channel 2 Falling Latch Interrupt Enable					
[2]	CFL_IE2	1 = Enable falling latch interrupt					
-1		0 = Disable falling latch interrupt					
		When Enable, if Capture detects PWM group channel 2 has falling transition, Captur					

		issues an Interrupt.
		Channel 2 Rising Latch Interrupt Enable
		1 = Enable rising latch interrupt
[1]	CRL_IE2	0 = Disable rising latch interrupt
		When Enable, if Capture detects PWM group channel 2 has rising transition, Capture issues an Interrupt.
		Channel 2 Inverter Enable
[0]	INV2	1 = Inverter enable. Reverse the input signal from GPIO before fed to Capture timer
		0 = Inverter disable

# nuvoTon

### Capture Rising Latch Register3-0 (CRLR3-0)

Register	Offset	R/W	Description	Reset Value
CRLR0	PWMA_BA+0x58	R	PWM Group A Capture Rising Latch Register (Channel 0)	0x0000_0000
CRLR1	PWMA_BA+0x60	R	PWM Group A Capture Rising Latch Register (Channel 1)	0x0000_0000
CRLR2	PWMA_BA+0x68	R	PWM Group A Capture Rising Latch Register (Channel 2)	0x0000_0000
CRLR3	PWMA_BA+0x70	R	PWM Group A Capture Rising Latch Register (Channel 3)	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	N.	S	-
23	22	21	20	19	18	17	16
			Rese	erved		NO.	e se
15	14	13	12	11	10	9	8
			CRLR	x[15:8]		0	Spr C
7	6	5	4	3	2	1	0
	•		CRLR	x[7:0]			

	Descriptions					
[31:16]	Reserved	Reserved				
[45:0]	CRLRx	Capture Rising Latch Register				
[15:0]	CREKX	Latch the PWM counter when Channel 0/1/2/3 has rising tra	ansition.			
1						

### Capture Falling Latch Register3-0 (CFLR3-0)

Register	Offset	R/W	Description	Reset Value
CFLR0	PWMA_BA+0x5C	R	PWM Group A Capture Falling Latch Register (Channel 0)	0x0000_0000
CFLR1	PWMA_BA+0x64	R	PWM Group A Capture Falling Latch Register (Channel 1)	0x0000_0000
CFLR2	PWMA_BA+0x6C	R	PWM Group A Capture Falling Latch Register (Channel 2)	0x0000_0000
CFLR3	PWMA_BA+0x74	R	PWM Group A Capture Falling Latch Register (Channel 3)	0x0000_0000

31	30	29	28	27	26	25	24
	-		Rese	erved	N.	2 Sh	
23	22	21	20	19	18	17	16
	-		Rese	erved		MOL	2
15	14	13	12	11	10	9	8
			CFLR	«[15:8]		9	42.0
7	6	5	4	3	2	1	0
	-	·	CFLR	x[7:0]			

Bits	Descriptions					
[31:16]	Reserved	Reserved				
[15:0]	CFLRx	Capture Falling Latch Register				
[15:0]	OFERA	Latch the PWM counter when Channel 0/1/2/3 has falling tr	ansition.			
62. I.						

# nuvoTon

### Capture Input Enable Register (CAPENR)

Register	Offset	R/W	Description	Reset Value
CAPENR	PWMA_BA+0x78	R/W	PWM Group A Capture Input 0~3 Enable Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved	° On	Do -				
15	14	13	12	11	10	9	8			
			Rese	erved		20	2			
7	6	5	4	3	2	1	0			
	Rese	erved			CAP	ENR	0.0			

input enabl tion.)
tion.)
tion.)
-
n.)

## PWM Output Enable Register (POE)

Register	Offset	R/W	Description	Reset Value
POE	PWMA_BA+0x7C	R/W	PWM Group A Output Enable Register for Channel 0~3	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
			Rese	erved		200	1	
7	6	5	4	3	2	1	0	
	Rese	erved		PWM3	PWM2	PWM1	PWM0	

Bits	Descriptions	Descriptions					
[31:4]	Reserved	Reserved					
		Channel 3 Output Enable					
	PWM3	1 = Enable PWM channel 3 output to pin					
[3]	F WWWI3	0 = Disable PWM channel 3 output to pin					
		Note: The corresponding GPIO pin also must be switched to PWM function					
		Channel 2 Output Enable					
[0]	PWM2	1 = Enable PWM channel 2 output to pin					
[2]		0 = Disable PWM channel 2 output to pin					
		Note: The corresponding GPIO pin also must be switched to PWM function					
100		Channel 1 Output Enable					
	PWM1	1 = Enable PWM channel 1 output to pin					
[1]		0 = Disable PWM channel 1 output to pin					
	a con	Note: The corresponding GPIO pin also must be switched to PWM function					
1	22	Channel 0 Output Enable					
[0]	PWM0	1 = Enable PWM channel 0 output to pin					
	FVVIVIO	0 = Disable PWM channel 0 output to pin					
	~ Dr.	Note: The corresponding GPIO pin also must be switched to PWM function					

## 5.8 Watchdog Timer (WDT)

The purpose of Watchdog Timer is to perform a system reset when system runs into an unknown state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog Timer supports another function to wake-up chip from power down mode. The Watchdog Timer includes an 18-bit free running counter with programmable time-out intervals. Table 5-7 show the Watchdog Timer time-out interval selection and Figure 5-29 shows the timing of Watchdog interrupt signal and reset signal.

Setting WTE (WDTCR [7]) enables the watchdog timer and the WDT counter starts counting up. When the counter reaches the selected time-out interval, Watchdog timer interrupt flag WTIF will be set immediately to request a WDT interrupt if the watchdog timer interrupt enable bit WTIE is set, in the meanwhile, a specified delay time (1024 * T_{WDT}) follows the time-out event. User must set WTR (WDTCR [0]) (Watchdog timer reset) high to reset the 18-bit WDT counter to avoid chip from Watchdog timer reset before the delay time expires. WTR bit is cleared automatically by hardware after WDT counter is reset. There are eight time-out intervals with specific delay time which are selected by Watchdog timer interval select bits WTIS (WDTCR [10:8]). If the WDT counter has not been cleared after the specific delay time expires, the watchdog timer will set Watchdog Timer Reset Flag (WTRF) high and reset chip. This reset will last 63 WDT clocks (T_{RST}) then chip restarts executing program from reset vector (0x0000_0000). WTRF will not be cleared by Watchdog reset. User may poll WTRF by software to recognize the reset source. WDT also provides wake-up function. When chip is powered down and the Watchdog Timer Wake-up Function Enable bit (WDTR[4]) is set, if the WDT counter reaches the specific time interval defined by WTIS (WDTCR [10:8]), the chip is wokenup from power down state. First example, if WTIS is set as 000, the specific time interval for chip to be woken-up from power down state is  $2^4 * T_{WDT}$ . When power down command is set by software, then, chip enters power down state. After  $2^4 * T_{WDT}$  time is elapsed, chip is woken-up from power down state. Second example, if WTIS (WDTCR [10:8]) is set as 111, the specific time interval for chip to be woken-up from power down state is  $2^{18} * T_{WDT}$ . If power down command is set by software, then, chip enters power down state. After  $2^{18} * T_{WDT}$  time is elapsed, chip is woken-up from power down state. Notice if WTRE (WDTCR [1]) is set to 1, after chip is woken-up, software should clear the Watchdog Timer counter by setting WTR(WDTCR [0]) to 1 as soon as possible. Otherwise, if the Watchdog Timer counter is not cleared by setting WTR (WDTCR [0]) to 1 before time starting from waking up to software clearing Watchdog Timer counter is over 1024 * T_{WDT} , the chip is reset by Watchdog Timer.

WTIS	Time-out Interval Selection T _{TIS}	Interrupt Period T _{INT}	WTR Time-out Interval (WDT_CLK=10 KHz) Min. T _{WTR} ~ Max. T _{WTR}
000	2 ⁴ * T _{WDT}	1024 * T _{WDT}	1.6 ms ~ 104 ms
001	2 ⁶ * T _{WDT}	1024 * T _{WDT}	6.4 ms ~ 108.8 ms
010	2 ⁸ * T _{WDT}	1024 * T _{WDT}	25.6 ms ~ 128 ms
011	2 ¹⁰ * T _{WDT}	1024 * T _{WDT}	102.4 ms ~ 204.8 ms
100	2 ¹² * T _{WDT}	1024 * T _{WDT}	409.6 ms ~ 512 ms
101	2 ¹⁴ * T _{WDT}	1024 * T _{WDT}	1.6384 s ~ 1.7408 s
110	2 ¹⁶ * T _{WDT}	1024 * T _{WDT}	6.5536 s ~ 6.656 s
111	2 ¹⁸ * T _{WDT}	1024 * T _{WDT}	26.2144 s ~ 26.3168 s

Table 5-7 Watchdog Timer Time-out Interval Selection

## nuvoTon

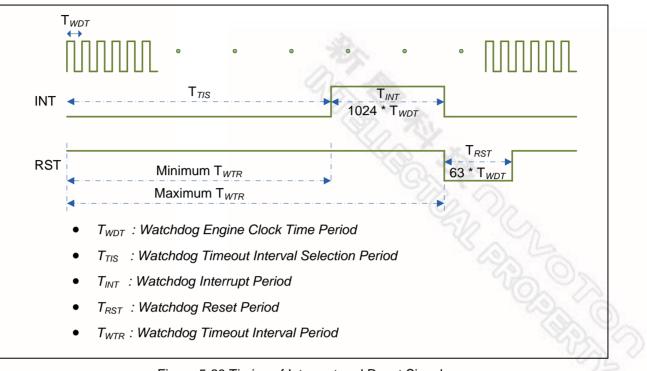



Figure 5-29 Timing of Interrupt and Reset Signals

## nuvoTon

#### 5.8.1 Features

- 18-bit free running counter to avoid chip from Watchdog Timer reset before the delay time expires.
- Selectable time-out interval (2⁴ ~ 2¹⁸) and the time-out interval is 104 ms ~ 26.3168 s (if WDT_CLK = 10 KHz).
- Reset period = (1 / 10 KHz) * 63, if WDT_CLK = 10 KHz.

### 5.8.2 Block Diagram

The Watchdog Timer clock source control and block diagram are shown as following.

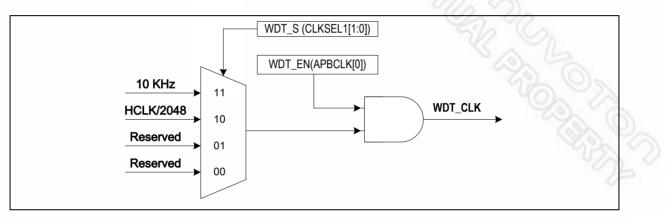



Figure 5-30 Watchdog Timer Clock Source Diagram

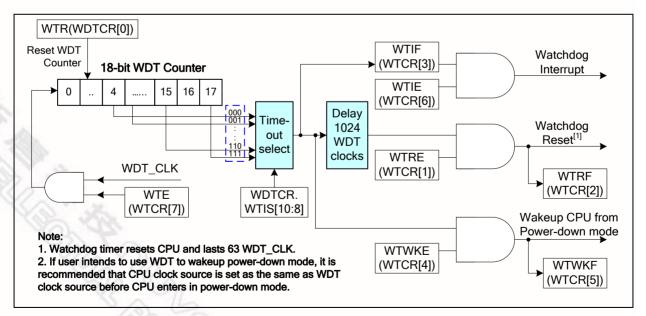



Figure 5-31 Watchdog Timer Block Diagram

### 5.8.3 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value		
WDT_BA = 0x4000_4000						
WTCR	WDT_BA+0x00	R/W	Watchdog Timer Control Register	0x0000_0700		

# nuvoTon

### 5.8.4 Register Description

### Watchdog Timer Control Register (WTCR)

Register	Offset	R/W	Description	Reset Value
WTCR	WDT_BA+0x00	R/W	Watchdog Timer Control Register	0x0000_0700

Note: All bits can be write in this register are write-protected. To program it needs to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Reference the register REGWRPROT at address GCR_BA+0x100.

31	30	29	28	27	26	25	24
DBGACK_WD T				Reserved	The second se	C.	
23	22	21	20	19	18	17	16
			Rese	erved		20	
15	14	13	12	11	10	9	8
		Reserved				WTIS	5250
7	6	5	4	3	2	1	0
WTE	WTIE	WTWKF	WTWKE	WTIF	WTRF	WTRE	WTR

Bits	Descriptions							
		ICE Debu	ICE Debug Mode Acknowledge Disable (write-protection bit)					
[31]		0 = ICE de	ebug mode ackn	owledgement effects	Watchdog Timer counting.			
	DBGACK_WDT	Watchdog	Timer counter v	vill be held while ICE	debug mode acknowledged	l.		
		1 = ICE de	ebug mode ackn	owledgement disable	ed.			
			g Timer count edged or not.	ter will keep goi	ng no matter ICE debug	g mode		
[30:11]	Reserved	Reserved	Reserved					
	š.	Watchdog Timer Interval Select (write-protection bits)						
N.		These three bits select the time-out interval for the Watchdog Timer.						
A.	B C C	WTIS	Time-out Interval Selection	Interrupt Period	WTR Time-out Interval (WDT_CLK=10 KHz)			
[10:8]	WTIS	000	2 ⁴ * T _{WDT}	1024 * T _{WDT}	1.6 ms ~ 104 ms			
	Sall.	001	2 ⁶ * T _{WDT}	1024 * T _{WDT}	6.4 ms ~ 108.8 ms			
	"Ter	010	2 ⁸ * T _{WDT}	1024 * T _{WDT}	25.6 ms ~ 128 ms			
	0	011	2 ¹⁰ * T _{WDT}	1024 * T _{WDT}	102.4 ms ~ 204.8 ms			
		100	2 ¹² * T _{WDT}	1024 * T _{WDT}	409.6 ms ~ 512 ms			

# nuvoTon

		101 2 ¹⁴ * T _{WDT} 1024 * T _{WDT} 1.6384 s ~ 1.7408 s				
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
		Watchdog Timer Enable (write-protection bit)				
[7]	WTE	0 = Disable the Watchdog Timer (This action will reset the internal counter)				
		1 = Enable the Watchdog Timer				
		Watchdog Timer Interrupt Enable (write-protection bit)				
[6]	WTIE	0 = Disable the Watchdog Timer interrupt				
		1 = Enable the Watchdog Timer interrupt				
		Watchdog Timer Wake-Up Flag				
[5]	WTWKF	If Watchdog Timer causes chip be woken-up from power down mode, this bit will be set to high. It must be cleared by software with a write 1 to this bit.				
[0]		0 = Watchdog Timer does not cause chip be woken-up.				
		1 = Chip be woken-up from idle or power down mode by Watchdog Timer time-out				
		Watchdog Timer Wake-Up Function Enable bit (write-protection bit)				
		0 = Disable Watchdog Timer wake-up chip function.				
[4]	<b>WTWKE</b>	1 = Enable the wake-up function that Watchdog Timer time-out can wake-up ch from power down mode.				
		Note: Chip can be woken-up by WDT only when WDT clock source is selected from RC10K.				
		Watchdog Timer Interrupt Flag				
		If the Watchdog Timer interrupt is enabled, then the hardware will set this bit to indicate that the Watchdog Timer interrupt has occurred.				
[3]	WTIF	0 = Watchdog Timer interrupt did not occur				
		1 = Watchdog Timer interrupt occurs				
		Note: This bit is cleared by writing 1 to this bit.				
		Watchdog Timer Reset Flag				
[2]	WTRF	When the Watchdog Timer initiates a reset, the hardware will set this bit. This flat can be read by software to determine the source of reset. Software is responsib to clear it manually by writing 1 to it. If WTRE is disabled, then the Watchdog Time has no effect on this bit.				
	200	0 = Watchdog Timer reset did not occur				
	Sol a	1 = Watchdog Timer reset occurs				
	200	Note: This bit is cleared by writing 1 to this bit.				
	S~	Watchdog Timer Reset Enable (write-protection bit)				
[1]	WTRE	Setting this bit will enable the Watchdog timer reset function.				
[1]	WINE V	0 = Disable Watchdog Timer reset function				
		1 = Enable Watchdog Timer reset function				
[0]	WTR	Clear Watchdog Timer (write-protection bit)				

## nuvoTon

Set this bit will clear the Watchdog Timer.
0 = Writing 0 to this bit has no effect
1 = Reset the contents of the Watchdog Timer
Note: This bit will be auto cleared by hardware.

### 5.9 Real Time Clock (RTC)

### 5.9.1 Overview

Real Time Clock (RTC) controller provides user the real time and calendar message. The clock source of RTC is from an external 32.768 KHz low speed crystal connected at pins X32I and X32O (reference to pin descriptions) or from an external 32.768 KHz low speed oscillator output fed at pin X32I. The RTC controller provides the time message (second, minute, hour) in Time Loading Register (TLR) as well as calendar message (day, month, year) in Calendar Loading Register (CLR). The data message is expressed in BCD format. It also offers alarm function that user can preset the alarm time in Time Alarm Register (TAR) and alarm calendar in Calendar Alarm Register (CAR).

The RTC controller supports periodic Time Tick and Alarm Match interrupts. The periodic interrupt has 8 period options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second which are selected by TTR (TTR[2:0]). When RTC counter in TLR and CLR is equal to alarm setting time registers TAR and CAR, the alarm interrupt flag (RIIR.AIF) is set and the alarm interrupt is requested if the alarm interrupt is enabled (RIER.AIER=1). Both RTC Time Tick and Alarm Match can cause chip be woken-up from power down mode if wake-up function is enabled (TWKE (TTR[3])=1).

### 5.9.2 Features

- There is a time counter (second, minute, hour) and calendar counter (day, month, year) for user to check the time
- Alarm register (second, minute, hour, day, month, year)
- 12-hour or 24-hour mode is selectable
- Leap year compensation automatically
- Day of week counter
- Frequency compensate register (FCR)
- All time and calendar message is expressed in BCD code
- Support periodic time tick interrupt with 8 period options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second
- Support RTC Time Tick and Alarm Match interrupt
- Support wake-up chip from power down mode

## nuvoTon

### 5.9.3 Block Diagram

The block diagram of Real Time Clock is depicted as following:

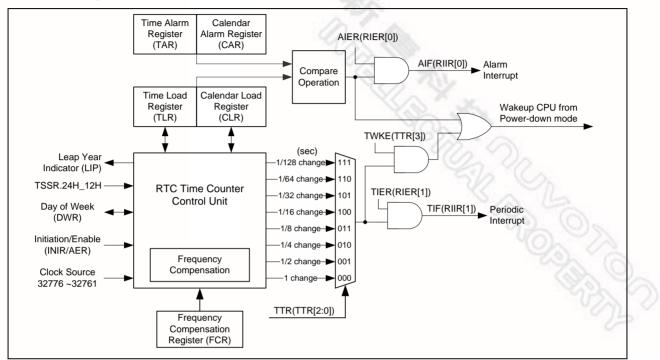



Figure 5-32 RTC Block Diagram

Jan. 09, 2015

### 5.9.4 Function Description

#### 5.9.4.1 Access to RTC register

Due to clock difference between RTC clock and system clock, when user write new data to any one of the registers, the register will not be updated until 2 RTC clocks later (60us).

In addition, user must be aware that RTC controller does not check whether loaded data is out of bounds or not. RTC does not check rationality between DWR and CLR either.

#### 5.9.4.2 RTC Initiation

When RTC block is power on, RTC is at reset state. User has to write a number (0xa5eb1357) to INIR to make RTC leaving reset state. Once the INIR is written as 0xa5eb1357, the RTC will be in un-reset state permanently.

#### 5.9.4.3 RTC Read/Write Enable

Register AER bit 15~0 is served as RTC read/write password to protect RTC registers. AER bit 15~0 has to be set as 0xA965 to enable access restriction. Once it is set, it will take effect at least 512 RTC clocks (about 15ms). Programmer can read RTC enabled status flag in AER.ENF to check whether if RTC controller starts operating or not.

#### 5.9.4.4 Frequency Compensation

The RTC FCR allows software to make digital compensation to a clock input. The frequency of clock input must be in the range from 32776 Hz to 32761 Hz. User can utilize a frequency counter to measure RTC clock on one of GPIO pin during manufacture, and store the value in Flash memory for retrieval when the product is first power on. Following are the compensation examples for higher or lower frequency clock input.

#### Example 1:

Frequency counter measurement : 32773.65 Hz ( > 32768 Hz)

Integer part: 32773 => 0x8005

FCR.Integer = 0x05 - 0x01 + 0x08 = 0x0c

Fraction part: 0.65 x 60 = 39 => 0x27

FCR.Fraction = 0x27

#### Example 2

Frequency counter measurement : 32765.27 Hz (  $\leq$  32768 Hz) Integer part: 32765 => 0x7FFD FCR.Integer = 0x0A - 0x01 - 0x08 = 0x04 Fraction part: 0.27 x 60 = 16.2=> 0x10 FCR.Fraction = 0x10

#### 5.9.4.5 Time and Calendar counter

TLR and CLR are used to load the time and calendar. TAR and CAR are used for alarm. They are all represented by BCD.

5.9.4.6 12/24 hour Time Scale Selection

The 12/24 hour time scale selection depends on TSSR bit 0.

5.9.4.7 Day of the week counter

The RTC controller provides day of week in Day of the Week Register (DWR). The value is definedJan. 09, 2015Page 196 of 350Revision 1.11

from 0 to 6 to represent Sunday to Saturday respectively.

#### 5.9.4.8 Periodic Time Tick Interrupt

The periodic interrupt has 8 period option 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second which are selected by TTR.TTR[2:0]. When periodic time tick interrupt is enabled by setting RIER.TIER to 1, the Periodic Time Tick Interrupt is requested periodically in the period selected by TTR register.

#### 5.9.4.9 Alarm interrupt

When RTC counter in TLR and CLR is equal to alarm setting time TAR and CAR the alarm interrupt flag (RIIR.AIF) is set and the alarm interrupt is requested if the alarm interrupt is enabled (RIER.AIER=1).

5.9.4.10 Application note:

- 1. TAR, CAR, TLR and CLR registers are all BCD counter.
- 2. Programmer has to make sure that the loaded values are reasonable. For example, Load CLR as 201a (year), 13 (month), 00 (day), or CLR does not match with DWR, etc.
- 3. Reset state :

Register	Reset State
AER	0
CLR	05/1/1 (year/month/day)
TLR	00:00:00 (hour : minute : second)
CAR	00/00/00 (year/month/day)
TAR	00:00:00 (hour : minute : second)
TSSR	1 (24 hr mode)
DWR	6 (Saturday)
RIER	0
RIIR	0
LIR	0
TTR	0

In TLR and TAR, only 2 BCD digits are used to express "year". We assume 2 BCD digits of xY denote 20xY, but not 19xY or 21xY.

### 5.9.5 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
RTC_BA = 0	)x4000_8000			
INIR	RTC_BA+0x00	R/W	RTC Initiation Register	0x0000_0000
AER	RTC_BA+0x04	R/W	RTC Access Enable Register	0x0000_0000
FCR	RTC_BA+0x08	R/W	RTC Frequency Compensation Register	0x0000_0700
TLR	RTC_BA+0x0C	R/W	Time Loading Register	0x0000_0000
CLR	RTC_BA+0x10	R/W	Calendar Loading Register	0x0005_0101
TSSR	RTC_BA+0x14	R/W	Time Scale Selection Register	0x0000_0001
DWR	RTC_BA+0x18	R/W	Day of the Week Register	0x0000_0006
TAR	RTC_BA+0x1C	R/W	Time Alarm Register	0x0000_0000
CAR	RTC_BA+0x20	R/W	Calendar Alarm Register	0x0000_0000
LIR	RTC_BA+0x24	R	Leap Year Indicator Register	0x0000_0000
RIER	RTC_BA+0x28	R/W	RTC Interrupt Enable Register	0x0000_0000
RIIR	RTC_BA+0x2C	R/W	RTC Interrupt Indicator Register	0x0000_0000
TTR	RTC_BA+0x30	R/W	RTC Time Tick Register	0x0000_0000

# nuvoTon

### 5.9.6 Register Description _

RTC Initiation Register (INIR)						
Register	Offset	R/W	Description	Reset Value		
INIR	RTC_BA+0x00	R/W	RTC Initiation Register	0x0000_0000		

31	30	29	28	27	26	25	24
			IN	IR	L'EST	A	
23	22	21	20	19	18	17	16
			IN	IR	- K	~n	~
15	14	13	12	11	10	9	8
			IN	IR		0	NA .
7	6	5	4	3	2	1	0
			INIR				INIR/Active

(0xa5eb1357) to INIR to make RTC leaving reset state. Once the INIR is w         0xa5eb1357, the RTC will be in un-reset state permanently.         RTC Active Status (Read only)	INIR       When RTC block is power on, RTC is at reset state. User has to write a num (0xa5eb1357) to INIR to make RTC leaving reset state. Once the INIR is written 0xa5eb1357, the RTC will be in un-reset state permanently.         Active       RTC Active Status (Read only)         0 = RTC is at reset state	Bits	Descriptions	
(0xa5eb1357) to INIR to make RTC leaving reset state. Once the INIR is w         0xa5eb1357, the RTC will be in un-reset state permanently.         [0]       Active         0 = RTC is at reset state	(0xa5eb1357) to INIR to make RTC leaving reset state. Once the INIR is written 0xa5eb1357, the RTC will be in un-reset state permanently.         RTC Active Status (Read only)         0 = RTC is at reset state			RTC Initiation
[0] Active 0 = RTC is at reset state	Active 0 = RTC is at reset state	[31:0]	INIR	When RTC block is power on, RTC is at reset state. User has to write a num (0xa5eb1357) to INIR to make RTC leaving reset state. Once the INIR is written 0xa5eb1357, the RTC will be in un-reset state permanently.
				RTC Active Status (Read only)
1 = RTC is at normal active state.	1 = RTC is at normal active state.	[0]	Active	0 = RTC is at reset state
				1 = RTC is at normal active state.

## RTC Access Enable Register (AER)

Register	Offset	R/W	Description	Reset Value
AER	RTC_BA+0x04	R/W	RTC Access Enable Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved					No.	ENF	
15	14	13	12	11	10	9	8	
			A	ER		200	2	
7	6	5	4	3	2	1	0	
			A	ĒR	·	20	66	

Bits	Descriptions	riptions							
[31:17]	Reserved	Reserved							
		RTC Register Access							
		1 = RTC register read/							
		0 = RTC register read/							
		This bit will be set afte 512 RTC clock or AER	r AER[15:0 [15:0] is not	] register is load a 0xA965.	a 0xA965, and be clear automatically				
		Register AER.ENF	1	0					
En l		INIR	R/W	R/W					
T.A.		AER	R/W	R/W					
105 6	E	FCR	R/W	-					
[16]	ENF	TLR	R/W	R					
X	N. S.	CLR	R/W	R					
1	A 44	TSSR	R/W	R/W					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	DWR	R/W	R					
	Sp. C	TAR	R/W	-					
	No.	CAR	R/W	-					
	- Ci	LIR	R	R					
		RIER	R/W	R/W					
		RIIR	R/W	R/W					

nuvoTon

		TTR	R/W	-			
		RTC Register Access	Enable Passwo	rd (Write only)			
[15:0]	AER	0xA965 = Enable RTC access					
		Others = Disable RTC access					

RTC Frequency Compensation Register (FCR)

Register	Offset	R/W	Description	Reset Value
FCR	RTC_BA+0x08	R/W	Frequency Compensation Register	0x0000_0700

31	30	29	28	27	26	25	24	
			Rese	erved	a x			
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
Reserved			INTEGER					
7	6	5	4	3	2	1	0	
Rese	Reserved			FRAC	CTION	-29	20	

Bits	Descriptions								
[31:12]	Reserved	Reserved							
		Integer Part							
		Integer part of detected value	FCR[11:8]	Integer part of detected value	FCR[11:8]				
		32776	1111	32768	0111				
		32775	1110	32767	0110	-			
[11:8]	INTEGER	32774	1101	32766	0101				
2		32773	1100	32765	0100				
		32772	1011	32764	0011	-			
	32	32771	1010	32763	0010	-			
	2	32770	1001	32762	0001	-			
	11.	32769	1000	32761	0000	-			
7:6]	Reserved	Reserved	l		I				
5:0] FRACTION	Fraction Part								
	FRACTION	Formula = (fraction Note: Digit in FCR examples.	-	l value) x 60 ssed as hexadecimal i	number. Refer to 5	5.9.4.4 for t			

Note: This register can be read back after the RTC register access enable bit ENF (AER[16]) is active.

nuvoTon

RTC Time Loading Register (TLR)

Register	Offset	R/W	Description	Reset Value
TLR	RTC_BA+0x0C	R/W	Time Loading Register	0x0000_0000

31	30	29	28	27	26	25	24	
			Rese	erved	de a			
23	22	21	20	19	18	17	16	
Reserved 10HR			1HR					
15	14	14 13 12			10	9	8	
Reserved	10MIN			served 10MIN 1MIN				2
7	6	5	4	3	2	1	0	
Reserved	10SEC				1S	EC	20	

Bits	Descriptions	5
[31:22]	Reserved	Reserved
[21:20]	10HR	10-Hour Time Digit (0~2)
[19:16]	1HR	1-Hour Time Digit (0~9)
[15]	Reserved	Reserved
[14:12]	10MIN	10-Min Time Digit (0~5)
[11:8]	1MIN	1-Min Time Digit (0~9)
[7]	Reserved	Reserved
[6:4]	10SEC	10-Sec Time Digit (0~5)
[3:0]	1SEC	1-Sec Time Digit (0~9)

Note:

1. TLR is a BCD digit counter and RTC will not check loaded data.

2. The reasonable value range is listed in the parenthesis.

RTC Calendar Loading Register (CLR)

Register	Offset	R/W	Description	Reset Value
CLR	RTC_BA+0x10	R/W	Calendar Loading Register	0x0005_0101

31	30	29	28	27	26	25	24	
	-		Rese	erved	a so			
23	22	21	20	19	18	17	16	
10YEAR				1YEAR				
15	14	13	12	11	10	9	8	
Reserved 10MO			10MON		1MC	ON ON CO	2	
7	6	5	4	3	2	1	0	
Rese	Reserved 10DAY		DAY		1D/	ay V	66	

Bits	Descriptions						
[31:24]	Reserved	Reserved					
[23:20]	10YEAR	10-Year Calendar Digit (0~9)					
[19:16]	1YEAR	1-Year Calendar Digit (0~9)					
[15:13]	Reserved	Reserved					
[12]	10MON	10-Month Calendar Digit (0~1)					
[11:8]	1MON	1-Month Calendar Digit (0~9)					
[7:6]	Reserved	Reserved					
[5:4]	10DAY	10-Day Calendar Digit (0~3)					
[3:0]	1DAY	1-Day Calendar Digit (0~9)					

Note:

1. CLR is a BCD digit counter and RTC will not check loaded data.

2. The reasonable value range is listed in the parenthesis.

nuvoTon

RTC Time Scale Selection Register (TSSR)

Register	Offset	R/W	Description	Reset Value
TSSR	RTC_BA+0x14	R/W	Time Scale Selection Register	0x0000_0001

31	30	29	28	27	26	25	24
			Rese	erved	ar so		
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
Reserved							2
7	6	5	4	3	2	1	0
			Reserved			29	24hr/12hr

Bits	Descriptions				
[31:1]	Reserved	Reserved			
		1 = select 24-hour ti	and TAR are in 24-ho		mode
		24-hour time scale	12-hour time scale	24-hour time scale	12-hour time scale (PM time + 20)
		00	12 (AM12)	12	32 (PM12)
[0] 24hr/12hr	01	01 (AM01)	13	21 (PM01)	
	02	02 (AM02)	14	22 (PM02)	
	03	03 (AM03)	15	23 (PM03)	
	Var	04	04 (AM04)	16	24 (PM04)
	a va	05	05 (AM05)	17	25 (PM05)
	22:0	06	06 (AM06)	18	26 (PM06)
N.	San Cl	07	07 (AM07)	19	27 (PM07)
	K ~	08	08 (AM08)	20	28 (PM08)
	623	09	09 (AM09)	21	29 (PM09)
	4	10	10 (AM10)	22	30 (PM10)
		110	11 (AM11)	23	31 (PM11)

RTC Day of the Week Register (DWR)

Register	Offset	R/W	Description	Reset Value
DWR	RTC_BA+0x18	R/W	Day of the Week Register	0x0000_0006

31	30	29	28	27	26	25	24		
			Rese	erved	a x s				
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
		Reserved				DWR	6		

Image: Second	Bits	Descriptions			
ValueDay of the Week0Sunday1Monday2Tuesday3Wednesday4Thursday5Friday	[31:3]	Reserved	Reserved		ă.
[2:0] DWR DWR DWR			Day of the	Week Register	
Image: DWRImage: 1 Monday2Tuesday3Wednesday4Thursday5Friday			Value	Day of the Week]
DWR2Tuesday3Wednesday4Thursday5Friday			0	Sunday	
3Wednesday4Thursday5Friday			1	Monday	
4 Thursday 5 Friday	[2:0]	DWR	2	Tuesday	
5 Friday	3.		3	Wednesday	
	8		4	Thursday	
6 Saturday			5	Friday	
	S.	Sec.	6	Saturday	
		N CAR	6	Saturday	
	lon	09 2015		Page 206 of 350	Revision 1 11

nuvoTon

RTC Time Alarm Register (TAR)

Register	Offset	R/W	Description	Reset Value
TAR	RTC_BA+0x1C	R/W	Time Alarm Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	de a		
23	22	21	20	19	18	17	16
Reserved 10HR			1HR				
15	14	13	12	11	10	9	8
Reserved 10MIN				1M	IN ON C	2	
7	6	5	4	3	2	1	0
Reserved	Reserved 10SEC				1S	EC V	6

Bits	Descriptions	Descriptions							
[31:22]	Reserved	Reserved							
[21:20]	10HR	10-Hour Time Digit of Alarm Setting (0~2)							
[19:16]	1HR	1-Hour Time Digit of Alarm Setting (0~9)							
[15]	Reserved	Reserved							
[14:12]	10MIN	10-Min Time Digit of Alarm Setting (0~5)							
[11:8]	1MIN	1-Min Time Digit of Alarm Setting (0~9)							
[7]	Reserved	Reserved							
[6:4]	10SEC	10-Sec Time Digit of Alarm Setting (0~5)							
[3:0]	1SEC	1-Sec Time Digit of Alarm Setting (0~9)							

Note:

1. TAR is a BCD digit counter and RTC will not check loaded data.

2. The reasonable value range is listed in the parenthesis.

3. This register can be read back after the RTC register access enable bit ENF (AER[16]) is active.

RTC Calendar Alarm Register (CAR)

Register	Offset	R/W	Description	Reset Value
CAR	RTC_BA+0x20	R/W	Calendar Alarm Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	ar so		
23	22	21	20	19	18	17	16
	10Y	EAR		1YEAR			
15	14	13	12	11	10	9	8
Reserved 10MON			1MON				
7	6	5	4	3	2	1	0
Reserved 10DAY				1D.	AY	6	

Bits	Descriptions						
[31:24]	Reserved	Reserved					
[23:20]	10YEAR	10-Year Calendar Digit of Alarm Setting (0~9)					
[19:16]	1YEAR	1-Year Calendar Digit of Alarm Setting (0~9)					
[15:13]	Reserved	Reserved					
[12]	10MON	10-Month Calendar Digit of Alarm Setting (0~1)					
[11:8]	1MON	1-Month Calendar Digit of Alarm Setting (0~9)					
[7:6]	Reserved	Reserved					
[5:4]	10DAY	10-Day Calendar Digit of Alarm Setting (0~3)					
[3:0]	1DAY	1-Day Calendar Digit of Alarm Setting (0~9)					

Note:

1. CAR is a BCD digit counter and RTC will not check loaded data.

2. The reasonable value range is listed in the parenthesis.

3. This register can be read back after the RTC register access enable bit ENF (AER[16]) is active.

nuvoTon

RTC Leap year Indication Register (LIR)

Register	Offset	R/W	Description	Reset Value
LIR	RTC_BA+0x24	R	RTC Leap Year Indication Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	Reserved					29	LIR	

Bits	Descriptions		
[31:1]	Reserved	Reserved	20
		Leap Year Indication REGISTER (Real only).	
[0]	LIR	1 = It indicate that this year is leap year	
		0 = It indicate that this year is not a leap year	

Jan. 09, 2015

RTC Interrupt Enable Register (RIER)

Register	Offset	R/W	Description	Reset Value
RIER	RTC_BA+0x28	R/W	RTC Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24	
			Rese	erved	a x			
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	Reserved					TIER	AIER	

eserved ER	Reserved Time Tick Interrupt Enable	
ER	Time Tick Interrupt Enable	
ER	•	
	1 = RTC Time Tick Interrupt is enabled	
	0 = RTC Time Tick Interrupt is disabled	
	Alarm Interrupt Enable	
ER	1 = RTC Alarm Interrupt is enabled	
	0 = RTC Alarm Interrupt is disabled	

nuvoTon

RTC Interrupt Indication Register (RIIR)

Register	Offset	R/W	Description	Reset Value
RIIR	RTC_BA+0x2C	R/W	RTC Interrupt Indication Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	de a		
23	22	21	20	19	18	17	16
	<u> </u>		Rese	rved	° On	No.	
15	14	13	12	11	10	9	8
			Rese	rved		200	1
7	6	5	4	3	2	1	0
	Reserved						AIF

Bits	Descriptions			
[31:2]	Reserved	Reserved		
		RTC Time Tick Interrupt Flag		
]] TIF	When RTC Time Tick Interrupt is enabled (RIER.T high periodically in the period selected by TTR[2:0] to it.		
		1= Indicates RTC Time Tick Interrupt is requested if RIER.TIER=1		
	0= Indicates RTC Time Tick Interrupt condition nev	er occurred.		
£		RTC Alarm Interrupt Flag		
0]	AIF	When RTC Alarm Interrupt is enabled (RIER.AIER: once the RTC real time counters TLR and CLR r TAR and CAR. This bit is software clear by writing	each the alarm setting time registers	
	N TOP .	1= Indicates RTC Alarm Interrupt is requested if RI	ER.AIER=1	
	×.	0= Indicates RTC Alarm Interrupt condition never o	ccurred.	

RTC Time Tick Register (TTR)

Register	Offset	R/W	Description	Reset Value
TTR	RTC_BA+0x30	R/W	RTC Time Tick Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Rese	erved		TWKE		TTR[2:0]	5

Descriptions	criptions						
Reserved	eserved Reserved						
ТWKE	RTC Timer Wak	RTC Timer Wake-Up Function Enable Bit					
	1 = Enable RTC Timer wake-up function that chip can be woken-up from power down mode by Time Tick or Alarm Match.						
	0 = Disable RTC Timer wake-up function.						
	Note: Tick timer s	Note: Tick timer setting follows TTR[2:0] description.					
TTR	Time Tick Regis	ter					
	The RTC time tic	The RTC time tick period for Periodic Time Tick Interrupt request.					
	TTR[2:0]	Time tick (second)					
	0	1					
	1	1/2					
	2	1/4					
	3	1/8					
	4	1/16					
	5	1/32					
	6	1/64					
	7	1/128	1				
	TWKE	TWKE RTC Timer Wake If TWKE is set controller when a occur. 1 = Enable RTC mode by Time 0 = Disable RTC Note: Tick timer s Time Tick Regis The RTC time tice TTR 3 4 5 6 6	TWKE RTC Timer Wake-Up Function Enable Bit If TWKE is set before chip is in power down controller when a RTC Time Tick occurs, The chi occur. 1 = Enable RTC Timer wake-up function that chip mode by Time Tick or Alarm Match. 0 = Disable RTC Timer wake-up function. Note: Tick timer setting follows TTR[2:0] description Time Tick Register The RTC time tick period for Periodic Time Tick Ir TTR 3 1/2 2 1/4 3 1/8 4 1/16 5 1/32 6 1/64				

5.10 UART Interface Controller (UART)

NuMicro[™] NUC122 provides two channels of Universal Asynchronous Receiver/Transmitter (UART0/1). UART0 and UART1 perform Normal Speed UART, besides, UART0 and UART1 also support flow control function.

5.10.1 Overview

The Universal Asynchronous Receiver/Transmitter (UART0/1) performs a serial-to-parallel conversion on data received from the peripheral, and a parallel-to-serial conversion on data transmitted from the CPU. The UART controller also supports IrDA SIR Function and RS-485 mode functions. Each UART channel supports seven types of interrupts including transmitter FIFO empty interrupt (INT_THRE), receiver threshold level reaching interrupt (INT_RDA), line status interrupt (parity error or framing error or break interrupt) (INT_RLS), receiver buffer time-out interrupt (INT_TOUT), MODEM/Wake-Up status interrupt (INT_MODEM), Buffer error interrupt (INT_BUF_ERR). Interrupt number 13 (vector number is 29) supports UART0/1 interrupt. Refer to Nested Vectored Interrupt Controller chapter for System Interrupt Map.

The UART0/1 are equipped 14-byte transmitter FIFO (TX_FIFO) and 14-byte receiver FIFO (RX_FIFO). The CPU can read the status of the UART at any time during the operation. The reported status information includes the type and condition of the transfer operations being performed by the UART, as well as 4 error conditions (parity error, framing error, break interrupt and buffer error) probably occur while receiving data. The UART includes a programmable baud rate generator that is capable of dividing clock input by divisors to produce the serial clock that transmitter and receiver need. The baud rate equation is Baud Rate = UART_CLK / M * [BRD + 2], where M and BRD are defined in Baud Rate Divider Register (UA_BAUD). Below table lists the equations in the various conditions and the UART baud rate setting table.

Mode	DIV_X_EN	DIV_X_ONE	Divider X	BRD	Baud rate equation
0	0	0	В	А	UART_CLK / [16 * (A+2)]
1	1	0	В	А	UART_CLK / [(B+1) * (A+2)] , B must >= 8
2	1	1	Don't care	А	UART_CLK / (A+2), A must >=3

Table 5-8 UART Baud Rate Equation

System clock = 22.1184 MHz high speed						
Baud rate	Mode0	Mode1	Mode2			
921600	х	A=0,B=11	A=22			
460800	A=1	A=1,B=15 A=2,B=11	A=46			
230400	A=4	A=4,B=15 A=6,B=11	A=94			
115200	A=10	A=10,B=15 A=14,B=11	A=190			
57600	A=22	A=22,B=15 A=30,B=11	A=382			

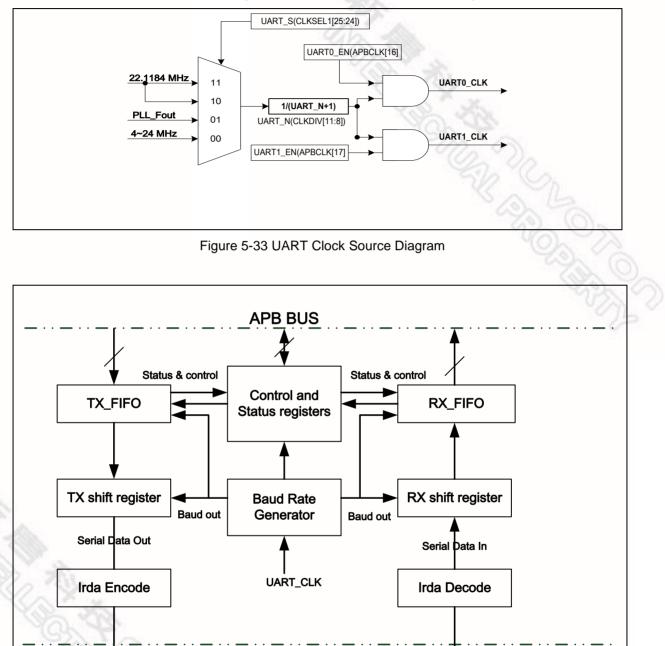
38400	A=34	A=62,B=8 A=46,B=11 A=34,B=15	A=574
19200	A=70	A=126,B=8 A=94,B=11 A=70,B=15	A=1150
9600	A=142	A=254,B=8 A=190,B=11 A=142,B=15	A=2302
4800	A=286	A=510,B=8 A=382,B=11 A=286,B=15	A=4606

Table 5-9 UART Baud Rate Setting Table

The UART0/1 controllers support auto-flow control function that uses two low-level signals, /CTS (clear-to-send) and /RTS (request-to-send), to control the flow of data transfer between the UART and external devices (ex: Modem). When auto-flow is enabled, the UART is not allowed to receive data until the UART asserts /RTS to external device. When the number of bytes in the RX FIFO equals the value of RTS_TRI_LEV (UA_FCR [19:16]), the /RTS is de-asserted. The UART sends data out when UART controller detects /CTS is asserted from external device. If a valid asserted /CTS is not detected the UART controller will not send data out.

The UART controllers also provides Serial IrDA (SIR, Serial Infrared) function (User must set IrDA_EN (UA_FUN_SEL [1]) to enable IrDA function). The SIR specification defines a short-range infrared asynchronous serial transmission mode with one start bit, 8 data bits, and 1 stop bit. The maximum data rate is 115.2 Kbps (half duplex). The IrDA SIR block contains an IrDA SIR Protocol encoder/decoder. The IrDA SIR protocol is half-duplex only. So it cannot transmit and receive data at the same time. The IrDA SIR physical layer specifies a minimum 10 ms transfer delay between transmission and reception. This delay feature must be implemented by software.

For NuMicro[™] NUC122, another alternate function of UART controllers is RS-485 9-bit mode function, and direction control provided by RTS pin or can program GPIO (PB.2 for RTS0 and PB.6 for RTS1) to implement the function by software. The RS-485 mode is selected by setting the UA_FUN_SEL register to select RS-485 function. The RS-485 driver control is implemented using the RTS control signal from an asynchronous serial port to enable the RS-485 driver. In RS-485 mode, many characteristics of the RX and TX are same as UART.


nuvoTon

5.10.2 Features

- Full duplex, asynchronous communications
- Separate receive / transmit 14 bytes entry FIFO for data payloads
- Support hardware auto flow control/flow control function (CTS, RTS) and programmable RTS flow control trigger level
- Programmable receiver buffer trigger level
- Support programmable baud-rate generator for each channel individually
- Support CTS wake-up function
- Support 8 bits receiver buffer time-out detection function
- Programmable transmitting data delay time between the last stop and the next start bit by setting UA_TOR [DLY] register
- Support break error, frame error, parity error and receive / transmit buffer overflow detect function
- Fully programmable serial-interface characteristics
 - Programmable number of data bit, 5, 6, 7, 8 bits character
 - Programmable parity bit, even, odd, no parity or stick parity bit generation and detection
 - Programmable stop bit, 1, 1.5, or 2 stop bits generation
- Support IrDA SIR function mode
 - Support for 3/16 bits duration for normal mode
- Support RS-485 function mode.
 - Support RS-485 9-bit mode
 - Support hardware or software direct enable control provided by RTS pin

5.10.3 Block Diagram

The UART clock control and block diagram are shown as Figure 5-33 and Figure 5-34.

UART / Irda / LIN / RS-485 Device or Transceiver

Figure 5-34 UART Block Diagram

TX_FIFO

The transmitter is buffered with a 14-byte FIFO to reduce the number of interrupts presented to the CPU.

RX_FIFO

The receiver is buffered with a 14-byte FIFO (plus three error bits per byte) to reduce the number of interrupts presented to the CPU.

TX shift Register

This block is the shifting the transmitting data out serially control block.

RX shift Register

This block is the shifting the receiving data in serially control block.

Modem Control Register

This register controls the interface to the MODEM or data set (or a peripheral device emulating a MODEM).

Baud Rate Generator

Divide the external clock by the divisor to get the desired baud rate clock. Refer to baud rate equation.

IrDA Encode

This block is IrDA encode control block.

IrDA Decode

This block is IrDA decode control block.

Control and Status Register

This field is register set that including the FIFO control registers (UA_FCR), FIFO status registers (UA_FSR), and line control register (UA_LCR) for transmitter and receiver. The time-out control register (UA_TOR) identifies the condition of time-out interrupt. This register set also includes the interrupt enable register (UA_IER) and interrupt status register (UA_ISR) to enable or disable the responding interrupt and to identify the occurrence of the responding interrupt. There are seven types of interrupts, transmitter FIFO empty interrupt(INT_THRE), receiver threshold level reaching interrupt (INT_RDA), line status interrupt (parity error or framing error or break interrupt) (INT_RLS), time-out interrupt (INT_TOUT), MODEM/Wake-Up status interrupt (INT_MODEM) and Buffer error interrupt (INT_BUF_ERR).

The following diagram demonstrates the auto-flow control block diagram.

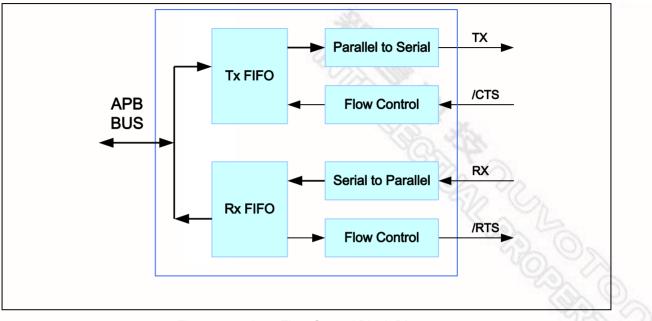


Figure 5-35 Auto Flow Control Block Diagram

nuvoTon

5.10.4 IrDA Mode

The UART supports IrDA SIR (Serial Infrared) Transmit Encoder and Receive Decoder, and IrDA mode is selected by setting the IrDA_EN bit in UA_FUN_SEL register.

When in IrDA mode, the UA_BAUD [DIV_X_EN] register must disable.

Baud Rate = Clock / (16 * BRD), where BRD is Baud Rate Divider in UA_BAUD register.

The following diagram demonstrates the IrDA control block diagram.

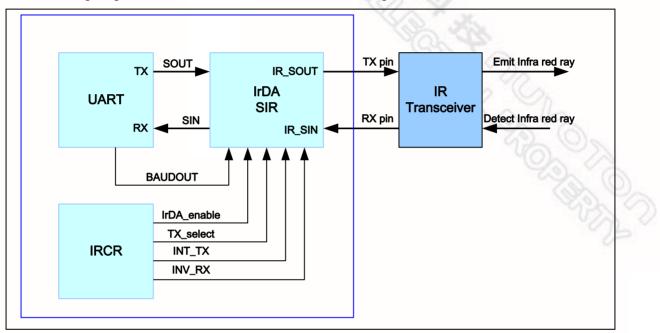


Figure 5-36 IrDA Block Diagram

5.10.4.1 IrDA SIR Transmit Encoder

The IrDA SIR Transmit Encoder modulate Non-Return-to Zero (NRZ) transmit bit stream output from UART. The IrDA SIR physical layer specifies use of Return-to-Zero, Inverted (RZI) modulation scheme which represent logic 0 as an infra light pulse. The modulated output pulse stream is transmitted to an external output driver and infrared Light Emitting Diode.

In normal mode, the transmitted pulse width is specified as 3/16 period of baud rate.

5.10.4.2 IrDA SIR Receive Decoder

The IrDA SIR Receive Decoder demodulates the return-to-zero bit stream from the input detector and outputs the NRZ serial bits stream to the UART received data input. The decoder input is normally high in the idle state. (Because of this, IRCR bit 6 should be set as 1 by default)

A start bit is detected when the decoder input is LOW

5.10.4.3 IrDA SIR Operation

The IrDA SIR Encoder/decoder provides functionality which converts between UART data stream and half duplex serial SIR interface. The following diagram is IrDA encoder/decoder waveform:

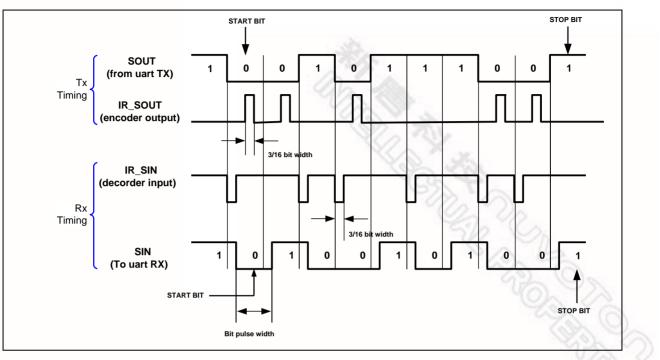


Figure 5-37 IrDA TX/RX Timing Diagram

5.10.5 RS-485 Function Mode

The UART support RS-485 9-bit mode function. The RS-485 mode is selected by setting the UA_FUN_SEL register to select RS-485 function. The RS-485 driver control is implemented using the RTS control signal from an asynchronous serial port to enable the RS-485 driver. In RS-485 mode, many characteristics of the RX and TX are same as UART.

When in RS-485 transfer mode, the controller can be configured as a RS-485 addressable slave mode and the RS-485 master transmitter will identify an address character by setting the parity (bit 9th) to 1. For data characters, the parity is set to 0. Software can program UA_LCR register to control the 9-th bit (When the PBE, EPE and SPE are set, the 9-th bit is transmitted 0 and when PBE and SPE are set and EPE is cleared, the 9-th bit is transmitted 1). The Controller supports three operation modes that are RS-485 Normal Multi-drop Operation Mode (NMM), RS-485 Auto Address Detection Operation Mode (AAD) and RS-485 Auto Direction Control Operation Mode (AUD), one of the three operation modes can be selected by program UA_ALT_CSR register, and software can program the transfer delay time between the last stop and the next start bit by setting UA_TOR [DLY] register. Following figure show the structure of RS-485 frame

RS-485 Normal Multi-drop Operation Mode (NMM)

In RS-485 Normal Multi-drop operation mode, the receiver will ignore any data until an address byte is detected (bit9 =1) and the address byte data will be stored in the RX-FIFO. Software can decide whether enable or disable receiver to accept the following data byte by setting UA_FCR [RX_DIS]. If the receiver is be enabled, all received byte data will be accepted and stored in the RX-FIFO, and if the receiver is disabled, all received byte data will be ignore until the next address byte be detected. If software disable receiver by setting UA_FCR [RX_DIS] register, when a next address byte be detected, the controller will clear the UA_FCR [RX_DIS] bit and the address byte data will be stored in the RX-FIFO.

RS-485 Auto Address Detection Operation Mode (AAD)

In RS-485 Auto Address Detection Operation Mode, the receiver will ignore any data until an address byte is detected (bit9 =1) and the address byte data match the UA_ALT_CSR [ADDR_MATCH] value. The address byte data will be stored in the RX-FIFO. The all received byte data will be accepted and stored in the RX-FIFO until an address byte or data byte not match the UA_ALT_CSR [ADDR_MATCH] value. [ADDR_MATCH] value.

RS-485 Auto Direction Mode (AUD)

Another option function of RS-485 controllers is RS-485 auto direction control function. The RS-485 driver control is implemented using the RTS control signal from an asynchronous serial port to enable the RS-485 driver. The RTS line is connected to the RS-485 driver enable such that setting the RTS line to high (logic 1) enables the RS-485 driver. Setting the RTS line to low (logic 0) puts the driver into the tri-state condition. User can set LEV_RTS in UA_MCR register to change the RTS driving level.

Program Sequence example:

1. Program FUN_SEL in UA_FUN_SEL to select RS-485 function.

2. Program the RX_DIS bit in UA_FCR register to determine enable or disable RS-485 receiver

3. Program the RS-485_NMM or RS-485_AAD mode.

4. If the RS-485_AAD mode is selected, the ADDR_MATCH is programmed for auto address match value.

5. Determine auto direction control by programming RS-485_AUD.

nuvoTon

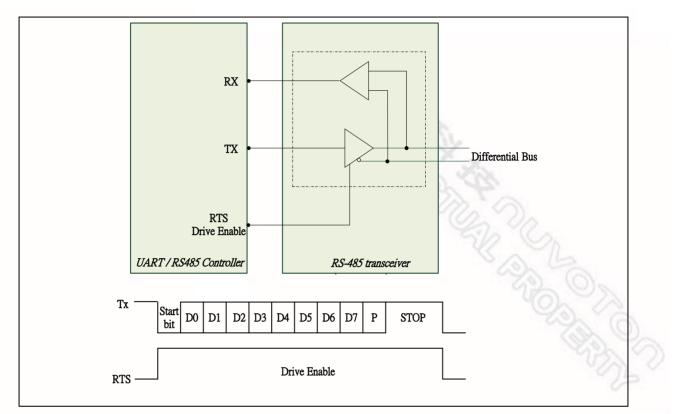


Figure 5-38 Structure of RS-485 Frame

nuvoTon

5.10.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
	Address : JART0_BA (Normal \$ JART1_BA (Normal \$	• •		
	UART0_BA+0x00	R	UART0 Receive Buffer Register	Undefined
UA_RBR	UART1_BA+0x00	R	UART1 Receive Buffer Register	Undefined
UA_THR	UART0_BA+0x00	W	UART0 Transmit Holding Register	Undefined
UA_INK	UART1_BA+0x00	W	UART1 Transmit Holding Register	Undefined
UA_IER	UART0_BA+0x04	R/W	UART0 Interrupt Enable Register	0x0000_0000
UA_IER	UART1_BA+0x04	R/W	UART1 Interrupt Enable Register	0x0000_0000
	UART0_BA+0x08	R/W	UART0 FIFO Control Register	0x0000_0000
UA_FCR	UART1_BA+0x08	R/W	UART1 FIFO Control Register	0x0000_0000
	UART0_BA+0x0C	R/W	UART0 Line Control Register	0x0000_0000
UA_LCR	UART1_BA+0x0C	R/W	UART1 Line Control Register	0x0000_0000
	UART0_BA+0x10	R/W	UART0 Modem Control Register	0x0000_0200
UA_MCR	UART1_BA+0x10	R/W	UART1 Modem Control Register	0x0000_0200
	UART0_BA+0x14	R/W	UART0 Modem Status Register	0x0000_0110
UA_MSR	UART1_BA+0x14	R/W	UART1 Modem Status Register	0x0000_0110
2	UART0_BA+0x18	R/W	UART0 FIFO Status Register	0x1040_4000
UA_FSR	UART1_BA+0x18	R/W	UART1 FIFO Status Register	0x1040_4000
ST.	UART0_BA+0x1C	R/W	UART0 Interrupt Status Register	0x0000_0002
UA_ISR	UART1_BA+0x1C	R/W	UART1 Interrupt Status Register	0x0000_0002
NG.	UART0_BA+0x20	R/W	UART0 Time-Out Register	0x0000_0000
UA_TOR	UART1_BA+0x20	R/W	UART1 Time-Out Register	0x0000_0000
	UART0_BA+0x24	R/W	UART0 Baud Rate Divisor Register	0x0F00_0000
UA_BAUD	UART1_BA+0x24	R/W	UART1 Baud Rate Divisor Register	0x0F00_0000
	UART0_BA+0x28	R/W	UART0 IrDA Control Register	0x0000_0040
UA_IRCR	UART1_BA+0x28	R/W	UART1 IrDA Control Register	0x0000_0040

nuvoTon

UA ALT CSR	UART0_BA+0x2C	R/W	UART0 Alternate Control/Status Register	0x0000_0000
	UART1_BA+0x2C	R/W	UART1 Alternate Control/Status Register	0x0000_0000
UA FUN SEL	UART0_BA+0x30	R/W	UART0 Function Select Register	0x0000_0000
		R/W	UART1 Function Select Register	0x0000_0000

nuvoTon

5.10.7 Register Description

Receive Buffer Register (UA_RBR)					
Register	Offset	R/W	Description	Reset Value	
UA_RBR	UART0_BA+0x00	R	UART0 Receive Buffer Register	Undefined	
	UART1_BA+0x00	R	UART1 Receive Buffer Register	Undefined	

31	30	29	28	27	26	25	24
			Rese	erved	-Q	20	
23	22	21	20	19	18	17	16
			Rese	erved		207	0
15	14	13	12	11	10	9	8
Reserved							
7	6	5	4	3	2	1	0
	-	·	RE	BR			35

-	eserved BR	Reserved Receive Buffer Register (Read only) By reading this register, the UART will return an 8-bit data received from RX pin (LS first).
)] RE	BR	By reading this register, the UART will return an 8-bit data received from RX pin (LS
)] RE	BR	By reading this register, the UART will return an 8-bit data received from RX pin (LS first).

Transmit Holding Register (UA_THR)

Register	Offset	R/W	Description	Reset Value
UA THR	UART0_BA+0x00	W	UART0 Transmit Holding Register	Undefined
	UART1_BA+0x00	W	UART1 Transmit Holding Register	Undefined

30	29	28	27	26	25	24
		Rese	rved	1837 A	~	
22	21	20	19	18	17	16
Reserved						
14	13	12	11	10	9	8
Reserved						2
6	5	4	3	2	1	0
		Tŀ	IR		1	82.0
	14	14 13	22 21 20 Rese 14 13 12 Rese 6 5 4	Reserved 14 13 12 11 Reserved	22 21 20 19 18 Reserved 14 13 12 11 10 Reserved 6 5 4 3 2	22 21 20 19 18 17 Reserved 14 13 12 11 10 9 Reserved 6 5 4 3 2 1

Bits	Descriptions	
[31:8]	Reserved	Reserved
[7:0]	THR	Transmit Holding Register By writing to this register, the UART will send out an 8-bit data through the TX pin (LSB first).

nuvoTon

Interrupt Enable Register (UA_IER)

Register	Offset	R/W	Description	Reset Value
UA IER	UART0_BA+0x04	R/W	UART0 Interrupt Enable Register	0x0000_0000
_	UART1_BA+0x04	R/W	UART1 Interrupt Enable Register	0x0000_0000

					and the second		
31	30	29	28	27	26	25	24
			Rese	erved	4 20	~	
23	22	21	20	19	18	17	16
			Rese	erved	S.	2 00	
15	14	13	12	11	10	9	8
Rese	erved	AUTO_CTS_E N	AUTO_RTS_E N	TIME_OUT_E N		Reserved	N.
7	6	5	4	3	2	1	0
Reserved	WAKE_EN	BUF_ERR_IE N	RTO_IEN	MODEM_IEN	RLS_IEN	THRE_IEN	RDA_IEN

Bits	Descriptions			
[31:14]	Reserved	Reserved		
		CTS Auto Flow Control Enable		
		1 = Enable CTS auto flow control		
[13]	[13] AUTO_CTS_EN	0 = Disable CTS auto flow control		
2		When CTS auto-flow is enabled, the UART will send data to external device when CTS input assert (UART will not send data to device until CTS is asserted).		
As.		RTS Auto Flow Control Enable		
105 1	[12] AUTO_RTS_EN	1 = Enable RTS auto flow control		
[12]		0 = Disable RTS auto flow control		
V.s		When RTS auto-flow is enabled, if the number of bytes in the RX FIFO equals the UA_FCR [RTS_TRI_LEV], the UART will de-assert RTS signal.		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	S. S.	Time-Out Counter Enable		
[11]	TIME_OUT_EN	1 = Enable Time-out counter		
	Spr0	0 = Disable Time-out counter		
[10:7]	Reserved	Reserved		
	32	UART Wake-Up Function Enable		
[6]	WAKE EN	0 = Disable UART wake-up function		
0] WARE_EN	1 = Enable UART wake-up function, when the chip is in power down mode, an external /CTS change will wake-up chip from power down mode.			

		Buffer Error Interrupt Enable
[5]	BUF_ERR_IEN	0 = Mask off INT_BUF_ERR
		1 = Enable INT_BUF_ERR
		RX Time-Out Interrupt Enable
[4]	RTO_IEN	0 = Mask off INT_TOUT
		1 = Enable INT_TOUT
		Modem Status Interrupt Enable
[3]	MODEM_IEN	0 = Mask off INT_MODEM
		1 = Enable INT_MODEM
		Receive Line Status Interrupt Enable
[2]	RLS_IEN	0 = Mask off INT_RLS
		1 = Enable INT_RLS
		Transmit Holding Register Empty Interrupt Enable
[1]	THRE_IEN	0 = Mask off INT_THRE
		1 = Enable INT_THRE
		Receive Data Available Interrupt Enable.
[0]	RDA_IEN	0 = Mask off INT_RDA
		1 = Enable INT_RDA

# nuvoTon

### FIFO Control Register (UA_FCR)

Register	Offset	R/W	Description	Reset Value
UA_FCR	UART0_BA+0x08	R/W	UART0 FIFO Control Register	0x0000_0000
	UART1_BA+0x08	R/W	UART1 FIFO Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	Y LOY	2°	
23	22	21	20	19	18	17	16
	Rese	erved			RTS_T	RI_LEV	
15	14	13	12	11	10	9	8
			Reserved			NO.	RX_DIS
7	6	5	4	3	2	1	0
	RF	ITL	•	Reserved	TFR	RFR	Reserved

Bits	Descriptions								
[31:20]	Reserved Reserved								
		RTS Trigger Leve	RTS Trigger Level for Auto-flow Control						
		RTS_TRI_LEV	Trigger Level (Bytes)						
		0000	01						
[40:40]		0001	04						
[19:16]	RTS_TRI_LEV	0010	08						
7		0011	14						
STO.		others	Reserved						
<u>کی</u> :	<u>永</u>	Note: This field is used for auto RTS flow control.							
[15:9]	Reserved	Reserved							
No.	21.12	Receiver Disable							
2	02.0	The receiver is disabled or not (set 1 is disable receiver)							
[8]	RX DIS	1 = Disable Receiver							
		0 = Enable Receiver							
	22	Note: This field is used for RS-485 Normal Multi-drop mode. It should be programmed before UA_ALT_CSR [RS-485_NMM] is programmed.							
	S.C.	RX FIFO Interrupt	RX FIFO Interrupt (INT_RDA) Trigger Level						
[7:4]	RFITL		of bytes in the receive FIFO equals the RFITL then the RDA_IF will be A_IEN] is enable, an interrupt will generated).						

## nuvoton

		RFITL	INTR_RDA Trigger Level (Bytes)			
		0000	01			
		0001	04			
		0010	08			
		0011	14			
		others	Reserved			
[3]	Reserved	Reserved				
		TX Field Software Reset				
		When TX_RST is set, all the byte in the transmit FIFO and TX internal state machine are cleared.				
[2]	TFR	0 = Writing 0 to this bit has no effect.				
		1 = Writing 1 to this bit will reset the TX internal state machine and pointers.				
		Note: This bit v	vill auto clear needs at least 3 UART engine clock cycles.			
		RX Field Software Reset				
		When RX_RST is set, all the byte in the receiver FIFO and RX internal state machine are cleared.				
[1]	RFR	0 = Writing 0 to this bit has no effect.				
		1 = Writing 1 to this bit will reset the RX internal state machine and pointers.				
		Note: This bit v	vill auto clear needs at least 3 UART engine clock cycles.			
[0]	Reserved	Reserved				

# nuvoTon

### Line Control Register (UA_LCR)

Register	Offset	R/W	Description	Reset Value
UA LCR	UART0_BA+0x0C	R/W	UART0 Line Control Register	0x0000_0000
_	UART1_BA+0x0C	R/W	UART1 Line Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	rved	Y LOY		
23	22	21	20	19	18	17	16
			Rese	rved	SU.	2 5	
15	14	13	12	11	10	9	8
			Rese	rved		NO.	N.
7	6	5	4	3	2	1	0
Reserved	BCB	SPE	EPE	PBE	NSB	W	LS

Bits	Descriptions				
[31:7]	Reserved	Reserved			
		Break Control Bit			
[6]	BCB	When this bit is set to logic 1, the serial data output (TX) is forced to the Spacing State (logic 0). This bit acts only on TX and has no effect on the transmitter logic.			
		Stick Parity Enable			
[5]	SPE	<ul><li>1 = If bit 3 and 4 are logic 1, the parity bit is transmitted and checked as logic 0. If bit 3 is</li><li>1 and bit 4 is 0 then the parity bit is transmitted and checked as 1</li></ul>			
		0 = Stick parity disabled			
-		Even Parity Enable			
[4]	EPE	1 = Even number of logic 1's is transmitted and checked in each word			
[4]	A CPC	0 = Odd number of logic 1's is transmitted and checked in each word			
× Ca	1.00	This bit has effect only when bit 3 (parity bit enable) is set.			
2	Q1 45	Parity Bit Enable			
[3]	PBE	1 = Parity bit is generated on each outgoing character and is checked on each incoming data.			
	NR N	0 = No parity bit.			
	n co	Number of "STOP bit"			
[2]	NSB	1 = One and a half "STOP bit" is generated in the transmitted data when 5-bit word length is selected;			
		0 = One " STOP bit" is generated in the transmitted data			

## nuvoton

		Two "STOP bit" is generated when 6-, 7- and 8-bit word length is selected.				
		Word Length	Word Length Select			
		WLS[1:0]	Character length			
[4.0]		00	5 bits			
[1:0]	WLS	01	6 bits	Sec.		
		10	7 bits	Xx		
		11	8 bits	B. CP		

# nuvoTon

### MODEM Control Register (UA_MCR)

Register	Offset	R/W	Description	Reset Value
UA MCR	UART0_BA+0x10	R/W	UART0 Modem Control Register	0x0000_0200
	UART1_BA+0x10	R/W	UART1 Modem Control Register	0x0000_0200

31	30	29	28	27	26	25	24
			Rese	erved	YES Y	2	
23	22	21	20	19	18	17	16
			Rese	erved	2	2 00	
15	14	13	12	11	10	9	8
Rese	erved	RTS_ST		Reserved		LEV_RTS	Reserved
7	6	5	4	3	2	1	0
		Rese	erved			RTS	Reserved
							V/AA K

Bits	Descriptions	
[31:14]	Reserved	Reserved
[13]	RTS_ST	RTS Pin State (Read only) This bit is the output pin status of RTS.
[12:10]	Reserved	Reserved
		<b>RTS Trigger Level</b> This bit can change the RTS trigger level.
	2	0= low level triggered 1= high level triggered <i>UART Mode : MCR[Lev_RTS] = 1</i>
[9]	LEV_RTS	MCR [RTS] MCR [RTS_st] <i>UART Mode : MCR[Lev_RTS] = 0</i>
	No.	MCR [RTS] MCR [RTS_st]

		RS-485 Mode : MCR[Lev_RTS] = 1
		TX Start D0 D1 D2 D3 D4 D5 D6 D7
		MCR [RTS_st]
		RS-485 Mode : MCR[Ley_RTS] = 0
		TX Start D0 D1 D2 D3 D4 D5 D6 D7
		MCR [RTS_st]
[8:2]	Reserved	Reserved
		RTS (Request-To-Send) Signal
		0 = Drive RTS pin to logic 1 (If the <b>LEV_RTS</b> set to low level triggered).
[1]	RTS	1 = Drive RTS pin to logic 0 (If the <b>LEV_RTS</b> set to low level triggered).
		0 = Drive RTS pin to logic 0 (If the LEV_RTS set to high level triggered).
		1 = Drive RTS pin to logic 1 (If the <b>LEV_RTS</b> set to high level triggered).
[0]	Reserved	Reserved

# nuvoTon

### Modem Status Register (UA_MSR)

Register	Offset	R/W Description		Reset Value
UA MSR	UART0_BA+0x14	R/W	UART0 Modem Status Register	0x0000_0110
	UART1_BA+0x14	R/W	UART1 Modem Status Register	0x0000_0110

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	•		Rese	rved	51	2 5		
15	14	13	12	11	10	9	8	
Reserved					No.	LEV_CTS		
7	6	5	4	3	2	1	0	
	Reserved		CTS_ST		Reserved	8	DCTSF	

Bits	Descriptions					
[31:9]	Reserved	Reserved				
		CTS polarity setting				
		This bit can select the polarity of CTS active level to send TX_FIFO data.				
		According to CTS pin and LEV_CTS setting, the four cases are described as following:				
		1. CTS_pin =0 and LEV_CTS = 0 case:				
	LEV_CTS	When the <b>CTS</b> pin input is low, the CTS function is not active if the <b>LEV_CTS</b> is set to 0.				
[8]		2. CTS_pin =1 and LEV_CTS = 0 case:				
		When the CTS pin input is high, the CTS function is active if the LEV_CTS is set to 0.				
		3. CTS pin =0 and LEV CTS = 1 case:				
900 K	~	When the CTS pin input is low, the CTS function is active if the LEV_CTS is set to 1.				
87. 7	M.	4. CTS pin =1 and LEV CTS = 1 case:				
V.	×	When the <b>CTS</b> pin input is high, the CTS function is not active if the <b>LEV_CTS</b> is set to 1.				
[7:5]	Reserved	Reserved				
[4]	стѕ ѕт	CTS Pin Status (Read only)				
[4]	013_31	This bit is the pin status of CTS.				
[3:1]	Reserved	Reserved				
	693	Detect CTS State Change Flag (Read only)				
[0]	DCTSF	This bit is set whenever CTS input has change state, and it will generate Modem interrupt to CPU when UA_IER [MODEM_IEN] is set to 1.				
		Software can write 1 to clear this bit to zero				

# nuvoTon

### FIFO Status Register (UA_FSR)

Register	Offset	R/W	Description	Reset Value
	UART0_BA+0x18	R/W	UART0 FIFO Status Register	0x1040_4000
UA_FSR	UART1_BA+0x18	R/W	UART1 FIFO Status Register	0x1040_4000

31	30	29	28	27	26	25	24
	Reserved		TE_FLAG		Reserved	A	TX_OVER_IF
23	22	21	20	19	18	17	16
TX_FULL	TX_EMPTY			TX_PO		5	La
15	14	13	12	11	10	9	8
RX_FULL	RX_EMPTY			RX_PC	DINTER	.0	1 N
7	6	5	4	3	2	1	0
Reserved	BIF	FEF	PEF	RS- 485_ADD_DE TF	Rese	erved	RX_OVER_IF

Bits	Descriptions	Descriptions					
[31:29]	Reserved	Reserved					
		Transmitter Empty Flag (Read only)					
[28]	TE_FLAG	Bit is set by hardware when TX FIFO (UA_THR) is empty and the STOP bit of the last by te has been transmitted.					
2		Bit is cleared automatically when TX FIFO is not empty or the last byte transmission has not completed.					
[27:25]	Reserved	Reserved					
900 1		TX Overflow Error Interrupt Flag (Read only)					
[24]	TX_OVER_IF	If TX FIFO (UA_THR) is full, an additional write to UA_THR will cause this bit to logic 1.					
×2		Note: This bit is read only, but can be cleared by writing '1' to it.					
N.	202	Transmitter FIFO Full (Read only)					
[23]	TX_FULL	This bit indicates TX FIFO full or not.					
[20]		This bit is set when the number of usage in TX FIFO Buffer is more than 14, otherwise is cleared by hardware.					
	S Con	Transmitter FIFO Empty (Read only)					
	J.S.	This bit indicates TX FIFO empty or not.					
[22]	TX_EMPTY	When the last byte of TX FIFO has been transferred to Transmitter Shift Register, hardware sets this bit high. It will be cleared when writing data into THR (TX FIFO not empty).					

## nuvoTon

		TX FIFO Pointer (Read only)
[21:16]	TX_POINTER	This field indicates the TX FIFO Buffer Pointer. When CPU writes one byte into UA_THR TX_POINTER increases one. When one byte of TX FIFO is transferred to Transmitte Shift Register, TX_POINTER decreases one.
		Receiver FIFO Full (Read only)
[15]	RX_FULL	This bit initiates RX FIFO full or not.
[]		This bit is set when the number of usage in RX FIFO Buffer is more than 14, otherwise is cleared by hardware.
		Receiver FIFO Empty (Read only)
[14]	RX_EMPTY	This bit initiate RX FIFO empty or not.
[]		When the last byte of RX FIFO has been read by CPU, hardware sets this bit high. It will be cleared when UART receives any new data.
		RX FIFO Pointer (Read only)
[13:8]	RX_POINTER	This field indicates the RX FIFO Buffer Pointer. When UART receives one byte from external device, RX_POINTER increases one. When one byte of RX FIFO is read by CPU, RX_POINTER decreases one.
[7]	Reserved	Reserved
		Break Interrupt Flag (Read only)
[6] <b>E</b>	BIF	This bit is set to a logic 1 whenever the received data input(RX) is held in the "spacing state" (logic 0) for longer than a full word transmission time (that is, the total time of "star bit" + data bits + parity + stop bits) and is reset whenever the CPU writes 1 to this bit.
		Note: This bit is read only, but can be cleared by writing '1' to RFR in UA_FCR register.
		Framing Error Flag (Read only)
[5]	FEF	This bit is set to logic 1 whenever the received character does not have a valid "stop bit (that is, the stop bit following the last data bit or parity bit is detected as a logic 0), and is reset whenever the CPU writes 1 to this bit.
		Note: This bit is read only, but can be cleared by writing '1' to RFR in UA_FCR register.
24		Parity Error Flag (Read only)
[4]	PEF	This bit is set to logic 1 whenever the received character does not have a valid "parity bit", and is reset whenever the CPU writes 1 to this bit.
		Note: This bit is read only, but can be cleared by writing '1' to RFR in UA_FCR register.
DY.	325	RS-485 Address Byte Detection Flag (Read only)
[3]	RS- 485_ADD_DETF	This bit is set to logic 1 and set UA_ALT_CSR [RS-485_ADD_EN] whenever in RS-485 mode the receiver detect any address byte received address byte character (bit9 = '1' bit", and it is reset whenever the CPU writes 1 to this bit.
	31.4	Note: This field is used for RS-485 function mode.
	Car Da	Note: This bit is read only, but can be cleared by writing '1' to it.
[2:1]	Reserved	Reserved
	N/A	RX Overflow Error IF (Read only)
	20	This bit is set when RX FIFO overflow.
[0]	RX_OVER_IF	If the number of bytes of received data is greater than RX_FIFO (UA_RBR) size, 14 bytes of UART0/UART1, this bit will be set.

# nuvoTon

### Interrupt Status Register (UA_ISR)

Register	Offset	R/W	Description	Reset Value
UA ISR	UART0_BA+0x1C	R/W	UART0 Interrupt Status Register	0x0000_0002
	UART1_BA+0x1C	R/W	UART1 Interrupt Status Register	0x0000_0002

04	20	00	00	07	00	05	04
31	30	29	28	27	26	25	24
			Rese	erved	Carl L	0	
23	22	21	20	19	18	17	16
			Rese	erved	K	SAL	
15	14	13	12	11	10	9	8
Rese	erved	BUF_ERR_IN T	TOUT_INT	MODEM_INT	RLS_INT	THRE_INT	RDA_INT
7	6	5	4	3	2	1	0
Rese	erved	BUF_ERR_IF	TOUT_IF	MODEM_IF	RLS_IF	THRE_IF	RDA_IF

Bits	Descriptions	
[31:14]	Reserved	Reserved
		Buffer Error Interrupt Indicator (Read only)
[12]	DUE EDD INT	This bit is set if BUF_ERR_IEN and BUF_ERR_IF are both set to 1.
[13]	BUF_ERR_INT	1 = The buffer error interrupt is generated
24		0 = No buffer error interrupt is generated
~		Time-Out Interrupt Indicator (Read only)
[40]	TOUT_INT	This bit is set if TOUT_IEN and TOUT_IF are both set to 1.
[12]		1 = The Tout interrupt is generated
		0 = No Tout interrupt is generated
Y CA	200	MODEM Status Interrupt Indicator (Read only).
[44]		This bit is set if MODEM_IEN and MODEM_IF are both set to 1.
[11]		1 = The Modem interrupt is generated
	2200	0 = No Modem interrupt is generated
		Receive Line Status Interrupt Indicator (Read only).
[10]	RLS_INT	This bit is set if RLS_IEN and RLS_IF are both set to 1.
[10]		1 = The RLS interrupt is generated
	6	0 = No RLS interrupt is generated
[9]	THRE_INT	Transmit Holding Register Empty Interrupt Indicator (Read only).

# nuvoton

		This bit is set if THRE_IEN and THRE_IF are both set to 1.
		1 = The THRE interrupt is generated
		0 = No THRE interrupt is generated
		Receive Data Available Interrupt Indicator (Read only).
[0]		This bit is set if RDA_IEN and RDA_IF are both set to 1.
[8]	RDA_INT	1 = The RDA interrupt is generated
		0 = No RDA interrupt is generated
[7:6]	Reserved	Reserved
		Buffer Error Interrupt Flag (Read only)
[5]	BUF_ERR_IF	This bit is set when the TX or RX FIFO overflows (TX_OVER_IF or RX_OVER_IF is set). When BUF_ERR_IF is set, the transfer maybe is not correct. If UA_IER [BUF_ERR_IEN is enabled, the buffer error interrupt will be generated.
		Note: This bit is cleared when both TX_OVER_IF and RX_OVER_IF are cleared.
		Time-Out Interrupt Flag (Read only)
[4]	TOUT_IF	This bit is set when the RX FIFO is not empty and no activities occurred in the RX FIFO and the time-out counter equal to TOIC. If UA_IER [TOUT_IEN] is enabled, the Tou interrupt will be generated.
		Note: This bit is read only and user can read UA_RBR (RX is in active) to clear it.
		MODEM Interrupt Flag (Read only)
[3]	MODEM_IF	This bit is set when the CTS pin has state change (DCTSF=1). If UA_IER [MODEM_IEN is enabled, the Modem interrupt will be generated.
		Note: This bit is read only and reset to 0 when bit DCTSF is cleared by a write 1 of DCTSF.
		Receive Line Interrupt Flag (Read only)
[2]	RLS_IF	This bit is set when the RX receive data have parity error, framing error or break error (a least one of 3 bits, BIF, FEF and PEF, is set). If UA_IER [RLS_IEN] is enabled, the RLS interrupt will be generated.
P.A.		Note: When in RS-485 function mode, this field include "receiver detect any address byte received address byte character (bit9 = '1') bit".
		Note: This bit is read only and reset to 0 when all bits of BIF, FEF and PEF are cleared.
St.	18.	Transmit Holding Register Empty Interrupt Flag (Read only)
[1]	THRE_IF	This bit is set when the last data of TX FIFO is transferred to Transmitter Shift Register. UA_IER [THRE_IEN] is enabled, the THRE interrupt will be generated.
	Son S.	Note: This bit is read only and it will be cleared when writing data into THR (TX FIFO no empty).
	Sp C	Receive Data Available Interrupt Flag (Read only)
[0]	RDA_IF	When the number of bytes in the RX FIFO equals the RFITL then the RDA_IF will be set If UA_IER [RDA_IEN] is enabled, the RDA interrupt will be generated.
	Se	Note: This bit is read only and it will be cleared when the number of unread bytes of R FIFO drops below the threshold level (RFITL).

UART Interrupt Source	Interrupt Enable Bit	Interrupt Indicator to Interrupt Controller	Interrupt Flag	Flag Cleared by
Buffer Error Interrupt INT_BUF_ERR	BUF_ERR_IEN	BUF_ERR_INT	BUF_ERR_IF = (TX_OVER_IF or RX_OVER_IF)	Write '1' to TX_OVER_IF/ RX_OVER_IF
RX Timeout Interrupt INT_TOUT	RTO_IEN		TOUT_IF	Read UA_RBR
Modem Status Interrupt INT_MODEM	MODEM_IEN	MODEM_INT	MODEM_IF = (DCTSF)	Write '1' to DCTSF
Receive Line Status Interrupt INT_RLS	RLS_IEN	RLS_INT	RLS_IF = (BIF or FEF or PEF)	Write '1' to BIF/FEF/PEF
Transmit Holding Register Empty Interrupt INT_THRE	THRE_IEN	THRE_INT	THRE_IF	Write UA_THR
Receive Data Available Interrupt INT_RDA	RDA_IEN	RDA_INT	RDA_IF	Read UA_RBR

Table 5-10 UART Interrupt Sources and Flags Table In Software Mode

# nuvoTon

### Time-out Register (UA_TOR)

Register	Offset	R/W	Description	Reset Value
UA TOR	UART0_BA+0x20	R/W	UART0 Time-Out Register	0x0000_0000
	UART1_BA+0x20	R/W	UART1 Time-Out Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	St the	~	
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
			DI	Y		NO.	S.
7	6	5	4	3	2	1	0
			тс	DIC		1	S. S. C
							47.00

Bits	Descriptions	Descriptions							
[31:16]	Reserved	erved Reserved							
[15:8] DLY	DLY	TX Delay Time Value         This field is use to programming the transfer delay time bet start bit.         TX         Byte (i)         Start         DLY         Start	ween the last stop bit and ne Byte (i+1)						
[7:0] <b>T</b>	тою	Time-Out Interrupt Comparator The time-out counter resets and starts counting (the whenever the RX FIFO receives a new data word. Once the (TOUT_CNT) is equal to that of time-out interrupt comparance interrupt (INT_TOUT) is generated if UA_IER [RTO_IEN]. RX FIFO empty clears INT_TOUT. In order to avoid receive immediately during one character is being received, TOIC 40 and 255. So, for example, if TOIC is set with 40, the after four characters are not received when 1 stop bit and re transfer.	he content of time-out countent tor (TOIC), a receiver time-out A new incoming data word of er time out interrupt generatio c value should be set betwee time out interrupt is generate						
Jan.	09, 2015	Page 241 of 350	Revision 1.11						

### Baud Rate Divider Register (UA_BAUD)

Register	Offset	R/W	Description	Reset Value
UA BAUD	UART0_BA+0x24	R/W	UART0 Baud Rate Divisor Register	0x0F00_0000
	UART1_BA+0x24	R/W	UART1 Baud Rate Divisor Register	0x0F00_0000

31	30	29	28	27	26	25	24
Reserved DIV		DIV_X_EN	DIV_X_ONE		DIVID	ER_X	
23	22	21	20	19	18	17	16
			Rese	rved	26	2 5	
15	14	13	12	11	10	9	8
			BF	RD		NO.	N.
7	6	5	4	3	2	1	0
			BF	RD		8	82000

Bits	Descriptions	Descriptions					
[31:30]	Reserved	Reserved					
		Divider X Enable					
		The BRD = Baud Rate Divider, and the baud rate equation is Baud Rate = Clock / [M $*$ (BRD + 2)]; The default value of M is 16.					
[29]	DIV_X_EN	0 = Disable divider X (the equation of M = 16)					
-		1 = Enable divider X (the equation of $M = X+1$ , but DIVIDER_X [27:24] must >= 8).					
1		Refer to the table below for more information.					
8		Note: When in IrDA mode, this bit must disable.					
and a		Divider X Equal 1					
1001		0 = Divider M = X (the equation of M = X+1, but DIVIDER_X[27:24] must >= 8)					
[28]	DIV_X_ONE	1 = Divider M = 1 (the equation of M = 1, but BRD [15:0] must >= 3).					
- XS	136	Refer to the table below for more information.					
107.041		Divider X					
[27:24]	DIVIDER_X	The baud rate divider $M = X+1$ .					
[23:16]	Reserved	Reserved					
[15:0]	BRD	Baud Rate Divider The field indicated the baud rate divider					

# nuvoTon

Mode	DIV_X_EN	DIV_X_ONE	DIVIDER X	BRD	Baud rate equation
0	Disable	0	В	А	UART_CLK / [16 * (A+2)]
1	Enable	0	В	Α	UART_CLK / [(B+1) * (A+2)] , B must >= 8
2	Enable	1	Don't care	А	UART_CLK / (A+2), A must >=3

## nuvoTon

### IrDA Control Register (IRCR)

Register	Offset	R/W	Description	Reset Value
UA IRCR	UART0_BA+0x28	R/W	UART0 IrDA Control Register	0x0000_0040
	UART1_BA+0x28	R/W	UART1 IrDA Control Register	0x0000_0040

31	30	29	28	27	26	25	24
			Rese	erved	Con I	A	
23	22	21	20	19	18	17	16
			Rese	erved	4	SAL	
15	14	13	12	11	10	9	8
			Rese	erved		0	22
7	6	5	4	3	2	1	0
Reserved	INV_RX	INV_TX		Reserved	TX_SELECT	Reserved	
	1	1				1	

Bits	Descriptions						
[31:7]	Reserved	Reserved					
		INV_RX					
[6]	INV_RX	1= Inverse RX input signal					
		0= No inversion					
		INV_TX					
[5]	INV_TX	1= Inverse TX output signal					
8		0= No inversion					
[4:2]	Reserved	Reserved					
	32	TX_SELECT					
[1]	TX_SELECT	1= Enable IrDA transmitter					
YS	2 202	0= Enable IrDA receiver					
[0]	Reserved	Reserved					

Note: When in IrDA mode, the UA_BAUD [DIV_X_EN] register must disable (the baud equation must be Clock / 16 * (BRD)

## nuvoTon

#### UART Alternate Control/Status Register (UA_ALT_CSR)

Register	Offset	R/W	Description	Reset Value
UA ALT CSR	UART0_BA+0x2C	R/W	UART0 Alternate Control/Status Register	0x0000_0000
	UART1_BA+0x2C	R/W	UART1 Alternate Control/Status Register	0x0000_0000

30	29	28	27	26	25	24
		ADDR_	МАТСН	1631	~	
22	21	20	19	18	17	16
		Rese	erved	2	2 00	
14	13	12	11	10	9	8
	Rese	erved		RS-485_AUD	RS-485_AAD	RS-485_NMM
6	5	4	3	2	1	0
		Rese	erved			N. A.S.
	22 14	22 21 14 13 Rese	ADDR_       22     21     20       Rese       14     13     12       Reserved       6     5     4	ADDR_MATCH       22     21     20     19       Reserved       14     13     12     11       Reserved	ADDR_MATCH       22     21     20     19     18       Reserved       14     13     12     11     10       Reserved       6     5     4     3     2	ADDR_MATCH       22     21     20     19     18     17       Reserved       14     13     12     11     10     9       RS-485_AUD       6     5     4     3     2     1

Bits	Descriptions				
		Address Match Value Register			
[31:24]	ADDR_MATCH	This field contains the RS-485 address match values.			
		Note: This field is used for RS-485 auto address detection mode.			
[23:16]	Reserved	Reserved			
22.4		RS-485 Address Detection Enable			
		This bit is use to enable RS-485 address detection mode.			
[15]	RS-485_ADD_EN	1 = Enable address detection mode			
		0 = Disable address detection mode			
S.V.	2	Note: This field is used for RS-485 any operation mode.			
[14:11]	Reserved	Reserved			
Y	8 2 Pk	RS-485 Auto Direction Mode (AUD)			
[40]	RS-485_AUD	1 = Enable RS-485 Auto Direction Operation Mode (AUO)			
[10]		0 = Disable RS-485 Auto Direction Operation Mode (AUO)			
		Note: It can be active with RS-485_AAD or RS-485_NMM operation mode.			
	RS-485_AAD	RS-485 Auto Address Detection Operation Mode (AAD)			
101		1 = Enable RS-485 Auto Address Detection Operation Mode (AAD)			
[9]		0 = Disable RS-485 Auto Address Detection Operation Mode (AAD)			
		Note: It can't be active with RS-485_NMM operation mode.			

## nuvoton

[8]	RS-485_NMM	RS-485 Normal Multi-drop Operation Mode (NMM)		
		1 = Enable RS-485 Normal Multi-drop Operation Mode (NMM)		
		0 = Disable RS-485 Normal Multi-drop Operation Mode (NMM)		
		Note: It can't be active with RS-485_AAD operation mode.		
[7:0]	Reserved	Reserved		

# nuvoTon

### UART Function Select Register (UA_FUN_SEL)

Register	Offset	R/W	Description	Reset Value
UA FUN SEL	UART0_BA+0x30	R/W	UART0 Function Select Register	0x0000_0000
		R/W	UART1 Function Select Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	Con L	A	
23	22	21	20	19	18	17	16
			Rese	erved	- K	A	
15	14	13	12	11	10	9	8
Reserved					0	22	
7	6	5	4	3	2	1	0
Reserved					FUN	SEL	

	Descriptions	Descriptions				
[31:2]	Reserved	Reserved				
		Function Select Enable				
		00 = UART Function				
[1:0]	FUN_SEL	01 = Reserved				
		10 = Enable IrDA Function				
1.1		11 = Enable RS-485 Function				

### 5.11 PS/2 Device Controller (PS2D)

#### 5.11.1 Overview

PS/2 device controller provides basic timing control for PS/2 communication. All communication between the device and the host is managed through the CLK and DATA pins. Unlike PS/2 keyboard or mouse device controller, the received/transmit code needs to be translated as meaningful code by firmware. The device controller generates the CLK signal after receiving a request to send, but host has ultimate control over communication. DATA sent from the host to the device is read on the rising edge and DATA sent from device to the host is change after rising edge. A 16 bytes FIFO is used to reduce CPU intervention. S/W can select 1 to 16 bytes for a continuous transmission.

#### 5.11.2 Features

- Host communication inhibit and request to send detection
- Reception frame error detection
- Programmable 1 to 16 bytes transmit buffer to reduce CPU intervention
- Double buffer for data reception
- S/W override bus

## nuvoTon

### 5.11.3 Block Diagram

The PS/2 device controller consists of APB interface and timing control logic for DATA and CLK lines.

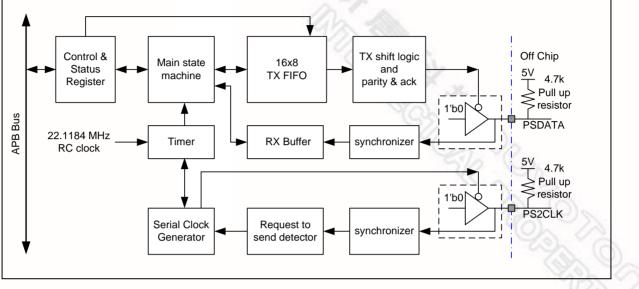



Figure 5-39 PS/2 Device Block Diagram

#### 5.11.4 Functional Description

5.11.4.1 Communication

The PS/2 device implements a bidirectional synchronous serial protocol. The bus is "Idle" when both lines are high (open-collector). This is the only state where the device is allowed start to transmit DATA. The host has ultimate control over the bus and may inhibit communication at any time by pulling the CLK line low.

The CLK signal is generated by PS/2 device. If the host wants to send DATA, it must first inhibit communication from the device by pulling CLK low. The host then pulls DATA low and releases CLK. This is the "Request-to-Send" state and signals the device to start generating CLK pulses.

DATA	CLK	Bus State
High	High	Idle
High	Low	Communication Inhibit
Low	High	Host Request to Send

All data is transmitted one byte at a time and each byte is sent in a frame consisting of 11 or 12 bits. These bits are:

- 1 start bit. This is always 0
- 8 DATA bits, least significant bit first
- 1 parity bit (odd parity)
- 1 stop bit. This is always 1
- 1 acknowledge bit (host-to-device communication only)

The parity bit is set if there is an even number of 1's in the data bits and cleared to 0 if there is an odd number of 1's in the data bits. The numbers of 1's in the data bits plus the parity bit always add up to an odd number set to 1. This is used for error detection. The device must check this bit and if incorrect it should respond as if it had received an invalid command.

The host may inhibit communication at any time by pulling the CLK line low for at least 100 microseconds. If a transmission is inhibited before the 11th clock pulse, the device must abort the current transmission and prepare to retransmit the current data when host releases Clock. In order to reserve enough time for s/w to decode host command, the transmit logic is blocked by RXINT bit, S/W must clear RXINT bit to start retransmit. S/W can write CLRFIFO to 1 to reset FIFO pointer if need.

#### **Device-to-Host**

The device uses a serial protocol with 11-bit frames. These bits are:

- 1 start bit. This is always 0
- 8 DATA bits, least significant bit first
- 1 parity bit (odd parity)
- 1 stop bit. This is always 1

The device writes a bit on the DATA line when CLK is high, and it is read by the host when CLK is low. Figures in the following illustrate this.

## nuvoTon

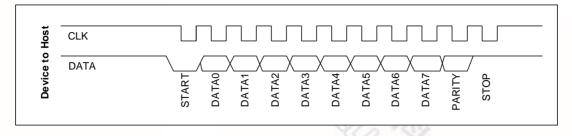



Figure 5-40 Data Format of Device-to-Host

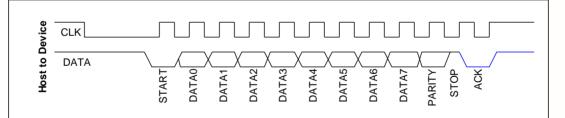
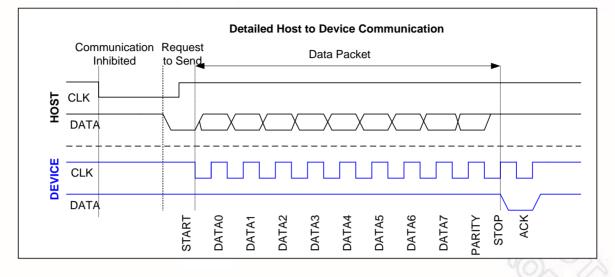
#### Host-to-Device:

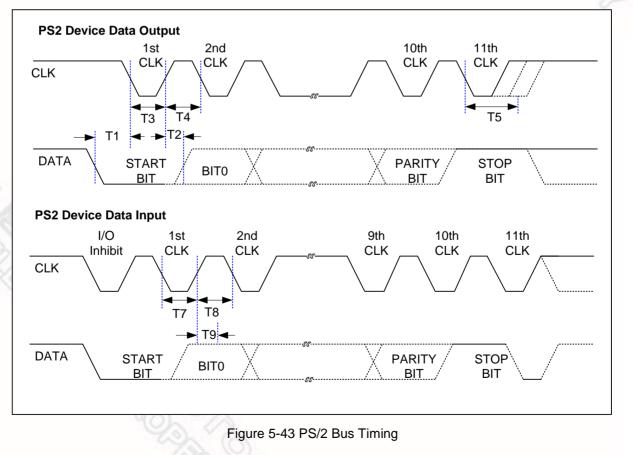
First of all, the PS/2 device always generates the CLK signal. If the host wants to send DATA, it must first put the CLK and DATA lines in a "Request-to-send" state as follows:

- Inhibit communication by pulling CLK low for at least 100 microseconds
- Apply "Request-to-send" by pulling DATA low, then release CLK

The device should check for this state at intervals not to exceed 10 milliseconds. When the device detects this state, it will begin generating CLK signals and CLK in eight DATA bits and one stop bit. The host changes the DATA line only when the CLK line is low, and DATA is read by the device when CLK is high.

After the stop bit is received, the device will acknowledge the received byte by bringing the DATA line low and generating one last CLK pulse. If the host does not release the DATA line after the 11th CLK pulse, the device will continue to generate CLK pulses until the DATA line is released.



Figure 5-41 Data Format of Host-to-Device

The host and the device DATA and CLK detailed timing for communication is shown as below:









Symbol	Timing Parameter	Min	Max
T1	DATA transition to the falling edge of CLK	5us	25us
T2	Rising edge of CLK to DATA transition	5us	T4-5us
Т3	Duration of CLK inactive	30us	50us
T4	Duration of CLK active	30us	50us
Т5	Time to auxiliary device inhibit after 11 th clock to ensure auxiliary device does not start another transmission	>0	50us
T7	Duration of CLK inactive	30us	50us
Т8	Duration of CLK active	30us	50us
Т9	Time from inactive to active CLK transition, use to time auxiliary device sample DATA	5us	25us

### 5.11.4.3 TX FIFO Operation

Writing PS2TXDATA0 register starts device to host communication. S/W is required to define TXFIFO depth before writing transmission data to TX FIFO. 1st START bit is sent to PS/2 bus 100us after S/W writes TX FIFO, if there is more than 4 bytes data need to be sent, S/W can write residual data to PS2TXDATA1-3 before 4th byte transmit complete. A time delay 100us is added between two consecutive bytes.

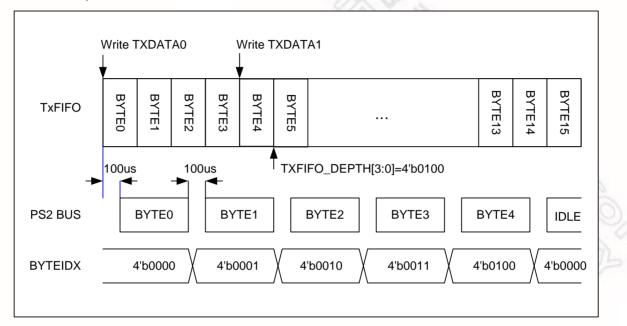



Figure 5-44 PS/2 Data Format

Jan. 09, 2015

# nuvoTon

### 5.11.5 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
PS2_BA: 0x40	10_0000			
PS2CON	PS2_BA+0x00	R/W	PS/2 Control Register	0x0000_0000
PS2TXDATA0	PS2_BA+0x04	R/W	PS/2 Transmit DATA Register 0	0x0000_0000
PS2TXDATA1	PS2_BA+0x08	R/W	PS/2 Transmit DATA Register 1	0x0000_0000
PS2TXDATA2	PS2_BA+0x0C	R/W	PS/2 Transmit DATA Register 2	0x0000_0000
PS2TXDATA3	PS2_BA+0x10	R/W	PS/2 Transmit DATA Register 3	0x0000_0000
PS2RXDATA	PS2_BA+0x14	R	PS/2 Receive DATA Register	0x0000_0000
PS2STATUS	PS2_BA+0x18	R/W	PS/2 Status Register	0x0000_0083
PS2INTID	PS2_BA+0x1C	R/W	PS/2 Interrupt Identification Register	0x0000_0000
			1	

### 5.11.6 Register Description

### PS/2 Control Register (PS2CON)

Register	Offset	R/W	Description	Reset Value
PS2CON	PS2_BA + 0x00	R/W	PS/2 Control Register	0x0000_0000

30	29	20				
		28	27	26	25	24
		Rese	erved	T CONT	A	
22	21	20	19	18	17	16
		Rese	erved	- K	SAL	
14	13	12	11	10	9	8
Rese	erved		FPS2DAT	FPS2CLK	OVERRIDE	CLRFIFO
6	5	4	3	2	1	0
	TXFIFO	DEPTH		RXINTEN	TXINTEN	PS2EN
	14 Rese	14 13 Reserved 6 5	22     21     20       Rese       14     13     12       Reserved	Reserved           14         13         12         11           Reserved         FPS2DAT         FPS2DAT           6         5         4         3	22         21         20         19         18           Reserved           14         13         12         11         10           Reserved           FPS2DAT         FPS2CLK           6         5         4         3         2	22         21         20         19         18         17           Reserved           14         13         12         11         10         9           Reserved           FPS2DAT         FPS2CLK         OVERRIDE           6         5         4         3         2         1

Bits	Descriptions	
[31:12]	Reserved	Reserved
		Force PS2DATA Line
[11]	FPS2DAT	It forces PS2DATA high or low regardless of the internal state of the device controller if OVERRIDE is set to high.
		1 = Force PS2DATA high
2.1		0 = Force PS2DATA low
2		Force PS2CLK Line
[10]	FPS2CLK	It forces PS2CLK line high or low regardless of the internal state of the device controller if OVERRIDE is set to high.
	35	1 = Force PS2CLK line high
No.	20	0 = Force PS2CLK line low
Ys	Sec. 1	Software Override PS/2 CLK/DATA Pin State
[9]	OVERRIDE	1 = PS2CLK and PS2DATA pins are controlled by S/W
	no sol	0 = PS2CLK and PS2DATA pins are controlled by internal state machine.
	Sh (	Clear TX FIFO
[8]	CLRFIFO	Write 1 to this bit to terminate device to host transmission. The TXEMPTY bit in PS2STATUS bit will be set to 1 and pointer BYTEIDEX is reset to 0 regardless there is residue data in buffer or not. The buffer content is not been cleared.
	9	1 = Clear FIFO
		0 = Not active

	Acknowledge Enable
АСК	1 = If parity error or stop bit is not received correctly, acknowledge bit will not be sent to host at 12th clock
	0 = Always send acknowledge to host at 12th clock for host to device communication.
	Transmit Data FIFO Depth
	There is 16 bytes buffer for data transmit. S/W can define the FIFO depth from 1 to 16 bytes depends on application.
	0 = 1 byte
TXFIFODIPTH	1 = 2 bytes
	14 = 15 bytes
	15 = 16 bytes
	Enable Receive Interrupt
RXINTEN	1 = Enable data receive complete interrupt
	0 = Disable data receive complete interrupt
	Enable Transmit Interrupt
TXINTEN	1 = Enable data transmit complete interrupt
	0 = Disable data transmit complete interrupt
	Enable PS/2 Device
BS2EN	Enable PS/2 device controller
F32EN	1 = Enable
	0 = Disable

### PS/2 TX DATA Register 0-3 (PS2TXDATA0-3)

Register	Offset	R/W	Description	Reset Value
PS2TXDATA0	PS2_BA + 0x04	R/W	PS/2 Transmit Data Register 0	0x0000_0000
PS2TXDATA1	PS2_BA + 0x08	R/W	PS/2 Transmit Data Register 1	0x0000_0000
PS2TXDATA2	PS2_BA + 0x0C	R/W	PS/2 Transmit Data Register 2	0x0000_0000
PS2TXDATA3	PS2_BA + 0x10	R/W	PS/2 Transmit Data Register 3	0x0000_0000

					1 1 2 1	1	
31	30	29	28	27	26	25	24
			PS2TXDA	ГАх[31:24]	-X	Non-	
23	22	21	20	19	18	17	16
			PS2TXDA	ГАх[23:16]		0	
15	14	13	12	11	10	9	8
			PS2TXDA	TAx[15:8]		0	232 V
7	6	5	4	3	2	1	0
			PS2TXD/	ATAx[7:0]			

Bits	Descriptions		
[31:0]	PS2TXDATAx	Transmit Data Write data to this register starts device to host comm must enable PS2EN before writing data to TX buffer	nunication if bus is in IDLE state. S
1			

# nuvoTon

### PS/2 Receiver DATA Register (PS2RXDATA)

Register	Offset	R/W	Description	Reset Value
PS2RXDATA	PS2_BA + 0x14	R	PS/2 Receive Data Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	a x		
23	22	21	20	19	18	17	16
			Rese	erved	° On	Do.	
15	14	13	12	11	10	9	8
			Rese	erved	~	20	2
7	6	5	4	3	2	1	0
			RXDA	FA[7:0]		29	00

Bits	Descriptions	
[31:8]	Reserved	Reserved
		Received Data
[7:0]	PS2RXDATA	For host to device communication, after acknowledge bit is sent, the received data is copied from receive shift register to PS2RXDATA register. CPU must read this register before next byte reception complete, otherwise the data will be overwritten and RXOVF bit in PS2STATUS[6] will be set to 1.

### PS/2 Status Register (PS2STATUS)

Register	Offset	R/W	Description	Reset Value
PS2STATUS	PS2_BA + 0x18	R/W	PS/2 Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
	Rese	erved		BYTEIDX[3:0]				
7	6	5	4	3	2	1	0	
TXEMPTY	RXOVF	TXBUSY	RXBUSY	RXPARTY	FRAMERR	PS2DATA	PS2CLK	

Bits	Descriptions							
31:12]	Reserved	Reserved						
		Byte Index						
		It indicates which data byte in transmit data shift register. When all data in FIF transmitted and it will be cleared to 0.						
		It is a read or						
		BYTEIDX	DATA Transmit	BYTEIDX	DATA Transmit			
		0000	TXDATA0[7:0]	1000	TXDATA2[7:0]			
11:8]	BYTEIDX	0001	TXDATA0[15:8]	1001	TXDATA2[15:8]			
11.0]		0010	TXDATA0[23:16]	1010	TXDATA2[23:16]			
		0011	TXDATA0[31:24]	1011	TXDATA2[31:24]			
		0100	TXDATA1[7:0]	1100	TXDATA3[7:0]			
		0101	TXDATA1[15:8]	1101	TXDATA3[15:8]			
	345	0110	TXDATA1[23:16]	1110	TXDATA3[23:16]			
	C.D	0111	TXDATA1[31:24]	1111	TXDATA3[31:24]			
	50	TX FIFO Em	pty	1	1			
7]	ТХЕМРТҮ	When S/W writes any data to PS2TXDATA0-3 the TXEMPTY bit is cleared immediately if PS2EN is enabled. When transmitted data byte number is equipment of FIFODEPTH then TXEMPTY bit is set to 1.						
		1 = FIFO is e	mpty					
		0 = There is o	data to be transmitted					

		Read only bit.	
		RX Buffer Overwrite	
<b>C</b> 1	DYOVE	1 = Data in PS2RXDATA register is overwritten by new received data	
[6]	RXOVF	0 = No overwrite	
		Write 1 to clear this bit.	
		Transmit Busy	
		This bit indicates that the PS/2 device is currently sending data.	
5]	TXBUSY	0 = Idle	
		1 = Currently sending data	
		Read only bit.	
		Receive Busy	2
		This bit indicates that the PS/2 device is currently receiving data.	
[4]	RXBUSY	0 = Idle	
		1 = Currently receiving data	
		Read only bit.	
		Received Parity	3h
[3]	RXPARITY	This bit reflects the parity bit for the last received data byte (odd parity).	
		Read only bit.	
		Frame Error	
[2]	FRAMERR	For host to device communication, if STOP bit (logic 1) is not received i If frame error occurs, DATA line may keep at low state after 12th clock S/W overrides PS2CLK to send clock till PS2DATA release to high device sends a "Resend" command to host.	. At this momer
		1 = Frame error occur	
		0 = No frame error	
		Write 1 to clear this bit.	
-11	PS2DATA	DATA Pin State	
[1]	FSZDATA	This bit reflects the status of the PS2DATA line after synchronizing and	sampling.
[0]	PS2CLK	CLK Pin State	
<b>M</b>	FOZULIN	This bit reflects the status of the PS2CLK line after synchronizing.	

### PS/2 Interrupt Identification Register (PS2INTID)

Register	Offset	R/W	Description	Reset Value
PS2INTID	PS2_BA + 0x1C	R/W	PS/2 Interrupt Identification Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
			Rese	erved		200	2	
7	6	5	4	3	2	1	0	
Reserved						TXINT	RXINT	

Bits	Descriptions					
[31:3]	Reserved	Reserved				
		Transmit Interrupt				
		This bit is set to 1 after STOP bit is transmitted. Interrupt occur i	f TXINTEN bit is set to 1.			
[1]	ΤΧΙΝΤ	1 = Transmit interrupt occurs				
		0 = No interrupt				
		Write 1 to clear this bit to 0.				
		Receive Interrupt				
		This bit is set to 1 when acknowledge bit is sent for Host t Interrupt occurs if RXINTEN bit is set to 1.	o device communication.			
[0]	RXINT	1 = Receive interrupt occurs				
	100	0 = No interrupt				
	20	Write 1 to clear this bit to 0.				

### 5.12 I²C Serial Interface Controller (Master/Slave) (I²C)

### 5.12.1 Overview

I²C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange between devices. The I²C standard is a true multi-master bus including collision detection and arbitration that prevents data corruption if two or more masters attempt to control the bus simultaneously.

Data is transferred between a Master and a Slave synchronously to SCL on the SDA line on a byteby-byte basis. Each data byte is 8 bits long. There is one SCL clock pulse for each data bit with the MSB being transmitted first. An acknowledge bit follows each transferred byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted as a command (START or STOP). Please refer to the following figure for more detail I²C BUS Timing.

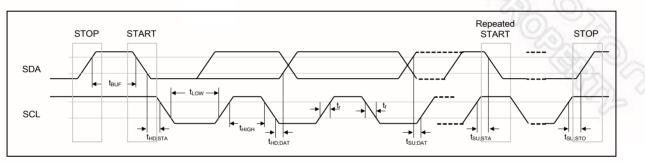



Figure 5-45 I²C Bus Timing

The device's on-chip I²C logic provides the serial interface that meets the I²C bus standard mode specification. The I²C port handles byte transfers autonomously. To enable this port, the bit ENS1 in I2CON should be set to '1'. The I²C H/W interfaces to the I²C bus via two pins: SDA (PA10, serial data line) and SCL (PA11, serial clock line). Pull up resistor is needed for Pin PA10 and PA11 for I²C operation as these are open drain pins. When the I/O pins are used as I²C port, user must set the pins function to I²C in advance.

The I²C bus uses two wires (SDA and SCL) to transfer information between devices connected to the bus. The main features of the bus are:

- Master/Slave mode
- Bidirectional data transfer between masters and slaves
- Multi-master bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer
- Built-in a 14-bit time-out counter will request the I²C interrupt if the I²C bus hangs up and timerout counter overflows.

- External pull-up are needed for high output
- Programmable clocks allow versatile rate control
- Supports 7-bit addressing mode
- I²C-bus controllers support multiple address recognition (Four slave address with mask option)

### 5.12.1.1 ²C Protocol

Normally, a standard communication consists of four parts:

- 1) START or Repeated START signal generation
- 2) Slave address and R/W bit transfer
- 3) Data transfer
- 4) STOP signal generation

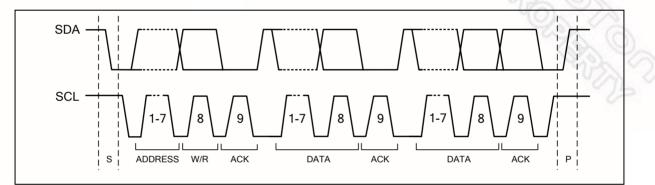



Figure 5-46 I²C Protocol

### 5.12.1.2 Data transfer on the l²C-bus

A master-transmitter addressing a slave receiver with a 7-bit address

The transfer direction is not changed



Figure 5-47 Master Transmits Data to Slave

A master reads a slave immediately after the first byte (address)

The transfer direction is changed

Jan. 09, 2015

## nuvoTon

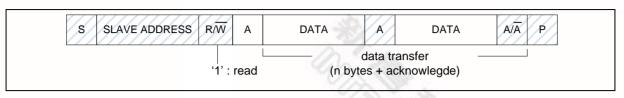



Figure 5-48 Master Reads Data from Slave

### 5.12.1.3 START or Repeated START signal

When the bus is free/idle, meaning no master device is engaging the bus (both SCL and SDA lines are high), a master can initiate a transfer by sending a START signal. A START signal, usually referred to as the S-bit, is defined as a HIGH to LOW transition on the SDA line while SCL is HIGH. The START signal denotes the beginning of a new data transfer.

A Repeated START (Sr) is no STOP signal between two START signals. The master uses this method to communicate with another slave or the same slave in a different transfer direction (e.g. from writing to a device to reading from a device) without releasing the bus.

#### STOP signal

The master can terminate the communication by generating a STOP signal. A STOP signal, usually referred to as the P-bit, is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH.

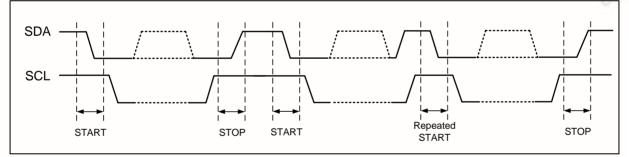



Figure 5-49 START and STOP Condition

### 5.12.1.4 Slave Address Transfer

The first byte of data transferred by the master immediately after the START signal is the slave address. This is a 7-bits calling address followed by a RW bit. The RW bit signals the slave the data transfer direction. No two slaves in the system can have the same address. Only the slave with an address that matches the one transmitted by the master will respond by returning an acknowledge bit by pulling the SDA low at the 9th SCL clock cycle.

### 5.12.1.5 Data Transfer

Once successful slave addressing has been achieved, the data transfer can proceed on a byte-bybyte basis in the direction specified by the RW bit sent by the master. Each transferred byte is followed by an acknowledge bit on the 9th SCL clock cycle. If the slave signals a Not Acknowledge (NACK), the master can generate a STOP signal to abort the data transfer or generate a Repeated START signal and start a new transfer cycle.

If the master, as the receiving device, does Not Acknowledge (NACK) the slave, the slave releases the SDA line for the master to generate a STOP or Repeated START signal.

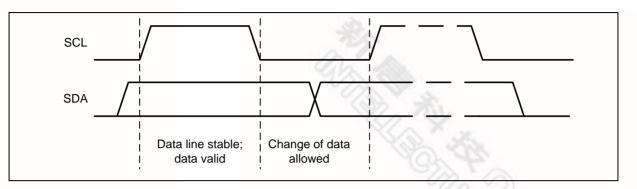



Figure 5-50 Bit Transfer on the I²C bus

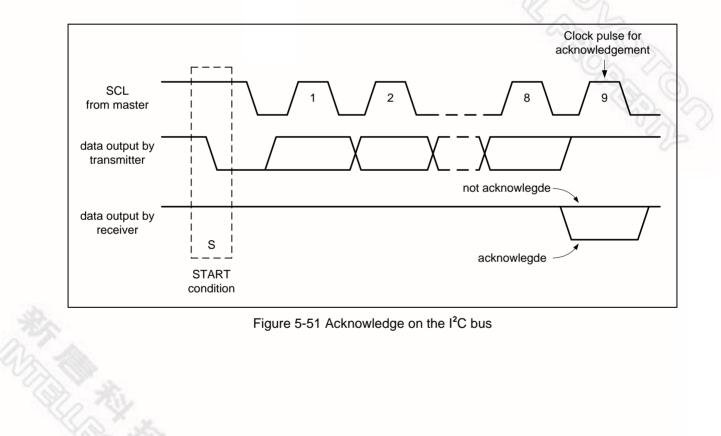



Figure 5-51 Acknowledge on the I²C bus

### 5.12.2 Protocol Registers

The CPU interfaces to the I²C port through the following thirteen special function registers: I2CON (control register), I2CSTATUS (status register), I2CDAT (data register), I2CADDRn (address registers, n=0~3), I2CADMn (address mask registers, n=0~3), I2CLK (clock rate register) and I2CTOC (Timeout counter register). All bit 31~ bit 8 of these I²C special function registers are reserved. These bits do not have any functions and are all zero if read back.

When  $I^2C$  port is enabled by setting ENS1 (I2CON [6]) to high, the internal states will be controlled by I2CON and I²C logic hardware. Once a new status code is generated and stored in I2CSTATUS, the I²C Interrupt Flag bit SI (I2CON [3]) will be set automatically. If the Enable Interrupt bit EI (I2CON [7]) is set high at this time, the I²C interrupt will be generated. The bit field I2CSTATUS[7:3] stores the internal state code, the lowest 3 bits of I2CSTATUS are always zero and the content keeps stable until SI is cleared by software. The base address is 4012 0000.

### 5.12.2.1 Address Registers (I2CADDR)

 $I^2C$  port is equipped with four slave address registers I2CADDRn (n=0~3). The contents of the register are irrelevant when I²C is in master mode. In the slave mode, the bit field I2CADDRn[7:1] must be loaded with the chip's own slave address. The I²C hardware will react if the contents of I2CADDRn are matched with the received slave address.

The I²C ports support the "General Call" function. If the GC bit (I2CADDRn [0]) is set the I²C port hardware will respond to General Call address (00H). Clear GC bit to disable general call function.


When GC bit is set and the I²C is in Slave mode, it can receive the general call address by 00H after Master send general call address to I²C bus, then it will follow status of GC mode.

I²C bus controllers support multiple address recognition with four address mask registers I2CADMn (n=0-3). When the bit in the address mask register is set to one, it means the received corresponding address bit is don't-care. If the bit is set to zero, that means the received corresponding register bit should be exact the same as address register.

#### 5.12.2.2 Data Register (I2CDAT)

This register contains a byte of serial data to be transmitted or a byte which just has been received. The CPU can read from or write to this 8-bit (I2CDAT [7:0]) directly while it is not in the process of shifting a byte. When I²C is in a defined state and the serial interrupt flag (SI) is set. Data in I2CDAT [7:0] remains stable as long as SI bit is set. While data is being shifted out, data on the bus is simultaneously being shifted in; I2CDAT [7:0] always contains the last data byte present on the bus. Thus, in the event of arbitration lost, the transition from master transmitter to slave receiver is made with the correct data in I2CDAT [7:0].

I2CDAT [7:0] and the acknowledge bit form a 9-bit shift register, the acknowledge bit is controlled by the I²C hardware and cannot be accessed by the CPU. Serial data is shifted through the acknowledge bit into I2CDAT [7:0] on the rising edges of serial clock pulses on the SCL line. When a byte has been shifted into I2CDAT [7:0], the serial data is available in I2CDAT [7:0], and the acknowledge bit (ACK or NACK) is returned by the control logic during the ninth clock pulse. Serial data is shifted out from I2CDAT [7:0] on the falling edges of SCL clock pulses, and is shifted into I2CDAT [7:0] on the rising edges of SCL clock pulses. Sol Of





### 5.12.2.3 Control Register (I2CON)

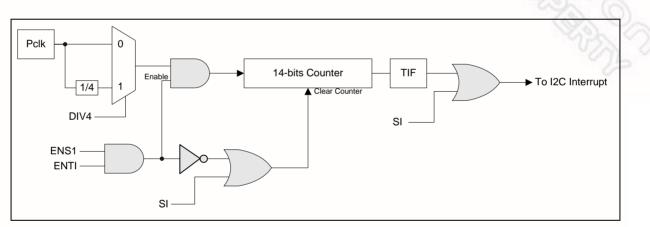
The CPU can read from and write to this 8-bit field of I2CON [7:0] directly. Two bits are affected by hardware: the SI bit is set when the  $I^2C$  hardware requests a serial interrupt, and the STO bit is cleared when a STOP condition is present on the bus. The STO bit is also cleared when ENS1 = 0.

- El Enable Interrupt.
- ENS1 Set to enable  $I^2C$  serial function controller. When ENS1=1 the  $I^2C$  serial function enables. The Multi Function pin function of SDA and SCL must be set to  $I^2C$  function.
- STA I²C START Control Bit. Setting STA to logic 1 to enter master mode, the I²C hardware sends a START or repeat START condition to bus when the bus is free.
- STO I²C STOP Control Bit. In master mode, setting STO to transmit a STOP condition to bus then I²C hardware will check the bus condition if a STOP condition is detected this flag will be cleared by hardware automatically. In a slave mode, setting STO resets I²C hardware to the defined "not addressed" slave mode. This means it is NO LONGER in the slave receiver mode to receive data from the master transmit device.
- SI I²C Interrupt Flag. When a new I²C state is present in the I2CSTATUS register, the SI flag is set by hardware, and if bit EI (I2CON [7]) is set, the I²C interrupt is requested. SI must be cleared by software. Clear SI is by writing 1 to this bit. All states are listed in section 5.6.6
- AA Assert Acknowledge Control Bit. When AA=1 prior to address or data received, an acknowledged (low level to SDA) will be returned during the acknowledge clock pulse on the SCL line when 1.) A slave is acknowledging the address sent from master, 2.) The receiver devices are acknowledging the data sent by transmitter. When AA=0 prior to address or data received, a Not acknowledged (high level to SDA) will be returned during the acknowledge clock pulse on the SCL line.

### 5.12.2.4 Status Register (I2CSTATUS)

I2CSTATUS [7:0] is an 8-bit read-only register. The three least significant bits are always 0. The bit field I2CSTATUS [7:3] contain the status code. There are 26 possible status codes, All states are listed in section 5.6.6. When I2CSTATUS [7:0] contains F8H, no serial interrupt is requested. All other I2CSTATUS [7:3] values correspond to defined  $I^2C$  states. When each of these states is entered, a status interrupt is requested (SI = 1). A valid status code is present in I2CSTATUS[7:3] one cycle after SI is set by hardware and is still present one cycle after SI has been reset by software.

In addition, state 00H stands for a Bus Error. A Bus Error occurs when a START or STOP condition is present at an illegal position in the format frame. Examples of illegal positions are during the serial transfer of an address byte, a data byte or an acknowledge bit. To recover  $I^2C$  from bus error, STO should be set and SI should be clear to enter not addressed slave mode. Then clear STO to release bus and to wait new communication.  $I^2C$  bus can not recognize stop condition during this action when bus error occurs.


### 5.12.2.5 $l^2C$ Clock Baud Rate Bits (I2CLK)

The data baud rate of  $I^2C$  is determines by I2CLK [7:0] register when  $I^2C$  is in a master mode. It is not important when  $I^2C$  is in a slave mode. In the slave modes,  $I^2C$  will automatically synchronize with any clock frequency up to 1 MHz from master  $I^2C$  device.

The data baud rate of  $I^2C$  setting is Data Baud Rate of  $I^2C$  = (system clock) / (4x (I2CLK [7:0] +1)). If system clock = 16 MHz, the I2CLK [7:0] = 40 (28H), so data baud rate of  $I^2C$  = 16 MHz/ (4x (40 +1)) = 97.5 Kbits/sec.

### 5.12.2.6 The $l^2$ C Time-out Counter Register (I2CTOC)

There is a 14-bit time-out counter which can be used to deal with the  $I^2C$  bus hang-up. If the time-out counter is enabled, the counter starts up counting until it overflows (TIF=1) and generates  $I^2C$  interrupt to CPU or stops counting by clearing ENTI to 0. When time-out counter is enabled, setting flag SI to high will reset counter and re-start up counting after SI is cleared. If  $I^2C$  bus hangs up, it causes the I2CSTATUS and flag SI are not updated for a period, the 14-bit time-out counter may overflow and acknowledge CPU the  $I^2C$  interrupt. Refer to the following figure for the 14-bit time-out counter. User may write 1 to clear TIF to zero.



### Figure 5-53 I²C Time-out Counter Block Diagram

### 5.12.3 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
I2C_BA = 0x4	012_0000			
I2CON	I2C_BA+0x00	R/W	I ² C Control Register	0x0000_0000
I2CADDR0	I2C_BA+0x04	R/W	I ² C Slave Address Register 0	0x0000_0000
I2CDAT	I2C_BA+0x08	R/W	I ² C DATA Register	0x0000_0000
I2CSTATUS	I2C_BA+0x0C	R	I ² C Status Register	0x0000_00F8
I2CLK	I2C_BA+0x10	R/W	I ² C Clock Divider Register	0x0000_0000
I2CTOC	I2C_BA+0x14	R/W	I ² C Time-Out Control Register	0x0000_0000
I2CADDR1	I2C_BA+0x18	R/W	I ² C Slave Address Register 1	0x0000_0000
I2CADDR2	I2C_BA+0x1C	R/W	I ² C Slave Address Register 2	0x0000_0000
I2CADDR3	I2C_BA+0x20	R/W	I ² C Slave Address Register 3	0x0000_0000
I2CADM0	I2C_BA+0x24	R/W	I ² C Slave Address Mask Register 0	0x0000_0000
I2CADM1	I2C_BA+0x28	R/W	I ² C Slave Address Mask Register 1	0x0000_0000
I2CADM2	I2C_BA+0x2C	R/W	I ² C Slave Address Mask Register 2	0x0000_0000
I2CADM3	I2C_BA+0x30	R/W	I ² C Slave Address Mask Register 3	0x0000_0000

# nuvoTon

### 5.12.4 Register Description

### I²C Control Register (I2CON)

Register	Offset	R/W	Description	Reset Value
I2CON	I2C_BA+0x00	R/W	I ² C Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	L'and		
23	22	21	20	19	18	17	16
			Rese	erved	K	- A	e
15	14	13	12	11	10	9	8
			Rese	erved		0	~~~
7	6	5	4	3	2	1	0
EI	ENS1	STA	STO	SI	AA	Rese	erved
	1						10m

Bits	Descriptions				
[31:8]	Reserved	Reserved			
		Enable Interrupt			
[7]	EI	1 = Enable I ² C interrupt			
		0 = Disable I ² C interrupt			
		I ² C Controller Enable Bit			
2.		1 = Enable			
[6]	ENS1	0 = Disable			
		Set to enable $I^2C$ serial function controller. When ENS1=1 the $I^2C$ serial function enables. The multi-function pin function of SDA and SCL must set to $I^2C$ function first.			
Sto.	20	I ² C START Control Bit			
[5]	STA	Setting STA to logic 1 to enter master mode, the I ² C hardware sends a START or repeat START condition to bus when the bus is free.			
-	20:0	I ² C STOP Control Bit			
[4]	STO	In master mode, setting STO to transmit a STOP condition to bus then I ² C hardware will check the bus condition if a STOP condition is detected this bit will be cleared by hardware automatically. In a slave mode, setting STO resets I ² C hardware to the defined "not addressed" slave mode. This means it is NO LONGER in the slave receiver mode to receive data from the master transmit device.			
		I ² C Interrupt Flag			
[3]	SI	When a new $I^2C$ state is present in the I2CSTATUS register, the SI flag is set by hardware, and if bit EI (I2CON [7]) is set, the $I^2C$ interrupt is requested. SI must be			

		cleared by software. Clear SI is by writing 1 to this bit.
		Assert Acknowledge Control Bit
[2]	AA	When AA=1 prior to address or data received, an acknowledged (low level to SDA) will be returned during the acknowledge clock pulse on the SCL line when 1.) A slave is acknowledging the address sent from master, 2.) The receiver devices are acknowledging the data sent by transmitter. When AA=0 prior to address or data received, a Not acknowledged (high level to SDA) will be returned during the acknowledge clock pulse on the SCL line.
[1:0]	Reserved	Reserved

# nuvoTon

### I²C Data Register (I2CDAT)

Register	Offset	R/W	Description	Reset Value
I2CDAT	I2C_BA+0x08	R/W	I ² C Data Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	ar so		
23	22	21	20	19	18	17	16
			Rese	erved	° On	Do -	
15	14	13	12	11	10	9	8
			Rese	erved		200	2
7	6	5	4	3	2	1	0
			I2CDA	T[7:0]		29	0.6

Bits	Descriptions	
[31:8]	Reserved	Reserved
[7:0]	I2CDAT	I ² C Data Register
[7.0]		Bit [7:0] is located with the 8-bit transferred data of I ² C serial port.

### I²C Status Register (I2CSTATUS)

Register	Offset	R/W	Description	Reset Value
I2CSTATUS	I2C_BA+0x0C	R/W	I ² C Status Register	0x0000_00F8

31	30	29	28	27	26	25	24
			Rese	erved	ar so		
23	22	21	20	19	18	17	16
			Rese	rved	° On	Do.	
15	14	13	12	11	10	9	8
			Rese	rved	<u></u>	200	s.
7	6	5	4	3	2	1	0
	I:	2CSTATUS[7:3	]		0	0	0

[31:8] Reserved Reserved
I ² C Status Register
The status register of I ² C:
7:0] <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b>I2CSTATUS</b> <b></b>

# nuvoTon

### I²C Clock Divider Register (I2CLK)

Register	Offset	R/W	Description	Reset Value
I2CLK	I2C_BA+0x10	R/W	I ² C Clock Divider Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	a so		
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						2
7	6	5	4	3	2	1	0
			I2CLI	<b>&lt;</b> [7:0]		29	66

Bits	Descriptions	
[31:8]	Reserved	Reserved
[7:0]	I2CLK	I ² C Clock Divider Register
[7:0]		The I ² C clock rate bits: Data Baud Rate of I ² C = (system clock) / (4x (I2CLK+1)).

### I²C Time-Out Counter Register (I2CTOC)

Register	Offset	R/W	Description	Reset Value
I2CTOC	I2C_BA+0x14	R/W	I ² C Time-Out Counter Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	ar so		
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
Reserved						120 8	2
7	6	5	4	3	2	1	0
	-	Reserved			ENTI	DIV4	TE

Bits	Descriptions	Descriptions						
[31:3]	Reserved	Reserved Reserved						
		Time-out Counter Enable						
		1 = Enable						
[2]	ENTI	0 = Disable						
		When Enable, the 14 bit time-out counter will start countin SI to high will reset counter and re-start up counting after a						
		Time-Out Counter Input Clock is Divided by 4						
[4]		1 = Enable						
[1]	DIV4	0 = Disable						
		When Enable, The time-Out period is extend 4 times.						
N.Y	32-	Time-Out Flag						
[0]	TIF	This bit is set by H/W when I ² C time-out happened a interrupt enable bit (EI) is set to 1.	and it can interrupt CPU if $I^2C$					
	200	S/W can write 1 to clear this bit.						
Jan.	09, 2015	Page 276 of 350	Revision 1.11					

# nuvoTon

### I²C Slave Address Register (I2CADDRx)

Register	Offset	R/W	Description	Reset Value
I2CADDR0	I2C_BA+0x04	R/W	I ² C Slave Address Register 0	0x0000_0000
I2CADDR1	I2C_BA+0x18	R/W	I ² C Slave Address Register 1	0x0000_0000
I2CADDR2	I2C_BA+0x1C	R/W	I ² C Slave Address Register 2	0x0000_0000
I2CADDR3	I2C_BA+0x20	R/W	I ² C Slave Address Register 3	0x0000_0000

31         30         29         28         27         26	25	24		
	2. S2h			
Reserved		~		
23         22         21         20         19         18	17	16		
Reserved	0	22		
15 14 13 12 11 10	9	8		
Reserved	0	332 3		
7 6 5 4 3 2	1	0		
I2CADDR[7:1]				

Bits	Descriptions	Descriptions			
[31:8]	Reserved Reserved				
[7:1]	I2CADDR	I ² C Address Register The content of this register is irrelevant when I ² C i the seven most significant bits must be loaded w hardware will react if either of the address is matche	<i>r</i> ith the chip's own address. The I ² C		
		General Call Function			
[0]	GC	0 = Disable General Call Function.			
	×.	1 = Enable General Call Function.			

### I²C Slave Address Mask Register (I2CADMx)

Register	Offset	R/W	Description	Reset Value
I2CADM0	I2C_BA+0x24	R/W	I ² C Slave Address Mask Register 0	0x0000_0000
I2CADM1	I2C_BA+0x28	R/W	I ² C Slave Address Mask Register 1	0x0000_0000
I2CADM2	I2C_BA+0x2C	R/W	I ² C Slave Address Mask Register 2	0x0000_0000
I2CADM3	I2C_BA+0x30	R/W	I ² C Slave Address Mask Register 3	0x0000_0000

					1111		
31	30	29	28	27	26	25	24
			Rese	erved	- K	2 M	~
23	22	21	20	19	18	17	16
			Rese	erved		0	22
15	14	13	12	11	10	9	8
			Rese	erved		0	3350
7	6	5	4	3	2	1	0
I2CADMx[7:1]					Reserved		

	Descriptions				
[31:8]	Reserved	Reserved			
		I ² C Address Mask Register 1 = Mask enable (the received corresponding address I	bit is don't care.)		
[7:1]	I2CADMx	0 = Mask disable (the received corresponding register bit should be exact the same as address register.)			
	· 术、	I ² C bus controllers support multiple address recognitio When the bit in the address mask register is set corresponding address bit is don't-care. If the bit is se corresponding register bit should be exact the same as	to one, it means the received to zero, that means the received		
[0]	Reserved	Reserved			

#### 5.12.5 Modes of Operation

The on-chip I²C ports support five operation modes, Master transmitter, Master receiver, Slave transmitter, Slave receiver, and GC call.

In a given application, I²C port may operate as a master or as a slave. In the slave mode, the I²C port hardware looks for its own slave address and the general call address. If one of these addresses is detected, and if the slave is willing to receive or transmit data from/to master(by setting the AA bit), acknowledge pulse will be transmitted out on the 9th clock, hence an interrupt is requested on both master and slave devices if interrupt is enabled. When the microcontroller wishes to become the bus master, the hardware waits until the bus is free before the master mode is entered so that a possible slave action didn't be interrupted. If bus arbitration is lost in the master mode, I²C port switches to the slave mode immediately and can detect its own slave address in the same serial transfer.

#### 5.12.5.1 Master Transmitter Mode

Serial data output through SDA while SCL outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the data direction bit. In this case the data direction bit (R/W) will be logic 0, and it is represented by "W" in the flow diagrams. Thus the first byte transmitted is SLA+W. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

#### 5.12.5.2 Master Receiver Mode

In this case the data direction bit (R/W) will be logic 1, and it is represented by "R" in the flow diagrams. Thus the first byte transmitted is SLA+R. Serial data is received via SDA while SCL outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions are output to indicate the beginning and end of a serial transfer.

#### 5.12.5.3 Slave Receiver Mode

Serial data and the serial clock are received through SDA and SCL. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by hardware after reception of the slave address and direction bit.

#### 5.12.5.4 Slave Transmitter Mode

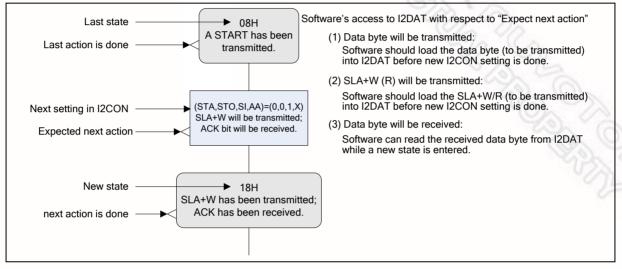
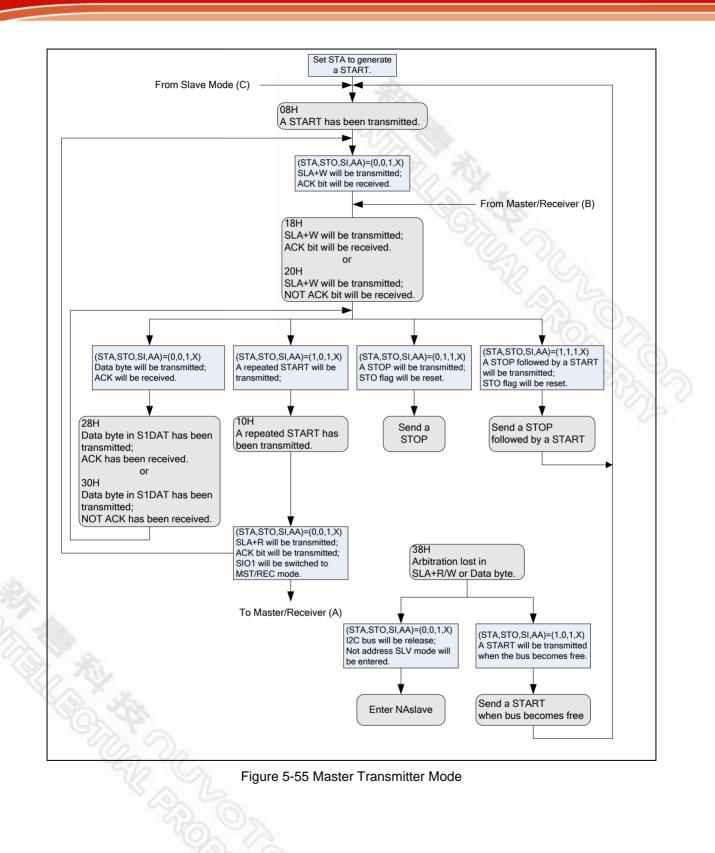
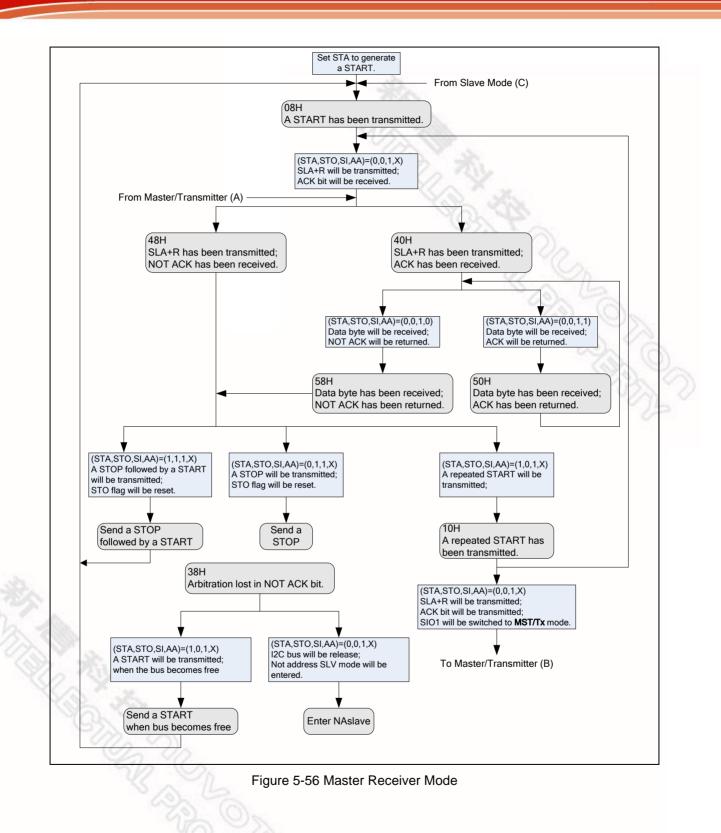
The first byte is received and handled as in the slave receiver mode. However, in this mode, the direction bit will indicate that the transfer direction is reversed. Serial data is transmitted via SDA while the serial clock is input through SCL. START and STOP conditions are recognized as the beginning and end of a serial transfer.

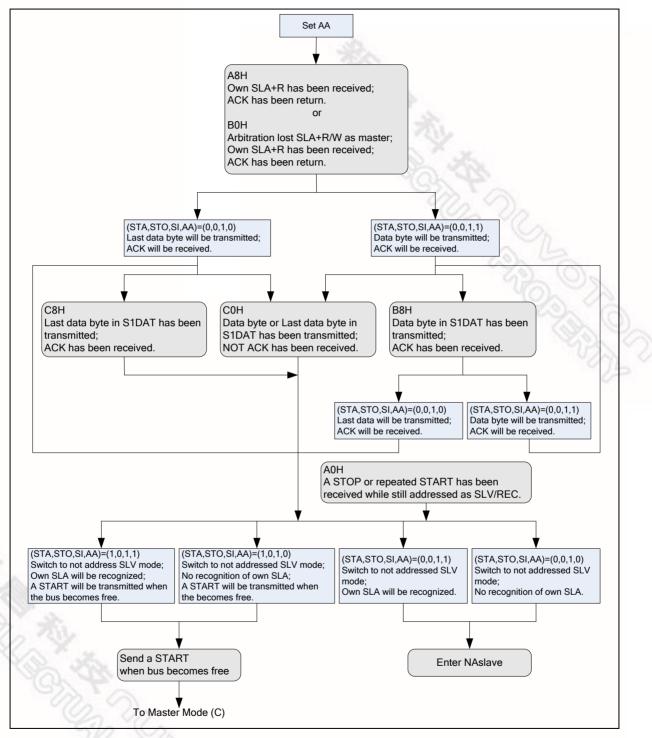
### 5.12.6 Data Transfer Flow in Five Operating Modes

The five operating modes are: Master/Transmitter, Master/Receiver, Slave/Transmitter, Slave/Receiver and GC Call. Bits STA, STO and AA in I2CON register will determine the next state of the  $I^2$ C hardware after SI flag is cleared. Upon completion of the new action, a new status code will be updated and the SI flag will be set. If the  $I^2$ C interrupt control bit EI (I2CON [7]) is set, appropriate action or software branch of the new status code can be performed in the Interrupt service routine.

Data transfers in each mode are shown in the following figures.

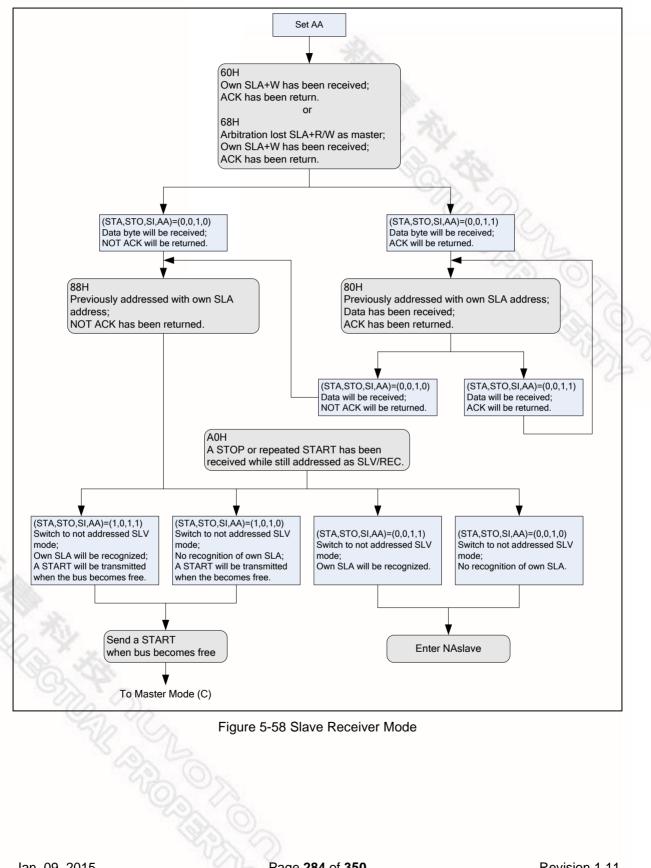
*** Legend for the following five figures:

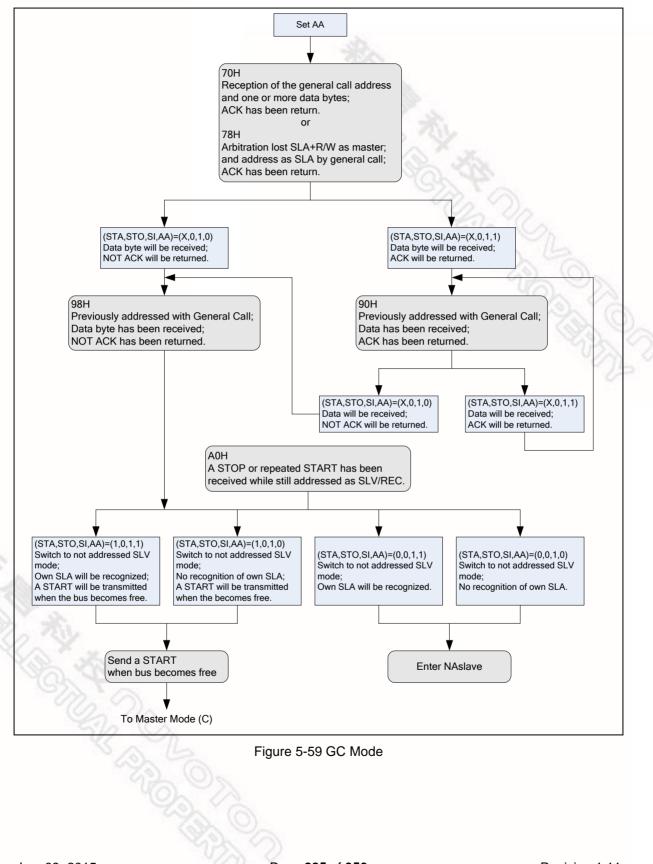






Figure 5-54 Legend for the following four figures

Jan. 09, 2015







## nuvoTon



#### Figure 5-57 Slave Transmitter Mode

## nuvoton





### 5.13 Serial Peripheral Interface (SPI)

#### 5.13.1 Overview

The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol which operates in full duplex mode. Devices communicate in master/slave mode with 4-wire bi-direction interface. The NuMicro[™] NUC122 contains up to two sets of SPI controller performing a serial-to-parallel conversion on data received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. Each set of SPI controller can be set as a master that can drive up to 2 external peripheral slave devices; it also can be configured as a slave device controlled by an off-chip master device.

This controller supports a variable serial clock for special application.

#### 5.13.2 Features

- Up to two sets of SPI controller for NuMicro[™] NUC122
- Support master or slave mode operation
- Support 1-bit transfer mode
- Configurable bit length up to 32 bits of a transfer word and configurable word numbers up to 2 of a transaction, so the maximum bit length is 64 bits for each data transfer
- Provide burst mode operation, transmit/receive can be transferred up to two times word transaction in one transfer
- Support MSB or LSB first transfer
- 2 device/slave select lines in master mode, but 1 device/slave select line in slave mode
- Support byte reorder in data register
- Support byte or word suspend mode
- Variable output serial clock frequency in master mode
- Support two programmable serial clock frequencies in master mode

5.13.3 Block Diagram

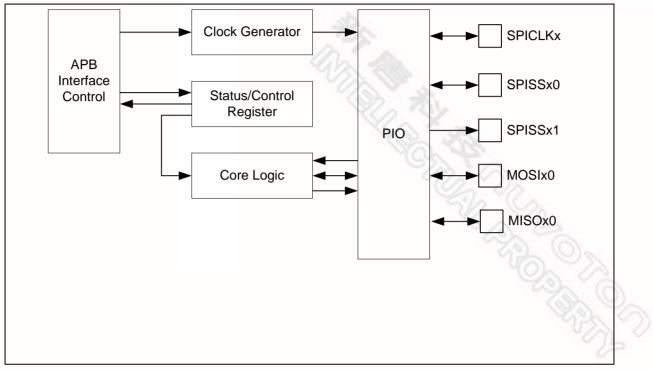



Figure 5-60 SPI Block Diagram



### 5.13.4 Function Description

#### Master/Slave Mode

This SPI controller can be set as master or slave mode by setting the SLAVE bit (SPI_CNTRL[18]) to communicate with the off-chip SPI slave or master device. The application block diagrams in master and slave mode are shown as below. This SPI controller does not support multi-slave in SPI bus if the controller is set as slave mode. In slave mode, the SPI clock pin must be kept at idle state when the slave select pin is at inactive state.

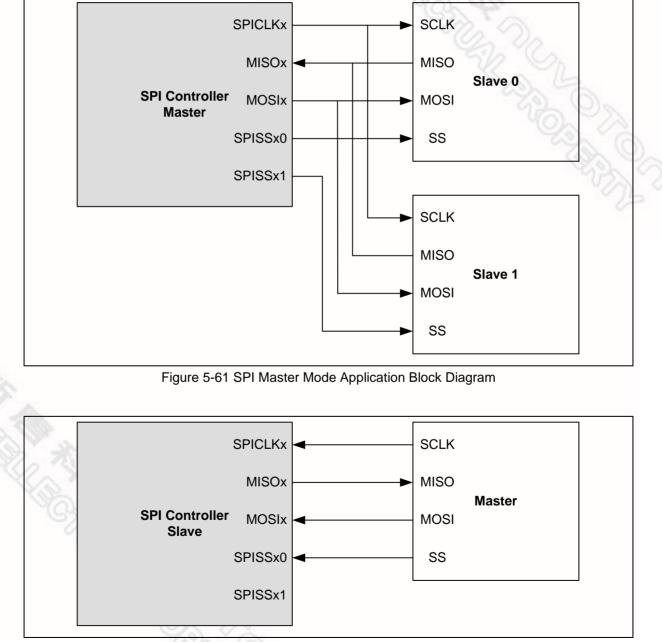



Figure 5-62 SPI Slave Mode Application Block Diagram

#### Slave Select

In master mode, this SPI controller can drive up to two off-chip slave devices through the slave select output pins SPISSx0 and SPISSx1. In slave mode, the off-chip master device drives the slave select signal from the SPISSx0 input port to this SPI controller. In master/slave mode, the active state of slave select signal can be programmed to low active or high active in SS_LVL bit (SPI_SSR[2]), and the SS_LTRIG bit (SPI_SSR[4]) defines the slave select signal SPISSx0/1 is level trigger or edge trigger. The selection of trigger condition depends on what type of peripheral slave/master device is connected.

In slave mode, if the SS_LTRIG bit is configured as level trigger, the LTRIG_FLAG bit (SPI_SSR[5]) is used to indicate if both the received number and received bits met the requirement which defines in TX_NUM and TX_BIT_LEN among one transaction done (the transaction done means the slave select has deactivated or the SPI controller has finished one data transfer).

#### Level-trigger / Edge-trigger

In slave mode, the slave select signal can be configured as level-trigger or edge-trigger. In edgetrigger, the data transfer starts from an active edge and ends on an inactive edge. If master does not send an inactive edge to slave, the transfer procedure will not be completed and the interrupt flag of slave will not be set. In level-trigger, the following two conditions will terminate the transfer procedure and the interrupt flag of slave will be set. The first condition, if master set the slave select pin to inactive level, it will force slave device to terminate the current transfer no matter how many bits have been transferred and the interrupt flag will be set. User can read the status of LTRIG_FLAG bit to check if the data has been completely transferred. The second condition is that if the number of transferred bits matches the settings of TX_NUM and TX_BIT_LEN, the interrupt flag of slave will be set.

#### **Automatic Slave Select**

In master mode, if the bit AUTOSS (SPI_SSR[3]) is set, the slave select signals will be generated automatically and output to SPISSx0 and SPISSx1 pins according to SSR[0] (SPI_SSR[0]) and SSR[1] (SPI_SSR[1]) whether be enabled or not. It means that the slave select signals, which are selected in SSR[1:0], will be asserted by the SPI controller when transmit/receive is started by setting the GO_BUSY bit (SPI_CNTRL[0]) and will be de-asserted after the data transfer is finished. If the AUTOSS bit is cleared, the slave select output signals will be asserted/de-asserted by manual setting/clearing the related bits of SPI_SSR[1:0]. The active state of the slave select output signals is specified in SS_LVL bit (SPI_SSR[2]).

#### Serial Clock

In master mode, set the DIVIDER1 bits (SPI_DIVIDER[15:0]) to program the output frequency of serial clock to the SPICLK output port. It also supports a variable serial clock if the VARCLK_EN bit (SPI_CTL[23]) is enabled. In this case, the output frequency of serial clock can be programmed as one of the two different frequencies which depend on the value of DIVIDER1 (SPI_DIVIDER[15:0]) and DIVIDER2 (SPI_DIVIDER[31:16]). The serial clock rate of each cycle is depended on the setting of the SPI_VARCLK register.

In slave mode, the off-chip master device drives the serial clock through the SPICLK input port to this SPI controller.

#### Variable Serial Clock Frequency

In master mode, the output of serial clock can be programmed as variable frequency pattern if the Variable Clock Enable bit VARCLK_EN (SPI_CNTRL[23]) is enabled. The frequency pattern format is defined in VARCLK (SPI_VARCLK[31:0]) register. If the bit content of VARCLK is '0' the output frequency is according with the DIVIDER (SPI_DIVIDER[15:0]) and if the bit content of VARCLK is '1', the output frequency is according to the DIVIDER2 (SPI_DIVIDER[31:16]). The following figure is the timing relationship among the serial clock (SPICLK), the VARCLK, the DIVIDER and the DIVIDER2 registers. A two-bit combination in the VARCLK defines one clock cycle. The bit field VARCLK[31:30] defines the first clock cycle of SPICLK. The bit field VARCLK[29:28] defines the second clock cycle of SPICLK and so on. The clock source selections are defined in VARCLK and it must be set 1 cycle before the next clock option. For example, if there are 5 CLK1 cycle in SPICLK, the VARCLK shall set 9 '0' in the MSB of VARCLK. The 10th shall be set as '1' in order to switch the next clock source is CLK2. Note that when enable the VARCLK_EN bit, the setting of TX_BIT_LEN must be programmed as 0x10 (16 bits mode only).

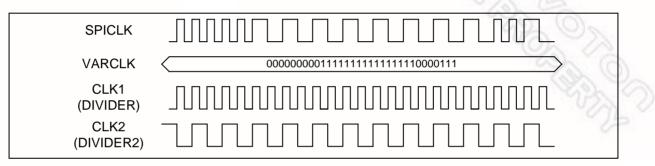



Figure 5-63 Variable Serial Clock Frequency

#### **Clock Polarity**

The CLKP bit (SPI_CTL[11]) defines the serial clock idle state. If CLKP = 1, the output SPICLK is idle at high state, otherwise it is at low state if CLKP = 0.

#### Transmit/Receive Bit Length

The bit length of a transaction word is defined in TX_BIT_LEN bit field (SPI_CNTRL[7:3]). It can be configured up to 32 bits length in a transaction word for transmitting and receiving.

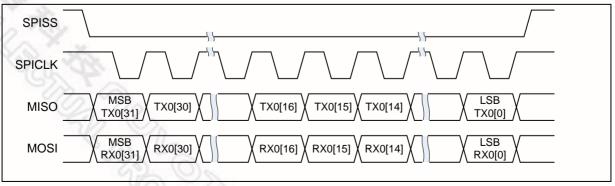



Figure 5-64 32-Bit in one Transaction

## nuvoTon

#### Burst Mode

SPI controller can switch to burst mode by setting TX_NUM bit field (SPI_CNTRL[9:8]) to 0x01. In burst mode, SPI can transmit/receive two transactions in one transfer. The SPI burst mode waveform is showed below:

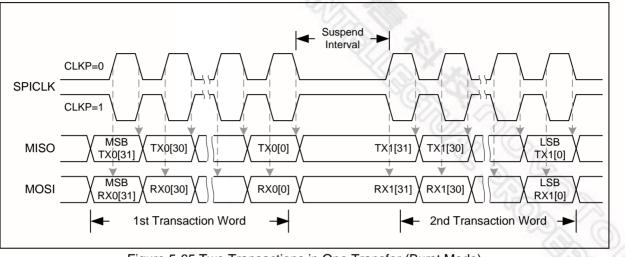



Figure 5-65 Two Transactions in One Transfer (Burst Mode)

#### LSB First

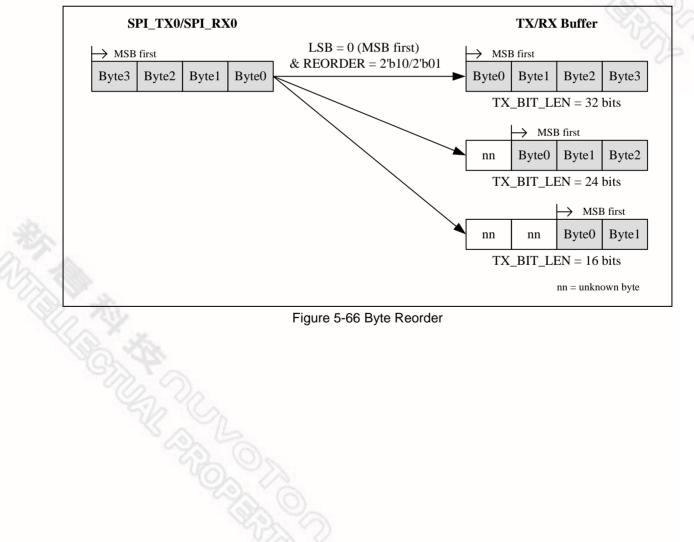
The LSB bit (SPI_CNTRL[10]) defines the data transmission either from LSB or MSB firstly to start to transmit/receive data.

#### **Transmit Edge**

The TX_NEG bit (SPI_CNTRL[2]) defines the data transmitted out either at negative edge or at positive edge of serial clock SPICLK.

#### **Receive Edge**

The Rx_NEG bit (SPI_CNTRL[1]) defines the data received in either at negative edge or at positive edge of serial clock SPICLK.


Note: the settings of TX_NEG and RX_NEG are mutual exclusive. In other words, don't transmit and receive data at the same clock edge.

#### Word Suspend

These four bits field of SP_CYCLE (SPI_CNTRL[15:12]) provide a configurable suspend interval 2 ~ 17 serial clock periods between two successive transaction words in master mode. The suspend interval is from the last falling clock edge of the preceding transaction word to the first rising clock edge of the following transaction word if CLKP = 0. If CLKP = 1, the interval is from the rising clock edge of the preceding transaction word to the falling clock edge of the following transaction word to the falling clock edge of the following transaction word. The default value of SP_CYCLE is 0x0 (2 serial clock cycles), but set these bits field has no any effects on data transaction process if TX_NUM = 0x00.

#### Byte Reorder

When the transfer is set as MSB first (LSB = 0) and the REORDER is enabled, the data stored in the TX buffer and RX buffer will be rearranged in the order as [BYTE0, BYTE1, BYTE2, BYTE3] in TX_BIT_LEN = 32-bit mode, and the sequence of transmitted/received data will be BYTE0, BYTE1, BYTE2, and then BYTE3. If the TX_BIT_LEN is set as 24-bit mode, the data in TX buffer and RX buffer will be rearranged as [unknown byte, BYTE0, BYTE1, BYTE2]. The SPI controller will transmit/receive data with the sequence of BYTE0, BYTE1 and then BYTE2. Each byte will be transmitted/received with MSB first. The rule of 16-bit mode is the same as above. Byte reorder function is only available when TX_BIT_LEN is configured as 16, 24 and 32 bits.



## nuvoTon

#### **Byte Suspend**

In master mode, if SPI_CNTRL[19] is set to 1, the hardware will insert a suspend interval 2 ~ 17 serial clock periods between two successive bytes in a transaction word. Both settings of byte suspend and word suspend are configured in SP_CYCLE. Note that when enable the byte suspend function, the setting of TX_BIT_LEN must be programmed as 0x00 only (32 bits per transaction word).

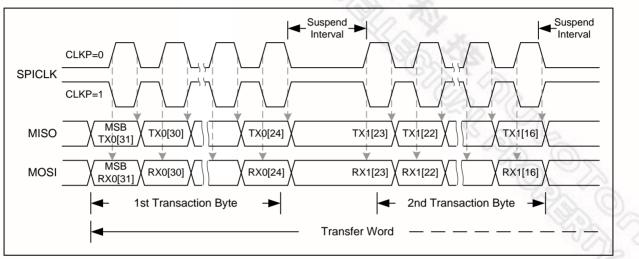



Figure 5-67 Timing Waveform for Byte Suspend

REORDER	Description
00	Disable both byte reorder function and byte suspend interval.
01	Enable byte reorder function and insert a byte suspend internal (2~17 SPICLK) among each byte. The setting of TX_BIT_LEN must be configured as 0x00 ( 32 bits/ word)
10	Enable byte reorder function but disable byte suspend function
11	Disable byte reorder function, but insert a suspend interval (2~17 SPICLK) among each byte. The setting of TX_BIT_LEN must be configured as 0x00 ( 32 bits/ word)

Table 5-11 Byte Order and Byte Suspend Conditions

#### Interrupt

Each SPI controller can generates an individual interrupt when data transfer is finished and the respective interrupt event flag IF (SPI_CNTRL[16]) will be set. The interrupt event flag will generates an interrupt to CPU if the interrupt enable bit IE (SPI_CNTRL[17]) is set. The interrupt event flag IF can be cleared only by writing 1 to it.

#### **Timing Diagram**

The active state of slave select signal can be defined by the settings of SS_LVL bit (SPI_SSR[2]) and SS_LTRIG bit (SPI_SSR[4]). The serial clock (SPICLK) idle state can be configured as high state or low state by setting the CLKP bit (SPI_CNTRL[11]). It also provides the bit length of a transaction word in TX_BIT_LEN (SPI_CNTRL[7:3]), the transfer number in TX_NUM (SPI_CNTRL[8]), and transmit/receive data from MSB or LSB first in LSB bit (SPI_CNTRL[10]). Users also can select which edge of serial clock to transmit/receive data in TX_NEG/RX_NEG (SPI_CNTRL[2:1]) registers. Four SPI timing diagrams for master/slave operations and the related settings are shown as below.

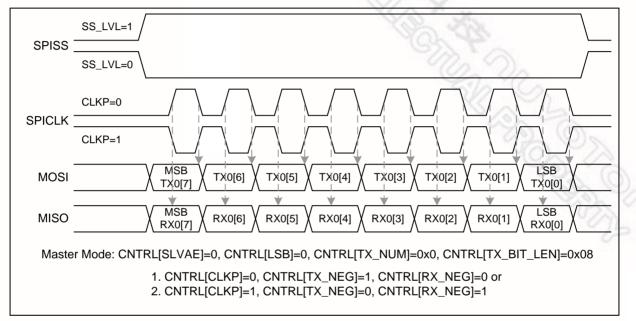



Figure 5-68 SPI Timing in Master Mode

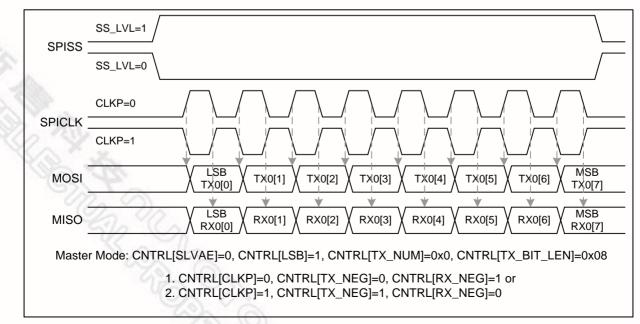
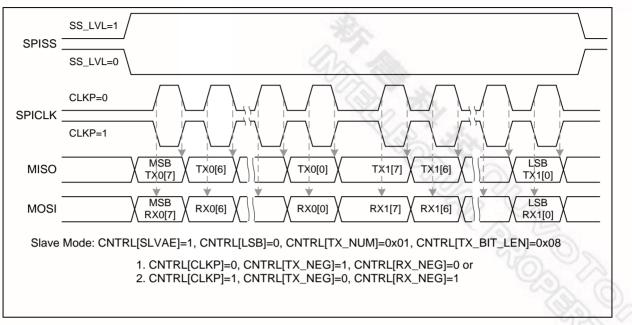
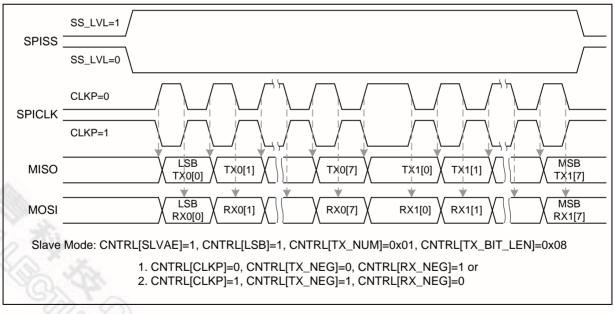





Figure 5-69 SPI Timing in Master Mode (Alternate Phase of SPICLK)









#### 5.13.5 Programming Examples

Example 1, SPI controller is set as a master to access an off-chip slave device with following specifications:

- Data bit is latched on positive edge of serial clock
- Data bit is driven on negative edge of serial clock
- Data is transferred from MSB first
- SPICLK is idle at low state
- Only one byte of data to be transmitted/received in a transaction
- Use the first SPI slave select pin to connect with an off-chip slave device. Slave select signal is active low

The operation flow is as follows.

- 1) Set the DIVIDER (SPI_DIVIDER [15:0]) register to determine the output frequency of serial clock.
- 2) Write the SPI_SSR register a proper value for the related settings of master mode
  - 1. Disable the <u>Automatic Slave Select</u> bit AUTOSS(SPI_SSR[3] = 0)
  - Select low level trigger output of slave select signal in the <u>Slave Select Active Level</u> bit SS_LVL (SPI_SSR[2] = 0)
  - 3. Select slave select signal to be output active at the IO pin by setting the <u>Slave Select</u> <u>Register</u> bits SSR[0] (SPI_SSR[0]) to active the off-chip slave devices
- 3) Write the related settings into the SPI_CNTRL register to control this SPI master actions
  - 1. Set this SPI controller as master device in SLAVE bit (SPI_CNTRL[18] = 0)
  - 2. Force the serial clock idle state at low in CLKP bit (SPI_CNTRL[11] = 0)
  - Select data transmitted at negative edge of serial clock in TX_NEG bit (SPI_CNTRL[2] = 1)
  - 4. Select data latched at positive edge of serial clock in RX_NEG bit (SPI_CNTRL[1] = 0)
  - 5. Set the bit length of word transfer as 8-bit in TX_BIT_LEN bit field (SPI_CNTRL[7:3] = 0x08)
  - 6. Set only one time of word transfer in TX_NUM (SPI_CNTRL[9:8] = 0x0)
  - 7. Set MSB transfer first in MSB bit (SPI_CNTRL[10] = 0), and don't care the SP_CYCLE bit field (SPI_CNTRL[15:12]) due to it's not in burst mode in this case
- 4) If this SPI master will transmits (writes) one byte data to the off-chip slave device, write the byte data that will be transmitted into the TX0[7:0] (SPI_TX0[7:0]) register.
- 5) If this SPI master just only receives (reads) one byte data from the off-chip slave device, you don't need to care what data will be transmitted and just write 0xFF into the SPI_TX0[7:0] register.
- 6) Enable the GO_BUSY bit (SPI_CNTRL [0] = 1) to start the data transfer at the SPI interface.
- 7) Waiting for SPI interrupt occurred (if the Interrupt Enable IE bit is set) or just polling the GO_BUSY bit till it is cleared to 0 by hardware automatically.
- 8) Read out the received one byte data from RX0 [7:0] (SPI_RX0[7:0]) register.
- 9) Go to 4) to continue another data transfer or set SSR [0] to 0 to inactivate the off-chip slave

devices.

Example 2, The SPI controller is set as a slave device and connects with an off-chip master device. The off-chip master device communicates with the on-chip SPI slave controller through the SPI interface with the following specifications:

- Data bit is latched on positive edge of serial clock
- Data bit is driven on negative edge of serial clock
- Data is transferred from LSB first
- SPICLK is idle at high state
- Only one byte of data to be transmitted/received in a transaction
- Slave select signal is high level trigger

The operation flow is as follows.

1) Write the SPI_SSR register a proper value for the related settings of slave mode

Select high level and level trigger for the input of slave select signal by setting the Slave Select Active Level bit SS_LVL (SPI_SSR[2] = 1) and the Slave Select Level Trigger bit SS_LTRIG (SPI_SSR[4] = 1).

- 2) Write the related settings into the SPI_CNTRL register to control this SPI slave actions
  - 1. Set this SPI controller as slave device in SLAVE bit (SPI_CNTRL[18] = 1)
  - 2. Select the serial clock idle state at high in CLKP bit (SPI_CNTRL[11] = 1)
  - Select data transmitted at negative edge of serial clock in TX_NEG bit (SPI_CNTRL[2] = 1)
  - 4. Select data latched at positive edge of serial clock in RX_NEG bit (SPI_CNTRL[1] = 0)
  - 5. Set the bit length of word transfer as 8-bit in TX_BIT_LEN bit field (SPI_CNTRL[7:3] = 0x08)
  - 6. Set only one time of word transfer in TX_NUM (SPI_CNTRL[9:8] = 0x0)
  - 7. Set LSB transfer first in LSB bit (SPI_CNTRL[10] = 1), and don't care the SP_CYCLE bit field (SPI_CNTRL[15:12]) due to not burst mode in this case.
- 3) If this SPI slave will transmits (be read) one byte data to the off-chip master device, write the byte data that will be transmitted into the TX0 [7:0] (SPI_TX0[7:0]) register.
- 4) If this SPI slave just only receives (be written) one byte data from the off-chip master device, you don't care what data will be transmitted and just write 0xFF into the SPI_TX0[7:0] register.
- 5) Enable the GO_BUSY bit (SPI_CNTRL[0] = 1) to wait for the slave select trigger input and serial clock input from the off-chip master device to start the data transfer at the SPI interface.

Waiting for SPI interrupt occurred (if the Interrupt Enable IE bit is set), or just polling the GO_BUSY bit till it is cleared to 0 by hardware automatically.

6) Read out the received one byte data from RX[7:0] (SPI_RX0[7:0]) register

Go to 3) to continue another data transfer or disable the GO_BUSY bit to stop data transfer.

## 5.13.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
SPI0_BA = 0x4003_0000								
SPI1_BA = 0x4	4003_4000							
SPI_CNTRL	SPIx_BA+0x00	R/W	Control and Status Register	0x0500_0004				
SPI_DIVIDER	SPIx_BA+0x04	R/W	Clock Divider Register	0x0000_0000				
SPI_SSR	SPIx_BA+0x08	R/W	Slave Select Register	0x0000_0000				
SPI_RX0	SPIx_BA+0x10	R	Data Receive Register 0	0x0000_0000				
SPI_RX1	SPIx_BA+0x14	R	Data Receive Register 1	0x0000_0000				
SPI_TX0	SPIx_BA+0x20	W	Data Transmit Register 0	0x0000_0000				
SPI_TX1	SPIx_BA+0x24	W	Data Transmit Register 1	0x0000_0000				
SPI_VARCLK	SPIx_BA+0x34	R/W	Variable Clock Pattern Register	0x007F_FF87				

Note: When software programs CNTRL, the GO_BUSY bit should be written last.

Jan. 09, 2015

# nuvoTon

## 5.13.7 Register Description

## SPI Control and Status Register (SPI_CNTRL)

Register	Offset	R/W	Description	Reset Value
SPI_CNTRL	SPIx_BA+0x00	R/W	Control and Status Register	0x0500_0004

31	30	29	28	27	26	25	24
			Rese	erved	Tag	A	•
23	22	21	20	19	18	17	16
VARCLK_EN	SBZ		REORDER		SLAVE	EL	IF
15	14	13	12	11	10	9	8
SP_CYCLE				CLKP	LSB	TX_	NUM
7	6	5	4	3	2	1	0
		TX_BIT_LEN			TX_NEG	RX_NEG	GO_BUSY
					1	•	

Bits	Descriptions				
[31:24]	Reserved	Reserved			
		Variable Clock Enable (Master only)			
[00]	VARCLK EN	1 = The serial clock output frequency is variable. The output frequency is decided by the value of VARCLK, DIVIDER, and DIVIDER2.			
[23]	VARCER_EN	0 = The serial clock output frequency is fixed and decided only by the value of DIVIDER.			
		Note that when enable this VARCLK_EN bit, the setting of TX_BIT_LEN must be programmed as 0x10 (16 bits mode)			
[22:21]	SBZ	Note: This bit must always be kept 0. If set to 1, the result is unpredictable			
605	REORDER	Reorder Mode Select			
		00 = Disable both byte reorder and byte suspend functions.			
		01 = Enable byte reorder function and insert a byte suspend interval (2~17 SPICLK cycles) among each byte. The setting of TX_BIT_LEN must be configured as 0x00. (32 bits/word)			
		10 = Enable byte reorder function, but disable byte suspend function.			
[20:19]		11 = Disable byte reorder function, but insert a suspend interval (2~17 SPICLK cycles) among each byte. The setting of TX_BIT_LEN must be configured as 0x00. (32 bits/word)			
	~ (2);	Note:			
	2	1. Byte reorder function is only available if TX_BIT_LEN is defined as 16, 24, and 32 bits.			
		2. In slave mode with level-trigger configuration, if the byte suspend function is enabled, the slave select pin must be kept at active state during the successive four bytes transfer.			

		Oleve Medele dissting
14 01	SLAVE	Slave Mode Indication
[18]	SLAVE	1 = Slave mode
		0 = Master mode
		Interrupt Enable
[17]	IE	1 = Enable SPI Interrupt
		0 = Disable SPI Interrupt
		Interrupt Flag
[16]	IF	1 = It indicates that the transfer is done.
[10]	"	0 = It indicates that the transfer dose not finish yet.
		Note: This bit is cleared by writing 1 to itself.
		Suspend Interval (Master only)
		These four bits provide configurable suspend interval between two successive transmit/receive transaction in a transfer. The suspend interval is from the last falling clock edge of the current transaction to the first rising clock edge of the successive transaction if $CLKP = 0$ . If $CLKP = 1$ , the interval is from the rising clock edge to the falling clock edge. The default value is 0x0. When $TX_NUM = 00b$ , setting this field has no effect on transfer. The desired suspend interval is obtained according to the following equation:
		Suspend interval for byte suspend and burst mode suspend:
[15:12]	SP_CYCLE	(SP_CYCLE[3:0] + 2) * period of SPICLK
		Ex:
		SP_CYCLE = 0x0 2 SPICLK clock cycle
		SP_CYCLE = 0x1 3 SPICLK clock cycle
		SP_CYCLE = 0xE 16 SPICLK clock cycle
2		SP_CYCLE = 0xF 17 SPICLK clock cycle
~		Clock Polarity
[11]	CLKP	1 = SPICLK idle high
105.1		0 = SPICLK idle low
S)	Ŵ.	LSB First
[10]	LSB	1 = The LSB is sent first on the line (bit 0 of SPI_TX0/1), and the first bit received from the line will be put in the LSB position in the RX register (bit 0 of SPI_RX0/1).
20	3000	0 = The MSB is transmitted/received first (which bit in SPI_TX0/1 and SPI_RX0/1 register that is depends on the TX_BIT_LEN field).
	20 × 1	Numbers of Transmit/Receive Word
	K D	This field specifies how many transmit/receive word numbers should be executed in one transfer.
[9:8]	TX_NUM	00 = Only one transmit/receive word will be executed in one transfer.
	90	01 = Two successive transmit/receive words will be executed in one transfer. (burst mode)
		CONTRACTOR AND A DECIMARY OF A

	<ul><li>11 = Reserved.</li><li>Note: In slave mode with level-trigger configuration, if TX_NUM is set to 01, the slave sele</li></ul>
	pin must be kept at active state during the successive data transfer.
	Transmit Bit Length
	This field specifies how many bits are transmitted in one transaction. Up to 32 bits can be transmitted.
	TX_BIT_LEN = 0x01 1 bit
TX_BIT_LEN	TX_BIT_LEN = 0x02 2 bits
	TX_BIT_LEN = 0x1F 31 bits
	TX_BIT_LEN = 0x00 32 bits
	Transmit At Negative Edge
TX_NEG	1 = The transmitted data output signal is changed at the falling edge of SPICLK
	0 = The transmitted data output signal is changed at the rising edge of SPICLK
	Receive At Negative Edge
RX_NEG	1 = The received data input signal is latched at the falling edge of SPICLK
	0 = The received data input signal is latched at the rising edge of SPICLK
	Go and Busy Status
GO_BUSY	1 = In master mode, writing 1 to this bit to start the SPI data transfer; in slave mod writing 1 to this bit indicates that the slave is ready to communicate with a master.
	0 = Writing 0 to this bit to stop data transfer if SPI is transferring.
	During the data transfer, this bit keeps the value of 1. As the transfer is finished, this like will be cleared automatically.
	Note:
-	RX_NEG

Register	Offset	R/W	Description	Reset Value
SPI_DIVIDER	SPIx_BA+0x04	R/W	Clock Divider Register (Master only)	0x0000_0000

31	30	29	28	27	26	25	24	
DIVIDER2[15:8]								
23	22	21	20	19	18	17	16	
	DIVIDER2[7:0]							
15	14	13	12	11	10	9	8	
			DIVIDE	R[15:8]		200	2	
7	6	5	4	3	2	1	0	
	DIVIDER[7:0]							

Bits	Descriptions	Descriptions					
		<b>Clock Divider 2 Register</b> (Master only) The value in this field is the 2 nd frequency divider for gene					
[31:16]	DIVIDER2	output SPICLK. The desired frequency is obtained according	to the following equation:				
		$f_{sclk} = \frac{f_{pclk}}{(DIVIDER2 + 1) * 2}$ If VARCLK_EN is cleared to 0, this setting is unmeaning.					
		Clock Divider Register (Master only)					
		The value in this field is the frequency divider for generating SPICLK. The desired frequency is obtained according to the					
[15:0]	DIVIDER	$f_{sclk} = \frac{f_{pclk}}{(DIVIDER+1)*2}$					
	1	In slave mode, the period of SPI clock driven by a master sl period of PCLK. In other words, the maximum frequency o frequency of slave's PCLK.					
Jan. 09	9, 2015	Page <b>302</b> of <b>350</b>	Revision 1.11				

# nuvoTon

## SPI Slave Select Register (SPI_SSR)

Register	Offset	R/W	Description	Reset Value
SPI_SSR	SPI0_BA+0x08	R/W	Slave Select Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	ar so		
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
			Rese	erved		200	1
7	6	5	4	3	2	1	0
Rese	erved	LTRIG_FLAG	SS_LTRIG	AUTOSS	SS_LVL	S	SR O

Bits	Descriptions						
[31:6]	Reserved	Reserved					
		Level Trigger Flag					
		When the SS_LTRIG bit is set in slave mode, this bit can be read to indicate the received bit number is met the requirement or not.					
[5]	LTRIG_FLAG	1 = The transaction number and the transferred bit length met the specified requirements which defined in TX_NUM and TX_BIT_LEN.					
		0 = The transaction number or the transferred bit length of one transaction doesn't meet the specified requirements.					
5. C	Note: This bit is READ only						
The second		Slave Select Level Trigger (Slave only)					
[4]	SS_LTRIG	1 = The slave select signal will be level-trigger. It depends on SS_LVL to decide the signal is active low or active high.					
	3.	0 = The input slave select signal is edge-trigger. This is the default value. It depends or SS_LVL to decide the signal is active at falling-edge or rising-edge.					
N.	6 38	Automatic Slave Select (Master only)					
[3]	AUTOSS	1 = If this bit is set, SPISSx0/1 signals will be generated automatically. It means that device/slave select signal, which is set in SSR[1:0], will be asserted by the SPI controlled when transmit/receive is started by setting GO_BUSY, and will be de-asserted after each transmit/receive is finished.					
N A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 = If this bit is cleared, slave select signals will be asserted and de-asserted by setting and clearing related bits in SSR[1:0].					
	00	Slave Select Active Level					
[2]	SS_LVL	It defines the active state of slave select signal (SPISSx0/1).					
		1 = The slave select signal SPISSx0/1 is active at high-level/rising-edge.					

		0 = The slave select signal SPISSx0/1 is active at low-level/falling-edge.
		Slave Select Register (Master only)
		If AUTOSS bit is cleared, writing 1 to any bit location of this field sets the proper SPISSx0/1 line to an active state and writing 0 sets the line back to inactive state.
[1:0]	SSR	If AUTOSS bit is set, writing 0 to any bit location of this field will keep the corresponding SPISSx0/1 line at inactive state; writing 1 to any bit location of this field will select the corresponding SPISSx0/1 line to be automatically driven to active state for the duration of the transmit/receive, and will be driven to inactive state for the rest of the time. The active state of SPISSx0/1 is specified in SS_LVL.
		Note: SPISSx0 is also defined as slave select input in slave mode.

# nuvoTon

## SPI Data Receive Register (SPI_RX)

Register	Offset	R/W	Description	Reset Value
SPI_RX0	SPIx_BA+0x10	R	Data Receive Register 0	0x0000_0000
SPI_RX1	SPIx_BA+0x14	R	Data Receive Register 1	0x0000_0000

RX[31:24]         23       22       21       20       19       18       17       16         RX[23:16]         15       14       13       12       11       10       9       8         RX[15:8]         7       6       5       4       3       2       1       0	31	30	29	28	27	26	25	24
RX[23:16]       15     14       13     12       11     10       9       8				RX[3	1:24]	NGY Y		
15 14 13 12 11 10 9 8 RX[15:8]	23	22	21	20	19	18	17	16
RX[15:8]		•		RX[2	3:16]	- No	2 91	
	15	14	13	12	11	10	9	8
7 6 5 4 3 2 1 0				RX[1	15:8]		MOL	S.
	7	6	5	4	3	2	1	0
RX[7:0]		•		RX[	7:0]		8	S. S. C

Bits	Descriptions	Descriptions						
		Data Receive Register						
	RX	The Data Receive Registers hold the value of received data Valid bits depend on the transmit bit length field in the SPI_	The Data Receive Registers hold the value of received data of the last executed transfer Valid bits depend on the transmit bit length field in the SPI_CNTRL register.					
[31:0]			For example, if TX_BIT_LEN is set to 0x08 and TX_NUM is set to 0x0, bit RX0[7:0] hole the received data. The values of the other bits are unknown.					
		Note: The Data Receive Registers are read only registers.	Note: The Data Receive Registers are read only registers.					

## SPI Data Transmit Register (SPI_TX)

Register	Offset	R/W	Description	Reset Value
SPI_TX0	SPIx_BA+0x20	W	Data Transmit Register 0	0x0000_0000
SPI_TX1	SPIx_BA+0x24	W	Data Transmit Register 1	0x0000_0000

30	29	28	27	26	25	24
		TX[3	1:24]	4 LON		
22	21	20	19	18	17	16
		TX[2	3:16]	- No		
14	13	12	11	10	9	8
		TX[1	5:8]		MOL	S.
6	5	4	3	2	1	0
		TX[	7:0]		1	3250
	22 14	22 21 14 13	TX[3       22     21       22     21       14     13       12       TX[1       6     5	TX[31:24]       22     21     20     19       TX[23:16]       14     13     12     11       TX[15:8]	TX[31:24]       22     21     20     19     18       TX[23:16]       14     13     12     11     10       TX[15:8]       6     5     4     3     2	TX[31:24]       22     21     20     19     18     17       TX[23:16]       14     13     12     11     10     9       TX[15:8]       6     5     4     3     2     1

	Description	Descriptions				
		Data Transmit Register				
	-14	The Data Transmit Registers hold the data to be trans bits depend on the transmit bit length field in the CNTRL	mitted in the next transfer. Vali register.			
31:0] <b>TX</b>		For example, if TX_BIT_LEN is set to 0x08 and the TX_NUM is set to 0x0, the TX0[7:0] will be transmitted in next transfer. If TX_BIT_LEN is set to 0x00 and TX_N is set to 0x1, the SPI controller will perform two 32-bit transmit/receive successive us the same setting. The transmission sequence is TX0[31:0] first and then TX1[31:0].				
	09, 2015	Page <b>306</b> of <b>350</b>	Revision 1.11			

# nuvoTon

## SPI Variable Clock Pattern Register (SPI_VARCLK)

Register	Offset	R/W	Description	Reset Value
SPI_VARCLK	SPIx_BA+0x34	R/W	Variable Clock Pattern Register (Master only)	0x007F_FF87

31	30	29	28	27	26	25	24
VARCLK[31:24]							
23	22	21	20	19	18	17	16
			VARCLI	K[23:16]	° Os	Do.	
15	14	13	12	11	10	9	8
	VARCLK[15:8]						2
7	6	5	4	3	2	1	0
			VARCI	_K[7:0]		29	20

Bits	Descriptions	
		Variable Clock Pattern (Master only)
[31:0]	VARCLK	The value in this field is the frequency patterns of the SPI clock. If the bit pattern of VARCLK is '0', the output frequency of SPICLK is according the value of DIVIDER. If the bit patterns of VARCLK are '1', the output frequency of SPICLK is according the value of DIVIDER2. Refer to register SPI_DIVIDER.
		Refer to Variable Clock paragraph for more detailed descriptions.

## 5.14 USB Device Controller (USB)

#### 5.14.1 Overview

There is one set of USB 2.0 full-speed device controller and transceiver in this device. It is compliant with USB 2.0 full-speed device specification and support control/bulk/interrupt/isochronous transfer types.

In this device controller, there are two main interfaces: the APB bus and USB bus which comes from the USB PHY transceiver. For the APB bus, the CPU can program control registers through it. There are 512 bytes internal SRAM as data buffer in this controller. For IN or OUT transfer, it is necessary to write data to SRAM or read data from SRAM through the APB interface or SIE. Users need to set the effective starting address of SRAM for each endpoint buffer through "buffer segmentation register (BUFSEGx)".

There are six endpoints in this controller. Each of the endpoint can be configured as IN or OUT endpoint. All the operations including Control, Bulk, Interrupt and Isochronous transfer are implemented in this block. The block of ENDPOINT CONTROL is also used to manage the data sequential synchronization, endpoint states, current start address, transaction status and data buffer status for each endpoint.

There are four different interrupt events in this controller. They are the wake-up function, device plugin or plug-out event, USB events, like IN ACK, OUT ACK etc, and BUS events, like suspend and resume, etc. Any event will cause an interrupt, and users just need to check the related event flags in interrupt event status register (USB_INTSTS) to acknowledge what kind of interrupt occurring, and then check the related USB Endpoint Status Register (USB_EPSTS) to acknowledge what kind of event occurring in this endpoint.

A software-disable function is also support for this USB controller. It is used to simulate the disconnection of this device from the host. If user enables DRVSE0 bit (USB_DRVSE0), the USB controller will force the output of USB_DP and USB_DM to level low and its function is disabled. After disable the DRVSE0 bit, host will enumerate the USB device again.

Reference: Universal Serial Bus Specification Revision 1.1

# Store Store

Provide 1 interrupt vector with 4 different interrupt events (WAKEUP, FLDET, USB and BUS)

This Universal Serial Bus (USB) performs a serial interface with a single connector type for attaching

Support Control/Bulk/Interrupt/Isochronous transfer type

Compliant with USB 2.0 Full-Speed specification

• Support suspend function when no bus activity existing for 3 ms

all USB peripherals to the host system. Following is the feature listing of this USB.

- Provide 6 endpoints for configurable Control/Bulk/Interrupt/Isochronous transfer types and maximum 512 bytes buffer size
- Provide remote wake-up capability

5.14.2 Features

# nuvoton

## 5.14.3 Block Diagram

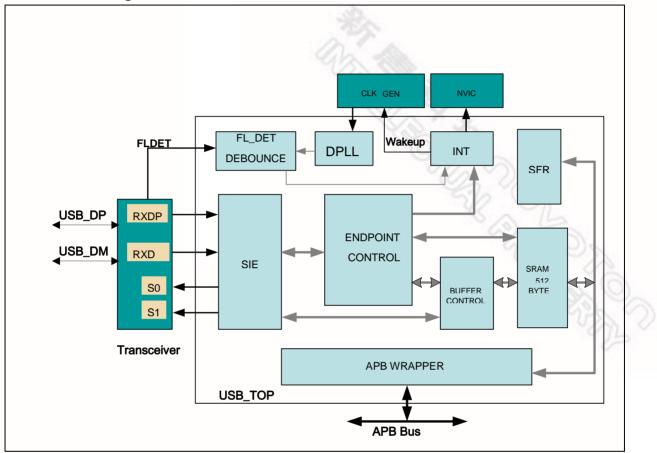



Figure 5-72 USB Block Diagram

#### 5.14.4 Function Description

#### 5.14.4.1 SIE (Serial Interface Engine)

The SIE is the front-end of the device controller and handles most of the USB packet protocol. The SIE typically comprehends signaling up to the transaction level. The functions that it handles could include:

- Packet recognition, transaction sequencing
- SOP, EOP, RESET, RESUME signal detection/generation
- Clock/Data separation
- NRZI Data encoding/decoding and bit-stuffing
- CRC generation and checking (for Token and Data)
- Packet ID (PID) generation and checking/ decoding
- Serial-Parallel/ Parallel-Serial conversion

#### 5.14.4.2 Endpoint Control

There are 6 endpoints in this controller. Each of the endpoint can be configured as Control, Bulk, Interrupt, or Isochronous transfer type. All the operations including Control, Bulk, Interrupt and Isochronous transfer are implemented in this block. It is also used to manage the data sequential synchronization, endpoint state control, current endpoint start address, current transaction status, and data buffer status in each endpoint.

#### 5.14.4.3 Digital Phase Lock Loop

The bit rate of USB data is 12 MHz. The DPLL use the 48 MHz which comes from the clock controller to lock the input data RXDP and RXDM. The 12 MHz bit rate clock is also converted from DPLL.

#### 5.14.4.4 Floating De-bounce

A USB device may be plug-in or plug-out from the USB host. In order to monitor the state of a USB device when it is detached from the USB host, the device controller provides hardware de-bounce for USB floating detect interrupt to avoid bounce problems on USB plug-in or unplug. Floating detect interrupt appears about 10 ms later than USB plug-in or plug-out. A user can acknowledge USB plug-in/plug-out by reading register "USB_FLDET". The flag in "FLDET" represents the current state on the bus without de-bounce. If the FLDET is 1, it means the controller has plug-in the USB. If the user polling this flag to check USB state, he/she must add software de-bounce if necessary.

#### 5.14.4.5 Interrupt

This USB provides 1 interrupt vector with 4 interrupt events (WAKEUP, FLDET, USB and BUS). The WAKEUP event is used to wake-up the system clock when the power down mode is enabled. (The power mode function is defined in system power down control register, PWRCON). The FLDET event is used for USB plug-in or unplug. The USB event notifies users of some USB requests, like IN ACK, OUT ACK etc., and the BUS event notifies users of some bus events, like suspend, resume, etc. User must set related bits in the interrupt enable register (USB_INTEN) of USB Device Controller to enable USB interrupts.

Wake-up interrupt is only present when the chip entered power down mode and then wake-up event had happened. After the chip enters power down mode, any change on USB_DP and USB_DM can wake-up this chip (provided that USB wake-up function is enabled). If this change is not intentionally, no interrupt but wake-up interrupt will occur. After USB wake-up, this interrupt will occur when no other USB interrupt events are present for more than 20 ms. The following figure is the control flow of wake-up interrupt.

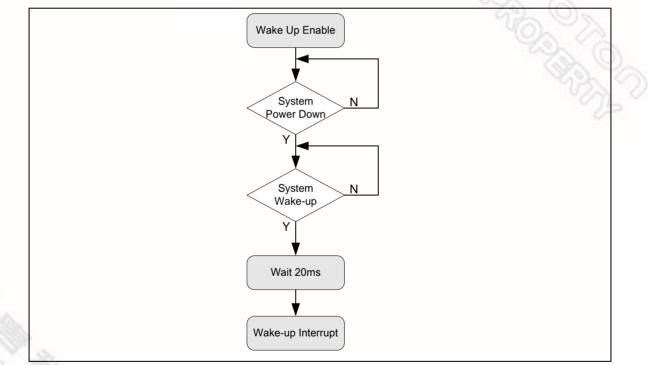
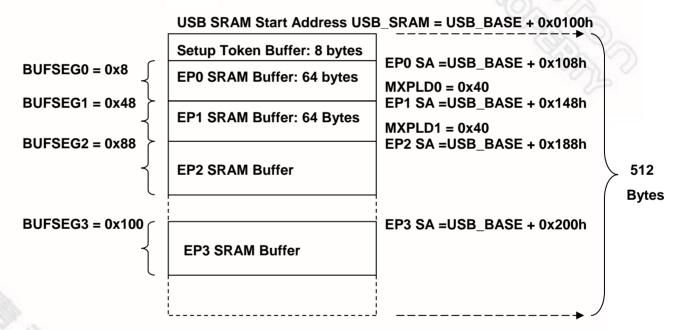



Figure 5-73 Wake-up Interrupt Operation Flow

USB interrupt is used to notify users of any USB event on the bus, and a user can read EPSTS (USB_EPSTS[25:8]) and EPEVT5~0 (USB_INTSTS[21:16]) to know what kind of request is to which endpoint and take necessary responses.

Same as USB interrupt, BUS interrupt notifies users of some bus events, like USB reset, suspend, time-out, and resume. A user can read USB_ATTR to acknowledge bus events.


#### 5.14.4.6 Power Saving

USB turns off PHY transceiver automatically to save power while this chip enters power down mode. Furthermore, a user can write 0 into USB_ATTR[4] to turn off PHY under special circumstances like suspend to save power.

#### 5.14.4.7 Buffer Control

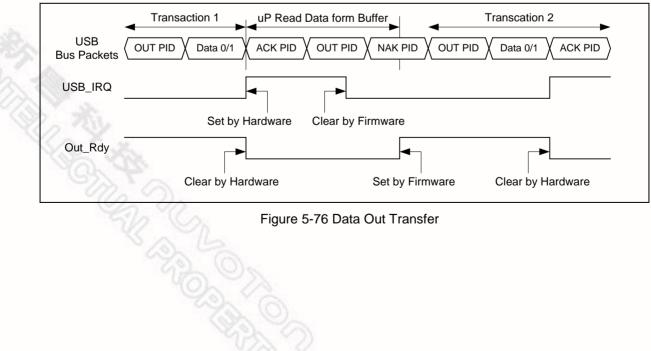
There is 512 bytes SRAM in the controller and the 6 endpoints share this buffer. The user shall configure each endpoint's effective starting address in the buffer segmentation register before the USB function active. The BUFFER CONTROL block is used to control each endpoint's effective starting address and its SRAM size is defined in the MXPLD register.

The following figure depicts the starting address for each endpoint according the content of BUFSEG and MXPLD registers. If the BUFSEG0 is programmed as 0x08h and MXPLD0 is set as 0x40h, the SRAM size of endpoint 0 is start from USB_BASE + 0x108h and end in USB_BASE + 0x148h. (Note: the USB SRAM base is USB_BASE + 0x100h).





#### 5.14.4.8 Handling Transactions with USB Device Peripheral


User can use interrupt or polling USB_INTSTS to monitor the USB Transactions, when transactions occur, USB_INTSTS will be set by hardware and send an interrupt request to CPU (if related interrupt enabled), or user can polling USB_INTSTS to get these events without interrupt. The following is the control flow with interrupt enable.

When USB host has requested data from device controller, users need to prepare related data into the specified endpoint buffer in advance. After buffering the required data, users need to write the actual data length in the specified MAXPLD register. Once this register is written, the internal signal "In_Rdy" will be asserted and the buffering data will be transmitted immediately after receiving associated IN token from Host. Note that after transferring the specified data, the signal "In_Rdy" will de-assert automatically by hardware.



Figure 5-75 Setup Transaction Followed by Data in Transaction

Alternatively, when USB host wants to transmit data to the OUT endpoint in the device controller, hardware will buffer these data to the specified endpoint buffer. After this transaction is completed, hardware will record the data length in related MAXPLD register and de-assert the signal "Out_Rdy". This will avoid hardware accepting next transaction until users move out current data in the related endpoint buffer. Once users have processed this transaction, the related register "MAXPLD" needs to be written by firmware to assert the signal "Out_Rdy" again to accept next transaction.



## 5.14.5 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
USB_BA = 0x400	06_0000			
USB_INTEN	USB_BA+0x000	R/W	USB Interrupt Enable Register	0x0000_0000
USB_INTSTS	USB_BA+0x004	R/W	USB Interrupt Event Status Register	0x0000_0000
USB_FADDR	USB_BA+0x008	R/W	USB Device Function Address Register	0x0000_0000
USB_EPSTS	USB_BA+0x00C	R	USB Endpoint Status Register	0x0000_00x0
USB_ATTR	USB_BA+0x010	R/W	USB Bus Status and Attribution Register	0x0000_0040
USB_FLDET	USB_BA+0x014	R	USB Floating Detected Register	0x0000_0000
USB_BUFSEG	USB_BA+0x018	R/W	Setup Token Buffer Segmentation Register	0x0000_0000
USB_BUFSEG0	USB_BA+0x020	R/W	Endpoint 0 Buffer Segmentation Register	0x0000_0000
USB_MXPLD0	USB_BA+0x024	R/W	Endpoint 0 Maximal Payload Register	0x0000_0000
USB_CFG0	USB_BA+0x028	R/W	Endpoint 0 Configuration Register	0x0000_0000
USB_CFGP0	USB_BA+0x02C	R/W	Endpoint 0 Set Stall and Clear In/Out Ready Control Register	0x0000_0000
USB_BUFSEG1	USB_BA+0x030	R/W	Endpoint 1 Buffer Segmentation Register	0x0000_0000
USB_MXPLD1	USB_BA+0x034	R/W	Endpoint 1 Maximal Payload Register	0x0000_0000
USB_CFG1	USB_BA+0x038	R/W	Endpoint 1 Configuration Register	0x0000_0000
USB_CFGP1	USB_BA+0x03C	R/W	Endpoint 1 Set Stall and Clear In/Out Ready Control Register	0x0000_0000
USB_BUFSEG2	USB_BA+0x040	R/W	Endpoint 2 Buffer Segmentation Register	0x0000_0000
USB_MXPLD2	USB_BA+0x044	R/W	Endpoint 2 Maximal Payload Register	0x0000_0000
USB_CFG2	USB_BA+0x048	R/W	Endpoint 2 Configuration Register	0x0000_0000
USB_CFGP2	USB_BA+0x04C	R/W	Endpoint 2 Set Stall and Clear In/Out Ready Control Register	0x0000_0000
USB_BUFSEG3	USB_BA+0x050	R/W	Endpoint 3 Buffer Segmentation Register	0x0000_0000
USB_MXPLD3	USB_BA+0x054	R/W	Endpoint 3 Maximal Payload Register	0x0000_0000
USB_CFG3	USB_BA+0x058	R/W	Endpoint 3 Configuration Register	0x0000_0000
USB_CFGP3	USB_BA+0x05C	R/W	Endpoint 3 Set Stall and Clear In/Out Ready Control Register	0x0000_0000
USB_BUFSEG4	USB_BA+0x060	R/W	Endpoint 4 Buffer Segmentation Register	0x0000_0000
USB_MXPLD4	USB_BA+0x064	R/W	Endpoint 4 Maximal Payload Register	0x0000_0000
USB_CFG4	USB_BA+0x068	R/W	Endpoint 4 Configuration Register	0x0000_0000
		1		1

USB_CFGP4	USB_BA+0x06C	R/W	Endpoint 4 Set Stall and Clear In/Out Ready Control Register	0x0000_0000
USB_BUFSEG5	USB_BA+0x070	R/W	Endpoint 5 Buffer Segmentation Register	0x0000_0000
USB_MXPLD5	USB_BA+0x074	R/W	Endpoint 5 Maximal Payload Register	0x0000_0000
USB_CFG5	USB_BA+0x078	R/W	Endpoint 5 Configuration Register	0x0000_0000
USB_CFGP5	USB_BA+0x07C	R/W	Endpoint 5 Set Stall and Clear In/Out Ready Control Register	0x0000_0000
USB_DRVSE0	USB_BA+0x090	R/W	USB Drive SE0 Control Register	0x0000_0001

Memory Type	Address	Size	Description
USB_BA = 0x40	06_0000		8 A
SRAM			The SRAM is used for the entire endpoints buffer. Refer to section 5.4.4.7 for the endpoint SRAM structure and its
	USB_BA+0x2FFh		description.

## 5.14.6 Register Description

## USB Interrupt Enable Register (USB_INTEN)

Register	Offset	R/W	Description	Reset Value
USB_INTEN	USB_BA+0x000	R/W	USB Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved	T LEV		
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
INNAK_EN			Rese	erved		0	WAKEUP_EN
7	6	5	4	3	2	1	0
	Reserved				FLDET_IE	USB_IE	BUS_IE

Bits	Descriptions	Descriptions					
[31:16]	Reserved	Reserved					
		Active NAK Function and its Status in IN Token 1 = The NAK status is updated into the endpoint status register, USB_EPSTS, when it is set to 1 and there is NAK response in IN token. It also enable the interrupt event					
[15]	INNAK_EN	when the device responds NAK after receiving IN token 0 = The NAK status doesn't be updated into the endpoint status register when it was set to 0. It also disable the interrupt event when device responds NAK after receiving IN token					
[14:9]	Reserved	Reserved					
[8]	WAKEUP_EN	Wake-Up Function Enable 1 = Enable USB wake-up function 0 = Disable USB wake-up function					
[7:4]	Reserved	Reserved					
[3]	WAKEUP_IE	USB Wake-Up Interrupt Enable 1 = Enable USB wake-up Interrupt 0 = Disable USB wake-up Interrupt					
[2]	FLDET_IE	Floating Detected Interrupt Enable 1 = Enable Floating detect Interrupt 0 = Disable Floating detect Interrupt					
[1]	USB_IE	USB Event Interrupt Enable					

		1 = Enable USB event interrupt
		0 = Disable USB event interrupt
		Bus Event Interrupt Enable
[0]	BUS_IE	1 = Enable BUS event interrupt
		0 = Disable BUS event interrupt

## USB Interrupt Event Status Register (USB_INTSTS)

This register is USB Interrupt Event Status register; clear write '1' to the corresponding bit.

Register	Offset	R/W	Description	Reset Value
USB_INTSTS	USB_BA+0x004	R/W	USB Interrupt Event Status Register	0x0000_0000

				26.6.7			
31	30	29	28	27	26	25	24
SETUP				Reserved	Ser 12	S	
23	22	21	20	19	18	17	16
Rese	erved	EPEVT5	EPEVT4	EPEVT3	EPEVT2	EPEVT1	EPEVT0
15	14	13	12	11	10	9	8
			Rese	erved		26	en se
7	6	5	4	3	2	1	0
Reserved				WAKEUP_ST S	FLDET_STS	USB_STS	BUS_STS

Bits	Descriptions	5			
[31]	SETUP	Setup Event Status 1 = Setup event occurred, cleared by write 1 to USB_INTSTS[31] 0 = No Setup event			
[30:22]	Reserved	Reserved			
[21]	EPEVT5	Endpoint 5's USB Event Status 1 = USB event occurred on Endpoint 5, check USB_EPSTS[25:23] to know which kind of USB event was occurred, cleared by write 1 to USB_INTSTS[21] or USB_INTSTS[1] 0 = No event occurred in endpoint 5			
[20]	EPEVT4	Endpoint 4's USB Event Status 1 = USB event occurred on Endpoint 4, check USB_EPSTS[22:20] to know which kind of USB event was occurred, cleared by write 1 to USB_INTSTS[20] or USB_INTSTS[1] 0 = No event occurred in endpoint 4			
[19]	EPEVT3	Endpoint 3's USB Event Status 1 = USB event occurred on Endpoint 3, check USB_EPSTS[19:17] to know which kind of USB event was occurred, cleared by write 1 to USB_INTSTS[19] or USB_INTSTS[1] 0 = No event occurred in endpoint 3			
[18]	EPEVT2	Endpoint 2's USB Event Status 1 = USB event occurred on Endpoint 2, check USB_EPSTS[16:14] to know which kind of USB event was occurred, cleared by write 1 to USB_INTSTS[18] or USB_INTSTS[1] 0 = No event occurred in endpoint 2			

		Endpoint 1's USB Event Status
[17]	EPEVT1	1 = USB event occurred on Endpoint 1, check USB_EPSTS[13:11] to know which k of USB event was occurred, cleared by write 1 to USB_INTSTS[17] or USB_INTSTS[
		0 = No event occurred in endpoint 1
		Endpoint 0's USB Event Status
[16]	EPEVT0	1 = USB event occurred on Endpoint 0, check USB_EPSTS[10:8] to know which kind USB event was occurred, cleared by write 1 to USB_INTSTS[16] or USB_INTSTS[1]
		0 = No event occurred in endpoint 0
[15:4]	Reserved	Reserved
		Wake-Up Interrupt Status
[3]	WAKEUP_STS	1 = Wake-up event occurred, cleared by write 1 to USB_INTSTS[3]
		0 = No wake-up event is occurred
		Floating Detected Interrupt Status
[2]	FLDET_STS	1 = There is attached/detached event in the USB bus and it is cleared by write USB_INTSTS[2].
		0 = There is not attached/detached event in the USB
		USB Event Interrupt Status
	USB_STS	The USB event includes the Setup Token, IN Token, OUT ACK, ISO IN, or ISO C events in the bus.
[1]		1 = USB event occurred, check EPSTS0~5[2:0] to know which kind of USB event v occurred, cleared by write 1 to USB_INTSTS[1] or EPSTS0~5 and SET (USB_INTSTS[31])
		0 = No any USB event is occurred
		BUS Interrupt Status
101		The BUS event means that there is one of the suspense or the resume function in bus.
[0]	BUS_STS	1 = Bus event occurred; check USB_ATTR[3:0] to know which kind of bus event occurred, cleared by write 1 to USB_INTSTS[0]. 0 = No any BUS event is occurred
Alle		

#### USB Device Function Address Register (USB_FADDR)

A seven-bit value uses as the address of a device on the USB BUS.

Register	Offset	R/W	Description	Reset Value
USB_FADDR	USB_BA+0x008	R/W	USB Device Function Address Register	0x0000_0000

				~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	5		
31	30	29	28	27	26	25	24
			Rese	erved	St to		
23	22	21	20	19	18	17	16
			Rese	erved	51	200	
15	14	13	12	11	10	9	8
			Rese	erved		26	2
7	6	5	4	3	2	1	0
Reserved	FADDR						

Bits	Descriptions	Descriptions					
[31:7]	Reserved	Reserved					
[6:0]	FADDR	USB device's Function Address					

# nuvoTon

## USB Endpoint Status Register (USB_EPSTS)

Register	Offset	R/W	Description	Reset Value
USB_EPSTS	USB_BA+0x00C	R	USB Endpoint Status Register	0x0000_0000

31	30	29	28	27	26	25	24
		Rese	erved	X	al as	EPST	[S5[2:1]
23	22	21	20	19	18	17	16
EPSTS5[0]	EPSTS4[2:0]				EPSTS3[2:0]	Nr.	EPSTS2[2]
15	14	13	12	11	10	9	8
EPSTS2[1:0] EPSTS1[2:0]					EPSTS0[2:0]	à	
7	6	5	4	3	2	1	0
OVERRUN				Reserved		23	66

Bits	Descriptions						
[31:26]	Reserved	Reserved					
		Endpoint 5 Bus Status					
		These bits are used to indicate the current status of this endpoint					
		000 = In ACK					
[25.22]	EPSTS5	001 = In NAK					
[25:23]	EFS155	010 = Out Packet Data0 ACK					
		110 = Out Packet Data1 ACK					
En la		011 = Setup ACK					
7		111 = Isochronous transfer end					
		Endpoint 4 Bus Status					
() × 3	5	These bits are used to indicate the current status of this endpoint					
	¥	000 = In ACK					
[22:20]	EPSTS4	001 = In NAK					
[22.20]	EF3134	010 = Out Packet Data0 ACK					
0	Carda	110 = Out Packet Data1 ACK					
	Sh C	011 = Setup ACK					
	TS AL	111 = Isochronous transfer end					
	"Se	Endpoint 3 Bus Status					
[19:17]	EPSTS3	These bits are used to indicate the current status of this endpoint					
	_	000 = In ACK					

		001 = In NAK
		010 = Out Packet Data0 ACK
		110 = Out Packet Data1 ACK
		011 = Setup ACK
		111 = Isochronous transfer end
		Endpoint 2 Bus Status
		These bits are used to indicate the current status of this endpoint
		000 = In ACK
[46.44]	EDETES	001 = In NAK
[16:14]	EPSTS2	010 = Out Packet Data0 ACK
		110 = Out Packet Data1 ACK
		011 = Setup ACK
		111 = Isochronous transfer end
		Endpoint 1 Bus Status
		These bits are used to indicate the current status of this endpoint
	EPSTS1	000 = In ACK
140.441		001 = In NAK
[13:11]		010 = Out Packet Data0 ACK
		110 = Out Packet Data1 ACK
		011 = Setup ACK
		111 = Isochronous transfer end
		Endpoint 0 Bus Status
		These bits are used to indicate the current status of this endpoint
		000 = In ACK
[40.0]	EPSTS0	001 = In NAK
[10:8]	EF3130	010 = Out Packet Data0 ACK
		110 = Out Packet Data1 ACK
	6	011 = Setup ACK
	2	111 = Isochronous transfer end
Xaz	100	Overrun
[7]	No.	It indicates that the received data is over the maximum payload number or not.
	OVERRUN	1 = It indicates that the Out Data more than the Max Payload in MXPLD register or the Setup Data more than 8 Bytes
		0 = No overrun
[6:0]	Reserved	Reserved

# nuvoTon

## USB Bus Status and Attribution Register (USB_ATTR)

Register	Offset	R/W	Description	Reset Value
USB_ATTR	USB_BA+0x010	R/W	USB Bus Status and Attribution Register	0x0000_0040

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
		Reserved	BYTEM	PWRDN	DPPU_EN		
7	6	5	4	3	2	1	0
USB_EN	Reserved	RWAKEUP	PHY_EN	TIMEOUT	RESUME	SUSPEND	USBRST

Bits	Descriptions	Descriptions						
[31:11]	Reserved	Reserved						
		CPU access USB SRAM Size Mode Selection						
[10]	BYTEM	1 = Byte Mode: The size of the transfer from CPU to USB SRAM can be Byte only.						
		0 = Word Mode: The size of the transfer from CPU to USB SRAM can be Word only.						
		Power Down PHY Transceiver (low active)						
[9]	PWRDN	1 = Turn-on related circuit of PHY transceiver						
		0 = power down related circuit of PHY transceiver						
~		Pull-up Resistor on USB_DP Enable						
[8]	DPPU_EN	1 = The pull-up resistor in USB_DP bus active						
		0 = Disable the pull-up resistor in USB_DP bus						
87.7	S.	USB Controller Enable						
[7]	USB_EN	1 = Enable USB Controller						
	202	0 = Disable USB Controller						
[6]	Reserved	Reserved						
	So C	Remote Wake-Up						
[5]	RWAKEUP	1 = Force USB bus to K (USB_DP low, USB_DM: high) state, used for remote wake-up						
	620	0 = Release the USB bus from K state						
	10	PHY Transceiver Function Enable						
[4]	PHY_EN	1 = Enable PHY transceiver function						
		0 = Disable PHY transceiver function						

		Time-Out Status
[0]	TIMEOUT	1 = Bus no any response more than 18 bits time
[3]	TIMEOUT	0 = No time-out
		It is a read only bit.
		Resume Status
[2]	RESUME	1 = Resume from suspend
[2]	RESOME	0 = No bus resume
		It is a read only bit.
		Suspend Status
[4]	SUSPEND	1 = Bus idle more than 3 ms, either cable is plugged off or host is sleeping
[1]	SUSPEND	0 = Bus no suspend
		It is a read only bit.
		USB Reset Status
[0]	USBRST	1 = Bus reset when SE0 (single-ended 0) more than 2.5us
[0]	USBRSI	0 = Bus no reset
		It is a read only bit.

Jan. 09, 2015

### nuvoTon

Register	Offset	R/W	Description		Reset Value			
USB_FLDET	USB_BA+0x	.014 R	USB Floating Detected Register				0x0000_0000	
				N/A				
31	30	29	28	27	26	25	24	
			Res	erved	de a			
23	22	21	20	19	18	17	16	
			Res	erved	° On	No.		
15	14	13	12	11	10	9	8	
			Res	erved		30	6	
7	6	5	4	3	2	1	0	
	•	•	Reserved			J.	FLDET	

Bits	Descriptions						
[31:1]	Reserved	Reserved					
		Device Floating Detected					
[0]	FLDET	1 = When the controller is attached into the BUS, this bit will be set as 1					
		0 = The controller didn't attached into the USB host					

### Floating detection Register (USB FLDET)

#### Buffer Segmentation Register (USB_BUFSEG)

For Setup token only.

Register	Offset	R/W	Description	Reset Value
USB_BUFSEG	USB_BA+0x018	R/W	Setup Token Buffer Segmentation Register	0x0000_0000

				- N.O.	0.000		
31	30	29	28	27	26	25	24
			Rese	erved	St. B.	-	
23	22	21	20	19	18	17	16
			Rese	erved	SU	S	
15	14	13	12	11	10	9	8
			Reserved		•	26	BUFSEG[8]
7	6	5	4	3	2	1	0
		BUFSEG[7:3]				Reserved	S. S.
-							

Bits	Descriptions	
[31:9]	Reserved	Reserved
		It is used to indicate the offset address for the Setup token with the USB SRAM starting address. The effective starting address is
[8:3]	BUFSEG	USB_SRAM address + { BUFSEG[8:3], 3'b000}
		Where the USB_SRAM address = USB_BASE + 0x100h.
		Note: It is used for Setup token only.
[2:0]	Reserved	Reserved
	<i>\$</i> _	
	\$ \$	
		26
		2

# nuvoTon

#### Endpoint Buffer Segmentation Register (USB_BUFSEGx) $x = 0 \sim 5$

Register	Offset	R/W	Description	Reset Value
USB_BUFSEG0	USB_BA+0x020	R/W	Endpoint 0 Buffer Segmentation Register	0x0000_0000
USB_BUFSEG1	USB_BA+0x030	R/W	Endpoint 1 Buffer Segmentation Register	0x0000_0000
USB_BUFSEG2	USB_BA+0x040	R/W	Endpoint 2 Buffer Segmentation Register	0x0000_0000
USB_BUFSEG3	USB_BA+0x050	R/W	Endpoint 3 Buffer Segmentation Register	0x0000_0000
USB_BUFSEG4	USB_BA+0x060	R/W	Endpoint 4 Buffer Segmentation Register	0x0000_0000
USB_BUFSEG5	USB_BA+0x070	R/W	Endpoint 5 Buffer Segmentation Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
			Rese	erved		0	ちょう	
15	14	13	12	11	10	9	8	
			Reserved				BUFSEG[8]x	
7	6	5	4	3	2	1	0	
	BUFSEG[7:3]x					Reserved		

Bits	Descriptions						
[31:9]	Reserved	Reserved					
		It is used to indicate the offset address for each e address. The effective starting address of the endp					
[8:3]	BUFSEGx	USB_SRAM address + {BUFSEG[8:3], 3'b000}					
	35	Where the USB_SRAM address = USB_BASE + 0	Where the USB_SRAM address = USB_BASE + 0x100h.				
X ?	20	Refer to section 5.4.4.7 for the endpoint SRAM structure	ucture and its description.				
[2:0]	Reserved	Reserved					
Jan.							

#### Maximal Payload Register (USB_MXPLDx) x = 0~5

Register	Offset	R/W	Description	Reset Value
USB_MXPLD0	USB_BA+0x024	R/W	Endpoint 0 Maximal Payload Register	0x0000_0000
USB_MXPLD1	USB_BA+0x034	R/W	Endpoint 1 Maximal Payload Register	0x0000_0000
USB_MXPLD2	USB_BA+0x044	R/W	Endpoint 2 Maximal Payload Register	0x0000_0000
USB_MXPLD3	USB_BA+0x054	R/W	Endpoint 3 Maximal Payload Register	0x0000_0000
USB_MXPLD4	USB_BA+0x064	R/W	Endpoint 4 Maximal Payload Register	0x0000_0000
USB_MXPLD5	USB_BA+0x074	R/W	Endpoint 5 Maximal Payload Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
			Rese	erved		0	NB2 V	
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	MXPLD[7:0]							

Bits	Descriptions	Descriptions					
[31:9]	Reserved	Reserved					
2		Maximal Payload					
		It is used to define the data length which is transmitted to host (IN token) or the actual data length which is received from the host (OUT token). It also used to indicate that the endpoint is ready to be transmitted in IN token or received in OUT token.					
3	S.	(1). When the register is written by CPU,					
×3	X Ko.	For IN token, the value of MXPLD is used to define the data length to be transmitted and indicate the data buffer is ready.					
[8:0]	MXPLD	For OUT token, it means that the controller is ready to receive data from the host and the value of MXPLD is the maximal data length comes from host.					
	42.00	(2). When the register is read by CPU,					
	K ~~	For IN token, the value of MXPLD is indicated the data length be transmitted to host					
	200	For OUT token, the value of MXPLD is indicated the actual data length receiving from host.					
	20	Note that once MXPLD is written, the data packets will be transmitted/received immediately after IN/OUT token arrived.					

# nuvoTon

#### Configuration Register (USB_CFGx) x = 0~5

Register	Offset	R/W	Description	Reset Value
USB_CFG0	USB_BA+0x028	R/W	Endpoint 0's Configuration Register	0x0000_0000
USB_CFG1	USB_BA+0x038	R/W	Endpoint 1's Configuration Register	0x0000_0000
USB_CFG2	USB_BA+0x048	R/W	Endpoint 2's Configuration Register	0x0000_0000
USB_CFG3	USB_BA+0x058	R/W	Endpoint 3's Configuration Register	0x0000_0000
USB_CFG4	USB_BA+0x068	R/W	Endpoint 4's Configuration Register	0x0000_0000
USB_CFG5	USB_BA+0x078	R/W	Endpoint 5's Configuration Register	0x0000_0000

					1.17		
					8	AL	A
31	30	29	28	27	26	25	24
			No.	1 Ca			
23	22	21	20	19	18	17	16
			Rese	erved			122
15	14	13	12	11	10	9	8
		Rese	erved			CSTALL	Reserved
7	6	5	4	3	2	1	0
DSQ_SYNC	SQ_SYNC STATE ISOCH			EP_NUM			

Bits	Descriptions	Descriptions							
[31:10]	Reserved	Reserved							
8		Clear STALL Response							
[9]	CSTALL	1 = Clear the device to response STALL handshake in setup stage							
R. V.	0.0	0 = Disable the device to clear the STALL handshake in setup stage							
[8]	Reserved	Reserved							
YS.	1. Mar.	Data Sequence Synchronization							
~0	37 42	1 = DATA1 PID							
[7]	DSQ_SYNC	0 = DATA0 PID							
	No C	It is used to specify the DATA0 or DATA1 PID in the following IN token transaction. H/W will toggle automatically in IN token base on the bit.							
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Endpoint STATE							
10.51	OT ATE	00 = Endpoint is disabled							
[6:5]	STATE	01 = Out endpoint							
		10 = IN endpoint							

		11 = Undefined			
		Isochronous Endpoint			
[4]	ISOCH	This bit is used to set the endpoint as Isochronous endpoint, no handshake.			
[4]	13001	1 = Isochronous endpoint			
		0 = No Isochronous endpoint			
[2:0]		Endpoint Number			
[3:0] EP_NUM		These bits are used to define the endpoint number of the current endpoint			

nuvoTon

Extra Configuration Register (USB_CFGPx) x = 0~5

Register	Offset	R/W	Description	Reset Value
USB_CFGP0	USB_BA+0x02C	R/W	Endpoint 0 Set Stall and Clear In/Out Ready Control Register	0x0000_0000
USB_CFGP1	USB_BA+0x03C	R/W	Endpoint 1 Set Stall and Clear In/Out Ready Control Register	0x0000_0000
USB_CFGP2	USB_BA+0x04C	R/W	Endpoint 2 Set Stall and Clear In/Out Ready Control Register	0x0000_0000
USB_CFGP3	USB_BA+0x05C	R/W	Endpoint 3 Set Stall and Clear In/Out Ready Control Register	0x0000_0000
USB_CFGP4	USB_BA+0x06C	R/W	Endpoint 4 Set Stall and Clear In/Out Ready Control Register	0x0000_0000
USB_CFGP5	USB_BA+0x07C	R/W	Endpoint 5 Set Stall and Clear In/Out Ready Control Register	0x0000_0000

						A State of Marris			
31	30	29	28	27	26	25	24		
		0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
		SSTALL	CLRRDY						

Bits	Descriptions	escriptions						
[31:2]	Reserved	Reserved						
de la		Set STALL						
[1]	SSTALL	1 = Set the device to respond STALL automatically						
90%		0 = Disable the device to response STALL						
S.	AL.	Clear Ready						
×Q	A de	When the MXPLD register is set by user, it means that the endpoint is ready to transmit or receive data. If the user wants to turn off this transaction before the transaction start, users can set this bit to 1 to turn it off and it is auto clear to 0.						
[0]	CLRRDY	For IN token, write '1' is used to clear the IN token had ready to transmit the data to USB.						
	No C	For OUT token, write '1' is used to clear the OUT token had ready to receive the data from USB.						
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	This bit is write 1 only and it is always 0 when it was read back.						

#### USB Drive SE0 Register (USB_DRVSE0)

Register	Offset	R/W	Description	Reset Value
USB_DRVSE0	USB_BA+0x090	R/W	Force USB PHY to Drive SE0	0x0000_0001

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
			Rese	erved		200	à			
7	6	5	4	3	2	1	0			
			Reserved			23	DRVSE0			

	Descriptions							
[31:1]	Reserved	Reserved						
		Drive Single Ended Zero in USB Bus						
[0]	DRVSE0	The Single Ended Zero (SE0) is when both lines (USB_DP and USB_DM) are being pulled low.						
		1 = Force USB PHY transceiver to drive SE0						
		0 = None						

### **6** ELECTRICAL CHARACTERISTICS

#### 6.1 Absolute Maximum Ratings

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
DC Power Supply	V _{DD} -V _{SS}	-0.3	+7.0	V
Input Voltage	VIN	V _{SS} -0.3	V _{DD} +0.3	V
Oscillator Frequency	1/t _{CLCL}	4	24	MHz
Operating Temperature	ТА	-40	+85	°C
Storage Temperature	TST	-55	+150	°C
Maximum Current into V _{DD}		-	120	mA
Maximum Current out of V _{SS}			120	mA
Maximum Current sunk by a I/O pin			35	mA
Maximum Current sourced by a I/O pin			35	mA
Maximum Current sunk by total I/O pins			100	mA
Maximum Current sourced by total I/O pins			100	mA

Note: Exposure to conditions beyond those listed under absolute maximum ratings may adversely affects the lift and reliability of the device.

#### 6.2 DC Electrical Characteristics

### 6.2.1 NuMicro[™] NUC122 DC Electrical Characteristics

(V_{DD}-V_{SS}=3.3 V, TA = 25 °C, FOSC = 60 MHz unless otherwise specified.)

			PECIFI	CATION		
PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Operation voltage	V _{DD}	2.5		5.5	v	V _{DD} =2.5 V ~ 5.5 V up to 60 MHz
LDO Output Voltage	$V_{LDO}$	1.6	1.8	2.1	V	$V_{DD} \ge 2.5 V$
Analog Operating Voltage	AV _{DD}	2.1		V _{DD}	v	20 O
	I _{DD1}		26		mA	$V_{DD} = 5.5 V @ 60 MHz,$ enable all IP and PLL, XTAL=12 MHz
Operating Current	I _{DD2}		21		mA	$V_{DD} = 5.5 V @ 60 MHz,$ disable all IP and enable PLL, XTAL=12 MHz
Normal Run Mode @ 60 MHz	I _{DD3}		24		mA	V _{DD} = 3.3 V @ 60 MHz, enable all IP and PLL, XTAL=12 MH:
	I _{DD4}		19		mA	V _{DD} = 3.3 V @ 60 MHz, disable all IP and enable PLL, XTAL=12 MHz
	I _{DD5}		6.5		mA	V _{DD} = 5.5 V @ 12 MHz, enable all IP and disable PLL, XTAL=12 MHz
Operating Current	I _{DD6}		5		mA	V _{DD} = 5.5 V @ 12 MHz, disable all IP and PLL, XTAL=12 MH
Normal Run Mode @ 12 MHz	I _{DD7}		4.5		mA	V _{DD} = 3.3 V @ 12 MHz, enable all IP and disable PLL, XTAL=12 MHz
	I _{DD8}		3.5		mA	V _{DD} = 3.3 V @ 12 MHz, disable all IP and PLL, XTAL=12 MH
Operating Current Normal Run Mode	I _{DD9}		3.5		mA	V _{DD} = 5.5 V @ 4 MHz, enable all IP and disable PLL, XTAL=4 MHz
@ 4 MHz	I _{DD10}	0	3		mA	V _{DD} = 5.5 V @ 4 MHz, disable all IP and PLL, XTAL=4 MHz

### nuvoTon

DADAMETER	SPECIFICATION		PECIFI	CATION		TERT CONDITIONS
PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
	I _{DD11}		3	W.	mA	V _{DD} = 3.3 V @ 4 MHz, enable all IP and disable PLL, XTAL=4 MHz
	I _{DD12}		2		mA	$V_{DD}$ = 3.3 V @ 4 MHz, disable all IP and PLL, XTAL=4 MHz
	I _{IDLE1}		17		mA	$V_{DD} = 5.5 V @ 60 MHz,$ enable all IP and PLL, XTAL=12 MHz
Operating Current	I _{IDLE2}		12		mA	V _{DD} = 5.5 V @ 60 MHz, disable all IP and enable PLL, XTAL=12 MHz
Idle Mode @ 60 MHz	I _{IDLE3}		15		mA	$V_{DD} = 3.3 V @ 60 MHz,$ enable all IP and PLL, XTAL=12 MHz
	I _{IDLE4}		11		mA	$V_{DD} = 3.3 V @ 60 MHz,$ disable all IP and enable PLL, XTAL=12 MHz
	I _{IDLE5}		4.5		mA	V _{DD} = 5.5 V @ 12 MHz, enable all IP and disable PLL, XTAL=12 MHz
Operating Current	I _{IDLE6}		3.5		mA	V _{DD} = 5.5 V @ 12 MHz, disable all IP and PLL, XTAL=12 MH
Idle Mode @ 12 MHz	I _{IDLE7}		3		mA	V _{DD} = 3.3 V @ 12 MHz, enable all IP and disable PLL, XTAL=12 MHz
	I _{IDLE8}		2		mA	V _{DD} = 3.3 V @ 12 MHz, disable all IP and PLL, XTAL=12 MH
the second	I _{IDLE9}		3		mA	V _{DD} = 5.5 V @ 4 MHz, enable all IP and disable PLL, XTAL=4 MHz
Operating Current	I _{IDLE10}		2.5		mA	V _{DD} = 5.5 V @ 4 MHz, disable all IP and PLL, XTAL=4 MHz
Idle Mode @ 4 MHz	IIDLE11		2		mA	V _{DD} = 3.3 V @ 4 MHz, enable all IP and disable PLL, XTAL=4 MHz
20	I _{IDLE12}		1		mA	V _{DD} = 3.3 V @ 4 MHz, disable all IP and PLL, XTAL=4 MHz
Standby Current	I _{PWD1}	200	13		μA	V _{DD} = 5.5 V, RTC OFF, No load

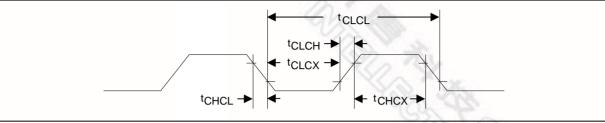
	CVM	S	PECIFIC	CATION		TEST CONDITIONS
PARAMETER	SYM.	MIN.	TYP.	MAX.	UNIT	TEST CONDITIONS
Power Down Mode				21		@ Disable BOV function
	I _{PWD2}		12	US.	μΑ	$V_{DD} = 3.3 V, RTC OFF, No load @ Disable BOV function$
	I _{PWD3}		15	- C	μΑ	$V_{DD} = 5.5 V, RTC run, No load @ Disable BOV function$
	I _{PWD4}		13		μA	V _{DD} = 3.3 V, RTC run , No load @ Disable BOV function
Input Current PA, PB, PC, PD (Quasi-bidirectional mode)	I _{IN1}	-60	-	+15	μA	$V_{DD} = 5.5 \text{ V}, V_{IN} = 0 \text{ V or } V_{IN} = V_{DD}$
Input Current at /RESET ^[1]	I _{IN2}	-55	-45	-30	μΑ	$V_{DD} = 3.3 \text{ V}, V_{IN} = 0.45 \text{ V}$
Input Leakage Current PA, PB, PC, PD	I _{LK}	-2	-	+2	μA	$V_{DD} = 5.5 \text{ V}, 0 < V_{IN} < V_{DD}$
Logic 1 to 0 Transition Current PA~PD (Quasi-bidirectional mode)	I _{TL} ^[3]	-650	-	-200	μA	V _{DD} = 5.5 V, V _{IN} <2.0 V
Input Low Voltage PA, PB, PC,	M	-0.3	-	0.8	V	V _{DD} = 4.5 V
PD (TTL input)	V _{IL1}	-0.3	-	0.6	V	V _{DD} = 2.5 V
Input High Voltage PA, PB, PC,	V _{IH1}	2.0	-	V _{DD} +0.2	v	V _{DD} = 5.5 V
PD(TTL input)	V IH1	1.5	-	V _{DD} +0.2	v	V _{DD} = 3.0 V
Input Low Voltage PA, PB, PC, PD (Schmitt input)	$V_{\text{IL2}}$	-0.5		$0.4 V_{DD}$	V	
Input High Voltage PA, PB, PC, PD(Schmitt input)	V _{IH2}	$0.6 V_{DD}$		V _{DD} +0. 5	V	
Hysteresis voltage of PA~PD (Schmitt input)	V _{HY}		0.2 V _{DD}		V	
Negative going threshold (Schmitt input), /RESET	V _{ILS}	-0.5	-	0.3 V _{DD}	V	
Positive going threshold (Schmitt input), /RESET	V _{IHS}	$0.7 V_{DD}$	-	V _{DD} +0. 5	V	
C. F.	I _{SR11}	-300	-370	-450	μA	$V_{DD}$ = 4.5 V, $V_{S}$ = 2.4 V
Source Current PA, PB, PC, PD (Quasi-bidirectional Mode)	I _{SR12}	-50	-70	-90	μA	$V_{DD} = 2.7 \text{ V}, \text{ V}_{S} = 2.2 \text{ V}$
Sh Sh	I _{SR12}	-40	-60	-80	μA	$V_{DD} = 2.5 \text{ V}, \text{ V}_{S} = 2.0 \text{ V}$
Source Current PA, PB, PC,	I _{SR21}	-22	-28	-32	mA	$V_{DD} = 4.5 \text{ V}, \text{ V}_{S} = 2.4 \text{ V}$
PD (Push-pull Mode)	I _{SR22}	-4	-6	-8	mA	$V_{DD} = 2.7 \text{ V}, \text{ V}_{S} = 2.2 \text{ V}$
- Co	I _{SR22}	-3	-5	-7	mA	$V_{DD} = 2.5 V, V_S = 2.0 V$
Sink Current PA, PB, PC,	I _{SK1}	10	17	20	mA	$V_{DD} = 4.5 \text{ V}, \text{ V}_{S} = 0.45 \text{ V}$

### nuvoTon

PARAMETER	SYM.	S	PECIFI	CATION		TEST CONDITIONS
FARAMETER	5 T WI.	MIN.	TYP.	MAX.	UNIT	
PD(Quasi-bidirectional and Push-pull Mode)	I _{SK1}	7	10	13	mA	$V_{DD} = 2.7 \text{ V}, \text{ V}_{S} = 0.45 \text{ V}$
,	I _{SK1}	6	9	12	mA	$V_{DD} = 2.5 \text{ V}, \text{ V}_{S} = 0.45 \text{ V}$
Brownout voltage with BOV_VL [1:0] =00b	V _{BO2.2}	2.1	2.2	2.3	v	N.
Brownout voltage with BOV_VL [1:0] =01b	V _{BO2.7}	2.6	2.7	2.8	v	
Brownout voltage with BOV_VL [1:0] =10b	V _{BO3.8}	3.6	3.75	3.9	V	C. C.
Brownout voltage with BOV_VL [1:0] =11b	V _{BO4.5}	4.2	4.4	4.6	V	S AND
Hysteresis range of BOD voltage	V _{BH}	30	-	150	mV	V _{DD} = 2.5 V ~ 5.5 V

Note:

1. /RESET pin is a Schmitt trigger input.


2. Crystal Input is a CMOS input.

3. Pins of PA, PB, PC and PD can source a transition current when they are being externally driven from 1 to 0. In the condition of  $V_{DD}$ =5.5 V, the transition current reaches its maximum value when  $V_{IN}$  approximates to 2 V.

Jan. 09, 2015

#### 6.3 AC Electrical Characteristics

#### 6.3.1 External 4~24 MHz High Speed Crystal AC Electrical Characteristics



Note: Duty cycle is 50 %.

SYMBOL	PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
t _{CHCX}	Clock High Time		20	2	15	nS
t _{CLCX}	Clock Low Time		20	-9	20	nS
t _{CLCH}	Clock Rise Time		-	-	10	nS
t _{CHCL}	Clock Fall Time		-	-	10	nS

#### 6.3.2 External 4~24 MHz High Speed Crystal

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Input clock frequency	External crystal	4	12	24	MHz
Temperature	-	-40	-	85	°C

#### 6.3.2.1 Typical Crystal Application Circuits

CRYSTAL	C1	C2	R
4 MHz ~ 24 MHz	without	without	without

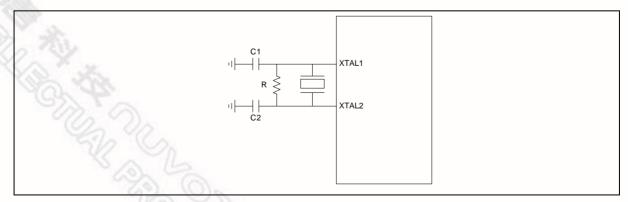



Figure 6-1 Typical Crystal Application Circuit

#### 6.3.3 External 32.768 KHz Low Speed Crystal

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Input clock frequency	External crystal	-	32.768	-	KHz
Temperature		-40	-	85	°C

#### 6.3.4 Internal 22.1184 MHz High Speed Oscillator

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Center Frequency	-	¥Ø	22.1184		MHz
	+25 °C ; $V_{DD}$ = 3.3 V	-1	2-2	+1	%
Calibrated Internal Oscillator Frequency	-40 ℃ ~ +85 ℃; V _{DD} = 2.5 V ~ 5.5 V	-5	100	+5	%

#### 6.3.5 Internal 10 KHz Low Speed Oscillator

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Center Frequency	-	-	10	-	KHz
	+25 ℃; V _{DD} = 5 V	-30	-	+30	%
Calibrated Internal Oscillator Frequency	-40 °C ~ +85 °C; V _{DD} = 2.5 V ~ 5.5 V	-50	-	+50	%

#### 6.4 Analog Characteristics

#### 6.4.1 Specification of LDO and Power Management

PARAMETER	MIN.	TYP.	MAX.	UNIT	NOTE
Input Voltage	2.5	5	5.5	V	$V_{DD}$ input voltage
Output Voltage	1.6	1.8	2.1	V	$V_{DD} \ge 2.5 V$
Temperature	-40	25	85	°C	121
Quiescent Current (PD=0)	-	100	-	μA	De.
Quiescent Current (PD=1)	-	5	-	μΑ	52 G.
lload (PD=0)	-	-	100	mA	0,77
lload (PD=1)	-	-	100	μA	Ser a
Сbр	-	4.7	-	μF	Resr=1 ohm

Note:

1. It is recommended that a 10  $\mu\text{F}$  or higher capacitor and a 100 nF bypass capacitor are connected between VDD and the closest VSS pin of the device.

2. For ensuring power stability, a 4.7  $\mu F$  or higher capacitor must be connected between LDO pin and the closest VSS pin of the device.

#### 6.4.2 Specification of Low Voltage Reset

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Quiescent current	V _{DD} =5.5 V	-	-	5	μA
Temperature		-40	25	85	°C
	Temperature=25℃	1.7	2.0	2.3	V
Threshold voltage	Temperature=-40°C	2	X	-	V
	Temperature=85℃	Ŵ	2	-	V
Hysteresis	-	0	0	0	V

#### 6.4.3 Specification of Brownout Detector

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Quiescent current	AV _{DD} =5.5 V	-	-	140	μA
Temperature	-	-40	25	85	°C
	BOV_VL[1:0]=11	4.2	4.4	4.6	V
Brownout voltage	BOV_VL [1:0]=10	3.6	3.75	3.9	V
biownout voltage	BOV_VL [1:0]=01	2.6	2.7	2.8	V
	BOV_VL [1:0]=00	2.1	2.2	2.3	V
Hysteresis	-	30	-	150	mV

#### 6.4.4 Specification of Power-On Reset

PARAMETER	CONDITION	MIN.	TYP.	MAX.	UNIT
Temperature	-	-40	25	85	°C
Reset voltage	V+	-	2	-	V
Quiescent current	Vin>reset voltage	-	1	-	nA

#### 6.4.5 Specification of USB PHY

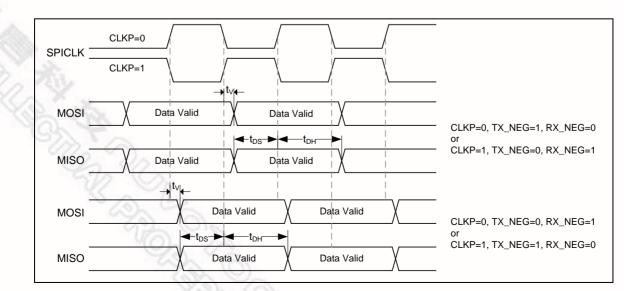
6.4.5.1 USB DC Electrical Characteristics

SYMBOL	PARAMETER	ARAMETER CONDITIONS		TYP.	MAX.	UNIT
V _{IH}	Input high (driven)	The second s	2.0			V
V _{IL}	Input low	S.	The second		0.8	V
V _{DI}	Differential input sensitivity	PADP-PADM	0.2			V
V _{CM}	Differential common-mode range	Includes V _{DI} range	0.8	24	2.5	V
V _{SE}	Single-ended receiver threshold		0.8	200	2.0	V
	Receiver hysteresis			200	1h	mV
Vol	Output low (driven)		0	S	0.3	V
V _{OH}	Output high (driven)		2.8		3.6	V
V _{CRS}	Output signal cross voltage		1.3		2.0	V
R _{PU}	Pull-up resistor		1.425		1.575	kΩ
R _{PD}	Pull-down resistor		14.25		15.75	kΩ
V _{TRM}	Termination Voltage for upstream port pull up (RPU)		3.0		3.6	V
Z _{DRV}	Driver output resistance	Steady state drive*		10		Ω
C _{IN}	Transceiver capacitance	Pin to GND			20	pF

*Driver output resistance doesn't include series resistor resistance.

6.4.5.2 USB Full-Speed Driver Electrical Characteristics	s
----------------------------------------------------------	---

SYMBOL	PARAMETER CONDITIONS		MIN.	TYP.	MAX.	UNIT
T _{FR}	Rise Time	C _L =50p	4		20	ns
T _{FF}	Fall Time	CL=50p	4		20	ns
T _{FRFF}	Rise and fall time matching	T _{FRFF} =T _{FR} /T _{FF}	90		111.11	%


#### 6.4.5.3 USB Power Dissipation

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
IVDDREG	2 . 3.3 L	Standby		50		μΑ
	V _{DDD} and V _{DDREG} Supply Current (Steady State)	Input mode				μΑ
Speed)	20, 6	Output mode				μΑ

#### 6.5 SPI Dynamic Characteristics

#### 6.5.1 Dynamic Characteristics of Data Input and Output Pin

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
	SPI MASTER MODE (VDD = 4.5	V ~ 5.5 V, 30 PF		PACITOR)	
t _{DS}	Data setup time	16	10	-	ns
t _{DH}	Data hold time	old time 0 -		5.	ns
t _V	Data output valid time	-	5	8	ns
SPI Master M	ode (VDD = 3.0 V ~ 3.6 V, 30 pF loa	ading Capacitor)	10	200	•
t _{DS}	Data setup time	20	13	S Sh	ns
t _{DH}	Data hold time	0	-	200	ns
t _V	Data output valid time	-	7	14	ns
SPI Slave Mo	de (VDD = 4.5 V ~ 5.5 V, 30 pF load	ding Capacitor)		- 49	20
t _{DS}	Data setup time	0	-	- 7	ns
t _{DH}	Data hold time	2*PCLK+4	-	-	ns
t _V	Data output valid time	-	2*PCLK+1 1	2*PCLK+20	ns
SPI Slave Mo	de (VDD = 3.0 V ~ 3.6 V, 30 pF load	ding Capacitor)			
t _{DS}	Data setup time	0	-	-	ns
t _{DH}	Data hold time	2*PCLK+8	-	-	ns
t _V	Data output valid time	-	2*PCLK+2 0	2*PCLK+32	ns



### nuvoTon

Figure 6-2 SPI Master Mode Timing

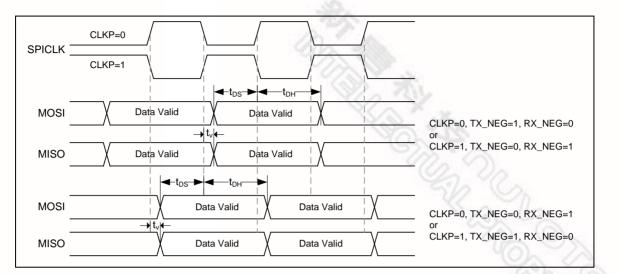
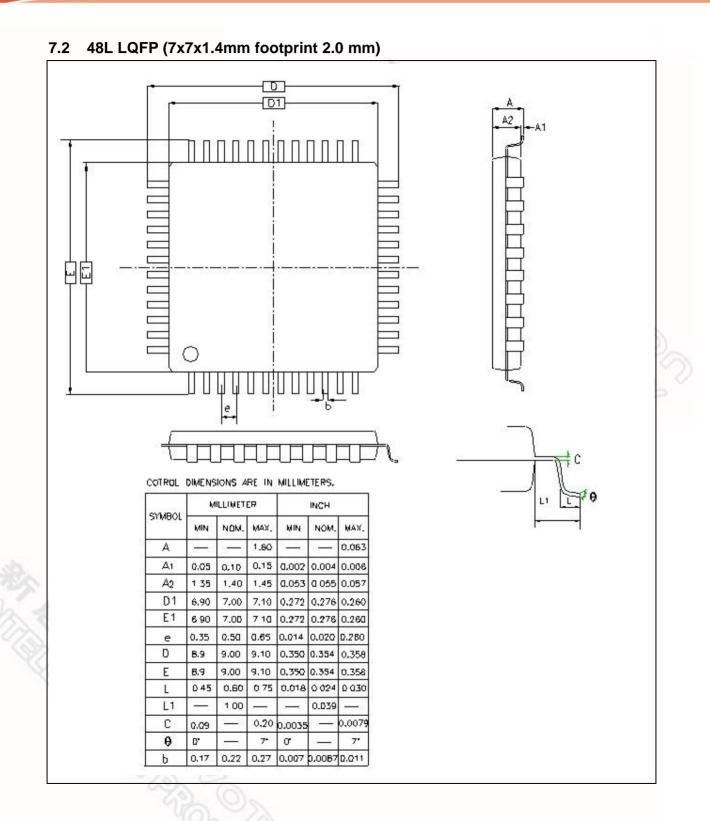



Figure 6-3 SPI Slave Mode Timing

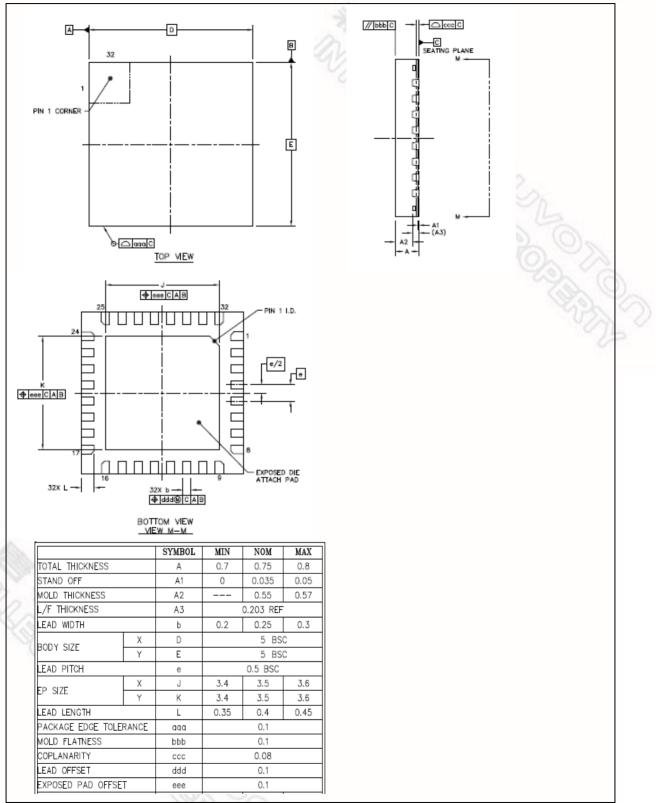
Jan. 09, 2015

### nuvoTon


### 7 PACKAGE DIMENSIONS

#### SYMBOL MIN NOM MAX 4X bbb Y T-UZ D TOTAL THICKNESS 1.6 A D/2 STAND OFF 0.15 A1 0.05 Z - GG PIN1 CORNER 64 MOLD THICKNESS 1.35 1.4 1.45 Α2 AHA LEAD WIDTH(PLATING) b 0.13 0.18 0.23 LEAD WIDTH b1 0.13 0.16 0.19 ŧ. L/F THICKNESS(PLATING) 0.09 0.2 Ċ ___ L/F THICKNESS 0.09 0.16 c1 ____ U 9 BSC Х D Ē E1 Y Е 9 BSC t Х D1 7 BSC BODY SIZE E1/2 Y E1 7 BSC E/2 LEAD PITCH 0.4 BSC e 16 L 0.45 0.6 0.75 FOOTPRINT L1 1 REF A θ 0. 3.5* 7. D1/2 θ1 0. ___ ___ θ2 11* 12 13 D1 03 11. 12' 13 4X 🗀 aaa H T–U Z R1 0.08 ____ ___ TOP VIEW R2 0.08 0.2 DETAIL F S 0.2 ____ ____ 빈 PACKAGE EDGE TOLERANCE aaa 0.2 LEAD EDGE TOLERANCE 0.2 bbb Ý COPLANARITY 80.0 LOccel 60X e ccc - 64X b LEAD OFFSET ddd 0.07 SEATING e/2 PLANE MOLD FLATNESS eee 0.05 SIDE VIEW - eee PLATING BASE METAL ec c1 0.25 R2 GAUGE PLANE E. ь 63 A1 _1 🕀 ddd 🕲 Y T–U Z

#### 7.1 64L LQFP (7x7x1.4mm footprint 2.0 mm)


s

- (L1)



### nuvoTon

#### 7.3 33L QFN (5x5x0.8mm)



#### 8 **REVISION HISTORY**

VERSION	DATE	PAGE/ CHAP.	DESCRIPTION		
V1.00	Jan. 18, 2011		Preliminary version initial issued		
V1.01	Feb. 11, 2011	Chap. 5	Correct the TMRx_S descriptions in the CLKSEL1 register.		
			1. Added the LQFP 64-pin part number for 7x7x1.4mm package (NUC122SD2AN, NUC122SC1AN)		
			2. Corrected the LQFP 64-pin Pin Diagram.		
V1.02		Chap. 3 Chap. 5	3. Corrected the clock source block diagram of Timer in the bit fie of CLKSEL1.		
	March 14, 2011	Chap .7	4. Removed the RCADJ control register.		
		Chap. 8	5. Corrected the SPI related descriptions of functions and contr registers.		
			6. Updated DC and AC Electrical Characteristics.		
			7. Updated LQFP 48-pin package dimensions.		
	March 31, 2011	Chap. 2 Chap. 3	1. Removed the LQFP 64-pin part number for 10x10x1.4m package.		
V1.03		Chap. 4	2. Replaced "12 MHz" with "4~24 MHz" in some contents and blo		
1.00		Chap. 5	diagrams.		
		Chap. 8	3. Added ICE debug ACK control bits in TCSR[31] and WTC		
			1. Corrected the GPIOxn_DOUT description. (x=A~D, n=0~15)		
			2. Updated the RTC Block Diagram.		
			3. Updated the table of specification of LDO and Pow Management.		
			4. Removed the LIN function from UART controller.		
		Chap. 16. Corrected the "five" options to "four" option the clock source block diagram of Timer ContChap. 27. Corrected the reset value in I2CSTATUS re Chap. 38. Corrected the "PWM_CRLx/PWI Chap. 5 "CRLRx/CFLRx(x=0~3)" in the Overview of Capture Timer chapter	5. Corrected "PS2DAT" to "PS2CLK" in FPS2CLK register.		
			6. Corrected the "five" options to "four" options in the description the clock source block diagram of Timer Controller.		
			7. Corrected the reset value in I2CSTATUS register.		
V1.04	Apr. 29, 2011		8. Corrected the "PWM_CRLx/PWM_CFLx(x=0~3)" "CRLRx/CFLRx(x=0~3)" in the Overview of PWM Generator a Capture Timer chapter.		
SIG	200	Chap. 6 Chap. 7	9. Corrected the descriptions of SPE, EPE, PBE and NSB bits UA_LCR register.		
	N AL		10. Corrected the PIIR, RIIR and TTR registers as R/W.		
			11. Corrected the Programming Examples of SPI.		
		De	12. Corrected the "1xx" to "111" in System Clock and SysTick Clo Control Block Diagram.		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10	13. Added the note in the GPIOx_DMASK registers. (x=A~D)		
	3	2	14. Added the Clock Generator Global View Diagram.		

nuvoTon

				15. Added the Function Description of Timer Controller.
				16. Corrected the description of ICSR and SCR registers.
				17. Corrected the "RX0/1" and "TX0/1" to "RXD0/1" and "TXD0/1" in Pin Configuration and Pin Description.
				18. Corrected the description of bit field TOIC in UA_TOR register.
				19. Corrected the description of FATCON register.
				20. Corrected the five status flow diagrams of I ² C operation mode.
	V1.05	May 30, 2011	Chap. 3	1. Corrected the Pin Description of pins 17 and 18 for LQFP 48-pin.
	V1.05	May 30, 2011	Chap. 5	2. Corrected the description of PIIR register.
	V1.06	June 8, 2011	Chap. 2	1. Corrected the trimmed condition for the internal 22.1184 MHz high speed oscillator in the "Clock Control" item of Feature list.
	V1.00	June 0, 2011	Chap. 7	2. Corrected the specification of the "Internal 22.1184 MHz High Speed Oscillator".
				1. Added the condition and corrected the speed of SPI in Master/Slave mode in the "SPI" item of Feature list.
	V1.07	June 21, 2011	Chap. 2 Chap. 5	2. Corrected the descriptions of CH0MOD, CH1MOD, CH2MOD CH3MOD, TIF and CURRENT registers.
				Corrected the descriptions of some SPI functions, GO_BUSY and SSR registers.
	V1.08	Dec 5, 2011	Chap. 8	1. Corrected QFN33 package dimension.
	V1.09	May 16, 2014	Chap. 3 Chap. 5	1. Added the PF.2 and PF.3 function on PS2DAT and PS2CLK in Pin Diagram and Pin Description
			onap. o	2. Added GPF_MFP register.
	V1.10	Dec. 22, 2014	Chap. 5	1. Removed SPI FIFO mode.
÷.				2. Rearranged the chapter 5 session sequence.
	V1.11	Jan. 09, 2015	Chap. 2 Chap. 5	 Corrected UART FIFO to 14-byte and the description of UA_FSR register.
7 .	- C-		onap. o	2. Corrected the typo EP_NUM in USB_CFGx registers, x=0~5.
2				Removed the GPIO PF.2 and PF.3 in Pin Diagram and Pin Description and the GPF_MFP register.

nuvoTon

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice. All the trademarks of products and companies mentioned in this datasheet belong to their respective owners