8-bit Microcontroller

KM101EFA3/A2/G0 Series Datasheet

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation Japan and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing document only for reference purposes of KM101EFA3/A2/G0 Series based system design.
Nuvoton assumes no responsibility for errors or omissions.
All data and specifications are subject to change without notice.
For additional information or question, please contact Nuvoton Technology Corporation Japan.
www.nuvoton.co.jp

1.Overview

1.1. Overview

The KM101E series of 8-bit single-chip microcontroller incorporate multiple types of peripheral functions. This chip series is well suited for automotive power window, camera, TV, CD, printer, telephone, home appliance, PPC, fax machine, music instrument and other applications.
This LSI brings to embedded microcomputer applications flexible, optimized hardware configurations and a simple efficient instruction set. KM101EFA2G/A3G/G0G have an internal 128 KB of ROM and 6 KB of RAM.
KM101EFA2D/A3D/G0D have an internal 64 KB of ROM and 4 KB of RAM. Peripheral functions include 5 external interrupts (3 external interrupts in KM101EFAG0G(D)), including NMI, 10 timer counters, 4 types of serial interfaces, A/D converter, watchdog timer and buzzer output. The system configuration is suitable for system control microcontroller.

With 3 oscillation systems (internal frequency: 16 MHz , high-speed crystal/ceramic frequency: max. 10 MHz , lowspeed crystal/ceramic frequency: 32.768 kHz) contained on the chip, the system clock can be switched to highspeed frequency input (NORMAL mode) or PLL input (PLL mode), or low-speed frequency input (SLOW mode). The system clock is generated by dividing the oscillation clock or PLL clock. The best operation clock for the system can be selected by switching its frequency ratio by programming. High speed mode has NORMAL mode which is based on the clock dividing fpll, (fpll is generated by original oscillation and PLL), by 2 (fpll/2), and the double speed mode which is based on the clock not dividing fpll.

A machine cycle (minimum instruction execution time) in NORMAL mode is 200 ns when the original oscillation fosc is 10 MHz (PLL is not used). A machine cycle in the double speed mode, in which the CPU operates on the same clock as the external clock, is 100 ns when fosc is 10 MHz . A machine cycle in the PLL mode is 50 ns (maximum).

1.2. Product Summary

This datasheet describes the following model.
Table: 1.1 Product Summary

Model	ROM Size	RAM Size	Classification	Package
KM101EFA3G	128 KB	6 KB		LQFP 80-pin
KM101EFA3D	64 KB	4 KB		LQFP EEPROM version
KM101EFA2G	128 KB	6 KB	TQFP 64-pin LQFP 64-pin	
KM101EFA2D	64 KB	4 KB		TQFP 56-pin
KM101EFG0G	128 KB	6 KB	Flash EEPROM version	
KM101EFG0D	64 KB	4 KB		

2. Hardware Functions

- Memory Capacity	ROM 128 KB / 64 KB RAM 6 KB / 4 KB
- Package	KM101EFA3 Series LQFP 80-Pin ($14 \mathrm{~mm} \times 14 \mathrm{~mm} / 0.65 \mathrm{~mm}$ pitch)
	KM101EFA2 Series TQFP 64-Pin ($10 \mathrm{~mm} \times 10 \mathrm{~mm} / 0.50 \mathrm{~mm}$ pitch) LQFP 64-Pin ($14 \mathrm{~mm} \times 14 \mathrm{~mm} / 0.80 \mathrm{~mm}$ pitch)
	KM101EFG0 Series TQFP 56-Pin ($10 \mathrm{~mm} \times 10 \mathrm{~mm} / 0.65 \mathrm{~mm}$ pitch)
- Machine Cycle	High-speed mode $0.05 \mu \mathrm{~s} / 20 \mathrm{MHz}(4.0 \mathrm{~V}$ to 5.5 V) Low-speed mode $62.5 \mu \mathrm{~s} / 32 \mathrm{kHz}$ (4.0 V to 5.5 V)
- Oscillation circuit	3 channel oscillation circuit Internal oscillation (frc): 16 MHz Crystal/ceramic (fosc): Maximum 10 MHz Crystal/ceramic (fx): Maximum 32.768 kHz
- Clock Multiplication circuit (PLL Circuit)	
	PLL circuit output clock (fpll): fosc multiplied by $2,3,4,5,6,8,10,1 / 2 \times$ frc multiplication by 4,5 enable
- Clock Gear for System Clock	
	System Clock (fs): fpll divided by 1, 2, 4, 16, 32, 64, 128
- Clock Gear for control clock of peripheral function	
	Control clock of peripheral function (fpll-div): stop or fpll divided by 1, 2, 4, 8, 16
- Memory Bank	Expands data memory space by the bank system (by $64 \mathrm{~KB}, 16$ banks) Source address bank / Destination address bank
- Operation Mode	NORMAL mode (High-speed mode) SLOW mode (Low-speed mode) HALT mode STOP mode (The operation clock can be switched in each mode.)
- Operating Voltage	4.0 V to 5.5 V
- Operation ambient temperature	

- Timer Counter (continued)

Timer 1 (8-bit timer for general use)

- Square wave output (Timer pulse output) can be output to large current pin TM1IOA
- Event count
- 16-bit cascade connected (with Timer 0)
- Clock source
fpll-div, fpll-div/4, fpll-div/16, fpll-div/32, fpll-div/64, fpll-div/128, fs/2, fs/4, fs/8, fx, External clock, Timer A output

Timer 2 (8-bit timer for general use)

- Square wave output (Timer pulse output)
- Added pulse (2-bit) type PWM output can be output to large current pin TM2IOA
- Event count
- Simple pulse measurement
- 24-bit cascade connected (with Timer 0 and Timer 1)
- Clock source
fpll-div, fpll-div/4, fpll-div/16, fpll-div/32, fpll-div/64, fpll-div/128, fs/2, fs/4, fs/8, fx, External clock, Timer A output

Timer 3 (8-bit timer for general use)

- Square wave output (Timer pulse output) can be output to large current pin TM3IOA
- Event count
- 16-bit cascade connected (with Timer 2)
- 32-bit cascade connected (with Timer 0 and Timer 1 and Timer 2)
- Clock source
fpll-div, fpll-div/4, fpll-div/16, fpll-div/32, fpll-div/128, fs $/ 2$, fs $/ 4$, fs $/ 8$, fx, External clock, Timer A output

Timer 6 (8-bit free-run timer, Time base timer)
8 -bit free-run timer

- Clock source
fpll-div, $\mathrm{fpll-div} / 212$, $\mathrm{fpll-div} / 213$, fs, fx, fx/22, fx/23, fx/212, fx/213
Time base timer
- Interrupt generation cycle
fpll-div/2 ${ }^{7}$, fpll-div $/ 2^{8}$, fpll-div $/ 2^{9}$, fpll-div $/ 2^{10}$, fpll-div $/ 2^{13}$, fpll-div $/ 2^{15}$, $\mathrm{fx} / 2^{7}, \mathrm{fx} / 2^{8}, \mathrm{fx} / 2^{9}, \mathrm{fx} / 2^{10}, \mathrm{fx} / 2^{13}, \mathrm{fx} / 2^{15}$

Timer 7 (16-bit timer for general use)

- Square wave output (Timer pulse output)
- High precision PWM output (Cycle/Duty continuous changeable) can be output to large current pin TM7IOA
- Event count
- Input capture function (Both edges can be operated)
- Clock source
fpll-div, fpll-div/2, fpll-div/4, fpll-div/16, fs, fs/2, fs/4, fs/16,
Timer A divided by 1, 2, 4, 16, External clock divided by 1, 2, 4, 16
Timer 8 (16-bit timer for general use)
- Square wave output (Timer pulse output)
- High precision PWM output (Cycle/Duty continuous changeable) can be output to large current pin TM8IOA
- Event count
- Input capture function (Both edges can be operated)
- Clock source
fpll-div, fpll-div/2, fpll-div/4, fpll-div/16, fs, fs/2, fs/4, fs/16,
Timer A divided by 1, 2, 4, 16, External clock divided by 1, 2, 4, 16

- Timer Counter (continued)	Timer 9 (Motor control 16-bit timer) - Square wave output (Timer pulse output) can be output to large current pin TM9IOA - Event count - Complementary 3-phase PWM output can be output to large current pin TM9OD0 to TM9OD5 - (Triangle wave and saw tooth wave are supported, dead time insertion available) - Clock source fpll-div, fpll-div/2, fpll-div/4, fpll-div/16, fs, fs/2, fs/4, fs/16, Timer A divided by 1, 2, 4, 16, External clock divided by 1, 2, 4, 16
	Timer A (Baud rate timer) - Clock output for peripheral functions - Clock source fpll-div, fpll-div/2, fpll-div/4, fpll-div/8, fpll-div/16, fpll-div/32, fs/2, fs/4
- Watchdog timer	Time-out cycle can be selected from fs $/ 2^{16}, \mathrm{fs} / 2^{18}, \mathrm{fs} / 2^{20}$ On detection of 2 errors, forcibly hard reset inside LSI. Operation start timing is selectable. (At reset release or write to register)
- Buzzer Output/ Reverse Buzzer Output	
	Output frequency can be selected from fpll-div $/ 2^{9}$, fpll-div $/ 2^{10}$, fpll-div $/ 2^{11}$, fpll-div $/ 2^{12}$, fpll-div $/ 2^{13}$, fpll-div $/ 2^{14}, \mathrm{fx} / 2^{3}, \mathrm{fx} / 2^{4}$
- A/D Converter	$\begin{aligned} & 10 \text {-bit } \times 16 \text { channels (KM101EFA3 Series) } \\ & 10 \text {-bit } \times 12 \text { channels (KM101EFA2/G0 Series) } \end{aligned}$
- Serial Interface	4 channels
	Serial 0: UART (full duplex)/ Clock synchronous Clock synchronous serial interface - Transfer clock source fpll-div/2, fpll-div/4, fpll-div/16, fpll-div/64, fs/2, fs/4, Timer 0 to 3 or Timer A divided by 1, 2, 4, 8, 16, External clock - MSB/LSB can be selected as the first bit to be transferred, arbitrary sizes of 2 to 8 bits are selectable. - Sequence transmission, reception or both are available Full duplex UART - Baud rate timer, selected from Timer 0 to 3 or Timer A - Parity check, overrun error/ framing error detection - Transfer size 7 to 8 bits can be selected
	Serial 1: UART (full duplex)/ Clock synchronous Clock synchronous serial interface - Transfer clock source fpll-div/2, fpll-div/4, fpll-div/16, fpll-div/64, fs/2, fs/4, Timer 0 to 3 or Timer A divided by 1, 2, 4, 8, 16, External clock - MSB/LSB can be selected as the first bit to be transferred, arbitrary sizes of 2 to 8 bits are selectable. - Sequence transmission, reception or both are available. Full duplex UART - Baud rate timer, selected from Timer 0 to 3 or Timer A - Parity check, overrun error/ framing error detection - Transfer size 7 to 8 bits can be selected

- Serial Interface (continued)

Serial 2: UART (full duplex)/ Clock synchronous
Clock synchronous serial interface

- Transfer clock source fpll-div/2, fpll-div/4, fpll-div/16, fpll-div/64, fs/2, fs/4, Timer 0 to 3 or Timer A divided by 1, 2, 4, 8, 16, External clock
- MSB/LSB can be selected as the first bit to be transferred, arbitrary sizes of 2 to 8 bits are selectable.
- Sequence transmission, reception or both are available.

Full duplex UART

- Baud rate timer, selected from Timer 0 to 3 or Timer A
- Parity check, overrun error/ framing error detection
- Transfer size 7 to 8 bits can be selected

Serial 4: Multi master IIC/ Clock synchronous
Clock synchronous serial interface

- Transfer clock source fpll-div/2, fpll-div/4, fpll-div/16, fpll-div/32, fs/2, fs/4, Timer 0 to 3 or Timer A divided by 1, 2, 4, 8, 16, External clock
- MSB/LSB can be selected as the first bit to be transferred, arbitrary sizes of 2 to 8 bits are selectable.
- Sequence transmission, reception or both are available.

Multi master IIC

- 7-bit slave address is settable.
- General call communication mode is supported.
- Automatic Reset
- LED Driver
- Ports

Power detection level: 4.3 V (at rising), 4.2 V (at falling)
8 pins (Port A)

- KM101EFA3 Series

I/O ports	70 pins
Serial Interface pins	21 pins
Timer I/O	19 pins
Buzzer output pins	4 pins
A/D input pins	16 pins
External Interrupt pins	5 pins
LED (large current) driver	8 pins
High-speed oscillation	2 pins
Low-speed oscillation	2 pins
Special pins	9 pins
Operation mode input pins	3 pins
Reset input pin	1 pin
Analog reference voltage input pin	1 pin
Power pins	4 pins

- Ports (continued)	- KM101EFA2 Series I/O ports	55 pins
	Serial Interface pins	15 pins
	Timer I/O	19 pins
	Buzzer output pins	4 pins
	A/D input pins	12 pins
	External Interrupt pins	5 pins
	LED (large current) driver	8 pins
	High-speed oscillation	2 pins
	Low-speed oscillation	2 pins
	Special pins	8 pins
	Operation mode input pins	3 pins
	Reset input pin	1 pin
	Analog reference voltage input pin	1 pin
	Power pins	3 pins
	- KM101EFG0 Series	
	I/O ports	48 pins
	Serial Interface pins	12 pins
	Timer I/O	15 pins
	Buzzer output pins	4 pins
	A/D input pins	12 pins
	External Interrupt pins	3 pins
	LED (large current) driver	8 pins
	High-speed oscillation	2 pins
	Low-speed oscillation	2 pins
	Special pins	8 pins
	Operation mode input pins	3 pins
	Reset input pin	1 pin
	Analog reference voltage input pin	1 pin
	Power pins	3 pins

3 Pin Description

3.1 Pin configuration

Figure: 3.1 Pin Configuration (KM101EFA3 Series TQFP/LQFP 80-pin)

Figure: 3.2 Pin Configuration (KM101EFA2 Series TQFP/LQFP 64-pin)

Figure: 3.3 Pin Configuration (KM101EFG0 Series TQFP 56-pin)

3.2. Pin Functions

Table: 3.1 Pin Functions

Pins	Pin No			I/O	Function	Description
	$\begin{gathered} \hline \text { MN101 } \\ \text { EFA3 } \\ \text { series } \end{gathered}$	$\begin{gathered} \hline \text { MN101 } \\ \text { EFA2 } \\ \text { series } \end{gathered}$	$\begin{gathered} \hline \text { MN101 } \\ \text { EFG0 } \\ \text { series } \end{gathered}$			
VDD5	17	13	13	-	Power connect pins	Apply 4.0 V to 5.5 V to VDD5 and 0 V connect $0.1 \mu \mathrm{~F}$ $+1 \mu \mathrm{~F}$ or larger bypass capacitor for internal power stabilization.
VSS	$\begin{aligned} & 14 \\ & 22 \\ & \hline \end{aligned}$	10	10	-		
VDD18	19	15	15	-	Internal power output pin	This pin is output 1.8 V from internal power circuit. Don't use the power supply to external device. For internal power circuit output stability, connect at least $0.1 \mu \mathrm{~F}+1 \mu \mathrm{~F}$ one bypass capacitor between VDD18 and VSS.
OSC1	15	11	11	Input	High speed operation clock input pin	Connect these oscillation pins to ceramic or crystal oscillators for high-frequency clock operation. If the clock is an external input, connect it to OSC1 and leave OSC2 open. The chip will not operate with an external clock when using STOP mode.
OSC2	16	12	12	Output	High speed operation clock output pin	
NRST	11	7	7	I/O	Reset pin [Active low]	This pin resets the chip when power is turned on, is allocated as P27 and contains an internal pull-up resistor (Typ. $50 \mathrm{k} \Omega$). Setting this pin low initialize the internal state of the device. Thereafter, setting the input to high releases the reset. The hardware waits for the system clock to stabilize, then processes the reset interrupt. If a capacitor is to be inserted between NRST and VSS, it is recommended that a discharge diode be placed between NRST and VDD5.
ATRST	10	6	6	input	Auto reset setting pin	Input "High" to enable auto reset function and "Low" to disable this function
P00	23	18	17	I/O	I/O port 0	8-bit CMOS tri-state I/O port. Each bit can be set individually as either an input or output by PODIR register. A pull-up resistor for each bit can be selected individually by POPLU register. At reset, the input mode is selected and pull-up resistor is disabled (high impedance).
P01	24	19	18			
P02	25	20	19			
P03	26	21	20			
P04	27	22	21			
P05	28	23	-			
P06	29	24	-			
P07	30	-	-			
P20	31	25	22	I/O	I/O port 2	7-bit CMOS tri-state I/O port. Each bit can be set individually as either an input or output by P2DIR register. A pull-up resistor for each bit can be selected individually by P2PLU register. At reset, the input mode is selected and pull-up resistor is disabled (high impedance)
P21	32	26	23			
P22	33	27	24			
P23	34	28	-			
P24	35	29	-			
P25	15	11	11			
P26	16	12	12			
P27	11	7	7	input	input port 2	P27 has an N-channel open-drain configuration.
P33 P34 P35	73 72 71	-	-	I/O	I/O port 3	3-bit CMOS tri-state I/O port. Each bit can be set individually as either an input or output by P3DIR register. A pull-up /pull-down resistor for each bit can be selected individually by P3PLUD register. A pullup/down resistor connection for each port can be selected individually in SELUD register. A pull-up/pull down can not be mixed. At reset, the input mode is selected and pull-up resistor is disabled (high impedance).
P43	70	-	-	I/O	I/O port 4	5-bit CMOS tri-state I/O port. Each bit can be set individually as either an input or output by P4DIR register. A pull-up resistor for each bit can be selected individually by P4PLU register. At reset, the input mode is selected and pull-up resistor is disabled (high impedance).
P44	69	-	-			
P45	68	-	-			
P46	67	-	-			
P47	66	-	-			

Pins	Pin No			I/O	Function	Description
	$\begin{gathered} \hline \text { MN101 } \\ \text { EFA3 } \\ \text { series } \end{gathered}$	$\begin{gathered} \hline \text { MN101 } \\ \text { EFA2 } \\ \text { series } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { MN101 } \\ \text { EFG0 } \\ \text { series } \end{array}$			
P50	58	52	47	I/O	I/O port 5	8-bit CMOS tri-state I/O port. Each bit can be set individually as either an input or output by P5DIR register. A pull-up /pull-down resistor for each bit can be selected individually by P5PLUD register. A pullup/down resistor connection for each port can be selected individually in SELUD register. A pull-up/pull down can not be mixed. At reset, the input mode is selected and pull-up resistor is disabled (high impedance). Pull-down function is not equipped in KM101EFA8/A3 Series.
P51	59	53				
P52	60	54	-			
P53	61	55				
P54	62	56	48			
P55	63	57	49			
P56	64	58	50			
P57	65	59	51			
P62	57	51	46	I/O	I/O port 6	6 -bit CMOS tri-state I/O port. Each bit can be set individually as either an input or output by P6DIR register. A pull-up resistor for each bit can be selected individually by P6PLU register. At reset, the input mode is selected and pull-up resistor is disabled (high impedance).
P63	56	50	45			
P64	55	49	44			
P65	54	48	43			
P66	53	47	42			
P67	52	46	41			
P70	51	45	40	I/O	I/O port 7	8-bit CMOS tri-state I/O port. Each bit can be set individually as either an input or output by P7DIR register. A pull-up resistor for each bit can be selected individually by P7PLU register. At reset, the input mode is selected and pull-up resistor is disabled (high impedance).
P71	50	44	39			
P72	49	43	38			
P73	48	42	37			
P74	47	41	36			
P75	46	40	35			
P76	45	39	34			
P77	44	38	33			
P80	43	37	32	I/O	I/O port 8	8-bit CMOS tri-state I/O port. Each bit can be set individually as either an input or output by P8DIR register. A pull-up resistor for each bit can be selected individually by P8PLU register. At reset, the input mode is selected and pull-up resistor is disabled (high impedance).
P81	42	36	31			
P82	41	35	30			
P83	40	34	29			
P84	39	33	28			
P85	38	32	27			
P86	37	31	26			
P87	36	30	25			
P90	12	8	8	I/O	I/O port 9	5-bit CMOS tri-state I/O port. Each bit can be set individually as either an input or output by P9DIR register. A pull-up /pull-down resistor for each bit can be selected individually by P9PLUD register. A pullup/down resistor connection for each port can be selected individually in SELUD register. A pull-up/pull down can not be mixed. At reset, the input mode is selected and pull-up resistor is disabled (high impedance).
P91	13	9	9			
P92	74	-	-			
P93	75	-	-			
P94	76	60	52			
PA0	1	61	53	I/O	I/O port A	8-bit CMOS tri-state I/O port. Each bit can be set individually as either an input or output by PADIR register. A pull-up resistor for each bit can be selected individually by PAPLU register. At reset, the input mode is selected and pull-up resistor is disabled (high impedance).
PA1	2	62	54			
PA2	3	63	55			
PA3	4	64	56			
PA4	5	1	1			
PA5	6	2	2			
PA6	7	3	3			
PA7	8	4	4			
PB0	80			I/O	I/O port B	4-bit CMOS tri-state I/O port. Each bit can be set individually as either an input or output by PBDIR register. A pull-up /pull-down resistor for each bit can be selected individually by PBPLUD register. A pullup/down resistor connection for each port can be selected individually in SELUD register. A pull-up/pull down can not be mixed. At reset, the input mode is selected and pull-up resistor is disabled (high impedance).
PB1	79	-	-			
PB2	78	-	-			
PB3	77		-			

Pins	Pin No			I/O	Function	Description
	$\begin{aligned} & \hline \text { MN101 } \\ & \text { EFA3 } \\ & \text { series } \end{aligned}$	$\begin{gathered} \hline \text { MN101 } \\ \text { EFA2 } \\ \text { series } \end{gathered}$	$\begin{gathered} \hline \text { MN101 } \\ \text { EFG0 } \\ \text { series } \end{gathered}$			
SBOOA SBOOB SBO1A SBO1B SBO2 SBO4A SBO4B	26 70 58 46 54 50 72	21 - 52 40 48 44	20 35 43 39	Output	Serial interface transmission data output pins	Transmission data output pins for serial interface 0,1,2,4. The output configuration, either COMS push-pull or Nch open-drain can be selected in P0ODC, P3ODC, P4ODC, P50DC, P60DC and P7ODC registers. Pull-up resistor can be selected in POPLU, P3PLUD, P4PLU, P5PLU(D), P6PLU, and P7PLU registers. Select output mode in P0DIR, P3DIR, P4DIR, P5DIR, P6DIR, and P7DIR registers and set serial data output mode in serial mode register 1 (SC0MD1, SC1MD1, SC2MD1, SC4MD1). These can be used as normal I/O pins when serial interface is not used.
SBIOA SBIOB SBIIA SBI1B SBI2 SBI4A SBI4B	$\begin{aligned} & 25 \\ & 69 \\ & 59 \\ & 45 \\ & 53 \\ & 51 \\ & 71 \end{aligned}$	20 - 53 39 47 45	$\begin{gathered} 19 \\ - \\ - \\ 34 \\ 42 \\ 40 \end{gathered}$	Input	Serial interface reception data input pins	Reception data input pins for serial interface 0,1,2,4. Pull-up resistor can be selected in POPLU, P3PLUD, P4PLU, P5PLU(D), P6PLU and P7PLU registers. Select the output mode in PODIR, P3DIR, P4DIR, P5DIR, P6DIR and P7DIR registers and select serial data input mode in serial mode register 1 (SCOMD1, SC1MD1, SC2MD1, SC4MD1). These can be used as normal I/O pins when serial interface is not used.
SBT0A SBTOB SBT1A SBT1B SBT2 SBT4A SBT4B	$\begin{aligned} & 27 \\ & 68 \\ & 60 \\ & 44 \\ & 52 \\ & 49 \\ & 72 \end{aligned}$	$\begin{gathered} 22 \\ - \\ 54 \\ 38 \\ 46 \\ 43 \end{gathered}$	21 33 41 38	I/O	Serial interface Clock I/O pins	Clock I/O pins for serial interface $0,1,2,4$. The output configuration, either COMS push-pull or Nch open-drain can be selected in P0ODC, P3ODC, P40DC, P50DC, P60DC and P7ODC registers. Pull-up resistor can be selected in POPLU, P3PLUD, P4PLU, P5PLU(D), P6PLU and P7PLU registers. Select clock I/O in P0DIR, P3DIR, P4DIR, P5DIR, P6DIR and P7DIR registers and serial mode register 1 (SC0MD1, SC1MD1, SC2MD1, SC4MD1) with the communication mode. These can be used as normal I/O pins when serial interface is not used.
TXD0A TXDOB TXD1A TXD1B TXD2	$\begin{aligned} & 26 \\ & 70 \\ & 58 \\ & 46 \\ & 54 \end{aligned}$	$\begin{gathered} 21 \\ - \\ 52 \\ 40 \\ 48 \end{gathered}$	20 35 43	Output	UART transmission data output pins	In serial interface $0,1,2$ in UART mode, this pin is configured as the transmission data output pin. The output configuration, either COMS push-pull or Nch open-drain can be selected in P0ODC, P4ODC, P50DC, P60DC and P7ODC registers. Pull-up resistor can be selected by P0PLU, P4PLU, P5PLU(D), P6PLU and P7PLU registers. Select the output mode in P0DIR, P4DIR, P5DIR, P6DIR and P7DIR registers and select serial data output mode in serial mode register 1 (SC0MD1, SC1MD1, SC2MD1). These can be used as normal I/O pins when serial interface is not used.
RXDOA RXDOB RXD1A RXD1B RXD2	$\begin{aligned} & 25 \\ & 69 \\ & 59 \\ & 45 \\ & 53 \end{aligned}$	$\begin{gathered} 20 \\ - \\ 53 \\ 39 \\ 47 \end{gathered}$	$\begin{gathered} 19 \\ - \\ - \\ 34 \\ 42 \end{gathered}$	Input	UART reception data output pins	In serial interface 0,1,2 in UART mode, this pin is configured as the reception data input pin. Pull-up resistor can be selected in POPLU, P4PLU, P5PLU(D), P6PLU and P7PLU registers. Select the input mode in P0DIR, P4DIR, P5DIR, P6DIR and P7DIR registers and select serial input in serial mode register 1 (SC0MD1, SC1MD1, SC2MD1). These can be used as normal I/O pins when serial interface is not used.

Pins	Pin No			1/O	Function	Description
	$\begin{gathered} \hline \text { MN101 } \\ \text { EFA3 } \\ \text { series } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MN101 } \\ \text { EFA2 } \\ \text { series } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MN101 } \\ \text { EFG0 } \\ \text { series } \end{gathered}$			
$\begin{aligned} & \hline \text { SDA4A } \\ & \text { SDA4B } \end{aligned}$	$\begin{aligned} & 50 \\ & 72 \end{aligned}$	44 -	39	I/O	IIC data I/O pins	In serial interface 4 in IIC mode, this pin is configured as the data $1 / \mathrm{O}$ pin. For the output configuration, select Nch open-drain in P3ODC and P7ODC register and set pull-up resistor in P3PLUD and P7PLU register. Select the output mode in PODIR register and select serial data I/O mode by serial mode register 1 (SC4MD1). These can be used as normal I/O pin when serial interface is not used.
$\begin{aligned} & \hline \text { SCL4A } \\ & \text { SCL4B } \end{aligned}$	$\begin{aligned} & 49 \\ & 72 \end{aligned}$	43	38	I/O	IIC clock I/O pins	In serial interface 4 in IIC mode, this pin is configured as the clock I/O pin. For the output configuration, select Nch open-drain in P0ODC and P7ODC register and set pull-up resistor by P0PLU and P7PLU register. Select the output mode at PODIR register and select serial clock I/O mode in serial mode register 1 (SC4MD1). These can be used as normal I/O pin when serial interface is not used
TMOIOA TMOIOB TM1IOA TM1IOB TM2IOA TM2IOB TM3IOA TM3IOB	$\begin{gathered} 1 \\ 27 \\ 2 \\ 57 \\ 3 \\ 27 \\ 4 \\ 56 \end{gathered}$	$\begin{aligned} & 61 \\ & 22 \\ & 62 \\ & 51 \\ & 63 \\ & 22 \\ & 64 \\ & 50 \end{aligned}$	53 21 54 46 55 21 56 45	I/O	Timer I/O pins	Event counter clock input pin, timer output and PWM signal output pin for 8 -bit timer 0 to 3. To use this pin as event clock input, configure it as input by P0DIR, P6DIR and PADIR register. In the input mode, pull-up resistor can be selected in POPLU, P6PLU, and PAPLU registers. For timer output, PWM signal output, select the special function pin in P00MD1, P00MD2, P60MD and PAOMD registers, and set to the output mode in P0DIR, P6DIR and PADIR registers. These can be used as normal I/O pins when Timer I/O pin is not used.
BUZZERA BUZZERB NBUZZERA NBUZZERB	$\begin{aligned} & 65 \\ & 36 \\ & 64 \\ & 37 \end{aligned}$	$\begin{aligned} & 59 \\ & 30 \\ & 58 \\ & 31 \end{aligned}$	$\begin{aligned} & 51 \\ & 25 \\ & 50 \\ & 26 \end{aligned}$	Output	Buzzer output pins	Piezoelectric buzzer driving pin. Buzzer output is available to Port 5, 8. The driving frequency can be set in DLYCTR register. In order to select Buzzer output, select the special function pin in P5OMD, P8OMD register, and set P5DIR, P8DIR register to the output mode. At the same time, select Buzzer output in oscillation stabilization wait control register (DLYCTR). These can be used as normal I/O pins when Buzzer output is not used.
TM7IOA TM7IOB TM8IOA TM8IOB TM9IOA TM9IOB	$\begin{gathered} 6 \\ 25 \\ 7 \\ 26 \\ 8 \\ 24 \end{gathered}$	$\begin{gathered} 2 \\ 20 \\ 3 \\ 21 \\ 4 \\ 19 \end{gathered}$	$\begin{gathered} 2 \\ 19 \\ 3 \\ 20 \\ 4 \\ 18 \end{gathered}$	I/O	Timer I/O pins	Event counter clock input pin, timer output and PWM signal output pin for 16 -bit timer 7,8 and 9. To use this pin as event clock input, configure it as input with PODIR and PADIR registers. In the input mode, pull-up resistor can be selected by POPLU and PAPLU registers. For timer output, PWM signal output, select the special function pin in P00MD1 and PAOMD registers, and set to the output mode in PODIR and PADIR registers. These can be used as normal I/O pins when not used as timer I/O pins.
TM9OD0 TM9OD1 TM9OD2 TM9OD3 TM9OD4 TM9OD5	$\begin{aligned} & 43 \\ & 42 \\ & 41 \\ & 40 \\ & 39 \\ & 38 \end{aligned}$	$\begin{aligned} & 37 \\ & 36 \\ & 35 \\ & 34 \\ & 33 \\ & 32 \end{aligned}$	$\begin{aligned} & 32 \\ & 31 \\ & 30 \\ & 29 \\ & 28 \\ & 27 \end{aligned}$	Output	Timer PWM output	PWM signal output pin for 16-bit timer 9. Select the special function pin in P8OMD register, and set to the output mode in P8DIR register. These can be used as normal I/O pins when not used as timer I/O pins.

Pins	Pin No			I/O	Function	Description
	$\begin{aligned} & \hline \text { MN101 } \\ & \text { EFA3 } \\ & \text { series } \end{aligned}$	MN101 EFA2 series	$\begin{gathered} \hline \text { MN101 } \\ \text { EFG0 } \\ \text { series } \end{gathered}$			
VREF+	9	5	5	-	A/D reference voltage input pin	Reference power supply pin for A/D converter. Normally, the values of VREF+ = VDD5 is used.
ANO AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN8 AN9 AN10 AN11 AN12 AN13 AN14 AN15	$\begin{gathered} \hline 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 80 \\ 79 \\ 78 \\ 77 \\ 76 \\ 75 \\ 74 \\ 73 \end{gathered}$	61 62 63 64 1 2 3 4 60 59 58 57	$\begin{aligned} & 53 \\ & 54 \\ & 55 \\ & 56 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 52 \\ & 51 \\ & 50 \\ & 49 \end{aligned}$ -	input	Analog input pins	[KM101EFA3 Series] Analog input pins for 16-channel, 10-bit A/D converter. Select the analog input by P3IMD, P9IMD, PAIMD, PBIMD register. When not used for analog input, these pins can be used as normal input pins. [KM101EFA2/G0 Series] Analog input pins for 12-channel, 10-bit A/D converter. Select the analog input by P5IMD, P9IMD, PAIMD register. When not used for analog input, these pins can be used as normal input pins.
$\begin{aligned} & \text { IRQ0 } \\ & \text { IRQ1 } \\ & \text { IRQ2 } \\ & \text { IRQ3 } \\ & \text { IRQ4 } \end{aligned}$	$\begin{aligned} & 31 \\ & 32 \\ & 33 \\ & 34 \\ & 35 \end{aligned}$	$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \end{aligned}$	$\begin{gathered} 22 \\ 23 \\ 24 \\ - \end{gathered}$	Input	External interrupt	External interrupt input pins. Select the external interrupt input enable by IRQCNT register. The valid edge for IRQ0 to 4 can be selected with IRQnICR register. IRQ2 to 4 can be set at both edges at pin voltage level. When not used for interrupts, these can be used as normal input pins.
$\begin{aligned} & \text { KEY0 } \\ & \text { KEY1 } \\ & \text { KEY2 } \\ & \text { KEY3 } \\ & \text { KEY4 } \\ & \text { KEY5 } \\ & \text { KEY6 } \\ & \text { KEY7 } \end{aligned}$	51 50 49 48 47 46 45 44	45 44 43 42 41 40 39 38	40 39 38 37 36 35 34 33	Input	Key interrupt input pins	Input pins for KEY interrupt based on OR condition result of pin inputs. These can be set to key input pins by 1-bit with KEY interrupt control register (KEYT3_1IMD, KEY3_2_IMD). When not used for KEY input, these pins can be used as normal I/O pins.
$\begin{aligned} & \text { LED0 } \\ & \text { LED1 } \\ & \text { LED2 } \\ & \text { LED3 } \\ & \text { LED4 } \\ & \text { LED5 } \\ & \text { LED7 } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	$\begin{gathered} 61 \\ 62 \\ 63 \\ 64 \\ 1 \\ 2 \\ 3 \\ 4 \end{gathered}$	53 54 55 56 1 2 3 4	Output	LED drive pins	Large current output pins. Select the large current output by LEDCNT registers. When not used for LED output, these pins can be used as normal I/O pins.
DMOD	20	16	15	Input	Mode switch input pins	Set always to VDD5 level.
MMOD	18	14	14	Input	ROM area switch input pins at start	Set always to VSS level.

For the MMOD setup in rewriting the flash memory, refer to Technical Reference Manual.

4 Block Diagram

Figure:1.4.1 Block Diagram

* Varies depending on models.

Refer to [Chapter 1.2 Product Summary] and [Chapter 3.2 Pin Functions].

5 Electrical Characteristics

This datasheet describes standard specifications.
When using this LSI, consult our sales offices for the product specifications.

Structure	CMOS integrated circuit
Application	General-purpose
Function	CMOS 8-bit single chip microcontroller

5.1 Absolute Maximum Ratings

A. Absolute Maximum Ratings *2 *3 *4
$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter			Symbol	Rating	Unit
A1	Power supply voltage		$V_{\text {DD5 }}$	-0.3 to +7.0	V
A2	Power supply voltage		$V_{\text {DD18 }}$	-0.3 to +2.5	
A3	Input pin voltage		V_{1}	-0.3 to $\mathrm{V}_{\text {DD5 }}+0.3$ (upper limit: 7.0 V)	
A4	Output pin voltage		V_{O}	-0.3 to $\mathrm{V}_{\text {DD5 }}+0.3$ (upper limit: 7.0 V)	
A5	I/O pin voltage		V_{101}	-0.3 to $\mathrm{V}_{\text {DD5 }}+0.3$ (upper limit: 7.0 V)	
A6	Peak output current	LED output	$\mathrm{I}_{\text {OL1 }}$ (peak)	30	mA
A7		Other than LED output	$\mathrm{l}_{\text {OL2 }}$ (peak)	20	
A8		All pins	I_{OH} (peak)	-10	
A9	Average output current *1	LED output	$\mathrm{l}_{\mathrm{OL1}}(\mathrm{avg})$	20	
A10		Other than LED output	$\mathrm{l}_{\mathrm{OL2} 2}(\mathrm{avg})$	15	
A11		All pins	I_{OH} (avg)	-5	
A12	Power dissipation		P_{D}	400	mW
A13 A14					
A15					
A16	Operating ambient temperature		$\mathrm{T}_{\text {opr }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
A17	Storage temperature		$\mathrm{T}_{\text {STG }}$	-55 to +125	

*1 Applied to any 100 ms period.
*2 Connect at least one bypass capacitor of $0.1 \mu \mathrm{~F}+1.0 \mu \mathrm{~F}$ or larger between VDD5 pin and GND for the internal power voltage stabilization.
*3 Connect appropriate capacitor about $0.1 \mu \mathrm{~F}+1.0 \mu \mathrm{~F}$ between VDD18 pin and VSS pin, near the microcontroller according to the Figure: 5.1 shown below for the internal power supply stabilization.

Figure: 5.1 Capacitor Connection between VDD18 and VSS Pins

[^0]
5.2 Operating Conditions

B. Operating Conditions
$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$
$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Rating			Unit
			MIN	TYP	MAX	

Power supply voltage *5

B1	Power supply voltage	$\mathrm{V}_{\mathrm{DD} 1}$		4.0		5.5	V
B2	RAM retention power supply voltage	$\mathrm{V}_{\mathrm{DD} 2}$	During STOP mode	2.2		5.5	V

Operating speed *6

*5 fs: Machine clock frequency
*6 tc1 to 2: when the machine clock is selected from external high-speed oscillation, internal high-speed oscillation, or both the oscillations multiplied by PLL.
tc7: when the machine clock is selected from external low-speed oscillation.

External Oscillator 1 Figure: 5.2

B6	Frequency	$\mathrm{f}_{\text {hosc1 }}$	$\mathrm{V}_{\text {DD5 }}$ is within the specified operating power supply voltage range. (Refer to the ratings of B1 to B2 for the operating supply voltage range)	2.0		10	MHz
B7	Internal feedback resistor	$\mathrm{R}_{\mathrm{f} 10}$	$\mathrm{~V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}$		980	$\mathrm{k} \Omega$	

External Oscillator 2 Figure: 5.3

B8	Frequency	$\mathrm{f}_{\text {sosc1 }}$	$\mathrm{V}_{\mathrm{DD} 5}=4.0 \mathrm{~V}$ to 5.5 V		32.768		kHz
B9	Internal feedback resistor	$\mathrm{R}_{\mathrm{f} 20}$	$\mathrm{~V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}$		6.2		$\mathrm{M} \Omega$

Figure: 5.2 External Oscillator 1

Figure: 5.3 External Oscillator 2

Connect external capacitors suited for the used oscillator.
The reference value denotes external capacity value based on our matching result. When crystal oscillator or ceramic oscillator is used, the oscillation frequency is changed depending on the value of capacitor. For external capacity value, please consult the oscillator manufacturer and perform matching tests enough for determining appropriate values.

$$
\begin{array}{r}
\mathrm{V}_{\mathrm{DD} 5}=4.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}
\end{array}
$$

$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Rating			Unit
			MIN	TYP	MAX	

External clock input 1 OSC1 (OSC2 is unconnected)

B10	Clock frequency	$\mathrm{f}_{\text {hosc2 }}$		2	10.0	MHz
B11	High-level pulse width *7	$t_{\text {wh1 }}$	Figure:1.5.4	45		ns
B12	Low-level pulse width *7	$\mathrm{t}_{\mathrm{wl1}}$		45		
B13	Rising time	$\mathrm{t}_{\text {wr1 }}$	Figure:1.5.4	0	5.0	
B14	Falling time	$\mathrm{t}_{\text {wf1 }}$		0	5.0	

*7 The clock duty ratio should be 45% to 55%
External clock input 2 XI (XO is unconnected)

B15	Clock frequency	$\mathrm{f}_{\text {sosc2 }}$			32.768		kHz
B16	High-level pulse width *7	$\mathrm{t}_{\mathrm{wh} 2}$	Figure:1.5.5		4.5		$\mu \mathrm{S}$
B17	Low-level pulse width *7	$\mathrm{t}_{\mathrm{w} 12}$			4.5		$\mu \mathrm{S}$
B18	Rising time	$\mathrm{t}_{\text {wr2 }}$	Figure:1.5.5	0		20	ns
B19	Falling time	$\mathrm{t}_{\mathrm{w}+2}$		0		20	ns

Figure: 5.4 OSC1 Timing Chart

Figure: 5.5 XI Timing Chart

5.3 DC Characteristics

C. DC Characteristics

$\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$
$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Rating			Unit
		MIN	TYP	MAX		

Power supply current *8

C1	Power supply current during operation	$\mathrm{I}_{\mathrm{DD} 1}$	$V_{D D 5}=5 \mathrm{~V}$ fosc=10 MHz [Double-speed mode: fs=fosc] (PLL is not used) *9	5	14	mA
C2		$\mathrm{I}_{\mathrm{DD} 2}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD5} 5}=5 \mathrm{~V} \\ & \text { fosc=10 MHz [Multiplied by 2, Divided by 2: fs=fosc] } \\ & (\mathrm{PLL} \text { is used) *9 } \end{aligned}$	6	18	
C3		$\mathrm{I}_{\text {DD3 }}$	```VDD5=5 V fosc=10 MHz [Multiplied by 2: fs=20 MHz] (PLL is used) *9```	9	20	
C4		$\mathrm{I}_{\text {DD4 }}$	$\mathrm{V}_{\mathrm{DD} 5}=5 \mathrm{~V}$ $\mathrm{frc}=16 \mathrm{MHz}$ [Double-speed mode: $\mathrm{fs}=16 \mathrm{MHz}$] (PLL is not used) *9	6	15	
C5	Power supply current during operation	$\mathrm{I}_{\text {DD5 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 5}=5 \mathrm{~V} \\ & \mathrm{fx}=32.768 \mathrm{kHz}[\mathrm{fs}=\mathrm{fx} / 2] \end{aligned}$	200	400	$\mu \mathrm{A}$
C6	Power supply current during STOP mode	$\mathrm{I}_{\text {DD6 }}$	$\mathrm{V}_{\mathrm{DD} 5}=5 \mathrm{~V}$	145	245	$\mu \mathrm{A}$

*8 Measured without loading (pull-up and pull-down resistors are not connected.)
To measure the power supply current during operation $I_{D D 1}$ to $I_{D D 4}$;

1. Set all $/ / O$ pins to input mode,
2. Set the CPU mode to "NORMAL mode",
3. Fix pin MMOD to $\mathrm{V}_{\text {SS }}$ level and input pins to $\mathrm{V}_{\mathrm{DD5}}$ level
4. Input the rectangular wave of 10 MHz with amplitude of $\mathrm{V}_{\mathrm{DD5}}$ and V_{SS}, from pin OSC1.

To measure the power supply current during SLOW mode $I_{D D 5}$;

1. Set all I / O pins to input mode
2. Set the CPU mode to "SLOW mode"
3. Fix the MMOD to V_{SS} level and input pins to $\mathrm{V}_{\mathrm{DD5}}$ level

To measure the power supply current during STOP mode $\mathrm{I}_{\mathrm{DD} 6}$;

1. Set the CPU mode to "STOP mode",
2. Fix pin MMOD to V_{SS} level and input pin to $\mathrm{V}_{\mathrm{DD5}}$ level
3. Open pin OSC1.
*9 When ROMHND of HANDSHAKE register is set to "1"

			$\begin{array}{r} \mathrm{V}_{\mathrm{DD} 5}=4.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{array}$			
Parameter	Symbol	Conditions	Rating			Unit
			MIN	TYP	MAX	

Input pin 1 ATRST, MMOD

C 7	Input high voltage	$\mathrm{V}_{\mathrm{IH} 1}$		$0.8 \mathrm{~V}_{\mathrm{DD} 5}$		$\mathrm{~V}_{\mathrm{DD} 5}$	V
C 8	Input low voltage	$\mathrm{V}_{\mathrm{IL} 1}$		0		$0.2 \mathrm{~V}_{\mathrm{DD} 5}$	V
C 9	Input leakage current	$\mathrm{I}_{\mathrm{LK} 1}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD} 5}$			± 2	$\mu \mathrm{~A}$

Input pin 2 P27/NRST

C 10	Input high voltage	$\mathrm{V}_{\mathrm{IH} 2}$		$0.8 \mathrm{~V}_{\mathrm{DD} 5}$		$\mathrm{~V}_{\mathrm{DD} 5}$	V
C 11	Input low voltage	$\mathrm{V}_{\mathrm{IL} 2}$		0		$0.15 \mathrm{~V}_{\mathrm{DD} 5}$	V
C 12	Pull-up resistor	$\mathrm{R}_{\mathrm{RH} 2}$	$\mathrm{~V}_{\mathrm{DD} 5}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$	10	50	100	$\mathrm{k} \Omega$

$\mathrm{V}_{\mathrm{DD} 5}=4.0 \mathrm{~V}$ to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$ $\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Rating			Unit
			MIN	TYP	MAX	

Input pin 3
P00 to P07, P20 to P26, P43 to P47, P50 to P57, P62 to P67, P70 to P77, P80 to P87
(KM101EFA3 Series)
P00 to P06, P20 to P26, P62 to P67, P70 to P77, P80 to P87
(KM101EFA2 Series)
P00 to P04, P20 to P22, P25, P26, P62 to P67, P70 to P77, P80 to P87
(KM101EFG0 Series)

C13	Input high voltage	$\mathrm{V}_{\mathrm{IH3}}$		$0.8 \mathrm{~V}_{\text {DD5 }}$		$\mathrm{V}_{\text {DD5 }}$	V
C14	Input low voltage	$\mathrm{V}_{\text {IL3 }}$		0		$0.2 \mathrm{~V}_{\text {DD5 }}$	
C15	Input leakage current	$\mathrm{l}_{\text {LK3 }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD5}}$			± 2	$\mu \mathrm{A}$
C16	Pull-up resistor	$\mathrm{R}_{\mathrm{RH} 3}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ Pull-up resistor ON	10	50	100	k Ω
C17	Output high voltage	$\mathrm{V}_{\mathrm{OH} 3}$	$\mathrm{V}_{\mathrm{DD5} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	4.5			
C18	Output low voltage	$\mathrm{V}_{\text {OL3 }}$	$\mathrm{V}_{\mathrm{DD5} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$			0.5	

Input pin 4 PA0 to PA7

C19	Input high voltage	$\mathrm{V}_{\mathrm{IH} 4}$		$0.8 \mathrm{~V}_{\text {DD5 }}$		$\mathrm{V}_{\text {DD5 }}$	V
C20	Input low voltage	$\mathrm{V}_{\text {IL4 }}$		0		$0.2 \mathrm{~V}_{\mathrm{DD5}}$	
C21	Input leakage current	$\mathrm{I}_{\text {LK4 }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD5 }}$			± 2	$\mu \mathrm{A}$
C22	Pull-up resistor	$\mathrm{R}_{\mathrm{RH} 4}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ Pull-up resistor ON	10	50	100	k Ω
C23	Output high voltage	$\mathrm{V}_{\mathrm{OH} 4}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	4.5			V
C24	Output low voltage 1	$\mathrm{V}_{\text {OL41 }}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$ LED output OFF			0.5	
C25	Output low voltage 2	$\mathrm{V}_{\text {OL42 }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{IOL}=15.0 \mathrm{~mA} \\ & \mathrm{LED} \text { output } \mathrm{ON} \end{aligned}$			1.0	

Input pin 5

P33 to P35, P90 to P94, PB0 to PB3 (KM101EFA3 Series)
P50 to P57, P90, P91, P94 (KM101EFA2 Series)
P50 , P54 to P57, P90, P91, P94 (KM101EFG0 Series)

C26	Input high voltage	$\mathrm{V}_{\mathrm{IH} 5}$		$0.8 \mathrm{~V}_{\text {DD5 }}$		$\mathrm{V}_{\text {DD5 }}$	
C27	Input low voltage	$\mathrm{V}_{\mathrm{IL} 5}$		0		$0.2 \mathrm{~V}_{\text {DD5 }}$	
C28	Input leakage current	ILK5	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD} 5}$			± 2	$\mu \mathrm{A}$
C29	Pull-up resistor	$\mathrm{R}_{\mathrm{RH} 5}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ Pull-up resistor ON	10	50	100	k Ω
C30	Pull-down resistor	$\mathrm{R}_{\text {RL5 }}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}_{\mathrm{N}}}=\mathrm{V}_{\mathrm{DD} 5}$ Pull-down resistor ON	10	50	100	
C31	Output high voltage	$\mathrm{V}_{\mathrm{OH} 5}$	$\mathrm{V}_{\mathrm{DD5} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	4.5			V
C32	Output low voltage	$\mathrm{V}_{\text {OL5 }}$	$\mathrm{V}_{\mathrm{DD5} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$			0.5	

				$\begin{array}{r} \mathrm{V}_{\mathrm{DD} 5}=4.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{array}$				
Parameter		Symbol	Conditions	Rating			Unit	
		MIN		TYP	MAX			
Input pin 6 DMOD								
C33	Input high voltage		$\mathrm{V}_{\text {IH6 }}$		$0.8 \mathrm{~V}_{\text {DD5 }}$		$\mathrm{V}_{\text {DD5 }}$	
C34	Input low voltage	$\mathrm{V}_{\text {IL6 }}$		0		$0.2 \mathrm{~V}_{\text {DD5 }}$		
C35	Pull-up resistor	$\mathrm{R}_{\mathrm{RH6}}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ Pull-up resistor ON	10	50	100	k Ω	

5.4 A/D Converter Characteristics

D. A/D Converter Characteristics *11					$\begin{gathered} \mathrm{V}_{\mathrm{DD5} 5}=5.0 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$			
Parameter		Symbol	Conditions	Rating			Unit	
		MIN		TYP	MAX			
D1	Resolution						10	Bits
D2	Non-linearity error 1		$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{REF}+}=5.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{AD}}=800 \mathrm{~ns} \end{aligned}$			± 3	LSB	
D3	Differential non-linearity error 1					± 3		
D4	Zero transition voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{REF}}=5.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{AD}}=800 \mathrm{~ns} \end{aligned}$		10	30	mV	
D5	Full-scale transition voltage			4970	4990			
D6	A/D conversion time		$\mathrm{T}_{\mathrm{AD}}=800 \mathrm{~ns}$	12.93			$\mu \mathrm{s}$	
D7	Sampling time		$\mathrm{T}_{\text {AD }}=800 \mathrm{~ns}$	1.6				
D8	Reference voltage	$\mathrm{V}_{\text {REF+ }}$	Note)	4.0		$\mathrm{V}_{\text {DD5 }}$	V	
D9	Analog input voltage			$\mathrm{V}_{\text {SS }}$		$\mathrm{V}_{\text {REF+ }}$		
D10	Analog input leakage current		Channel OFF $\mathrm{V}_{\mathrm{ADIN}}=\mathrm{V}_{\mathrm{SS}}$ to $\mathrm{V}_{\mathrm{DD} 5}$			± 2	$\mu \mathrm{A}$	
D11	Reference voltage pin input leakage current		Ladder resistance OFF $\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{REF}+} \leq \mathrm{V}_{\mathrm{DD5}}$			± 5		
D12	Ladder resistance	$\mathrm{R}_{\text {LADD }}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}$	15	40	80	k Ω	
*11	$T_{A D}$ is A/D conversion clock cycle. The specification values of D 2 to D 5 are guaranteed on the condition of $\mathrm{V}_{\mathrm{DD} 5}=\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$,							

Even if A / D function is not used, the voltage of $V R E F+$ pin must be set between $V_{D D 5}$ and 4.0 V.

5.5 Auto Reset Characteristics

E. Auto Reset Characteristics				$\begin{array}{r} \mathrm{V}_{\mathrm{DD} 5}=\mathrm{V}_{\mathrm{RST}} \text { to } 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{array}$				
Parameter		Symbol	Conditions	Rating			Unit	
		MIN		TYP	MAX			
Power supply voltage								
E1	Operating supply voltage		$V_{\text {DD7 }}$	Auto reset is used	$\mathrm{V}_{\text {RST }}$		5.5	V
Power supply voltage								
E2	Power detection level	$\mathrm{V}_{\text {RST1 }}$	At rising	4.10	4.30	4.50	V	
E3	Power detection level	$\mathrm{V}_{\text {RST2 }}$	At falling	4.00	4.20	4.40		
E4	Supply voltage change rate	$\Delta \mathrm{t} / \Delta \mathrm{V}$		2			ms / V	

5.6 Internal High-speed Oscillation Circuit

F. Internal High-speed Oscillation Circuit
$\mathrm{V}_{\mathrm{DD} 5}=4.0 \mathrm{~V}$ to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter		Symbol	Conditions	Rating			Unit	
		MIN		TYP	MAX			
F1	Internal high-speed oscillation circuit frequency		$\mathrm{frc}_{\mathrm{rc}}$	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		16		MHz
F2	Temperature dependence of oscillation frequency	$\mathrm{frc3}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-5.0		5.0	\%	
F3		frc	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					

5.7 Flash EEPROM Program Conditions

G. Flash EEPROM Program Conditions				$\begin{array}{r} \mathrm{V}_{\mathrm{DD} 5}=4.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{array}$				
Parameter		Symbol	Conditions	Rating			Unit	
		MIN		TYP	MAX			
G1	Supply voltage		$\mathrm{V}_{\text {DDEW }}$		4.0		5.5	V
G2	Programming/Erasing times of $32 \mathrm{~KB}, 20 \mathrm{~KB}$ Sector *2	$\mathrm{E}_{\text {MAX1 }}$		1000			Times	
G3	Programming/Erasing times of 4KB Sector *2	$\mathrm{E}_{\text {MAX2 }}$		10000			Times	
G4	Data retention period of 32KB, 20KB Sector *1	$\mathrm{T}_{\text {HOLD1 }}$	$\mathrm{Ta}=85^{\circ} \mathrm{C}, \mathrm{P} / \mathrm{E}$ times ≤ 1000	20			Years	
G5	Data retention period of 4KB Sector *1	$\mathrm{T}_{\text {HOLD2 }}$	$\mathrm{Ta}=85^{\circ} \mathrm{C}, \mathrm{P} / \mathrm{E}$ times ≤ 1000 *2	20			Years	
		T ${ }_{\text {HOLD3 }}$	$\mathrm{Ta}=65^{\circ} \mathrm{C}, \mathrm{P} / \mathrm{E}$ times ≤ 10000 *2	20			Years	
*1	Contain the period when power supply voltage is not supplied.							
*2	Programming/Erasing times(P/E Times) is counted by the number of time a sector is erased. It is controlled on sector basis. For example, if writing 1 byte of data in any sector for hundred of times and then erasing the sector, a single rewriting is counted. Also, the number of times of rewriting in another sector, in which erasing is not performed, is not counted. Overwriting data is disabled. To rewrite data, write the data after erasing sectors.							

6 Package Dimension

■ LQFP 80-pin (14 mm x $14 \mathrm{~mm} / 0.65 \mathrm{~mm}$ pitch)

Figure: 6.1 LQFP 80-pin Package Dimension

[^1]■ TQFP 64-pin (10 mm x $10 \mathrm{~mm} / 0.50 \mathrm{~mm}$ pitch)

Figure: 6.2 TQFP 64-pin Package Dimension

This package dimension is subject to change. Before using this product, please obtain product specifications from our sales offices.

■ LQFP 64-pin (14 mm x $14 \mathrm{~mm} / 0.65 \mathrm{~mm}$ pitch)
Unit: mm

Figure: 6.3 LQFP 64-pin Package Dimension

This package dimension is subject to change. Before using this product, please obtain product specifications from our sales offices.

- TQFP 56-pin ($10 \mathrm{~mm} \times 10 \mathrm{~mm} / 0.65 \mathrm{~mm}$ pitch)

Unit: mm

Figure: 6.4 TQFP 56-pin Package Dimension

This package dimension is subject to change. Before using this product, please obtain product specifications from our sales offices.

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

[^0]: *4 The absolute maximum ratings are the limit values beyond which the LSI may be damaged.

[^1]: (1)

 This package dimension is subject to change. Before using this product, please obtain product specifications from our sales offices.

