8-bit Microcontroller

KM101EFA1A
 Datasheet

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation Japan and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing document only for reference purposes of
KM101EFA1A based system design.
Nuvoton assumes no responsibility for errors or omissions.
All data and specifications are subject to change without notice.
For additional information or question, please contact Nuvoton Technology Corporation Japan.
www.nuvoton.co.jp

1. Overview

1.1 Overview

The KM101E series of 8-bit single-chip microcomputers incorporate multiple types of peripheral functions. This chip series is well suited for automotive power window, camera, TV, CD, printer, telephone, home appliance, PPC, fax machine, music instrument and other applications.
This LSI brings to embedded microcomputer applications flexible, optimized hardware configurations and a simple efficient instruction set. KM101EFA1A has an internal 32 KB of ROM and 1 KB of RAM. Peripheral functions include 5 external interrupts, including NMI, 8 timer counters, 3 types of serial interfaces, A/D converter, watchdog timer and buzzer output. The system configuration is suitable for system control microcontroller.
With 2 oscillation systems (internal frequency: 16 MHz , crystal/ceramic frequency: max. 10 MHz) contained on the chip, the system clock can be switched to high-speed frequency input (NORMAL mode) or PLL input (PLL mode). The system clock is generated by dividing the oscillation clock or PLL clock. The best operation clock for the system can be selected by switching its frequency ratio by programming. High speed mode has NORMAL mode which is based on the clock dividing fpll, (fpll is generated by original oscillation and PLL), by 2 (fpll/2), and the double speed mode which is based on the clock not dividing fpll.
A machine cycle (minimum instruction execution time) in NORMAL mode is 200 ns when the original oscillation fosc is 10 MHz (PLL is not used). A machine cycle in the double speed mode, in which the CPU operates on the same clock as the external clock, is 100 ns when fosc is 10 MHz . A machine cycle in the PLL mode is 50 ns (maximum).

1.2 Product Summary

This datasheet describes the following model.
Table: 1.1 Product Summary

Model	ROM Size	RAM Size	Classification	Package
KM101EFA1A	32 KB	1 KB	Flash EEPROM version	QFP 44-pin

2. Hardware Functions

- Memory Capacity
- Package \quad QFP 44-Pin ($10 \mathrm{~mm} \times 10 \mathrm{~mm} / 0.8 \mathrm{~mm}$ pitch $)$
- Machine Cycle $\quad 0.05 \mu \mathrm{~s} / \mathrm{fs}: 20 \mathrm{MHz}(4.0 \mathrm{~V}$ to 5.5 V$)$
- Oscillation circuit Internal oscillation (frc): 16 MHz

Crystal/ceramic (fosc): Maximum 10 MHz

- Clock Multiplication circuit (PLL Circuit)

PLL circuit output clock (fpll):
fosc multiplied by $2,3,4,5,6,8,10$,
$1 / 2 \times$ frc multiplication by 4,5 enable

- Clock Gear for System Clock

System Clock (fs): fpll divided by 1, 2, 4, 16, 32, 64, 128

- Clock Gear for control clock of peripheral function

Control clock of peripheral function (fpll-div): stop or fpll divided by $1,2,4,8,16$

- Operation Mode NORMAL mode

HALT mode
STOP mode
(The operation clock can be switched in each mode.)
-Operating Voltage $\quad 4.0 \mathrm{~V}$ to 5.5 V

- Operation ambient temperature
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

- Interrupt	23 levels
	<Non-maskable interrupt> - Non-maskable interrupt and Watchdog timer overflow interrupt
	<Timer interrupts>
	- Timer 0 interrupt
	- Timer 1 interrupt
	- Timer 2 interrupt
	- Timer 6 interrupt
	- Time base timer interrupt
	- Timer 7 interrupt
	- Timer 7 compare register 2 match interrupt
	- Timer 9 overflow interrupt
	- Timer 9 underflow interrupt
	- Timer 9 compare register 2 match interrupt
	<Serial Interface interrupts>
	- Serial interface 0 interrupt
	- Serial interface 0 UART reception interrupt
	- Serial interface 1 interrupt
	- Serial interface 1 UART reception interrupt
	- Serial interface 4 interrupt
	- Serial interface 4 stop condition interrupt
	<A/D interrupt>
	- A/D conversion interrupt
	<External interrupts>
	- IRQ0: Edge selectable, noise filter connection available
	- IRQ1: Edge selectable, noise filter connection available
	- IRQ2: Edge selectable, noise filter connection available, both edges interrupt
	- IRQ3: Edge selectable, noise filter connection available, both edges interrupt
	- IRQ4: Edge selectable, noise filter connection available, both edges interrupt, Key scan interrupt
- Timer Counter	8 timers
	- 8-bit timer for general use $\times 3$ sets
	- 16-bit timer for general use $\times 1$ set
	- Motor control 16-bit timer $\times 1$ set
	- 8-bit free-run timer $\times 1$ set
	- Time base timer $\times 1$ set
	- Baud rate timer $\times 1$ set
	Timer 0 (8-bit timer for general use)
	- Square wave output (Timer pulse output)
	- Added pulse (2-bit) type PWM output can be output to large current pin TM0IOB
	- Event count
	- Simple pulse measurement
	- Clock source
	fpll-div, fpll-div/4, fpll-div/16, fpll-div/32, fpll-div/64, fpll-div/128,
	fs $/ 2$, fs/4, fs/8, External clock, Timer A output

- Timer Counter (continued)

Timer 1 (8-bit timer for general use)

- Square wave output (Timer pulse output) can be output to large current pin TM1IOB
- Event count
- 16-bit cascade connected (with Timer 0)
- Clock source fpll-div, fpll-div/4, fpll-div/16, fpll-div/32, fpll-div/64, fpll-div/128, $\mathrm{fs} / 2, \mathrm{fs} / 4, \mathrm{fs} / 8$, External clock, Timer A output
Timer 2 (8-bit timer for general use)
- Square wave output (Timer pulse output)
- Added pulse (2-bit) type PWM output can be output to large current pin TM2IOB
- Event count
- Simple pulse measurement
- 24-bit cascade connected (with Timer 0 and Timer 1)
- Clock source
fpll-div, fpll-div/4, fpll-div/16, fpll-div/32, fpll-div/64, fpll-div/128, fs $/ 2$, fs/4, fs/8, External clock, Timer A output

Timer 6 (8-bit free-run timer, Time base timer)
8 -bit free-run timer

- Clock source
fpll-div, fpll-div/2 ${ }^{12}$, fpll-div/2 ${ }^{13}$, fs
Time base timer
- Interrupt generation cycle
fpll-div/2 ${ }^{7}$, fpll-div/2 ${ }^{8}$, fpll-div/2 ${ }^{9}$, fpll-div $/ 2^{10}$, fpll-div $/ 2^{13}$, fpll-div $/ 2^{15}$
Timer 7 (16-bit timer for general use)
- Square wave output (Timer pulse output)
- High precision PWM output (Cycle/Duty continuous changeable) can be output to large current pin TM7IOB
- Event count
- Input capture function (Both edges can be operated)
- Clock source fpll-div, fpll-div/2, fpll-div/4, fpll-div/16, fs, fs/2, fs/4, fs/16, Timer A divided by 1, 2, 4, 16, External clock divided by 1, 2, 4, 16
Timer 9 (Motor control 16-bit timer)
- Square wave output (Timer pulse output)
- Event count
- Complementary 3-phase PWM output can be output to large current pin TM9OD0 to TM9OD5
(Triangle wave and saw tooth wave are supported, dead time insertion available)
- Clock source
fpll-div, fpll-div/2, fpll-div/4, fpll-div/16, fs, fs/2, fs/4, fs/16,
Timer A divided by 1, 2, 4, 16, External clock divided by 1, 2, 4, 16
Timer A (Baud rate timer)
- Clock output for peripheral functions
- Clock source
fpll-div, fpll-div/2, fpll-div/4, fpll-div/8, fpll-div/16, fpll-div/32, fs/2, fs/4
- Watchdog timer Time-out cycle can be selected from fs $/ 2^{16}, \mathrm{fs} / 2^{18}$, $\mathrm{fs} / 2^{20}$

On detection of 2 errors, forcibly hard reset inside LSI.
Operation start timing is selectable. (At reset release or write to register)

- Buzzer Output/ Reverse Buzzer Output

Output frequency can be selected from fpll-div $/ 2^{9}$, fpll-div $/ 2^{10}$, fpll-div $/ 2^{11}$, fpll-div $/ 2^{12}$, fpll-div/2 ${ }^{13}$, fpll-div/2 ${ }^{14}$

- A/D Converter 10 -bit $\times 12$ channels
- Serial Interface 3 channels

Serial 0: UART (full duplex)/ Clock synchronous
Clock synchronous serial interface

- Transfer clock source fpll-div/2, fpll-div/4, fpll-div/16, fpll-div/64, fs/2, fs/4, Timer 0 to 2 or Timer A divided by 1, 2, 4, 8, 16, External clock
- MSB/LSB can be selected as the first bit to be transferred, arbitrary sizes of 1 to 8 bits are selectable.
- Sequence transmission, reception or both are available

Full duplex UART

- Baud rate timer, selected from Timer 0 to 2 or Timer A
- Parity check, overrun error/ framing error detection
- Transfer size 7 to 8 bits can be selected

Serial 1: UART (full duplex)/ Clock synchronous
Clock synchronous serial interface

- Transfer clock source fpll-div/2, fpll-div/4, fpll-div/16, fpll-div/64, fs/2, fs/4, Timer 0 to 2 or Timer A divided by 1,2, 4, 8, 16, External clock
- MSB/LSB can be selected as the first bit to be transferred, arbitrary sizes of 1 to 8 bits are selectable.
- Sequence transmission, reception or both are available.

Full duplex UART

- Baud rate timer, selected from Timer 0 to 2 or Timer A
- Parity check, overrun error/ framing error detection
- Transfer size 7 to 8 bits can be selected

Serial 4: Multi master IIC/ Clock synchronous
Clock synchronous serial interface

- Transfer clock source fpll-div/2, fpll-div/4, fpll-div/16, fpll-div/32, fs/2, fs/4, Timer 0 to 2 or Timer A divided by 1, 2, 4, 8, 16, External clock
- MSB/LSB can be selected as the first bit to be transferred, arbitrary sizes of 1 to 8 bits are selectable.
- Sequence transmission, reception or both are available.

Multi master IIC

- 7-bit slave address is settable.
- General call communication mode is supported.
- Automatic Reset Power detection level: 4.3 V (at rising), 4.2 V (at falling)
- LED Driver $\quad 16$ pins (Port 0 or Port A)
- Ports

I/O ports	36 pins	
Serial Interface pins	12 pins	
Timer I/O	15 pins	
Buzzer output pins	2 pins	
A/D input pins	12 pins	
External Interrupt pins	6 pins	
LED (large current) driver	16 pins \quad (Port 0 or Port A)	
High-speed oscillation	2 pins	
Special pins	8 pins	
Operation mode input pins	3 pins	
Reset input pin	1 pin	
Analog reference voltage input pin	1 pin	
Power pins	3 pins	

3 Pin Description

3.1 Pin configuration

Figure: 3.1 Pin Configuration (KM101EFA1A QFP 44-pin)

3.2. Pin Functions

Table: 3.1 Pin Functions

| Pins | Pin No | I/O | Function | \quad Description |
| :--- | :---: | :---: | :--- | :--- | :--- |

Pins	Pin No	I/O	Function	Description
PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7	$\begin{gathered} \hline 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 1 \\ 2 \\ 3 \end{gathered}$	I/O	I/O port 0	8-bit CMOS tri-state I/O port. Each bit can be set individually as either an input or output by PODIR register. A pull-up resistor for each bit can be selected individually by POPLU register. Direct LED drive is available at output. At reset, the input mode is selected and pull-up resistor is disabled (high impedance).
$\begin{array}{\|l} \hline \text { SBOOA } \\ \text { SBOOB } \\ \text { SBO1 } \\ \text { SBO4 } \end{array}$	$\begin{aligned} & 43 \\ & 27 \\ & 31 \\ & 22 \end{aligned}$	Output	Serial interface transmission data output pins	Transmission data output pins for serial interface 0,1,4. The output configuration, either COMS push-pull or Nch opendrain can be selected in P0ODC, P2ODC, P3ODC and PAODC registers. Pull-up resistor can be selected in P0PLU, P2PLU, P3PLU and PAPLU registers. Select output mode in P0DIR, P2DIR, P3DIR and PADIR registers and set serial data output mode in serial mode register 1 (SC0MD1, SC1MD1, SC4MD1). These can be used as normal I/O pins when serial interface is not used.
$\begin{array}{\|l} \hline \text { SBIOA } \\ \text { SBIOB } \\ \text { SBI1 } \\ \text { SBI4 } \end{array}$	$\begin{aligned} & 42 \\ & 26 \\ & 32 \\ & 21 \end{aligned}$	Input	Serial interface reception data input pins	Reception data input pins for serial interface 0,1,4. Pull-up resistor can be selected in P0PLU, P2PLU, P3PLUand PAPLU registers. Select the output mode in P0DIR, P2DIR, P3DIR and PADIR registers and select serial data input mode in serial mode register 1 (SC0MD1, SC1MD1, SC4MD1). These can be used as normal I/O pins when serial interface is not used.
$\begin{aligned} & \text { SBTOA } \\ & \text { SBTOB } \\ & \text { SBT1 } \\ & \text { SBT4 } \end{aligned}$	$\begin{aligned} & 41 \\ & 25 \\ & 33 \\ & 23 \end{aligned}$	I/O	Serial interface Clock I/O pins	Clock I/O pins for serial interface $0,1,4$. The output configuration, either COMS push-pull or Nch opendrain can be selected in P0ODC, P2ODC, P3ODC and PAODC registers. Pull-up resistor can be selected in P0PLU, P2PLU, P3PLU and PAPLU registers. Select clock I/O in P0DIR, P2DIR, P3DIR and PADIR registers and serial mode register 1 (SC0MD1, SC1MD1, SC4MD1) with the communication mode. These can be used as normal I/O pins when serial interface is not used.
	$\begin{aligned} & 43 \\ & 27 \\ & 31 \end{aligned}$	Output	UART transmission data output pins	In serial interface 0,1 in UART mode, this pin is configured as the transmission data output pin. The output configuration, either COMS push-pull or Nch opendrain can be selected in P2ODC, P3ODC and PAODC registers. Pull-up resistor can be selected by P2PLU, P3PLU and PAPLU registers. Select the output mode in P2DIR, P3DIR and PADIR registers and select serial data output mode in serial mode register 1 (SC0MD1, SC1MD1). These can be used as normal I/O pins when serial interface is not used.
	$\begin{aligned} & 42 \\ & 26 \\ & 32 \end{aligned}$	Input	UART reception data input pins	In serial interface 0,1 in UART mode, this pin is configured as the reception data input pin. Pull-up resistor can be selected in P2PLU, P3PLU and PAPLU registers. Select the input mode in P2DIR, P3DIR and PADIR registers and select serial input in serial mode register 1 (SC0MD1, SC1MD1). These can be used as normal I/O pins when serial interface is not used.

Pins	Pin No	I/O	Function	Description
SDA4	22	I/O	IIC data I/O pins	In serial interface 4 in IIC mode, this pin is configured as the data I/O pin. For the output configuration, select Nch open-drain in POODC register and set pull-up resistor in POPLU register. Select the output mode in PODIR register and select serial data I/O mode by serial mode register 1 (SC4MD1). These can be used as normal I/O pin when serial interface is not used.
SCL4	23	I/O	IIC clock I/O pins	In serial interface 4 in IIC mode, this pin is configured as the clock I/ O pin. For the output configuration, select Nch open-drain in P0ODC register and set pull-up resistor by POPLU register. Select the output mode at PODIR register and select serial clock I/O mode in serial mode register 1 (SC4MD1). These can be used as normal I/O pin when serial interface is not used.
TMOIOA TMOIOB TMOIOC TM1IOA TM1IOB TM1IOC TM2IOA TM2IOB TM2IOC	$\begin{gathered} 44 \\ 20 \\ 34 \\ 1 \\ 19 \\ 35 \\ 32 \\ 18 \\ 36 \end{gathered}$	I/O	Timer I/O pins	Event counter clock input pin, timer output and PWM signal output pin for 8 -bit timer 0 to 2. To use this pin as event clock input, configure it as input by P0DIR register, P3DIR register, P4DIR register and PADIR register. In the input mode, pull-up resistor can be selected in POPLU, P3PLU, P4PLU and PAPLU registers. For timer output, PWM signal output, select the special function pin in P0OMD, P3OMD, P4OMD and PAOMD registers, and set to the output mode in P0DIR, P3DIR, P4DIR and PADIR registers. These can be used as normal I/O pins when Timer I/O pin is not used.
BUZZER NBUZZER	$\begin{aligned} & 29 \\ & 30 \end{aligned}$	Output	Buzzer output pins	Piezoelectric buzzer driving pin. Buzzer output is available to Port 3. The driving frequency can be set in DLYCTR register. In order to select Buzzer output to Port 3, select the special function pin in P3OMD register, and set P3DIR register to the output mode. At the same time, select Buzzer output in oscillation stabilization wait control register (DLYCTR). These can be used as normal I/O pins when Buzzer output is not used.
TM7IOA TM7IOB TM7IOC TM9IOA TM9IOC	$\begin{gathered} \hline 2 \\ 17 \\ 37 \\ 16 \\ 38 \end{gathered}$	I/O	Timer I/O pins	Event counter clock input pin, timer output and PWM signal output pin for 16 -bit timer 7 and 9. To use this pin as event clock input, configure it as input with PODIR, P4DIR and PADIR registers. In the input mode, pull-up resistor can be selected by P0PLU, P4PLU and PAPLU registers. For timer output, PWM signal output, select the special function pin in P00MD, P4OMD and PAOMD registers, and set to the output mode in PODIR, P4DIR and PADIR registers. These can be used as normal I/O pins when not used as timer I/O pins.
TM9OD0 TM9OD1 TM9OD2 TM9OD3 TM9OD4 TM9OD5	$\begin{aligned} & 16 \\ & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \end{aligned}$	Output	Timer PWM output	PWM signal output pin for 16-bit timer 9. Select the special function pin in P0OMD register, and set to the output mode in PODIR register. These can be used as normal I/O pins when not used as timer I/O pins.
VREF+	4	-	A/D reference voltage input pin	Reference power supply pin for A/D converter. Normally, the values of VREF+ = VDD5 is used.

Pins	Pin No	I/O	Function	Description
ANO AN1 AN2 AN3 AN4 AN5 AN6 AN7 AN8 AN9 AN10 AN11	40 41 42 43 44 1 2 3 39 38 37 36	Input	Analog input pins	Analog input pins for 12-channel, 10-bit A/D converter. Select the analog input by PAIMD register. When not used for analog input, these pins can be used as normal input pins.
$\begin{array}{\|l\|} \hline \text { IRQ0 } \\ \text { IRQ1 } \\ \text { IRQ2 } \\ \text { IRQ3 } \\ \text { IRQ4A } \\ \text { IRQ4B } \end{array}$	$\begin{aligned} & 24 \\ & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 40 \end{aligned}$	Input	External interrupt	External interrupt input pins. Select the external interrupt input enable by IRQCNT register. The valid edge for IRQ0 to 4 can be selected with IRQnICR register. IRQ2 to 4 can be set at both edges at pin voltage level. When not used for interrupts, these can be used as normal input pins.
KEY0 KEY1 KEY2 KEY3 KEY4 KEY5 KEY6 KEY7	$\begin{gathered} 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 1 \\ 2 \\ 3 \end{gathered}$	Input	Key interrupt input pins	Input pins for KEY interrupt based on OR condition result of pin inputs. These can be set to key input pins by 1-bit with KEY interrupt control register (KEYT3_1IMD). When not used for KEY input, these pins can be used as normal I/O pins.
LED0 LED1 LED2 LED3 LED4 LED5 LED6 LED7 LED8 LED9 LED10 LED11 LED12 LED13 LED14 LED15	$\begin{gathered} 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \\ 1 \\ 2 \\ 3 \end{gathered}$	Output	LED drive pins	Large current output pins. Select the large current output by POLED and PALED registers. When not used for LED output, these pins can be used as normal I/O pins
DMOD	8	Input	Mode switch input pins	Set always to VDD5.
MMOD	14	Input	ROM area switch input pins at start	Set always to VSS.

For the MMOD setup in rewriting the flash memory, refer to Technical Reference Manual.

4 Block Diagram

Figure: 4.1 Block Diagram

5 Electrical Characteristics

This datasheet describes standard specifications.
When using this LSI, consult our sales offices for the product specifications.

Structure	CMOS integrated circuit
Application	General-purpose
Function	CMOS 8-bit single chip microcontroller

5.1 Absolute Maximum Ratings

A. Absolute Maximum Ratings *2 *3 *4
$V_{S S}=0 \mathrm{~V}$

Parameter			Symbol	Rating	Unit
A1	Power supply voltage		$V_{\text {DD5 }}$	-0.3 to +7.0	
A2	Power supply voltage		$\mathrm{V}_{\text {DD18 }}$	-0.3 to +2.5	
A3	Input pin voltage		V_{1}	-0.3 to $\mathrm{V}_{\text {DD5 }}+0.3$ (upper limit: 7.0)	V
A4	Output pin voltage		V_{O}	-0.3 to $\mathrm{V}_{\text {DD5 }}+0.3$ (upper limit: 7.0)	
A5	I/O pin voltage		V_{101}	-0.3 to $\mathrm{V}_{\text {DD5 }}+0.3$ (upper limit: 7.0)	
A6	Peak output current	LED output	$\mathrm{l}_{\text {OL1 }}$ (peak)	30	mA
A7		Other than LED output	$\mathrm{I}_{\text {OL2 }}$ (peak)	20	
A8		All pins	I_{OH} (peak)	-10	
A9	Average output current *1	LED output	$\mathrm{I}_{\mathrm{OL1}}$ (avg)	20	
A10		Other than LED output	$\mathrm{l}_{\mathrm{OL2} 2}$ (avg)	15	
A11		All pins	$\mathrm{I}_{\mathrm{OH}}(\mathrm{avg})$	-5	
A12	Power dissipation		$\mathrm{P}_{\mathrm{D} 2}$	400	mW
A13	Operating ambient temperature		$\mathrm{T}_{\text {opr }}$	-40 to +85	
A14	Storage temperature		$\mathrm{T}_{\text {STG }}$	-55 to +125	

*1 Applied to any 100 ms period.
*2 Connect at least one bypass capacitor of $0.1 \mu \mathrm{~F}+1.0 \mu \mathrm{~F}$ or larger between VDD5 pin and GND for the internal power voltage stabilization.
*3 Connect appropriate capacitor about $0.1 \mu \mathrm{~F}+1.0 \mu \mathrm{~F}$ between VDD18 pin and VSS pin, near the microcontroller according to the Figure: 5.1 shown below for the internal power supply stabilization.

Figure: 5.1 Capacitor Connection between VDD18 and VSS Pins
*4 The absolute maximum ratings are the limit values beyond which the LSI may be damaged.

5.2 Operating Conditions

B. Operating Conditions			$\begin{array}{r} \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V} \\ \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{array}$			
Parameter	Symbol	Conditions	Rating			Unit
			MIN	TYP	MAX	

Power supply voltage *5

B1	Power supply voltage	$\mathrm{V}_{\mathrm{DD} 1}$	$\mathrm{fs} \leq 20 \mathrm{MHz}$	4.0		5.5	V
B2	RAM retention power supply voltage	$\mathrm{V}_{\text {DD8 }}$	During STOP mode	2.2		5.5	

Operating speed *6

| B3 | Instruction execution
 time fs | $\mathrm{t}_{\mathrm{c} 1}$ | $\mathrm{V}_{\mathrm{DD5}}=4.0 \mathrm{~V}$ to 5.5 V
 (When ROMHND of HANDSHAKE register is "1".) | 0.05 | | |
| :--- | :--- | :---: | :--- | :--- | :--- | :--- | :--- |
| | $\mathrm{t}_{\mathrm{c} 2}$ | $\mathrm{V}_{\mathrm{DD} 5}=4.0 \mathrm{~V}$ to 5.5 V
 (When ROMHND of HANDSHAKE register is "0".) | 0.10 | | | |

*5 fs: Machine clock frequency
*6 tc1 to 2: when the machine clock is selected from external high-speed oscillation, internal high-speed oscillation, or both the oscillations multiplied by PLL.
External Oscillator Figure: 5.2

B5	Frequency	$\mathrm{f}_{\text {hosc1 }}$	$\mathrm{V}_{\mathrm{DD5}}$ is within the specified operating power supply voltage range. (Refer to the ratings of B1 to B2 for the operating supply voltage range)	2.0	10	MHz
B6	Internal feedback resistor	$R_{f 10}$	$\mathrm{~V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}$		980	$\mathrm{k} \Omega$

Figure: 5.2 External Oscillator

Connect external capacitors suited for the used oscillator.
The reference value denotes external capacity value based on our matching result. When crystal oscillator or ceramic oscillator is used, the oscillation frequency is changed depending on the value of capacitor. For external capacity value, please consult the oscillator manufacturer and perform matching tests enough for determining appropriate values.

			$\begin{array}{r} \mathrm{V}_{\mathrm{DD} 5}=4.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{array}$			
Parameter	Symbol	Conditions	Rating			Unit
			MIN	TYP	MAX	

External clock input 1 OSC1 (OSC2 is unconnected)

B7	Clock frequency	$\mathrm{f}_{\text {hosc2 }}$		2	10.0	MHz
B8	High-level pulse width *7	$\mathrm{t}_{\text {wh1 } 1}$	Figure: 5.3	45		ns
B9	Low-level pulse width *7	$\mathrm{t}_{\mathrm{wl1}}$		45		
B10	Rising time	$\mathrm{t}_{\mathrm{wr} 1}$	Figure: 5.3	0	5.0	
B11	Falling time	$\mathrm{t}_{\mathrm{wf1}}$		0	5.0	

*7 The clock duty ratio should be 45% to 55%

Figure: 5.3 OSC1 Timing Chart

5.3 DC Characteristics

C. DC Character				$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		$=0 \mathrm{~V}$
Parameter	Symbol	Conditions	Rating			Unit
			MIN	TYP	MAX	

Power supply current *8

C1	Power supply current during operation	$\mathrm{I}_{\mathrm{DD} 1}$	fosc=10 MHz [Double-speed mode: fs=fosc] $V_{D D 5}=5 \mathrm{~V}$ (PLL is not used) *9	5	14	mA
C2		$\mathrm{I}_{\mathrm{DD} 2}$	fosc=10 MHz [Multiplied by 2, Divided by 2: fs=fosc] $\mathrm{V}_{\mathrm{DD} 5}=5 \mathrm{~V}$ (PLL is used) *9	6	18	
C3		$\mathrm{I}_{\mathrm{DD} 3}$	fosc=10 MHz [Multiplied by 2: fs=20 MHz] $\mathrm{V}_{\mathrm{DD} 5}=5 \mathrm{~V}$ (PLL is used) *9	9	20	
C4		$\mathrm{I}_{\text {DD4 }}$	frc=16 MHz [Double-speed mode: fs=16 MHz] $\mathrm{V}_{\mathrm{DD} 5}=5 \mathrm{~V}$ (PLL is used) *9	6	15	
C5	Power supply current during STOP mode	$\mathrm{I}_{\text {DD5 }}$	$\begin{aligned} & V_{\mathrm{DD} 5}=5 \mathrm{~V} \\ & \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{aligned}$	145	245	$\mu \mathrm{A}$

*8 Measured without loading (pull-up and pull-down resistors are not connected.)
To measure the power supply current during operation $I_{D D 1}$ to $I_{D D 4}$;

1. Set all I/O pins to input mode,
2. Set the CPU mode to "NORMAL mode",
3. Fix pin MMOD to V_{SS} level and input pins to $\mathrm{V}_{\text {DD5 }}$ level
4. Input the rectangular wave of $10 \mathrm{MHz}(4 \mathrm{MHz})$ with amplitude of $\mathrm{V}_{\mathrm{DD} 5}$ and V_{SS}, from pin OSC1.

To measure the power supply current during STOP mode $\mathrm{I}_{\mathrm{DD} 5}$;

1. Set the CPU mode to "STOP mode",
2. Fix pin MMOD to $\mathrm{V}_{S S}$ level and input pin to $\mathrm{V}_{\mathrm{DD5}}$ level
3. Open pin OSC1.
*9 When ROMHND of HANDSHAKE register is set to " 1 "
$\mathrm{V}_{\mathrm{DD5} 5}=4.0 \mathrm{~V}$ to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$
$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Rating			Unit
			TYP	MAX		

Input pin 1 ATRST, MMOD

C 10	Input high voltage	$\mathrm{V}_{\mathrm{IH} 1}$		$0.8 \mathrm{~V}_{\mathrm{DD} 5}$		$\mathrm{~V}_{\mathrm{DD} 5}$	V
C 11	Input low voltage	$\mathrm{V}_{\mathrm{IL} 1}$		0		$0.2 \mathrm{~V}_{\mathrm{DD} 5}$	
C 12	Input leakage current	$\mathrm{I}_{\mathrm{LK} 1}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD} 5}$			± 2	$\mu \mathrm{~A}$

Input pin 2 P27/NRST

C 13	Input high voltage	$\mathrm{V}_{\mathrm{H} 2}$		$0.8 \mathrm{~V}_{\mathrm{DD5}}$		$\mathrm{~V}_{\mathrm{DD5}}$	V
C 14	Input low voltage	$\mathrm{V}_{\mathrm{IL} 2}$		0		$0.15 \mathrm{~V}_{\mathrm{DD5} 5}$	
C 15	Pull-up resistor	$\mathrm{R}_{\mathrm{RH} 1}$	$\mathrm{~V}_{\mathrm{DD5} 5}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$	10	50	100	$\mathrm{k} \Omega$

I/O pin 3 P00 to P07

C 16	Input high voltage 2	$\mathrm{V}_{\mathrm{IH} 3}$		$0.54 \mathrm{~V}_{\mathrm{DD5}}$		$\mathrm{~V}_{\mathrm{DD5}}$	V
C 17	Input low voltage	$\mathrm{V}_{\mathrm{IL} 3}$		0		$0.2 \mathrm{~V}_{\mathrm{DD5}}$	
C 18	Input leakage current	$\mathrm{I}_{\mathrm{LK} 2}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD} 5}$			± 2	$\mu \mathrm{~A}$
C 19	Pull-up resistor	$\mathrm{R}_{\mathrm{RH} 2}$	$\mathrm{V}_{\mathrm{DD5} 5}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ Pull-up resistor ON	10	50	100	$\mathrm{k} \Omega$
C 20	Output high voltage	$\mathrm{V}_{\mathrm{OH} 1}$	$\mathrm{~V}_{\mathrm{DD5} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	4.5			
C 21	Output low voltage 1	$\mathrm{V}_{\mathrm{OL} 1}$	$\mathrm{V}_{\mathrm{DD5} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$ LED output OFF			0.5	V
C 22	Output low voltage 2	$\mathrm{V}_{\mathrm{OL} 2}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=15.0 \mathrm{~mA}$ LED output ON			1.0	

I/O pin 4 P20, P21

C 23	Input high voltage 2	$\mathrm{V}_{\mathrm{IH} 4}$		$0.54 \mathrm{~V}_{\mathrm{DD} 5}$		$\mathrm{~V}_{\mathrm{DD5}}$	V
C 24	Input low voltage	$\mathrm{V}_{\mathrm{IL} 4}$		0		$0.2 \mathrm{~V}_{\mathrm{DD} 5}$	
C 25	Input leakage current	$\mathrm{I}_{\mathrm{LK} 3}$	$\mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD} 5}$			± 2	$\mu \mathrm{~A}$
C 26	Pull-up resistor	$\mathrm{R}_{\mathrm{RH} 3}$	$\mathrm{V}_{\mathrm{DD5}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ Pull-up resistor ON	10	50	100	$\mathrm{k} \Omega$
C 27	Output high voltage	$\mathrm{V}_{\mathrm{OH} 2}$	$\mathrm{~V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	4.5			V
C 28	Output low voltage	$\mathrm{V}_{\mathrm{OL} 3}$	$\mathrm{~V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$			0.5	V

$$
\begin{array}{r}
\mathrm{V}_{\mathrm{DD} 5}=4.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\
\mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
\end{array}
$$

Parameter	Symbol	Conditions	Rating			Unit
			MIN	TYP	MAX	

I/O pin 5 P22 to P24, P25 to P26 *10 P30 to P31, P32 to P36

C29	Input high voltage	$\mathrm{V}_{\mathrm{IH} 5}$		$0.8 \mathrm{~V}_{\text {DD5 }}$		$\mathrm{V}_{\text {DD5 }}$	V
C30	Input low voltage	$\mathrm{V}_{\mathrm{IL} 5}$		0		$0.2 \mathrm{~V}_{\mathrm{DD} 5}$	
C31	Input leakage current	lLK4	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD5}}$			± 2	$\mu \mathrm{A}$
C32	Pull-up resistor	$\mathrm{R}_{\mathrm{RH} 4}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ Pull-up resistor ON	10	50	100	k Ω
C33	Output high voltage	$\mathrm{V}_{\mathrm{OH} 3}$	$\mathrm{V}_{\mathrm{DD5} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	4.5			V
C34	Output low voltage	$\mathrm{V}_{\text {OL4 }}$	$\mathrm{V}_{\mathrm{DD5} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$			0.5	

I/O pin 6 PA0 to PA7

C35	Input high voltage	$\mathrm{V}_{\text {IH6 }}$		$0.8 \mathrm{~V}_{\text {DD5 }}$		$\mathrm{V}_{\text {DD5 }}$	V
C36	Input low voltage	VIL6		0		$0.2 \mathrm{~V}_{\text {DD5 }}$	
C37	Input leakage current	ILK5	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD5}}$			± 2	$\mu \mathrm{A}$
C38	Pull-up resistor	$\mathrm{R}_{\mathrm{RH} 5}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ Pull-up resistor ON	10	50	100	k Ω
C39	Output high voltage	$\mathrm{V}_{\mathrm{OH} 4}$	$\mathrm{V}_{\mathrm{DD5}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	4.5			V
C40	Output low voltage 1	$\mathrm{V}_{\text {OL5 }}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=1.0 \mathrm{~mA}$ LED output OFF			0.5	
C41	Output low voltage 2	$\mathrm{V}_{\text {OL6 }}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OL}}=15.0 \mathrm{~mA}$ LED output ON			1.0	

I/O pin 7 P40 to P45

C42	Input high voltage	V_{1+7}		$0.8 \mathrm{~V}_{\text {DD5 }}$		$\mathrm{V}_{\text {DD5 }}$	V
C43	Input low voltage	$\mathrm{V}_{\text {IL7 }}$		0		$0.2 \mathrm{~V}_{\text {DD5 }}$	
C44	Input leakage current	lLK5	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD5}}$			± 2	$\mu \mathrm{A}$
C45	Pull-up resistor	$\mathrm{R}_{\text {RH6 }}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ Pull-up resistor ON	10	50	100	k Ω
C46	Pull-down resistor	$\mathrm{R}_{\mathrm{RL} 1}$	$\mathrm{V}_{\mathrm{DD5} 5}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD} 5}$ Pull-down resistor ON	10	50	100	
C47	Output high voltage	$\mathrm{V}_{\text {OH5 }}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	4.5			V
C48	Output low voltage	$\mathrm{V}_{\text {OL7 }}$	$\mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{l}_{\mathrm{OL}}=1.0 \mathrm{~mA}$			0.5	

Input pin 8 DMOD *11

C49	Input high voltage	$\mathrm{V}_{\mathrm{IH} 8}$		$0.8 \mathrm{~V}_{\mathrm{DD} 5}$		$\mathrm{~V}_{\mathrm{DD} 5}$	V
C50	Input low voltage	$\mathrm{V}_{\text {IL8 }}$		0		$0.2 \mathrm{~V}_{\mathrm{DD5}}$	V
C51	Pull-up resistor	$\mathrm{R}_{\mathrm{RH} 8}$	$\mathrm{V}_{\mathrm{DD5} 5}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\mathrm{SS}}$ Pull-up resistor ON	10	50	100	$\mathrm{k} \Omega$

*10 These are not used for oscillation pins.
*11 Only flash EEPROM version, DMOD pin contains an internal pull-up resistor.
When using In-Circuit Emulator, connect pull-up resistor to DMOD on the target board.

5.4 A/D Converter Characteristics

D. A/D Converter Characteristics *12				$\begin{array}{r} \mathrm{V}_{\mathrm{DD5}}=5.0 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{array}$				
Parameter		Symbol	Conditions	Rating			Unit	
		MIN		TYP	MAX			
D1	Resolution						10	Bits
D2	Non-linearity error 1		$\begin{aligned} & \mathrm{V}_{\mathrm{DD} 5}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{REF}}=5.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{AD}}=800 \mathrm{~ns} \end{aligned}$			± 3	LSB	
D3	Differential non-linearity error 1					± 3		
D4	Zero transition voltage		$\begin{aligned} & \mathrm{V}_{\mathrm{DD5} 5}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{REF}+}=5.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{AD}}=800 \mathrm{~ns} \end{aligned}$		10	30	mV	
D5	Full-scale transition voltage			4970	4990			
D6	A/D conversion time		$\mathrm{T}_{\mathrm{AD}}=800 \mathrm{~ns}$	12.93			$\mu \mathrm{S}$	
D7	Sampling time		$\mathrm{T}_{\mathrm{AD}}=800 \mathrm{~ns}$	1.6				
D8	Reference voltage	$\mathrm{V}_{\text {REF }+}$	$\mathrm{V}_{\mathrm{REF}+}=\mathrm{V}_{\mathrm{DD} 5}$	4.0		$\mathrm{V}_{\text {DD5 }}$	V	
D9	Analog input voltage			$\mathrm{V}_{\text {SS }}$		$\mathrm{V}_{\text {REF+ }}$		
D10	Analog input leakage current		Channel OFF $\mathrm{V}_{\mathrm{ADIN}}=\mathrm{V}_{\mathrm{SS}}$ to $\mathrm{V}_{\mathrm{DD} 5}$			± 2	$\mu \mathrm{A}$	
D11	Reference voltage pin input leakage current		Ladder resistance OFF $\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{REF}+} \leq \mathrm{V}_{\mathrm{DD5}}$			± 5		
D12	Ladder resistance	$\mathrm{R}_{\text {LADD }}$	$\mathrm{V}_{\text {DD5 }}=5.0 \mathrm{~V}$	15	40	80	$\mathrm{k} \Omega$	
*12	$T_{A D}$ is A/D conversion clock cycle.			${ }_{+}=5 \mathrm{~V}, \mathrm{~V}$				

Even if A / D function is not used, $\mathrm{V}_{\text {REF }+}$ must be set between $\mathrm{V}_{\mathrm{DD5}}$ and 4.0 V .

5.5 Auto Reset Characteristics

E. Auto Reset Characteristics				$\begin{array}{r} \mathrm{V}_{\mathrm{DD5}}=\mathrm{V}_{\mathrm{RST}} \text { to } 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \end{array}$				
Parameter		Symbol	Conditions	Rating			Unit	
		MIN		TYP	MAX			
Power supply voltage								
E1	Operating supply voltage		$\mathrm{V}_{\mathrm{DD7}}$	Auto reset is used	$\mathrm{V}_{\mathrm{RST}}$		5.5	V
Power supply voltage								
E2	Power detection level	$\mathrm{V}_{\text {RST1 }}$	At rising	4.10	4.30	4.50	V	
E3	Power detection level	$\mathrm{V}_{\text {RST2 }}$	At falling	4.00	4.20	4.40		
E4	Supply voltage change rate	$\Delta \mathrm{t} / \Delta \mathrm{V}$		2			ms/V	

5.6 Internal High-speed Oscillation Circuit

F. Internal High-speed Oscillation Circuit

$$
\mathrm{V}_{\mathrm{DD} 5}=4.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}
$$

Parameter		Symbol	Conditions	Rating			Unit	
		MIN		TYP	MAX			
F1	Internal high-speed oscillation circuit frequency		$\mathrm{frc}_{\mathrm{rc}}$	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$		16		MHz
F2	Temperature dependence of oscillation frequency *13	$\mathrm{frc3}$	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	-5.0		5.0	\%	
		$\mathrm{frc}_{\text {c }}$	$\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$					

*13 The specification values described in G are for standard application.
For special application (such as for automotive product) has different value.
When using this LSI, consult our sales offices for the product specifications.

5.7 Flash EEPROM Program Conditions

G. Flash EEPROM Program Conditions *14

$$
\mathrm{V}_{\mathrm{DD} 5}=4.0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}
$$

$$
\mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

Parameter		Symbol	Conditions	Rating			Unit	
		MIN		TYP	MAX			
G1	Voltage for rewriting		$\mathrm{V}_{\text {DDEW }}$		4.0		5.0	V
G1	Programming guarantee number of times	$\mathrm{E}_{\text {MAX }}$				1000	Time	
G2	Data retention period	$\mathrm{T}_{\text {HOLD }}$		20			Year	

*14 The specification values described in G are for standard application.
For special application (such as for automotive product) has different value.
When using this LSI, consult our sales offices for the product specifications.

6 Package Dimension

■ QFP 44-pin (10 mm $\times 10 \mathrm{~mm} / 0.8 \mathrm{~mm}$ pitch)

Unit: mm

Figure: 6.1 QFP 44-pin Package Dimension

This package dimension is subject to change. Before using this product, please obtain product specifications from our sales offices.

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

