SWLNA for 5GHz Band Applications

KA29222K Datasheet

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation Japan and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of KA29222K .

Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or question, please contact Nuvoton Technology Corporation Japan www.nuvoton.co.jp

■ IMPORTANT NOTICE

Regarding the specifications of this product, it is considered that you have agreed to the quality level and disclaimer described below.

Support for industry standards and quality standards

Functional safety standards for automobiles ISO26262	No
AECQ-100	No
Market failure rate	50Fit

Disclaimer

- 1. When the application system is designed using this IC, please design the system at your own risk. Please read, consider, and apply appropriate usage notes and description in this standard.
- 2. When designing your application system, please take into the consideration of break down and failure mode occurrence and possibility in semiconductor products. Measures on the systems such as, but not limited to, redundant design, mitigating the spread of fire, or preventing glitch, are recommended in order to prevent physical injury, fire, social damages, etc. in using the Nuvoton Technology Japan Corporation (hereinafter referred to as NTCJ) products.
- 3. When using this IC, for each actual application systems, verify the systems and the all functionality of this IC as intended in application systems and the safety including the long-term reliability at your own risk
- 4. Please use this IC in compliance with all applicable laws, regulations and safety-related requirements that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. NTCJ shall not be held responsible for any damage incurred as a result of this IC being used not in compliance with the applicable laws, regulations and safety-related requirements.
- 5. This IC does not have any security functions using cryptographic algorithms, such as authentication, encryption, tampering detection.
- 6. Unless this IC is indicated by NTCJ to be used in applications as meeting the requirements of a particular industry standard (e.g., ISO 9001, IATF 16949, ISO 26262, etc.), this IC is neither designed nor intended for use in such environments for that applications. NTCJ shall not be held responsible for not meeting the requirements of a particular industry standard.
- 7. Using IC that have been indicated as compliant with industry functional safety standards does not warrant that the application meets the requirements of industry functional safety standards. NTCJ shall not be held responsible for the application compliance with requirements of the particular industry functional safety standard.
- 8. Unless this IC is indicated by NTCJ to be used in applications as meeting the requirements of a particular quality standard (e.g., AECQ-100, etc.), this IC is neither designed nor intended for use in such the environments for that applications. NTCJ shall not be held responsible for not meeting the requirements of a particular quality standard.
- 9. In case of damages, costs, losses, and/or liabilities incurred by NTCJ arising from customer's non-compliance with above from 1 to 8, customer will indemnify NTCJ against every damages, costs, losses and responsibility.

KA29222K

SWLNA for 5 GHz Band Applications

Overview

- —KA29222K is a LNA (Low Noise Amplifier)-IC integrated SW(SPDT) for 5GHz Band applications .
- —Realizing high performance by using 0.3 µm CMOS process.
- $TX \; mode \; , \; RX \; mode \; / \; High \; Gain \; \; , \; RX \; mode \; / \; Low \; Gain \; \; are \; controlled \; by \; integrated \; CMOS \; logic \; circuit \; .$
- —Achieving miniaturization by using small size Chip Size Package with solder bump .

■ Features

—Low voltage operation	+3.3 V typ.	
—Low current consumption	12 mA typ. 90 μΑ typ.	(RX mode/High Gain) (RX mode/Low Gain)
	75 μA typ.	(TX mode)
	25 μA typ.	(ALL Off mode)
—High gain	11 dB typ.	(RX mode/High Gain)
—Low noise figure	2.5 dB typ.	(RX mode/High Gain)
—I ow Insertion I oss	0.7dB tvp.	(TX mode)

■ Applications

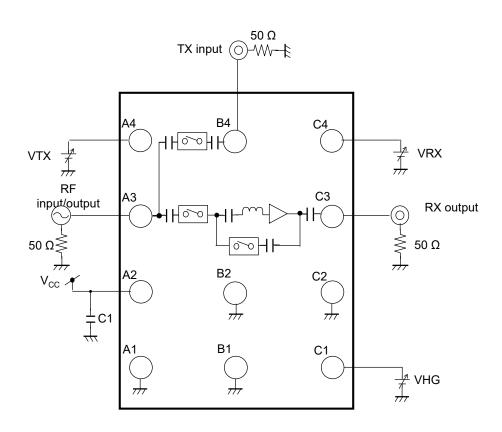
-Wireless LAN

■ Package

— 11Pin Chip Size Package with solder bump Size : $0.711 \text{ mm} \times 0.923 \text{ mm} \times 0.3 \text{ mm}$

■ Type

-CMOS IC


CONTENTS

Important Notice	2
Overview	3
Features	3
Applications	3
Package	3
■ _Type	3
Application Circuit Example (Block Diagram)	5
Pin Descriptions	6
Absolute Maximum Ratings	7
Operating Supply Voltage Range	<u> 7</u>
Allowable Current and Voltage Range	8
Electrical Characteristics	9
Control Pin Mode Table	13
■ Truth Table	13
Test Circuit Diagram	14
— Test Circuit 1	14
— External Components	14
Technical Data	15
— I/O block circuit diagrams and pin function descriptions	1 <u>5</u>
Package Information	18
Lleage Notes	10

■ Application Circuit Example (Block Diagram)

• External Components

Components	Components Size Value		Part Number	Vendor
C1	0603	0.1 uF	GRM033B30J104KE18	Murata

Notes)

- —This application circuit is an example. The operation of mass production set is not guaranteed. You should perform enough evaluation and verification on the design of mass production set. You are fully responsible for the incorporation of the above application circuit and information in the design of your equipment.
- —This block diagram is for explaining functions. The part of the block diagram may be omitted, or it may be simplified.

■ Pin Descriptions

Pin No.	Pin name	Туре	Description
A1	GND	Ground	GND
A2	VCC	Power Supply	V _{cc}
A3	RFC	Input/Output	RF input/output
A4	VTX	Input	TX mode SW
B1	GND	Ground	GND
B2	GND	Ground	GND
B4	TX	Input	TX input
C1	VHG	Input	High Gain/Low Gain SW
C2	GND	Ground	GND
C3	RX	Output	RX output
C4	VRX	Input	RX mode SW

■ Absolute Maximum Ratings

Note) Absolute maximum ratings are limit values which do not result in damages to this IC, and IC operation is not guaranteed at these limit values.

A No.	Parameter	Symbol	Rating	Unit	Notes
1	Supply voltage	V _{CC}	3.7	V	*1
2	Supply current	I _{cc}	20	mA	
3	Operating ambient temperature	T _{opr}	-40 to +85	°C	*2
4	Storage temperature	T _{stg}	-55 to +150	°C	*2

Notes) *1 : The values under the condition not exceeding the above absolute maximum ratings.

 $^{*}2$: Except for the operating ambient temperature and storage temperature, all ratings are for $T_a = 25$ °C.

■ Operating supply voltage range

Parameter	Symbol	Range	Unit	Notes
Supply voltage range	V _{CC}	3.0 to 3.6	V	*

Note)*: The values under the condition not exceeding the above absolute maximum ratings.

■ Allowable Current and Voltage Range

Notes) — Allowable current and voltage ranges are limit ranges which do not result in damages to this IC, and IC operation is not guaranteed within these limit ranges.

- Voltage values, unless otherwise specified, are with respect to GND.
- Do not apply external currents or voltages to any pin not specifically mentioned.

Pin No.	Pin name	Range	Unit	Notes
A3	RFC	_	V	*1
A4	VTX	-0.3 to (Vcc + 0.3)	V	*4
B4	TX	_	V	*2
C1	VHG	-0.3 to (Vcc + 0.3)	V	*4
C3	RX	_	V	*3
C4	VRX	-0.3 to (Vcc + 0.3)	V	*4

Note) *1 : RF signal input / output pin.

Maximum input / output power at TX mode is 27 dBm.

Maximum input power at RX mode / High Gain is 0 dBm.

Maximum input power at RX mode / Low Gain is 10 dBm.

*2 :RF signal input pin.

Maximum input power at TX mode is 27 dBm.

*3 : RF signal output pin.

*4 : (VCC + 0.3) V must not be exceeded 3.7 V

\blacksquare Electrical Characteristics at $V_{CC} = 3.3 \text{ V}$

Note)T $_a$ = 25°C±2°C unless otherwise specified.

B No. Paramete	Darameter	Or made al	Test	0 - 1 - 1 - 1 - 1 - 1		Limits			Note		
B No.	D. Falanielei Sym	Symbol	Circuit	Conditions	Min	Тур	Max	Unit	Note		
DC elec	DC electrical characteristics										
DC-1	Supply current RX mode / High Gain	I _{cc} RXHS	1	V _{CC} current at RX mode / High Gain No input signal	_	12	15.5	mA	_		
DC-2	Supply current RX mode / Low Gain	I _{cc} RXLS	1	V _{CC} current at RX mode / Low Gain No input signal	_	90	130	uA	_		
DC-3	Supply current TX mode	I _{cc} TXS	1	V _{CC} current at TX mode No input signal	_	75	115	uA	_		
DC-4	SW current (High Voltage)	IIHS	1	Current at VRX,VTX,VHG pin VIH = V _{CC}	_	18	36	uA	_		
DC-5	SW Input Voltage (High Level)	VIHS	1	_	1.6	3.3	_	V	_		
DC-6	SW Input Voltage (Low Level)	VILS	1	_	_	0	0.3	V	_		
DC-7	Supply current ALL Off mode	IccOFFS	1	V _{CC} current at ALL Off mode No input signal	_	25	60	uA	_		

\blacksquare Electrical Characteristics (continued) at $V_{CC} = 3.3 \text{ V}$

Note) T_a = 25°C±2°C, fRX = 5.85 GHz, PRX = -10 dBm, CW unless otherwise specified.

B No. Parameter	Parameter		Symbol Test	Test	st. Conditions	Limits			Unit	Note
		Symbol	Circuit	Conditions	Min	Тур	Max	Offic	Note	
AC ele	ctrical characteristics	RX	Mode / High	Gain (VI	RX=3.3V, VHG=3.3V, VTX	=0V)				
A-1	Power Gain		GRXHS	1	RFC to RX	8.5	11	13.5	dB	_
AC ele	ctrical characteristics F	RX N	Mode / Low G	ain (VR	X=3.3V, VHG=0V, VTX=0	V)				
B-1	Power Gain		GRXLS	1	RFC to RX fRX= 5.15 GHz	-9.5	-8.5	-7.5	dB	_
AC ele	AC electrical characteristics TX Mode (VRX=0V, VHG=0V, VTX=3.3V)									
C-1	Insertion Loss		ILTXS	1	RFC to TX	_	0.7	1.1	dB	

\blacksquare Electrical Characteristics (Reference values for design) at V_{CC} = 3.3 V

Note) $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRX = 5.5GHz, PRX = -10 dBm, CW unless otherwise specified.

The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection.

If a problem does occur related to these characteristics, we will respond in good faith to user concerns.

D.N.	Parameter	0	Test	0 - 11/4 - 11 -	Refer	ence v	alues	Unit	NI-4-		
B No.	D No. Talameter	Symbol	Circuit	Conditions	Min	Тур	Max		Note		
AC electrical characteristics RX Mode / High Gain (VRX=3.3V, VHG=3.3V, VTX=0V)											
D-1	Noise Figure	NFRXH	1	RFC to RX	_	2.5	3.0	dB	_		
D-2	Input Power 1dB Compression	IP1dBRX H	1	RFC to RX	-6.0	-1.0	_	dBm	_		
D-3	IIP3 +10 MHz offset	IIP3RXH1	1	f1 = fRX + 10 MHz f2 = fRX + 20 MHz Input 2 signals (f1, f2)	4	8	_	dBm	_		
D-4	Reverse Isolation	ISORXH	1	RX to RFC	21	26	_	dB	_		
D-5	Isolation RFC_TX	ISORXH_ 1	1	RFC to TX	15	21	_	dB	_		
D-6	Isolation RX_TX	ISORXH_ 2	1	RX to TX	21	25	_	dB			
D-7	Isolation TX_RFC	ISORXH_ 3	1	TX to RFC	15	18	_	dB	_		
D-8	Isolation TX_RX	ISORXH_ 4	1	TX to RX	8	11	_	dB	_		

■ Electrical Characteristics (Reference values for design, continued) at V_{CC} = 3.3 V

Note) $T_a = 25^{\circ}C \pm 2^{\circ}C$, fRX = 5.5GHz, PRX = -10 dBm, CW unless otherwise specified.

The characteristics listed below are reference values derived from the design of the IC and are not guaranteed by inspection.

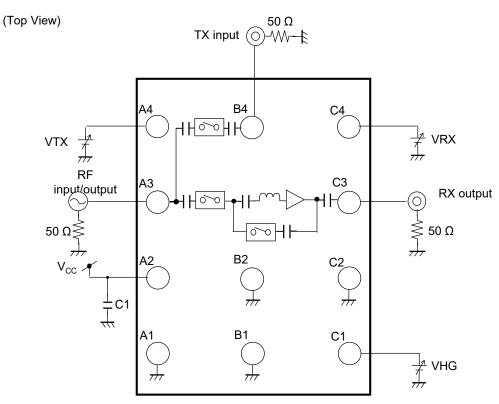
If a problem does occur related to these characteristics, we will respond in good faith to user concerns. A

B No. Parameter	Darameter	Current ed	Test	Conditions	Reference values			Lleit	Note		
	Symbol	Circuit	Conditions	Min	Тур	Max	Unit	Note			
AC electric	AC electrical characteristics RX Mode / Low Gain (VRX=3.3V, VHG=0V, VTX=0V)										
E-1	Isolation RFC_TX	ISORXL_1	1	RFC to TX	13	15	_	dB	_		
E-2	Isolation RX-TX	ISORXL_2	1	RX to TX	19	21	_	dB	_		
AC electric	cal characteristics TX M	ode (VRX=	0V, VHG=	0V, VTX=3.3V)							
F-1	Input Power 0.1dB Compression	IP01dBTX	1	RFC to TX	25	28	_	dBm			
F-2	Isolation RFC_RX	ISOTX_1	1	RFC to RX	35	40	_	dB	_		
F-3	Isolation RX_TX	ISOTX_2	1	RX to TX	27	30	35	dB	_		

■ Control Pin Mode Table

Note)See parameters B No. DC-5,6 in the Electrical Characteristics for control voltage retention ranges.

Pin No.	Description	Pin voltage		Remarks
		Low	High	Remarks
A4	TX mode SW	_	TX Mode	_
C1	High Gain/Low Gain SW	Low Gain	High Gain	_
C4	RX mode SW	_	RX Mode	_


■ Truth Table

Note)See parameters B No. DC-5,6 in the Electrical Characteristics for control voltage retention ranges.

VTX	VHG	VRX	Mode	
High	Low	Low	TX mode	
Low	High	High	RX mode / High Gain	
Low	Low	High	RX mode / Low Gain	
Low	Low	Low	ALL Off mode	

■ Test Circuit Diagram

• Test Circuit 1

• External Components

Components	Size	Value	Part Number	Vendor
C1	0603	0.1 uF	GRM033B30J104KE18	Murata

■ Technical Data

— I/O block circuit diagram and pin function descriptions

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
A1	_	_	_	GND
A2	3.3 V	A2 GND	3.1ΜΩ	Vcc
А3	_	V _{CC} A3 GND		RF input/output
A4	_	GND GND	280 kΩ	TX mode SW

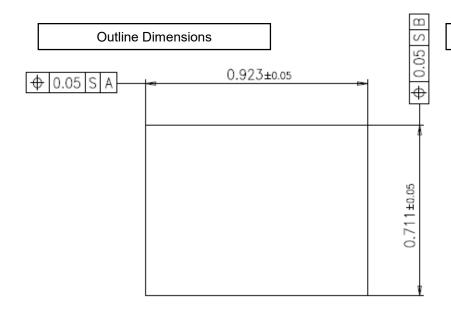
■ Technical Data(continued.)

nuvoTon

— I/O block circuit diagram and pin function descriptions

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
B1	_	_	_	GND
B2	_		_	GND
В4	_	V _{CC} B4 GND	_	TX input

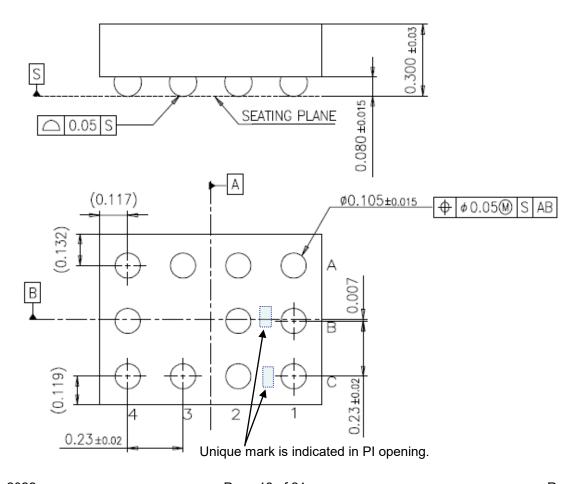

■ Technical Data(continued.)

— I/O block circuit diagram and pin function descriptions

Note) The characteristics listed below are reference values derived from the design of the IC and are not guaranteed.

Pin No.	Waveform and voltage	Internal circuit	Impedance	Description
C1	_	C1 GND	430kΩ	High Gain mode / Low Gain mode SW
C2	_	_	_	GND
С3	_	V _{CC} GND	_	RX output
C4	_	GND	190kΩ	RX mode SW

■ PACKAGE INFORMATION (Reference Data)



Unit:mm

PIN Location on Bottom View

※ Coordinate origin is defined as 0,0

Pin	X	Υ
A1	0.345	0.223
A2	0.115	0.223
A3	-0.115	0.223
A4	-0.345	0.223
B1	0.345	-0.007
B2	0.115	-0.007
B4	-0.345	-0.007
C1	0.345	-0.237
C2	0.115	-0.237
C3	-0.115	-0.237
C4	-0.345	-0.237

■ Usage Notes

- Pay attention to the direction of the IC. When mounting it in the wrong direction onto the PCB (printed-circuit-board), it might be damaged.
- Pay attention in the PCB (printed-circuit-board) pattern layout in order to prevent damage due to short circuit between pins.
 - In addition, refer to the Pin Description for the pin configuration.
- 3. Perform visual inspection on the PCB before applying power, otherwise damage might happen due to problems such as solder-bridge between the pins of the IC. Also, perform full technical verification on the assembly quality, because the same damage possibly can happen due to conductive substances, such as solder ball, that adhere to the IC during transportation.
- 4. Take notice in the use of this IC that it might be damaged when an abnormal state occurs such as output pin-VCC short (Power supply fault), output pin-GND short (Ground fault), or output-to-output-pin short (load short). Safety measures such as installation of fuses are recommended because the extent of the above-mentioned damage will depend on the current capability of the power supply.
- 5. Due to the unshielded structure of this IC, functions and characteristics of the IC cannot be guaranteed under the exposure of light. During normal operation or even under testing condition, please ensure that the IC is not exposed to light.
- Please ensure that your design does not have metal shield parts touching the chip surface as the surface potential is GND voltage.
- 7. Pay attention to the breakdown voltage of this IC when using.

Pin No.	Pin Name	ESD Model	Standard	ESD Voltage (*1)
A2	VCC	НВМ	GND	-900 V
A4	VTX	НВМ	VCC	+900 V
A1	GND	НВМ	VCC	+900 V
B1	GND	НВМ	VCC	+900 V
B2	GND	НВМ	VCC	+900 V
C2	GND	НВМ	VCC	+900 V
C1	VHG	НВМ	VCC	+900 V
C4	VRX	НВМ	VCC	+900 V

The other pins are more than +/- 1000V.

(*1) This is the max value which is not broken.

Revision History

Date	Revision	Description
2021.2.2	1.00	1. Initially issued.
2021.9.21	1.01	Changed document name from Product Standards to Datasheet.
		Changed important notice on page2
2022.2.1	1.02	2. Remove important notice page from previous version page 18
		3. Added usage notes on page18,19

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.