

ARM[®] Cortex[®]-M0 32-bit Microcontroller

NuMicro[®] Family M051 BN/DN/DE Series Technical Reference Manual

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Table of Contents

1 GENER	AL DESCRIPTION	11
2 FEATUI	RES	12
3 ABBRE	VIATIONS	16
3.1	List of Abbreviations ·····	16
4 PARTS	INFORMATION AND PIN CONFIGURATION	18
4.1	NuMicro® M051 Series M05xxBN Selection Guide·····	
4.2	NuMicro® M051 Series M05xxDN Selection Guide ······	
4.3	NuMicro® M051 Series M05xxDE Selection Guide	
	Pin Diagrams	
4.4 4.4	Pin Diagrams	22
4.4.2	2 LQFP 48-pin	23
4.5	Pin Description ·····	24
5 BLOCK	DIAGRAM	27
6 FUNCT	IONAL DESCRIPTION	28
6.1	ARM® Cortex®-M0 Core ······	
6.2	System Manager	
	System Manager	30
6.2.2	2 System Reset	30
	3 System Power Architecture	
	System Memory Map	
	5 Whole System Memory Mapping ····································	
	7 System Timer (SysTick) ····································	
	3 System Timer Control Register Map	
6.2.9	Nested Vectored Interrupt Controller (NVIC)	68
	10 System Control Block (SCB) ······	
6.2.	11 Register Protection	
6.3	Clock Controller	
	Overview Clark and Curtick Clark	
	2 System Clock and SysTick Clock ····································	
	Frequency Divider Output ······	
6.3.5	5 Register Map	125
6.3.6	Register Description	126
6.4	Flash Memory Controller (FMC)	144
	l Overview	
	2 Features	
	Block Diagram ····································	
	5 Data Flash	
	S User Configuration ······	
6.4.7	7 Boot Selection	151
	3 In-Application-Programming (IAP)	
6.4.9	In-System-Programming (ISP)	153

6.4.10 ISP Registers Control Procedure	154
6.4.11 Multi-booting by Vector Remapping	156
6.4.12 Register Map·····	
6.4.13 Register Description	159
6.5 External Bus Interface (EBI)	168
6.5.1 Overview	
6.5.2 Features	168
6.5.3 Block Diagram ·····	169
6.5.4 Basic Configuration	
6.5.5 Functional Description	
6.5.6 Register Map·····	
6.5.7 Register Description	176
6.6 General Purpose I/O (GPIO)	179
6.6.1 Overview	
6.6.2 Features	179
6.6.3 Basic Configuration	179
6.6.4 Functional Description	180
6.6.5 GPIO Interrupt and Wake-up Function	
6.6.6 Register Map·····	
6.6.7 Register Description	185
6.7 Timer Controller (TMR)	197
6.7.1 Overview	
6.7.2 Features	
6.7.3 Block Diagram ·····	
6.7.4 Basic Configuration	
6.7.5 Functional Description	
6.7.6 Register Map	203
6.7.7 Register Description	205
6.8 PWM Generator and Capture Timer (PWM)	215
6.8.1 Overview	215
6.8.2 Features	
6.8.3 Block Diagram ······	
6.8.4 Basic Configuration	
6.8.5 Functional Description	
6.8.6 Register Map	
6.8.7 Register Description	
6.9 Watchdog Timer (WDT) ······	264
6.9 Watchdog Timer (WDT)	
6.9.2 Features	
6.9.3 Block Diagram	
6.9.4 Basic Configuration ······	
6.9.5 Functional Description ······	
6.9.6 Register Map	
6.9.7 Register Description	
-	
6.10 Window Watchdog Timer (WWDT) (M05xxDN/DE Only) ····· 6.10.1 Overview ····································	
6.10.2 Features	2/2
6.10.3 Block Diagram	
6.10.4 Basic Configuration	
6.10.5 Functional Description	

6.10.7 Register Description	270
6.11 UART Controller (UART) ······	
6.11.1 Overview	
6.11.2 Features	
6.11.3 Block Diagram·····	
6.11.4 Basic Configuration ······	
6.11.5 Functional Description ······	
6.11.6 Register Map	
6.11.7 Register Description	
6.12 I ² C Serial Interface Controller (I ² C) ····································	
6.12.1 Overview	
6.12.2 Features	
6.12.3 Basic Configuration	
6.12.4 Functional Description ······	
6.12.5 l ² C Protocol ······	
6.12.6 I ² C Protocol Registers ······	
6.12.7 Operation Modes	
6.12.8 Register Map	
6.12.9 Register Description	
6.13 Serial Peripheral Interface (SPI)	240
6.13 Serial Peripheral Interface (SPI)	240
6.13.2 Features	
6.13.3 Block Diagram	
6.13.4 Basic Configuration ······	
6.13.5 Functional Description ······	
6.13.6 Timing Diagram ·······	
6.13.7 Programming Examples	
6.13.8 Register Map	
6.13.9 Register Description	
6.14 Analog-to-Digital Converter (ADC)	385
6.14.1 Overview	385
6.14.2 Features	
6.14.3 Block Diagram·····	
6.14.4 Basic Configuration	
6.14.5 Functional Description	
6.14.6 Register Map	
6.14.7 Register Description	398
6.15 Analog Comparator (ACMP) ······	//08
6.15.1 Overview	408 408408
6.15.2 Features	
6.15.3 Block Diagram	
6.15.4 Basic Configuration	
6.15.5 Functional Description	
6.15.6 Register Map	
6.15.7 Register Description	
6.16 Hardware Divider (HDIV) (M05xxDN/DE Only) ······	
6.16.1 Overview	
6.16.2 Features	
6.16.3 Basic Configuration	
o. 10.0 Badio Odilligaration	413

6.16	6.4 Functional Description ······	120
6 16	5 Register Man	121
6.16	6.6 Register Description	122
7 ELECTI	RICAL CHARACTERISTICS	127
8 PACKA	GE DIMENSIONS	128
8.1	LQFP-48 (7x7x1.4mm ² Footprint 2.0mm) ······	128
8.2	QFN-33 (5X5 mm ² , Thickness 0.8mm, Pitch 0.5 mm) ······	12 9
9 REVISION	ON HISTORY4	130

LIST OF FIGURES

Figure 4-1 NuMicro® M051 BN/DN/DE Series Naming Rule	21
Figure 4-2 NuMicro® M051 Series QFN-33 Pin Diagram	22
Figure 4-3 NuMicro® M051 Series LQFP-48 Pin Diagram	23
Figure 5-1 NuMicro® M051 Series Block Diagram	27
Figure 6-1 Functional Block Diagram	28
Figure 6-2 NuMicro [®] M051 Series Power Architecture Diagram	31
Figure 6-3 Clock Generator Block Diagram	119
Figure 6-4 Clock Source Controller Overview (1/2)	120
Figure 6-5 Clock Source Controller Overview (2/2)	121
Figure 6-6 System Clock Block Diagram	122
Figure 6-7 SysTick clock Control Block Diagram	122
Figure 6-8 Clock Source of Frequency Divider	123
Figure 6-9 Block Diagram of Frequency Divider	124
Figure 6-10 Flash Memory Control Block Diagram	145
Figure 6-11 Flash Memory Organization	147
Figure 6-12 Flash Memory Structure	148
Figure 6-13 Boot Select (BS) for Power-on Action	151
Figure 6-14 Program Executing Range for Booting from APROM and LDROM	152
Figure 6-15 Executable Range of Code with IAP Function Enabled	153
Figure 6-16 Example Flow of Boot Selection by BS Bit when CBS[0] = 1	154
Figure 6-17 ISP Flow Example	155
Figure 6-18 Multi-booting by Vector Page Remapping	
Figure 6-19 EBI Block Diagram	169
Figure 6-20 Connection of 16-bit EBI Data Width with 16-bit Device	170
Figure 6-21 Connection of 8-bit EBI Data Width with 8-bit Device	171
Figure 6-22 EBI Timing Control Waveform for 16-bit Data Width	172
Figure 6-23 EBI Timing Control Waveform for 8-bit Data Width	173
Figure 6-24 EBI Timing Control Waveform for Insert Idle Cycle	174
Figure 6-25 Push-Pull Output	180
Figure 6-26 Open-Drain Output	180
Figure 6-27 Quasi-Bidirectional I/O Mode	181
Figure 6-28 Timer Controller Block Diagram	198
Figure 6-29 Clock Source of Timer Controller	198
Figure 6-30 Continuous Counting Mode	200
Figure 6-31 Inter-Timer Trigger Capture Timing	201
Figure 6-32 PWM Generator 0 Clock Source Control	217

Figure 6-33	PWM Generator 0 Architecture Diagram	217
Figure 6-34	PWM Generator 2 Clock Source Control	218
Figure 6-35	5 PWM Generator 2 Architecture Diagram	218
Figure 6-36	PWM Generator 4 Clock Source Control	219
Figure 6-37	PWM Generator 4 Architecture Diagram	219
Figure 6-38	B PWM Generator 6 Clock Source Control	220
Figure 6-39	PWM Generator 6 Architecture Diagram	220
Figure 6-40	Legend of Internal Comparator Output of PWM-Timer	221
Figure 6-41	PWM Timer Operation Timing	222
Figure 6-42	PWM Period Interrupt Generate Timing Waveform	222
Figure 6-43	3 Center-aligned type Output Waveform	223
Figure 6-44	PWM Center-aligned Interrupt Generate Timing Waveform	224
Figure 6-45	5 PWM Double Buffering Illustration	225
Figure 6-46	S PWM Controller Output Duty Ratio	225
Figure 6-47	Paired-PWM Output with Dead-zone Generation Operation	226
Figure 6-48	B PWM Trigger ADC Flag (PWMxTF) in Center-aligned Type Timing Waveform	227
Figure 6-49	PWM Trigger ADC Flag (PWMxTF) in Edge-aligned Type Timing Waveform	228
Figure 6-50	PWM Trigger ADC Start-of-Conversion in Center-aligned Type	229
Figure 6-51	Capture Operation Timing	230
Figure 6-52	PWM Group A PWM-Timer Interrupt Architecture Diagram	231
Figure 6-53	B PWM Group B PWM-Timer Interrupt Architecture Diagram	231
Figure 6-54	Watchdog Timer Clock Control	265
Figure 6-55	Watchdog Timer Block Diagram	265
Figure 6-56	Watchdog Timer Time-out Interval and Reset Period Timing	267
Figure 6-57	Window Watchdog Timer Clock Control	272
Figure 6-58	3 Window Watchdog Timer Block Diagram	272
Figure 6-59	Window Watchdog Timer Reset and Reload Behavior	274
Figure 6-60	UART Controller Clock Control	283
Figure 6-61	UART Controller Block Diagram	283
Figure 6-62	2 Auto Flow Control Block Diagram	285
Figure 6-63	B UART CTS Auto Flow Control Enabled	291
Figure 6-64	UART RTS Auto Flow Control Enabled	292
Figure 6-65	UART RTS Flow with Software Control	292
Figure 6-66	3 IrDA Control Block Diagram	293
Figure 6-67	7 IrDA TX/RX Timing Diagram	294
Figure 6-68	Structure of LIN Frame	294
Figure 6-69	RS-485 RTS Driving Level in Auto Direction Mode	296

Figure 6-70 RS-485 RTS Driving Level with Software Control	297
Figure 6-71 Structure of RS-485 Frame	298
Figure 6-72 I ² C Bus Timing	323
Figure 6-73 I ² C Protocol	324
Figure 6-74 START and STOP Conditions	324
Figure 6-75 Bit Transfer on the I ² C Bus	325
Figure 6-76 Acknowledge on the I ² C Bus	325
Figure 6-77 Master Transmits Data to Slave	326
Figure 6-78 Master Reads Data from Slave	326
Figure 6-79 I ² C Data Shifting Direction	327
Figure 6-80 I ² C Time-out Count Block Diagram	329
Figure 6-81 Control I ² C Bus according to Current I ² C Status	330
Figure 6-82 Master Transmitter Mode Control Flow	331
Figure 6-83 Save Mode Control Flow	334
Figure 6-84 GC Mode	335
Figure 6-85 EEPROM Random Read	336
Figure 6-86 Protocol of EEPROM Random Read	337
Figure 6-87 SPI Block Diagram	350
Figure 6-88 SPI Master Mode Application Block Diagram	352
Figure 6-89 SPI Slave Mode Application Block Diagram	352
Figure 6-90 32-bit in One Transaction	353
Figure 6-91 Variable Bus Clock Frequency	355
Figure 6-92 Two Transactions in One Transfer (Burst Mode)	355
Figure 6-93 Byte Reorder	356
Figure 6-94 Timing Waveform for Byte Suspend	356
Figure 6-95 FIFO Mode Block Diagram	358
Figure 6-96 SPI Timing in Master Mode	360
Figure 6-97 SPI Timing in Master Mode (Alternate Phase of SPICLK)	361
Figure 6-98 SPI Timing in Slave Mode	362
Figure 6-99 SPI Timing in Slave Mode (Alternate Phase of SPICLK)	363
Figure 6-100 AD Controller Block Diagram	386
Figure 6-101 ADC Peripheral Clock Control	387
Figure 6-102 Single Mode Conversion Timing Diagram	389
Figure 6-103 Single-Cycle Scan Mode on Enabled Channels Timing Diagram	391
Figure 6-104 Continuous Scan Mode on Enabled Channels Timing Diagram	393
Figure 6-105 V_{BG} for Measuring AV_{DD} Application Block Diagram	394
Figure 6-106 A/D Conversion Result Monitor Logic Diagram	395

Figure 6-107 A/D Controller Interrupt	396
Figure 6-108 Conversion Result Mapping Diagram of ADC Single-end Input	399
Figure 6-109 Conversion Result Mapping Diagram of ADC Differential Input	399
Figure 6-110 Analog Comparator 0/1 Block Diagram	409
Figure 6-111 Analog Comparator 2/3 Block Diagram (M05xxDN/DE Only)	410
Figure 6-112 Analog Comparator Controller Interrupt Sources	411
Figure 6-113 Comparator Hysteresis Function	411
Figure 6-114 Hardware Divider Operation Flow	420

LIST OF TABLES

Table 1-1 M05xxBN, M05xxDN and M05xxDE Difference List	11
Table 3-1 List of Abbreviations	17
Table 4-1 NuMicro® M051 Series M05xxBN Product Selection Guide	18
Table 6-1 Address Space Assignments for On-Chip Modules	33
Table 6-2 Exception Model	69
Table 6-3 System Interrupt Map Vector Table	70
Table 6-4 Vector Figure Format	70
Table 6-5 Prodected Register	118
Table 6-6 Power-down Mode Control	128
Table 6-7 M05xxBN and M05xxDN/DE Function Difference List (FMC)	144
Table 6-8 Supported Boot Selection Options	152
Table 6-9 ISP Command List	156
Table 6-10 EBI Timing Table	172
Table 6-11 Watchdog Timer Time-out Interval Period Selection	266
Table 6-12 Window Watchdog Timer Prescale Value Selection	273
Table 6-13 UART Controller Baud Rate Equation Table	286
Table 6-14 UART Controller Baud Rate Parameter Setting Table	286
Table 6-15 UART Controller Baud Rate Register Setting Table	287
Table 6-16 UART Controller Interrupt Source and Flag List for M05xxBN	288
Table 6-17 UART Controller Interrupt Source and Flag List for M05xxDN/DE	289
Table 6-18 UART Line Control of Word and Stop Length Setting	290
Table 6-19 UART Line Control of Parity Bit Setting	290
Table 6-20 I ² C Status Code Description	328
Table 6-21 M05xxBN and M05xxDN/DE Function Difference List (SPI)	349
Table 6-22 Byte Order and Byte Suspend Configurations on M05xxBN	357
Table 6-23 M05xxBN and M05xxDN/DE Function Difference List (ACMP)	408

1 GENERAL DESCRIPTION

The NuMicro® M051 series 32-bit microcontroller is embedded with ARM® Cortex®-M0 core for industrial control and applications which need rich communication interfaces. The M051 series includes the following part numbers: M052xBN/xDN/xDE, M054xBN/xDN/xDE, M058xBN/xDN/xDE and M0516xBN/xDN/xDE.

The NuMicro® M051 series can run up to 50 MHz and operate at $2.5V \sim 5.5V$, $-40^{\circ}C \sim 85^{\circ}C$, while M05xxDE operates at $-40^{\circ}C \sim 105^{\circ}C$, and thus can afford to support a variety of industrial control and applications which need high CPU performance. The M051 series offers 8K/16K/32K/64K-bytes flash, 4K-byte Data Flash, 4K-byte flash for the ISP, and 4K-byte SRAM.

Many system level peripheral functions, such as I/O Port, EBI (External Bus Interface), Timer, UART, SPI, I²C, PWM, ADC, Watchdog Timer, Window Watchdog Timer (M05xxDN/DE only), Analog Comparator and Brown-out Detector, have been incorporated into the M051 series in order to reduce component count, board space and system cost. These useful functions make the M051 series powerful for a wide range of applications.

Additionally, the NuMicro® M051 series is equipped with ISP (In-System Programming) and ICP (In-Circuit Programming) functions, and IAP (In-Application Programming) (M05xxDN/DE only), which allow the user to update the program memory without removing the chip from the actual end product.

Item	M05xxBN	M05xxDN	M05xxDE
Operating Temperature	-40℃ ~ 85℃	-40℃ ~ 85℃	-40°C ~ 105°C
Hardware Divider	-	•	•
IAP Mode	-	•	•
Window WDT	-	•	•
Analog Comparators	2	4	4
Configurable I/O mode after POR	-	•	•
I ² C	1	2 (Supports Wake-up)	2 (Supports Wake-up)
SPI	- Only Supports HCLK as SPI clock source - No FIFO		- Supports HCLK and PLL as SPI clock source - 4-level FIFO
PWM and ADC	PWM cannot trigger ADC	- PWM can trigger ADC conversion	- PWM can trigger ADC conversion

Table 1-1 M05xxBN, M05xxDN and M05xxDE Difference List

2 FEATURES

- Core
 - ARM[®] Cortex[®]-M0 core running up to 50 MHz
 - One 24-bit system timer
 - Supports Low Power Sleep mode
 - A single-cycle 32-bit hardware multiplier
 - NVIC for the 32 interrupt inputs, each with 4-levels of priority
 - Supports Serial Wire Debug (SWD) interface and two watchpoints/four breakpoints
 - Provides hardware divider (M05xxDN/DE only) and supports signed 32-bit dividend, 16-bit divisor operation
- Wide Operating Voltage Range: 2.5V to 5.5V
- Memory
 - 8KB/16KB/32KB/64KB Flash for program memory (APROM)
 - 4KB Flash for data memory (Data Flash)
 - 4KB Flash for loader (LDROM)
 - 4KB SRAM for internal scratch-pad RAM (SRAM)
- Clock Control
 - Programmable system clock source
 - 22.1184 MHz internal oscillator
 - 4~24 MHz external crystal input
 - 10 kHz low-power oscillator for Watchdog Timer and wake-up in Sleep mode
 - PLL allows CPU operation up to the maximum 50 MHz
- I/O Port
 - Up to 40 general-purpose I/O (GPIO) pins for LQFP-48 package
 - Four I/O modes:
 - Quasi-bidirectional
 - Push-Pull output
 - Open-Drain output
 - Input only with high impendence
 - TTL/Schmitt trigger input selectable
 - I/O pin can be configured as interrupt source with edge/level setting
 - Supports high driver and high sink I/O mode
 - Configurable I/O mode after POR (M05xxDN/DE only)
- Timer
 - Provides four channel 32-bit timers; one 8-bit pre-scale counter with 24-bit up-timer for each timer
 - Independent clock source for each timer
 - 24-bit timer value is readable through TDR (Timer Data Register)
 - Provides One-shot, Periodic and Toggle operation modes
 - Provides event counter function
 - Provides external capture/reset counter function
 - Additional functions for M05xxDN/DE:
 - ◆ Two more timer clock sources from external trigger and internal 10 kHz
 - ◆ TIMER wake-up function
 - ◆ External capture input source selected from ACMP or TxEX
 - Toggle mode output pins selected from TxEX or TMx
 - Inter-Timer trigger mode

- WDT (Watchdog Timer)
 - Multiple clock sources
 - Supports wake-up from Power-down or Sleep mode
 - Interrupt or reset selectable on watchdog time-out
 - Time-out reset delay period time can be selected (M05xxDN/DE only)
- WWDT (Window Watchdog Timer) (M05xxDN/DE only)
 - 6-bit down counter with 11-bit pre-scale for wide range window selected
- PWM
 - Up to four built-in 16-bit PWM generators, providing eight PWM outputs or four complementary paired PWM outputs
 - Individual clock source, clock divider, 8-bit pre-scalar and dead-zone generator for each PWM generator
 - PWM interrupt synchronized to PWM period
 - 16-bit digital Capture timers (shared with PWM timers) with rising/falling capture inputs
 - Supports capture interrupt
 - Additional functions for M05xxDN/DE:
 - ◆ Internal 10 kHz to PWM clock source
 - Polar inverse function
 - ◆ Center-aligned type function
 - ◆ Timer duty interrupt enable function
 - ◆ Two kinds of PWM interrupt period type selection
 - ◆ Two kinds of PWM interrupt duty type selection
 - ◆ Period/duty trigger ADC function
 - PWM Timer synchronous start function
- UART
 - Up to two sets of UART devices
 - Programmable baud-rate generator
 - Buffered receiver and transmitter, each with 15 bytes FIFO
 - Optional flow control function (CTS and RTS)
 - Supports IrDA(SIR) function
 - Supports RS485 function
 - Supports LIN function
- SPI
 - Up to two sets of SPI devices
 - Supports Master/Slave mode
 - Full-duplex synchronous serial data transfer
 - Provides 3 wire function
 - Variable length of transfer data from 8 to 32 bits
 - MSB or LSB first data transfer
 - Rx latching data can be either at rising edge or at falling edge of serial clock
 - Tx sending data can be either at rising edge or at falling edge of serial clock
 - Supports Byte Suspend mode in 32-bit transmission
 - Additional functions for M05xxDN/DE:
 - ◆ PLL clock source
 - ◆ 4-level depth FIFO buffer for better performance and flexibility in SPI Burst Transfer mode
- I²C
 - I²C modules

- ◆ M05xxBN: up to one set
- ♦ M05xxDN/DE: up to two sets
- Supports Master/Slave mode
- Bidirectional data transfer between masters and slaves
- Multi-master bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer
- Programmable clocks allow versatile rate control
- Supports multiple address recognition (four slave addresses with mask option)

ADC

- 12-bit SAR ADC
- Up to 8-ch single-ended input or 4-ch differential input
- Supports Single mode/Burst mode/Single-cycle Scan mode/Continuous Scan mode
- Supports 2' complement/un-signed format in differential mode conversion results
- Each channel with an individual result register
- Supports conversion value monitoring (or comparison) for threshold voltage detection
- Conversion started either by software trigger or external pin trigger
- Additional functions for M05xxDN/DE:
 - A/D conversion started by PWM center-aligned trigger or edge-aligned trigger
 - PWM trigger delay function
 - ◆ Supports conversion result with signed format in Differential input and Burst mode
- Analog Comparator
 - Comparator analog modules
 - ♦ M05xxBN: up to two sets
 - ♦ M05xxDN/DE: up to four sets
 - External input or internal band-gap voltage selectable at negative node
 - Interrupt when compared results change
 - Power-down wake-up
- EBI (External Bus Interface) for external memory-mapped device access
 - Accessible space: 64 KB in 8-bit mode or 128 KB in 16-bit mode
 - Supports 8-bit or 16-bit data width
 - Supports byte-write in 16-bit data width
- ISP (In-System Programming) and ICP (In-Circuit Programming)
- IAP (In-Application Programming) (M05xxDN/DE only)
- One built-in temperature sensor with 1°C resolution
- BOD (Brown-out Detector)
 - With 4 levels: 4.4V/3.7V/2.7V/2.2V
 - Supports Brown-out interrupt and reset option
- 96-bit unique ID
- LVR (Low Voltage Reset)

■ Threshold voltage level: 2.0V

Operating Temperature:

M05xxBN: -40° C ~85° C
 M05xxDN: -40° C ~85° C
 M05xxDE: -40° C ~105° C

Packages:

Green package (RoHS)48-pin LQFP, 33-pin QFN

3 ABBREVIATIONS

3.1 List of Abbreviations

Acronym	Description
ACMP	Analog Comparator Controller
ADC	Analog-to-Digital Converter
AES	Advanced Encryption Standard
APB	Advanced Peripheral Bus
АНВ	Advanced High-Performance Bus
BOD	Brown-out Detection
CAN	Controller Area Network
DAP	Debug Access Port
DES	Data Encryption Standard
EBI	External Bus Interface
EPWM	Enhanced Pulse Width Modulation
FIFO	First In, First Out
FMC	Flash Memory Controller
FPU	Floating-point Unit
GPIO	General-Purpose Input/Output
HCLK	The Clock of Advanced High-Performance Bus
HIRC	22.1184 MHz Internal High Speed RC Oscillator
HXT	4~24 MHz External High Speed Crystal Oscillator
IAP	In Application Programming
ICP	In Circuit Programming
ISP	In System Programming
LDO	Low Dropout Regulator
LIN	Local Interconnect Network
LIRC	10 kHz internal low speed RC oscillator (LIRC)
MPU	Memory Protection Unit
NVIC	Nested Vectored Interrupt Controller
PCLK	The Clock of Advanced Peripheral Bus
PDMA	Peripheral Direct Memory Access
PLL	Phase-Locked Loop
PWM	Pulse Width Modulation
QEI	Quadrature Encoder Interface
SDIO	Secure Digital Input/Output

ď		б
Ы	ŕ	d
	D)	ľ
ī		i
	U	٧,
Ŀ		
Z	5	
	S	
		i
	7	
2	2	
U		7.
п	ii	ĺ
7	П	'n
Ľ		
П		í
2	U	ď,
	b	d
H		
П		
		ĺ
7	ſί	ď
		ı
П	П	ī
	=	3
S		Р.
P		
	÷	
	į	
į	÷	
Z	į	
2	į	
2	į	
2		
	į	
	Į.	
	T T	
	T T T	
	T T T	
		7
	T T T	
	ファファファファ	
	ファファファファ	

SPI	Serial Peripheral Interface
SPS	Samples per Second
TDES	Triple Data Encryption Standard
TMR	Timer Controller
UART	Universal Asynchronous Receiver/Transmitter
UCID	Unique Customer ID
USB	Universal Serial Bus
WDT	Watchdog Timer
WWDT	Window Watchdog Timer

nuvoTon

Table 3-1 List of Abbreviations

4 PARTS INFORMATION AND PIN CONFIGURATION

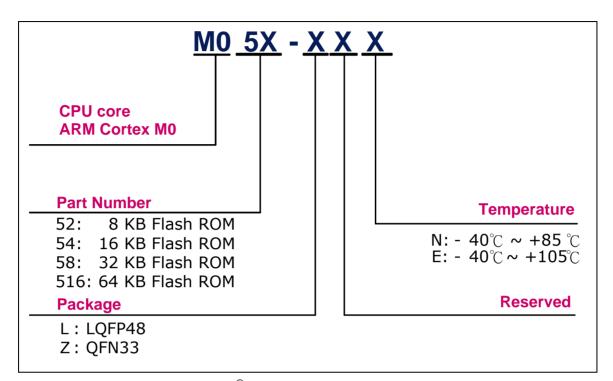
4.1 NuMicro® M051 Series M05xxBN Selection Guide

							Co	nnecti	vity									
Part Number	APROM (KB)	RAM (KB)	Data Flash (KB)	ISP ROM (KB)	0/1	Timer (32-Bit)	UART	SPI	l²C	COMP	PWM (16-Bit)	ADC (12-Bit)	WDT	WWDT	EBI	ISP/ICP	Package	Operating Temperature Range(Ĉ)
M052LBN	8	4	4	4	40	4	2	2	1	2	8	8	1		V	V	LQFP48	-40 to +85
M052ZBN	8	4	4	4	24	4	2	1	1	2	5	5	V			V	QFN33	-40 to +85
M054LBN	16	4	4	4	40	4	2	2	1	2	8	8	√		√	√	LQFP48	-40 to +85
M054ZBN	16	4	4	4	24	4	2	1	1	2	5	5	\checkmark			√	QFN33	-40 to +85
M058LBN	32	4	4	4	40	4	2	2	1	2	8	8	√		√	√	LQFP48	-40 to +85
M058ZBN	32	4	4	4	24	4	2	1	1	2	5	5	V			V	QFN33	-40 to +85
M0516LBN	64	4	4	4	40	4	2	2	1	2	8	8	√		V	V	LQFP48	-40 to +85
M0516ZBN	64	4	4	4	24	4	2	1	1	2	5	5	V			V	QFN33	-40 to +85

Table 4-1 NuMicro® M051 Series M05xxBN Product Selection Guide

4.2 NuMicro® M051 Series M05xxDN Selection Guide

							Co	nnecti	vity									
Part Number	APROM (KB)	RAM (KB)	Data Flash (KB)	ISP ROM (KB)	O/I	Timer (32-Bit)	UART	SPI	l²C	COMP	PWM (16-Bit)	ADC (12-Bit)	WDT	WWDT	EBI	ISP/ICP/IAP	Package	Operating Temperature Range(°C)
M052LDN	8	4	4	4	40	4	2	2	2	4	8	8	V	V	V	V	LQFP48	-40 to +85
M052ZDN	8	4	4	4	24	4	2	1	2	3	5	5	V	V		V	QFN33	-40 to +85
M054LDN	16	4	4	4	40	4	2	2	2	4	8	8	V	V	V	V	LQFP48	-40 to +85
M054ZDN	16	4	4	4	24	4	2	1	2	3	5	5	√	7		√	QFN33	-40 to +85
M058LDN	32	4	4	4	40	4	2	2	2	4	8	8	√	V	V	√	LQFP48	-40 to +85
M058ZDN	32	4	4	4	24	4	2	1	2	3	5	5	√	V		V	QFN33	-40 to +85
M0516LDN	64	4	4	4	40	4	2	2	2	4	8	8	V	1	V	1	LQFP48	-40 to +85
M0516ZDN	64	4	4	4	24	4	2	1	2	3	5	5	V	V		V	QFN33	-40 to +85


Table 5-2 NuMicro® M051 Series M05xxDN Product Selection Guide

4.3 NuMicro® M051 Series M05xxDE Selection Guide

							Co	nnecti	vity									
Part Number	APROM (KB)	RAM (KB)	Data Flash (KB)	ISP ROM (KB)	0/I	Timer (32-Bit)	UART	SPI	l²C	COMP	PWM (16-Bit)	ADC (12-Bit)	WDT	WWDT	EBI	ISP/ICP/IAP	Package	Operating Temperature Range(℃)
M052LDE	8	4	4	4	40	4	2	2	2	4	8	8	V	V	1	1	LQFP48	-40 to +105
M052ZDE	8	4	4	4	24	4	2	1	2	3	5	5	√	V		√	QFN33	-40 to +105
M054LDE	16	4	4	4	40	4	2	2	2	4	8	8	√	V	V	√	LQFP48	-40 to +105
M054ZDE	16	4	4	4	24	4	2	1	2	3	5	5	√	√		√	QFN33	-40 to +105
M058LDE	32	4	4	4	40	4	2	2	2	4	8	8	√	V	V	√	LQFP48	-40 to +105
M058ZDE	32	4	4	4	24	4	2	1	2	3	5	5	V	V		√	QFN33	-40 to +105
M0516LDE	64	4	4	4	40	4	2	2	2	4	8	8	V	V	V	√	LQFP48	-40 to +105
M0516ZDE	64	4	4	4	24	4	2	1	2	3	5	5	V	V		V	QFN33	-40 to +105

Table 5-2 NuMicro® M051 Series M05xxDE Product Selection Guide

nuvoTon

Figure 4-1 NuMicro® M051 BN/DN/DE Series Naming Rule

4.4 Pin Diagrams

4.4.1 QFN 33-pin

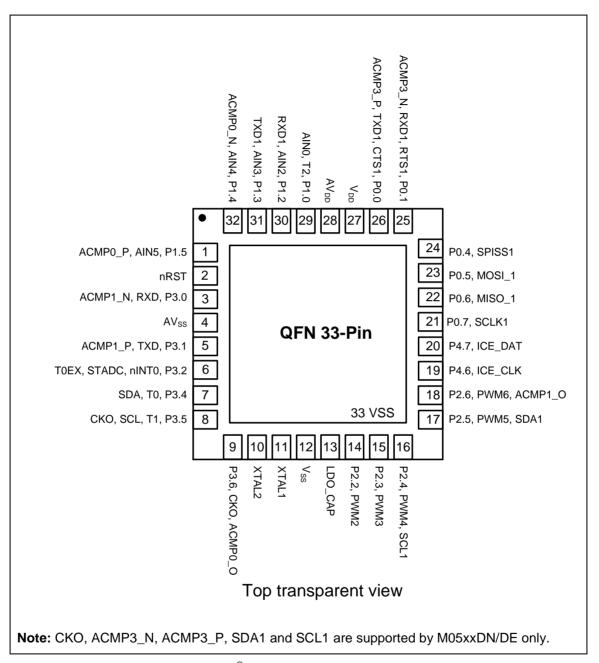


Figure 4-2 NuMicro® M051 Series QFN-33 Pin Diagram

4.4.2 LQFP 48-pin

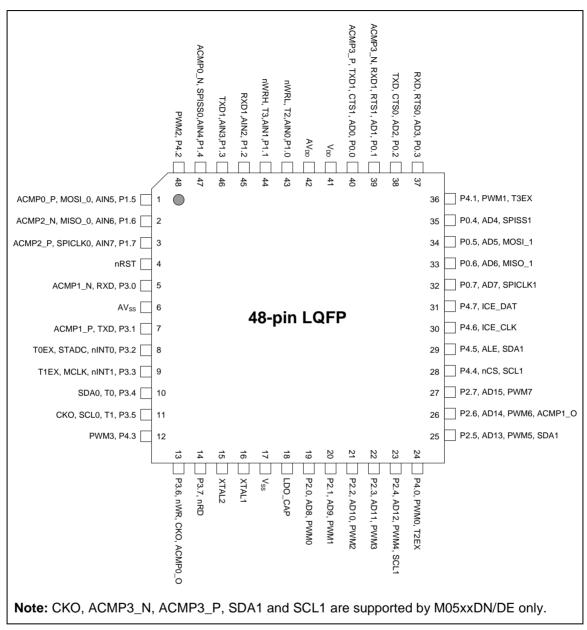


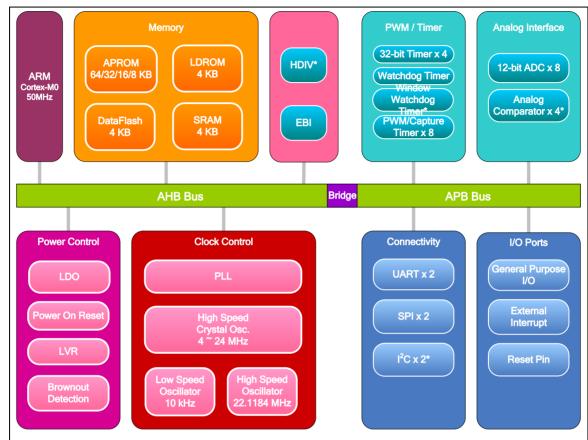
Figure 4-3 NuMicro® M051 Series LQFP-48 Pin Diagram

4.5 Pin Description

	5.5 Pin Description												
Pin N	lumber	Symbol	Alte	rnate Fu		Type ^[1]	Description						
QFN33	LQFP48	Зушьог	1	2	3	i ype	Description						
11	16	XTAL1				I (ST)	External 4~24 MHz (high speed) crystal input pin.						
10	15	XTAL2				0	External 4~24 MHz (high speed) crystal output pin.						
27	41	V_{DD}				Р	Power supply to I/O ports and LDO source for internal PLL and digital circuit.						
12		.,											
33	17	V_{SS}				Р	Ground pin for digital circuit.						
28	42	AV_{DD}				Р	Power supply to internal analog circuit.						
4	6	$AV_{\mathtt{SS}}$				Р	Analog Ground pin for analog circuit.						
13	18	LDO_CAP				Р	LDO output pin. Note: This pin needs to be connected with a 1uF capacitor.						
2	4	nRST				I (ST)	The nRST pin is a Schmitt trigger input pin for hardware device reset. A " Low " on this pin for 768 clock counter of Internal RC 22M while the system clock is running will reset the device. The nRST pin has an internal pull-up resistor allowing power-on reset by simply connecting an external capacitor to GND.						
26	40	P0.0	CTS1	AD0	TXD1 ^[2] , ACMP3_P	I/O	The P0.0 ~ P0.7 pins are called Port 0. Port 0 is a general purpose I/O port, which can be configured as Input, Output, Quasi Bi-direction and Open-drain mode.						
25	39	P0.1	RTS1	AD1	RXD1 ^[2] , ACMP3_N	/O	Port 0 supports multi-function pins, including CTS1, RTS1, CTS0, RTS0, SPISS1, MOSI_1, MISO_1, SPICLK1, AD0 ~ AD7, TXD1, RXD1, TXD, RXD, ACMP3_P, and ACMP3_N.						
NC	38	P0.2	CTS0	AD2	TXD ^[2]	I/O	AD0 ~ AD7 belong to EBI function for external memory accessing.						
NC	37	P0.3	RTS0	AD3	RXD ^[2]	I/O	The SPISS1, MOSI_1, MISO_1, and SPICLK1 pins are for SPI function.						
24	35	P0.4	SPISS1	AD4		I/O	The CTS0 and CTS1 pins are clear to send input pin for UART0/1.						
23	34	P0.5	MOSI_1	AD5		I/O	The RTS0 and RTS1 pins are Request to Send output pin for UART0/1.						
22	33	P0.6	MISO_1	AD6		I/O	The RXD and TXD pins are for UART0 function. The RXD1 and TXD1 pins are for UART1 function.						
21	32	P0.7	SPICLK1	AD7		I/O	The ACMP3_N and ACMP3_P pins are for ACMP3 negative/positive inputs.						
29	43	P1.0	T2	AIN0	nWRL	I/O	The P1.0 ~ P1.7 pins are called Port 1. Port 1 is a general purpose I/O port, which can be configured as Input,						
NC	44	P1.1	Т3	AIN1	nWRH	I/O	Output, Quasi-bidirectional and Open-drain mode.						

						ı	
30	45	P1.2	RXD1 ^[2]	AIN2		I/O	Port 1 supports multi-function pins, including T2, T3, RXD1, TXD1, SPISSO, MOSI_0, MISO_0, SPICLKO, AINO
31	46	P1.3	TXD1 ^[2]	AIN3		I/O	~ AIN7, nWRL, nWRH, ACMP0_N, ACMP0_P, ACMP2_N, and ACMP2_P.
32	47	P1.4	SPISS0	AIN4	ACMP0_N	I/O	The SPISS0, MOSI_0, MISO_0, and SPICLK0 pins are for SPI function.
1	1	P1.5	MOSI_0	AIN5	ACMP0_P	I/O	The AIN0 ~ AIN7 pins are for 12 bits ADC function. The RXD1 and TXD1 pins are for UART1 function.
	_						The nWRL and nWRH pins are for low/high byte write
NC	2	P1.6	MISO_0	AIN6	ACMP2_N	I/O	enable output in 16-bit data width of EBI. The ACMP0_N and ACMP0_P pins are for ACMP0
							negative/positive inputs.
NC	3	P1.7	SPICLK0	AIN7	ACMP2_P	I/O	The ACMP2_N and ACMP2_P pins are for ACMP2 negative/positive inputs.
							The T2 and T3 pins are for Timer2/3 external even counter input and toggle mode output.
							The state of the s
NC	19	P2.0	PWM0 ^[2]	AD8		I/O	The P2.0 ~ P2.7 pins are called Port 2. Port 2 is a general purpose I/O port, which can be configured as Input,
NC	20	P2.1	PWM1 ^[2]	AD9		I/O	Output, Quasi-bidirectional and Open-drain mode.
1.1	24	D2 2	PWM2 ^[2]	AD10		1/0	Port 2 supports multi-function pins, including PWM0 ~ PWM7, AD8 ~ AD15, SCL1, SDA1 and ACMP1_O.
14	21	P2.2	PVVIVIZ	ADIO		I/O	The PWM0~PWM7 pins are for PWM function in the LQFP48 package.
15	22	P2.3	PWM3 ^[2]	AD11		I/O	AD8 ~ AD15 belong to EBI function for external memory
16	23	P2.4	PWM4	AD12	SCL1 ^[2]	I/O	accessing. The SDA1 and SCL1 pins are for I ² C1 function and both
17	25	P2.5	PWM5	AD13	SDA1 ^[2]	I/O	of them are open-drain. The ACMP1_O pin is the output of ACMP1.
18	26	P2.6	PWM6	AD14	ACMP1_O	I/O	
NC	27	P2.7	PWM7	AD15		I/O	
3	5	P3.0	RXD ^[2]		ACMP1_N	I/O	The P3.0 ~ P3.7 pins are called Port 3. Port 3 is a general
		. 0.0			_	., 0	purpose I/O port, which can be configured as Input, Output, Quasi-bidirectional and Open-drain mode.
5	7	P3.1	TXD ^[2]		ACMP1_P	I/O	Port 3 supports multi-function pins, including RXD, TXD,
6	8	P3.2	nINT0	STADC	T0EX	I/O	nINT0, nINT1, T0, T1, nWR, nRD, STADC, MCLK, SDA0, SCL0, CKO, ACMP1_N, ACMP1_P, T0EX, T1EX, ACMP0_O.
NC	9	P3.3	nINT1	MCLK	T1EX	I/O	The RXD and TXD pins are for UART0 function.
7	10	P3.4	T0	SDA0		I/O	The nINT0 and nINT1 pins are for external interrupt input. The T0 and T1 pins are for Timer0/1 external even
	44	D0 5	T4	0010	CKO ^[2]	1/0	counter input and toggle mode output.
8	11	P3.5	T1	SCL0	CKO	I/O	The nWR, nRD and MCLK are for EBI function. The STADC pin is for ADC external trigger input.
9	13	P3.6	nWR	СКО	ACMP0_O	I/O	The SDA0 and SCL0 pins are for I ² C function and both of them are open-drain.
							The CKO is clock output pin for clock monitor.
		_					The ACMP1_N and ACMP1_P pins are for ACMP1 negative/positive inputs.
NC	14	P3.7	nRD			I/O	The T0EX and T1EX pins are for external capture/reset
							trigger input of Timer0/1. The ACMP0_O pin is the output of Analog ACMP0.
NC	24	P4.0	PWM0 ^[2]		T2EX	I/O	The P4.0 ~ P4.7 pins are called Port 4. Port 4 is a general

nuvoTon


NC	36	P4.1	PWM1 ^[2]		T3EX	I/O	purpose I/O port, which can be configured as Input, Output, Quasi-bidirectional and Open-drain mode.
NC	48	P4.2	PWM2 ^[2]			I/O	Port 3 supports multi-function pins, including PWM0 ~ PWM3, nCS, ALE, ICE_CLK, ICE_DAT, SCL1, SDA1, T2EX and T3EX.
NC	12	P4.3	PWM3 ^[2]			I/O	The PWM0 ~ PWM3 pins are for PWM function.
NC	28	P4.4	nCS	SCL1		I/O	The nCS and ALE pins are for EBI function. The ICE_CLK and ICE_DAT pins are for Serial Wire
NC	29	P4.5	ALE	SDA1		I/O	Debug Interface. The SDA1 and SCL1 pins are for I ² C1 function and both
19	30	P4.6	ICE_CLK			I/O	of them are open-drain. The T2EX and T3EX pins are for external capture/reset trigger input of Timer2/3.
20	31	P4.7	ICE_DAT			I/O	ungger input of Time12/5.

Note 1: I/O type description. I: Input, O: Output, I/O: Quasi-bidirectional, D: Open-drain, P: Power pins, ST: Schmitt trigger.

Note 2: The PWM0 ~ PWM3, RXD, TXD, RXD1, TXD1, SCL1, SDA1 and CKO can be assigned to different pins. However, a pin function can only be assigned to a pin at the same time, i.e. software cannot assign RXD to P0.3 and P3.0 at the same

5 BLOCK DIAGRAM

Note: The * mark means the peripherals between M05xxBN and M05xxDN/DE is different. For M05xxBN, ACMP x 2, I²C x 1 are supported, and HDIV and WWDT are not supported. For M05xxDN/DE, ACMP x4, I²C x 2, HDIV x 1 and WWDT x 1 are supported.

Figure 5-1 NuMicro® M051 Series Block Diagram

6 FUNCTIONAL DESCRIPTION

6.1 ARM® Cortex®-M0 Core

The Cortex[®]-M0 processor is a configurable, multistage, 32-bit RISC processor, which has an AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug functionality. The processor can execute Thumb code and is compatible with other Cortex[®]-M profile processor. The profile supports two modes -Thread mode and Handler mode. Handler mode is entered as a result of an exception. An exception return can only be issued in Handler mode. Thread mode is entered on Reset, and can be entered as a result of an exception return. The following figure shows the functional controller of processor.

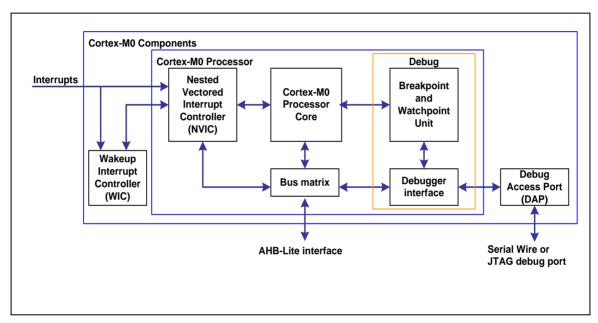


Figure 6-1 Functional Block Diagram

The implemented device provides:

- A low gate count processor:
 - ARMv6-M Thumb® instruction set
 - Thumb-2 technology
 - ARMv6-M compliant 24-bit SysTick timer
 - A 32-bit hardware multiplier
 - System interface supported with little-endian data accesses
 - Ability to have deterministic, fixed-latency, interrupt handling
 - Load/store-multiples and multicycle-multiplies that can be abandoned and restarted to facilitate rapid interrupt handling
 - C Application Binary Interface compliant exception model. This is the ARMv6-M, C Application Binary Interface (C-ABI) compliant exception model that enables the use of pure C functions as interrupt handlers
 - Low Power Sleep mode entry using the Wait For Interrupt (WFI), Wait For Event (WFE) instructions, or return from interrupt sleep-on-exit feature

NVIC:

- 32 external interrupt inputs, each with four levels of priority
- Dedicated Non-maskable Interrupt (NMI) input
- Supports for both level-sensitive and pulse-sensitive interrupt lines
- Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power Sleep mode

Debug support:

- Four hardware breakpoints
- Two watchpoints
- Program Counter Sampling Register (PCSR) for non-intrusive code profiling
- Single step and vector catch capabilities

Bus interfaces:

- Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all system peripherals and memory
- Single 32-bit slave port that supports the DAP (Debug Access Port)

6.2 System Manager

6.2.1 Overview

System management includes the following sections:

- System Resets
- System Power Architecture
- System Memory Map
- System management registers for Part Number ID, chip reset and on-chip controllers reset, and multi-functional pin control
- System Timer (SysTick)
- Nested Vectored Interrupt Controller (NVIC)
- System Control registers

6.2.2 System Reset

The system reset can be issued by one of the following listed events. For these reset event flags can be read by RSTSRC register.

- Hardware Reset
 - Power-on Reset (POR)
 - Low level on the Reset Pin (nRST)
 - Watchdog Timer Time-out Reset (WDT)
 - Low Voltage Reset (LVR)
 - Brown-out Detector Reset (BOD)
- Software Reset
 - MCU Reset SYSRESETREQ(AIRCR[2])
 - Cortex-M0 Core One-shot Reset CPU_RST(IPRSTC1[1])
 - Chip One-shot Reset CHIP_RST(IPRSTC1[0])

Note: ISPCON.BS keeps the original value after MCU Reset and CPU Reset.

6.2.3 System Power Architecture

In this chip, the power distribution is divided into two segments.

- Analog power from AV_{DD} and AV_{SS} provides the power for analog components operation. AV_{DD} must be equal to V_{DD} to avoid leakage current.
- Digital power from V_{DD} and V_{SS} supplies the power to the I/O pins and internal regulator which provides a fixed 1.8 V power for digital operation.

The output of internal voltage regulator, LDO_CAP, requires an external capacitor which should be located close to the corresponding pin. Analog power (AV_{DD}) should be the same voltage level as the digital power (V_{DD}). The following figure shows the power distribution of the M051 series.

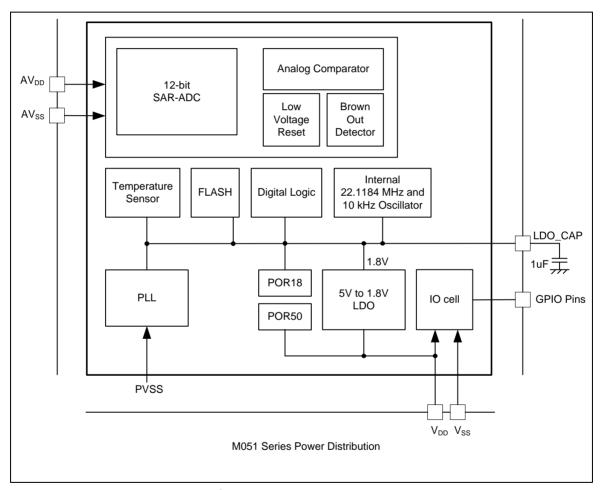
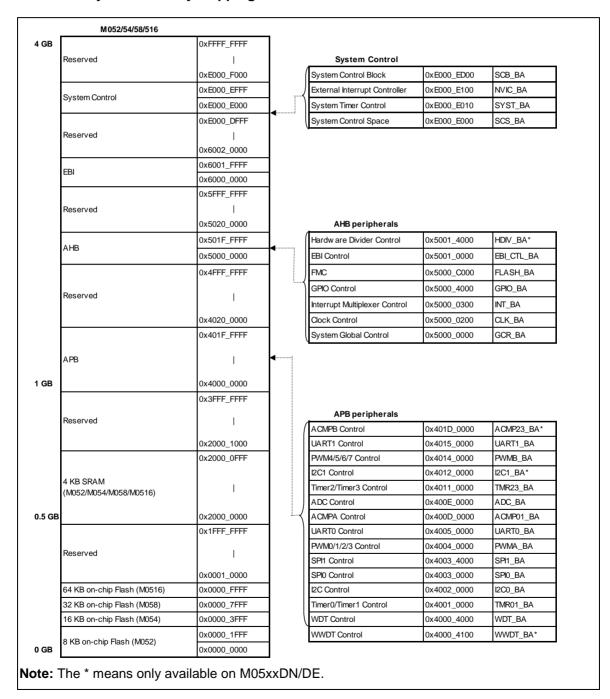


Figure 6-2 NuMicro® M051 Series Power Architecture Diagram

6.2.4 **System Memory Map**

nuvoton

The NuMicro® M051 series provides 4G-byte addressing space. The addressing space assigned to each on-chip controllers are shown in the following table. The detailed register definition, addressing space, and programming details will be described in the following sections for each on-chip peripheral. The NuMicro® M051 series only supports little-endian data format.


Addressing Space	Token	Modules
Flash & SRAM Memory Space		
0x0000_0000 – 0x0000_FFFF	FLASH_BA	FLASH Memory Space (64KB)
0x2000_0000 – 0x2000_0FFF	SRAM_BA	SRAM Memory Space (4 KB)
EBI Space (0x6000_0000 ~ 0x600	1_FFFF)	
0x6000_0000 - 0x6001_FFFF	EBI_BA	External Memory Space (128 KB)
AHB Modules Space (0x5000_000	00 – 0x501F_FFFF)	
0x5000_0000 – 0x5000_01FF	GCR_BA	System Global Control Registers
0x5000_0200 - 0x5000_02FF	CLK_BA	Clock Control Registers
0x5000_0300 - 0x5000_03FF	INT_BA	Interrupt Multiplexer Control Registers
0x5000_4000 – 0x5000_7FFF	GPIO_BA	GPIO (P0~P4) Control Registers
0x5000_C000 - 0x5000_FFFF	FMC_BA	Flash Memory Control Registers
0x5001_0000 – 0x5001_03FF	EBI_CTL_BA	EBI Control Registers
0x5001_4000 - 0x5001_7FFF	HDIV_BA	Hardware Divider Register (M05xxDN/DE Only)
APB Modules Space (0x4000_000	0 ~ 0x400F_FFFF)	
0x4000_4000 – 0x4000_00FF	WDT_BA	Watchdog Timer Control Registers
0x4000_4100 – 0x4000_7FFF	WWDT_BA	Window Watchdog Timer Control Registers (M05xxDN/DE Only)
0x4001_0000 - 0x4001_3FFF	TMR01_BA	Timer0/Timer1 Control Registers
0x4002_0000 - 0x4002_3FFF	I2C0_BA	I ² C0 Interface Control Registers
0x4003_0000 - 0x4003_3FFF	SPI0_BA	SPI0 with master/slave function Control Registers
0x4003_4000 - 0x4003_7FFF	SPI1_BA	SPI1 with master/slave function Control Registers
0x4004_0000 - 0x4004_3FFF	PWMA_BA	PWM0/1/2/3 Control Registers
0x4005_0000 - 0x4005_3FFF	UART0_BA	UART0 Control Registers
0x400D_0000 - 0x400D_3FFF	ACMP01_BA	Analog Comparator 0/1 Control Registers
0x400E_0000 - 0x400E_FFFF	ADC_BA	Analog-Digital-Converter (ADC) Control Registers
0x4011_0000 - 0x4011_3FFF	TMR23_BA	Timer2/Timer3 Control Registers
0x4012_0000 - 0x4012_3FFF	I2C1_BA	I ² C1 Interface Control Registers (M05xxDN/DE Only)
0x4014_0000 - 0x4014_3FFF	PWMB_BA	PWM4/5/6/7 Control Registers
0x4015_0000 - 0x4015_3FFF	UART1_BA	UART1 Control Registers
0x401D_0000 - 0x401D_3FFF	ACMP23_BA	Analog Comparator 2/3 Control Registers (M05xxDN/DE Only)
System Control Space (0xE000_E	000 ~ 0xE000_EFFF)	

0xE000_E010 - 0xE000_E0FF	SYST_BA	System Timer Control Registers
0xE000_E100 - 0xE000_ECFF	NVIC_BA	External Interrupt Controller Control Registers
0xE000_ED00 - 0xE000_ED8F	SCB_BA	System Control Block Registers

Table 6-1 Address Space Assignments for On-Chip Modules

6.2.5 Whole System Memory Mapping

6.2.6 System Manager Controller Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
GCR Base Add GCR_BA = 0x5				
PDID	GCR_BA+0x00	R	Part Device Identification Number Register	0x1000_5200
RSTSRC	GCR_BA+0x04	R/W	System Reset Source Register	0x0000_00XX
IPRSTC1	GCR_BA+0x08	R/W	Peripheral Reset Control Register 1	0x0000_0000
IPRSTC2	GCR_BA+0x0C	R/W	Peripheral Reset Control Register 2	0x0000_0000
BODCR	GCR_BA+0x18	R/W	Brown-out Detector Control Register	0x0000_008X
TEMPCR	GCR_BA+0x1C	R/W	Temperature Sensor Control Register	0x0000_0000
PORCR	GCR_BA+0x24	R/W	Power-on Reset Controller Register	0x0000_00XX
P0_MFP	GCR_BA+0x30	R/W	P0 Multiple Function and Input Type Control Register	0x0000_0000
P1_MFP	GCR_BA+0x34	R/W	P1 Multiple Function and Input Type Control Register	0x0000_0000
P2_MFP	GCR_BA+0x38	R/W	P2 Multiple Function and Input Type Control Register	0x0000_0000
P3_MFP	GCR_BA+0x3C	R/W	P3 Multiple Function and Input Type Control Register	0x0000_0000
P4_MFP	GCR_BA+0x40	R/W	P4 Multiple Function and Input Type Control Register	0x0000_00C0
REGWRPROT	GCR_BA+0x100	R/W	Register Write-Protection Control Register	0x0000_0000

Part Device ID Code Register (PDID)

Register	Offset	R/W	Description	Reset Value
PDID	GCR_BA+0x00	R	Part Device Identification Number Register	0x1000_5200 ^[1]

[1] Every part number has a unique default reset value.

31	30	29	28	27	26	25	24					
	PDID											
23	23 22 21 20 19 18 17 16											
	PDID											
15	14	13	12	11	10	9	8					
			PE	DID								
7	7 6 5 4 3 2 1 0											
	PDID											

Bits	Description	
[31:0]	PDID	Part Device Identification Number This register reflects the device part number code. Software can read this register to identify which device is used. For example, M052LBN PDID code is 0x1000_5200.

NuMicro® M051 Series	Part Device Identification Number
M052LBN	0x10005200
M054LBN	0x10005400
M058LBN	0x10005800
M0516LBN	0x10005A00
M052ZBN	0x10005203
M054ZBN	0x10005403
M058ZBN	0x10005803
M0516ZBN	0x10005A03
M052LDN	0x20005200
M054LDN	0x20005400
M058LDN	0x20005800
M0516LDN	0x20005A00
M052ZDN	0x20005203
M054ZDN	0x20005403
M058ZDN	0x20005803
M0516ZDN	0x20005A03
M052LDE	0x30005200

M054LDE	0x30005400
M058LDE	0x30005800
M0516LDE	0x30005A00
M052ZDE	0x30005203
M054ZDE	0x30005403
M058ZDE	0x30005803
M0516ZDE	0x30005A03

System Reset Source Register (RSTSRC)

This register provides specific information for software to identify this chip's reset source from the last operation.

Register	Offset	R/W	Description	Reset Value
RSTSRC	GCR_BA+0x04	R/W	System Reset Source Register	0x0000_00XX

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
RSTS_CPU	Reserved	RSTS_MCU	RSTS_BOD	RSTS_LVR	RSTS_WDT	RSTS_RESET	RSTS_POR

Bits	Description	
[31:8]	Reserved	Reserved.
[7]	RSTS_CPU	CPU Reset Flag The RSTS_CPU flag is set by hardware if software writes CPU_RST (IPRSTC1[1]) 1 to reset Cortex®-M0 core and Flash memory controller (FMC). 0 = No reset from CPU. 1 = Cortex®-M0 core and FMC are reset by software setting CPU_RST to 1. Note: Write 1 to clear this bit to 0.
[6]	Reserved	Reserved.
[5]	RSTS_MCU	MCU Reset Flag The RSTS_MCU flag is set by the "reset signal" from the Cortex®-M0 core to indicate the previous reset source. 0 = No reset from Cortex®-M0. 1 = The Cortex®-M0 had issued the reset signal to reset the system by writing 1 to bit SYSRESETREQ (AIRCR[2], Application Interrupt and Reset Control Register, address = 0xE000ED0C) in system control registers of Cortex®-M0 core. Note: Write 1 to clear this bit to 0.
[4]	RSTS_BOD	Brown-out Detector Reset Flag The RSTS_BOD flag is set by the "reset signal" from the Brown-out Detector to indicate the previous reset source. 0 = No reset from BOD. 1 = The BOD had issued the reset signal to reset the system. Note: Write 1 to clear this bit to 0.
[3]	RSTS_LVR	Low Voltage Reset Flag The RSTS_LVR flag is set by the "reset signal" from the Low-Voltage-Reset controller to indicate the previous reset source.

		0 = No reset from LVR.
		1 = The LVR controller had issued the reset signal to reset the system.
		Note: Write 1 to clear this bit to 0.
		Watchdog Reset Flag
		The RSTS_WDT flag is set by the "reset signal" from the watchdog timer to indicate the previous reset source.
[2]	RSTS_WDT	0 = No reset from watchdog timer.
		1 = The watchdog timer had issued the reset signal to reset the system.
		Note: Write 1 to clear this bit to 0.
	RSTS_RESET	Reset Pin Reset Flag
		The RSTS_RESET flag is set by the "reset signal" from the nRST pin to indicate the previous reset source.
[1]		0 = No reset from the nRST pin.
		1 = The nRST pin had issued the reset signal to reset the system.
		Note: Write 1 to clear this bit to 0.
	RSTS_POR	Power-on Reset Flag
		The RSTS_POR flag is set by the "reset signal" from the Power-on Reset (POR) controller or bit CHIP_RST (IPRSTC1[0]) to indicate the previous reset source.
[0]		0 = No reset from POR or CHIP_RST.
		1 = The Power-on Reset (POR) or CHIP_RST had issued the reset signal to reset the system.
		Note: Write 1 to clear this bit to 0.
L		I .

Peripheral Reset Control Register1 (IPRSTC1)

Register	Offset	R/W	Description	Reset Value
IPRSTC1	GCR_BA+0x08	R/W	Peripheral Reset Control Register 1	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved		HDIV_RST	EBI_RST	Reserved	CPU_RST	CHIP_RST

Bits	Description	
[31:5]	Reserved	Reserved.
		HDIV Controller Reset (Write Protect) (M05xxDN/DE Only)
		Set this bit to 1 will generate a reset signal to the hardware divider. User need to set this bit to 0 to release from the reset state.
[4]	HDIV RST	0 = Hardware divider controller normal operation.
[,]	1.517_1.61	1 = Hardware divider controller reset.
		Note: This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.
		EBI Controller Reset (Write Protect)
		Set this bit to 1 will generate a reset signal to the EBI. User needs to set this bit to 0 to release from the reset state.
[3]	EBI RST	0 = EBI controller normal operation.
[0]	25	1 = EBI controller reset.
		Note: This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.
[2]	Reserved	Reserved.
		Cortext-m0 Core One-shot Reset (Write Protect)
		Setting this bit will only reset the Cortext-M0 core and Flash Memory Controller (FMC), and this bit will automatically return 0 after the two clock cycles.
[1]	CPU RST	0 = Cortext-M0 core normal operation.
[1]	0.0	1 = Cortext-M0 core one-shot reset.
		Note: This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.
		Chip One-shot Reset (Write Protect)
[0]	CHIP_RST	Setting this bit will reset the whole chip, including Cortext-M0 core and all peripherals, and this bit will automatically return to 0 after the 2 clock cycles.
		The CHIP_RST is the same as the POR reset. All the chip controllers are reset and the chip

setting from CONFIG0 are also reload.
0 = Chip normal operation.
1 = Chip one-shot reset.
Note: This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.

Peripheral Reset Control Register2 (IPRSTC2)

Setting these bits "1" will generate asynchronous reset signal to the corresponding module. User needs to set these bits to "0" to release the module from the reset state.

Register	Offset	R/W	Description	Reset Value
IPRSTC2	GCR_BA+0x0C	R/W	Peripheral Reset Control Register 2	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved		ADC_RST	Reserved				
23	22	21	20	19	18	17	16	
ACMP23_RST	ACMP23_RST ACMP01_RST		PWM03_RST	Reserved		UART1_RST	UARTO_RST	
15	15 14		12	11	10	9	8	
Rese	Reserved		SPI0_RST	Rese	erved	I2C1_RST	I2C0_RST	
7	7 6		4	3	2	1	0	
Reserved		TMR3_RST	TMR2_RST	TMR1_RS T	TMR0_RST	GPIO_RST	Reserved	

Bits	Description	
[31:29]	Reserved	Reserved.
[28]	ADC_RST	ADC Controller Reset 0 = ADC controller normal operation. 1 = ADC controller reset.
[27:24]	Reserved	Reserved.
[23]	ACMP23_RST	Analog Comparator B Controller Reset (M05xxDN/DE Only) 0 = Analog Comparator B controller normal operation. 1 = Analog Comparator B controller reset.
[22]	ACMP01_RST	Analog Comparator A Controller Reset 0 = Analog Comparator A controller normal operation. 1 = Analog Comparator A controller reset.
[21]	PWM47_RST	PWM47 Controller Reset 0 = PWM47 controller normal operation. 1 = PWM47 controller reset.
[20]	PWM03_RST	PWM03 Controller Reset 0 = PWM03 controller normal operation. 1 = PWM03 controller reset.
[19:18]	Reserved	Reserved.
[17]	UART1_RST	UART1 Controller Reset 0 = UART1 controller normal operation. 1 = UART1 controller reset.

		HARTO Confeeller Beeck
		UART0 Controller Reset
[16]	UART0_RST	0 = UART0 controller normal operation.
		1 = UART0 controller reset.
[15:14]	Reserved	Reserved.
		SPI1 Controller Reset
[13]	SPI1_RST	0 = SPI1 controller normal operation.
		1 = SPI1 controller reset.
		SPI0 Controller Reset
[12]	SPI0_RST	0 = SPI0 controller normal operation.
		1 = SPI0 controller reset.
[11:10]	Reserved	Reserved.
		I ² C1 Controller Reset (M05xxDN/DE Only)
[9]	I2C1_RST	0= I ² C1 controller normal operation.
		1= I ² C1 controller reset.
		I ² C Controller Reset
[8]	I2C0_RST	0= I ² C0 controller normal operation.
		1= I ² C0 controller reset.
[7:6]	Reserved	Reserved.
		Timer3 Controller Reset
[5]	TMR3_RST	0 = Timer3 controller normal operation.
		1 = Timer3 controller reset.
		Timer2 Controller Reset
[4]	TMR2_RST	0 = Timer2 controller normal operation.
		1 = Timer2 controller reset.
		Timer1 Controller Reset
[3]	TMR1_RST	0 = Timer1 controller normal operation.
		1 = Timer1 controller reset.
		Timer0 Controller Reset
[2]	TMR0_RST	0 = Timer0 controller normal operation.
		1 = Timer0 controller reset.
		GPIO (P0~P4) Controller Reset
[1]	GPIO_RST	0 = GPIO controller normal operation.
		1 = GPIO controller reset.
[0]	Reserved	Reserved.
	-	•

Brown-out Detector Control Register (BODCR)

Partial values of the BODCR control registers are initiated by the flash configuration and partial bits are write-protected. Programming the write-protected bits needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the REGWRPROT register at address GCR_BA+0x100.

Register	Offset	R/W	Description	Reset Value
BODCR	GCR_BA+0x18	R/W	Brown-out Detector Control Register	0x0000_008X

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
LVR_EN	BOD_OUT	BOD_LPM	BOD_INTF	BOD_RSTEN	BOD_VL		BOD_EN			

Bits	Description				
[31:8]	Reserved	Reserved.			
		Low Voltage Reset Enable Control (Write Protect)			
		The LVR function reset the chip when the input power voltage is lower than LVR circuit setting. LVR function is enabled by default.			
		0 = Low Voltage Reset function Disabled.			
[7]	LVR_EN	1 = Low Voltage Reset function Enabled – After enabling the bit, the LVR function will be active with 100us delay for LVR output stable (default).			
		Note: This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.			
		Brown-out Detector Output Status			
[6]	BOD_OUT	0 = Brown-out Detector output status is 0, which means the detected voltage is higher than BOD_VL setting or BOD_EN is 0.			
		1 = Brown-out Detector output status is 1, which means the detected voltage is lower than BOD_VL setting. If the BOD_EN is 0, BOD function disabled, this bit always responds to 0.			
		Brown-out Detector Low Power Mode (Write Protect)			
		0 = BOD operated in Normal mode (default).			
		1 = BOD Low Power mode Enabled.			
[5]	BOD_LPM	Note1: The BOD consumes about 100 uA in Normal mode, and the low power mode can reduce the current to about 1/10 but slow the BOD response.			
		Note2: This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.			
[4]	BOD_INTF	Brown-out Detector Interrupt Flag			
[ד]	BOD_INTE	0 = Brown-out Detector does not detect any voltage draft at V _{DD} down through or up through			

		the voltage of BOD_VL setting	g.					
		BOD_VL setting or the V_{DD} is	r detects the V_{DD} is dropped dow raised up through the voltage of is requested if Brown-out interru	BOD_VL setting, this bit is set to				
		Note: Write 1 to clear this bit to 0.						
		Brown-out Reset Enable Co	Brown-out Reset Enable Control (Write Protect)					
		0 = Brown-out "INTERRUPT"	function Enabled.					
		(BOD_RSTEN low), BOD will						
[3]	BOD_RSTEN	1 = Brown-out "RESET" funct	ion Enabled.					
		function is enabled (BOD_RS	Detector function is enabled (BO TEN high), BOD will assert a sig n the threshold (BOD_OUT high)	nal to reset chip when the				
		Note2: The default value is se	et by flash controller user configu	uration register config0 bit[20].				
			Note3: This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT a address GCR_BA+0x100.					
		Brown-out Detector Threshold Voltage Select (Write Protect)						
		The default value is set by flash controller user configuration register config0 bit[22:21]						
		BOV_VL[1]	BOV_VL[0]	Brown-out voltage				
		1	1	4.4V				
[2:1]	BOD_VL	1	0	3.7V				
		0	1	2.7V				
		0	0	2.2V				
		Note: This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.						
		Brown-out Detector Enable Control (Write Protect)						
		The default value is set by flash controller user configuration register config0 bit[23]						
101	BOD 511	0 = Brown-out Detector functi	on Disabled.					
[0]	BOD_EN	1 = Brown-out Detector functi	on Enabled.					
			d bit, and programming it needs to able register protection. Refer to	o write "59h", "16h", and "88h" to the register REGWRPROT at				

Temperature Sensor Control Register (TEMPCR)

Register	Offset	R/W	Description	Reset Value
TEMPCR	GCR_BA+0x1C	R/W	Temperature Sensor Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
Reserved							VTEMP_EN			

Bits	Description	Description					
[31:1]	Reserved	Reserved.					
		Temperature Sensor Enable Control					
		This bit is used to enable/disable temperature sensor function.					
		0 = Temperature sensor function Disabled (default).					
[0]	VTEMP_EN	1 = Temperature sensor function Enabled.					
		Note: After this bit is set to 1, the value of temperature sensor output can be obtained from the ADC conversion result. Please refer to the ADC chapter for detailed ADC conversion functional description.					

Power-on Reset Control Register (PORCR)

Register	Offset	R/W	Description	Reset Value
PORCR	GCR_BA+0x24	R/W	Power-on Reset Controller Register	0x0000_00XX

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	POR_DIS_CODE								
7	6	5	4	3	2	1	0		
	POR_DIS_CODE								

Bits	Description	Description				
[31:16]	Reserved	Reserved.				
		Power-on Reset Enable Control (Write Protect)				
	POR_DIS_CO DE	When powered on, the POR circuit generates a reset signal to reset the whole chip function, but noise on the power may cause the POR active again. User can disable internal POR circuit to avoid unpredictable noise to cause chip reset by writing 0x5AA5 to this field.				
[15:0]		The POR function will be active again when this field is set to another value or chip is reset by other reset source, including:				
		nRST, Watchdog reset, LVR reset, BOD reset, ICE reset command and the software-chip reset function.				
		Note: This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.				

Multiple Function Port0 Control Register (P0_MFP)

Register	Offset	R/W	Description	Reset Value
P0_MFP	GCR_BA+0x30	R/W	P0 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved							P0_ALT1	
23	22	21	20	19	18	17	16	
			P0_1	YPE				
15	14	13	12	11	10	9	8	
			P0_	ALT				
7	6	5	4	3	2	1	0	
	P0_MFP							

Bits	Description						
[31:26]	Reserved	Reserved.					
[25]	P0_ ALT1[1]	P0.1 Alternate Function Selection1 (M05xxDN/DE Only) The pin function of P0.1 depends on P0_MFP[1], P0_ALT[1], and P0_ALT1[1]. Refer to P0_ALT[1] for detailed description.					
[24]	P0_ ALT1[0]	P0.0 Alternate Function Selection1 (M05xxDN/DE Only) The pin function of P0.0 depends on P0_MFP[0], P0_ALT[0], and P0_ALT1[0]. Refer to P0_ALT[0] for detailed description.					
[23:16]	P0_TYPEn	P0[7:0] Input Schmitt Trigger Function Enable Control 0 = P0[7:0] I/O input Schmitt Trigger function Disabled. 1 = P0[7:0] I/O input Schmitt Trigger function Enabled.					
		P0.7 Alternate Fund The pin function of F P0_ALT[7]	P0_MFP[7]	7] and P0_ALT[7]. P0.7 function			
[15]	PO ALT[7]	0	0	P0.7			
[13]	FO_ ALI[1]	0	1	AD7(EBI)			
		1	0	SPICLK1(SPI1)			
		1	1	Reserved			
		P0.6 Alternate Function Selection The pin function of P0.6 depends on P0_MFP[6] and P0_ALT[6].					
[14]	P0_ ALT[6]	P0_ALT[6]	P0_MFP[6]	P0.6 function			
		0	0	P0.6			

		0	1	AD6(EBI)		
		1	0	MISO_1(SPI1)		
		1	1	Reserved		
		P0.5 Alternate Function				
			epends on P0_MFP[5] and P0_/	T		
		P0_ALT[5]	P0_MFP[5]	P0.5 function		
[13]	P0_ ALT[5]	0	0	P0.5		
		0	1	AD5(EBI)		
		1	0	MOSI_1(SPI1)		
		1	1	Reserved		
		P0.4 Alternate Function		A L T. (1)		
			epends on P0_MFP[4] and P0_/			
		P0_ALT[4]	P0_MFP[4]	P0.4 function		
[12]	P0_ ALT[4]	0	0	P0.4		
		0	1	AD4(EBI)		
		1	0	SPISS1(SPI1)		
		1	1	Reserved		
		P0.3 Alternate Function Selection The pin function of P0.3 depends on P0_MFP[3] and P0_ALT[3].				
		P0_ALT[3]	P0_MFP[3]	P0.3 function		
[11]	P0_ ALT[3]	0	0	P0.3		
		0	1	AD3(EBI)		
		1	0	RTS0(UART0)		
		1	1	RXD		
		P0.2 Alternate Function		ALTIO		
			epends on P0_MFP[2] and P0_/			
		P0_ALT[2]	P0_MFP[2]	P0.2 function		
[10]	P0_ ALT[2]	0	0	P0.2		
		0	1	AD2(EBI)		
		1	0	CTS0(UART0)		
		1	1	TXD		
	<u> </u>	1				

		P0.1 Alternate Function Selection The pin function of P0.1 depends on P0_MFP[1], P0_ALT[1] and P0_ALT1[1].					
		P0_ALT1[1]	P0_ALT[1]	P0_MFP[1]	P0.1 function		
		0	0	0	P0.1		
[9]	P0_ ALT[1]	0	0	1	AD1(EBI)		
		0	1	0	RTS1(UART1)		
		0	1	1	RXD1		
		1	0	0	ACMP3_N (M05xxDN/DE Only)		
	P0_ ALT[0]	P0.0 Alternate Function Selection The pin function of P0.0 depends on P0_MFP[0], P0_ALT[0] and P0_ALT1[0].					
		P0_ALT1[0]	P0_ALT[0]	P0_MFP[0]	P0.0 function		
		0	0	0	P0.0		
[8]		0	0	1	AD0(EBI)		
		0	1	0	CTS1(UART1)		
		0	1	1	TXD1		
		1	0	0	ACMP3_P (M05xxDN/DE Only)		
[7:0]	P0_MFP[7:0]	P0 Multiple Function Selection The pin function of P0 depends on P0_MFP and P0_ALT. Refer to P0_ALT for detailed description.					

Multiple Function Port1 Control Register (P1_MFP)

Register	Offset	R/W	Description	Reset Value
P1_MFP	GCR_BA+0x34	R/W	P1 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	P1_TYPE								
15	14	13	12	11	10	9	8		
	P1_ALT								
7	6	5	4	3	2	1	0		
	P1_MFP								

Bits	Description	Description					
[31:24]	Reserved	Reserved.	Reserved.				
[23:16]	P1_TYPEn	P1[7:0] Input Schmitt Trigger Function Enable Control 0 = P1[7:0] I/O input Schmitt Trigger function Disabled. 1 = P1[7:0] I/O input Schmitt Trigger function Enabled.					
		P1.7 Alternate Function The pin function of P1.7	on Selection 7 depends on P1_MFP[7]	and P1_ALT[7].			
		P1_ALT[7]	P1_MFP[7]	P1.7 function			
[15]	P1_ ALT[7]	0	0	P1.7			
		0	1	AIN7(ADC)			
		1	0	SPICLK0(SPI0)			
		1	1	ACMP2_P (M05xxDN/DE Only)			
		P1.6 Alternate Function Selection The pin function of P1.6 depends on P1_MFP[6] and P1_ALT[6].					
		P1_ALT[6]	P1_MFP[6]	P1.6 function			
[14]	P1_ ALT[6]	0	0	P1.6			
		0	1	AIN6(ADC)			
		1	0	MISO_0(SPI0)			
		1	1	ACMP2_N (M05xxDN/DE Only)			
		P1.5 Alternate Function Selection The pin function of P1.5 depends on P1_MFP[5] and P1_ALT[5].					
[13]	P1_ ALT[5]	P1_ALT[5]	P1_MFP[5]	P1.5 function			
		0	0	P1.5			

		0	1	AIN5(ADC)			
			0	MOSI_0(SPI0)			
		1	1	ACMP0_P			
				ACIVII U_I			
		P1.4 Alternate Function Selection The pin function of P1.4 depends on P1_MFP[4] and P1_ALT[4].					
		P1_ALT[4]	P1_MFP[4]	P1.4 function			
[12]	P1_ ALT[4]	0	0	P1.4			
		0	1	AIN4(ADC)			
		1	0	SPISS0(SPI0)			
		1	1	ACMP0_N			
		P1.3 Alternate Func The pin function of P	tion Selection 1.3 depends on P1_MFP[3] a	nd P1_ALT[3].			
		P1_ALT[3]	P1_MFP[3]	P1.3 function			
[11]	P1_ ALT[3]	0	0	P1.3			
		0	1	AIN3(ADC)			
		1	0	TXD1(UART1)			
		1	1	Reserved			
		P1.2 Alternate Function Selection The pin function of P1.2 depends on P1_MFP[2] and P1_ALT[2].					
		P1_ALT[2]	P1_MFP[2]	P1.2 function			
[10]	P1_ ALT[2]	0	0	P1.2			
		0	1	AIN2(ADC)			
		1	0	RXD1(UART1)			
		1	1	Reserved			
		P1.1 Alternate Func	tion Selection 1.1 depends on P1_MFP[1] a	nd P1 Al T[1]			
		P1_ALT[1]	P1_MFP[1]	P1.1 function			
[9]	P1_ ALT[1]	0	0	P1.1			
		0	1	AIN1(ADC)			
		1	0	T3(Timer3)			
		1	1	nWRH			
		P1.0 Alternate Func	tion Selection				
			1.0 depends on P1_MFP[0] a	nd P1_ALT[0].			
		P1_ALT[0]	P1_MFP[0]	P1.0 function			
[8]	P1_ ALT[0]	0	0	P1.0			
		0	1	AIN0(ADC)			
		1	0	T2(Timer2)			

		1	1	nWRL				
	P1 Multiple Function Selection							
[7:0]	P1_MFP[7:0]	The pin function of P1 deper	The pin function of P1 depends on P1_MFP and P1_ALT.					
		Refer to P1_ALT for detailed description.						

Multiple Function Port2 Control Register (P2_MFP)

Register	Offset	R/W	Description	Reset Value
P2_MFP	GCR_BA+0x38	R/W	P2 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	P2_TYPE								
15	14	13	12	11	10	9	8		
	P2_ALT								
7	6	5	4	3	2	1	0		
	P2_MFP								

Bits	Description						
[31:24]	Reserved	Reserved.	Reserved.				
[23:16]	P2_TYPEn	P2[7:0] Input Schmitt Trigger Function Enable Control 0 = P2[7:0] I/O input Schmitt Trigger function Disabled. 1 = P2[7:0] I/O input Schmitt Trigger function Enabled.					
		P2.7 Alternate Fund The pin function of P	tion Selection 2.7 depends on P2_MFP[7] a	nd P2_ALT[7].			
		P2_ALT[7]	P2_MFP[7]	P2.7 function			
[15]	P2_ ALT[7]	0	0	P2.7			
		0	1	AD15(EBI)			
		1	0	PWM7(PWMB channel 3)			
		1	1	Reserved			
		P2.6 Alternate Function Selection The pin function of P2.6 depends on P2_MFP[6] and P2_ALT[6].					
		P2_ALT[6]	P2_MFP[6]	P2.6 function			
[14]	P2_ ALT[6]	0	0	P2.6			
		0	1	AD14(EBI)			
		1	0	PWM6(PWMB channel 2)			
		1	1	ACMP1_O			
		P2.5 Alternate Function Selection The pin function of P2.5 depends on P2_MFP[5] and P2_ALT[5].					
[13]	P2_ ALT[5]	P2_ALT[5]	P2_MFP[5]	P2.5 function			
		0	0	P2.5			

		0	1	AD13(EBI)
		1	0	PWM5(PWMB channel 1)
		1	1	SDA1(I2C1) (M05xxDN/DE Only)
		P2.4 Alternate Func The pin function of P2	tion Selection 2.4 depends on P2_MFP[4]	and P2_ALT[4].
		P2_ALT[4]	P2_MFP[4]	P2.4 function
[12]	P2_ ALT[4]	0	0	P2.4
		0	1	AD12(EBI)
		1	0	PWM4(PWMB channel 0)
		1	1	SCL1(I2C1) (M05xxDN/DE Only)
		P2.3 Alternate Func The pin function of P2	tion Selection 2.3 depends on P2_MFP[3]	and P2_ALT[3].
		P2_ALT[3]	P2_MFP[3]	P2.3 function
[11]	P2_ ALT[3]	0	0	P2.3
		0	1	AD11(EBI)
		1	0	PWM3(PWMA channel 3)
		1	1	Reserved
		P2.2 Alternate Func The pin function of P2	tion Selection 2.2 depends on P2_MFP[2]	and P2_ALT[2].
		P2_ALT[2]	P2_MFP[2]	P2.2 function
[10]	P2_ ALT[2]	0	0	P2.2
		0	1	AD10(EBI)
		1	0	PWM2(PWMA channel 2)
		1	1	Reserved
		P2.1 Alternate Func The pin function of P2	tion Selection 2.1 depends on P2_MFP[1]	and P2_ALT[1].
		P2_ALT[1]	P2_MFP[1]	P2.1 function
[9]	P2_ ALT[1]	0	0	P2.1
		0	1	AD9(EBI)
		1	0	PWM1(PWMA channel 1)
		1	1	Reserved
[8]	P2_ ALT[0]	P2.0 Alternate Func The pin function of P2	tion Selection 2.0 depends on P2_MFP[0]	and P2_ALT[0].

		0	1	P2.0 AD8(EBI)
		1	0	PWM0(PWMA channel 0)
		1	1	Reserved
[7:0]	P2_MFP[7:0]	P2 Multiple Function Select The pin function of P2 dependence Refer to P2_ALT for detailed	ds on P2_MFP and P2_ALT	

Multiple Function Port3 Control Register (P3_MFP)

Register	Offset	R/W	Description	Reset Value
P3_MFP	GCR_BA+0x3C	R/W	P3 Multiple Function and Input Type Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	P3_TYPE									
15	14	13	12	11	10	9	8			
	P3_ALT									
7	6	5	4	3	2	1	0			
	P3_MFP									

Bits	Description	iption						
[31:24]	Reserved	Reserved.	Reserved.					
[23:16]	P3_TYPEn	P3[7:0] Input Schmitt Trigger Function Enable 0 = P3[7:0] I/O input Schmitt Trigger function Disabled. 1 = P3[7:0] I/O input Schmitt Trigger function Enabled.						
		P3.7 Alternate Function The pin function of P3.7 d	Selection depends on P3_MFP[7] and I	P3_ALT[7].				
		P3_ALT[7]	P3_MFP[7]	P3.7 function				
[15]	P3_ ALT[7]	0	0	P3.7				
		0	1	nRD(EBI)				
		1	х	Reserved				
		P3.6 Alternate Function Selection The pin function of P3.6 depends on P3_MFP[6] and P3_ALT[6].						
		P3_ALT[6]	P3_MFP[6]	P3.6 function				
[14]	P3_ ALT[6]	0	0	P3.6				
		0	1	nWR(EBI)				
		1	0	CKO(Clock Driver output)				
		1	1	ACMP0_O				
		P3.5 Alternate Function The pin function of P3.5 d	P3_ALT[5].					
		P3_ALT[5]	P3_MFP[5]	P3.5 function				
[13]	P3_ ALT[5]	0	0	P3.5				
		0	1	T1(Timer1)				
		1	0	SCL0(I ² C0)				

		1	1	CKO(Clock Driver output) (M05xxDN/DE Only)			
		P3.4 Alternate Function Selection The pin function of P3.4 depends on P3_MFP[4] and P3_ALT[4].					
			1	1			
		P3_ALT[4]	P3_MFP[4]	P3.4 function			
[12]	P3_ ALT[4]	0	0	P3.4			
		0	1	T0(Timer0)			
		1	0	SDA0(I ² C0)			
		1	1	Reserved			
		P3.3 Alternate Fund The pin function of P	tion Selection 3.3 depends on P3_MFP[3]	and P3_ALT[3].			
		P3_ALT[3]	P3_MFP[3]	P3.3 function			
[11]	P3_ ALT[3]	0	0	P3.3			
		0	1	nINT1			
		1	0	MCLK(EBI)			
		1	1	T1EX			
		P3.2 Alternate Function Selection The pin function of P3.2 depends on P3_MFP[2] and P3_ALT[2].					
		P3_ALT[2]	P3_MFP[2]	P3.2 function			
[10]	P3_ ALT[2]	0	0	P3.2			
		0	1	nINT0			
		1	0	TOEX			
		1	1	Reserved			
		P3.1 Alternate Function Selection The pin function of P3.1 depends on P3_MFP[1] and P3_ALT[1].					
		P3_ALT[1]	P3_MFP[1]	P3.1 function			
[9]	P3_ ALT[1]	0	0	P3.1			
[0]		0	1	TXD(UART0)			
		1	0	ACMP1_P			
		1	1	Reserved			
		P3.0 Alternate Fund The pin function of P	tion Selection 3.0 depends on P3_MFP[0]	and P3_ALT[0].			
		P3_ALT[0]	P3_MFP[0]	P3.0 function			
[8]	P3_ ALT[0]	0	0	P3.0			
1-1		0	1	RXD(UART0)			
		1	0	ACMP1_N			
		1	1	Reserved			
[7:0]	P3_MFP[7:0]						
[· .~]	. 5 1 [7.0]	P3 Multiple Function Selection					

The pin function of P3 depends on P3_MFP and P3_ALT.
Refer to P3_ALT for detailed description.

Multiple Function Port4 Control Register (P4_MFP)

Register	Offset	R/W	Description	Reset Value
P4_MFP	GCR_BA+0x40	R/W	P4 Multiple Function and Input Type Control Register	0x0000_00C0

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	P4_TYPE									
15	14	13	12	11	10	9	8			
	P4_ALT									
7	6	5	4	3	2	1	0			
	P4_MFP									

Bits	Description							
[31:24]	Reserved	Reserved.	Reserved.					
[23:16]	P4_TYPEn	P4[7:0] Input Schmitt Trigger Function Enable Control 0= P4[7:0] I/O input Schmitt Trigger function Disabled. 1= P4[7:0] I/O input Schmitt Trigger function Enabled.						
		P4.7 Alternate Fund The pin function of P	tion Selection 4.7 depends on P4_MFP[7] a	and P4_ALT[7].				
		P4_ALT[7]	P4_MFP[7]	P4.7 function				
[15]	P4_ ALT[7]	0	0	P4.7				
		0	1	ICE_DAT(ICE)				
		1	х	Reserved				
		P4.6 Alternate Function Selection The pin function of P4.6 depends on P4_MFP[6] and P4_ALT[6].						
		P4_ALT[6]	P4_MFP[6]	P4.6 function				
[14]	P4_ ALT[6]	0	0	P4.6				
		0	1	ICE_CLK(ICE)				
		1	х	Reserved				
		P4.5 Alternate Function Selection The pin function of P4.5 depends on P4_MFP[5] and P4_ALT[5].						
[13]		P4_ALT[5]	P4_MFP[5]	P4.5 function				
	P4_ ALT[5]	0	0	P4.5				
		0	1	ALE(EBI)				
		1	0	SDA1(I ² C1) (M05xxDN/DE Only)				

		1		1		Reserved		
		P4.4 Alternate I	unction S	election				
		The pin function of P4.4 depends on P4_MFP[4] and P4_ALT[4].						
		P4_ALT[4]		P4_MFF	P[4]	P4.4 function		
[12]	P4_ ALT[4]	0		0		P4.4		
		0		1		nCS (EBI)		
		1		0		SCL1(I ² C1) (M05xxDN/DE Only)		
		1		1		Reserved		
		P4.3 Alternate I	unction S	election				
		The pin function	of P4.3 de	pends on	P4_MFP[3] and	P4_ALT[3].		
		P4_ALT[3]	P4_MF	P[3]	P4_MFP[1]	P4.3 function		
		0	0		х	P4.3		
[11]	P4_ ALT[3]	0	1		х	PWM3(PWM generator 2) Ouput		
		0	1		1	PWM3(PWM generator 2) Capture		
		1	х		х	Reserved		
		Note: If the pin function of P4.3 selects as PWM3(PWM generator 2) Capture, the pin function of P4.1 must be PWM1(PWM generator 0) or reserved.						
		P4.2 Alternate Function Selection The pin function of P4.2 depends on P4_MFP[2] and P4_ALT[2].						
		P4_ALT[2]		P4_MFP[2]		P4.2 function		
[10]	P4_ ALT[2]	0		0		P4.2		
		0		1		PWM2(PWM generator 2)		
		1		x		Reserved		
		P4.1 Alternate Function Selection The pin function of P4.1 depends on P4_MFP[1] and P4_ALT[1].						
		P4_ALT[1]		P4_MFP[1]		P4.1 function		
[9]	P4_ ALT[1]	0		0		P4.1		
		0		1		PWM1(PWM generator 0)		
		1		0		T3EX		
		1		1		Reserved		
		P4.0 Alternate Function Selection The pin function of P4.0 depends on P4_MFP[0] and P4_ALT[0].						
		P4_ALT[0]			P[0]	P4.0 function		
101	P4_ ALT[0]	0		0	r-1	P4.0		
[8]	F4_ ALI[U]	0		1		PWM0(PWM generator 0)		
						T2EX		
		1		0		Reserved		
		1		1		IVESELVER		

		P4 Multiple Function Selection
[7:0]	P4_MFP[7:0]	The pin function of P4 depends on P4_MFP and P4_ALT.
		Refer to P4_ALT for detailed description.

Register Write-Protection Control Register (REGWRPROT)

nuvoTon

Some of the system control registers need to be protected to avoid inadvertent write and disturb the chip operation. These system control registers are protected after the power on reset till user to disable register protection. For user to program these protected registers, a register protection disable sequence needs to be followed by a special programming. The register protection disable sequence is writing the data "59h", "16h" "88h" to the register REGWRPROT address at 0x5000 0100 continuously. Any different data value, different sequence or any other write to other address during these three data writing will abort the whole sequence.

After the protection is disabled, user can check the protection disable bit at address 0x5000_0100 bit0, "1" is protection disable, "0" is protection enable. Then user can update the target protected register value and then write any data to the address "0x5000_0100" to enable register protection.

Write this register to disable/enable register protection, and reading it to get the REGPROTDIS status.

Register	Offset	R/W	Description	Reset Value
REGWRPROT	GCR_BA+0x100	R/W	Register Write-Protection Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	REGWRPROT [0] REGPROTDIS									

Bits	Description	Description							
[31:16]	Reserved	Reserved.	eserved.						
[7:0]	REGWRPROT	Register Write-protection Code (Write Only) Some registers have write-protection function. Writing these registers have to disable the protected function by writing the sequence value "59h", "16h", "88h" to this field. After this sequence is completed, the REGPROTDIS bit will be set to 1 and write-protection registers can be normal write.							
[0]	REGPROTDIS	Register Write-protection 0 = Write-protection Enablis ignored. 1 = Write-protection Disal The Protected registers a	oled for writing prote	octed registers. Any write to the protected register					
	Registers Address Note								
		IPRSTC1	0x5000_0008						

BODCR	0x5000_0018	
PORCR	0x5000_0024	
PWRCON	0x5000_0200	Bit[6] is not protected for power wake-up interrupt clear.
APBCLK bit[0]	0x5000_0208	Bit[0] is watchdog clock enable.
CLKSEL0	0x5000_0210	HCLK and CPU STCLK clock source select.
CLKSEL1 bit[1:0]	0x5000_0214	Watchdog clock source select.
NMI_SEL bit[8]	0x5000_0380	NMI interrupt enable.
ISPCON	0x5000_C000	Flash ISP Control.
ISPTRG	0x5000_C010	ISP Trigger Control.
WTCR	0x4000_4000	Watchdog Timer Control.
FATCON	0x5000_C018	Flash Access Time Control.

6.2.7 System Timer (SysTick)

The Cortex[®]-M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.

When system timer is enabled, it will count down from the value in the SysTick Current Value Register (SYST_CVR) to 0, and reload (wrap) to the value in the SysTick Reload Value Register (SYST_RVR) on the next clock cycle, then decrement on subsequent clocks. When the counter transitions to 0, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

The SYST_CVR value is UNKNOWN on reset. Software should write to the register to clear it to 0 before enabling the feature. This ensures the timer will count from the SYST_RVR value rather than an arbitrary value when it is enabled.

If the SYST_RVR is 0, the timer will be maintained with a current value of 0 after it is reloaded with this value. This mechanism can be used to disable the feature independently from the timer enable bit.

For more detailed information, please refer to the "ARM® Cortex®-M0 Technical Reference Manual" and "ARM® v6-M Architecture Reference Manual".

6.2.8 System Timer Control Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
SYST Base Address: SYST_BA = 0xE000_E010							
SYST_CSR	SYST_BA+0x00	R/W	SysTick Control and Status Register	0x0000_0000			
SYST_RVR	SYST_BA+0x04	R/W	SysTick Reload Value Register	0xXXXX_XXXX			
SYST_CVR	SYST_BA+0x08	R/W	SysTick Current Value Register	0xXXXX_XXXX			

SysTick Control and Status (SYST_CSR)

Register	Offset	R/W	Description	Reset Value
SYST_CSR	SYST_BA+0x00	R/W	SysTick Control and Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
		Reserved	CLKSRC	TICKINT	ENABLE				

Bits	Description	Description							
[31:17]	Reserved	Reserved.							
[16]	COUNTFLAG	System Tick Counter Flag Returns 1 if timer counted to 0 since last time this register was read. COUNTFLAG is set by a count transition from 1 to 0. COUNTFLAG is cleared on read or by a write to the Current Value register.							
[15:3]	Reserved	teserved.							
[2]	CLKSRC	System Tick Clock Source Selection 0 = Clock source is optional, refer to STCLK_S. 1 = Core clock used for SysTick timer.							
[1]	TICKINT	System Tick Interrupt Enabled 0 = Counting down to 0 does not cause the SysTick exception to be pended. Software can use COUNTFLAG to determine if a count to 0 has occurred. 1 = Counting down to 0 will cause the SysTick exception to be pended. Clearing the SysTick Current Value register by a register write in software will not cause SysTick to be pended.							
[0]	ENABLE	System Tick Counter Enabled 0 = Counter Disabled. 1 = Counter Enabled and will operate in a multi-shot manner.							

SysTick Reload Value Register (SYST_RVR)

Register	Offset	R/W	Description	Reset Value
SYST_RVR	SYST_BA+0x04	R/W	SysTick Reload Value Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	RELOAD									
15	14	13	12	11	10	9	8			
			REL	OAD						
7	6	5	4	3	2	1	0			
	RELOAD									

Bits	Description	Description						
[31:24]	Reserved	eserved Reserved.						
[23:0]	RELOAD	System Tick Reload Value Value to load into the Current Value register when the counter reaches 0.						

SysTick Current Value Register (SYST_CVR)

Register	Offset	R/W	Description	Reset Value
SYST_CVR	SYST_BA+0x08	R/W	SysTick Current Value Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			CURI	RENT						
15	14	13	12	11	10	9	8			
	CURRENT									
7	6	5	4	3	2	1	0			
	CURRENT									

Bits	Description	Description				
[31:24]	Reserved	Reserved Reserved.				
[23:0]	CURRENT	System Tick Current Value Current counter value. This is the value of the counter at the time it is sampled. The counter does not provide read-modify-write protection. The register is write-clear. A software write of any value will clear the register to 0. Unsupported bits RAZ (see SysTick Reload Value register).				

6.2.9 Nested Vectored Interrupt Controller (NVIC)

The Cortex[®]-M0 provides an interrupt controller as an integral part of the exception mode, named as "Nested Vectored Interrupt Controller (NVIC)", which is closely coupled to the processor core and provides following features:

- Nested and Vectored interrupt support
- Automatic processor state saving and restoration
- Reduced and deterministic interrupt latency

The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in "Handler Mode". This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority. All of the interrupts and most of the system exceptions can be configured to different priority levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the current running one's priority. If the priority of the new interrupt is higher than the current one, the new interrupt handler will override the current handler.

When an interrupt is accepted, the starting address of the interrupt service routine (ISR) is fetched from a vector table in memory. There is no need to determine which interrupt is accepted and branch to the starting address of the correlated ISR by software. While the starting address is fetched, NVIC will also automatically save processor state including the registers "PC, PSR, LR, R0~R3, R12" to the stack. At the end of the ISR, the NVIC will restore the mentioned registers from stack and resume the normal execution. Thus it will take less and deterministic time to process the interrupt request.

The NVIC supports "Tail Chaining" which handles back-to-back interrupts efficiently without the overhead of states saving and restoration and therefore reduces delay time in switching to pending ISR at the end of current ISR. The NVIC also supports "Late Arrival" which improves the efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will give priority to the higher one without delay penalty. Thus it advances the real-time capability.

For more detailed information, please refer to the "ARM® Cortex®-M0 Technical Reference Manual" and "ARM® v6-M Architecture Reference Manual".

6.2.9.1 Exception Model and System Interrupt Map

The following table lists the exception model supported by NuMicro[®] M051 series. Software can set four levels of priority on some of these exceptions as well as on all interrupts. The highest user-configurable priority is denoted as "0" and the lowest priority is denoted as "3". The default priority of all the user-configurable interrupts is "0". Note that priority "0" is treated as the fourth priority on the system, after three system exceptions "Reset", "NMI" and "Hard Fault".

Exception Name	Vector Number	Priority
Reset	1	-3
NMI	2	-2
Hard Fault	3	-1
Reserved	4 ~ 10	Reserved
SVCall	11	Configurable
Reserved	12 ~ 13	Reserved

PendSV	14	Configurable	
SysTick	15	Configurable	
Interrupt (IRQ0 ~ IRQ31)	16 ~ 47	Configurable	

Table 6-2 Exception Model

Exception Number	Vector Address	Interrupt Number (Bit In Interrupt Registers)	Interrupt Name	Source Module	Interrupt Description	Power- Down Wakeup
1-15					System exceptions	
16	0x40	0	BOD_INT	Brown-out	Brown-out low voltage detected interrupt	Yes
17	0x44	1	1 WDT_INT WDT Watchdog Timer interrupt		Yes	
18	0x48	2	EINT0	GPIO	External signal interrupt from P3.2 pin	Yes
19	0x4C	3	EINT1	GPIO	External signal interrupt from P3.3 pin	Yes
20	0x50	4	GP01_INT	GPIO	External signal interrupt from P0[7:0] / P1[7:0]	Yes
21	0x54	5	GP234_INT	GPIO	External interrupt from P2[7:0]/P3[7:0]/P4[7:0], except P32 and P33	Yes
22	0x58	6	PWMA_INT	PWM0~3	PWM0, PWM1, PWM2 and PWM3 interrupt	No
23	0x5C	7	PWMB_INT PWM4~7 PWM4, PWM5, PWM6 and PWM7 interrupt		No	
24	0x60	8	TMR0_INT TMR0 Timer 0 interrupt		No	
25	0x64	9	TMR1_INT TMR1 Timer 1 interrupt		No	
26	0x68	10	TMR2_INT	TMR2	Timer 2 interrupt	No
27	0x6C	11	TMR3_INT	TMR3	Timer 3 interrupt	No
28	0x70	12	UART0_INT	UART0	UART0 interrupt	Yes
29	0x74	13	UART1_INT	UART1	UART1 interrupt	Yes
30	0x78	14	SPI0_INT	SPI0	SPI0 interrupt	No
31	0x7C	15	SPI1_INT	SPI1	SPI1 interrupt	No
32-33	0x80-0x84	16-17	Reserved		-	
34	0x88	18	I2C0_INT	l ² C0	0 I ² C0 interrupt	
35	0x8C	19	I2C1_INT	I ² C1	I ² C1 interrupt (M05xxDN/DE Only)	Yes

						(M05xxDN/ DE Only)
36-40	0x90-0xA0	20-24	Reserved	-	-	-
41	0xA4	25	ACMP01_INT	ACMP0/1	Analog Comparator 0 or Comparator 1 interrupt	Yes
42	0xA8	26	ACMP23_INT	ACMP2/3	Analog Comparator 2 or Comparator 3 interrupt (M05xxDN/DE Only)	Yes
43	0xAC	27	Reserved			
44	0xB0	28	PWRWU_INT	CLKC	Clock controller interrupt for chip wake-up from Power-down state	Yes
45	0xB4	29	ADC_INT	ADC	ADC interrupt	No
46-47	0xB8-0xBC	30-31	Reserved	-	-	

Table 6-3 System Interrupt Map Vector Table

6.2.9.2 Vector Table

nuvoton

When an interrupt is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table base address is fixed at 0x00000000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with exception handler entry as illustrated in previous section.

Vector Table Word Offset	Description
0	SP_main – The Main stack pointer
Vector Number	Exception Entry Pointer using that Vector Number

Table 6-4 Vector Figure Format

6.2.9.3 Operation Description

NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current enabled state of the corresponding interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the interrupt will not be activated. If an interrupt is Active when it is disabled, it remains in its Active state until cleared by reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt.

NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current pended state of the corresponding interrupts. The Clear-Pending Register has no effect on the execution status of an Active interrupt.

NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting four interrupts).

The general registers associated with the NVIC are all accessible from a block of memory in the System Control Space and will be described in next section.

6.2.9.4 NVIC Control Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
	NVIC Base Address: NVIC_BA = 0xE000_E100							
NVIC_ISER	NVIC_BA+0x000	R/W	IRQ0 ~ IRQ31 Set-Enable Control Register	0x0000_0000				
NVIC_ICER	NVIC_BA+0x080	R/W	IRQ0 ~ IRQ31 Clear-Enable Control Register	0x0000_0000				
NVIC_ISPR	NVIC_BA+0x100	R/W	IRQ0 ~ IRQ31 Set-Pending Control Register	0x0000_0000				
NVIC_ICPR	NVIC_BA+0x180	R/W	IRQ0 ~ IRQ31 Clear-Pending Control Register	0x0000_0000				
NVIC_IPR0	NVIC_BA+0x300	R/W	IRQ0 ~ IRQ3 Interrupt Priority Control Register	0x0000_0000				
NVIC_IPR1	NVIC_BA+0x304	R/W	IRQ4 ~ IRQ7 Interrupt Priority Control Register	0x0000_0000				
NVIC_IPR2	NVIC_BA+0x308	R/W	IRQ8 ~ IRQ11 Interrupt Priority Control Register	0x0000_0000				
NVIC_IPR3	NVIC_BA+0x30C	R/W	IRQ12 ~ IRQ15 Interrupt Priority Control Register	0x0000_0000				
NVIC_IPR4	NVIC_BA+0x310	R/W	IRQ16 ~ IRQ19 Interrupt Priority Control Register	0x0000_0000				
NVIC_IPR5	NVIC_BA+0x314	R/W	IRQ20 ~ IRQ23 Interrupt Priority Control Register	0x0000_0000				
NVIC_IPR6	NVIC_BA+0x318	R/W	IRQ24 ~ IRQ27 Interrupt Priority Control Register	0x0000_0000				
NVIC_IPR7	NVIC_BA+0x31C	R/W	IRQ28 ~ IRQ31 Interrupt Priority Control Register	0x0000_0000				

IRQ0 ~ IRQ31 Set-Enable Control Register (NVIC_ISER)

Register	Offset	R/W	Description	Reset Value
NVIC_ISER	NVIC_BA+0x000	R/W	IRQ0 ~ IRQ31 Set-Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	SETENA						
23	22	21	20	19	18	17	16
			SET	ENA			
15	14	13	12	11	10	9	8
	SETENA						
7	6	5	4	3	2	1	0
SETENA							

Bits	Description	Description				
[31:0]	SETENA	Interrupt Enable Register Enable one or more interrupts. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Write: 0 = No effect. 1 = Write 1 to enable associated interrupt. Read: 0 = Associated interrupt status is Disabled. 1 = Associated interrupt status is Enabled. Read value indicates the current enable status.				

IRQ0 ~ IRQ31 Clear-Enable Control Register (NVIC_ICER)

Register	Offset	R/W	Description	Reset Value
NVIC_ICER	NVIC_BA+0x080	R/W	IRQ0 ~ IRQ31 Clear-Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	CLRENA							
23	22	21	20	19	18	17	16	
	CLRENA							
15	14	13	12	11	10	9	8	
	CLRENA							
7	6	5	4	3	2	1	0	
	CLRENA							

Bits	Description	Description					
[31:0]	Description CLRENA	Interrupt Disable Register Disable one or more interrupts. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Write: 0 = No effect. 1 = Write 1 to disable associated interrupt. Read: 0 = Associated interrupt status is Disabled. 1 = Associated interrupt status is Enabled.					
		Read value indicates the current enable status.					

IRQ0 ~ IRQ31 Set-Pending Control Register (NVIC_ISPR)

Register	Offset	R/W	Description	Reset Value
NVIC_ISPR	NVIC_BA+0x100	R/W	IRQ0 ~ IRQ31 Set-Pending Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	SETPEND							
23	22	21	20	19	18	17	16	
			SETF	PEND				
15	14	13	12	11	10	9	8	
	SETPEND							
7	6	5	4	3	2	1	0	
	SETPEND							

Bits	Description	Description					
[31:0]	SETPEND	Set Interrupt Pending Register Write: 0 = No effect. 1 = Write 1 to set pending state. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Read: 0 = Associated interrupt in not in pending status. 1 = Associated interrupt is in pending status. Read value indicates the current pending status.					

IRQ0 ~ IRQ31 Clear-Pending Control Register (NVIC_ICPR)

Register	Offset	R/W	Description	Reset Value
NVIC_ICPR	NVIC_BA+0x180	R/W	IRQ0 ~ IRQ31 Clear-Pending Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	CLRPEND							
23	22	21	20	19	18	17	16	
	CLRPEND							
15	14	13	12	11	10	9	8	
	CLRPEND							
7	6	5	4	3	2	1	0	
	CLRPEND							

Bits	Description	Description				
[31:0]	CLRPEND	Clear Interrupt Pending Register Write: 0 = No effect. 1 = Write 1 to clear pending state. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Read: 0 = Associated interrupt in not in pending status. 1 = Associated interrupt is in pending status. Read value indicates the current pending status.				

IRQ0 ~ IRQ3 Interrupt Priority Register (NVIC_IPR0)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR0	NVIC_BA+0x300	R/W	IRQ0 ~ IRQ3 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PR	I_3			Reserved			
23	22	21	20	19	18	17	16
PR	I_2			Reserved			
15	14	13	12	11	10	9	8
PR	I_1	Reserved					
7	6	5	4	3	2	1	0
PRI_0		Reserved					

Bits	Description	Description				
[31:30]	PRI_3	Priority of IRQ3 "0" denotes the highest priority and "3" denotes lowest priority.				
[23:22]	PRI_2	Priority of IRQ2 "0" denotes the highest priority and "3" denotes lowest priority.				
[15:14]	PRI_1	Priority of IRQ1 "0" denotes the highest priority and "3" denotes lowest priority.				
[7:6]	PRI_0	Priority of IRQ0 "0" denotes the highest priority and "3" denotes lowest priority.				

IRQ4 ~ IRQ7 Interrupt Priority Register (NVIC_IPR1)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR1	NVIC_BA+0x304	R/W	IRQ4 ~ IRQ7 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
PR	I_7			Rese	Reserved				
23	22	21	20	19	18	17	16		
PR	I_6	Reserved			ved				
15	14	13	12	11	10	9	8		
PR	I_5		Re			served			
7	6	5	4	3	2	1	0		
PRI_4		Rese	erved						

Bits	Description	Description			
[31:30]	PRI_7	PRI_7 Priority of IRQ7 "0" denotes the highest priority and "3" denotes lowest priority.			
[23:22]	PRI_6	Priority of IRQ6 "0" denotes the highest priority and "3" denotes lowest priority.			
[15:14]	PRI_5	Priority of IRQ5 "0" denotes the highest priority and "3" denotes lowest priority.			
[7:6]	Priority of IRQ4 "0" denotes the highest priority and "3" denotes lowest priority.				

IRQ8 ~ IRQ11 Interrupt Priority Register (NVIC_IPR2)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR2	NVIC_BA+0x308	R/W	IRQ8 ~ IRQ11 Interrupt Priority Control Register	0x0000_0000

31	30	29	29 28 27 26 25 24					
PR	_11			Rese	Reserved			
23	22	21	20	19	18	17	16	
PR	_10			Reserved				
15	14	13	12	11	10	9	8	
PR	l_9			Reserved				
7	6	5	4	3	2	1	0	
PR	RI_8		Rese	erved				

Bits	Description	Description			
[31:30]	I PRI 11	Priority of IRQ11 "0" denotes the highest priority and "3" denotes lowest priority.			
[23:22]	PRI 10	Priority of IRQ10 "0" denotes the highest priority and "3" denotes lowest priority.			
[15:14]	PRI_9	Priority of IRQ9 "0" denotes the highest priority and "3" denotes lowest priority.			
[7:6]	PRI_8	Priority of IRQ8 "0" denotes the highest priority and "3" denotes lowest priority.			

IRQ12 ~ IRQ15 Interrupt Priority Register (NVIC_IPR3)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR3	NVIC_BA+0x30C	R/W	IRQ12 ~ IRQ15 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
PRI	_15			Rese	erved				
23	22	21	20	19	18	17	16		
PRI	_14		Reserved						
15	14	13	12	11	10	9	8		
PRI	PRI_13		Reserved						
7	6	5	4	3	2	1	0		
PRI_12			Rese	erved					

Bits	Description	Description			
[31:30]	PRI_15	Priority of IRQ15 "0" denotes the highest priority and "3" denotes lowest priority.			
[23:22]	PRI_14	Priority of IRQ14 "0" denotes the highest priority and "3" denotes lowest priority.			
[15:14]	PRI_13	Priority of IRQ13 "0" denotes the highest priority and "3" denotes lowest priority.			
[7:6]	PRI_12	Priority of IRQ12 "0" denotes the highest priority and "3" denotes lowest priority.			

IRQ16 ~ IRQ19 Interrupt Priority Register (NVIC_IPR4)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR4	NVIC_BA+0x310	R/W	IRQ16 ~ IRQ19 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PR	_19			Reserved			
23	22	21	20	19	18	17	16
PR	_18			Reserved			
15	14	13	12	11	10	9	8
PR	PRI_17			Reserved			
7	6	5	4	3	2	1	0
PRI_16			Rese	erved			

Bits	Description	Description			
[31:30]	PRI_19	PRI_19 Priority of IRQ19 "0" denotes the highest priority and "3" denotes lowest priority.			
[23:22]	PRI_18	iority of IRQ18 denotes the highest priority and "3" denotes lowest priority.			
[15:14]	PRI_17	Priority of IRQ17 "0" denotes the highest priority and "3" denotes lowest priority.			
[7:6]	PRI_16	Priority of IRQ16 "0" denotes the highest priority and "3" denotes lowest priority.			

IRQ20 ~ IRQ23 Interrupt Priority Register (NVIC_IPR5)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR5	NVIC_BA+0x314	R/W	IRQ20 ~ IRQ23 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_23			Rese	Reserved		
23	22	21	20	19	18	17	16
PRI	_22	Reserved					
15	14	13	12	11	10	9	8
PRI	_21	Reserved					
7	6	5	4	3	2	1	0
PRI	_20		Reserved				

Bits	Description	Description					
[31:30]	PRI_23	Priority of IRQ23 "0" denotes the highest priority and "3" denotes lowest priority.					
[23:22]	PRI_22	Priority of IRQ22 "0" denotes the highest priority and "3" denotes lowest priority.					
[15:14]	PRI_21	Priority of IRQ21 "0" denotes the highest priority and "3" denotes lowest priority.					
[7:6]	PRI_20	Priority of IRQ20 "0" denotes the highest priority and "3" denotes lowest priority.					

IRQ24 ~ IRQ27 Interrupt Priority Register (NVIC_IPR6)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR6	NVIC_BA+0x318	R/W	IRQ24 ~ IRQ27 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PR	_27			Reserved			
23	22	21	20	19	18	17	16
PRI	_26	Reserved					
15	14	13	12	11	10	9	8
PR	_25	Reserved					
7	6	5	4	3	2	1	0
PR	_24	Reserved					

Bits	Description	Description					
[31:30]	PRI_27	Priority of IRQ27 "0" denotes the highest priority and "3" denotes lowest priority.					
[23:22]	IPRI 26	Priority of IRQ26 "0" denotes the highest priority and "3" denotes lowest priority.					
[15:14]	PRI_25	Priority of IRQ25 "0" denotes the highest priority and "3" denotes lowest priority.					
[7:6]	PRI_24	Priority of IRQ24 "0" denotes the highest priority and "3" denotes lowest priority.					

IRQ28 ~ IRQ31 Interrupt Priority Register (NVIC_IPR7)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR7	NVIC_BA+0x31C	R/W	IRQ28 ~ IRQ31 Interrupt Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	PRI_31			Reserved			
23	22	21	20	19	18	17	16
PRI	_30	Reserved					
15	14	13	12	11	10	9	8
PRI	PRI_29			Reserved			
7	6	5	4	3	2	1	0
PRI	_28	Reserved					

Bits	Description	Description					
[31:30]	PRI_31	Priority of IRQ31 "0" denotes the highest priority and "3" denotes lowest priority.					
[23:22]	PRI_30	Priority of IRQ30 "0" denotes the highest priority and "3" denotes lowest priority.					
[15:14]	PRI_29	Priority of IRQ29 "0" denotes the highest priority and "3" denotes lowest priority.					
[7:6]	PRI_28	Priority of IRQ28 "0" denotes the highest priority and "3" denotes lowest priority.					

Interrupt Source Control Registers

Besides the interrupt control registers associated with the NVIC, the NuMicro® M051 series also implements some specific control registers to facilitate the interrupt functions, including "interrupt source identification", "NMI source selection" and "interrupt test mode", which are described below.

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
INT Base Add INT_BA = 0x5				•
IRQ0_SRC	INT_BA+0x00	R	IRQ0 (BOD) Interrupt Source Identity	0xXXXX_XXXX
IRQ1_SRC	INT_BA+0x04	R	IRQ1 (WDT) Interrupt Source Identity	0xXXXX_XXXX
IRQ2_SRC	INT_BA+0x08	R	IRQ2 (EINT0) Interrupt Source Identity	0xXXXX_XXXX
IRQ3_SRC	INT_BA+0x0C	R	IRQ3 (EINT1) Interrupt Source Identity	0xXXXX_XXXX
IRQ4_SRC	INT_BA+0x10	R	IRQ4 (P0/1) Interrupt Source Identity	0xXXXX_XXXX
IRQ5_SRC	INT_BA+0x14	R	IRQ5 (P2/3/4) Interrupt Source Identity	0xXXXX_XXXX
IRQ6_SRC	INT_BA+0x18	R	IRQ6 (PWMA) Interrupt Source Identity	0xXXXX_XXXX
IRQ7_SRC	INT_BA+0x1C	R	IRQ7 (PWMB) Interrupt Source Identity	0xXXXX_XXXX
IRQ8_SRC	INT_BA+0x20	R	IRQ8 (TMR0) Interrupt Source Identity	0xXXXX_XXXX
IRQ9_SRC	INT_BA+0x24	R	IRQ9 (TMR1) Interrupt Source Identity	0xXXXX_XXXX
IRQ10_SRC	INT_BA+0x28	R	IRQ10 (TMR2) Interrupt Source Identity	0xXXXX_XXXX
IRQ11_SRC	INT_BA+0x2C	R	IRQ11 (TMR3) Interrupt Source Identity	0xXXXX_XXXX
IRQ12_SRC	INT_BA+0x30	R	IRQ12 (UART0) Interrupt Source Identity	0xXXXX_XXXX
IRQ13_SRC	INT_BA+0x34	R	IRQ13 (UART1) Interrupt Source Identity	0xXXXX_XXXX
IRQ14_SRC	INT_BA+0x38	R	IRQ14 (SPI0) Interrupt Source Identity	0xXXXX_XXXX
IRQ15_SRC	INT_BA+0x3C	R	IRQ15 (SPI1) Interrupt Source Identity	0xXXXX_XXXX
IRQ16_SRC	INT_BA+0x40	R	Reserved.	0xXXXX_XXXX
IRQ17_SRC	INT_BA+0x44	R	Reserved.	0xXXXX_XXXX
IRQ18_SRC	INT_BA+0x48	R	IRQ18 (I ² C0) Interrupt Source Identity	0xXXXX_XXXX
IRQ19_SRC	INT_BA+0x4C	R	IRQ19 (I ² C1) Interrupt Source Identity (M05xxDN/DE Only)	0xXXXX_XXXX
IRQ20_SRC	INT_BA+0x50	R	Reserved.	0xXXXX_XXXX
IRQ21_SRC	INT_BA+0x54	R	Reserved.	0xXXXX_XXXX
IRQ22_SRC	INT_BA+0x58	R	Reserved.	0xXXXX_XXXX
IRQ23_SRC	INT_BA+0x5C	R	Reserved.	0xXXXX_XXXX

IRQ24_SRC	INT_BA+0x60	R	Reserved.	0xXXXX_XXXX
IRQ25_SRC	INT_BA+0x64	R	IRQ25 (ACMP01) Interrupt Source Identity	0xXXXX_XXXX
IRQ26_SRC	INT_BA+0x68	R	IRQ26 (ACMP23) Interrupt Source Identity (M05xxDN/DE Only)	0xXXXX_XXXX
IRQ27_SRC	INT_BA+0x6C	R	Reserved.	0xXXXX_XXXX
IRQ28_SRC	INT_BA+0x70	R	IRQ28 (PWRWU) Interrupt Source Identity	0xXXXX_XXXX
IRQ29_SRC	INT_BA+0x74	R	IRQ29 (ADC) Interrupt Source Identity	0xXXXX_XXXX
IRQ30_SRC	INT_BA+0x78	R	Reserved.	0xXXXX_XXXX
IRQ31_SRC	INT_BA+0x7C	R	Reserved.	0xXXXX_XXXX
NMI_SEL	INT_BA+0x80	R/W	NMI Source Interrupt Select Control Register	0x0000_0000

IRQ0 (BOD) Interrupt Source Identity Register (IRQ0_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ0_SRC	INT_BA+0x00	R	IRQ0 (BOD) Interrupt Source Identity	0xXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved					INT_SRC					

Bits	Description	escription					
[2:0]		IRQ0 Source Identity INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ0 source is not from BOD interrupt (BOD_INT). 1 = IRQ0 source is from BOD interrupt (BOD_INT). Note: When the interrupt flag is cleared, the corresponding bits will be cleared					
		automatically.					

IRQ1 (WDT) Interrupt Source Identity Register (IRQ1_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ1_SRC	INT_BA+0x04	R	IRQ1 (WDT) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved				INT_SRC						

Bits	Description	escription					
[2:0]	INT_SRC	IRQ1 Source Identity INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ1 source is not from watchdog interrupt (WDT_INT). 1 = IRQ1 source is from watchdog interrupt (WDT_INT). Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.					

IRQ2 (EINT0) Interrupt Source Identity Register (IRQ2_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ2_SRC	INT_BA+0x08	R	IRQ2 (EINT0) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved					INT_SRC					

Bits	Description	escription					
[2:0]	INT_SRC	IRQ2 Source Identity INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ2 source is not from external signal interrupt 0 – P3.2 (EINT0). 1 = IRQ2 source is from external signal interrupt 0 – P3.2 (EINT0). Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.					

IRQ3 (EINT1) Interrupt Source Identity Register (IRQ3_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ3_SRC	INT_BA+0x0C	R	IRQ3 (EINT1) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved					INT_SRC				

Bits	Description	escription					
[2:0]	INT_SRC	IRQ3 Source Identity INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ3 source is not from external signal interrupt 1 – P3.3 (EINT1). 1 = IRQ3 source is from external signal interrupt 1 – P3.3 (EINT1). Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.					

IRQ4 (P0/1) Interrupt Source Identity Register (IRQ4_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ4_SRC	INT_BA+0x10	R	IRQ4 (P0/1) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	7 6 5 4 3 2 1 0								
Reserved				INT_SRC					

Bits	Description	scription						
		IRQ4 Source Identity						
		INT_SRC[2] = Reserved.						
		INT_SRC[1]:						
		0 = IRQ4 source is not from P1 interrupt (P1_INT).						
		1 = IRQ4 source is from P1 interrupt (P1_INT).						
[2:0]	INT_SRC	INT_SRC[0]:						
		0 = IRQ4 source is not from P0 interrupt (P0_INT).						
		1 = IRQ4 source is from P0 interrupt (P0_INT).						
		Note1: IRQ4 source can be from multiple interrupt sources at the same time.						
		Note2: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.						

IRQ5 (P2/3/4) Interrupt Source Identity Register (IRQ5_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ5_SRC	INT_BA+0x14	R	IRQ5 (P2/3/4) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved					INT_SRC					

Bits	Description						
		IRQ5 Source Identity					
		INT_SRC[2]:					
		0 = IRQ5 source is not from P4 interrupt (P4_INT).					
		1 = IRQ5 source is from P4 interrupt (P4_INT).					
		INT_SRC[1]:					
		0 = IRQ5 source is not from P3 interrupt (P3_INT).					
[2:0]	INT_SRC	1 = IRQ5 source is from P3 interrupt (P3_INT).					
		INT_SRC[0]:					
		0 = IRQ5 source is not from P2 interrupt (P2_INT).					
		1 = IRQ5 source is from P2 interrupt (P2_INT).					
		Note1: IRQ5 source can be from multiple interrupt sources at the same time.					
		Note2: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.					

IRQ6 (PWMA) Interrupt Source Identity Register (IRQ6_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ6_SRC	INT_BA+0x18	R	IRQ6 (PWMA) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved			INT_SRC						

Bits	Description	escription						
[3:0]	INT_SRC	IRQ6 Source Identity INT_SRC[3]: 0 = IRQ6 source is not from PWM3(PWMA channel 3) interrupt (PWM3_INT). 1 = IRQ6 source is from PWM3(PWMA channel 3) interrupt (PWM3_INT). INT_SRC[2]: 0 = IRQ6 source is not from PWM2(PWMA channel 2) interrupt (PWM2_INT). 1 = IRQ6 source is from PWM2(PWMA channel 2) interrupt (PWM2_INT). INT_SRC[1]: 0 = IRQ6 source is not from PWM1(PWMA channel 1) interrupt (PWM1_INT). 1 = IRQ6 source is from PWM1(PWMA channel 1) interrupt (PWM1_INT). INT_SRC[0]: 0 = IRQ6 source is not from PWM0(PWMA channel 0) interrupt (PWM0_INT). 1 = IRQ6 source is from PWM0(PWMA channel 0) interrupt (PWM0_INT). Note1: IRQ6 source can be from multiple interrupt sources at the same time. Note2: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.						

IRQ7 (PWMB) Interrupt Source Identity Register (IRQ7_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ7_SRC	INT_BA+0x1C	R	IRQ7 (PWMB) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	Reserved			INT_SRC				

Bits	Description	scription					
[3:0]	INT_SRC	IRQ7 Source Identity INT_SRC[3]: 0 = IRQ7 source is not from PWM7(PWMB channel 3) interrupt (PWM7_INT). 1 = IRQ7 source is from PWM7(PWMB channel 3) interrupt (PWM7_INT). INT_SRC[2]: 0 = IRQ7 source is not from PWM6(PWMB channel 2) interrupt (PWM6_INT). 1 = IRQ7 source is from PWM6(PWMB channel 2) interrupt (PWM6_INT). INT_SRC[1]: 0 = IRQ7 source is not from PWM5(PWMB channel 1) interrupt (PWM5_INT). 1 = IRQ7 source is from PWM5(PWMB channel 1) interrupt (PWM5_INT). INT_SRC[0]: 0 = IRQ7 source is not from PWM4(PWMB channel 0) interrupt (PWM4_INT). 1 = IRQ7 source is from PWM4(PWMB channel 0) interrupt (PWM4_INT). Note1: IRQ7 source can be from multiple interrupt sources at the same time. Note2: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.					

IRQ8 (TMR0) Interrupt Source Identity Register (IRQ8_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ8_SRC	INT_BA+0x20	R	IRQ8 (TMR0) Interrupt Source Identity	0xXXX_XXXX

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
Reserved				INT_SRC					

Bits	Description	cription					
[2:0]		IRQ8 Source Identity INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ8 source is not from Timer0 interrupt (TMR0_INT). 1 = IRQ8 source is from Timer0 interrupt (TMR0_INT). Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.					

IRQ9 (TMR1) Interrupt Source Identity Register (IRQ9_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ9_SRC	INT_BA+0x24	R	IRQ9 (TMR1) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved					INT_SRC				

Bits	Description	escription					
[2:0]	INT_SRC	IRQ9 Source Identity INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ9 source is not from Timer1 interrupt (TMR1_INT). 1 = IRQ9 source is from Timer1 interrupt (TMR1_INT). Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.					

IRQ10 (TMR2) Interrupt Source Identity Register (IRQ10_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ10_SRC	INT_BA+0x28	R	IRQ10 (TMR2) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
Reserved				INT_SRC					

Bits	Description	escription					
		IRQ10 Source Identity INT_SRC[2] = Reserved.					
[2:0]		INT_SRC[1] = Reserved. INT_SRC[0]:					
		0 = IRQ10 source is not from Timer2 interrupt (TMR2_INT). 1 = IRQ10 source is from Timer2 interrupt (TMR2_INT).					
		Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.					

IRQ11 (TMR3) Interrupt Source Identity Register (IRQ11_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ11_SRC	INT_BA+0x2C	R	IRQ11 (TMR3) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	7 6 5 4 3 2 1 0								
Reserved				INT_SRC					

Bits	Description	escription					
[2:0]	INT_SRC	IRQ11 Source Identity INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ11 source is not from Timer3 interrupt (TMR3_INT). 1 = IRQ11 source is from Timer3 interrupt (TMR3_INT). Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.					

IRQ12 (UART0) Interrupt Source Identity Register (IRQ12_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ12_SRC	INT_BA+0x30	R	IRQ12 (UART0) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved				INT_SRC						

Bits	Description	escription					
[2:0]	INT_SRC	IRQ12 Source Identity INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ12 source is not from UART0 interrupt (UART0_INT). 1 = IRQ12 source is from UART0 interrupt (UART0_INT).					
		Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.					

IRQ13 (UART1) Interrupt Source Identity Register (IRQ13_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ13_SRC	INT_BA+0x34	R	IRQ13 (UART1) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved					INT_SRC				

Bits	Description	escription					
[2:0]	INT_SRC	IRQ13 Source Identity INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ13 source is not from UART1 interrupt (UART1_INT). 1 = IRQ13 source is from UART1 interrupt (UART1_INT). Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.					

IRQ14 (SPI0) Interrupt Source Identity Register (IRQ14_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ14_SRC	INT_BA+0x38	R	IRQ14 (SPI0) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	7 6 5 4 3 2 1 0								
Reserved					INT_SRC				

Bits	Description	escription					
[2:0]	INT_SRC	IRQ14 Source Identity INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ14 source is not from SPI0 interrupt (SPI0_INT). 1 = IRQ14 source is from SPI0 interrupt (SPI0_INT). Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.					

IRQ15 (SPI1) Interrupt Source Identity Register (IRQ15_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ15_SRC	INT_BA+0x3C	R	IRQ15 (SPI1) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved					INT_SRC				

Bits	Description	escription					
[2:0]	INT_SRC	IRQ15 Source Identity INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ15 source is not from SPI1 interrupt (SPI1_INT). 1 = IRQ15 source is from SPI1 interrupt (SPI1_INT). Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.					

IRQ18 (I²C0) Interrupt Source Identity Register (IRQ18_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ18_SRC	INT_BA+0x48	R	IRQ18 (I ² C0) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
Reserved										
7	6	5	4	3	2	1	0			
Reserved					INT_SRC					

Bits	Description	escription					
[2:0]	INT_SRC	IRQ18 Source Identity INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ18 source is not from I ² C0 interrupt (I2C0_INT). 1 = IRQ18 source is from I ² C0 interrupt (I2C0_INT). Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.					

IRQ19 (I²C1) Interrupt Source Identity Register (IRQ19_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ19_SRC	INT_BA+0x4C	R	IRQ19 (I ² C1) Interrupt Source Identity (M05xxDN/DE Only)	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
Reserved					INT_SRC				

Bits	Description	escription						
[2:0]	INT_SRC	IRQ19 Source Identity (M05xxDN/DE Only) INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ19 source is not from I ² C1 interrupt (I2C1_INT). 1 = IRQ19 source is from I ² C1 interrupt (I2C1_INT). Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.						

IRQ25 (ACMP01) Interrupt Source Identity Register (IRQ25_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ25_SRC	INT_BA+0x64	R	IRQ25 (ACMP01) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved					INT_SRC					

Bits	Description	escription					
[2:0]	INT_SRC	IRQ25 Source Identity INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ25 source is not from ACMP01 interrupt (ACMP01_INT). 1 = IRQ25 source is from ACMP01 interrupt (ACMP01_INT). Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.					

IRQ26 (ACMP23) Interrupt Source Identity Register (IRQ26_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ26_SRC	INT_BA+0x68	R	IRQ26 (ACMP23) Interrupt Source Identity (M05xxDN/DE Only)	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
Reserved					INT_SRC				

Bits	Description	escription						
[2:0]	INT_SRC	IRQ26 Source Identity (M05xxDN/DE Only) INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ26 source is not from ACMP23 interrupt (ACMP23_INT). 1 = IRQ26 source is from ACMP23 interrupt (ACMP23_INT). Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.						

IRQ28 (PWRWU) Interrupt Source Identity Register (IRQ28_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ28_SRC	INT_BA+0x70	R	IRQ28 (PWRWU) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved					INT_SRC	

Bits	Description				
[2:0]	INT_SRC	IRQ28 Source Identity INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ28 source is not from Power-down mode Wake-up interrupt (PWRWU_INT). 1 = IRQ28 source is from Power-down mode Wake-up interrupt interrupt (PWRWU_INT). Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.			

IRQ29 (ADC) Interrupt Source Identity Register (IRQ29_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ29_SRC	INT_BA+0x74	R	IRQ29 (ADC) Interrupt Source Identity	0xXXXX_XXXX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved					INT_SRC	

Bits	Description				
[2:0]	INT_SRC	IRQ29 Source Identity INT_SRC[2] = Reserved. INT_SRC[1] = Reserved. INT_SRC[0]: 0 = IRQ29 source is not from ADC interrupt (ADC_INT). 1 = IRQ29 source is from ADC interrupt (ADC_INT). Note: When the interrupt flag is cleared, the corresponding bits will be cleared automatically.			

NMI Interrupt Source Select Control Register (NMI_SEL)

Register	Offset	R/W	Description	Reset Value
NMI_SEL	INT_BA+0x80	R/W	NMI Source Interrupt Select Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						NMI_EN
7	6	5	4	3	2	1	0
	Reserved				NMI_SEL		

Bits	Description	Description					
[31:9]	Reserved	Reserved.					
[8]	NMI_EN	NMI Interrupt Enable Control (Write Protect) 0 = NMI interrupt Disabled. 1 = NMI interrupt Enabled. Note: This bit is the protected bit and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Reference the register REGWRPROT at address GCR_BA+0x100					
[7:5]	Reserved	Reserved.					
[4:0]	NMI_SEL	NMI Interrupt Source Selection The NMI interrupt to Cortex®-M0 can be selected from one of the peripheral interrupt by sNMI_SEL.					

6.2.10 System Control Block (SCB)

The Cortex®-M0 status and operation mode control are managed by System Control Registers, Including CPUID. Cortex®-M0 interrupt priority and Cortex®-M0 power management can be controlled through these system control registers.

For more detailed information, please refer to the "ARM® Cortex®-M0 Technical Reference Manual" and "ARM® v6-M Architecture Reference Manual".

6.2.10.1 System Control Block Register Map

 $\boldsymbol{R}\!:$ read only, $\boldsymbol{W}\!:$ write only, $\boldsymbol{R}/\boldsymbol{W}\!:$ both read and write

Register	Offset	R/W	Description	Reset Value				
	SCB Base Address: SCB_BA = 0xE000_ED00							
CPUID	SCB_BA+0x000	R	CPUID Register	0x410CC200				
ICSR	SCB_BA+0x004	R/W	Interrupt Control State Register	0x0000_0000				
AIRCR	SCB_BA+0x00C	R/W	Application Interrupt and Reset Control Register	0xFA05_0000				
SCR	SCB_BA+0x010	R/W	System Control Register	0x0000_0000				
SHPR2	SCB_BA+0x01C	R/W	System Handler Priority Register 2	0x0000_0000				
SHPR3	SCB_BA+0x020	R/W	System Handler Priority Register 3	0x0000_0000				

CPUID Base Register (CPUID)

Register	Offset	R/W	Description	Reset Value
CPUID	SCB_BA+0x000	R	CPUID Register	0x410CC200

31	30	29	28	27	26	25	24		
	IMPLEMENTER								
23	22	21	20	19	18	17	16		
	Rese	erved		PART					
15	14	13	12	11	10	9	8		
			PAR	TNO					
7	6	5	4	3	2	1	0		
PARTNO					REVI	SION			

Bits	Description	Description				
[31:24]	IMPLEMENTER	Implementer Code Implementer code assigned by ARM. (ARM = 0x41).				
[23:20]	Reserved	Reserved Reserved.				
[19:16]	PART	Architecture of the Processor Read as 0xC for ARMv6-M parts.				
[15:4]	PARTNO	Part Number of the Processor Read as 0xC20.				
[3:0]	REVISION	Revision Number Read as 0x0.				

Interrupt Control State Register (ICSR)

Register	Offset	R/W	Description	Reset Value
ICSR	SCB_BA+0x004	R/W	Interrupt Control State Register	0x0000_0000

31	30	29	28	27	26	25	24	
NMIPENDSET	Reserve	Reserved		PENDSVCLR	PENDSTSET	PENDSTCLR	Reserved	
23	22	21	20	19	18	17	16	
ISRPREEMPT	ISRPENDING		Reserved				VECTPENDING	
15	14	13	12	11	10	9	8	
	VECTPEN	DING			Rese	erved		
7	6	5	4	3	2	1	0	
Reserved				VEC	TACTIVE			

Bits	Description	
		NMI Set-pending Bit
		Write:
		0 = No effect.
		1 = Changes NMI exception state to pending.
[04]	NMIPENDSET	Read:
[31]	NMIPENDSET	0 = NMI exception not pending.
		1 = NMI exception pending.
		Note: Because NMI is the highest-priority exception, normally the processor enters the NMI exception handler as soon as it detects a write of 1 to this bit. Entering the handler then clears this bit to 0. This means a read of this bit by the NMI exception handler returns 1 only if the NMI signal is reasserted while the processor is executing that handler.
[30:29]	Reserved	Reserved.
		PendSV Set-pending Bit
		Write:
		0 = No effect.
[28]	PENDSVSET	1 = Changes PendSV exception state to pending.
[20]	FENDSVSET	Read:
		0 = PendSV exception is not pending.
		1 = PendSV exception is pending.
		Note: Writing 1 to this bit is the only way to set the PendSV exception state to pending
		PendSV Clear-pending Bit
		Write:
[27]	PENDSVCLR	0 = No effect.
[21]	PENDSVCLK	1 = Removes the pending state from the PendSV exception.
		This bit is write-only. To clear the PENDSV bit, you must "write 0 to PENDSVSET and write 1 to PENDSVCLR" at the same time.
[00]	DENDSTOET	SysTick Exception Set-pending Bit
[26]	PENDSTSET	Write:

nuvoTon

		0 = No effect.
		1 = Changes SysTick exception state to pending.
		Read:
		0 = SysTick exception is not pending.
		1 = SysTick exception is pending.
		SysTick Exception Clear-pending Bit
		Write:
[25]	PENDSTCLR	0 = No effect.
[20]	FENDSTOLK	1 = Removes the pending state from the SysTick exception.
		Note: This bit is write-only. When you want to clear PENDST bit, you must "write 0 to PENDSTSET and write 1 to PENDSTCLR" at the same time.
[24]	Reserved	Reserved.
		Interrupt Preempt Bit
[23]	ISRPREEMPT	If set, a pending exception will be serviced on exit from the debug halt state.
		This bit is read only.
		Interrupt Pending Flag, Excluding NMI and Faults (Read Only)
[22]	ISRPENDING	0 = Interrupt not pending.
		1 = Interrupt pending.
[21:18]	Reserved	Reserved.
		Exception Number of the Highest Priority Pending Enabled Exception
[17:12]	VECTPENDING	0 = No pending exceptions.
		Non-zero = Exception number of the highest priority pending enabled exception.
[11:6]	Reserved	Reserved.
		Contains the Active Exception Number
[5:0]	VECTACTIVE	0 = Thread mode.
		Non-zero = Exception number of the currently active exception.

Application Interrupt and Reset Control Register (AIRCR)

Register	Offset	R/W	Description	Reset Value
AIRCR	SCB_BA+0x00C	R/W	Application Interrupt and Reset Control Register	0xFA05_0000

31	30	29	28	27	26	25	24	
			VECTO	ORKEY				
23	22	21	20	19	18	17	16	
			VECTO	ORKEY				
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
Reserved					SYSRESETR EQ	VECTCLRAC TIVE	Reserved	

Bits	Description	Description					
[31:16] VECTORKEY		Register Access Key Write: When writing to this register, the VECTORKEY field need to be set to 0x05FA, otherwise he write operation would be ignored. The VECTORKEY filed is used to prevent accidental write to this register from resetting the system or clearing of the exception status. Read:					
		Read as 0xFA05.					
[15:3]	Reserved	Reserved.					
[2]	SYSRESETREQ	System Reset Request Writing this bit 1 will cause a reset signal to be asserted to the chip to indicate a reset is requested. The bit is a write only bit and self-clears as part of the reset sequence.					
[1]	VECTCLRACTIVE	Exception Active Status Clear Bit Reserved for debug use. When writing to the register, user must write 0 to this bit, otherwise behavior is unpredictable.					
[0]	Reserved	Reserved.					

System Control Register (SCR)

Register	Offset	R/W	Description	Reset Value
SCR	SCB_BA+0x010	R/W	System Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
Reserved			SEVONPEN D	Reserved	SLEEPDEEP	SLEEPONEX IT	Reserved	

Bits	Description	
[31:5]	Reserved	Reserved.
		Send Event on Pending Bit
		0 = Only enabled interrupts or events can wake-up the processor, disabled interrupts are excluded.
[4]	SEVONPEND	1 = Enabled events and all interrupts, including disabled interrupts, can wake-up the processor.
		When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not waiting for an event, the event is registered and affects the next WFE.
		The processor also wakes up on execution of an SEV instruction or an external event.
[3]	Reserved	Reserved.
		Processor Deep Sleep and Sleep Mode Selection
[2]	SLEEPDEEP	Controls whether the processor uses sleep or deep sleep as its low power mode:
[4]	OLLLI DLLI	0 = Sleep mode.
		1 = Deep Sleep mode.
		Sleep-on-exit Enable Control
		This bit indicates sleep-on-exit when returning from Handler mode to Thread mode.
[1]	SLEEPONEXIT	0 = Do not sleep when returning to Thread mode.
L.,	02221 0112/11	1 = Enter Sleep or Deep Sleep when returning from ISR to Thread mode.
		Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.
[0]	Reserved	Reserved.

System Handler Priority Register 2 (SHPR2)

Register	Offset	R/W	Description	Reset Value
SHPR2	SCB_BA+0x01C	R/W	System Handler Priority Register 2	0x0000_0000

31	30	29	28	27	26	25	24
PRI_11			Reserved				
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7 6 5 4 3 2 1 0							0
	Reserved						

Bits	Description	
[31:30]	PRI 11	Priority of System Handler 11 – SVCall "0" denotes the highest priority and "3" denotes the lowest priority
[29:0]	Reserved	Reserved.

System Handler Priority Register 3 (SHPR3)

Register	Offset	R/W	Description	Reset Value
SHPR3	SCB_BA+0x020	R/W	System Handler Priority Register 3	0x0000_0000

31	30	29	28	27	26	25	24	
PRI_15			Reserved					
23	22	21	20	19	18	17	16	
PRI	PRI_14			Reserved				
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
	Reserved							

Bits	Description	
[31:30]	PRI_15	Priority of System Handler 15 – SysTick "0" denotes the highest priority and "3" denotes the lowest priority
[29:24]	Reserved	Reserved.
[23:22]	PRI_14	Priority of System Handler 14 – PendSV "0" denotes the highest priority and "3" denotes the lowest priority
[21:0]	Reserved	Reserved.

6.2.11 Register Protection

Some of the system control registers need to be protected to avoid inadvertent write and disturb the chip operation. These system control registers are protected after the power on reset till user to disable register protection. For user to program these protected registers, a register protection disable sequence needs to be followed by a special programming. The register protection disable sequence is writing the data "59h", "16h" "88h" to the register REGWRPROT continuously. Any different data value, different sequence or any other write to other address during these three data writing will abort the whole sequence.

After the protection is disabled, user can check REGPROTDIS (REGWRPROT [0]), "1" is protection disable, "0" is protection enable. Then user can update the target protected register value and then write any data to REGWRPROT to enable register protection.

The protected registers are listed as following table.

Register	Bit	Description
	[4] HDIV_RST	HDIV Controller Reset (Write Protect) (M05xxDN/DE Only)
IPRSTC1	[3] EBI_RST	EBI Controller Reset (Write Protect)
	[1] CPU_RST	Cortext-m0 Core One-shot Reset (Write Protect)
	[0] CHIP_RST	Chip One-shot Reset (Write Protect)
	[7] LVR_EN	Low Voltage Reset Enable Control (Write Protect)
	[5] BOD_LPM	Brown-out Detector Low Power Mode (Write Protect)
BODCR	[3] BOD_RSTEN	Brown-out Reset Enable Control (Write Protect)
	[2:1] BOD_VL	Brown-out Detector Threshold Voltage Select (Write Protect)
	[0] BOD_EN	Brown-out Detector Enable Control (Write Protect)
PORCR	[15:0] POR_DIS_CODE	Power-on Reset Enable Control (Write Protect)
NMI_SEL	[8] NMI_EN	NMI Interrupt Enable Control (Write Protect)
	[8] PD_WAIT_CPU	Power-down Entry Condition Control (Write Protect)
	[7] PWR_DOWN_EN	System Power-down Enable Bit (Write Protect)
	[5] PD_WU_INT_EN	Power-down Mode Wake-up Interrupt Enable Control (Write Protect)
PWRCON	[4] PD_WU_DLY	Wake-up Delay Counter Enable Control (Write Protect)
	[3] OSC10K_EN	10 KHz Internal Low Speed RC Oscillator (LIRC) Enable Control (Write Protect)
	[2] OSC22M_EN	22.1184 MHz Internal High Speed RC Oscillator (HIRC) Enable Control (Write Protect)
	[0] XTL12M_EN	4~24 MHz External High Speed Crystal (HXT) Enable Control (Write Protect)
APBCLK	[0] WDT_EN	Watchdog Timer Clock Enable Control (Write Protect)
011/0510	[5:3] STCLK_S	Cortex®-M0 SysTick Clock Source Selection From Reference Clock (Write Protect)
CLKSEL0	[2:0] HCLK_S	HCLK Clock Source Selection (Write Protect)
CLKSEL1	[1:0] WDT_S	Watchdog Timer Clock Source Selection (Write Protect)
ISPCON	[6] ISPFF	ISP Fail Flag (Write Protect)

	[5] LDUEN	LDROM Update Enable Control (Write Protect)
	[4] CFGUEN	CONFIG Update Enable Control (Write Protect)
	[3] APUEN	APROM Update Enable Control (Write Protect)
	[1] BS	Boot Select (Write Protect)
	[0] ISPEN	ISP Enable Control (Write Protect)
ISPTRG	[0] ISPGO	ISP Start Trigger (Write Protect)
FATCON	[4] LFOM	Low Frequency Optimization Mode Control (Write Protect)
ISPSTA	[6] ISPFF	ISP Fail Flag (Write Protect)
TCSR0 TCSR1 TCSR2 TCSR3	[31] DBGACK_TMR	ICE Debug Mode Acknowledge Disable (Write Protect)
	[31] DBGACK_WDT	ICE Debug Mode Acknowledge Disable Control (Write Protect)
	[10:8] WTIS	Watchdog Timer Time-out Interval Selection (Write Protect)
	[7] WTE	Watchdog Timer Enable Control (Write Protect)
WTCR	[6] WTIE	Watchdog Timer Time-out Interrupt Enable Control (Write Protect)
	[4] WTWKE	Watchdog Timer Time-out Wake-up Function Control (Write Protect)
	[1] WTRE	Watchdog Timer Time-out Reset Enable Control (Write Protect)
	[0] WTR	Reset Watchdog Timer Up Counter (Write Protect)
WTCRALT	[1:0] WTRDSEL	Watchdog Timer Reset Delay Selection (Write Protect)

Table 6-5 Prodected Register

6.3 Clock Controller

6.3.1 Overview

The clock controller generates clocks for the whole chip, including system clocks and all peripheral clocks. The clock controller also implements the power control function with the individually clock ON/OFF control, clock source selection and clock divider. The chip enters Power-down mode when Cortex®-M0 core executes the WFI instruction only if the PWR_DOWN_EN (PWRCON[7]) bit and PD_WAIT_CPU (PWRCON[8]) bit are both set to 1. After that, chip enters Power-down mode and waits for wake-up interrupt source triggered to exit Power-down mode. In Power-down mode, the clock controller turns off the 4~24 MHz external high speed crystal (HXT) and 22.1184 MHz internal high speed RC oscillator (HIRC) to reduce the overall system power consumption. The following figures show the clock generator and the overview of the clock source control.

The clock generator consists of 4 clock sources as listed below:

- 4~24 MHz external high speed crystal oscillator (HXT)
- Programmable PLL output clock frequency (PLL source can be selected from external 4~24 MHz external high speed crystal (HXT) or 22.1184 MHz internal high speed oscillator (HIRC)) (PLL FOUT)
- 22.1184 MHz internal high speed RC oscillator (HIRC)
- 10 kHz internal low speed RC oscillator (LIRC)

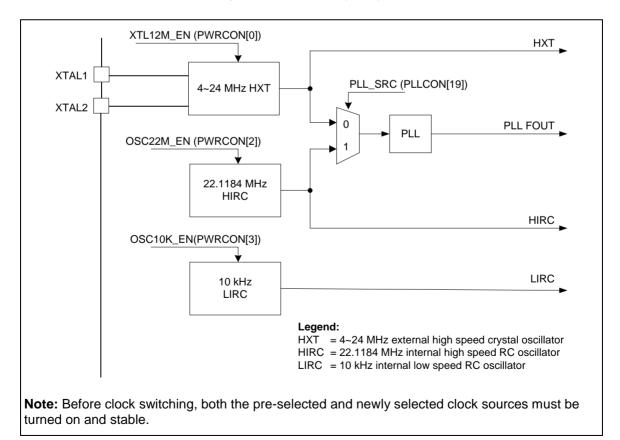


Figure 6-3 Clock Generator Block Diagram

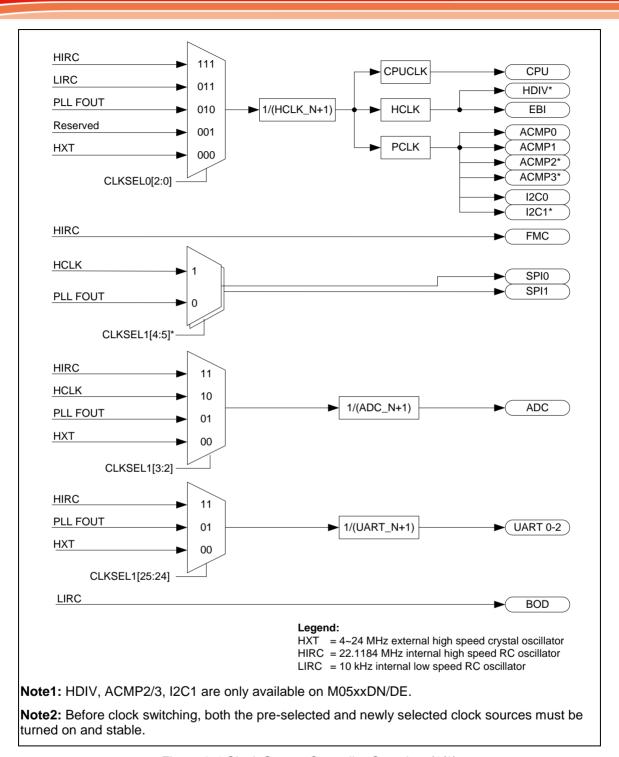
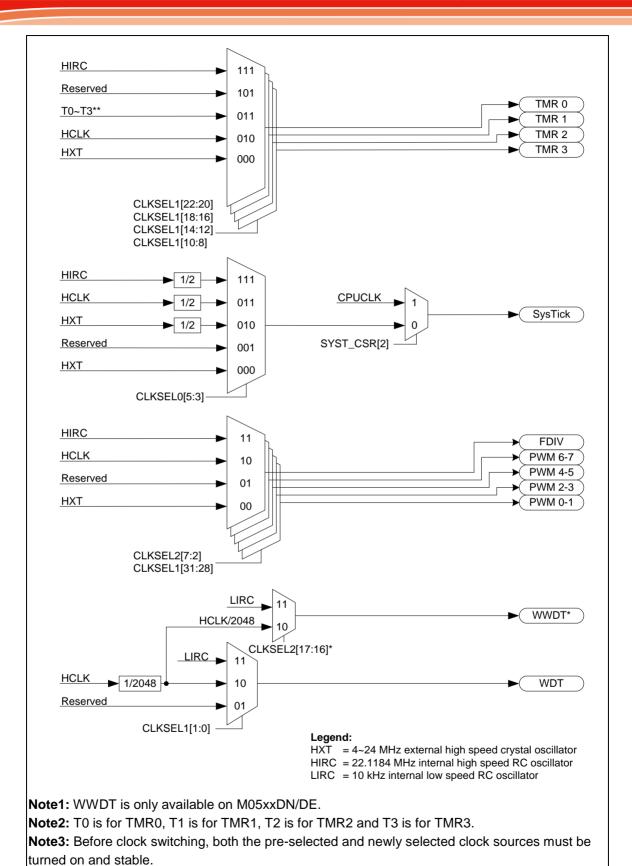



Figure 6-4 Clock Source Controller Overview (1/2)

nuvoTon

Figure 6-5 Clock Source Controller Overview (2/2)

6.3.2 System Clock and SysTick Clock

nuvoton

The system clock has 4 clock sources which were generated from clock generator block. The clock source switch depends on the register HCLK_S (CLKSEL0[2:0]). The block diagram is shown below.

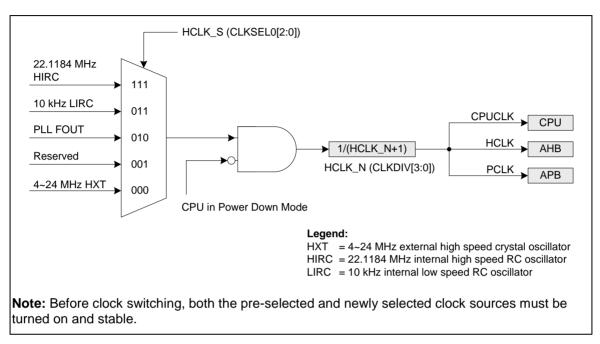


Figure 6-6 System Clock Block Diagram

The clock source of SysTick in Cortex-M0 core can use CPU clock or external clock (SYST_CSR[2]). If using external clock, the SysTick clock (STCLK) has 4 clock sources. The clock source switch depends on the setting of the register STCLK_S (CLKSEL0[5:3]. The block diagram is shown below.

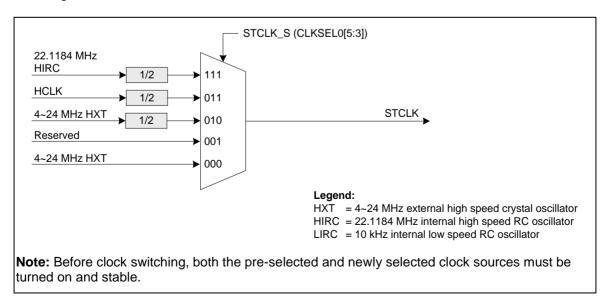


Figure 6-7 SysTick clock Control Block Diagram

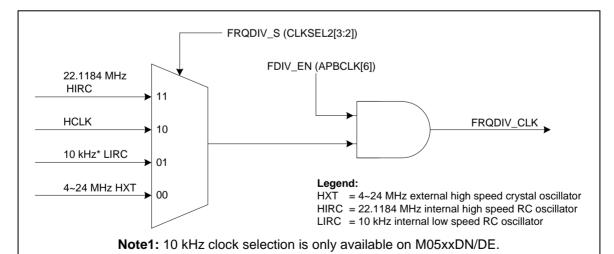
6.3.3 Power-down Mode Clock

When chip enters Power-down mode, system clocks, some clock sources, and some peripheral clocks will be disabled. Some clock sources and peripherals clocks are still active in Power-down mode.

The clocks still kept active are listed below:

- Clock Generator
- 10 kHz internal low speed oscillator clock
- Peripherals Clock (when 10 kHz low speed oscillator is adopted as clock source)

6.3.4 Frequency Divider Output


turned on and stable.

This device is equipped with a power-of-2 frequency divider which is composed by 16 chained divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one multiplexer is reflected to the CKO pin. Therefore there are 16 options of power-of-2 divided clocks with the frequency from $F_{in}/2^1$ to $F_{in}/2^{16}$ where Fin is input clock frequency to the clock divider.

The output formula is $F_{out} = F_{in}/2^{(N+1)}$, where F_{in} is the input clock frequency, F_{out} is the clock divider output frequency and N is the 4-bit value in FSEL (FRQDIV [3:0]).

When writing 1 to DIVIDER_EN (FRQDIV[4]), the chained counter starts to count. When writing 0 to DIVIDER_EN (FRQDIV[4]), the chained counter continuously runs till divided clock reaches low state and stay in low state.

On M05xxDN/DE, if DIVIDER1(FRQDIV[5]) set to 1, the frequency divider clock (FRQDIV_CLK) will bypass power-of-2 frequency divider. The frequency divider clock will be output to CKO pin directly.

Note2: Before clock switching, both the pre-selected and newly selected clock sources must be

Figure 6-8 Clock Source of Frequency Divider

nuvoton

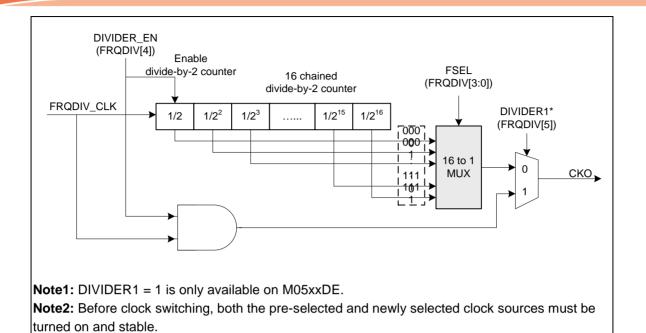


Figure 6-9 Block Diagram of Frequency Divider

6.3.5 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
	CLK Base Address: CLK_BA = 0x5000_0200						
PWRCON	CLK_BA+0x00	R/W	System Power-down Control Register	0x0000_001X			
AHBCLK	CLK_BA+0x04	R/W	AHB Devices Clock Enable Control Register	0x0000_000D			
APBCLK	CLK_BA+0x08	R/W	APB Devices Clock Enable Control Register	0x0000_000X			
CLKSTATUS	CLK_BA+0x0C	R/W	Clock status monitor Register	0x0000_00XX			
CLKSEL0	CLK_BA+0x10	R/W	Clock Source Select Control Register 0	0x0000_003X			
CLKSEL1	CLK_BA+0x14	R/W	Clock Source Select Control Register 1	0xFFFF_FFFF			
CLKDIV	CLK_BA+0x18	R/W	Clock Divider Number Register	0x0000_0000			
CLKSEL2	CLK_BA+0x1C	R/W	Clock Source Select Control Register 2	0x0000_00FF			
PLLCON	CLK_BA+0x20	R/W	PLL Control Register	0x0005_C22E			
FRQDIV	CLK_BA+0x24	R/W	Frequency Divider Control Register	0x0000_0000			

6.3.6 Register Description

Power-down Control Register (PWRCON)

Except the BIT[6], all the other bits are protected, and programming these bits need to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Refer to the REGWRPROT register at address GCR_BA+0x100.

Register	Offset	R/W	Description	Reset Value
PWRCON	CLK_BA+0x00	R/W	System Power-down Control Register	0x0000_001X

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
PWR_DOWN_ EN	PD_WU_STS	PD_WU_INT_ EN	PD_WU_DLY	OSC10K_EN	OSC22M_EN	Reserved	XTL12M_EN	

Bits	Description	
[31:9]	Reserved	Reserved.
[8]	PD_WAIT_ CPU	Power-down Entry Condition Control (Write Protect) 0 = Chip enters Power-down mode when the PWR_DOWN_EN bit is set to 1. 1 = Chip enters Power- down mode when the both PD_WAIT_CPU and PWR_DOWN_EN bits are set to 1 and CPU run WFI instruction.
		System Power-down Enable Bit (Write Protect)
		When this bit is set to 1, Power-down mode is enabled and chip Power-down behavior will depend on the PD_WAIT_CPU bit
	PWR_DOWN _EN	(a) If the PD_WAIT_CPU is 0, then the chip enters Power-down mode immediately after the PWR_DOWN_EN bit set.
		(b) If the PD_WAIT_CPU is 1, then the chip keeps active till CPU run WFI instruction.
[7]		When chip wakes up from Power-down mode, this bit is cleared by hardware. User needs to set this bit again for next Power-down.
1/1		In Power-down mode, 4~24 MHz external high speed crystal oscillator (HXT) and the 22.1184 MHz internal high speed oscillator (HIRC) will be disabled in this mode, and 10 kHz internal low speed RC oscillator (LIRC) are not controlled by Power-down mode.
		In Power- down mode, the PLL and system clock are disabled, and ignored the clock source selection. The clocks of peripheral are not controlled by Power-down mode, if the peripheral clock source is from 10 kHz internal low speed oscillator.
		0 = Chip operating normally or chip in Idle mode because of WFI command.
		1 = Chip enters Power-down mode instantly or waits CPU sleep command WFI.
	PD WU STS	Power-down Mode Wake-up Interrupt Status
[6]	1 D_WO_313	Set by "Power-down wake-up event", which indicates that resume from Power-down mode" The flag is set if the GPIO, UART, WDT, ACMP or BOD wake-up occurred.
		The mag is set in the set to, or titl, the t, restiting of both trained up cooking.

		Note: This bit works only if PD_WU_INT_EN (PWRCON[5]) set to 1. Write 1 to clear the bit to 0.
[5]	PD_WU_INT_ EN	Power-down Mode Wake-up Interrupt Enable Control (Write Protect) 0 = Disabled. 1 = Enabled. Note: The interrupt will occur when both PD_WU_STS and PD_WU_INT_EN are high.
[4]	PD_WU_DLY	Wake-up Delay Counter Enable Control (Write Protect) When the chip wakes up from Power-down mode, the clock control will delay certain clock cycles to wait system clock stable. The delayed clock cycle is 4096 clock cycles when chip works at 4~24 MHz external high speed crystal (HXT), and 256 clock cycles when chip works at 22.1184 MHz internal high speed RC oscillator (HIRC). 0 = Clock cycles delay Disabled. 1 = Clock cycles delay Enabled.
[3]	OSC10K_EN	10 KHz Internal Low Speed RC Oscillator (LIRC) Enable Control (Write Protect) 0 = 10 kHz internal low speed RC oscillator (LIRC) Disabled. 1 = 10 kHz internal low speed RC oscillator (LIRC) Enabled.
[2]	OSC22M_EN	22.1184 MHz Internal High Speed RC Oscillator (HIRC) Enable Control (Write Protect) 0 = 22.1184 MHz internal high speed RC oscillator (HIRC) Disabled. 1 = 22.1184 MHz internal high speed RC oscillator (HIRC) Enabled.
[1]	Reserved	Reserved.
[0]	XTL12M_EN	4~24 MHz External High Speed Crystal (HXT) Enable Control (Write Protect) The bit default value is set by flash controller user configuration register config0 [26:24]. When the default clock source is from 4~24 MHz external high speed crystal, this bit is set to 1 automatically. 0 = 4 ~ 24 MHz external high speed crystal oscillator (HXT) Disabled. 1 = 4 ~ 24 MHz external high speed crystal oscillator (HXT) Enabled.

nuvoTon

Register Or Instruction Mode	ISLEEPDEEP		PWR_DOWN_EN (PWRCON[7])	CPU Run WFI Instruction	Clock Disable
Normal operation	0	0	0	NO	All clocks disabled by control register
Idle mode (CPU entering Sleep mode)	0	x	0	YES	Only CPU clock disabled
Power-down mode (CPU entering Deep Sleep mode)	1	1	1		Most clocks are disabled except 10 kHz and only WDT peripheral clock still enable if its periperal clock source is selected as 10 kHz.

Table 6-6 Power-down Mode Control

When chip enters Power-down mode, user can wake-up chip using some interrupt sources. The related interrupt sources and NVIC IRQ enable bits (NVIC_ISER) should be enabled before setting PWR_DOWN_EN bit in PWRCON[7] to ensure chip can enter Power-down and wake-up successfully.

AHB Devices Clock Enable Control Register (AHBCLK)

The bits in this register are used to enable/disable clock for system clock and EBI clock.

Register	Offset	R/W	Description	Reset Value
AHBCLK	CLK_BA+0x04	R/W	AHB Devices Clock Enable Control Register	0x0000_000D

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	7 6 5 4 3 2 1 0						0		
	Reserved			EBI_EN	ISP_EN	Reserved	Reserved		

Bits	Description	Description				
[31:5]	Reserved	Reserved.				
[4]	HDIV_EN	Divider Controller Clock Enable Control (M05xxDN/DE Only) 0 = Divider controller peripheral clock Disabled. 1 = Divider controller peripheral clock Enabled.				
[3]	EBI_EN	EBI Controller Clock Enable Control 0 = EBI peripheral clock Disabled. 1 = EBI peripheral clock Enabled.				
[2]	ISP_EN	Flash ISP Controller Clock Enable Control 0 = Flash ISP peripheral clock Disabled. 1 = Flash ISP peripheral clock Enabled.				
[1:0]	Reserved	Reserved.				

APB Devices Clock Enable Control Register (APBCLK)

The bits in this register are used to enable/disable clock for peripheral controller clocks.

Register	Offset	R/W	Description	Reset Value
APBCLK	CLK_BA+0x08	R/W	APB Devices Clock Enable Control Register	0x0000_000X

31	30	29	28	27	26	25	24
ACMP23_EN	ACMP01_EN	Reserved	ADC_EN		Reser		
23	22	21	20	19	18	17	16
PWM67_EN	PWM45_EN	PWM23_EN	PWM01_EN	Rese	erved	UART1_EN	UARTO_EN
15	14	13	12	11	10	9	8
Rese	erved	SPI1_EN	SPI0_EN	Rese	erved	I2C1_EN	I2C0_EN
7	6	5	4	3	2	1	0
Reserved	FDIV_EN	TMR3_EN	TMR2_EN	TMR1_EN	TMR0_EN	Reserved	WDT_EN

Bits	Description	
[31]	ACMP23_EN	Analog Comparator 2/3 Clock Enable Control (M051xxDN/DE Only) 0 = Analog Comparator 2/3 clock Disabled. 1 = Analog Comparator 2/3 clock Enabled.
[30]	ACMP01_EN	Analog Comparator 0/1 Clock Enable Control 0 = Analog Comparator 0/1 clock Disabled. 1 = Analog Comparator 0/1 clock Enabled.
[29]	Reserved	Reserved.
[28]	ADC_EN	Analog-digital-converter (ADC) Clock Enable Control 0 = ADC peripheral clock Disabled. 1 = ADC peripheral clock Enabled.
[27:24]	Reserved	Reserved.
[23]	PWM67_EN	PWM_67 Clock Enable Control 0 = PWM67 clock Disabled. 1 = PWM67 clock Enabled.
[22]	PWM45_EN	PWM_45 Clock Enable Control 0 = PWM45 clock Disabled. 1 = PWM45 clock Enabled.
[21]	PWM23_EN	PWM_23 Clock Enable Control 0 = PWM23 clock Disabled. 1 = PWM23 clock Enabled.
[20]	PWM01_EN	PWM_01 Clock Enable Control 0 = PWM01 clock Disabled. 1 = PWM01 clock Enabled.
[19:18]	Reserved	Reserved.

		UART1 Clock Enable Control
[17]	UART1_EN	0 = UART1 clock Disabled.
		1 = UART1 clock Enabled.
		UART0 Clock Enable Control
[16]	UART0_EN	0 = UART0 clock Disabled.
		1 = UART0 clock Enabled.
[15:14]	Reserved	Reserved.
		SPI1 Peripheral Clock Enable Control
[13]	SPI1_EN	0 = SPI1 peripheral clock Disabled.
		1 = SPI1 peripheral clock Enabled.
		SPI0 Peripheral Clock Enable Control
[12]	SPI0_EN	0 = SPI0 peripheral clock Disabled.
		1 = SPI0 peripheral clock Enabled.
[11:10]	Reserved	Reserved.
		I ² C1 Clock Enable Control (M051xxDN/DE Only)
[9]	I2C1_EN	$0 = I^2C$ clock Disabled.
		1 = I ² C clock Enabled.
		I ² C0 Clock Enable Control
[8]	I2C0_EN	$0 = I^2C$ clock Disabled.
		$1 = I^2C$ clock Enabled.
[7]	Reserved	Reserved.
		Frequency Divider Output Clock Enable Control
[6]	FDIV_EN	0 = FDIV clock Disabled.
		1 = FDIV clock Enabled.
		Timer3 Clock Enable Control
[5]	TMR3_EN	0 = Timer3 clock Disabled.
		1 = Timer3 clock Enabled.
		Timer2 Clock Enable Control
[4]	TMR2_EN	0 = Timer2 clock Disabled.
		1 = Timer2 clock Enabled.
		Timer1 Clock Enable Control
[3]	TMR1_EN	0 = Timer1 clock Disabled.
		1 = Timer1 clock Enabled.
		Timer0 Clock Enable Control
[2]	TMR0_EN	0 = Timer0 clock Disabled.
		1 = Timer0 clock Enabled.
[1]	Reserved	Reserved.
		Watchdog Timer Clock Enable Control (Write Protect)
		0 = Watchdog Timer clock Disabled.
[0]	WDT_EN	1 = Watchdog Timer clock Enabled.
- -		Note: This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.

nuvoTon

Clock Status Register (CLKSTATUS)

The bits in this register are used to monitor if the chip clock source stable or not, and if clock switching failed.

Register	Offset	R/W	Description	Reset Value
CLKSTATUS	CLK_BA+0x0C	R/W	Clock status monitor Register	0x0000_00XX

31	30	29	28	27	26	25	24
			Rese	rved			
23	22	21	20	19	18	17	16
			Rese	rved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
CLK_SW_FAIL	Reserved		OSC22M_STB	OSC10K_STB	PLL_STB	Reserved	XTL12M_STB

Bits	Description				
[31:8]	Reserved	Reserved.			
[7]	CLK_SW_FAIL	Clock Switching Fail Flag 0 = Clock switching success. 1 = Clock switching failed. Note1: This bit is updated when software switches system clock source. If switch target clock is stable, this bit will be set to 0. If switch target clock is not stable, this bit will be set to 1. Note2: On M05xxBN, software can write 1 to clear the bit to 0. Note3: On M05xxDN/DE, this bit is read only. After selected clock source is stable, hardware will switch system clock to selected clock automatically, and CLK_SE_FAIL will be cleared automatically by hardware.			
[6:5]	Reserved	Reserved.			
[4]	OSC22M_STB	22.1184 MHz Internal High Speed RC Oscillator (HIRC) Stable Flag (Read Only) 0 = 22.1184 MHz internal high speed RC oscillator (HIRC) clock is not stable or disabled. 1 = 22.1184 MHz internal high speed RC oscillator (HIRC) clock is stable.			
[3]	OSC10K_STB	10 KHz Internal Low Speed RC Oscillator (LIRC) Stable Flag (Read Only) 0 = 10 kHz internal low speed RC oscillator (LIRC) clock is not stable or disabled. 1 = 10 kHz internal low speed RC oscillator (LIRC) clock is stable.			
[2]	PLL_STB	Internal PLL Clock Source Stable Flag (Read Only) 0 = Internal PLL clock is not stable or disabled. 1 = Internal PLL clock is stable.			
[1]	Reserved	Reserved.			
[0]	XTL12M_STB	4~24 MHz External High Speed Crystal (HXT) Stable Flag (Read Only) 0 = 4~24 MHz external high speed crystal (HXT) clock is not stable or disabled.			

1 = 4~24 MHz external high speed crystal (HXT) clock is stable.

Clock Source Select Control Register 0 (CLKSEL0)

nuvoTon

Register	Offset	R/W	Description	Reset Value
CLKSEL0	CLK_BA+0x10	R/W	Clock Source Select Control Register 0	0x0000_003X

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved STCLK_S					HCLK_S		

Bits	Description	
[31:6]	Reserved	Reserved.
		Cortex®-M0 SysTick Clock Source Selection From Reference Clock (Write Protect)
		If SYST_CSR[2] = 1, SysTick clock source is from HCLK.
		If SYST_CSR[2] = 0, SysTick clock source is defined by below settings.
		000 = Clock source is from HXT.
		001 = Reserved.
		010 = Clock source is from HXT/2.
[5:3]	STCLK_S	011 = Clock source is from HCLK/2.
		111 = Clock source is from HIRC/2.
		Others = Reserved.
		Note1: These bits are protected bits, and programming them needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.
		Note2: if the SysTick clock source is not from HCLK (i.e. SYST_CSR[2] = 0), SysTick clock source must less than or equal to HCLK/2.
		HCLK Clock Source Selection (Write Protect)
		000 = Clock source is from HXT.
		001 = Reserved.
		010 = Clock source is from PLL.
		011 = Clock source is from LIRC.
		111 = Clock source is from HIRC.
[2:0]	HCLK S	Others = Reserved.
		Note1: Before clock switching, the related clock sources (both pre-select and new-select) must be turn-on and stable.
		Note2: The 3-bit default value is reloaded from the value of CFOSC (CONFIG0[26:24]) in user configuration register of Flash controller by any reset. Therefore the default value is either 000b or 111b.
		Note3: These bits are protected bit, and programming them needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.

Clock Source Select Control Register 1 (CLKSEL1)

Before clock switching, the related clock sources (pre-select and new-select) must be turned on.

Register	Offset	R/W	Description	Reset Value
CLKSEL1	CLK_BA+0x14	R/W	Clock Source Select Control Register 1	0xFFFF_FFFF

31	30	29	28	27	26	25	24	
PWM	23_S	PWM01_S		Reserved		UART_S		
23	22	21	20	19	18	17	16	
Reserved	TMR3_S			Reserved	TMR2_S			
15	14	13	12	11	10	9	8	
Reserved	Reserved TMR1_S			Reserved	TMR0_S			
7	6	5	4	3	2	1	0	
Reserved SPI		SPI1_S	SPI0_S	ADC_S		WD	WDT_S	

Bits	Description	
		PWM2 and PWM3 Clock Source Selection
		PWM2 and PWM3 use the same peripheral clock source; both of them use the same prescaler.
[31:30]	PWM23_S	00 = Clock source is from HXT.
		01 = Clock source is from LIRC. (M051xxDN/DE Only)
		10 = Clock source is from HCLK.
		11 = Clock source is from HIRC.
		PWM0 and PWM1 Clock Source Selection
		PWM0 and PWM1 use the same peripheral clock source; both of them use the same prescaler.
[29:28]	PWM01_S	00 = Clock source is from HXT.
		01 = Clock source is from LIRC. (M051xxDN/DE Only)
		10 = Clock source is from HCLK.
		11 = Clock source is from HIRC.
[27:26]	Reserved	Reserved.
		UART Clock Source Selection
		00 = Clock source is from HXT.
[25:24]	UART_S	01 = Clock source is from PLL.
		10 = Reserved.
		11 = Clock source is from HIRC.
[23]	Reserved	Reserved.
		TIMER3 Clock Source Selection
		000 = Clock source is from HXT.
[22:20]	TMR3_S	010 = Clock source is from HCLK.
		011 = Clock source is from external trigger T3. (M051xxDN/DE Only).
		101 = Clock source is from LIRC. (M051xxDN/DE Only)

		1111 = Clock source is from HIRC.
		Others = Reserved.
[19]	Reserved	Reserved.
[18:16]	TMR2_S	TIMER2 Clock Source Selection 000 = Clock source is from HXT. 010 = Clock source is from HCLK. 011 = Clock source is from external trigger T2. (M051xxDN/DE Only). 101 = Clock source is from LIRC. (M051xxDN/DE Only) 111 = Clock source is from HIRC. Others = Reserved.
[15]	Reserved	Reserved.
[14:12]	TMR1_S	TIMER1 Clock Source Selection 000 = Clock source is from HXT. 010 = Clock source is from HCLK. 011 = Clock source is from external trigger T1. (M051xxDN/DE Only). 101 = Clock source is from LIRC. (M051xxDN/DE Only) 111 = Clock source is from HIRC. Others = Reserved.
[11]	Reserved	Reserved.
[10:8]	TMR0_S	TIMERO Clock Source Selection 000 = Clock source is from HXT. 010 = Clock source is from HCLK. 011 = Clock source is from external trigger T0. (M051xxDN/DE Only). 101 = Clock source is from LIRC. (M051xxDN/DE Only) 111 = Clock source is from HIRC. Others = Reserved.
[7:6]	Reserved	Reserved.
[5]	SPI1_S	SPI1 Clock Source Selection (M051xxDN/DE Only) 0 = Clock source is from PLL. 1 = Clock source is from HCLK.
[4]	SPI0_S	SPI0 Clock Source Selection (M051xxDN/DE Only) 0 = Clock source is from PLL. 1 = Clock source is from HCLK.
[3:2]	ADC_S	ADC Peripheral Clock Source Selection 00 = Clock source is from HXT. 01 = Clock source is from PLL. 10 = Clock source is from HCLK. 11 = Clock source is from HIRC.
[1:0]	WDT_S	Watchdog Timer Clock Source Selection (Write Protect) 00 = Reserved. 01 = Reserved. 10 = Clock source is from HCLK/2048 clock. 11 = Clock source is from LIRC. Note: These bits are protected bits, and programming them needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register

REGWRPROT at address GCR_BA+0x100.

Clock Source Select Control Register (CLKSEL2)

nuvoTon

Before clock switching the related clock sources (pre-select and new-select) must be turned on.

Register	Offset	R/W	Description	Reset Value
CLKSEL2	CLK_BA+0x1C	R/W	Clock Source Select Control Register 2	0x0000_00FF

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
		Rese	erved			WWDT_S	
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
PWM67_S PWM45_S		45_S	FRQ	DIV_S	Rese	erved	

Bits	Description	
[31:18]	Reserved	Reserved.
[17:16]	wwdt_s	Window Watchdog Timer Clock Source Selection (M051xxDN/DE Only) 10 = Clock source is from HCLK/2048 clock. 11 = Clock source is from LIRC.
[31:8]	Reserved	Reserved.
[7:6]	PWM67_S	PWM6 and PWM7 Clock Source Selection PWM6 and PWM7 used the same peripheral clock source; both of them used the same prescaler. 00 = Clock source is from HXT. 01 = Clock source is from LIRC. (M051xxDN/DE Only) 10 = Clock source is from HCLK. 11 = Clock source is from HIRC.
[5:4]	PWM45_S	PWM4 and PWM5 Clock Source Selection PWM4 and PWM5 use the same peripheral clock source; both of them used the same prescaler. 00 = Clock source is from HXT. 01 = Clock source is from LIRC. (M051xxDN/DE Only) 10 = Clock source is from HCLK. 11 = Clock source is from HIRC.
[3:2]	FRQDIV_S	Clock Divider Clock Source Selection 00 = Clock source is from HXT. 01 = Clock source is from LIRC. (M051xxDE Only) 10 = Clock source is from HCLK. 11 = Clock source is from HIRC.

[1:0] F	Reserved	Reserved.
---------	----------	-----------

Clock Divider Register (CLKDIV)

Register	Offset	R/W	Description	Reset Value
CLKDIV	CLK_BA+0x18	R/W	Clock Divider Number Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
ADC_N							
15	14	13	12	11	10	9	8
	Rese	erved			UAR	RT_N	
7	6	5	4	3	2	1	0
	Reserved				HCL	K_N	

Bits	Description	Description						
[31:24]	Reserved	Reserved.						
[23:16]	ADC_N	ADC Peripheral Clock Divide Number From ADC Peripheral Clock Source ADC peripheral clock frequency = (ADC peripheral clock source frequency) / (ADC_N + 1).						
[15:12]	Reserved	Reserved.						
[11:8]	UART_N	UART Clock Divide Number From UART Clock Source UART clock frequency = (UART clock source frequency) / (UART_N + 1).						
[7:4]	Reserved	Reserved.						
[3:0]	HCLK_N	HCLK Clock Divide Number From HCLK Clock Source HCLK clock frequency = (HCLK clock source frequency) / (HCLK_N + 1).						

PLL Control Register (PLLCON)

The PLL reference clock input is from the 4~24 MHz external high speed crystal (HXT) clock input or from the 22.1184 MHz internal high speed RC oscillator (HIRC). These registers are used to control the PLL output frequency and PLL operation mode.

Register	Offset	R/W	Description	Reset Value
PLLCON	CLK_BA+0x20	R/W	PLL Control Register	0x0005_C22E

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved			PLL_SRC	OE	BP	PD
15	14	13	12	11	10	9	8
ТИО	OUT_DV IN_DV					FB_DV	
7	6	5 4 3 2 1 0				0	
	FB_DV						

Bits	Description			
[19]	PLL_Source Clock Selection PLL_SRC 0 = PLL source clock from HXT. 1 = PLL source clock from HIRC.			
[18]	OE	PLL OE (FOUT Enable) Pin Control 0 = PLL FOUT Enabled. 1 = PLL FOUT is fixed low.		
[17]	ВР	PLL Bypass Control P 0 = PLL is in Normal mode (default). 1 = PLL clock output is same as PLL source clock input.		
[16]	Power-down Mode If the PWR_DOWN_EN bit is set to 1 in PWRCON register, the PLL will enter Power-do mode too. 0 = PLL is in Normal mode. 1 = PLL is in Power-down mode (default).			
[15:14]	OUT_DV PLL Output Divider Control Refer to the formulas below the table.			
[13:9]	IN_DV	PLL Input Divider Control Refer to the formulas below the table.		
[8:0]	FB_DV PLL Feedback Divider Control Refer to the formulas below the table.			

PLL Output Clock Frequency Setting:

$$FOUT = FIN \times \frac{NF}{NR} \times \frac{1}{NO}$$

Constrain:

1. 4MHz < FIN < 24MHz

2.
$$800KHz < \frac{FIN}{2*NR} < 7.5MHz$$

3.
$$100MHz < FCO = FIN \times \frac{NF}{NR} < 200MHz$$

 $120MHz < FCO$ is preferred

Symbol	Description				
FOUT	Output Clock Frequency				
FIN	put (Reference) Clock Frequency				
NR	Input Divider (IN_DV + 2)				
NF	Feedback Divider (FB_DV + 2)				
NO	OUT_DV = "00" : NO = 1 OUT_DV = "01" : NO = 2 OUT_DV = "10" : NO = 2 OUT_DV = "11" : NO = 4				

Default Frequency Setting

The default value: 0xC22E

FIN = 12 MHz

NR = (1+2) = 3

NF = (46+2) = 48

NO = 4

FOUT = 12/4 x 48 x 1/3 = 48 MHz

Frequency Divider Control Register (FRQDIV)

Register	Offset	R/W	Description	Reset Value
FRQDIV	CLK_BA+0x24	R/W	Frequency Divider Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved DIVIDER1 DIVIDER_EN FSEL							

Bits	Description	Description					
[31:6]	Reserved	rved Reserved.					
[5]	DIVIDER1	Frequency Divider 1 Enable Control (M051xxDE Only) 0 = Divider output frequency is depended on FSEL value. 1 = Divider output frequency is the same as input clock frequency.					
[4]	DIVIDER_EN	Frequency Divider Enable Control 0 = Frequency Divider Disabled. 1 = Frequency Divider Enabled.					
[3:0]	FSEL Divider Output Frequency Selection The formula of output frequency is: Fout = F _{in} /2 ^{(N+1).} F _{in} is the input clock frequency. F _{out} is the frequency of divider output clock. N is the 4-bit value of FSEL[3:0].						

6.4 Flash Memory Controller (FMC)

6.4.1 Overview

The M05xxBN and M05xxDN/DE are equipped with 64/32/16/8 Kbytes on chip embedded Flash memory for application program (APROM) that can be updated through ISP registers. In-System-Programming (ISP) and In-Application-Programming (IAP) enable user to update program memory when chip is soldered on PCB. After chip power on Cortex-M0 CPU fetches code from APROM or LDROM decided by boot select (CBS) in CONFIGO. By the way, the M05xxBN and M05xxDN/DE also provide additional 4 Kbytes DATA Flash for user to store some application depended data before chip power off in 64/32/16/8 Kbytes APROM model.

The M05xxDN/DE provides more settings in CONFIG0 to support more advanced functions, including power-on with tri-state I/O, default to enable WDT after booting, enable WDT in Power-down mode, and IAP functions. The following table shows the added functions of M05xxDN/DE.

	M05xxBN	M05xxDN/DE
CONFIG[6]	Reserved	To support IAP function and Multi-Boot function
CONFIG[10]	Reserved	Select I/O state after booting
CONFIG[30]	Reserved	To support WDT in Power-Down mode when WDT is default on after booting
CONFIG[31]	Reserved	To support WDT default on after booting

Table 6-7 M05xxBN and M05xxDN/DE Function Difference List (FMC)

6.4.2 Features

- Runs up to 50 MHz with zero wait state for continuous address read access
- 64/32/16/8 Kbytes application program memory (APROM)
- 4 Kbytes in system programming (ISP) loader program memory (LDROM)
- Fixed 4 Kbytes Data Flash
- All embedded flash memory supports 512 bytes page erase
- In System Program (ISP)/In Application Program (IAP) to update on chip Flash EPROM

6.4.3 Block Diagram

The flash memory controller consist of AHB slave interface, ISP control logic, writer interface and flash macro interface timing control logic. The block diagram of flash memory controller is shown in the following figure.

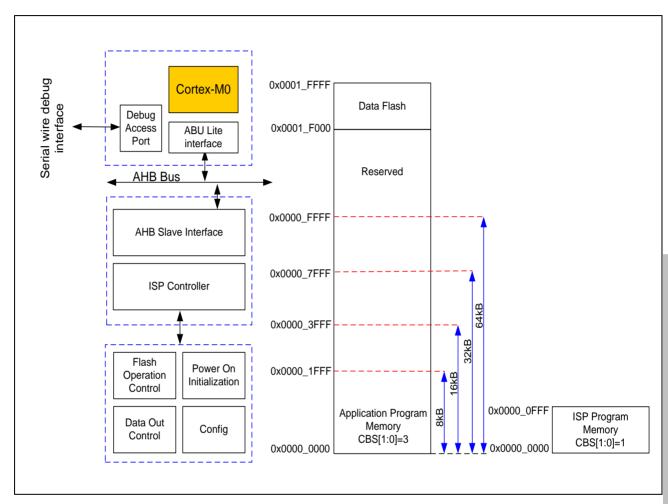


Figure 6-10 Flash Memory Control Block Diagram

6.4.4 FMC Memory Organization

The M05xxBN/DN/DE flash memory consists of program memory (APROM), Data Flash, ISP loader program memory (LDROM), and user configuration.

Program memory is main memory for user applications and called APROM. User can write their application to APROM and set system to boot from APROM.

ISP loader program memory is designed for a loader to implement In-System-Programming function. LDROM is independent to APROM and system can also be set to boot from LDROM. Therefore, user can use LDROM to avoid system boot fail when code of APROM was corrupted.

Data Flash is used for user to store data. It can be read by ISP read or memory read and programmed through ISP register. The size of each erase unit is 512 bytes. Data Flash size is 4 KB and start address is fixed at 0x0001_F000.

User configuration provides several bytes to control system logic, such as flash security lock, boot select, Brown-out voltage level, Data Flash base address, etc.... User configuration works like a fuse for power on setting and loaded from flash memory to its corresponding control register during chip powered on.

In the NuMicro $^{\odot}$ Family, the flash memory organization is different to system memory map. Flash memory organization is used when user using ISP command to read, program or erase flash memory. System memory map is used when CPU access flash memory to fetch code or data. For example, When system is set to boot from LDROM by CBS[1:0] = 1, CPU will be able to fetch code of LDROM from $0x0 \sim 0xFFF$. However, if user want to read LDROM by ISP, they still need to read the address of LDROM as $0x0010_0000 \sim 0x0010_0FFF$.

The following table and figure show the address mapping information of APROM, LDROM, Data Flash and user configuration.

Block Name	Size	Start Address	End Address
AP-ROM	8/16/32/64 Kbytes	0x0000_0000	0x0000_1FFF (8 Kbytes) 0x0000_3FFF (16 Kbytes) 0x0000_7FFF (32 Kbytes) 0x0000_FFFF (64 Kbytes)
Data Flash	4 Kbytes	0x0001_F000	0x0001_FFFF
LD-ROM	4 Kbytes	0x0010_0000	0x0010_0FFF
User Configuration	1 Words	0x0030_0000	0x0030_0000

Table 6-18 Flash Memory Address Map

nuvoton

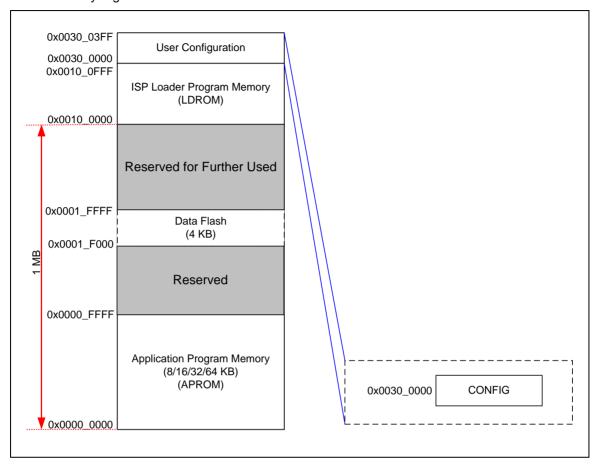


Figure 6-11 Flash Memory Organization

6.4.5 Data Flash

The M05xxBN/DN/DE provides Data Flash for user to store data. It is read/write thru ISP registers. The erase unit is 512 bytes. When a word will be changed, all 128 words need to be copied to another page or SRAM in advance. For 8/16/32/64 Kbytes flash memory device, Data Flash size is 4 Kbytes and start address is fixed at 0x0001_F000.

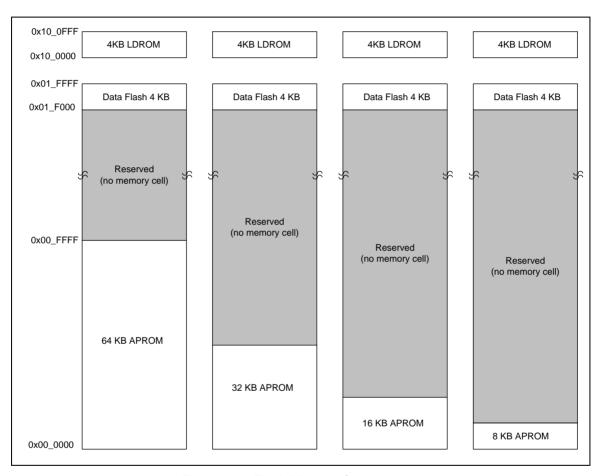


Figure 6-12 Flash Memory Structure

6.4.6 User Configuration

6.4.6.1 Boot options

User configuration is internal programmable configuration area for boot options. The user configuration is located at 0x300000 of Flash Memory Organization and it is 32 bits word. Any change on user configuration will take effect after system reboot.

CONFIG0 (Address = 0x0030 0000)

31	30	29	28	27	26	25	24
CWDTEN	CWDTPDEN		Reserved			CFOSC	
23	22	21	20	19	18	17	16
CBODEN	СВ	ov	CBORST		Reserved		
15	14	13	12	11	10	9	8
		Reserved			CIOINI	Rese	rved
7	6	5	4	3	2	1	0
CBS			Rese	erved		LOCK	Reserved

BIT	Description					
[31]	CWDTEN	0 = Watchdog Timpowered on.	Watchdog Enable Control (M05xxDN/DE Only) 0 = Watchdog Timer Enabled and force Watchdog Timer clock source as OSC10K after chip powered on. 1 = Watchdog Timer Disabled after chip powered on.			
[30]	CWDTPDEN	0 = OSC10K Wate 1 = OSC10K Wate chip enters Power	Watchdog Clock Power-Down Enable Control (M05xxDN/DE Only) O = OSC10K Watchdog Timer clock source is forced to be always enabled. = OSC10K Watchdog Timer clock source is controlled by OSC10K_EN (PWRCON[3]) when chip enters Power-Down mode. Note: This bit only works at CWDTEN is set to 0			
[31:27]	Reserved	Reserved.	Reserved.			
[26:24]	CFOSC	CFOSC[2:0] 000 111 Others	Clock Source External crystal clock (4 ~ 24 I Internal RC 22.1184 MHz oscil Reserved SC will be load to CLKSEL0.HCL	lator clock	m register after any reset	
[23]	CBODEN	Brown-out Detector Enable Control 0= Brown-out detect Enabled after powered on. 1= Brown-out detect Disabled after powered on.				
[22:21]	Brown-out Voltage Selection CBOV Brown-out Voltage					
,		11	4.4V			

	1	1)						
		10	3.7V					
		01	2.7V					
		00	2.2V					
		Brown-out Res	Brown-out Reset Enable Control					
[20]	CBORST	0 = Brown-out re	eset Enabled after powered on.					
		1 = Brown-out re	eset Disabled after powered on.					
[19:11]	Reserved	Reserved.						
		I/O Initial State	Selection (M05xxDN/DE Only)					
[10]	CIOINI	0 = All GPIO def	ault to be input tri-state mode after	r powered on.				
		1 = All GPIO def	ault to be Quasi-bidirectional mode	e after chip is powered on.				
[9:8]	Reserved	Reserved.						
		Chip Boot Sele	ction					
		00 = LDROM wit						
		01 = LDROM without IAP function.						
		10 = APROM with IAP function.						
		11 = APROM without IAP function.						
[7:6]	CBS	M05xxBN. For N When CBS[0] = address 0x0. Us	The M05xxBN only supports CBS[0] = 1, which means no IAP function is supported in M05xxBN. For M05xxDN/DE, user can set CBS[0] = 0 to support IAP function supported. When CBS[0] = 0, the LDROM is mapping to address 0x100000 and APROM is mapping to address 0x0. User could access them by their address without boot switching. In other words, if IAP function is supported, the code in LDROM and APROM can be called by each other.					
		Note1: BS bit of ISPCON is only can be used to control boot switching when CBS[0] = 1						
		Note2: VECMA	Note2: VECMAP is only can be used to remap to $0x0\sim0x1ff$ when CBS[0] = 0.					
[5:2]	Reserved	Reserved.						
		Security Lock (Control					
		0 = Flash data is	0 = Flash data is locked					
		1 = Flash data is	1 = Flash data is not locked.					
[1]	LOCK	and ICP through	When flash data is locked, only device ID, unique ID, user configuration can be read by writer and ICP through serial debug interface. Others data is locked as 0xFFFFFFF. ISP can read data anywhere regardless of LOCK bit value.					
		To unlock system Erase) by ICP to		disable LOCK bit or erase whole chip (Chip				
[0]	Reserved	Reserved.						
	1							

Note: The reserved bits of user configuration should be kept as '1'.

6.4.6.2 Brown-out Detection

The M05xxBN and M05xxDN/DE include brown-out detection function for monitoring the voltage on V_{DD} pin. If V_{DD} voltage falls below level setting of CBOV, the BOD event will be triggered when BOD enabled. User can decide to use BOD reset by enable CBORST or just enable BOD interrupt by NVIC when BOD detected. Because BOD reset is issued whenever V_{DD} voltage falls below the level setting of CBOV, user must make sure the CBOV setting to avoid BOD reset right after BOD reset enabled. For example, if the V_{DD} is 3.3V, CBOV could only be 00'b or 01'b. Otherwise, the system will be halted in BOD reset state when BOD reset is enabled and CBOV is 10'b or 11'b.

6.4.7 Boot Selection

The M05xxBN/DN/DE provides in system programming (ISP) feature to support to update program memory when chip is mounted on PCB. A dedicated 4 Kbytes program memory is used to store ISP firmware. Users can select to start program fetch from APROM or LDROM by (CBS) in CONFIGO.

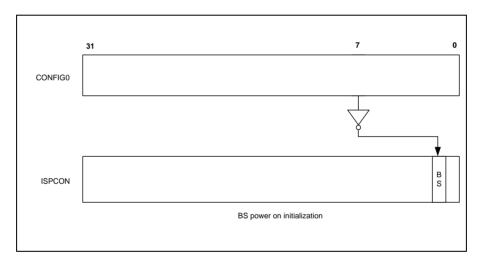


Figure 6-13 Boot Select (BS) for Power-on Action

In addition to setting boot from APROM or LDROM, CBS in CONFIG0 is also used to control system memory map after booting. When CBS[0] = 1 and set CBS[1] = 1 to boot from APROM, the application in APROM will not be able to access LDROM by CPU read. In other words, when CBS[0] = 1 and CBS[1] = 0 are set to boot from LDROM, the software executed in LDROM will not be able to access APROM by memory read. The following figure shows the memory map when booting from APROM and LDROM.

nuvoTon

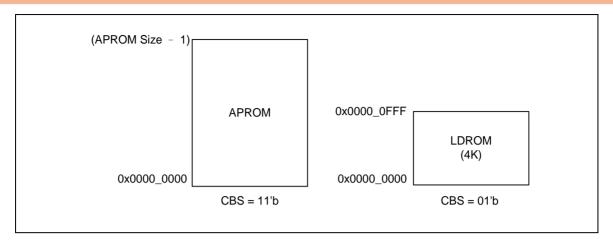


Figure 6-14 Program Executing Range for Booting from APROM and LDROM

For the application that software needs to execute code in APROM and call the functions in LDROM or to execute code in LDROM and call the APROM function without changing boot mode, CBS[0] needs to be set as 0 and this is called In-Application-Programming (IAP). Only M05xxDN/DE supports IAP function.

CBS[1:0]	Boot Selection
	LDROM with IAP function (M05xxDN/DE Only)
	Chip booting from LDROM, program executing range including LDROM and most of APROM (all except first 512 bytes as the first 512 bytes is mapped from LDROM).
00	LDROM address is mapping to 0x0010_0000 ~ 0x0010_0FFF, and also the first 512 bytes of LDROM is mapping to the address 0x0000_0000 ~ 0x0000_01FF.
	The address 0x0000_0000 ~ 0x0000_01FF can be re-mapping to any other page within executing range though ISP command.
	LDROM without IAP function
01	Chip booting from LDROM, program executing range only including LDROM; APROM cannot be access by program directly, except by through ISP.
	LDROM is write-protected in this mode.
	APROM with IAP function (M05xxDN/DE Only)
	Chip booting from APROM, program executing range including LDROM and APROM
10	LDROM address is mapping to 0x0010_0000~0x0010_0FFF
	The address 0x0000_0000 ~ 0x0000_01FF can be re-mapping to any other page within executing range though ISP command.
_	APROM without IAP function
11	Chip booting from APROM and program executing range only including APROM. LDROM cannot be access by program directly, except by through ISP.
	APROM is write-protected in this mode.

Table 6-8 Supported Boot Selection Options

In-Application-Programming (IAP) 6.4.8

The M05xxDN/DE provides In-application-programming (IAP) function for user to switch the code executing between APROM and LDROM without reset. User can enable the IAP function by rebooting chip and setting the chip boot selection bits in CONFIG0 (CBS[1:0]) as 2 or 0.

In the case that the chip boots from APROM with the IAP function enabled (CBS[1:0] = 2), the Apr. 13, 2015 Page **152** of 431 Rev 1.03

executable range of code includes all of APROM and LDROM. The address space of APROM is kept as the original size but the address space of the 4 KB LDROM is mapped to 0x0010 0000~ 0x0010 0FFF.

In the case that the chip boots from LDROM with the IAP function enabled (CBS[1:0] = 0), the executable range of code includes all of LDROM and almost all of APROM except for its first page. User cannot access the first page of APROM because the first page of executable code range becomes the mirror of the first page of LDROM as set by default. Meanwhile, the address space of 4 KB LDROM is mapped to 0x0010 0000~0x0010 0FFF.

Please refer to following figure for the address map while IAP is activating.

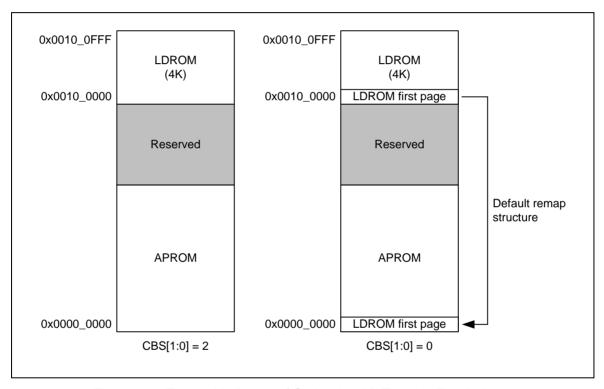


Figure 6-15 Executable Range of Code with IAP Function Enabled

When chip boots with the IAP function enabled, any other page within the executable range of code can be mirrored to the first page of executable code (0x0000 0000~0x0000 01FF) any time. User can change the remap address of the first executing page by filling the target remap address to ISPADR and then go through ISP register with the Vector Page Re-map command. After changing the remap address, user can check if the change is successful by reading the VECMAP field in the ISPSTA register.

6.4.9 In-System-Programming (ISP)

nuvoTon

The M05xxBN/DN/DE supports In-System-Programming which allows a device to be reprogrammed under software control and avoids system fail risk when download or programming fail. Furthermore, the capability to update the application firmware makes a wide range of applications possible.

To supports In-System-Programming, M05xxBN/DN/DE includes LDROM and ISP controller. User can implement their ISP loader programming in LDROM and this loader can programming user application code (APROM) through ISP register. In other words, the loader could provide the

ability to update system firmware on board. By ISP loader, various hardware peripheral interfaces make it be easier to receive new program code. The most common method to perform ISP is via UART along with the ISP loader in LDROM. General speaking, PC transfers the new APROM code through serial port. Then ISP loader receives it and re-programs into APROM through ISP commands.

6.4.10 ISP Registers Control Procedure

The M05xxBN/DN/DE supports booting from APROM or LDROM initially defined by user configuration. The change of user configuration needs to reboot system to make it take effect. If user wants to switch between APROM or LDROM mode without changing user configuration with CBS[0] = 1, he needs to control BS bit of ISPCON control register, then reset CPU by IPRSTC1 control register. The boot switching flow by BS bit is shown in the following figure. Boot switching function by BS bit is only valid when CBS[0] = 1.

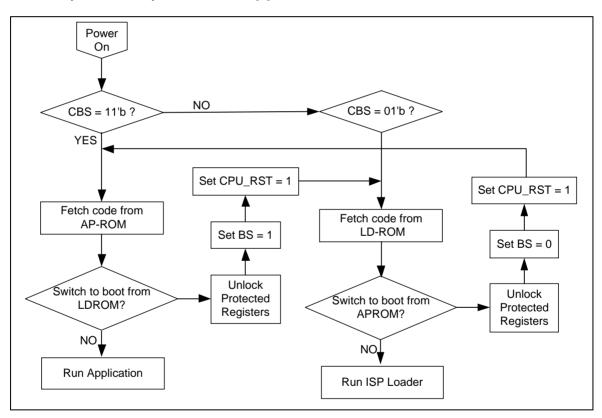


Figure 6-16 Example Flow of Boot Selection by BS Bit when CBS[0] = 1

Updating APROM by software in LDROM or updating LDROM by software in APROM can avoid a system failure when update fails.

The ISP controller supports to read, erase and program embedded flash memory. Several control bits of ISP controller are write-protected, thus it is necessary to unlock before we can set them. To unlock the protected register bits, software needs to write 0x59, 0x16 and 0x88 sequentially to REGWRPROT. If register is unlocked successfully, the value of REGWRPROT will be 1. The unlock sequence must not be interrupted by other access; otherwise it may fail to unlock.

After unlocking the protected register bits, user needs to set the ISPCON control register to

decide to update LDROM, User Configuration, APROM and enable ISP controller.

Once the ISPCON register is set properly, user can set ISPCMD for erase, read or programming. Set ISPADR for target flash memory based on flash memory origination. ISPDAT can be used to set the data to program or used to return the read data according to ISPCMD.

Finally, set ISPGO bit of ISPTRG control register to perform the relative ISP register function. The ISPGO bit is self-cleared when ISP register function has been done. To make sure ISP register function has been finished before CPU goes ahead, ISB instruction is used right after ISPGO setting.

Several error conditions are checked after ISP register function is completed. If an error condition occurs, ISP register operation is not started and the ISP fail flag will be set instead. ISPFF flag can only be cleared by software. The next ISP register control procedure can be started even ISPFF bit is kept as 1. Therefore, it is recommended to check the ISPFF bit and clear it after each ISP register operation if it is set to 1.

When the ISPGO bit is set, CPU will wait for ISP operation to finish during this period; the peripheral still keeps working as usual. If any interrupt request occurs, CPU will not service it till ISP operation is finished. When ISP operation is finished, the ISPGO bit will be cleared by hardware automatically. User can check whether ISP operation is finished or not by the ISPGO bit. User should add ISB instruction next to the instruction in which the ISPGO bit is set 1 to ensure correct execution of the instructions following ISP operation.

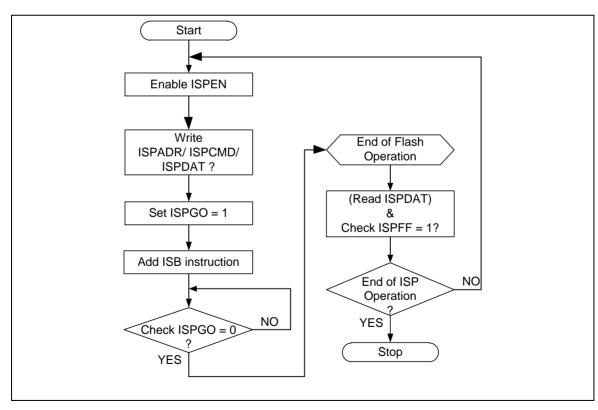


Figure 6-17 ISP Flow Example

The following table lists ISP commands supported by M05xxBN/DN/DE.

Note: The Vector Page Re-Map command is only available on M05xxDN/DE.

ISP Command	ISPCMD	ISPADR	ISPDAT
FLASH Page Erase	0x22	Valid address of flash memory origination. It must be 512 bytes page alignment.	Don't care
FLASH Program	0x21	Valid address of flash memory origination	Programming Data
FLASH Read	0x00	Valid address of flash memory origination	Return Data
		0x0000_0000	Unique ID Word 0
Read Unique ID	0x04	0x0000_0004	Unique ID Word 1
		0x0000_0008	Unique ID Word 2
Read Company ID	0x0B	Don't care	Company ID (0xDA)
Vector Page Re-Map	0x2E	Page in APROM or LDROM It must be 512 bytes page alignment	Don't care

Table 6-9 ISP Command List

6.4.11 Multi-booting by Vector Remapping


nuvoton

The M05xxDN/DE can support to boot from different address by vector page remapping function. When CBS[0] = 0, All pages of LDROM and APROM can be remap to vector address 0x0. The remapping address can be got by VECMAP of ISPSTA register. When CBS[1:0] = 2, the remapping address is default to 0x0 when powered on. This means the vector page is mapping from first page of APROM to boot from APROM at power on. When CBS[1:0] = 0, the remapping address is 0x100000. This means the vector page is mapping from first page of LDROM to boot from LDROM at power on.

The remapping address can be changed by Vector Page Re-Map command. User may remap specified page to vector page by Vector Page Re-Map command, than using CPU_RST or SYSRESETREQ to reset system to reboot. The CPU will fetch the stack and reset handler pointer from new vector page, than boot to the specified application.

For example, if user has two independent applications in APROM called App0 and App1. App0 is located at 0x0, and App1 is located at 0x8000. The CBS[1:0] was set to 0 to boot from LDROM. When power on, the system will execute the code in LDROM. The code in LDROM will decide to boot to App0 or App1. For boot to App0, the code in LDROM will enable ISP and set vector page remapping to 0x0, than reset CPU by CPU RST(Not reset I/O and peripherals) or SYSRESETREQ(Reset I/O and peripherals) to boot to App0. For boot to App1, the code in LDROM will enable ISP and set vector page remapping to 0x8000, than reset CPU by CPU RST or SYSRESETREQ to boot to App1. The following figure shows how to use vector page remapping to boot to different applications.

To set vector page remapping, user needs to set new page address to ISPADR, set remap command code 0x2E to ISPCMD. Than trigger ISP command by set ISPGO to 1. User can confirm the new vector page mapping address by ISPSTA control register.

nuvoTon

Figure 6-18 Multi-booting by Vector Page Remapping

6.4.12 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
	FMC Base Address: FMC_BA = 0x5000_C000						
ISPCON	FMC_BA+0x00	R/W	ISP Control Register	0x0000_0000			
ISPADR	FMC_BA+0x04	R/W	ISP Address Register	0x0000_0000			
ISPDAT	FMC_BA+0x08	R/W	ISP Data Register	0x0000_0000			
ISPCMD	FMC_BA+0x0C	R/W	ISP Command Register	0x0000_0000			
ISPTRG	FMC_BA+0x10	R/W	ISP Trigger Control Register	0x0000_0000			
DFBADR	FMC_BA+0x14	R	Data Flash Base Address	0x0001_F000			
FATCON	FMC_BA+0x18	R/W	Flash Access Time Control Register	0x0000_0000			
ISPSTA	FMC_BA+0x40	R/W	ISP Status Register (M05xxDN/DE Only)	0x0000_0000			

6.4.13 Register Description

ISP Control Register (ISPCON)

Register	Offset	R/W	Description	Reset Value
ISPCON	FMC_BA+0x00	R/W	ISP Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
			Rese	erved					
7	7 6 5 4 3 2 1 0								
Reserved	ISPFF	LDUEN	CFGUEN	APUEN	Reserved	BS	ISPEN		

Bits	Description	
[31:7]	Reserved	Reserved.
[6]	ISPFF	ISP Fail Flag (Write Protect) This bit is set by hardware when a triggered ISP meets any of the following conditions: (1) APROM writes to itself if APUEN is set to 0. (2) LDROM writes to itself. (3) Destination address is illegal, such as over an available range. Note: Write 1 to clear this bit to 0.
[5]	LDUEN	LDROM Update Enable Control (Write Protect) 0 = LDROM cannot be updated. 1 = LDROM can be updated when the MCU runs in APROM.
[4]	CFGUEN	CONFIG Update Enable Control (Write Protect) Writing this bit to 1 enables software to update CONFIG value by ISP register control procedure regardless of program code is running in APROM or LDROM. 0 = ISP update User Configuration Disabled. 1 = ISP update User Configuration Enabled.
[3]	APUEN	APROM Update Enable Control (Write Protect) 0 = APROM cannot be updated when chip runs in APROM. 1 = APROM can be updated when chip runs in APROM.
[2]	Reserved	Reserved.
[1]	BS	Boot Select (Write Protect) Set/clear this bit to select next booting from LDROM/APROM, respectively. This bit also functions as chip booting status flag, which can be used to check where chip booted from. This bit is initiated with the inversed value of CBS in CONFIG0 after any reset is happened except CPU reset (RSTS_CPU is 1) or system reset (RSTS_SYS) is happened. 0 = Boot from APROM. 1 = Boot from LDROM.

		ISP Enable Control (Write Protect)
[0]	ISPEN	Set this bit to enable ISP function.
[0]		0 = ISP function Disabled.
		1 = ISP function Enabled.

ISP Address Register (ISPADR)

Register	Offset	R/W	Description	Reset Value
ISPADR	FMC_BA+0x04	R/W	ISP Address Register	0x0000_0000

31	30	29	28	27	26	25	24			
	ISPADR									
23	22	21	20	19	18	17	16			
	ISPADR									
15	14	13	12	11	10	9	8			
	ISPADR									
7	6	5	4	3	2	1	0			
	ISPADR									

Bits	Description	Description					
[31:0]	ISPADR	ISP Address The M05xxBN/DN/DE has a maximum 16K x 32-bit (64 KB) of embedded Flash, which supports word program only. ISPADR[1:0] must be kept 00'b for ISP operation.					

ISP Data Register (ISPDAT)

Register	Offset	R/W	Description	Reset Value
ISPDAT	FMC_BA+0x08	R/W	ISP Data Register	0x0000_0000

31	30	29	28	27	26	25	24			
	ISPDAT									
23	22	21	20	19	18	17	16			
	ISPDAT									
15	14	13	12	11	10	9	8			
	ISPDAT									
7	6	5	4	3	2	1	0			
	ISPDAT									

Bits	Description				
[31:0]	ISPDAT	ISP Data Write data to this register before ISP program operation. Read data from this register after ISP read operation.			

ISP Command (ISPCMD)

Register	Offset	R/W	Description	Reset Value
ISPCMD	FMC_BA+0x0C	R/W	ISP Command Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved ISPCMD									

Bits	Description				
[31:6]	Reserved	Reserved.			
		ISP Command			
		ISP commands are shown below:			
		0x00 = Read.			
[5.0]	ISPCMD	0x04 = Read Unique ID.			
[5:0]	ISPCIVID	0x0B = Read Company ID (0xDA).			
		0x21 = Program.			
		0x22 = Page Erase.			
		0x2E = Set Vector Page Re-Map.			

ISP Trigger Control Register (ISPTRG)

nuvoTon

Register	Offset	R/W	Description	Reset Value
ISPTRG	FMC_BA+0x10	R/W	ISP Trigger Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
Reserved							ISPGO		

Bits	Description	Description					
[31:1]	Reserved Reserved.						
	ISPGO	SP Start Trigger (Write Protect)					
[0]		Write 1 to start ISP operation and this bit will be cleared to 0 by hardware automatically when ISP operation is finished.					
		0 = ISP operation is finished.					
		1 = ISP operation is progressed.					

Data Flash Base Address Register (DFBADR)

Register	Offset	R/W	Description	Reset Value
DFBADR	FMC_BA+0x14	R	Data Flash Base Address	0x0001_F000

31	30	29	28	27	26	25	24				
	DFBADR										
23	22	21	20	19	18	17	16				
			DFB	ADR							
15	14	13	12	11	10	9	8				
	DFBADR										
7 6 5 4 3 2 1 0							0				
	DFBADR										

Bits	Description	Description						
[31:0]		Data Flash Base Address This register indicates Data Flash start address. It is a read only register.						
		This register indicates Data Flash start address. It is a read only register. For 8/16/32/64 Kbytes flash memory device, the Data Flash size is 4 Kbytes and it start address is fixed at 0x0001_F000 by hardware internally.						

Flash Access Time Control Register (FATCON)

Register	Offset	R/W	Description	Reset Value
FATCON	FMC_BA+0x18	R/W	Flash Access Time Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved			LFOM	Reserved						

Bits	Description						
[31:8]	Reserved	Reserved.					
[7]	Reserved	rved Always keep 0.					
[6:5]	Reserved	Reserved.					
[4]	LFOM	Low Frequency Optimization Mode Control (Write Protect) When chip operation frequency is lower than 25 MHz, chip can work more efficiently by setting this bit to 1 0 = Low frequency optimization mode Disabled. 1 = Low frequency optimization mode Enabled.					
[0]	Reserved	Reserved.					

ISP Status Register (ISPSTA)

Register	ister Offset R		Description	Reset Value
ISPSTA	FMC_BA+0x40	R/W	ISP Status Register (M05xxDN/DE Only)	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved			VECMAP						
15	14	13	12	11	10	9	8			
			VECMAP				Reserved			
7	6	5	4	3	2	1	0			
Reserved	ISPFF		Reserved		CBS		ISPGO			

Bits	Description	
[31:21]	Reserved	Reserved.
[20:9]	VECMAP	Vector Page Mapping Address (Read Only) The current flash address space 0x0000_0000~0x0000_01FF is mapping to address {VECMAP[11:0], 9'h000} ~ {VECMAP[11:0], 9'h1FF}
[8:7]	Reserved	Reserved.
[6]	ISPFF	ISP Fail Flag (Write Protect) This bit is set by hardware when a triggered ISP meets any of the following conditions: (1) APROM writes to itself (2) LDROM writes to itself (3) CONFIG is erased/programmed if CFGUEN is set to 0 (4) Destination address is illegal, such as over an available range Write 1 to clear this bit. Note: The function of this bit is the same as ISPCON bit 6
[5:3]	Reserved	Reserved.
[2:1]	CBS	Chip Boot Select (Read Only) This is a mirror of CBS in CONFIG0.
[0]	ISPGO	ISP Start Trigger (Read Only) Write 1 to start ISP operation and this bit will be cleared to 0 by hardware automatically when ISP operation is finished. 0 = ISP operation is finished. 1 = ISP operation is progressed. Note: This bit is the same as ISPTRG bit0

6.5 External Bus Interface (EBI)

6.5.1 Overview

The NuMicro® M05xxBN/DN/DE LQFP-48 package has an external bus interface (EBI) for access external device.

To save the connections between external device and this chip, EBI supports address bus and data bus multiplex mode which is differentiated by address latch enable signal.

6.5.2 Features

The External Bus Interface has the following functions:

- Supports external devices with max. 64 KB size (8-bit data width) / 128 KB (16-bit data width)
- Supports variable external bus base clock (MCLK) which based on HCLK
- Supports 8-bit or 16-bit data width
- Supports variable data access time (tACC), address latch enable time (tALE) and address hold time (tAHD)
- Supports address bus and data bus multiplex mode to save the address pins
- Supports configurable idle cycle for different access condition: Write command finish (W2X), Read-to-Read (R2R)
- Supports zero address hold time with read/write operation and write buffer for write operation to enhance read/write performance (M05xxDN/DE Only)

6.5.3 Block Diagram

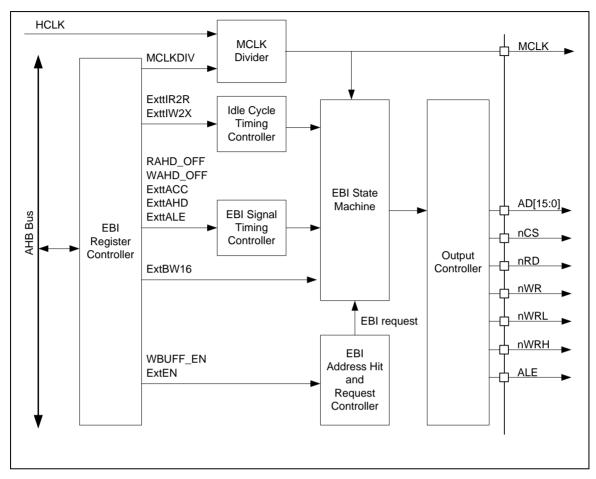


Figure 6-19 EBI Block Diagram

6.5.4 Basic Configuration

The basic configurations of EBI are as follows:

- EBI peripheral clock is enabled in AHBCLK[3].
- The AD[15:0] pins functions are configured in P0_MFP and P2_MFP registers; nRD, nWR and MCLK pins functions are configured in P3_MFP register; ALE and nCS pins functions are configured in P4_MFP register; nWRL and nWRH pins functions are configured in P1_MFP register.

lacktriangle

6.5.5 Functional Description

6.5.5.1 EBI Area and Address Hit

The EBI mapping address is located at 0x6000_0000 ~ 0x6001_FFFF and the maximum available memory space is 128 Kbytes. When the system request address hits EBI's memory space, the corresponding EBI chip select signal (nCS) is assert and EBI state machine operates.

For an 8-bit device (64 Kbytes), EBI mapped this 64 Kbytes device to $0x6000_0000 \sim 0x6000_FFFF$ and $0x6001_0000 \sim 0x6001_FFFF$ simultaneously.

For a 16-bit device (128 Kbytes), EBI mapped this 128 Kbytes device to $0x6000_0000 \sim 0x6001_FFFF$.

6.5.5.2 EBI Data Width Connection

The EBI controller supports to connect the external device whose address bus and data bus are multiplexed. For the external device with separated address and data bus, the connection to device needs additional logic (latch device) to latch the address. In this case, pin ALE is connected to the latch device to latch the address value. Pins AD0 ~ AD15 for 16-bit data width / Pins AD0 ~ AD7 for 8-bit data width are the input pins of the latch device, and the output pins of the latch device are connected to the Addr[15:0] of external device.

For 16-bit device, the AD[15:0] shared by address (Addr[15:0]) and 16-bit data (Data[15:0]). For 8-bit device, only AD[7:0] shared by address (Addr[7:0]) and 8-bit data (Data[7:0]), AD[15:8] is dedicated for address (Addr[15:8]) and could be connected to 8-bit device directly.

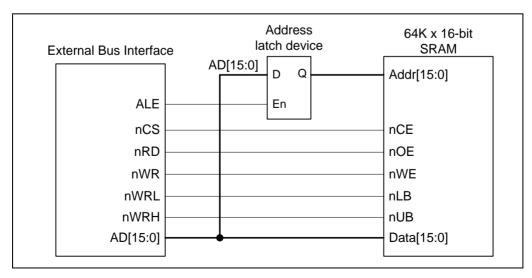


Figure 6-20 Connection of 16-bit EBI Data Width with 16-bit Device

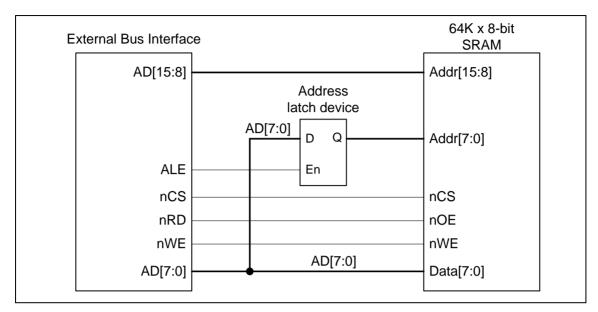


Figure 6-21 Connection of 8-bit EBI Data Width with 8-bit Device

When the system access data width is larger than EBI data width (8-bit / 16 bit data width), the EBI controller will finish a system access command by operating EBI access more than once. For example, if system requests a 32-bit data through EBI device, the EBI controller will operate accessing four times when setting EBI data width with 8-bit data width.

6.5.5.3 EBI Operating Control

MCLK Control

nuvoton

In the chip, all EBI signals will be synchronized by MCLK when EBI is operating. When the chip connects to the external device with slower operating frequency, the MCLK can divide most to 32 from HCLK by setting MCLKDIV[2:0]. Therefore, the EBI controller is suitable for a wide frequency range of EBI device. If MCLK frequency is set to the same as HCLK, EBI signals are synchronized by positive edge of MCLK, else by negative edge of MCLK.

Operation and Access Timing Control

At the start of EBI access, chip select signal (nCS) asserts to low and waits one MCLK for address setup time (tASU) for address stable. Then address latch enable signal (ALE) asserts to high after address is stable and keeps for a period of time (tALE) for address latch. After latch address, ALE signal asserts to low and waits one MCLK for address latch hold time (tLHD) and another one MCLK cycle (tA2D) that is inserted behind tLHD to be the bus turn-around time for address change to data. Then nRD signal asserts to low when read access or nWR signal asserts to low when write access. Then nRD or nWR signal asserts to high after keeps access time (tACC) for reading output stable or writing finish. After that, EBI signals keep for data access hold time (tAHD) and nCS signal asserts to high then address is released by current access control.

The EBI controller provides a flexible timing control for different external devices, as shown in the following table. In EBI timing control, tASU, tLHD and tA2D are all fixed to 1 MCLK cycle, tAHD

nuvoTon

can modulate to 1 ~ 8 MCLK cycles by setting ExttAHD[2:0] or zero tAHD for read/write by setting RAHD OFF/WAHD OFF bit (only for M05xxDN/DE), tACC can modulate to 1 ~ 32 MCLK cycles by setting ExttACC[4:0], and tALE can modulate to 1 ~ 8 MCLK cycles by setting ExttALE[2:0].

Parameter	Value	Unit	Description
tASU	1	MCLK	Address Latch Setup Time.
tALE	1 ~ 8	MCLK	ALE High Period. Controlled by ExttALE[2:0] of EBICON[18:16].
tLHD	1	MCLK	Address Latch Hold Time.
tA2D	1	MCLK	Address To Data Delay (Bus Turn-Around Time).
tACC	1 ~ 32	MCLK	Data Access Time. Controlled by ExttACC[4:0] of EXTIME[7:3].
tAHD	1 ~ 8	MCLK	Data Access Hold Time. Controlled by ExttAHD[2:0] of EXTIME[10:8] to select 1 ~8 tAHD.
tAHD	0	MCLK	Setting RAHD_OFF/WAHD_OFF to select zero tAHD (only for M05xxDN/DE).
IDLE	0 ~ 15	MCLK	Idle Cycle. Controlled by ExtIR2R[3:0] of EXTIME[27:24] and ExtIW2X[3:0] of EXTIME[15:12].

Table 6-10 EBI Timing Table

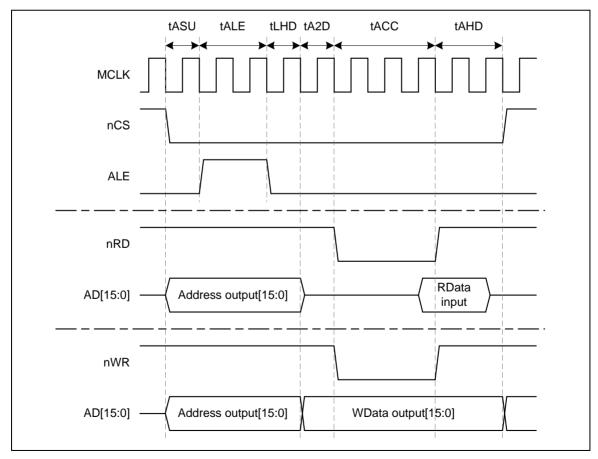


Figure 6-22 EBI Timing Control Waveform for 16-bit Data Width

The figure above shows an example of setting 16-bit data width for EBI application. In this example, AD0 ~ AD15 are used to be address[15:0] and data[15:0]. When ALE signal asserts to high, AD0 ~ AD15 are the address output. After address is latched (tLHD), ALE signal asserts to low and the AD[15:0] bus changes to high impedance to wait device output data in read access operation, or it is used to be write data output.

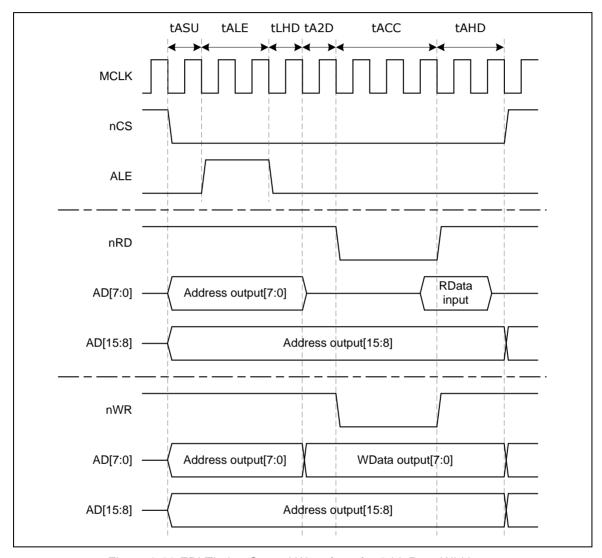


Figure 6-23 EBI Timing Control Waveform for 8-bit Data Width

The figure above shows an example of setting 8-bit data width for EBI application. The difference between 8-bit and 16-bit data width is AD8 ~ AD15. In 8-bit data width setting, and AD8 ~ AD15 are always the address[15:8] output so that the external latch needs only 8-bit width.

Insert Idle Cycle

nuvoton

When EBI is accessing continuously, bus conflict may occur if the device access time is much longer compared with system clock frequency. The EBI controller supplies additional idle cycle to solve this problem. During idle cycle period, all control signals of EBI bus are inactive. The following figure shows idle cycle.

nuvoton

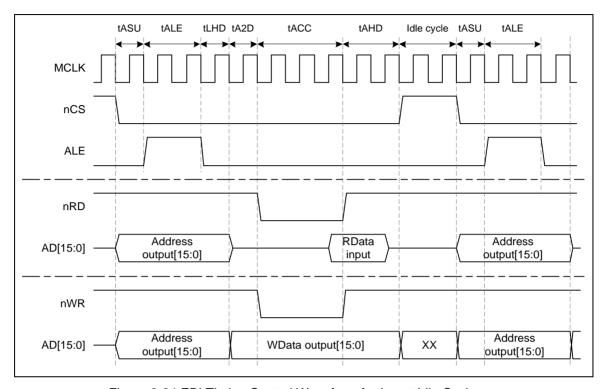


Figure 6-24 EBI Timing Control Waveform for Insert Idle Cycle

There are two conditions that EBI can insert idle cycle by timing control:

- After write access 1.
- 2. After read access and before next read access

By setting ExtIW2X[3:0] of EXTIME [15:12] and ExtIR2R[3:0] of the register EXTIME[27:24], the time of idle cycle can be specified from 0 ~ 15 MCLK.

Write Buffer (M05xxDN/DE Only)

When software write a data to external device through EBI bus, the EBI controller will start processing the write action immediately and the CPU is held until current EBI write action finish. User can enable write buffer function to improve CPU and EBI access performance. When EBI write buffer function is enabled, the CPU can continuous execute other instruction during EBI controller process the write action to external device. There is one exception condition for this case, if CPU executes another data access through EBI bus when EBI process write action, the CPU will be held.

6.5.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value	
EBI_BA = 0x5001_0000					
EBICON	EBI_BA+0x00	R/W	External Bus Interface General Control Register	0x0000_0000	
EXTIME	EBI_BA+0x04	R/W	External Bus Interface Timing Control Register	0x0000_0000	
EBICON2	EBI_BA+0x08	R/W	External Bus Interface General Control Register 2 (M05xxDN/DE Only)	0x0000_0000	

6.5.7 Register Description

External Bus Interface General Control Register (EBICON)

Register	Offset	R/W	Description	Reset Value
EBICON	EBI_BA+0x00	R/W	External Bus Interface General Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
		Reversed			ExttALE					
15	14	13	12	11	10	9	8			
		Reversed				MCLKDIV				
7	6	5	4	3	2	1	0			
Reversed						ExtBW16	ExtEN			

Bits	Description		
[31:19]	Reserved	Reserved.	
[18:16]	ExttALE	Expand Time of ALE This field is used to control the ALE pulse width (tALE) for address latch. tALE = (ExttALE + 1) * MCLK.	
[15:11]	Reserved	Reserved.	
[10:8]	MCLKDIV	External Output Clock Divider The frequency of EBI output clock (MCLK) is controlled by MCLKDIV as follows: 000 = MCLK frequency is HCLK/1. 001 = MCLK frequency is HCLK/2. 010 = MCLK frequency is HCLK/4. 011 = MCLK frequency is HCLK/8. 100 = MCLK frequency is HCLK/16. 101 = MCLK frequency is HCLK/32. Note: The default value of output clock is HCLK/1.	
[7:2]	Reserved Reserved.		
[1]	ExtBW16	EBI Data Width 16-bit / 8-bit This bit defines if the data bus is 8-bit or 16-bit. 0 = EBI data width is 8 bit. 1 = EBI data width is 16 bit.	
[0]	ExtEN	EBI Enable Control This bit is the functional enable bit for EBI. 0 = EBI function Disabled. 1 = EBI function Enabled.	

External Bus Interface Timing Control Register (EXTIME)

Register	Offset	R/W	Description	Reset Value
EXTIME	EBI_BA+0x04	R/W	External Bus Interface Timing Control Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved				ExtIR2R			
23	22	21	20	19	18	17	16
			Reve	ersed			
15	14	13	12	11	10	9	8
ExtlW2X				Reversed	ExttAHD		
7	6	5	4	3	2	1	0
ExttACC					Reversed		

Bits	Description			
[31:28]	Reserved	Reserved.		
[27:24]	ExtIR2R	Idle State Cycle Between Read-read When read action is finished and the next action is going to read, idle state is inserted and nCS signal return to high if ExtIR2R is not 0. Idle state cycle = (ExtIR2R * MCLK).		
[23:16]	Reserved	Reserved.		
[15:12]	ExtIW2X	Idle State Cycle After Write When write action is finished, idle state is inserted and nCS signal return to high if ExtIW2X is not 0. Idle state cycle = (ExtIW2X * MCLK).		
[11]	Reserved	Reserved.		
[10:8]	ExttAHD	EBI Data Access Hold Time ExttAHD defines data access hold time (tAHD). tAHD = (ExttAHD +1) * MCLK.		
[7:3]	ExttACC	EBI Data Access Time ExttACC defines data access time (tACC). tACC = (ExttACC +1) * MCLK.		
[2:0]	Reserved	Reserved.		

External Bus Interface General Control Register 2 (EBICON2)

Register	Offset	R/W	Description	Reset Value
EBICON2	EBI_BA+0x08	IR////	External Bus Interface General Control Register 2 (M05xxDN/DE Only)	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reversed						
15	14	13	12	11	10	9	8
Reversed							
7	6	5	4	3	2	1	0
	Reversed				WAHD_OFF	RAHD_OFF	WBUFF_EN

Bits	Description	Description			
[31:3]	Reserved	Reserved.			
[2]	WAHD_OFF	Access Hold Time Disable Control When Write 0 = tAHD is controlled by ExttAHD[2:0] when write through EBI. 1 = Zero tAHD when write through EBI.			
[1]	RAHD_OFF	Access Hold Time Disable Control When Read 0 = tAHD is controlled by ExttAHD[2:0] when read through EBI. 1 = Zero tAHD when read through EBI.			
[0]	WBUFF_EN	EBI Write Buffer Enable Control Enable this function to improve CPU and EBI access performance. 0 = EBI write buffer Disabled. 1 = EBI write buffer Enabled.			

6.6 General Purpose I/O (GPIO)

6.6.1 Overview

The NuMicro® M05xxBN and M05xxDN/DE has up to 40 General Purpose I/O pins to be shared with other function pins depending on the chip configuration. These 40 pins are arranged in 5 ports named as P0, P1, P2, P3 and P4. Each port has the maximum of 8 pins. Each of the 40 pins is independent and has the corresponding register bits to control the pin mode function and data.

The I/O type of each pin can be configured by software individually as Input, Push-pull output, Open-drain output or Quasi-bidirectional mode. After the chip is reset, the I/O mode of all pins is stay in quasi-bidirectional mode and each port data register Px_DOUT[7:0] resets to 0x000_00FF. Each I/O pin has a very weakly individual pull-up resistor which is about 110 k Ω ~ 300 k Ω for V_{DD} is from 5.0 V to 2.5 V.

6.6.2 Features

- Four I/O modes:
 - Input only with high impedance
 - Push-pull output
 - Open-drain output
- Quasi-bidirectional TTL/Schmitt trigger input mode selected by Px MFP[23:16]
- I/O pin configured as interrupt source with edge/level setting
- I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode
- Enabling the pin interrupt function will also enable the pin wake-up function
- Configurable default I/O mode of all pins after reset by CIOINI(CONFIG[10]) setting (M05xxDN/DE Only)
 - CIOINI = 0, all GPIO pins in Input tri-state mode after chip reset
 - CIOINI = 1, all GPIO pins in Quasi-bidirectional mode after chip reset

6.6.3 Basic Configuration

The GPIO pin functions are configured in P0_MFP, P1_MFP, P2_MFP, P3_MFP and P4_MFP registers.

6.6.4 Functional Description

6.6.4.1 Input Mode

Set Px_PMD (PMDn[1:0]) to 00 as the Px.n pin is in Input mode and the I/O pin is in tri-state (high impedance) without output drive capability. The Px_PIN value reflects the status of the corresponding port pins.

6.6.4.2 Push-pull Output Mode

Set Px_PMD (PMDn[1:0]) to 01 as the Px.n pin is in Push-pull output mode and the I/O pin supports digital output function with source/sink current capability. The bit value in the corresponding Px_DOUT[n] bit is driven on the pin.

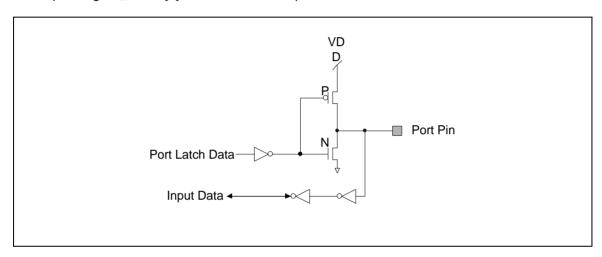


Figure 6-25 Push-Pull Output

6.6.4.3 Open-drain Output Mode

Set Px_PMD (PMDn[1:0]) to 10 as the Px.n pin is in Open-drain mode and the digital output function of I/O pin only supports sink current capability, an external pull-up resistor is needed for driving high state. If the bit value in the corresponding Px_DOUT[n] bit is 0, the pin drive a low output on the pin. If the bit value in the corresponding Px_DOUT[n] bit is 1, the pin output drives high that is controlled by external pull-up resistor.

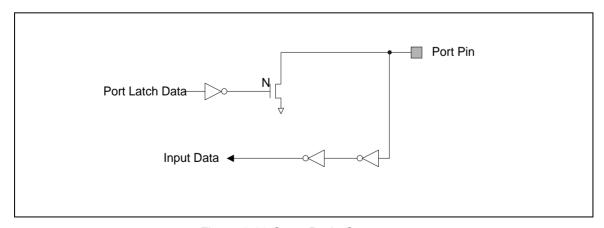


Figure 6-26 Open-Drain Output

6.6.4.4 Quasi-bidirectional Mode

Set Px_PMD (PMDn[1:0]) to 11 as the Px.n pin is in Quasi-bidirectional mode and the I/O pin supports digital output and input function at the same time but the source current is only up to hundreds of uA. Before the digital input function is performed the corresponding Px_DOUT[n] bit must be set to 1. The Quasi-bidirectional output is common on the 80C51 and most of its derivatives. If the bit value in the corresponding Px_DOUT[n] bit is 0, the pin drive a low output on the pin. If the bit value in the corresponding Px_DOUT[n] bit is 1, the pin will check the pin value. If pin value is high, no action takes. If pin state is low, then pin will drive strong high with 2 clock cycles on the pin and then disable the strong output drive. Meanwhile, the pin status is controlled by internal pull-up resistor.

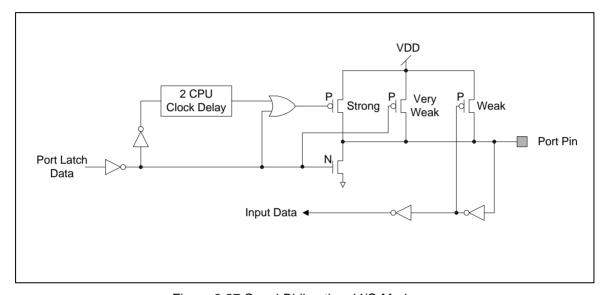


Figure 6-27 Quasi-Bidirectional I/O Mode

6.6.5 GPIO Interrupt and Wake-up Function

Each GPIO pin can be set as chip interrupt source by setting correlative Px_IEN bit and Px_IMD. There are five types of interrupt condition can be selected: low level trigger, high level trigger, falling edge trigger, rising edge trigger and both rising and falling edge trigger. For edge trigger condition, user can enable input signal de-bounce function to prevent unexpected interrupt happened which caused by noise. The de-bounce clock source and sampling cycle period can be set through DBNCECON register.

The GPIO can also be the chip wake-up source when chip enters Idle/Power-down mode. The setting of wake-up trigger condition is the same as GPIO interrupt trigger, but there are two things need to be noticed (only for M05xxBN) if using GPIO as chip wake-up source.

1. To ensure the I/O status before entering Idle/Power-down mode

When using toggle GPIO to wake-up system, user must make sure the I/O status before entering Idle/Power-down mode according to the relative wake-up settings.

For example, if configuring the wake-up event occurred by I/O rising edge/high level trigger, user must make sure the I/O status of specified pin is at low level before entering Idle/Power-down mode; and if configure I/O falling edge/low level trigger to trigger a wake-up event, user must make sure the I/O status of specified pin is at high level before entering Power-down mode.

2. To disable the I/O de-bounce function before entering Idle/Power-down mode

If the specified wake-up I/O pin with enabling input signal de-bounce function, system will encounter two GPIO interrupt events while the system is woken up by this GPIO pin. One interrupt event is caused by wake-up function, the other is caused by I/O input de-bounce function. User should be disable the de-bounce function before entering Idle/Power-down mode to avoid the second interrupt event occurred after system waken up.

6.6.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
GPIO Base Addres		•		
P0_PMD	GP_BA+0x000	R/W	P0 I/O Mode Control	0x0000_XXXX
P0_OFFD	GP_BA+0x004	R/W	P0 Digital Input Path Disable Control	0x0000_0000
P0_DOUT	GP_BA+0x008	R/W	P0 Data Output Value	0x0000_00FF
P0_DMASK	GP_BA+0x00C	R/W	P0 Data Output Write Mask	0x0000_0000
P0_PIN	GP_BA+0x010	R	P0 Pin Value	0x0000_00XX
P0_DBEN	GP_BA+0x014	R/W	P0 De-bounce Enable Control	0x0000_0000
P0_IMD	GP_BA+0x018	R/W	P0 Interrupt Mode Control	0x0000_0000
P0_IEN	GP_BA+0x01C	R/W	P0 Interrupt Enable Control	0x0000_0000
P0_ISRC	GP_BA+0x020	R/W	P0 Interrupt Source Flag	0x0000_0000
P1_PMD	GP_BA+0x040	R/W	P1 I/O Mode Control	0x0000_XXXX
P1_OFFD	GP_BA+0x044	R/W	P1 Digital Input Path Disable Control	0x0000_0000
P1_DOUT	GP_BA+0x048	R/W	P1 Data Output Value	0x0000_00FF
P1_DMASK	GP_BA+0x04C	R/W	P1 Data Output Write Mask	0x0000_0000
P1_PIN	GP_BA+0x050	R	P1 Pin Value	0x0000_00XX
P1_DBEN	GP_BA+0x054	R/W	P1 De-bounce Enable Control	0x0000_0000
P1_IMD	GP_BA+0x058	R/W	P1 Interrupt Mode Control	0x0000_0000
P1_IEN	GP_BA+0x05C	R/W	P1 Interrupt Enable Control	0x0000_0000
P1_ISRC	GP_BA+0x060	R/W	P1 Interrupt Source Flag	0x0000_0000
P2_PMD	GP_BA+0x080	R/W	P2 I/O Mode Control	0x0000_XXXX
P2_OFFD	GP_BA+0x084	R/W	P2 Digital Input Path Disable Control	0x0000_0000
P2_DOUT	GP_BA+0x088	R/W	P2 Data Output Value	0x0000_00FF
P2_DMASK	GP_BA+0x08C	R/W	P2 Data Output Write Mask	0x0000_0000
P2_PIN	GP_BA+0x090	R	P2 Pin Value	0x0000_00XX
P2_DBEN	GP_BA+0x094	R/W	P2 De-bounce Enable Control	0x0000_0000
P2_IMD	GP_BA+0x098	R/W	P2 Interrupt Mode Control	0x0000_0000
P2_IEN	GP_BA+0x09C	R/W	P2 Interrupt Enable Control	0x0000_0000

	ı	1	T	
P2_ISRC	GP_BA+0x0A0	R/W	P2 Interrupt Source Flag	0x0000_0000
P3_PMD	GP_BA+0x0C0	R/W	P3 I/O Mode Control	0x0000_XXXX
P3_OFFD	GP_BA+0x0C4	R/W	P3 Digital Input Path Disable Control	0x0000_0000
P3_DOUT	GP_BA+0x0C8	R/W	P3 Data Output Value	0x0000_00FF
P3_DMASK	GP_BA+0x0CC	R/W	P3 Data Output Write Mask	0x0000_0000
P3_PIN	GP_BA+0x0D0	R	P3 Pin Value	0x0000_00XX
P3_DBEN	GP_BA+0x0D4	R/W	P3 De-bounce Enable Control	0x0000_0000
P3_IMD	GP_BA+0x0D8	R/W	P3 Interrupt Mode Control	0x0000_0000
P3_IEN	GP_BA+0x0DC	R/W	P3 Interrupt Enable Control	0x0000_0000
P3_ISRC	GP_BA+0x0E0	R/W	P3 Interrupt Source Flag	0x0000_0000
P4_PMD	GP_BA+0x100	R/W	P4 I/O Mode Control	0x0000_XXXX
P4_OFFD	GP_BA+0x104	R/W	P4 Digital Input Path Disable Control	0x0000_0000
P4_DOUT	GP_BA+0x108	R/W	P4 Data Output Value	0x0000_00FF
P4_DMASK	GP_BA+0x10C	R/W	P4 Data Output Write Mask	0x0000_0000
P4_PIN	GP_BA+0x110	R	P4 Pin Value	0x0000_00XX
P4_DBEN	GP_BA+0x114	R/W	P4 De-bounce Enable Control	0x0000_0000
P4_IMD	GP_BA+0x118	R/W	P4 Interrupt Mode Control	0x0000_0000
P4_IEN	GP_BA+0x11C	R/W	P4 Interrupt Enable Control	0x0000_0000
P4_ISRC	GP_BA+0x120	R/W	P4 Interrupt Source Flag	0x0000_0000
DBNCECON	GP_BA+0x180	R/W	Interrupt De-bounce Control	0x0000_0020
P0n_PDIO n = 0, 17	GP_BA+0x200 + 0x04 * n	R/W	GPIO P0.n Pin Data Input/Output	0x0000_000X
P1n_PDIO n = 0, 17	GP_BA+0x220 + 0x04 * n	R/W	GPIO P1.n Pin Data Input/Output	0x0000_000X
P2n_PDIO n = 0, 17	GP_BA+0x240 + 0x04 * n	R/W	GPIO P2.n Pin Data Input/Output	0x0000_000X
P3n_PDIO n = 0, 17	GP_BA+0x260 + 0x04 * n	R/W	GPIO P3.n Pin Data Input/Output	0x0000_000X
P4n_PDIO n = 0, 17	GP_BA+0x280 + 0x04 * n	R/W	GPIO P4.n Pin Data Input/Output	0x0000_000X

6.6.7 Register Description

Port 0-4 I/O Mode Control (Px_PMD)

Register	Offset	R/W	Description	Reset Value
P0_PMD	GP_BA+0x000	R/W	P0 I/O Mode Control	0x0000_XXXX
P1_PMD	GP_BA+0x040	R/W	P1 I/O Mode Control	0x0000_XXXX
P2_PMD	GP_BA+0x080	R/W	P2 I/O Mode Control	0x0000_XXXX
P3_PMD	GP_BA+0x0C0	R/W	P3 I/O Mode Control	0x0000_XXXX
P4_PMD	GP_BA+0x100	R/W	P4 I/O Mode Control	0x0000_XXXX

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
PN	ID7	PN	ID6	PM	ID5	PMD4			
7	6	5	4	3	2	1	0		
PN	PMD3 PMD2		PMD1 PMD0		ID0				

Bits	Description				
[31:16]	Reserved.				
		Port 0-4 I/O Pin [N] Mode Control			
		Determine each I/O mode of Px.n pins.			
		00 = Px.n is in Input mode.			
		01 = Px.n is in Push-pull Output mode.			
		10 = Px.n is in Open-drain Output mode.			
		11 = Px.n is in Quasi-bidirectional mode.			
[15 :0]	PMDn	Note1: $x = 0 \sim 4$, $n = 0 \sim 7$.			
		Note2: The default value is 0x0000_FFFF and all pins will be quasi-bidirectional mode after chip is powered on (only for M05xxBN).			
		Note3: The initial value of this field is defined by CIOINI (CONFIG[10]) (only for M05xxDN/DE). If CIOINI is set to 1, the default value is 0x0000_FFFF and all pins will be quasi-bidirectional mode after chip powered on. If CIOINI is set to 0, the default value is 0x0000_0000 and all pins will be input tri-state mode after chip powered on.			

Port 0-4 Digital Input Path Disable Control (Px_OFFD)

Register	Offset	R/W	Description	Reset Value
P0_OFFD	GP_BA+0x004	R/W	P0 Digital Input Path Disable Control	0x0000_0000
P1_OFFD	GP_BA+0x044	R/W	P1 Digital Input Path Disable Control	0x0000_0000
P2_OFFD	GP_BA+0x084	R/W	P2 Digital Input Path Disable Control	0x0000_0000
P3_OFFD	GP_BA+0x0C4	R/W	P3 Digital Input Path Disable Control	0x0000_0000
P4_OFFD	GP_BA+0x104	R/W	P4 Digital Input Path Disable Control	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			OF	FD					
15	14	13	12	11	10	9	8		
	Reserved								
7 6 5 4 3 2 1 0							0		
	Reserved								

Bits	Description	Description			
[31:24]	Reserved	Reserved.			
		Port 0-4 Pin [N] Digital Input Path Disable Control			
[23:16]	OFFD	Each of these bits is used to control if the digital input path of corresponding Px.n pin is disabled. If input is analog signal, users can disable Px.n digital input path to avoid input current leakage.			
[20.10]		0 = Px.n digital input path Enabled.			
		1 = Px.n digital input path Disabled (digital input tied to low).			
		Note: $x = 0 \sim 4$, $n = 0 \sim 7$.			
[15:0]	Reserved	Reserved.			

Port 0-4 Data Output Value (Px_DOUT)

Register	Offset	R/W	Description	Reset Value
P0_DOUT	GP_BA+0x008	R/W	P0 Data Output Value	0x0000_00FF
P1_DOUT	GP_BA+0x048	R/W	P1 Data Output Value	0x0000_00FF
P2_DOUT	GP_BA+0x088	R/W	P2 Data Output Value	0x0000_00FF
P3_DOUT	GP_BA+0x0C8	R/W	P3 Data Output Value	0x0000_00FF
P4_DOUT	GP_BA+0x108	R/W	P4 Data Output Value	0x0000_00FF

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	DOUT								

Bits	Description	Description					
[31:8]	Reserved	Reserved.					
		Port 0-4 Pin [N] Output Value					
		Each of these bits controls the status of a Px.n pin when the Px.n is configured as Push-pull output, Open-drain output or Quasi-bidirectional mode.					
[15:0]	DOUT[n]	0 = Px.n will drive Low if the Px.n pin is configured as Push-pull output, Open-drain output or Quasi-bidirectional mode.					
		1 = Px.n will drive High if the Px.n pin is configured as Push-pull output or Quasi-bidirectional mode.					
		Note: $x = 0 \sim 4$, $n = 0 \sim 7$.					

Port0-4 Data Output Write Mask (Px_DMASK)

Register	Offset	R/W	Description	Reset Value
P0_DMASK	GP_BA+0x00C	R/W	P0 Data Output Write Mask	0x0000_0000
P1_DMASK	GP_BA+0x04C	R/W	P1 Data Output Write Mask	0x0000_0000
P2_DMASK	GP_BA+0x08C	R/W	P2 Data Output Write Mask	0x0000_0000
P3_DMASK	GP_BA+0x0CC	R/W	P3 Data Output Write Mask	0x0000_0000
P4_DMASK	GP_BA+0x10C	R/W	P4 Data Output Write Mask	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	DMASK								

Bits	Description	Description					
[31:8]	Reserved	Reserved.					
	DMASK[n]	Port 0-4 Pin [N] Data Output Write Mask					
		These bits are used to protect the corresponding Px_DOUT[n] bit. When the DMASK[n] bit is set to 1, the corresponding Px_DOUT[n] bit is protected. If the write signal is masked, writing data to the protect bit is ignored.					
[7:0]		0 = Corresponding Px_DOUT[n] bit can be updated.					
		1 = Corresponding Px_DOUT[n] bit protected.					
		Note1: $x = 0 \sim 4$, $n = 0 \sim 7$.					
		Note2: This function only protects the corresponding Px_DOUT[n] bit, and will not protect the corresponding Pxn_PDIO bit.					

Port 0-4 Pin Value (Px_PIN)

Register	Offset	R/W	Description	Reset Value
P0_PIN	GP_BA+0x010	R	P0 Pin Value	0x0000_00XX
P1_PIN	GP_BA+0x050	R	P1 Pin Value	0x0000_00XX
P2_PIN	GP_BA+0x090	R	P2 Pin Value	0x0000_00XX
P3_PIN	GP_BA+0x0D0	R	P3 Pin Value	0x0000_00XX
P4_PIN	GP_BA+0x110	R	P4 Pin Value	0x0000_00XX

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	PIN								

Bits	Description	escription					
[31:8]	Reserved	Reserved.					
[15:0]	PIN[n]	Port 0-4 Pin [N] Pin Value Each bit of the register reflects the actual status of the respective Px.n pin. If the bit is 1, it indicates the corresponding pin status is high; else the pin status is low. Note: $x = 0 \sim 4$, $x = 0 \sim 7$.					

Port 0-4 De-bounce Enable (Px_DBEN)

Register	Offset	R/W	Description	Reset Value
P0_DBEN	GP_BA+0x014	R/W	P0 De-bounce Enable Control	0x0000_0000
P1_DBEN	GP_BA+0x054	R/W	P1 De-bounce Enable Control	0x0000_0000
P2_DBEN	GP_BA+0x094	R/W	P2 De-bounce Enable Control	0x0000_0000
P3_DBEN	GP_BA+0x0D4	R/W	P3 De-bounce Enable Control	0x0000_0000
P4_DBEN	GP_BA+0x114	R/W	P4 De-bounce Enable Control	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	DBEN								

Bits	Description	Description						
[31:8]	Reserved	served.						
[15:0]	DBEN[n]	Port 0-4 Pin [N] Input Signal De-bounce Enable Control DBEN[n] bit is used to enable the de-bounce function for each corresponding bit. If the input signal pulse width cannot be sampled by continuous two de-bounce sample cycle, the input signal transition is seen as the signal bounce and will not trigger the interrupt. The de-bounce clock source is controlled by DBNCECON[4], one de-bounce sample cycle period is controlled by DBNCECON[3:0]. 0 = Px.n de-bounce function Disabled. 1 = Px.n de-bounce function Enabled. The de-bounce function is valid only for edge triggered interrupt. If the interrupt mode is level triggered, the de-bounce enable bit is ignored. Note1: x = 0~4, n = 0~7. Note2: If Px.n pin is chosen as Power-down wake-up source, user should be disable the de-bounce function before entering Power-down mode to avoid the second interrupt event occurred after system waken up which caused by Px.n de-bounce function.						

Port 0-4 Interrupt Mode Control (Px_IMD)

Register	Offset	R/W	Description	Reset Value
P0_IMD	GP_BA+0x018	R/W	P0 Interrupt Mode Control	0x0000_0000
P1_IMD	GP_BA+0x058	R/W	P1 Interrupt Mode Control	0x0000_0000
P2_IMD	GP_BA+0x098	R/W	P2 Interrupt Mode Control	0x0000_0000
P3_IMD	GP_BA+0x0D8	R/W	P3 Interrupt Mode Control	0x0000_0000
P4_IMD	GP_BA+0x118	R/W	P4 Interrupt Mode Control	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	IMD								

Bits	Description	Description						
[31:8]	Reserved	Reserved.						
		Port 0-4 Pin [N] Edge or Level Detection Interrupt Mode Control						
		IMD[n] bit is used to control the triggered interrupt is by level trigger or by edge trigger. If the interrupt is by edge trigger, the trigger source can be controlled by de-bounce. If the interrupt is by level trigger, the input source is sampled by one HCLK clock and generates the interrupt.						
		0 = Edge trigger interrupt.						
[15:0]	IMD[n]	1 = Level trigger interrupt.						
		If the pin is set as the level trigger interrupt, only one level can be set on the registers Px_IEN. If both levels to trigger interrupt are set, the setting is ignored and no interrupt will occur.						
		The de-bounce function is valid only for edge triggered interrupt. If the interrupt mode is level triggered, the de-bounce enable bit is ignored.						
		Note: $x = 0 \sim 4$, $n = 0 \sim 7$.						

Port 0-4 Interrupt Enable Control (Px_IEN)

Register	Offset	R/W	Description	Reset Value
P0_IEN	GP_BA+0x01C	R/W	P0 Interrupt Enable Control	0x0000_0000
P1_IEN	GP_BA+0x05C	R/W	P1 Interrupt Enable Control	0x0000_0000
P2_IEN	GP_BA+0x09C	R/W	P2 Interrupt Enable Control	0x0000_0000
P3_IEN	GP_BA+0x0DC	R/W	P3 Interrupt Enable Control	0x0000_0000
P4_IEN	GP_BA+0x11C	R/W	P4 Interrupt Enable Control	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	IR_EN						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	IF_EN						

Bits	Description	
[31:24]	Reserved	Reserved.
		Port 0-4 Pin [N] Interrupt Enable by Input Rising Edge or Input Level High
		IR_EN[n] bit is used to enable the interrupt for each of the corresponding input Px.n pin. Set bit to 1 also enable the pin wake-up function.
		When setting the IR_EN[n] bit to 1:
[23:16]	IR_EN[n]	If the interrupt is level trigger (IMD[n] is 1), the input Px.n pin will generate the interrupt while this pin state is at high level.
		If the interrupt is edge trigger (IMD[n] is 0), the input Px.n pin will generate the interrupt while this pin state changed from low to high.
		0 = Px.n level high or low to high interrupt Disabled.
		1 = Px.n level high or low to high interrupt Enabled.
		Note: $x = 0 \sim 4$, $n = 0 \sim 7$.
[15:8]	Reserved	Reserved.
		Port 0-4 Pin [N] Interrupt Enable by Input Falling Edge or Input Level Low
		IF_EN[n] bit is used to enable the interrupt for each of the corresponding input Px.n pin. Set bit to 1 also enable the pin wake-up function.
		When setting the IF_EN[n] bit to 1 :
[7:0]		If the interrupt is level trigger (IMD[n] is 1), the input Px.n pin will generate the interrupt while this pin state is at low level.
		If the interrupt is edge trigger (IMD[n] is 0), the input Px.n pin will generate the interrupt while this pin state changed from high to low.
		0 = Px.n level low or high to low interrupt Disabled.

1 = Px.n level low or high to low interrupt Enabled.
Note: $x = 0 \sim 4$, $n = 0 \sim 7$.

Port 0-4 Interrupt Source Flag (Px_ISRC)

Register	Offset	R/W	Description	Reset Value
P0_ISRC	GP_BA+0x020	R/W	P0 Interrupt Source Flag	0x0000_0000
P1_ISRC	GP_BA+0x060	R/W	P1 Interrupt Source Flag	0x0000_0000
P2_ISRC	GP_BA+0x0A0	R/W	P2 Interrupt Source Flag	0x0000_0000
P3_ISRC	GP_BA+0x0E0	R/W	P3 Interrupt Source Flag	0x0000_0000
P4_ISRC	GP_BA+0x120	R/W	P4 Interrupt Source Flag	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
ISRC							

Bits	Description	Description			
[31:8]	Reserved	Reserved.			
[7:0]	ISRC[n]	Port 0-4 Pin [N] Interrupt Source Flag Write: 0 = No action. 1 = Clear the corresponding pending interrupt. Read: 0 = No interrupt at Px.n. 1 = Px.n generates an interrupt. Note: x = 0~4, n = 0~7.			

Interrupt De-bounce Cycle Control (DBNCECON)

Register	Offset	R/W	Description	Reset Value
DBNCECON	GP_BA+0x180	R/W	Interrupt De-bounce Control	0x0000_0020

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Rese	erved	ICLK_ON	DBCLKSRC		DBCL	KSEL	

Bits	Description						
[31:6]	Reserved	Reserved.					
[5]	ICLK_ON	Interrupt Clock On Mode 0 = Edge detection circuit is active only if I/O pin corresponding Px_IEN bit is set to 1. 1 = All I/O pins edge detection circuit is always active after reset. Note: It is recommended to turn off this bit to save system power if no special application concern.					
[4]	DBCLKSRC	De-bounce Counter Clock Source Selection 0 = De-bounce counter clock source is the HCLK. 1 = De-bounce counter clock source is the 10 kHz internal low speed oscillator.					
[3:0]	DBCLKSEL	De-bounce Sampling Cycle Selection 0000 = Sample interrupt input once per 1 clocks. 0001 = Sample interrupt input once per 2 clocks. 0010 = Sample interrupt input once per 4 clocks. 0011 = Sample interrupt input once per 8 clocks. 0100 = Sample interrupt input once per 16 clocks. 0101 = Sample interrupt input once per 32 clocks. 0110 = Sample interrupt input once per 64 clocks. 0111 = Sample interrupt input once per 128 clocks. 1000 = Sample interrupt input once per 256 clocks. 1001 = Sample interrupt input once per 2*256 clocks. 1010 = Sample interrupt input once per 4*256 clocks. 1011 = Sample interrupt input once per 8*256 clocks. 1100 = Sample interrupt input once per 16*256 clocks. 1101 = Sample interrupt input once per 32*256 clocks. 1110 = Sample interrupt input once per 64*256 clocks. 1111 = Sample interrupt input once per 64*256 clocks.					

GPIO Px.n Pin Data Input/Outut (Pxn_PDIO)

Register	Offset	R/W	Description	Reset Value
P0n_PDIO n = 0,17	GP_BA+0x200 + 0x04 * n	R/W	GPIO P0.n Pin Data Input/Output	0x0000_000X
P1n_PDIO n = 0,17	GP_BA+0x220 + 0x04 * n	R/W	GPIO P1.n Pin Data Input/Output	0x0000_000X
P2n_PDIO n = 0,17	GP_BA+0x240 + 0x04 * n	R/W	GPIO P2.n Pin Data Input/Output	0x0000_000X
P3n_PDIO n = 0,17	GP_BA+0x260 + 0x04 * n	R/W	GPIO P3.n Pin Data Input/Output	0x0000_000X
P4n_PDIO n = 0,17	GP_BA+0x280 + 0x04 * n	R/W	GPIO P4.n Pin Data Input/Output	0x0000_000X

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved						Pxn_PDIO

Bits	Description	Description			
[31:1]	Reserved	Reserved.			
		GPIO Px.N Pin Data Input/Output			
		Writing this bit can control one GPIO pin output value.			
		0 = Corresponding GPIO pin set to low.			
		1 = Corresponding GPIO pin set to high.			
[0]	Pxn_PDIO	Read this register to get GPIO pin status.			
		For example, writing P00_PDIO will reflect the written value to bit P0_DOUT[0], reading P00_PDIO will return the value of P0_PIN[0].			
		Note1: $x = 0~4$, $n = 0~7$.			
		Note2: The writing operation will not be affected by register Px_DMASK[n].			

6.7 Timer Controller (TMR)

6.7.1 Overview

The Timer Controller includes four 32-bit timers, TIMER0 ~ TIMER3, allowing user to easily implement a timer control for applications. The timer can perform functions, such as frequency measurement, delay timing, clock generation, and event counting by external input pins, and interval measurement by external capture pins.

6.7.2 Features

- Four sets of 32-bit timers with 24-bit up counter and one 8-bit prescale counter
- Independent clock source for each timer
- Provides four timer counting modes: one-shot, periodic, toggle and continuous counting
- Time-out period = (Period time of timer clock input) * (8-bit prescale counter + 1) * (24-bit TCMP)
- Maximum counting cycle time = (1 / T MHz) * (2⁸) * (2²⁴), T is the period time of timer clock
- 24-bit up counter value is readable through TDR (Timer Data Register)
- Supports event counting function to count the input event from external counter pin (T0~T3)
- 24-bit capture value is readable through TCAP (Timer Capture Data Register)
- Supports external capture pin (T0EX~T3EX) for interval measurement
- Supports external capture pin (T0EX~T3EX) to reset 24-bit up counter
- The following new features are only available on M05xxDN/DE:
 - Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is generated
 - Supports internal capture triggered while internal ACMP output signal transition
 - Supports Inter-Timer trigger mode

6.7.3 Block Diagram

The Timer Controller block diagram and clock control are shown as follows.

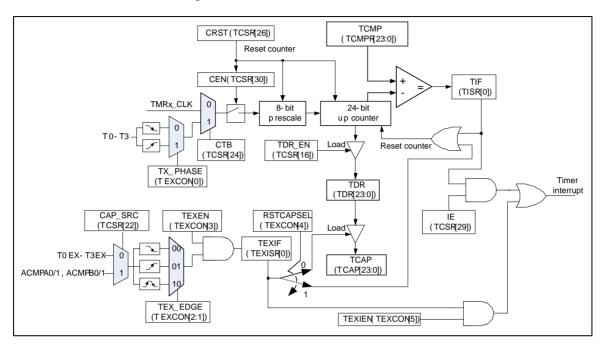


Figure 6-28 Timer Controller Block Diagram

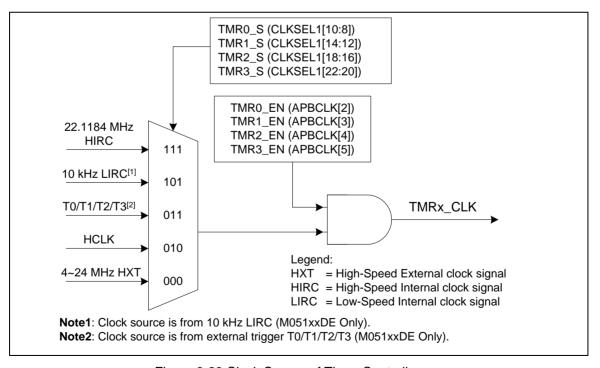


Figure 6-29 Clock Source of Timer Controller

6.7.4 Basic Configuration

The peripheral clock source of Timer0 ~ Timer3 can be enabled in APBCLK[5:2] and selected as

different frequency in CLKSEL1[10:8] for Timer0, CLKSEL1[14:12] for Timer1, CLKSEL1[18:16] for Timer2 and CLKSEL1[22:20] for Timer3.

6.7.5 Functional Description

6.7.5.1 Timer Interrupt Flag

Timer controller supports two interrupt flags; one is TIF flag and its set while timer counter value (TDR) matches the timer compared value (TCMP), the other is TEXIF flag and its set when the transition on the TxEX pin associated TEX_EDGE setting.

6.7.5.2 Timer Counting Operation Mode

Timer controller provides four timer counting modes: one-shot, periodic, toggle-output and continuous counting operation modes:

One-shot Mode

If timer controller is configured at one-shot mode (TCSR[28:27] is 00) and CEN (TCSR[30]) bit is set, the timer counter starts up counting. Once the TDR value reaches TCMP value, the TIF flag will be set to 1, TDR value and CEN bit is cleared by timer controller then timer counting operation stops. In the meantime, if the IE (TCSR[29]) bit is enabled, the timer interrupt signal is generated and sent to NVIC to inform CPU also.

Periodic Mode

If timer controller is configured at periodic mode (TCSR[28:27] is 01) and CEN bit is set, the timer counter starts up counting. Once the TDR value reaches TCMP value, the TIF flag will be set to 1, TDR value will be cleared by timer controller and timer counter operates counting again. In the meantime, if the IE bit is enabled, the timer interrupt signal is generated and sent to NVIC to inform CPU also. In this mode, timer controller operates counting and compares with TCMP value periodically until the CEN bit is cleared by software.

Toggle-output Mode

If timer controller is configured at toggle-out mode (TCSR[28:27] is 10) and CEN bit is set, the timer counter starts up counting. The counting operation of toggle-out mode is almost the same as periodic mode, except toggle-out mode has associated $T0\sim T3$ pin to output signal while specify TIF bit is set. Thus, the toggle-output signal on $T0\sim T3$ pin is changing back and forth with 50% duty cycle.

Continuous Counting Mode

If timer controller is configured at continuous counting mode (TCSR[28:27] is 11) and CEN bit is set, the timer counter starts up counting. Once the TDR value reaches TCMP value, the TIF flag will be set to 1 and TDR value keeps up counting. In the meantime, if the IE bit is enabled, the timer interrupt signal is generated and sent to NVIC to inform CPU also. User can change different TCMP value immediately without disabling timer counting and restarting timer counting in this mode.

For example, TCMP value is set as 80, first. The TIF flag will set to 1 when TDR value is equal to 80, timer counter is kept counting and TDR value will not goes back to 0, it continues to count 81, 82, 83, $^{\cdots}$ to 2^{24} -1, 0, 1, 2, 3, $^{\cdots}$ to 2^{24} -1 again and again. Next, if software programs TCMP value as 200 and clears TIF flag, the TIF flag will set to 1 again when TDR value reaches to 200. At last, software programs TCMP as 500 and clears TIF flag, the TIF flag will set to 1 again when TDR value reaches to 500.

In this mode, the timer counting is continuous. So, this operation mode is called as continuous counting mode.

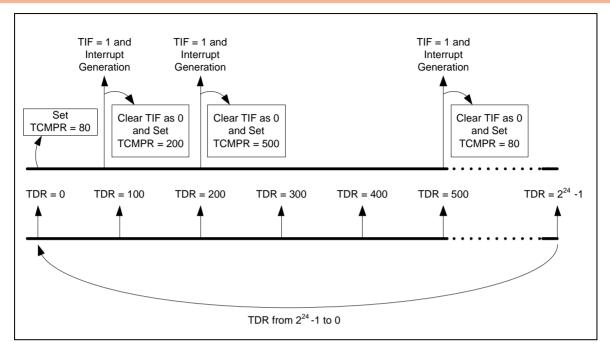


Figure 6-30 Continuous Counting Mode

6.7.5.3 Event Counting Mode

nuvoTon

Timer controller also provides an application which can count the input event from Tx pin (x= 0~3) and the number of event will reflect to TDR value. It is also called as event counting function. In this function, CTB (TCSR[24]) bit should be set and the timer peripheral clock source should be set as HCLK.

Software can enable or disable Tx pin de-bounce circuit by TCDB (TEXCON[7]) bit. The input event frequency should be less than 1/3 HCLK if Tx pin de-bounce disabled or less than 1/8 HCLK if Tx pin de-bounce enabled to assure the returned TDR value is incorrect, and software can also select edge detection phase of Tx pin by TX_PHASE (TEXCON[0]) bit.

In event counting mode, the timer counting operation mode can be selected as one-shot, periodic and continuous counting mode to counts the TDR value by input event from Tx pin.

6.7.5.4 Event Capture Mode

The event capture function is used to capture TDR value to TCAP value while edge transition detected on TxEX pin (x= 0~3). In this mode, RSTCAPSEL (TEXCON[4]) bit should be as 0 for select TxEX transition is using as the event capture function and the timer peripheral clock source should be set as HCLK.

Software can enable or disable TxEX pin de-bounce circuit by TEXDB (TEXCON[6]) bit. The transition frequency of TxEX pin should be less than 1/3 HCLK if TxEX pin de-bounce disabled or less than 1/8 HCLK if TxEX pin de-bounce enabled to assure the capture function can be work normally, and software can also select edge transition detection of TxEX pin by TEX EDGE (TEXCON[2:1]) bits.

In event capture mode, software does not consider what timer counting operation mode is selected, the capture event occurred only if edge transition on TxEX pin is detected.

6.7.5.5 Event Reset Counter Mode

It also provides reset counter function to reset TDR value while edge transition detected on TxEX pin (x=0~3). In this mode, most the settings are the same as event capture function except RSTCAPSEL (TEXCON[4]) bit should be as 1 for select TxEX transition is using as the event reset counter.

6.7.5.6 Inter-Timer Trigger Capture Mode (M05xxDN/DE Only)

In this mode, the Timer0/2 will be forced in counter mode, counting with external event, and will generate an internal signal (INTR_TMR_TRG) to trigger Timer1/3 start or stop counting. Also, the Timer1/3 will be forced in capture mode and start/stop trigger-counting by Timer0/2 counter status.

Setting Timer0 Inter-timer Trigger Capture enabled, trigger-counting capture function is forced on Timer1. Setting Timer2 Inter-Timer Trigger enabled, trigger-counting capture function is forced on Timer3.

Start Trigger

While INTR_TRG_EN bit in Timer0/2 is set, the Timer0/2 will make a rising-edge transition of INTR_TMR_TRG while Timer0/2 24-bit counter value (TDR) is counting from 0x0 to 0x1 and Timer1/3 counter will start counting immediately and automatically.

Stop Trigger

When Timer0/2 TDR reaches the Timer0/2 TCMPR value, the Timer0/2 will make a falling-edge transition of INTR_TMR_TRG. Then Timer0/2 counter mode function will be disabled and INTR_TRG_EN bit will be cleared by hardware then Timer1/3 will stop counting also. At the same time, the Timer1/3 TDR value will be saved into Timer1/3 TCAP register.

User can use inter-timer trigger mode to measure the period of external event (Tx) more precisely. Figure 6-31 shows the sample flow of Inter-Timer Trigger Capture Mode for Timer0 as event counter mode and Timer1 as trigger-counting capture mode.

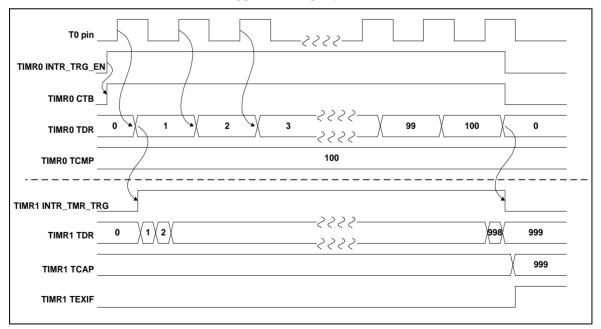


Figure 6-31 Inter-Timer Trigger Capture Timing

6.7.5.7 Internal Capture Trigger from ACMP (Only for M05xxDN/DE)

The event capture function also can be triggered by internal output signal transition on ACMPA0(Timer0), ACMPA1(Timer1), ACMPB0(Timer2) or ACMPB1(Timer3) output. The detail setting of capture function is the same as previous descriptions in Event Capture Mode.

6.7.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Des	scription	Reset Value
_	Address: 0x4001_0000 0x4011_0000				
TCSR0	TMR01_BA+0x00	RΛ	Ν	Timer0 Control and Status Register	0x0000_0005
TCMPR0	TMR01_BA+0x04	RΛ	Ν	Timer0 Compare Register	0x0000_0000
TISR0	TMR01_BA+0x08	RΛ	Ν	Timer0 Interrupt Status Register	0x0000_0000
TDR0	TMR01_BA+0x0C	R		Timer0 Data Register	0x0000_0000
TCAP0	TMR01_BA+0x10	R		Timer0 Capture Data Register	0x0000_0000
TEXCON0	TMR01_BA+0x14	RΛ	Ν	Timer0 External Control Register	0x0000_0000
TEXISR0	TMR01_BA+0x18	RΛ	Ν	Timer0 External Interrupt Status Register	0x0000_0000
TCSR1	TMR01_BA+0x20	RΛ	Ν	Timer1 Control and Status Register	0x0000_0005
TCMPR1	TMR01_BA+0x24	RΛ	Ν	Timer1 Compare Register	0x0000_0000
TISR1	TMR01_BA+0x28	A+0x28 R/W		Timer1 Interrupt Status Register	0x0000_0000
TDR1	TMR01_BA+0x2C	R		Timer1 Data Register	0x0000_0000
TCAP1	TMR01_BA+0x30	R		Timer1 Capture Data Register	0x0000_0000
TEXCON1	TMR01_BA+0x34	RΛ	Ν	Timer1 External Control Register	0x0000_0000
TEXISR1	TMR01_BA+0x38	RΛ	Ν	Timer1 External Interrupt Status Register	0x0000_0000
TCSR2	TMR23_BA+0x00	RΛ	Ν	Timer2 Control and Status Register	0x0000_0005
TCMPR2	TMR23_BA+0x04	RΛ	Ν	Timer2 Compare Register	0x0000_0000
TISR2	TMR23_BA+0x08	RΛ	Ν	Timer2 Interrupt Status Register	0x0000_0000
TDR2	TMR23_BA+0x0C	R		Timer2 Data Register	0x0000_0000
TCAP2	TMR23_BA+0x10	R		Timer2 Capture Data Register	0x0000_0000
TEXCON2	TMR23_BA+0x14	RΛ	N	Timer2 External Control Register	0x0000_0000
TEXISR2	TMR23_BA+0x18	RΛ	N	Timer2 External Interrupt Status Register	0x0000_0000
TCSR3	TMR23_BA+0x20	RΛ	N	Timer3 Control and Status Register	0x0000_0005
TCMPR3	TMR23_BA+0x24	RΛ	N	Timer3 Compare Register	0x0000_0000
TISR3	TMR23_BA+0x28	RΛ	Ν	Timer3 Interrupt Status Register	0x0000_0000
TDR3	TMR23_BA+0x2C	R		Timer3 Data Register	0x0000_0000
TCAP3	TMR23_BA+0x30	R		Timer3 Capture Data Register	0x0000_0000

TEXCON3	TMR23_BA+0x34	R/W	Timer3 External Control Register	0x0000_0000
TEXISR3	TMR23_BA+0x38	R/W	Timer3 External Interrupt Status Register	0x0000_0000

6.7.7 Register Description

Timer Control and Status Register (TCSR)

Register	Offset	R/W	Description	Reset Value
TCSR0	TMR01_BA+0x00	R/W	Timer0 Control and Status Register	0x0000_0005
TCSR1	TMR01_BA+0x20	R/W	Timer1 Control and Status Register	0x0000_0005
TCSR2	TMR23_BA+0x00	R/W	Timer2 Control and Status Register	0x0000_0005
TCSR3	TMR23_BA+0x20	R/W	Timer3 Control and Status Register	0x0000_0005

31	30	29	28	27	26	25	24		
DBGACK_TM R	CEN	Œ	MODE		CRST	CACT	СТВ		
23	22	21	20	19	18	17	16		
WAKE_EN	CAP_SRC	TOUT_SEL	PERIODIC_S EL	INTR_TRG_E N	Reserved		TDR_EN		
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	PRESCALE								

Bits	Description				
[31] DBGACK_TMF		ICE Debug Mode Acknowledge Disable (Write Protect) 0 = ICE debug mode acknowledgement effects TIMER counting. Timer counter will be held while CPU is held by ICE. 1 = ICE debug mode acknowledgement Disabled. Timer counter will keep going no matter CPU is held by ICE or not.			
[30]	CEN	Timer Enable Control 0 = Stops/Suspends counting. 1 = Starts counting. Note1: In stop status, and then set CEN to 1 will enable the 24-bit up counter to keep counting from the last stop counting value. Note2: This bit is auto-cleared by hardware in one-shot mode (TCSR[28:27] = 00) when the timer interrupt flag (TIF) is generated.			
[29]	IE	Interrupt Enable Control 0 = Timer Interrupt function Disabled. 1 = Timer Interrupt function Enabled. If this bit is enabled, when the timer interrupt flag (TIF) is set to 1, the timer interrupt signal is generated and inform to CPU.			
[28:27]	MODE	Timer Operating Mode 00 = The Timer controller is operated in One-shot mode. 01 = The Timer controller is operated in Periodic mode.			

nuvoTon

		10 = The Timer controller is operated in Toggle-output mode.
		11 = The Timer controller is operated in Continuous Counting mode.
		Timer Reset
[26]	CRST	0 = No effect.
		1 = Reset 8-bit prescale counter, 24-bit up counter value and CEN bit if CACT is 1.
		Timer Active Status (Read Only)
		This bit indicates the 24-bit up counter status.
[25]	CACT	0 = 24-bit up counter is not active.
		1 = 24-bit up counter is not detive.
		<u>'</u>
		Counter Mode Enable Control This bit is far external counting pin function analysed. When times is used as an event
[24]	СТВ	This bit is for external counting pin function enabled. When timer is used as an event counter, this bit should be set to 1 and select HCLK as timer clock source. Please refer to section 6.7.5.3 for detail description.
		0 = External event counter mode Disabled.
		1 = External event counter mode Enabled.
		Wake-up Function Enable Control (M05xxDN/DE Only)
[23]	WAKE_EN	0 = Wake-up trigger event Disabled.
1	_	1 = Wake-up trigger event Enabled.
		Capture Pin Source Selection (M05xxDN/DE Only)
[22]	CAP SRC	0 = Capture Function source is from TxEX pin.
[]	57 ti _5115	1 = Capture Function source is from internal ACMPx output signal.
[21]	TOUT_SEL	Toggle-output Pin Selection (M05xxDN/DE Only) 0 = Toggle-output pin is from Tx pin.
[21]	1001_SEL	1 = Toggle-output pin is from TxEx pin.
		, · · · · · · · · · · · · · · · · · · ·
		Periodic Mode Behavior Selection Enable (M05xxDN/DE Only)
		0 = The behavior selection in periodic mode is Disabled.
		When user updates TCMP while timer is running in periodic mode,
		TDR will be reset to default value.
[20]	PERIODIC_SEL	1 = The behavior selection in periodic mode is Enabled. When user undate TCMP while timer is running in periodic mode, the limitations as
		When user update TCMP while timer is running in periodic mode, the limitations as bellows list,
		If updated TCMP value > TDR, TCMP will be updated and TDR keep running continually.
		If updated TCMP value = TDR, timer time-out interrupt will be asserted immediately.
		If updated TCMP value < TDR, TDR will be reset to default value.
		Inter-timer Trigger Mode Enable Control (M05xxDN/DE Only)
		Setting this bit will enable the inter-timer trigger capture function.
[19]	INTR_TRG_EN	The Timer0/2 will be in counter mode and counting with external clock source or event. Also, Timer1/3 will be in trigger-counting mode of capture function.
-		0 = Inter-Timer Trigger Capture mode Disabled.
		1 = Inter-Timer Trigger Capture mode Enabled.
		Note: For Timer1/3, this bit is ignored and the read back value is always 0.
[18:17]	Reserved	Reserved.
[18:17]	Reserved	Reserved. Data Load Enable Control
	Reserved TDR_EN	
[18:17]		Data Load Enable Control When TDR_EN is set, TDR (Timer Data Register) will be updated continuously with the

[15:8]	Reserved	Reserved.
[7:0]	PRESCALE	Prescale Counter Timer input clock source is divided by (PRESCALE+1) before it is fed to the Timer up counter. If this field is 0 (PRESCALE = 0), then there is no scaling.

Timer Compare Register (TCMPR)

nuvoTon

Register	Offset	R/W	Description	Reset Value
TCMPR0	TMR01_BA+0x04	R/W	Timer0 Compare Register	0x0000_0000
TCMPR1	TMR01_BA+0x24	R/W	Timer1 Compare Register	0x0000_0000
TCMPR2	TMR23_BA+0x04	R/W	Timer2 Compare Register	0x0000_0000
TCMPR3	TMR23_BA+0x24	R/W	Timer3 Compare Register	0x0000_0000

31	30	29	28	27	26	25	24		
			Rese	erved					
23	22	21	20	19	18	17	16		
	ТСМР								
15	14	13	12	11	10	9	8		
	тсмр								
7	6	5	4	3	2	1	0		
	ТСМР								

Bits	Description	
[31:24]	Reserved	Reserved.
		Timer Compared Value
		TCMP is a 24-bit compared value register. When the internal 24-bit up counter value is equal to TCMP value, the TIF flag will set to 1.
		Time-out period = (Period of Timer clock source) * (8-bit PRESCALE + 1) * (24-bit TCMP).
[23:0]	TCMP	Note1: Never write 0x0 or 0x1 in TCMP field, or the core will run into unknown state.
		Note2: When Timer is operating at Continuous Counting mode, the 24-bit up counter will keep counting continuously even if software writes a new value into TCMP field. But if Timer is operating at other modes except Periodic mode on M05xxDN/DE, the 24-bit up counter will restart counting and using newest TCMP value to be the timer compared value if software writes a new value into TCMP field.

Timer Interrupt Status Register (TISR)

Register	Offset	R/W	Description	Reset Value
TISR0	TMR01_BA+0x08	R/W	Timer0 Interrupt Status Register	0x0000_0000
TISR1	TMR01_BA+0x28	R/W	Timer1 Interrupt Status Register	0x0000_0000
TISR2	TMR23_BA+0x08	R/W	Timer2 Interrupt Status Register	0x0000_0000
TISR3	TMR23_BA+0x28	R/W	Timer3 Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
			Rese	erved					
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved						TWF	TIF		

Bits	Description	Description					
[31:2]	Reserved	Reserved.					
		Timer Wake-up Flag (M05xxDN/DE Only)					
		This bit indicates the interrupt wake-up flag status of Time.					
[1]	TWF	0 = Timer does not cause chip wake-up.					
1.1		1 = Chip wake-up from Idle or Power-down mode if Timer time-out interrupt signal generated.					
		Note: This bit is cleared by writing 1 to it.					
		Timer Interrupt Flag					
	TIF	This bit indicates the interrupt flag status of Timer while TDR value reaches to TCMP value.					
[0]		0 = No effect.					
		1 = TDR value matches the TCMP value.					
		Note: This bit is cleared by writing 1 to it.					

Timer Data Register (TDR)

Register	Offset	R/W	Description	Reset Value
TDR0	TMR01_BA+0x0C	R	Timer0 Data Register	0x0000_0000
TDR1	TMR01_BA+0x2C	R	Timer1 Data Register	0x0000_0000
TDR2	TMR23_BA+0x0C	R	Timer2 Data Register	0x0000_0000
TDR3	TMR23_BA+0x2C	R	Timer3 Data Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			т	OR					
15	14	13	12	11	10	9	8		
			т	OR					
7	6	5	4	3	2	1	0		
	TDR								

Bits	Description	escription			
[31:24]	Reserved	Reserved.			
[23:0]	TDR	Timer Data Register If TDR_EN is set to 1, TDR register value will be updated continuously to monitor 24-bit up counter value.			

Timer Capture Data Register (TCAP)

Register	Offset	R/W	Description	Reset Value
TCAP0	TMR01_BA+0x10	R	Timer0 Capture Data Register	0x0000_0000
TCAP1	TMR01_BA+0x30	R	Timer1 Capture Data Register	0x0000_0000
TCAP2	TMR23_BA+0x10	R	Timer2 Capture Data Register	0x0000_0000
TCAP3	TMR23_BA+0x30	R	Timer3 Capture Data Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			тс	AP					
15	14	13	12	11	10	9	8		
	ТСАР								
7	6	5	4	3	2	1	0		
			тс	AP					

Bits	Description	Description				
[31:24]	Reserved	Reserved.				
[23:0]	TCAP	Timer Capture Data Register When TEXIF flag is set to 1, the current TDR value will be auto-loaded into this TCAP filed immediately.				

Timer External Control Register (TEXCON)

nuvoTon

Register	Offset	R/W	Description	Reset Value
TEXCON0	TMR01_BA+0x14	R/W	Timer0 External Control Register	0x0000_0000
TEXCON1	TMR01_BA+0x34	R/W	Timer1 External Control Register	0x0000_0000
TEXCON2	TMR23_BA+0x14	R/W	Timer2 External Control Register	0x0000_0000
TEXCON3	TMR23_BA+0x34	R/W	Timer3 External Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
			Rese	erved					
7	7 6 5 4 3 2 1 0								
TCDB	TEXDB	TEXIEN	RSTCAPSEL	TEXEN	TEX_	TEX_EDGE			

Bits	Description	
[31:8]	Reserved	Reserved.
[7]	TCDB	Timer External Counter Input Pin De-bounce Enable Control 0 = Tx pin de-bounce Disabled. 1 = Tx pin de-bounce Enabled. If this bit is enabled, the edge detection of Tx pin is detected with de-bounce circuit.
[6]	TEXDB	Timer External Capture Input Pin De-bounce Enable Control 0 = TxEX pin de-bounce Disabled. 1 = TxEX pin de-bounce Enabled. If this bit is enabled, the edge detection of TxEX pin is detected with de-bounce circuit.
[5]	TEXIEN	Timer External Capture Interrupt Enable Control 0 = TxEX pin detection Interrupt Disabled. 1 = TxEX pin detection Interrupt Enabled. If TEXIEN enabled, Timer will raise an external capture interrupt signal and inform to CPU while TEXIF flag is set to 1.
[4]	RSTCAPSEL	Timer External Reset Counter / Timer External Capture Mode Selection 0 = Transition on TxEX pin is using to save the TDR value into TCAP value if TEXIF flag is set to 1. 1 = Transition on TxEX pin is using to reset the 24-bit up counter.
[3]	TEXEN	Timer External Pin Function Enable This bit enables the RSTCAPSEL function on the TxEX pin. 0 = RSTCAPSEL function of TxEX pin will be ignored. 1 = RSTCAPSEL function of TxEX pin is active.

[2:1]		Timer External Capture Pin Edge Detect Selection 00 = A 1 to 0 transition on TxEX pin will be detected. 01 = A 0 to 1 transition on TxEX pin will be detected. 10 = Either 1 to 0 or 0 to 1 transition on TxEX pin will be detected. 11 = Reserved.
[0]	TX_PHASE	Timer External Count Pin Phase Detect Selection This bit indicates the detection phase of Tx pin. 0 = A falling edge of Tx pin will be counted. 1 = A rising edge of Tx pin will be counted.

Timer External Interrupt Status Register (TEXISR)

Register	Offset	R/W	Description	Reset Value
TEXISR0	TMR01_BA+0x18	R/W	Timer0 External Interrupt Status Register	0x0000_0000
TEXISR1	TMR01_BA+0x38	R/W	Timer1 External Interrupt Status Register	0x0000_0000
TEXISR2	TMR23_BA+0x18	R/W	Timer2 External Interrupt Status Register	0x0000_0000
TEXISR3	TMR23_BA+0x38	R/W	Timer3 External Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
Reserved							TEXIF	

Bits	Description	Description			
[31:1]	Reserved	Reserved.			
[0]		Timer External Capture Interrupt Flag			
		This bit indicates the external capture interrupt flag status.			
	TEXIF	When TEXEN enabled, TxEX pin selected as external capture function, and a transition TxEX pin matched the TEX_EDGE setting, this flag will set to 1 by hardware.			
		0 = TxEX pin interrupt did not occur.			
		1 = TxEX pin interrupt occurred.			
		Note: This bit is cleared by writing 1 to it.			

6.8 PWM Generator and Capture Timer (PWM)

6.8.1 Overview

The NuMicro® M051 series has two sets of PWM groups supporting a total of four sets of PWM generators, which can be configured as eight independent PWM outputs, PWM0~PWM7, or as four complementary PWM pairs, (PWM0, PWM1), (PWM2, PWM3), (PWM4, PWM5) and (PWM6, PWM7) with 4 programmable Dead-zone generators.

Each PWM generator has one 8-bit prescaler, one clock divider with 5 divided frequencies (1, 1/2, 1/4, 1/8, 1/16), two PWM Timers including two clock selectors, two 16-bit PWM counters for PWM period control, two 16-bit comparators for PWM duty control and one Dead-zone generator. The 4 sets of PWM generators provide eight independent PWM period interrupt flags set by hardware when the corresponding PWM period down counter reaches 0. Each PWM period interrupt source with its corresponding enable bit can cause CPU to request PWM interrupt. The PWM generators can be configured as one-shot mode to produce only one PWM cycle signal or auto-reload mode to output PWM waveform continuously.

When DZEN01 (PCR[4]) is set, PWM0 and PWM1 perform complementary PWM paired function; the paired PWM period, duty and Dead-zone are determined by PWM0 timer and Dead-zone generator 0. Similarly, the complementary PWM pairs of (PWM2, PWM3), (PWM4, PWM5) and (PWM6, PWM7) are controlled by PWM2, PWM4 and PWM6 timers and Dead-zone generator 2, 4 and 6, respectively. Refer to figures below for the architecture of PWM Timers.

To prevent PWM driving output pin with unsteady waveform, the 16-bit period down counter and 16-bit comparator are implemented with double buffer. When user writes data to counter/comparator buffer registers, the updated value will be loaded into the 16-bit down counter/ comparator at the time down counter reaching 0. The double buffering feature avoids glitch at PWM outputs.

When the 16-bit period down counter reaches 0, the interrupt request is generated. If PWM-Timer is set as Auto-reload mode when the down counter reaches 0, it is reloaded with PWM Counter Register (CNRx) automatically and then starts decreasing repeatedly. If the PWM-Timer is set as one-shot mode, the down counter will stop and generate one interrupt request when it reaches 0.

The value of PWM counter comparator is used for pulse high width modulation. The counter control logic changes the output to high level when down-counter value matches the value of compare register.

The alternate feature of the PWM-Timer is digital input Capture function. If Capture function is enabled the PWM output pin is switched as capture input mode. The Capture0 and PWM0 share one timer which is included in PWM0 and the Capture1 and PWM1 share PWM1 timer, and etc. Therefore user must set the PWM-Timer before enabling the Capture feature. After capture feature is enabled, the capture always latched PWM-counter to Capture Rising Latch Register (CRLR) when input channel has a rising transition and latched PWM-counter to Capture Falling Latch Register (CFLR) when input channel has a falling transition. Capture channel 0 interrupt is programmable by setting CRL_IE0 (CCR0[1]) (Rising latch Interrupt enable) and CFL_IE0 (CCR0[2]) (Falling latch Interrupt enable) to decide the condition of interrupt occur. Capture channel 1 has the same feature by setting CRL_IE1 (CCR0[17]) and CFL_IE1 (CCR0[18]). The capture channel 2 to channel 3 on each group have the same feature by setting the corresponding control bits in CCR2. For each group, whenever Capture issues Interrupt 0/1/2/3, the PWM counter 0/1/2/3 will be reload at this moment.

The maximum captured frequency that PWM can capture is confined by the capture interrupt latency. When capture interrupt occurred, software will do at least three steps, including: Read PIIR to get interrupt source, read CRLRx/CFLRx (x = 0~3) to get capture value and finally write 1 to clear PIIR to 0. If interrupt latency will take time T0 to finish, the capture signal mustn't transition during this interval (T0). In this case, the maximum capture frequency will be 1/T0.

6.8.2 Features

PWM function:

PWM group has two PWM generators. Each PWM generator supports one 8-bit prescaler, one clock divider, two PWM-Timers (down counter), one dead-zone generator and two PWM outputs.

- Up to 2 PWM groups (PWMA/PWMB) to support 8 PWM channels or 4 complementary PWM paired channels
- Each PWM group has two PWM generators with each PWM generator supporting one 8-bit prescaler, two clock dividers, two PWM-Timers, one Dead-zone generator and two PWM outputs.
- Up to 16-bit resolution
- One-shot or Auto-reload mode
- Edge-aligned type or Center-aligned type option
- PWM trigger ADC start-to-conversion

Capture function:

- Timing control logic shared with PWM generators
- Supports 8 Capture input channels shared with 8 PWM output channels
- Each channel supports one rising latch register (CRLRx), one falling latch register (CFLRx) and Capture interrupt flag (CAPIFx)

6.8.3 Block Diagram

The following figures illustrate the architecture of PWM in pair (e.g. PWM-Timer 0/1 are in one pair and PWM-Timer 2/3 are in another one, and so on.).

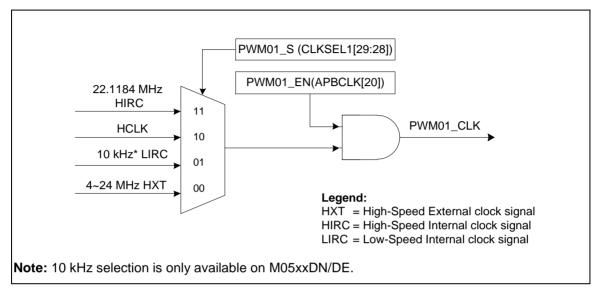


Figure 6-32 PWM Generator 0 Clock Source Control



Figure 6-33 PWM Generator 0 Architecture Diagram

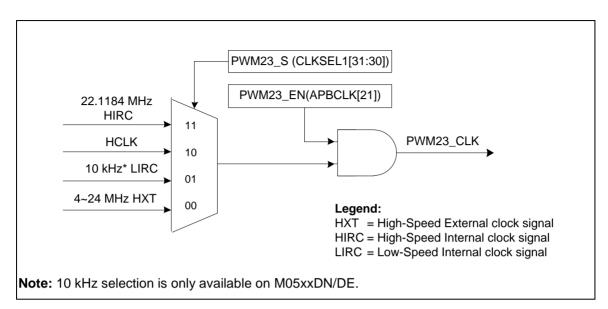


Figure 6-34 PWM Generator 2 Clock Source Control

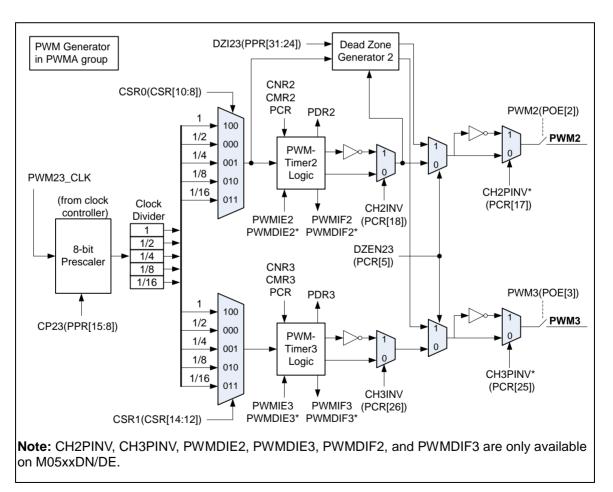


Figure 6-35 PWM Generator 2 Architecture Diagram

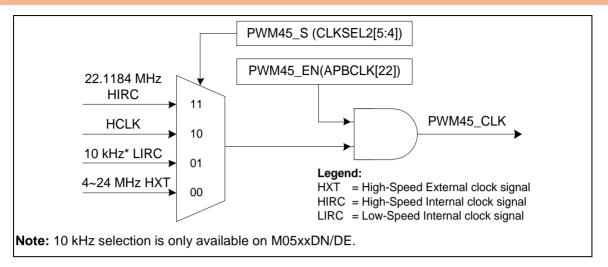


Figure 6-36 PWM Generator 4 Clock Source Control

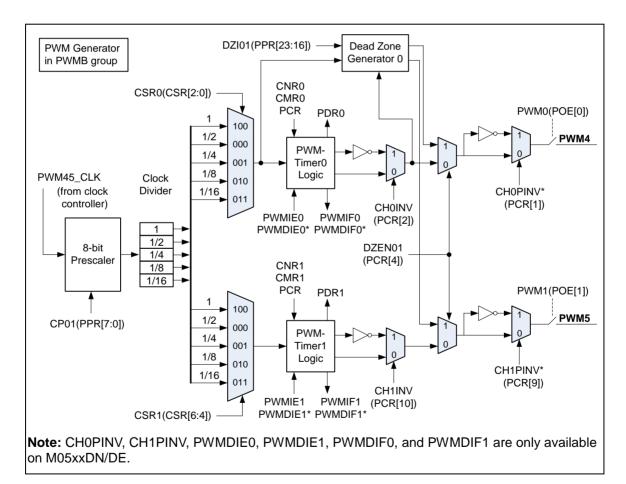


Figure 6-37 PWM Generator 4 Architecture Diagram

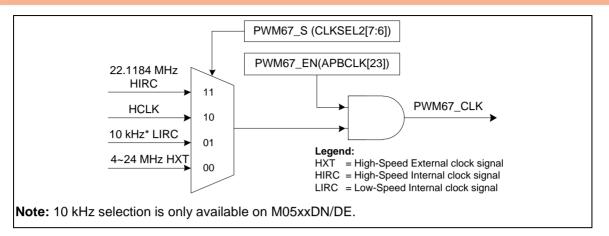


Figure 6-38 PWM Generator 6 Clock Source Control

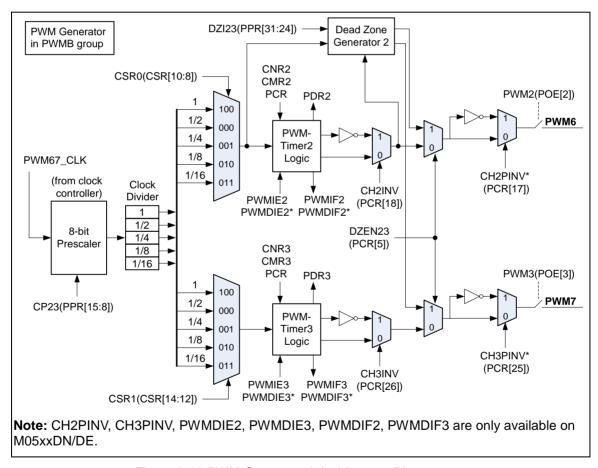


Figure 6-39 PWM Generator 6 Architecture Diagram

6.8.4 Basic Configuration

The PWM pin functions are configured in P2_MFP and P4_MFP registers.

The PWM clock can be enabled in APBCLK[23:20]. The PWM clock source is selected by CLKSEL1[31:28] and CLKSEL2[7:4].

6.8.5 Functional Description

6.8.5.1 PWM-Timer Operation

On M05xxBN, the PWM controller supports only one operation types: Edge-aligned. On M05xxDN/DE, the PWM controller supports 2 operation types: Edge-aligned and Center-aligned.

Edge-aligned PWM (Down-counter)

In Edge-aligned PWM Output mode, the 16 bits PWM counter will starts down-counting from CNRx to match with the value of the duty cycle CMRx (old), when this happened it will toggle the PWMx generator output to low. The counter will continue down-counting to zero, at this moment, it toggles the PWMx generator output to high and CMRx(new) and CNRx(new) are updated with CHxMODE=1 and request the PWM interrupt if PWM interrupt is enabled(PIERx=1).

The PWM period and duty control are configured by PWM down-counter register (CNR) and PWM comparator register (CMR). The PWM-Timer timing operation is shown below. The pulse width modulation follows the formula as shown below and the legend of PWM-Timer Comparator is shown in the note that the corresponding GPIO pins must be configured as PWM function (enable POE and disable CAPENR) for the corresponding PWM channel.

- PWM frequency = PWMxy_CLK/[(prescale+1)*(clock divider)*(CNR+1)]; where xy, could be 01, 23, 45 or 67, depends on selected PWM channel.
- Duty ratio = (CMR+1)/(CNR+1)
- CMR >= CNR: PWM output is always high
- CMR < CNR: PWM low width = (CNR-CMR) unit^[1]; PWM high width = (CMR+1) unit
- CMR = 0: PWM low width = (CNR) unit; PWM high width = 1 unit
 Note [1]: unit = one PWM clock cycle.

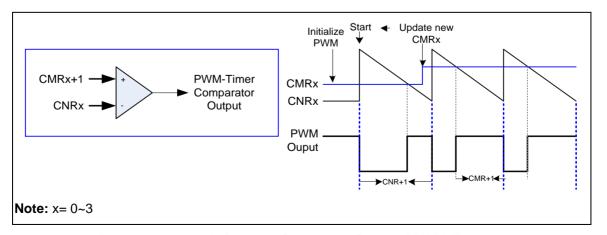


Figure 6-40 Legend of Internal Comparator Output of PWM-Timer

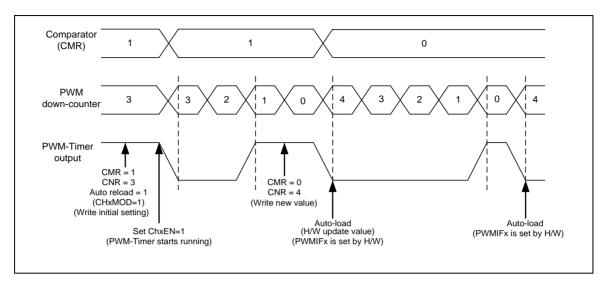


Figure 6-41 PWM Timer Operation Timing

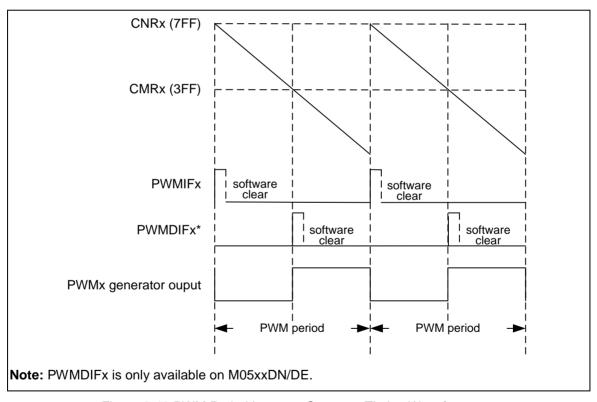


Figure 6-42 PWM Period Interrupt Generate Timing Waveform

Center-aligned PWM (Up/Down-counter) (M05xxDN/DE Only)

The center-aligned PWM signals are produced by the module when the PWM time base is configured in an Up/Down Counting mode. The PWM counter will start counting-up from 0 to match the value of CMRx (old); this will cause the toggling of the PWMx generator output

to low. The counter will continue counting to match with the CNRx (old). Upon reaching this state counter is configured automatically to down counting, when PWM counter matches the CMRx (old) value again the PWMx generator output toggles to high. Once the PWM counter underflows it will update the PWM period register CNRx(new) and duty cycle register CMRx(new) with CHxMODE = 1.

- PWM frequency = PWMxy_CLK/[(prescale+1)*(clock divider)*(CNR+1)]; where xy, could be 01, 23, 45 or 67, depends on selected PWM channel.
- Duty ratio = $[(2 \times CMR) + 1]/[2 \times (CNR+1)]$
- CMR > CNR: PWM output is always high
- CMR <= CNR: PWM low width= 2 x (CNR-CMR) + 1 unit^[1]; PWM high width = (2 x CMR) + 1 unit
- CMR = 0: PWM low width = 2 x CNR + 1 unit; PWM high width = 1 unit

Note [1]: unit = one PWM clock cycle.

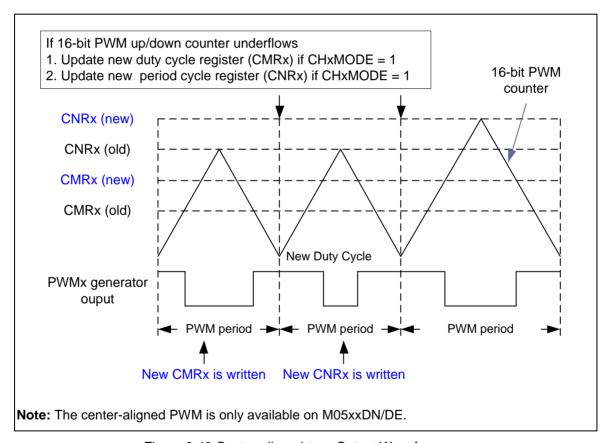


Figure 6-43 Center-aligned type Output Waveform

In Center-aligned type, system can generate two kinds of interrupt, period interrupt and duty interrupt, at four specified timings. PWM period interrupt is generated at counter equals zero on down-count if INTxxTYPE (PIER[17:16]) = 0 or at counter equals CNRx on up-count if INTxxTYPE (PIER[17:16]) = 1, i.e. at center point of PWM cycle. PWM duty interrupt is requested at counter equals CMR on down-count if INTxxDTYPE (PIER[25:24] = 0) or at counter equals CMR on up-count if INTxxDTYPE (PIER[25:24] = 1)

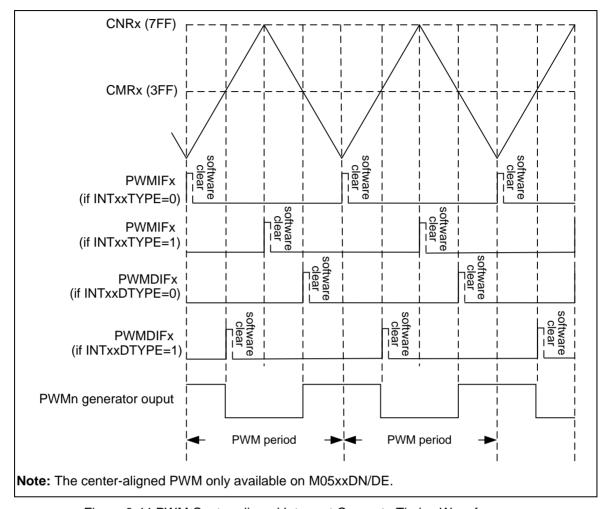


Figure 6-44 PWM Center-aligned Interrupt Generate Timing Waveform

PWM Double Buffering, Auto-reload and One-shot Operation

PWM Timers have double buffering function and the reload value is updated at the start of next period without affecting current timer operation. The PWM counter value can be written into CNRx and current PWM counter value can be read from PDRx.

PWM0 will operate in One-shot mode if CH0MOD bit is set to 0, and operate in Auto-reload mode if CH0MOD bit is set to 1. It is recommend that switch PWM0 operating mode before set CH0EN bit to 1 to enable PWM0 counter start running because the content of CNR0 and CMR0 will be cleared to 0 to reset the PWM0 period and duty setting when PWM0 operating mode is changed. As PWM0 operate in One-shot mode, CMR0 and CNR0 should be written first and then set CH0EN bit to 1 to enable PWM0 counter start running. After PWM0 counter down count from CNR0 value to 0, CNR0 and CMR0 will be cleared to 0 by hardware and PWM counter will be held. Software need to write new CMR0 and CNR0 value to set next one-shot period and duty. When re-start next one-shot operation, the CMR0 should be written first because PWM0 counter will auto re-start counting when CNR0 is written a non-zero value. As PWM0 operates at autoreload mode, CMR0 and CNR0 should be written first and then set CH0EN bit to 1 to enable PWM0 counter start running. The value of CNR0 will reload to PWM0 counter when it down count reaches 0. If CNR0 is set to 0, PWM0 counter will be held. PWM1~PWM7 performs the same function as PWM0.

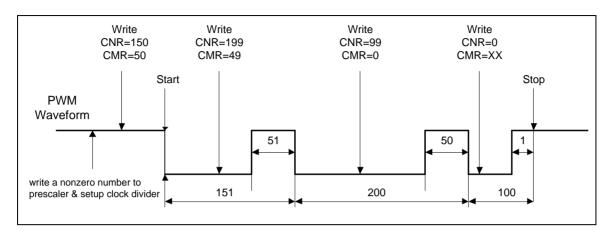


Figure 6-45 PWM Double Buffering Illustration

6.8.5.3 Modulate Duty Ratio

nuvoTon

The double buffering function allows CMRx to be written at any point in current cycle. The loaded value will take effect from the next cycle.

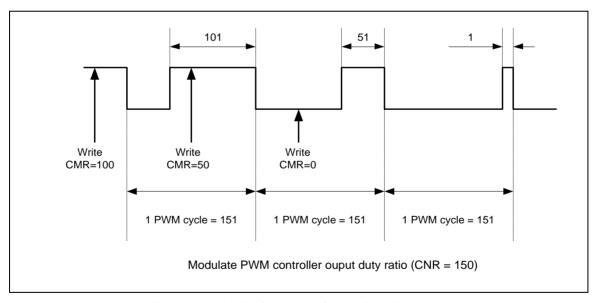


Figure 6-46 PWM Controller Output Duty Ratio

6.8.5.4 Dead-Zone Generator

The PWM controller is implemented with Dead-zone generator. They are built for power device protection. This function generates a programmable time gap to delay PWM rising output. User can program PPRx.DZI to determine the Dead-zone interval.

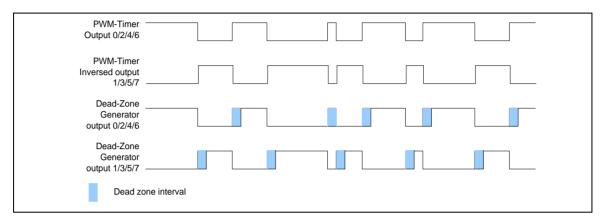


Figure 6-47 Paired-PWM Output with Dead-zone Generation Operation

6.8.5.5 PWM-Timer Trigger ADC to Start Conversion (M05xxDN/DE Only)

PWM can be one of the ADC conversion trigger source. When PWM operating at center aligned type, four PWM trigger ADC-to-Conversion timings can be selected. When PWM operating at edge-aligned type, two PWM trigger ADC-to-Conversion timings can be selected.

For Center-aligned type, PWM can trigger ADC to start conversion in different timings by setting INTxxDTYPE/ INTxxTYPE and PWMxDTEN/ PWMxTEN. Trigger ADC timings and settings as shown below.

INTxTEN	INTxxTYPE	Description	
1	0	PWM counter equals to 0 at down-counting	
1	1	PWM counter equal to CNRx + 1 at up-counting	

INTxDTEN	INTxxDTYPE	Description
1	0	PWM counter equals CMRx at down-counting
1	1	PWM counter equals CMRx at up-counting

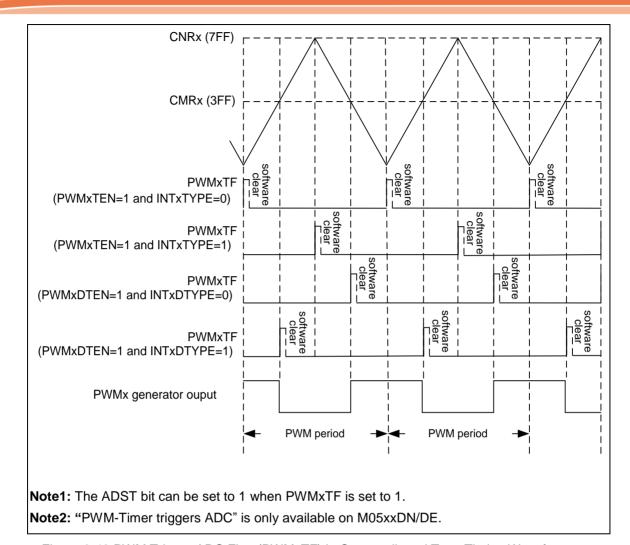


Figure 6-48 PWM Trigger ADC Flag (PWMxTF) in Center-aligned Type Timing Waveform

For Edge-aligned type, PWM can trigger ADC to start conversion in different timings by setting PWMxDTEN/ PWMxTEN. Trigger ADC timings and settings as shown below.

INTxDTEN	Description
1	PWM counter equals CMRx at down-counting
INTxTEN	Description
1	PWM counter equals to 0 at down-counting

nuvoton

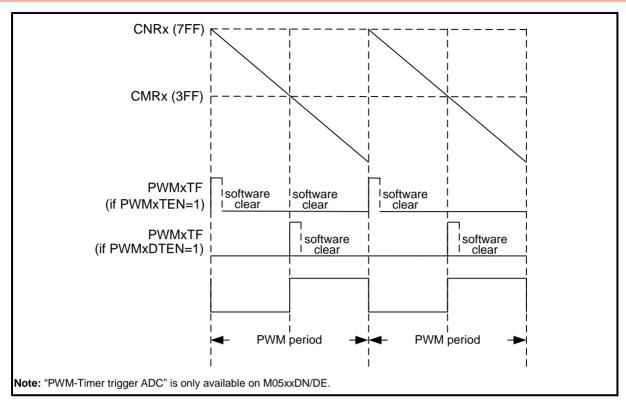


Figure 6-49 PWM Trigger ADC Flag (PWMxTF) in Edge-aligned Type Timing Waveform

PWM trigger ADC start-of-conversion procedure (M05xxDN/DE Only) 6.8.5.6

- Configure prescaler register (PPRx) for setting clock prescaler (CPxx).
- 2. Configure clock select register (CSRx) for setting clock source divider selection (CSRx).
- Configure PWM control register (PCRx) for setting auto-reload mode (CHxMOD = 1), PWM aligned type (PWMxxTYPE) and DISABLE PWM-Timer (CHxEN = 0).
- Configure PWM control register (PCRx) for setting inverter on/off (CHxINV), polar inverse on/off (CHxPINV) and Dead-zone generator on/off (DZENxx). (optional)
- Configure PWM interrupt enable register (PIER) for setting PWM period interrupt type (INTxxTYPE) and PWM duty interrupt type (INTxxDTYPE).
- Configure PWM trigger control register (TCON) to enable/disable PWM period trigger ADC (PWMxTEN) and PWM duty trigger ADC (PWMxDTEN).
- 7. Configure comparator register (CMRx) for setting PWM duty (CMRx).
- Configure PWM counter register (CNRx) for setting PWM-Timer loaded value (CNRx).
- Configure PWM output enable register (POE) to enable PWM output channel (PWMx = 1)
- 10. Configure ADC trigger delay control register (ADTDCR) in ADC controller registers for setting PWM trigger delay time (PTDT) (optional)
- 11. Configure ADC channel enable register (ADCHER) in ADC controller registers to enable analog input channel (CHENx =1)
- 12. Configure ADC control register (ADCR) in ADC controller registers for setting hardware trigger source is from PWM trigger (TRGS = 3), external trigger enable (TRGEN = 1), A/D converter operation mode (ADMD = 0,2,3) and A/D converter enable (ADEN = 1)

- 13. Configure PWM control register (PCR) to enable PWM timer start running (CHxEN = 1)
- 14. ADST (ADCR[11]) bit will be set to 1 by hardware when PWM trigger flag (PWMxTF) is set to 1 by hardware.
- 15. Software can poll A/D conversion end flag ADF (ADSR[0]) to check if the conversion is finished or not.
- 16. ADST (ADCR[11]) bit will be cleared to 0 automatically in single mode and single cycle scan mode. In continuous scan mode, the ADST bit will keep 1 until software clears it.

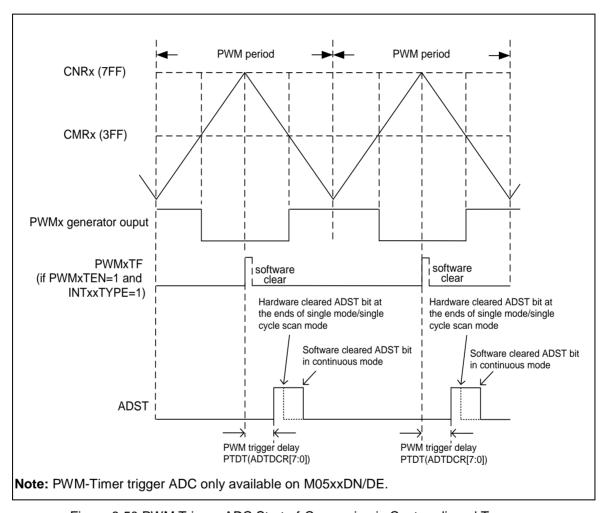


Figure 6-50 PWM Trigger ADC Start-of-Conversion in Center-aligned Type

6.8.5.7 Capture Operation

The Capture 0 and PWM 0 share one timer that included in PWM 0; and the Capture 1 and PWM 1 share another timer, and etc. The capture always latches PWM-counter to CRLRx when input channel has a rising transition and latches PWM-counter to CFLRx when input channel has a falling transition. Capture channel 0 interrupt is programmable by setting CCR0[1] (Rising latch Interrupt enable) and CCR0[2] (Falling latch Interrupt enable) to decide the condition of interrupt occur. Capture channel 1 has the same feature by setting CCR0[17] and CCR0[18], and etc. Whenever the Capture controller issues a capture interrupt, the corresponding PWM counter will be reloaded with CNRx at this moment. Note that the corresponding GPIO pins must be configured as capture function (POE disabled and CAPENR enabled) for the corresponding capture channel.

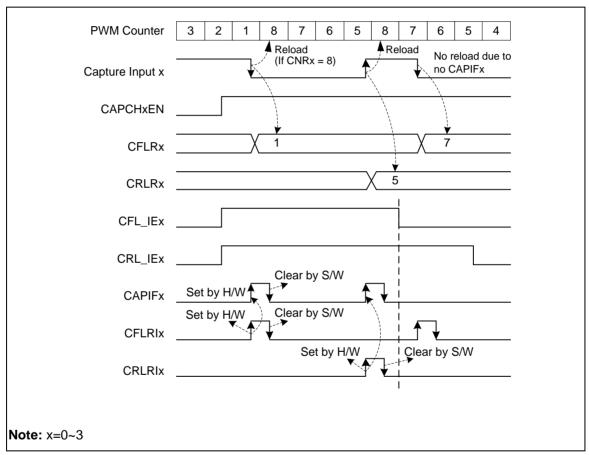


Figure 6-51 Capture Operation Timing

In this case, the CNR is 8:

- 1. The PWM counter will be reloaded with CNRx when a capture interrupt flag (CAPIFx) is set.
- 2. The channel low pulse width is (CNR + 1 CRLR).
- The channel high pulse width is (CNR + 1 CFLR).

6.8.5.8 PWM-Timer Interrupt Architecture

There are eight PWM interrupts, PWM0_INT~PWM7_INT, which are divided into PWMA_INT and

PWMB_INT for Advanced Interrupt Controller (AIC). PWM 0 and Capture 0 share one interrupt, PWM1 and Capture 1 share the same interrupt and so on. Therefore, PWM function and Capture function in the same channel cannot be used at the same time. The following figure demonstrates the architecture of PWM-Timer interrupts.

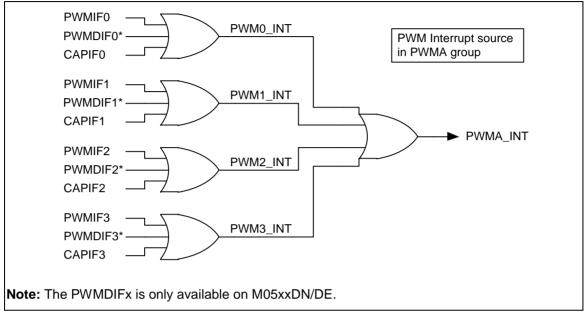


Figure 6-52 PWM Group A PWM-Timer Interrupt Architecture Diagram

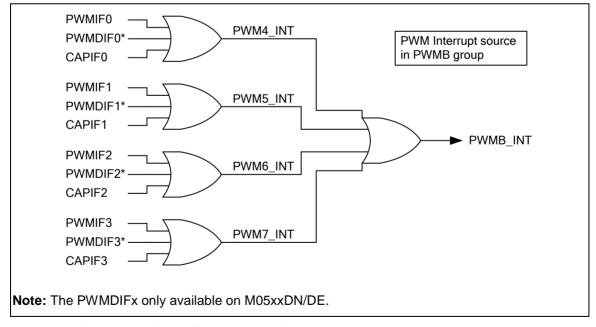


Figure 6-53 PWM Group B PWM-Timer Interrupt Architecture Diagram

6.8.5.9 PWM-Timer Start Procedure

The following procedure is recommended for starting a PWM drive.

- 1. Configure prescaler register (PPR) for setting clock prescaler (CPxx).
- 2. Configure clock select register (CSR) for setting clock source select (CSRx).
- 3. Configure PWM control register (PCR) for setting auto-reload mode (CHxMOD = 1) and DISABLE PWM-Timer (CHxEN = 0).
- 4. Configure PWM control register (PCR) for setting inverter on/off (CHxINV) and Dead-zone generator on/off (DZENxx). (optional)
- 5. Configure comparator register (CMRx) for setting PWM duty (CMRx).
- 6. Configure PWM counter register (CNRx) for setting PWM-Timer loaded value (CNRx).
- 7. Configure PWM interrupt enable register (PIER) for setting PWM period interrupt enable bit (PWMIEx). (optional)
- 8. Configure PWM output enable register (POE) to enable PWM output channel (PWMx = 1)
- 9. Configure PWM control register (PCR) to enable PWM timer start running (CHxEN = 1)

6.8.5.10 PWM-Timer Re-Start Procedure in One-shot mode

After PWM waveform is generated once in PWM One-shot mode, PWM-Timer will be stopped automatically and both of CNRx and CMRx will be cleared by hardware. Software must fill CMRx and CNRx value again to re-start another PWM one-shot waveform. The following procedure is recommended for re-starting PWM one-shot waveform.

- 1. Configure comparator register (CMRx) for setting PWM duty (CMRx).
- 2. Configure PWM counter register (CNRx) for setting PWM period (CNRx). After setup CNRx, PWM wave will be generated.

6.8.5.11 PWM-Timer Stop Procedure

Method 1:

Set 16-bit counter register (CNRx) as 0, and monitor data register (PDRx, current value of 16-bit down-counter). When PDRx reaches to 0, disable PWM-Timer (CHxEN in PCR). (Recommended)

Method 2:

Set 16-bit counter register (CNRx) as 0. When interrupt request happened, disable PWM-Timer (CHxEN in PCR). (Recommended)

Method 3:

Disable PWM-Timer directly (CHxEN in PCR) (Not recommended)

The reason why method 3 is not recommended is that disabling CHxEN will immediately stop PWM output signal and lead to change the duty of the PWM output, this may cause damage to the control circuit of motor.

6.8.5.12 PWM-Timer Synchronous Start Procedure

Group a PWM-Timer1~3 and group B PWM-Timer0~3 can synchronous start with group A PWM-Time0. The following procedure is recommended for PWM-Timer synchronous start

- 1. Configure prescaler register (PPR) for setting clock prescaler (CPxx).
- 2. Configure clock select register (CSR) for setting clock source select (CSRx).
- 3. Configure PWM control register (PCR) for setting inverter auto-reload mode (CHxMOD = 1), PWM aligned type (PWMxxTYPE) and DISABLE PWM-Timer (CHxEN = 0).
- 4. Configure PWM control register (PCR) for setting inverter on/off (CHxINV), polar inverse on/off (CHxPINV) and Dead-zone generator on/off (DZENn). (optional)
- 5. Configure comparator register (CMRx) for setting PWM duty (CMRx).
- 6. Configure PWM counter register (CNRx) for setting PWM-Timer loaded value (CNRx).
- 7. Configure PWM interrupt enable register (PIER) for setting PWM period interrupt type (INTxxTYPE), PWM duty interrupt type (INTxxDTYPE), PWM period interrupt enable bit (PWMIEx) and PWM duty interrupt enable bit (PWMDIEx). (optional)
- 8. Configure PWM output enable register (POE) to enable PWM output channel (PWMx)
- 9. Configure PWM synchronous control register (PSCR) to enable PWM synchronous start bit (PSSENx = 1)
- Configure group A PWM control register (PCR) to enable group A PWM-Timer0 start running (CH0EN = 1 in group A PCR). All of specified PWM-Timers will synchronous start with group A PWM-Timer0.

6.8.5.13 Capture Start Procedure

- 1. Configure prescaler register (PPR) for setting clock prescaler (CPxx).
- 2. Configure clock select register (CSR) for setting clock source select (CSRx)
- 3. Configure PWM control register (PCR) for setting auto-reload mode (CHxMOD = 1) and DISABLE PWM-Timer (CHxEN = 0).
- 4. Configure PWM capture control register (CCRx) for setting rising interrupt enable (CRL_IEx), falling interrupt enable (CFL_IEx) and input signal inverter on/off (INVx)
- 5. Configure PWM counter register (CNRx) for setting PWM-Timer loaded value (CNRx).
- 6. Configure PWM control register (PCR) to enable PWM timer start running (CHxEN = 1)
- 7. Configure the capture input channel enable register (CAPENR) to enable the corresponding GPIO pins as capture function.

6.8.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value		
 PV PWMA PV 	PWMA_BA = 0x4004_0000					
PPR	PWMA_BA+0x00 PWMB_BA+0x00	R/W	PWM Prescaler Register	0x0000_0000		
CSR	PWMA_BA+0x04 PWMB_BA+0x04	R/W	PWM Clock Source Divider Select Register	0x0000_0000		
PCR	PWMA_BA+0x08 PWMB_BA+0x08	R/W	PWM Control Register	0x0000_0000		
CNR0	PWMA_BA+0x0C PWMB_BA+0x0C	R/W	PWM Counter Register 0	0x0000_0000		
CMR0	PWMA_BA+0x10 PWMB_BA+0x10	R/W	PWM Comparator Register 0	0x0000_0000		
PDR0	PWMA_BA+0x14 PWMB_BA+0x14	R	PWM Data Register 0	0x0000_0000		
CNR1	PWMA_BA+0x18 PWMB_BA+0x18	R/W	PWM Counter Register 1	0x0000_0000		
CMR1	PWMA_BA+0x1C PWMB_BA+0x1C	R/W	PWM Comparator Register 1	0x0000_0000		
PDR1	PWMA_BA+0x20 PWMB_BA+0x20	R	PWM Data Register 1	0x0000_0000		
CNR2	PWMA_BA+0x24 PWMB_BA+0x24	R/W	PWM Counter Register 2	0x0000_0000		
CMR2	PWMA_BA+0x28 PWMB_BA+0x28	R/W	PWM Comparator Register 2	0x0000_0000		
PDR2	PWMA_BA+0x2C PWMB_BA+0x2C	R	PWM Data Register 2	0x0000_0000		
CNR3	PWMA_BA+0x30 PWMB_BA+0x30	R/W	PWM Counter Register 3	0x0000_0000		
CMR3	PWMA_BA+0x34 PWMB_BA+0x34	R/W	PWM Comparator Register 3	0x0000_0000		
PDR3	PWMA_BA+0x38 PWMB_BA+0x38	R	PWM Data Register 3	0x0000_0000		
PIER	PWMA_BA+0x40 PWMB_BA+0x40	R/W	PWM Interrupt Enable Register	0x0000_0000		
PIIR	PWMA_BA+0x44	R/W	PWM Interrupt Indication Register	0x0000_0000		

	PWMB_BA+0x44			
CCR0	PWMA_BA+0x50 PWMB_BA+0x50	R/W	PWM Capture Control Register 0	0x0000_0000
CCR2	PWMA_BA+0x54 PWMB_BA+0x54	R/W	PWM Capture Control Register 2	0x0000_0000
CRLR0	PWMA_BA+0x58 PWMB_BA+0x58	R	PWM Capture Rising Latch Register (Channel 0)	0x0000_0000
CFLR0	PWMA_BA+0x5C PWMB_BA+0x5C	R	PWM Capture Falling Latch Register (Channel 0)	0x0000_0000
CRLR1	PWMA_BA+0x60 PWMB_BA+0x60	R	PWM Capture Rising Latch Register (Channel 1)	0x0000_0000
CFLR1	PWMA_BA+0x64 PWMB_BA+0x64	R	PWM Capture Falling Latch Register (Channel 1)	0x0000_0000
CRLR2	PWMA_BA+0x68 PWMB_BA+0x68	R	PWM Capture Rising Latch Register (Channel 2)	0x0000_0000
CFLR2	PWMA_BA+0x6C PWMB_BA+0x6C	R	PWM Capture Falling Latch Register (Channel 2)	0x0000_0000
CRLR3	PWMA_BA+0x70 PWMB_BA+0x70	R	PWM Capture Rising Latch Register (Channel 3)	0x0000_0000
CFLR3	PWMA_BA+0x74 PWMB_BA+0x74	R	PWM Capture Falling Latch Register (Channel 3)	0x0000_0000
CAPENR	PWMA_BA+0x78 PWMB_BA+0x78	R/W	PWM Capture Input 0~3 Enable Register	0x0000_0000
POE	PWMA_BA+0x7C PWMB_BA+0x7C	R/W	PWM Output Enable Register for Channel 0~3	0x0000_0000
TCON	PWMA_BA+0x80 PWMB_BA+0x80	R/W	PWM Trigger Control Register for Channel 0~3 (M05xxDN/DE Only)	0x0000_0000
TSTATUS	PWMA_BA+0x84 PWMB_BA+0x84	R/W	PWM Trigger Status Register (M05xxDN/DE Only)	0x0000_0000
PSCR	PWMA_BA+0x98 PWMB_BA+0x98	R/W	PWM Synchronous Control Register (M05xxDN/DE Only)	0x0000_0000

6.8.7 Register Description

PWM Prescaler Register (PPR)

Register	Offset	R/W	Description	Reset Value
PPR	PWMA_BA+0x00 PWMB_BA+0x00	R/W	PWM Prescaler Register	0x0000_0000

31	30	29	28	27	26	25	24
			DZ	123			
23	22	21	20	19	18	17	16
			DZ	101			
15	14	13	12	11	10	9	8
	CP23						
7	6	5	4	3	2	1	0
	CP01						

Bits	Description	
		Dead-zone Interval for Pair of Channel 2 and Channel 3 (PWM2 and PWM3 Pair for PWM Group A, PWM6 and PWM7 Pair for PWM Group B)
[31:24]	DZI23	These 8-bit determine the Dead-zone length.
		The unit time of Dead-zone length = [(prescale+1)*(clock source divider)]/ PWMxy_CLK (where xy could be 23 or 67, depends on selected PWM channel.).
		Dead-zone Interval for Pair of Channel 0 and Channel 1 (PWM0 and PWM1 Pair for PWM Group A, PWM4 and PWM5 Pair for PWM Group B)
[23:16]	DZI01	These 8-bit determine the Dead-zone length.
		The unit time of Dead-zone length = [(prescale+1)*(clock source divider)]/ PWMxy_CLK (where xy could be 01 or 45, depends on selected PWM channel.).
		Clock Prescaler 2 (PWM-timer 2 / 3 for Group A and PWM-timer 6 / 7 for Group B)
[15:8]	CP23	Clock input is divided by (CP23 + 1) before it is fed to the corresponding PWM-Timer.
[]	0. 20	If CP23=0, then the clock prescaler 2 output clock will be stopped. So corresponding PWM-Timer will also be stopped.
	CP01	Clock Prescaler 0 (PWM-timer 0 / 1 for Group A and PWM-timer 4 / 5 for Group B)
[7:0]		Clock input is divided by (CP01 + 1) before it is fed to the corresponding PWM-Timer
		If CP01=0, then the clock prescaler 0 output clock will be stopped. So corresponding PWM-Timer will also be stopped.

PWM Clock Selector Register (CSR)

Register	Offset	R/W	Description	Reset Value
CSR	PWMA_BA+0x04 PWMB_BA+0x04	R/W	PWM Clock Source Divider Select Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
Reserved	eserved CSR3			Reserved		CSR2	
7	6	5	4	3	2	1	0
Reserved	Reserved CSR1			Reserved		CSR0	

Bits	Description						
[31:15]	Reserved	Reserved.					
		Timer 7 for Group B)	PWM Timer 3 Clock Source Divider Selection (PWM Timer 3 for Group A and PWM Timer 7 for Group B) Select clock source divider for PWM timer 3.				
		CSR3 [14:12]	Input Clock Divided by				
[14:12]	CSR3	000	2				
[14.12]	CSKS	001	4				
1		010	8				
		011	16				
		100	1				
[11]	Reserved	Reserved.					
[10:8]	CSR2	PWM Timer 2 Clock Sour Timer 6 for Group B) Select clock source divider (Table is the same as CSR					
[7]	Reserved	Reserved.					
[6:4]	CSR1	PWM Timer 1 Clock Source Divider Selection (PWM Timer 1 for Group A and PWM Timer 5 for Group B) Select clock source divider for PWM timer 1. (Table is the same as CSR3)					
[3]	Reserved	Reserved.	Reserved.				
[2:0]	CSR0	PWM Timer 0 Clock Source Divider Selection (PWM Timer 0 for Group A and PWM Timer 4 for Group B)					

Select clock source divider for PWM timer 0.
(Table is the same as CSR3)

PWM Control Register (PCR)

Register	Offset	R/W	Description	Reset Value
PCR	PWMA_BA+0x08 PWMB_BA+0x08	R/W	PWM Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PWM23TYPE	PWM01TYPE	Rese	erved	СНЗМОД	CH3INV	CH3PINV	CH3EN
23	22	21	20	19	18	17	16
	Reserved			CH2MOD	CH2INV	CH2PINV	CH2EN
15	14	13	12	11	10	9	8
	Rese	erved		CH1MOD	CH1INV	CH1PINV	CH1EN
7	6	5	4	3	2	1	0
Rese	Reserved DZEN23 DZEN01				CH0INV	CH0PINV	CH0EN

Bits	Description	
[31]	PWM23TYPE	PWM23 Aligned Type Selection Bit (PWM2 and PWM3 Pair for PWM Group A, PWM6 and PWM7 Pair for PWM Group B) (M05xxDN/DE Only) 0 = Edge-aligned type. 1 = Center-aligned type.
[30]	PWM01TYPE	PWM01 Aligned Type Selection Bit (PWM0 and PWM1 Pair for PWM Group A, PWM4 and PWM5 Pair for PWM Group B) (M05xxDN/DE Only) 0 = Edge-aligned type. 1 = Center-aligned type.
[29:28]	Reserved	Reserved.
[27]	СНЗМОД	PWM-timer 3 Auto-reload/One-shot Mode Control (PWM Timer 3 for Group A and PWM Timer 7 for Group B) 0 = One-shot mode. 1 = Auto-reload mode. Note: If there is a transition at this bit, it will cause CNR3 and CMR3 be cleared.
[26]	CH3INV	PWM-timer 3 Output Inverter Enable Control (PWM Timer 3 for Group A and PWM Timer 7 for Group B) 0 = Inverter Disabled. 1 = Inverter Enabled.
[25]	CH3PINV	PWM-timer 3 Output Polar Inverse Enable Control (PWM Timer 3 for Group A and PWM Timer 7 for Group B) (M05xxDN/DE Only) 0 = Polar Inverter Disabled. 1 = Polar Inverter Enabled.
[24]	CH3EN	PWM-timer 3 Enable Control (PWM Timer 3 for Group A and PWM Timer 7 for Group B) 0 = Corresponding PWM-Timer Stopped. 1 = Corresponding PWM-Timer Start Running.
[23:20]	Reserved	Reserved.

		PWM-timer 2 Auto-reload/One-shot Mode Control (PWM Timer 2 for Group A and PWM Timer 6 for Group B)
[19]	CH2MOD	0 = One-shot mode.
,		1 = Auto-reload mode.
		Note: If there is a transition at this bit, it will cause CNR2 and CMR2 be cleared.
		PWM-timer 2 Output Inverter Enable Control (PWM Timer 2 for Group A and PWM Timer 6 for Group B)
[18]	CH2INV	0 = Inverter Disabled.
		1 = Inverter Enabled.
		PWM-timer 2 Output Polar Inverse Enable (PWM Timer 2 for Group A and PWM Timer 6 for Group B) (M05xxDN/DE Only)
[17]	CH2PINV	0 = Polar Inverter Disabled.
		1 = Polar Inverter Enabled.
		PWM-timer 2 Enable (PWM Timer 2 for Group A and PWM Timer 6 for Group B)
[16]	CH2EN	0 = Corresponding PWM-Timer Stopped.
		1 = Corresponding PWM-Timer Start Running.
[15:12]	Reserved	Reserved.
		PWM-timer 1 Auto-reload/One-shot Mode (PWM Timer 1 for Group A and PWM Timer 5 for Group B)
[11]	CH1MOD	0 = One-shot mode.
		1 = Auto-reload mode.
		Note: If there is a transition at this bit, it will cause CNR1 and CMR1 be cleared.
		PWM-timer 1 Output Inverter Enable (PWM Timer 1 for Group A and PWM Timer 5 for Group B)
[10]	CH1INV	0 = Inverter Disabled.
		1 = Inverter Enabled.
[0]	CHARINIV	PWM-timer 1 Output Polar Inverse Enable (PWM Timer 1 for Group A and PWM Timer 5 for Group B) (M05xxDN/DE Only)
[9]	CH1PINV	0 = Polar Inverter Disabled.
		1 = Polar Inverter Enabled.
		PWM-timer 1 Enable (PWM Timer 1 for Group A and PWM Timer 5 for Group B)
[8]	CH1EN	0 = Corresponding PWM-Timer Stopped.
		1 = Corresponding PWM-Timer Start Running.
[7:6]	Reserved	Reserved.
		Dead-zone 2 Generator Enable (PWM2 and PWM3 Pair for PWM Group A, PWM6 and PWM7 Pair for PWM Group B)
		0 = Disabled.
[5]	DZEN23	1 = Enabled.
		Note: When Dead-zone generator is enabled, the pair of PWM2 and PWM3 becomes a complementary pair for PWM group A and the pair of PWM6 and PWM7 becomes a complementary pair for PWM group B.
		Dead-zone 0 Generator Enable Control (PWM0 and PWM1 Pair for PWM Group A, PWM4 and PWM5 Pair for PWM Group B)
		0 = Disabled.
[4]	DZEN01	1 = Enabled.
		Note: When Dead-zone generator is enabled, the pair of PWM0 and PWM1 becomes a complementary pair for PWM group A and the pair of PWM4 and PWM5 becomes a complementary pair for PWM group B.

		PWM-timer 0 Auto-reload/One-shot Mode Control (PWM Timer 0 for Group A and PWM Timer 4 for Group B)
[3]	CH0MOD	0 = One-shot mode.
		1 = Auto-reload mode.
		Note: If there is a transition at this bit, it will cause CNR0 and CMR0 be cleared.
[2]	CHOINV	PWM-timer 0 Output Inverter Enable Control (PWM Timer 0 for Group A and PWM Timer 4 for Group B) 0 = Inverter Disabled.
		1 = Inverter Enabled.
[4]	CHODINIV	PWM-timer 0 Output Polar Inverse Enable Control (PWM Timer 0 for Group A and PWM Timer 4 for Group B) (M05xxDN/DE Only)
[1]	CH0PINV	0 = Polar Inverter Disabled.
		1 = Polar Inverter Enabled.
		PWM-timer 0 Enable Control (PWM Timer 0 for Group A and PWM Timer 4 for Group B)
[0]	CH0EN	0 = The corresponding PWM-Timer stops running.
		1 = The corresponding PWM-Timer starts running.

M051 BN/DN/DE SERIES TECHNICAL REFERENCE MANU

PWM Counter Register 3-0 (CNR3-0)

Register	Offset	R/W	Description	Reset Value
CNR0	PWMA_BA+0x0C PWMB_BA+0x0C	R/W	PWM Counter Register 0	0x0000_0000
CNR1	PWMA_BA+0x18 PWMB_BA+0x18	R/W	PWM Counter Register 1	0x0000_0000
CNR2	PWMA_BA+0x24 PWMB_BA+0x24	R/W	PWM Counter Register 2	0x0000_0000
CNR3	PWMA_BA+0x30 PWMB_BA+0x30	R/W	PWM Counter Register 3	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			CN	IRx			
7	6	5	4	3	2	1	0
	CNRx						

Bits	Description	on					
[31:16]	Reserved	Reserved.					
[15:0]	CNRx	PWM Timer Loaded Value CNR determines the PWM period. PWM frequency = PWMxy_CLK/[(prescale+1)*(clock divider)*(CNR+1)]; where xy, could be 01, 23, 45 or 67, depends on selected PWM channel. For Edge-aligned Type: Duty ratio = (CMR+1)/(CNR+1). CMR >= CNR: PWM output is always high. CMR < CNR: PWM low width = (CNR-CMR) unit; PWM high width = (CMR+1) unit. CMR = 0: PWM low width = (CNR) unit; PWM high width = 1 unit. For Center-aligned Type (M05xxDN/DE Only): Duty ratio = [(2 x CMR) + 1]/[2 x (CNR+1)]. CMR > CNR: PWM output is always high. CMR <= CNR: PWM low width = 2 x (CNR-CMR) + 1 unit; PWM high width = (2 x CMR) + 1 unit. CMR = 0: PWM low width = 2 x CNR + 1 unit; PWM high width = 1 unit. (Unit = one PWM clock cycle).					

	Note1: Any write operation to CNR will take effect in next PWM cycle.
	Note2: When CNR value is set to 0, PWM output is always high.
	Note3: When PWM operating at center-aligned type, CNR value should be set between 0x0001 to 0xFFFE. If CNR equal to 0x0000 or 0xFFFF, the PWM will work unpredictable.

PWM Comparator Register 3-0 (CMR3-0)

Register	Offset	R/W	Description	Reset Value
CMR0	PWMA_BA+0x10 PWMB_BA+0x10	R/W	PWM Comparator Register 0	0x0000_0000
CMR1	PWMA_BA+0x1C PWMB_BA+0x1C	R/W	PWM Comparator Register 1	0x0000_0000
CMR2	PWMA_BA+0x28 PWMB_BA+0x28	R/W	PWM Comparator Register 2	0x0000_0000
CMR3	PWMA_BA+0x34 PWMB_BA+0x34	R/W	PWM Comparator Register 3	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			CM	lRx			
7	6	5	4	3	2	1	0
	CMRx						

Bits	Description	Description				
[31:16]	Reserved	Reserved.				
[15:0]	CMRx	PWM Comparator Register CMR determines the PWM duty. PWM frequency = PWMxy_CLK/[(prescale+1)*(clock divider)*(CNR+1)]; where xy, could be 01, 23, 45 or 67, depends on selected PWM channel. For Edge-aligned Type: Duty ratio = (CMR+1)/(CNR+1). CMR >= CNR: PWM output is always high. CMR < CNR: PWM low width = (CNR-CMR) unit; PWM high width = (CMR+1) unit. CMR = 0: PWM low width = (CNR) unit; PWM high width = 1 unit. In Center-aligned Type (M05xxDN/DE Only): Duty ratio = [(2 x CMR) + 1]/[2 x (CNR+1)]. CMR > CNR: PWM output is always high. CMR <= CNR: PWM low width = 2 x (CNR-CMR) + 1 unit; PWM high width = (2 x CMR) + 1 unit. CMR = 0: PWM low width = 2 x CNR + 1 unit; PWM high width = 1 unit. (Unit = one PWM clock cycle).				

Note: Any write operation to CMR will take effect in next PWM cycle.

PWM Data Register 3-0 (PDR 3-0)

Register	Offset	R/W	Description	Reset Value
PDR0	PWMA_BA+0x14 PWMB_BA+0x14	R	PWM Data Register 0	0x0000_0000
PDR1	PWMA_BA+0x20 PWMB_BA+0x20	R	PWM Data Register 1	0x0000_0000
PDR2	PWMA_BA+0x2C PWMB_BA+0x2C	R	PWM Data Register 2	0x0000_0000
PDR3	PWMA_BA+0x38 PWMB_BA+0x38	R	PWM Data Register 3	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	PDRx								
7	6	5	4	3	2	1	0		
	PDRx								

Bits	Description			
[31:16]	Reserved	Reserved.		
[15:0]	PDRx	PWM Data Register User can monitor PDR to know the current value in 16-bit counter.		

PWM Interrupt Enable Register (PIER)

Register	Offset	R/W	Description	Reset Value
PIER	PWMA_BA+0x40 PWMB_BA+0x40	R/W	PWM Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						INT01DTYPE
23	22	21	20	19	18	17	16
		Rese	erved			INT23TYPE	INT01TYPE
15	14	13	12	11	10	9	8
	Rese	erved		PWMDIE3	PWMDIE2	PWMDIE1	PWMDIE0
7	6	5	4	3	2	1	0
	Reserved				PWMIE2	PWMIE1	PWMIE0

Bits	Description					
[31:26]	Reserved	Reserved.				
		PWM23 Duty Interrupt Type Selection (PWM2 and PWM3 Pair for PWM Group A, PWM6 and PWM7 Pair for PWM Group B) (M05xxDN/DE Only)				
[25]	INT23DTYPE	0 = PWMDIFx will be set if PWM counter down count and matches CMRx register. PWM will trigger ADC to conversion when PWM counter down count and matches CMRx register if correlate PWM trigger enable bit (PWMxDTEN) is set to 1.				
		1 = PWMDIFx will be set when PWM counter up count and matches CMRx register. PWM will trigger ADC to conversion when PWM counter up count and matches CMRx register if correlate PWM trigger enable bit (PWMxDTEN) is set to 1.				
		Note: Set INT23DTYPE to 1 only work when PWM operating in center aligned type.				
		PWM01 Duty Interrupt Type Selection (PWM0 and PWM1 Pair for PWM Group A, PWM4 and PWM5 Pair for PWM Group B) (M05xxDN/DE Only)				
[24]	INT01DTYPE	0 = PWMDIFx will be set if PWM counter down count and matches CMRx register. PWM will trigger ADC to conversion when PWM counter down count and matches CMRx register if correlate PWM trigger enable bit (PWMxDTEN) is set to 1.				
		1 = PWMDIFx will be set when PWM counter up count and matches CMRx register. PWM will trigger ADC to conversion when PWM counter up count and matches CMRx register if correlate PWM trigger enable bit (PWMxDTEN) is set to 1.				
		Note: Set INT01DTYPE to 1 only work when PWM operating in center aligned type.				
[23:18]	Reserved	Reserved.				
		PWM23 Interrupt Period Type Selection (PWM2 and PWM3 Pair for PWM Group A, PWM6 and PWM7 Pair for PWM Group B) (M05xxDN/DE Only)				
[17]	INT23TYPE	0 = PWMIFx will be set if PWM counter underflow. PWM will trigger ADC to conversion when PWM counter underflow if correlate PWM trigger enable bit (PWMxTEN) is set to 1.				
[17]	INTZSTIFE	1 = PWMIFx will be set if PWM counter matches CNRx register. PWM will trigger ADC to conversion when PWM counter matches CNRx register if correlate PWM trigger enable bit (PWMxTEN) is set to 1.				
		Note: Setting INT23TYPE to 1 only works when PWM operating is in center-aligned type.				
[16]	INT01TYPE	PWM01 Interrupt Period Type Selection (PWM0 and PWM1 Pair for PWM Group A, PWM4 and PWM5 Pair for PWM Group B) (M05xxDN/DE Only)				

		0 = PWMIFx will be set if PWM counter underflow. PWM will trigger ADC to conversion when PWM counter underflow if correlate PWM trigger enable bit (PWMxTEN) is set to 1.
		1 = PWMIFx will be set if PWM counter matches CNRx register. PWM will trigger ADC to conversion when PWM counter matches CNRx register if correlate PWM trigger enable bit (PWMxTEN) is set to 1.
		Note: Setting INT01TYPE to 1 only works when PWM operating is in center-aligned type.
[15:12]	Reserved	Reserved.
		PWM Channel 3 Duty Interrupt Enable Control (M05xxDN/DE Only)
[11]	PWMDIE3	0 = PWM channel 3 duty interrupt Disabled.
		1 = PWM channel 3 duty interrupt Enabled.
		PWM Channel 2 Duty Interrupt Enable Control (M05xxDN/DE Only)
[10]	PWMDIE2	0 = PWM channel 2 duty interrupt Disabled.
		1 = PWM channel 2 duty interrupt Enabled.
		PWM Channel 1 Duty Interrupt Enable Control (M05xxDN/DE Only)
[9]	PWMDIE1	0 = PWM channel 1 duty interrupt Disabled.
		1 = PWM channel 1 duty interrupt Enabled.
		PWM Channel 0 Duty Interrupt Enable Control (M05xxDN/DE Only)
[8]	PWMDIE0	0 = PWM channel 0 duty interrupt Disabled.
		1 = PWM channel 0 duty interrupt Enabled.
		PWM Channel 3 Period Interrupt Enable Control
[3]	PWMIE3	0 = PWM channel 3 period interrupt Disabled.
		1 = PWM channel 3 period interrupt Enabled.
		PWM Channel 2 Period Interrupt Enable Control
[2]	PWMIE2	0 = PWM channel 2 period interrupt Disabled.
		1 = PWM channel 2 period interrupt Enabled.
		PWM Channel 1 Period Interrupt Enable Control
[1]	PWMIE1	0 = PWM channel 1 period interrupt Disabled.
		1 = PWM channel 1 period interrupt Enabled.
		PWM Channel 0 Period Interrupt Enable Control
[0]	PWMIE0	PWM Channel 0 Period Interrupt Enable Control 0 = PWM channel 0 period interrupt Disabled.

PWM Interrupt Indication Register (PIIR)

Register	Offset	R/W	Description	Reset Value
PIIR	PWMA_BA+0x44 PWMB_BA+0x44	R/W	PWM Interrupt Indication Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Rese	erved		PWMDIF3	PWMDIF2	PWMDIF1	PWMDIF0		
7	6	5	4	3	2	1	0		
	Reserved				PWMIF2	PWMIF1	PWMIF0		

Bits	Description	
[31:12]	Reserved	Reserved.
[11]	PWMDIF3	PWM Channel 3 Duty Interrupt Status (M05xxDN/DE Only) When INTDTYPE23 = 0, this bit is set by hardware when channel 3 PWM counter equals CMR3 on down-count. When INTDTYPE23 = 1, this bit is set by hardware when channel 3 PWM counter equals CMR3 on up-count. Note: Write 1 to clear this bit to 0.
[10]	PWMDIF2	PWM Channel 2 Duty Interrupt Status (M05xxDN/DE Only) When INTDTYPE23 = 0, this bit is set by hardware when channel 2 PWM counter equals CMR2 on down-count. When INTDTYPE23 = 1, this bit is set by hardware when channel 2 PWM counter equals CMR2 on up-count. Note: Write 1 to clear this bit to 0.
[9]	PWMDIF1	PWM Channel 1 Duty Interrupt Status (M05xxDN/DE Only) When INTDTYPE01 = 0, this bit is set by hardware when channel 1 PWM counter equals CMR1 on down-count. When INTDTYPE01 = 1, this bit is set by hardware when channel 1 PWM counter equals CMR1 on up-count. Note: Write 1 to clear this bit to 0.
[8]	PWMDIF0	PWM Channel 0 Duty Interrupt Status (M05xxDN/DE Only) When INTDTYPE01 = 0, this bit is set by hardware when channel 0 PWM counter equals CMR0 on down-count. When INTDTYPE01 = 1, this bit is set by hardware when channel 0 PWM counter equals CMR0 on up-count. Note: Write 1 to clear this bit to 0.
[7:4]	Reserved	Reserved.
[3]	PWMIF3	PWM Channel 3 Period Interrupt Status

		On M05xxBN:
		This bit is set by hardware when channel 3 PWM counter equal to zero if channel 3 PWM period interrupt enable bit (PWMIE3) is 1. Software can write 1 to clear this bit to 0.
		On M05xxDN/DE:
		When INTTYPE23 = 0, this bit is set by hardware when channel 3 PWM counter equals 0.
		When INTTYPE23 = 1, this bit is set by hardware when channel 3 PWM counter equals CNR3.
		Note: Write 1 to clear this bit to 0.
		PWM Channel 2 Period Interrupt Status
		On M05xxBN:
		This bit is set by hardware when channel 2 PWM counter equal to zero if channel 2 PWM period interrupt enable bit (PWMIE2) is 1. Software can write 1 to clear this bit to 0.
[2]	PWMIF2	On M05xxDN/DE:
		When INTTYPE23 = 0, this bit is set by hardware when channel 2 PWM counter equals 0.
		When INTTYPE23 = 1, this bit is set by hardware when channel 2 PWM counter equals CNR2.
		Note: Write 1 to clear this bit to 0.
		PWM Channel 1 Period Interrupt Status
		On M05xxBN:
		This bit is set by hardware when channel 1 PWM counter equal to zero if channel 1 PWM period interrupt enable bit (PWMIE1) is 1. Software can write 1 to clear this bit to 0.
[1]	PWMIF1	On M05xxDN/DE:
		When INTTYPE01 = 0, this bit is set by hardware when channel 1 PWM counter equals 0.
		When INTTYPE01 = 1, this bit is set by hardware when channel 1 PWM counter equals CNR1.
		Note: Write 1 to clear this bit to 0.
		PWM Channel 0 Period Interrupt Status
		On M05xxBN:
		This bit is set by hardware when channel 0 PWM counter equal to zero if channel 0 PWM period interrupt enable bit (PWMIE0) is 1. Software can write 1 to clear this bit to 0.
[0]	PWMIF0	On M05xxDN/DE:
		When INTTYPE01 = 0, this bit is set by hardware when channel 0 PWM counter equals 0.
		When INTTYPE01 = 1, this bit is set by hardware when channel 0 PWM counter equals CNR0.
		Note: Write 1 to clear this bit to 0.

Capture Control Register (CCR0)

Register	Offset	R/W	Description	Reset Value
CCR0	PWMA_BA+0x50 PWMB_BA+0x50	R/W	PWM Capture Control Register 0	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
CFLRI1	CRLRI1	Reserved	CAPIF1	CAPCH1EN	CFL_IE1	CRL_IE1	INV1		
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
CFLRI0	CRLRI0	Reserved	CAPIF0	CAPCH0EN	CFL_IE0	CRL_IE0	INV0		

Bits	Description			
[31:24]	Reserved	Reserved.		
[23]	CFLRI1	CFLR1 Latched Indicator When PWM group input channel 1 has a falling transition, CFLR1 was latched with the value of PWM down-counter and this bit is set by hardware. Note: Write 1 to clear this bit to 0.		
[22]	CRLRI1	CRLR1 Latched Indicator When PWM group input channel 1 has a rising transition, CRLR1 was latched with the value of PWM down-counter and this bit is set by hardware. Note: Write 1 to clear this bit to 0.		
[21]	Reserved	Reserved.		
[20]	CAPIF1	Channel 1 Capture Interrupt Indication Flag If PWM group channel 1 rising latch interrupt is enabled (CRL_IE1 = 1), a rising transition occurs at PWM group channel 1 will result in CAPIF1 to high; Similarly, a falling transition will cause CAPIF1 to be set high if PWM group channel 1 falling latch interrupt is enabled (CFL_IE1 = 1). Note: Write 1 to clear this bit to 0.		
[19]	CAPCH1EN	Channel 1 Capture Function Enable Control 0 = Capture function on PWM group channel 1 Disabled. 1 = Capture function on PWM group channel 1 Enabled. Note1: When Enabled, Capture latched the PWM-counter and saved to CRLR (Rising latch) and CFLR (Falling latch). Note2: When Disabled, Capture does not update CRLR and CFLR, and disable PWM group channel 1 Interrupt.		
[18]	CFL_IE1	Channel 1 Falling Latch Interrupt Enable Control 0 = Falling latch interrupt Disabled. 1 = Falling latch interrupt Enabled. Note: When Enabled, if Capture detects PWM group channel 1 has falling transition,		

		Capture will issue an Interrupt.			
[17]	CRL_IE1	Channel 1 Rising Latch Interrupt Enable Control 0 = Rising latch interrupt Disabled. 1 = Rising latch interrupt Enabled. Note: When Enabled, if Capture detects PWM group channel 1 has rising transition, Capture will issue an Interrupt.			
[16]	INV1	Capture Channel 1 Inverter Enable Control 0 = Inverter Disabled. 1 = Inverter Enabled. Reverse the input signal from GPIO before fed to Capture timer.			
[15:8]	Reserved	Reserved.			
[7]	CFLRI0	CFLR0 Latched Indicator Control When PWM group input channel 0 has a falling transition, CFLR0 was latched with the value of PWM down-counter and this bit is set by hardware. Note: Write 1 to clear this bit to 0.			
[6]	CRLRI0	CRLR0 Latched Indicator When PWM group input channel 0 has a rising transition, CRLR0 was latched with the value of PWM down-counter and this bit is set by hardware. Note: Write 1 to clear this bit to 0.			
[5]	Reserved	Reserved.			
[4]	CAPIF0	Channel 0 Capture Interrupt Indication Flag If PWM group channel 0 rising latch interrupt is enabled (CRL_IE0 = 1), a rising transition occurs at PWM group channel 0 will result in CAPIF0 to high; Similarly, a falling transition will cause CAPIF0 to be set high if PWM group channel 0 falling latch interrupt is enabled (CFL_IE0 = 1). Note: Write 1 to clear this bit to 0.			
[3]	CAPCH0EN	Channel 0 Capture Function Enable Control 0 = Capture function on PWM group channel 0 Disabled. 1 = Capture function on PWM group channel 0 Enabled. Note1: When Enabled, Capture latches the PWM-counter value and saved to CRLR (Rising latch) and CFLR (Falling latch). Note2: When Disabled, Capture does not update CRLR and CFLR, and disable PWM group channel 0 Interrupt.			
[2]	CFL_IE0	Channel 0 Falling Latch Interrupt Enable Control 0 = Falling latch interrupt Disabled. 1 = Falling latch interrupt Enabled. Note: When Enabled, if Capture detects PWM group channel 0 has falling transition, ar Capture will issue an Interrupt.			
[1]	CRL_IE0	Channel 0 Rising Latch Interrupt Enable Control 0 = Rising latch interrupt Disabled. 1 = Rising latch interrupt Enabled. Note: When Enabled, if Capture detects PWM group channel 0 has rising transition, Capture will issue an Interrupt.			
[0]	INVO	Capture Channel 0 Inverter Enable Control 0 = Inverter Disabled. 1 = Inverter Enabled. Reverse the input signal from GPIO before fed to Capture timer.			

Capture Control Register (CCR2)

Register	Offset	R/W	Description	Reset Value
CCR2	PWMA_BA+0x54 PWMB_BA+0x54	R/W	PWM Capture Control Register 2	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
CFLRI3	CRLRI3	Reserved	CAPIF3	CAPCH3EN	CFL_IE3	CRL_IE3	INV3			
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
CFLRI2	CRLRI2	Reserved	CAPIF2	CAPCH2EN	CFL_IE2	CRL_IE2	INV2			

Bits	Description						
[31:24]	Reserved	Reserved.					
[23]	CFLRI3	CFLR3 Latched Indicator When PWM group input channel 3 has a falling transition, CFLR3 was latched with the value of PWM down-counter and this bit is set by hardware. Note: Write 1 to clear this bit to 0.					
[22]	CRLRI3	CRLR3 Latched Indicator When PWM group input channel 3 has a rising transition, CRLR3 was latched with the value of PWM down-counter and this bit is set by hardware. Note: Write 1 to clear this bit to 0.					
[21]	Reserved	Reserved.					
[20] CAPIF3		Channel 3 Capture Interrupt Indication Flag If PWM group channel 3 rising latch interrupt is enabled (CRL_IE3=1), a rising transition occurs at PWM group channel 3 will result in CAPIF3 to high; Similarly, a falling transition will cause CAPIF3 to be set high if PWM group channel 3 falling latch interrupt is enabled (CFL_IE3=1). Note: Write 1 to clear this bit to 0.					
[19]	CAPCH3EN	Channel 3 Capture Function Enable Control 0 = Capture function on PWM group channel 3 Disabled. 1 = Capture function on PWM group channel 3 Enabled. Note1: When Enabled, Capture latched the PWM-counter and saved to CRLR (Rising latch) and CFLR (Falling latch). Note2: When Disabled, Capture does not update CRLR and CFLR, and disable PWM group channel 3 Interrupt.					
[18]	CFL_IE3	Channel 3 Falling Latch Interrupt Enable Control 0 = Falling latch interrupt Disabled. 1 = Falling latch interrupt Enabled.					

nuvoTon

		Note: When Enabled, if Capture detects PWM group channel 3 has falling transition, Capture will issue an Interrupt.
[17]	CRL_IE3	Channel 3 Rising Latch Interrupt Enable Control 0 = Rising latch interrupt Disabled. 1 = Rising latch interrupt Enabled. Note: When Enabled, if Capture detects PWM group channel 3 has rising transition, Capture will issue an Interrupt.
[16]	INV3	Capture Channel 3 Inverter Enable Control 0 = Inverter Disabled. 1 = Inverter Enabled. Reverse the input signal from GPIO before fed to Capture timer.
[15:8]	Reserved	Reserved.
[7]	CFLRI2	CFLR2 Latched Indicator When PWM group input channel 2 has a falling transition, CFLR2 was latched with the value of PWM down-counter and this bit is set by hardware. Note: Write 1 to clear this bit to 0.
[6]	CRLRI2	CRLR2 Latched Indicator When PWM group input channel 2 has a rising transition, CRLR2 was latched with the value of PWM down-counter and this bit is set by hardware. Note: Write 1 to clear this bit to 0.
[5]	Reserved	Reserved.
[4]	CAPIF2	Channel 2 Capture Interrupt Indication Flag If PWM group channel 2 rising latch interrupt is enabled (CRL_IE2=1), a rising transition occurs at PWM group channel 2 will result in CAPIF2 to high; Similarly, a falling transition will cause CAPIF2 to be set high if PWM group channel 2 falling latch interrupt is enabled (CFL_IE2=1). Note: Write 1 to clear this bit to 0.
[3]	CAPCH2EN	Channel 2 Capture Function Enable Control 0 = Capture function on PWM group channel 2 Disabled. 1 = Capture function on PWM group channel 2 Enabled. Note1: When Enabled, Capture latched the PWM-counter value and saved to CRLR (Rising latch) and CFLR (Falling latch). Note2: When Disabled, Capture does not update CRLR and CFLR, and disable PWM group channel 2 Interrupt.
[2]	CFL_IE2	Channel 2 Falling Latch Interrupt Enable Control 0 = Falling latch interrupt Disabled. 1 = Falling latch interrupt Enabled. Note: When Enabled, if Capture detects PWM group channel 2 has falling transition, Capture will issue an Interrupt.
[1]	CRL_IE2	Channel 2 Rising Latch Interrupt Enable Control 0 = Rising latch interrupt Disabled. 1 = Rising latch interrupt Enabled. Note: When Enabled, if Capture detects PWM group channel 2 has rising transition, Capture will issue an Interrupt.
[0]	INV2	Capture Channel 2 Inverter Enable Control 0 = Inverter Disabled. 1 = Inverter Enabled. Reverse the input signal from GPIO before fed to Capture timer.

Capture Rising Latch Register3-0 (CRLR3-0)

Register	Offset	R/W	Description	Reset Value
CRLR0	PWMA_BA+0x58 PWMB_BA+0x58	R	PWM Capture Rising Latch Register (Channel 0)	0x0000_0000
CRLR1	PWMA_BA+0x60 PWMB_BA+0x60	R	PWM Capture Rising Latch Register (Channel 1)	0x0000_0000
CRLR2	PWMA_BA+0x68 PWMB_BA+0x68	R	PWM Capture Rising Latch Register (Channel 2)	0x0000_0000
CRLR3	PWMA_BA+0x70 PWMB_BA+0x70	R	PWM Capture Rising Latch Register (Channel 3)	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
CRLRx									
7	6	5	4	3	2	1	0		
	CRLRx								

Bits	Description					
[31:16]	Reserved	Reserved Reserved.				
[15:0]	CRLRx	Capture Rising Latch Register Latch the PWM counter value when Channel 0/1/2/3 has rising transition.				

Capture Falling Latch Register3-0 (CFLR3-0)

nuvoTon

Register	Offset	R/W	Description	Reset Value
CFLR0	PWMA_BA+0x5C PWMB_BA+0x5C	R	PWM Capture Falling Latch Register (Channel 0)	0x0000_0000
CFLR1	PWMA_BA+0x64 PWMB_BA+0x64	R	PWM Capture Falling Latch Register (Channel 1)	0x0000_0000
CFLR2	PWMA_BA+0x6C PWMB_BA+0x6C	R	PWM Capture Falling Latch Register (Channel 2)	0x0000_0000
CFLR3	PWMA_BA+0x74 PWMB_BA+0x74	R	PWM Capture Falling Latch Register (Channel 3)	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
CFLRx										
7	6	5	4	3	2	1	0			
	CFLRx									

Bits	Description	escription					
[31:16]	Reserved	Reserved.					
[15:0]	CFLRx	Capture Falling Latch Register Latch the PWM counter value when Channel 0/1/2/3 has Falling transition.					

Capture Input Enable Register (CAPENR)

Register	Offset	R/W	Description	Reset Value
CAPENR	PWMA_BA+0x78 PWMB_BA+0x78	R/W	PWM Capture Input 0~3 Enable Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
Reserved										
7	6	5	4	3	2	1	0			
Reserved				CAPENR						

Bits	Description	
[31:4]	Reserved	Reserved.
		Capture Input Enable Register
		0 = Capture input Disabled. (PWMx multi-function pin input does not affect input capture function.)
		1 = Capture input Enabled. (PWMx multi-function pin input will affect its input capture function.)
		CAPENR
		Bit 3210 for PWM group A
		Bit xxx1 → Capture channel 0 enabled. Capture input channel can be from P2.0 or P4.0. User can only select one of pins by setting multi-function pin register.
		Bit xx1x → Capture channel 1 enabled. Capture input channel can be from P2.1 or P4.1. User can only select one of pins by setting multi-function pin register.
[3:0]	CAPENR	Bit x1xx → Capture channel 2 enabled. Capture input channel can be from P2.2 or P4.2. User can only select one of pins by setting multi-function pin register.
		Bit 1xxx → Capture channel 3 enabled. Capture input channel can be from P2.3 or P4.3. User can only select one of pins by setting multi-function pin register.
		Bit 3210 for PWM group B
		Bit xxx1 → Capture channel 0 enabled. Capture input channel can be from P2.4 by setting multi-function pin register.
		Bit xx1x → Capture channel 1 enabled. Capture input channel can be from P2.5 by setting multi-function pin register.
		Bit x1xx → Capture channel 2 enabled. Capture input channel can be from P2.6 by setting multi-function pin register.
		Bit 1xxx → Capture channel 3 enabled. Capture input channel can be from P2.7 by setting multi-function pin register.

PWM Output Enable Register (POE)

Register	Offset	R/W	Description	Reset Value
POE	PWMA_BA+0x7C PWMB_BA+0x7C	R/W	PWM Output Enable Register for Channel 0~3	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved			PWM3	PWM2	PWM1	PWM0		

Bits	Description	
[31:4]	Reserved	Reserved.
[3]	PWM3	Channel 3 Output Enable Register 0 = PWM channel 3 output to pin Disabled. 1 = PWM channel 3 output to pin Enabled. Note: The corresponding GPIO pin must also be switched to PWM function.
[2]	PWM2	Channel 2 Output Enable Register 0 = PWM channel 2 output to pin Disabled. 1 = PWM channel 2 output to pin Enabled. Note: The corresponding GPIO pin must also be switched to PWM function.
[1]	PWM1	Channel 1 Output Enable Register 0 = PWM channel 1 output to pin Disabled. 1 = PWM channel 1 output to pin Enabled. Note: The corresponding GPIO pin must also be switched to PWM function.
[0]	PWM0	Channel 0 Output Enable Register 0 = PWM channel 0 output to pin Disabled. 1 = PWM channel 0 output to pin Enabled. Note: The corresponding GPIO pin must also be switched to PWM function.

PWM Trigger Control Register (TCON)

Register	Offset	R/W	Description	Reset Value
TCON	PWMA_BA+0x80 PWMB_BA+0x80	R/W	PWM Trigger Control Register for Channel 0~3 (M05xxDN/DE Only)	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved				PWM2DTEN	PWM1DTEN	PWM0DTEN		
7 6 5 4				3	2	1	0		
	Reserved				PWM2TEN	PWM1TEN	PWM0TEN		

Bits	Description	Description					
[31:12]	Reserved	Reserved.					
		Channel 3 PWM Duty Trigger ADC Enable Control (M05xxDN/DE Only)					
		0 = PWM channel 3 duty trigger ADC function Disabled.					
		1 = PWM channel 3 duty trigger ADC function Enabled.					
[11]	PWM3DTEN	As PWM operating at edge-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 3 counter down count to match CMR3.					
		As PWM operating at center-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 3 counter up count or down count to match CMR3 based on INT23DTYPE setting.					
		Channel 2 PWM Duty Trigger ADC Enable Control (M05xxDN/DE Only)					
		0 = PWM channel 2 duty trigger ADC function Disabled.					
		1 = PWM channel 2 duty trigger ADC function Enabled.					
[10]	PWM2DTEN	As PWM operating at edge-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 2 counter down count to match CMR2.					
		As PWM operating at center-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 2 counter up count or down count to match CMR2 based on INT23DTYPE setting.					
		Channel 1 PWM Duty Trigger ADC Enable Control (M05xxDN/DE Only)					
		0 = PWM channel 1 duty trigger ADC function Disabled.					
		1 = PWM channel 1 duty trigger ADC function Enabled.					
[9]	PWM1DTEN	As PWM operating at edge-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 1 counter down count to match CMR1.					
		As PWM operating at center-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 1 counter up count or down count to match CMR1 based on INT01DTYPE setting.					
_		Channel 0 PWM Duty Trigger ADC Enable Control (M05xxDN/DE Only)					
[8]	PWM0DTEN	0 = PWM channel 0 duty trigger ADC function Disabled.					
		1 = PWM channel 0 duty trigger ADC function Enabled.					

nuvoTon

		As PWM operating at edge-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 0 counter down count to match CMR0.
		As PWM operating at center-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 0 counter up count or down count to match CMR0 based on INT01DTYPE setting.
[7:4]	Reserved	Reserved.
		Channel 3 PWM Period Trigger ADC Enable Control (M05xxDN/DE Only)
		0 = PWM channel 3 period trigger ADC function Disabled.
		1 = PWM channel 3 period trigger ADC function Enabled.
[3]	PWM3TEN	As PWM operating at edge-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 3 counter down count to underflow.
		As PWM operating at center-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 3 counter up count to (CNR3 + 1) or down count to underflow based on INT23PTYPE setting.
		Channel 2 PWM Period Trigger ADC Enable Control (M05xxDN/DE Only)
		0 = PWM channel 2 period trigger ADC function Disabled.
		1 = PWM channel 2 period trigger ADC function Enabled.
[2]	PWM2TEN	As PWM operating at edge-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 2 counter down count to underflow.
		As PWM operating at center-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 2 counter up count to (CNR2 + 1) or down count to underflow based on INT23PTYPE setting.
		Channel 1 PWM Period Trigger ADC Enable Control (M05xxDN/DE Only)
		0 = PWM channel 1 period trigger ADC function Disabled.
		1 = PWM channel 1 period trigger ADC function Enabled.
[1]	PWM1TEN	As PWM operating at edge-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 1 counter down count to underflow.
		As PWM operating at center-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 1 counter up count to (CNR1 + 1) or down count to underflow based on INT01PTYPE setting.
		Channel 0 PWM Period Trigger ADC Enable Control (M05xxDN/DE Only)
		0 = PWM channel 0 period trigger ADC function Disabled.
		1 = PWM channel 0 period trigger ADC function Enabled.
[0]	PWM0TEN	As PWM operating at edge-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 0 counter down count to underflow.
		As PWM operating at center-aligned type, enable this bit can make PWM trigger ADC to start conversion when PWM channel 0 counter up count to (CNR0 + 1) or down count to underflow based on INT01PTYPE setting.

PWM Trigger Status Register (TSTATUS)

Register	Offset	R/W	Description	Reset Value
TSTATUS	PWMA_BA+0x84 PWMB_BA+0x84	R/W	PWM Trigger Status Register (M05xxDN/DE Only)	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved			PWM3TF	PWM2TF	PWM1TF	PWM0TF		

Bits	Description	
[31:4]	Reserved	Reserved.
[3]	PWM3TF	Channel 3 PWM Trigger ADC Flag (M05xxDN/DE Only) This bit is set to 1 by hardware when PWM channel 3 trigger ADC condition matched. ADC will start conversion if ADC triggered source is selected by PWM while this bit is set to 1. Note: Write 1 to clear this bit to 0.
[2]	PWM2TF	Channel 2 PWM Trigger ADC Flag (M05xxDN/DE Only) This bit is set to 1 by hardware when PWM channel 2 trigger ADC condition matched. ADC will start conversion if ADC triggered source is selected by PWM while this bit is set to 1. Note: Write 1 to clear this bit to 0.
[1]	PWM1TF	Channel 1 PWM Trigger ADC Flag (M05xxDN/DE Only) This bit is set to 1 by hardware when PWM channel 1 trigger ADC condition matched. ADC will start conversion if ADC triggered source is selected by PWM while this bit is set to 1. Note: Write 1 to clear this bit to 0.
[0]	PWM0TF	Channel 0 PWM Trigger ADC Flag (M05xxDN/DE Only) This bit is set to 1 by hardware when PWM channel 0 trigger ADC condition matched. ADC will start conversion if ADC triggered source is selected by PWM while this bit is set to 1. Note: Write 1 to clear this bit to 0.

PWM Synchronous Control Register (PSCR)

Register	Offset	R/W	Description	Reset Value
PSCR	PWMA_BA+0x98 PWMB_BA+0x98	R/W	PWM Synchronous Control Register (M05xxDN/DE Only)	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						PSSEN3
23	23 22 21 20 19 18 17						16
			Reserved				PSSEN2
15	15 14 13 12 11 10 9						
			Reserved				PSSEN1
7	7 6 5 4 3 2 1						0
Reserved						PSSEN0	

Bits	Description		
[31:25]	Reserved	Reserved.	
[24]	PSSEN3	Channel 3 PWM-timer Synchronous Start Enable Control (M05xxDN/DE Only) 0 = Channel 3 PWM-Timer Synchronous Start Disabled. 1 = Channel 3 PWM-Timer Synchronous Start Enabled. If this bit is set to 1, the PWM-Timer channel 3 of specified PWM group will synchronously start with PWM-Timer channel 0 of PWM group A when SW writes 1 to CH0EN(PCR[0]) in PWM group A.	
[23:17]	Reserved	Reserved.	
[16]	PSSEN2	Channel 2 PWM-timer Synchronous Start Enable Control (M05xxDN/DE Only) 0 = Channel 2 PWM-Timer Synchronous Start Disabled. 1 = Channel 2 PWM-Timer Synchronous Start Enabled. If this bit is set to 1, the PWM-Timer channel 2 of specified PWM group will synchronously start with PWM-Timer channel 0 of PWM group A when SW writes 1 to CH0EN(PCR[0]) in PWM group A.	
[15:9]	Reserved	Reserved.	
[8]	PSSEN1	Channel 1 PWM-timer Synchronous Start Enable Control (M05xxDN/DE Only) 0 = Channel 1 PWM-Timer Synchronous Start Disabled. 1 = Channel 1 PWM-Timer Synchronous Start Enabled. If this bit is set to 1, the PWM-Timer channel 1 of specified PWM group will synchronously start with PWM-Timer channel 0 of PWM group A when SW writes 1 to CH0EN(PCR[0]) in PWM group A.	
[7:1]	Reserved	Reserved.	
[0]	PSSEN0	Channel 0 PWM-timer Synchronous Start Enable Control (M05xxDN/DE Only) 0 = Channel 0 PWM-Timer Synchronous Start Disabled. 1 = Channel 0 PWM-Timer Synchronous Start Enabled. If this bit is set to 1, the PWM-Timer channel 0 of specified PWM group will	

ACST BOVEN/CH SHATES THEFTALESAL AFFEATION MANUAL

synchronously start with PWM-Timer channel 0 of PWM group A when SW writes 1 to CH0EN(PCR[0]) in PWM group A.

6.9 Watchdog Timer (WDT)

6.9.1 Overview

The purpose of Watchdog Timer is to perform a system reset when system runs into an unknown state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog Timer supports the function to wake-up system from Idle/Power-down mode.

6.9.2 Features

- 18-bit free running up counter for Watchdog Timer time-out interval
- Selectable time-out interval (2⁴ ~ 2¹⁸) WDT_CLK cycle and the time-out interval period is 104 ms ~ 26.3168 s if WDT_CLK = 10 kHz
- System kept in reset state for a period of (1 / WDT_CLK) * 63
- Supports Watchdog Timer reset delay period
 - ◆ Fixed 1024 * WDT_CLK reset delay period on M05xxBN
 - Selectable reset delay period 3/18/130/1026 * WDT_CLK on M05xxDN/DE
- Supports to force Watchdog Timer enabled after chip powered on or reset while CWDTEN (CONFIG[31] Watchdog Enable) bit is set to 0. (M05xxDN/DE Only)
- Supports Watchdog Timer time-out wake-up function only if WDT clock source is selected as 10 kHz

6.9.3 Block Diagram

The Watchdog Timer clock control and block diagram are shown as follows.

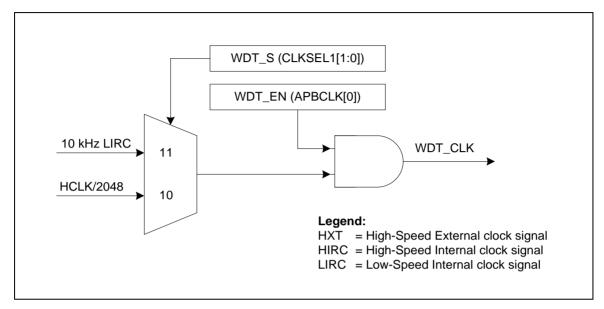


Figure 6-54 Watchdog Timer Clock Control

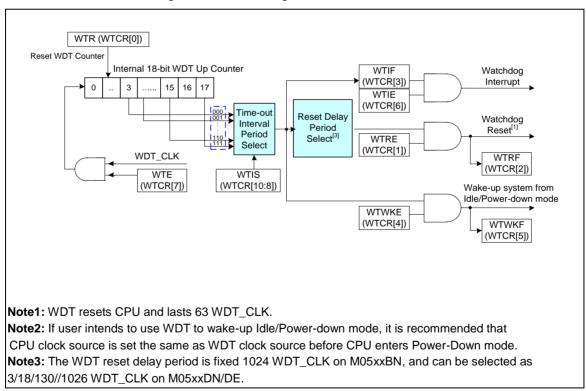


Figure 6-55 Watchdog Timer Block Diagram

6.9.4 Basic Configuration

The WDT peripheral clock is enabled in APBCLK[0] and clock source can be selected in CLKSEL1[1:0].

M051 BN/DN/DE SERIES TECHNICAL REFERENCE MANUA

Or user can setting CONFIG[31] 0 to force Watchdog Timer enabled and active in 10 kHz after chip powered on or reset on M05xxDN/DE.

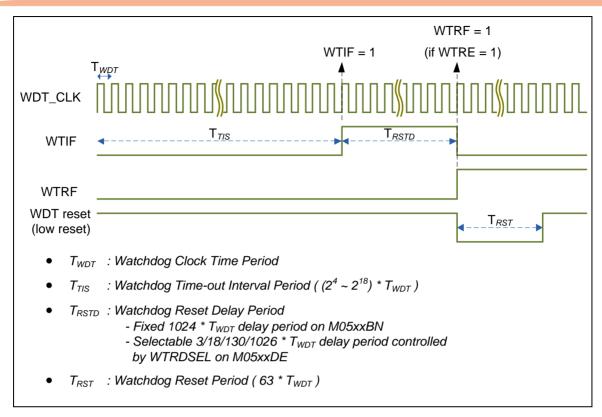
6.9.5 Functional Description

The Watchdog Timer (WDT) includes an 18-bit free running up counter with programmable timeout intervals. Table 6-21 shows the WDT time-out interval period selection and Figure 6-56 shows the WDT time-out interval and reset period timing.

WDT Time-out Interrupt

Setting WTE bit to 1 will enable the WDT function and the WDT counter to start counting up. There are eight time-out interval period can be selected by setting WTIS. When the WDT up counter reaches the WTIS settings, WDT time-out interrupt will occur then WTIF flag will be set to 1 immediately.

WDT Reset Delay Period and Reset System


There is a specified T_{RSTD} delay period follows the WTIF flag is setting to 1. User should set WTR bit to reset the 18-bit WDT up counter value to avoid generate WDT time-out reset signal before the T_{RSTD} delay period expires. If the WDT up counter value has not been cleared after the specific T_{RSTD} delay period expires, the WDT control will set WTRF flag to 1 if WTRE bit is enabled, then chip enters to reset state immediately. Refer to Figure 6-56, the T_{RST} reset period will keep last 63 WDT clocks then chip restart executing program from reset vector (0x0000_0000). The WTRF flag will keep 1 after WDT time-out reset the chip, user can check WTRF flag by software to recognize the system has been reset by WDT time-out reset or not.

WDT Wake-up

If WDT clock source is selected to 10 kHz, system can be waken-up from Power-down mode while WDT time-out interrupt signal is generated and WTWKE bit enabled. In the meanwhile, the WTWKF flag will set to 1 automatically, user can check WTWKF flag by software to recognize the system has been waken-up by WDT time-out interrupt or not.

WTIS	Time-Out Interval Period T _{TIS}	Reset Delay Period (M05xxBN) T _{RSTD}	Reset Delay Period (M05xxDN/DE) T _{RSTD}
000	2 ⁴ * T _{WDT}	1024 * T _{WDT}	(3/18/130/1026) * T _{WDT}
001	2 ⁶ * T _{WDT}	1024 * T _{WDT}	(3/18/130/1026) * T _{WDT}
010	2 ⁸ * T _{WDT}	1024 * T _{WDT}	(3/18/130/1026) * T _{WDT}
011	2 ¹⁰ * T _{WDT}	1024 * T _{WDT}	(3/18/130/1026) * T _{WDT}
100	2 ¹² * T _{WDT}	1024 * T _{WDT}	(3/18/130/1026) * T _{WDT}
101	2 ¹⁴ * T _{WDT}	1024 * T _{WDT}	(3/18/130/1026) * T _{WDT}
110	2 ¹⁶ * T _{WDT}	1024 * T _{WDT}	(3/18/130/1026) * T _{WDT}
111	2 ¹⁸ * T _{WDT}	1024 * T _{WDT}	(3/18/130/1026) * T _{WDT}

Table 6-11 Watchdog Timer Time-out Interval Period Selection

nuvoTon

Figure 6-56 Watchdog Timer Time-out Interval and Reset Period Timing

6.9.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value	
WDT Base Address: WDT_BA = 0x4000_4000					
WTCR	WDT_BA+0x00	R/W	Watchdog Timer Control Register	0x0000_0700	
WTCRALT	WDT_BA+0x04	R/W	Watchdog Timer Alternative Control Register (M05xxDN/DE Only)	0x0000_0000	

6.9.7 Register Description

Watchdog Timer Control Register (WTCR)

Register	Offset	R/W	Description	Reset Value
WTCR	WDT_BA+0x00	R/W	Watchdog Timer Control Register	0x0000_0700

31	30	29	28	27	26	25	24
DBGACK_WDT				Reserved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
		Reserved				WTIS	
7	6	5	4	3	2	1	0
WTE	WTIE	WTWKF	WTWKE	WTIF	WTRF	WTRE	WTR

Bits	Description	
[31]	DBGACK_WDT	ICE Debug Mode Acknowledge Disable Control (Write Protect) 0 = ICE debug mode acknowledgement effects WDT counting. WDT up counter will be held while CPU is held by ICE. 1 = ICE debug mode acknowledgement Disabled. WDT up counter will keep going no matter CPU is held by ICE or not.
[30:11]	Reserved	Reserved.
[10:8]	WTIS	Watchdog Timer Time-out Interval Selection (Write Protect) These three bits select the time-out interval period for the WDT. $000 = 2^4 * T_{WDT}$. $001 = 2^6 * T_{WDT}$. $010 = 2^8 * T_{WDT}$. $011 = 2^{10} * T_{WDT}$. $100 = 2^{12} * T_{WDT}$. $101 = 2^{14} * T_{WDT}$. $110 = 2^{16} * T_{WDT}$. $111 = 2^{18} * T_{WDT}$.
[7]	WTE	Watchdog Timer Enable Control (Write Protect) 0 = WDT Disabled. (This action will reset the internal up counter value.) 1 = WDT Enabled.
[6]	WTIE	Watchdog Timer Time-out Interrupt Enable Control (Write Protect) If this bit is enabled, the WDT time-out interrupt signal is generated and inform to CPU. 0 = WDT time-out interrupt Disabled. 1 = WDT time-out interrupt Enabled.
[5]	WTWKF	Watchdog Timer Time-out Wake-up Flag

nuvoTon

	I	This bit indicates the interrupt wake-up flag status of WDT.
		0 = WDT does not cause chip wake-up.
		· · · ·
		1 = Chip wake-up from Idle or Power-down mode if WDT time-out interrupt signal generated.
		Note: This bit is cleared by writing 1 to it.
		Watchdog Timer Time-out Wake-up Function Control (Write Protect)
		If this bit is set to 1, while WTIF is generated to 1 and WTIE enabled, the WDT time- out interrupt signal will generate a wake-up trigger event to chip.
[4]	WTWKE	0 = Wake-up trigger event Disabled if WDT time-out interrupt signal generated.
		1 = Wake-up trigger event Enabled if WDT time-out interrupt signal generated.
		Note: Chip can be woken-up by WDT time-out interrupt signal generated only if WDT clock source is selected to 10 kHz oscillator.
		Watchdog Timer Time-out Interrupt Flag
		This bit will set to 1 while WDT up counter value reaches the selected WDT time-out interval.
[3]	3] WTIF	0 = WDT time-out interrupt did not occur.
		1 = WDT time-out interrupt occurred.
		Note: This bit is cleared by writing 1 to it.
		Watchdog Timer Time-out Reset Flag
		Watchdog Timer Time-out Reset Flag This bit indicates the system has been reset by WDT time-out reset or not.
[2]	WTRF	
[2]	WTRF	This bit indicates the system has been reset by WDT time-out reset or not.
[2]	WTRF	This bit indicates the system has been reset by WDT time-out reset or not. 0 = WDT time-out reset did not occur.
[2]	WTRF	This bit indicates the system has been reset by WDT time-out reset or not. 0 = WDT time-out reset did not occur. 1 = WDT time-out reset occurred.
[2]	WTRF	This bit indicates the system has been reset by WDT time-out reset or not. 0 = WDT time-out reset did not occur. 1 = WDT time-out reset occurred. Note: This bit is cleared by writing 1 to it.
	WTRF	This bit indicates the system has been reset by WDT time-out reset or not. 0 = WDT time-out reset did not occur. 1 = WDT time-out reset occurred. Note: This bit is cleared by writing 1 to it. Watchdog Timer Time-out Reset Enable Control (Write Protect) Setting this bit will enable the WDT time-out reset function If the WDT up counter
[1]		This bit indicates the system has been reset by WDT time-out reset or not. 0 = WDT time-out reset did not occur. 1 = WDT time-out reset occurred. Note: This bit is cleared by writing 1 to it. Watchdog Timer Time-out Reset Enable Control (Write Protect) Setting this bit will enable the WDT time-out reset function If the WDT up counter value has not been cleared after the specific WDT reset delay period expires.
		This bit indicates the system has been reset by WDT time-out reset or not. 0 = WDT time-out reset did not occur. 1 = WDT time-out reset occurred. Note: This bit is cleared by writing 1 to it. Watchdog Timer Time-out Reset Enable Control (Write Protect) Setting this bit will enable the WDT time-out reset function If the WDT up counter value has not been cleared after the specific WDT reset delay period expires. 0 = WDT time-out reset function Disabled. 1 = WDT time-out reset function Enabled.
		This bit indicates the system has been reset by WDT time-out reset or not. 0 = WDT time-out reset did not occur. 1 = WDT time-out reset occurred. Note: This bit is cleared by writing 1 to it. Watchdog Timer Time-out Reset Enable Control (Write Protect) Setting this bit will enable the WDT time-out reset function If the WDT up counter value has not been cleared after the specific WDT reset delay period expires. 0 = WDT time-out reset function Disabled.
		This bit indicates the system has been reset by WDT time-out reset or not. 0 = WDT time-out reset did not occur. 1 = WDT time-out reset occurred. Note: This bit is cleared by writing 1 to it. Watchdog Timer Time-out Reset Enable Control (Write Protect) Setting this bit will enable the WDT time-out reset function If the WDT up counter value has not been cleared after the specific WDT reset delay period expires. 0 = WDT time-out reset function Disabled. 1 = WDT time-out reset function Enabled. Note: Fixed 1024 * T _{WDT} delay period on M05xxBN.
[1]	WTRE	This bit indicates the system has been reset by WDT time-out reset or not. 0 = WDT time-out reset did not occur. 1 = WDT time-out reset occurred. Note: This bit is cleared by writing 1 to it. Watchdog Timer Time-out Reset Enable Control (Write Protect) Setting this bit will enable the WDT time-out reset function If the WDT up counter value has not been cleared after the specific WDT reset delay period expires. 0 = WDT time-out reset function Disabled. 1 = WDT time-out reset function Enabled. Note: Fixed 1024 * T _{WDT} delay period on M05xxBN. Selectable 3/18/130/1026 * T _{WDT} delay period controlled by WTRDSEL on M05xxDE.
		This bit indicates the system has been reset by WDT time-out reset or not. 0 = WDT time-out reset did not occur. 1 = WDT time-out reset occurred. Note: This bit is cleared by writing 1 to it. Watchdog Timer Time-out Reset Enable Control (Write Protect) Setting this bit will enable the WDT time-out reset function If the WDT up counter value has not been cleared after the specific WDT reset delay period expires. 0 = WDT time-out reset function Disabled. 1 = WDT time-out reset function Enabled. Note: Fixed 1024 * T _{WDT} delay period on M05xxBN. Selectable 3/18/130/1026 * T _{WDT} delay period controlled by WTRDSEL on M05xxDE. Reset Watchdog Timer Up Counter (Write Protect)
[1]	WTRE	This bit indicates the system has been reset by WDT time-out reset or not. 0 = WDT time-out reset did not occur. 1 = WDT time-out reset occurred. Note: This bit is cleared by writing 1 to it. Watchdog Timer Time-out Reset Enable Control (Write Protect) Setting this bit will enable the WDT time-out reset function If the WDT up counter value has not been cleared after the specific WDT reset delay period expires. 0 = WDT time-out reset function Disabled. 1 = WDT time-out reset function Enabled. Note: Fixed 1024 * T _{WDT} delay period on M05xxBN. Selectable 3/18/130/1026 * T _{WDT} delay period controlled by WTRDSEL on M05xxDE. Reset Watchdog Timer Up Counter (Write Protect) 0 = No effect.

Watchdog Timer Alternative Control Register (WTCRALT)

Register	Offset	R/W	Description	Reset Value
WTCRALT	WDT_BA+0x04	R/W	Watchdog Timer Alternative Control Register (M05xxDN/DE Only)	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved					WTR	DSEL	

Bits	Description			
[31:2]	Reserved	Reserved.		
		Watchdog Timer Reset Delay Selection (Write Protect)		
		When WDT time-out happened, software has a time named WDT Reset Delay Period to clear WDT counter to prevent WDT time-out reset happened. Software can select a suitable value of WDT Reset Delay Period for different WDT time-out period.		
[1:0]	WTRDSEL	00 = Watchdog Timer Reset Delay Period is 1026 * WDT_CLK.		
[]		01 = Watchdog Timer Reset Delay Period is 130* WDT_CLK.		
		10 = Watchdog Timer Reset Delay Period is 18 * WDT_CLK.		
		11 = Watchdog Timer Reset Delay Period is 3 * WDT_CLK.		
		Note: This register will be reset to 0 if WDT time-out reset happened.		

6.10 Window Watchdog Timer (WWDT) (M05xxDN/DE Only)

6.10.1 Overview

The Window Watchdog Timer is used to perform a system reset within a specified window period to prevent software run to uncontrollable status by any unpredictable condition.

6.10.2 Features

- 6-bit down counter value (WWDTCVAL) and 6-bit compare window value (WINCMP) to make the WWDT time-out window period flexible
- Supports 4-bit value to programmable maximum 11-bit prescale counter period of WWDT counter

6.10.3 Block Diagram

The Window Watchdog Timer clock control and block diagram are shown as follows.

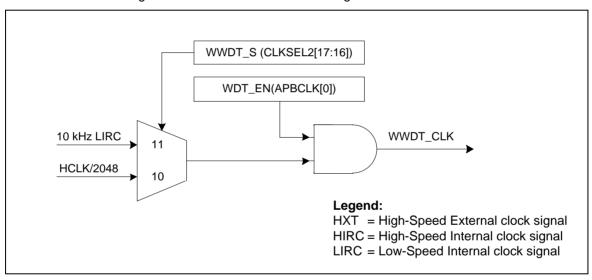


Figure 6-57 Window Watchdog Timer Clock Control

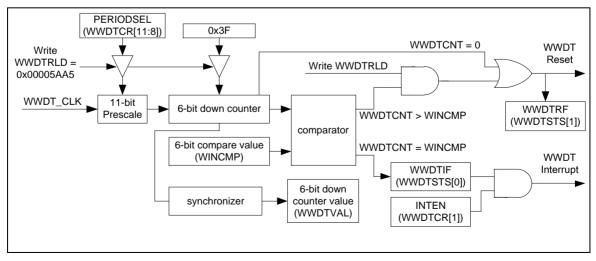


Figure 6-58 Window Watchdog Timer Block Diagram

6.10.4 Basic Configuration

The WWDT peripheral clock is enabled in APBCLK[0] and clock source can be selected in CLKSEL2[17:16].

6.10.5 Functional Description

The Window Watchdog Timer (WWDT) includes a 6-bit down counter with programmable prescale value to define different WWDT time-out intervals. The clock source of 6-bit WWDT is based on system clock divide 2048 (HCLK/2048) or internal 10 kHz oscillator with a programmable 11-bit prescale counter value which controlled by PERIODSEL setting. Also, the correlate of PERIODSEL and prescale value are listed in the following table.

PERIODSEL	Prescale Value	Max. Time-Out Period	Max. Time-Out Interval (WWDT_CLK=10 KHz)
0000	1	1 * 64 * T _{WWDT}	6.4 ms
0001	2	2 * 64 * T _{WWDT}	12.8 ms
0010	4	4 * 64 * T _{WWDT}	25.6 ms
0011	8	8 * 64 * T _{WWDT}	51.2 ms
0100	16	16 * 64 * T _{WWDT}	102.4 ms
0101	32	32 * 64 * T _{WWDT}	204.8 ms
0110	64	64 * 64 * T _{WWDT}	409.6 ms
0111	128	128 * 64 * T _{WWDT}	819.2 ms
1000	192	192 * 64 * T _{WWDT}	1.2288 s
1001	256	256 * 64 * T _{WWDT}	1.6384 s
1010	384	384 * 64 * T _{WWDT}	2.4576 s
1011	512	512 * 64 * T _{WWDT}	3.2768 s
1100	768	768 * 64 * T _{WWDT}	4.9152 s
1101	1024	1024 * 64 * T _{WWDT}	6.5536 s
1110	1536	1536 * 64 * T _{WWDT}	9.8304 s
1111	2048	2048 * 64 * T _{WWDT}	13.1072 s

Table 6-12 Window Watchdog Timer Prescale Value Selection

WWDT Counting

When the WWDTEN bit is set, WWDT down counter will start counting from 0x3F to 0. To prevent program runs to disable WWDT counter counting unexpected, the WWDT control register WWDTCR can only be written once after chip is powered on or reset. User cannot disable WWDT counter counting (WWDTEN), change counter prescale period (PERIODSEL) or change window compare value (WINCMP) while WWDTEN bit has been enabled by software unless chip is reset.

WWDT Compare Match Interrupt

During down counting by the WWDT counter, the WWDTIF is set to 1 while the WWDT counter value (WWDTCVAL) is equal to WINCMP value and WWDTIF can be cleared by software; if WWDTIE is also set to 1 by software, the WWDT compare match interrupt signal is generated also while WWDTIF is set to 1 by hardware.

WWDT Reset System

When WWDTIF is generated, user must reload WWDT internal counter value to 0x3F by writing 0x00005AA5 to WWDTRLD, and also to prevent WWDT counter value reached to 0 and generate WWDT reset system signal to info system reset. If current WWDTCVAL value is larger than WINCMP value and user writes 0x00005AA5 to the WWDTRLD register, the WWDT reset system signal will be generated immediately to cause chip reset also.

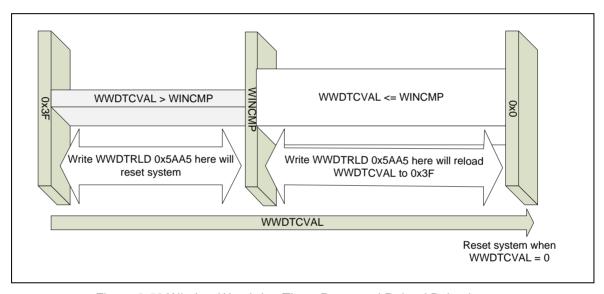


Figure 6-59 Window Watchdog Timer Reset and Reload Behavior

WWDT Window Setting Limitation

When user writes 0x00005AA5 to WWDTRLD to reload WWDT counter value to 0x3F, it needs 3 WWDT clocks to sync the reload command to actually perform reload action. This means if user set PERIODSEL to 0000, the counter prescale value should be as 1, and the WINCMP value must be larger than 2; otherwise, writing WWDTRLD to reload WWDT counter value to 0x3F is unavailable while WWDTIF is generated and WWDT reset system event always happened.

PERIODSEL	Prescale Value	Valid WINCMP Value
0000	1	0x3 ~ 0x3F
0001	2	0x2 ~ 0x3F
Others	Others	0x0 ~ 0x3F

Table 6-9 WINCMP Setting Limitation

6.10.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value	
WWDT Base Address: WWDT_BA = 0x4000_4100					
WWDTRLD	WWDT_BA+0x00	W	Window Watchdog Timer Reload Counter Register	0x0000_0000	
WWDTCR	WWDT_BA+0x04	R/W	Window Watchdog Timer Control Register	0x003F_0800	
WWDTSR	WWDT_BA+0x08	R/W	Window Watchdog Timer Status Register	0x0000_0000	
WWDTCVR	WWDT_BA+0x0C	R	Window Watchdog Timer Counter Value Register	0x0000_003F	

6.10.7 Register Description

Window Watchdog Timer Reload Counter Register (WWDTRLD)

Register	Offset	R/W	Description	Reset Value
WWDTRLD	WWDT_BA+0x00	W	Window Watchdog Timer Reload Counter Register	0x0000_0000

31	30	29	28	27	26	25	24
			WWD	TRLD			
23	22	21	20	19	18	17	16
			WWD	TRLD			
15	14	13	12	11	10	9	8
			WWD	TRLD			
7	6	5	4	3	2	1	0
	WWDTRLD						

Bits	Description			
		WWDT Reload Counter Register Writing 0x00005AA5 to this register will reload the WWDT counter value to 0x3F.		
[31:0]		Note: Software can only write WWDTRLD to reload WWDT counter value when current WWDT counter value between 0 and WINCMP. If software writes WWDTRLD when current WWDT counter value is larger than WINCMP, WWDT reset signal will generate immediately.		

Window Watchdog Timer Control Register (WWDTCR)

Register	Offset	R/W	Description	Reset Value
WWDTCR	WWDT_BA+0x04	R/W	Window Watchdog Timer Control Register	0x003F_0800

Note: This register can be written only one time after chip is powered on or reset.

31	30	29	28	27	26	25	24
DBGACK_W WDT		Reserved					
23	22	21	20	19	18	17	16
Rese	erved	WINCMP					
15	14	13	12	11	10	9	8
	Rese	erved			PERIC	DSEL	
7	6	5	4	3	2	1	0
Reserved					WWDTIE	WWDTEN	

Bits	Description	
[31]	DBGACK_WWDT	ICE Debug Mode Acknowledge Disable Control 0 = ICE debug mode acknowledgement effects WWDT counting. WWDT down counter will be held while CPU is held by ICE. 1 = ICE debug mode acknowledgement Disabled. WWDT down counter will keep going no matter CPU is held by ICE or not. Reserved. WWDT Window Compare Register
[21:16]	WINCMP	Set this register to adjust the valid reload window. Note: Software can only write WWDTRLD to reload WWDT counter value when current WWDT counter value between 0 and WINCMP. If Software writes WWDTRLD when current WWDT counter value larger than WINCMP, WWDT reset signal will generate immediately.
[15:12]	Reserved	Reserved.
[11:8]	PERIODSEL	WWDT Counter Prescale Period Selection 0000 = Pre-scale is 1; Max time-out period is 1 * 64 * T _{WWDT} . 0001 = Pre-scale is 2; Max time-out period is 2 * 64 * T _{WWDT} . 0010 = Pre-scale is 4; Max time-out period is 4 * 64 * T _{WWDT} . 0011 = Pre-scale is 8; Max time-out period is 8 * 64 * T _{WWDT} . 0100 = Pre-scale is 16; Max time-out period is 16 * 64 * T _{WWDT} . 0101 = Pre-scale is 32; Max time-out period is 32 * 64 * T _{WWDT} . 0110 = Pre-scale is 64; Max time-out period is 64 * 64 * T _{WWDT} . 0111 = Pre-scale is 128; Max time-out period is 128 * 64 * T _{WWDT} . 1000 = Pre-scale is 192; Max time-out period is 192 * 64 * T _{WWDT} . 1001 = Pre-scale is 256; Max time-out period is 256 * 64 * T _{WWDT} . 1010 = Pre-scale is 384; Max time-out period is 512 * 64 * T _{WWDT} . 1011 = Pre-scale is 512; Max time-out period is 512 * 64 * T _{WWDT} .

		1101 = Pre-scale is 1024; Max time-out period is 1024 * 64 * T _{WWDT} . 1110 = Pre-scale is 1536; Max time-out period is 1536 * 64 * T _{WWDT} . 1111 = Pre-scale is 2048; Max time-out period is 2048 * 64 * T _{WWDT} .
[7:2]	Reserved	Reserved.
[1]	WWDTIE	WWDT Interrupt Enable Control If this bit is enabled, the WWDT counter compare match interrupt signal is generated and inform to CPU. 0 = WWDT counter compare match interrupt Disabled. 1 = WWDT counter compare match interrupt Enabled.
[0]	WWDTEN	WWDT Enable Control 0 = WWDT counter is stopped. 1 = WWDT counter is starting counting.

Window Watchdog Timer Status Register (WWDTSR)

Register	Offset	R/W	Description	Reset Value
WWDTSR	WWDT_BA+0x08	R/W	Window Watchdog Timer Status Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved						WWDTIF

Bits	Description			
[31:2]	Reserved	Reserved.		
[1]	WWDTRF	WWDT Timer-out Reset Flag This bit indicates the system has been reset by WWDT time-out reset or not. 0 = WWDT time-out reset did not occur. 1 = WWDT time-out reset occurred. Note: This bit is cleared by writing 1 to it.		
[0]	WWDTIF	WWDT Compare Match Interrupt Flag This bit indicates the interrupt flag status of WWDT while WWDT counter value matches WINCMP value. 0 = No effect. 1 = WWDT counter value matches WINCMP value. Note: This bit is cleared by writing 1 to it.		

Window Watchdog Timer Counter Value Register (WWDTCVR)

Register	Offset	R/W	Description	Reset Value
WWDTCVR	WWDT_BA+0x0C	R	Window Watchdog Timer Counter Value Register	0x0000_003F

31	30	29	28	27	26	25	24	
	Reserved							
23	23 22 21 20 19 18 17 16							
	Reserved							
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
Rese	Reserved			WWDTCVAL				

Bits	Description				
[31:6]	Reserved. Reserved.				
[5:0]	WWDTCVAL	WWDT Counter Value WWDTCVAL will be updated continuously to monitor 6-bit down counter value.			

6.11 UART Controller (UART)

6.11.1 Overview

The NuMicro® M05xxBN/DN/DE provides two channels of Universal Asynchronous Receiver/Transmitters (UART). UART Controller performs Normal Speed UART, and support flow control function. The UART Controller performs a serial-to-parallel conversion on data received from the peripheral, and a parallel-to-serial conversion on data transmitted from the CPU. The UART controller also supports IrDA SIR Function, LIN master/slave function and RS-485 function mode. Each UART Controller channel supports seven types of interrupts.

6.11.2 Features

- Full-duplex, asynchronous communications
- Separate receive / transmit 16/16 bytes entry FIFO for data payloads
- Supports hardware auto-flow control and flow control function (CTS, RTS) and programmable RTS flow control trigger level
- Programmable receiver buffer trigger level
- Supports programmable baud-rate generator for each channel individually
- Supports CTS wake-up function
- Supports 8-bit receiver buffer time-out detection function
- Programmable transmitting data delay time between the last stop and the next start bit by setting DLY (UA_TOR [15:8]) register
- Supports break error, frame error, parity error and receive / transmit buffer overflow detect function
- Fully programmable serial-interface characteristics
 - Programmable number of data bit, 5-, 6-, 7-, 8- bit character
 - Programmable parity bit, even, odd, no parity or stick parity bit generation and detection
 - Programmable stop bit, 1, 1.5, or 2 stop bit generation
- Supports IrDA SIR function mode
 - Supports for 3/16 bit duration for normal mode
- Supports LIN function mode
 - Supports LIN master/slave mode
 - Supports programmable break generation function for transmitter
 - Supports break detect function for receiver
- Supports RS-485 function mode
 - Supports RS-485 9-bit mode
 - Supports hardware or software enable to program RTS pin to control RS-485 transmission direction directly

6.11.3 Block Diagram

The UART clock control and block diagram are shown below.

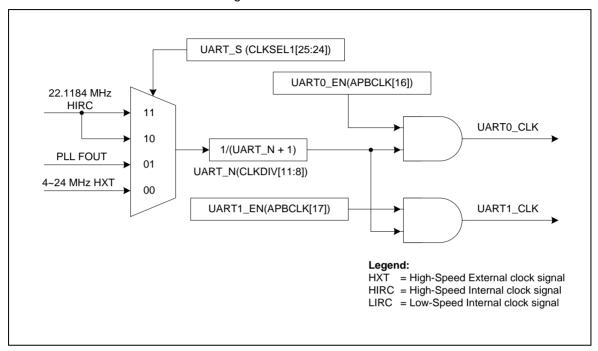


Figure 6-60 UART Controller Clock Control

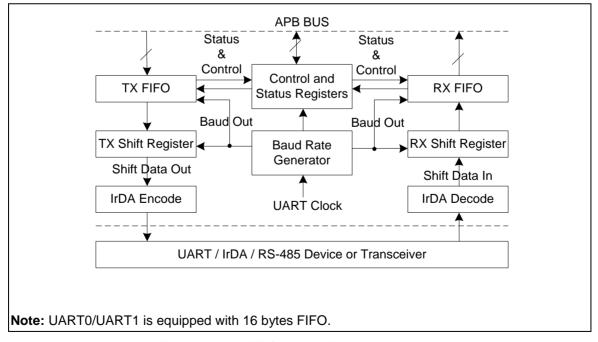


Figure 6-61 UART Controller Block Diagram

Each block is described in detail as follows:

TX FIFO

The transmitter is buffered with a 16 bytes FIFO to reduce the number of interrupts presented to the CPU.

RX FIFO

The receiver is buffered with a 16 bytes FIFO (plus three error bits per byte) to reduce the number of interrupts presented to the CPU.

TX Shift Register

This block is the shifting the transmitting data out serially control block.

RX Shift Register

This block is the shifting the receiving data in serially control block.

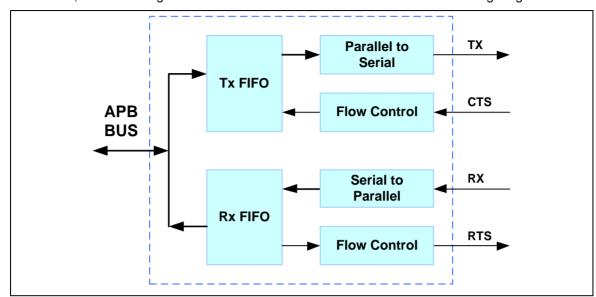
Modem Control Register

This register controls the interface to the MODEM or data set (or a peripheral device emulating a MODEM).

Baud Rate Generator

Divide the external clock by the divisor to get the desired baud rate clock. Refer to baud rate equation.

IrDA Encode


This block is IrDA encode control block.

IrDA Decode

This block is IrDA decode control block.

Control and Status Register

This field is register set that including the FIFO control registers (UA_FCR), FIFO status registers (UA_FSR), and line control register (UA_LCR) for transmitter and receiver. The time-out control register (UA_TOR) identifies the condition of time-out interrupt. This register set also includes the interrupt enable register (UA_IER) and interrupt status register (UA_ISR) to enable or disable the responding interrupt and to identify the occurrence of the responding interrupt. There are seven types of interrupts, transmitter FIFO empty interrupt(THRE_INT), receiver threshold level reaching interrupt (RDA_INT), line status interrupt (parity error or framing error or break interrupt) (RLS_INT), time-out interrupt (TOUT_INT), MODEM/Wake-up status interrupt (MODEM_INT), Buffer error interrupt (BUF_ERR_INT) and LIN receiver break field detected interrupt (LIN_RX_BREAK_INT).

In addition, the block diagram of auto-flow control is demonstrated in the following diagram.

Figure 6-62 Auto Flow Control Block Diagram

6.11.4 Basic Configuration

nuvoton

The UART Controller function pins are configured in P0_MFP registers for UART0 and P3_MFP registers for UART1.

The UART Controller clock are enabled in UART0 EN(APBCLK[16]) for UART0 and UART1 EN (APBCLK[17]) for UART1.

The UART Controller clock source is selected by UART S(CLKSEL[25:24]).

The UART Controller clock prescaler is determined by UART N(CLKDIV[11:8]).

6.11.5 Functional Description

The UART Controller supports four function modes including UART, IrDA, LIN and RS-485 mode. User can select a function by setting the UA FUN SEL register. The four function modes will be described in detail in sections 6.10.5.1 to section 6.10.5.4. Also refer to sections 6.10.5.5 to section 1.1.5.8 for more information.

6.11.5.1 UART Controller Baud Rate Generator

The UART Controller includes a programmable baud rate generator capable of dividing clock input by divisors to produce the serial clock that transmitter and receiver need. The baud rate equation is Baud Rate = UART_CLK / M * [BRD + 2], where M and BRD are defined in Baud Rate Divider Register (UA BAUD). The following tables list the UART baud rate equations in the various conditions and UART baud rate parameter settings. There is no error for the baud rate results calculated through the baud rate parameter and register setting below. In IrDA function mode, the baud rate generator must be set in Mode 0.

Mode	DIV_X_EN	DIV_X_ONE	Divider X	BRD	М	Baud Rate Equation
Mode 0	0	0	В	Α	16	UART_CLK / [16 * (A+2)]
Mode 1	1	0	В	Α	B+1	UART_CLK / [(B+1) * (A+2)], B must >= 8
Mode 2	1	1	Don't care	Α	1	UART_CLK / (A+2), A must >=8

Table 6-13 UART Controller Baud Rate Equation Table

UART Peripheral Clock = 22.1184 MHz					
Baud Rate	Mode 0	Mode 1	Mode 2		
921600	Not support	A=0, B=11	A=22		
460800	A=1	A=1, B=15 A=2, B=11	A=46		
230400	A=4	A=4, B=15 A=6, B=11	A=94		
115200	A=10	A=10, B=15 A=14, B=11	A=190		
57600	A=22	A=22, B=15 A=30, B=11	A=382		
38400	A=34	A=62, B=8 A=46, B=11 A=34, B=15	A=574		
19200	A=70	A=126, B=8 A=94, B=11 A=70, B=15	A=1150		
9600	A=142	A=254, B=8 A=190, B=11 A=142, B=15	A=2302		
4800	A=286	A=510, B=8 A=382, B=11 A=286, B=15	A=4606		

Table 6-14 UART Controller Baud Rate Parameter Setting Table

UART Peripheral Clock = 22.1184 MHz					
Baud Rate	Baud Rate Mode 0		Mode 2		
921600	Not support	0x2B00_0000	0x3000_0016		
460800	0x0000_0001	0x2F00_0001 0x2B00_0002	0x3000_002E		
230400	0x0000_0004	0x2F00_0004 0x2B00_0006	0x3000_005E		
115200	0x0000_000A	0x2F00_000A 0x2B00_000E	0x3000_00BE		
57600	0x0000_0016	0x2F00_0016 0x2B00_001E	0x3000_017E		
38400	0x0000_0022	0x2800_003E 0x2B00_002E 0x2F00_0022	0x3000_023E		
19200	0x0000_0046	0x2800_007E 0x2B00_005E 0x2F00_0046	0x3000_047E		
9600	0x0000_008E	0x2800_00FE 0x2B00_00BE 0x2F00_008E	0x3000_08FE		
4800	0x0000_011E	0x2800_01FE 0x2B00_017E 0x2F00_011E	0x3000_11FE		

Table 6-15 UART Controller Baud Rate Register Setting Table

6.11.5.2 UART Controller FIFO Control and Status

The UART Controller is built-in with a 16 bytes transmitter FIFO (TX_FIFO) and a 16 bytes receiver FIFO (RX_FIFO) that reduces the number of interrupts presented to the CPU. The CPU can read the status of the UART at any time during operation. The reported status information includes the type and condition of the transfer operations being performed by the UART, as well as 3 error conditions (parity error, framing error, break interrupt) probably occur while receiving data. This FIFO control and status also support all of UART, IrDA, LIN and RS-485 function mode.

6.11.5.3 UART Controller Wake-up Function

When the chip is in Power-down mode, an external CTS change will wake-up chip from Power-down mode. This wake-up function is available in every function mode. User must enable the MODEN_INT interrupt to use the wake-up function.

6.11.5.4 UART Controller Interrupt and Status

Each UART Controller supports seven types of interrupts including:

- Receiver threshold level reached interrupt (RDA_INT)
- Transmitter FIFO empty interrupt (THRE_INT)
- Line status interrupt (parity error, frame error or break interrupt) (RLS_INT)
- MODEM/Wake-up status interrupt (MODEM_INT)
- Receiver buffer time-out interrupt (TOUT_INT)
- Buffer error interrupt (BUF_ERR_INT)
- LIN receiver break field detected interrupt (LIN_RX_BREAK_INT)

The following tables describe the interrupt sources and flags for M05xxBN/DN/DE. The interrupt is generated when the interrupt flag is generated and the interrupt enable bit is set. User must clear the interrupt flag after the interrupt is generated.

Interrupt Source	Interrupt Indicator	Interrupt Enable Bit	Interrupt Flag	Flag Cleared By
Receive Data Available Interrupt	RDA_INT	RDA_IEN	RDA_IF	Read UA_RBR
Transmit Holding Register Empty Interrupt	THRE_INT	THRE_IEN	THRE_IF	Write UA_THR
Receive Line Status	DI C. INIT	RLS_IEN	RLS_IF = (BIF or FEF or PEF)	Writing '1' to RFR
Interrupt	RLS_INT		RLS_IF = RS485_ADD_DETF	Writing '1' to RS485_ADD_DETF
Modem Status Interrupt	MODEM_INT	MODEM_IEN	MODEM_IF = DCTSF	Write '1' to DCTSF
RX Time-out Interrupt	TOUT_INT	RTO_IEN	TOUT_IF	Read UA_RBR
	BUF_ERR_INT	BUF_ERR_IEN	BUF_ERR_IF = (TX_OVER_IF or RX_OVER_IF)	Writing '1' to TX_OVER_IF / RX_OVER_IF
Buffer Error Interrupt			BUF_ERR_IF = (BIF or FEF or PEF) (M05xxBN Only)	Writing '1' to RFR
LIN RX Break Field Detected interrupt	LIN_RX_BREAK_I NT	LIN_RX_BRK_IEN	LIN_RX_BREAK_IF	Write '1' to LIN_RX_BREAK_IF

Table 6-16 UART Controller Interrupt Source and Flag List for M05xxBN

Interrupt Source	Interrupt Indicator	Interrupt Enable Bit	Interrupt Flag	Flag Cleared By
Receive Data Available Interrupt	RDA_INT	RDA_IEN	RDA_IF	Read UA_RBR
Transmit Holding Register Empty Interrupt	THRE_INT	THRE_IEN	THRE_IF	Write UA_THR
Receive Line Status	RLS INT	RLS IEN	RLS_IF = (BIF or FEF or PEF)	Writing '1' to BIF/FEF/ PEF (M05xxDN/DE Only)
Interrupt	NLO_IIVI	_	RLS_IF = RS485_ADD_DETF	Writing '1' to RS485_ADD_DETF
Modem Status Interrupt	MODEM_INT	MODEM_IEN	MODEM_IF = DCTSF	Write '1' to DCTSF
RX Time-out Interrupt	TOUT_INT	RTO_IEN	TOUT_IF	Read UA_RBR
Buffer Error Interrupt	BUF_ERR_INT	BUF_ERR_IEN	BUF_ERR_IF = (TX_OVER_IF or RX_OVER_IF)	Writing '1' to TX_OVER_IF / RX_OVER_IF
LIN RX Break Field Detected interrupt	LIN_RX_BREAK_I NT	LIN_RX_BRK_IEN	LIN_RX_BREAK_IF	Write '1' to LIN_RX_BREAK_IF

nuvoTon

Table 6-17 UART Controller Interrupt Source and Flag List for M05xxDN/DE

6.11.5.5 UART Function Mode

The UART Controller provides UART function (user must set UA_FUN_SEL [1:0] to '00' to enable UART function mode). The UART baud rate is up to 1 Mbps.

The UART provides full-duplex and asynchronous communications. The transmitter and receiver contain 16 bytes FIFO for payloads. User can program receiver buffer trigger level and receiver buffer time-out detection for receiver. The transmitting data delay time between the last stop and the next start bit can be programed by setting DLY (UA_TOR [15:8]) register. The UART supports hardware auto-flow control and flow control function (CTS, RTS), programmable RTS flow control trigger level and fully programmable serial-interface characteristics.

UART Line Control Function

The UART Controller supports fully programmable serial-interface characteristics by setting the UA_LCR register. Software can use the UA_LCR register to program the word length, stop bit and parity bit. The following tables list the UART word and stop bit length settings and the UART parity bit settings.

NSB (UA_LCR[2])	WLS (UA_LCR[1:0])	Word Length (Bit)	Stop Length (Bit)
0	00	5	1
0	01	6	1
0	10	7	1
0	11	8	1
1	00	5	1.5
1	01	6	2
1	10	7	2
1	11	8	2

Table 6-18 UART Line Control of Word and Stop Length Setting

Parity Type	SPE (UA_LCR[5])	EPE (UA_LCR[4])	PBE (UA_LCR[3])	Description
No Parity	х	х	0	No parity bit output.
Odd Parity	0	0	1	Odd Parity is calculated by adding all the "1's" in a data stream and adding a parity bit to the total bits, to make the total count an odd number.
Even Parity	0	1	1	Even Parity is calculated by adding all the "1's" in a data stream and adding a parity bit to the total bits, to make the count an even number.
Forced Mask Parity	1	0	1	Parity bit always logic 1. Parity bit on the serial byte is set to "1" regardless of total number of "1's" (even or odd counts).
Forced Space Parity	1	1	1	Parity bit always logic 0. Parity bit on the serial byte is set to "0" regardless of total number of "1's" (even or odd counts).

Table 6-19 UART Line Control of Parity Bit Setting

The UART supports auto-flow control function that uses two signals, CTS (clear-to-send) and RTS (request-to-send), to control the flow of data transfer between the UART and external devices (e.g. Modem). When auto flow is enabled, the UART is not allowed to receive data until the UART asserts RTS to external device. When the number of bytes in the RX FIFO equals the value of RTS TRI LEV (UA FCR [19:16]), the RTS is de-asserted. The UART sends data out when UART detects CTS is asserted from external device. If the valid asserted CTS is not detected, the UART will not send data out.

nuvoton

The following diagram demonstrates the CTS auto flow control of UART function mode. User must set AUTO CTS EN (UA IER [13]) to enable CTS auto flow control function. The LEV CTS (UA MCR [8]) can set CTS pin input active state. The DCTSF (UA MSR [0]) is set when any state change of CTS pin input has occurred, and then TX data will be automatically transmitted from TX FIFO.

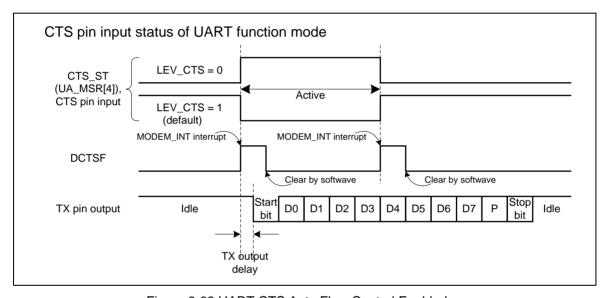


Figure 6-63 UART CTS Auto Flow Control Enabled

M051 BN/DN/DE SERIES TECHNICAL REFERENCE MANUAL

As shown in the following figure, in UART RTS Auto Flow control mode (AUTO_RTS_EN(UA_IER[12])=1), the nRTS internal signal is controlled by UART FIFO controller with RTS_RTI_LEV(UA_FCR[19:16]) trigger level.

Setting LEV_RTS(UA_MCR[9]) can control the RTS pin output is inverse or non-inverse from nRTS signal. User can read the RTS_ST(UA_MCR[13]) bit to get real RTS pin output voltage logic status.

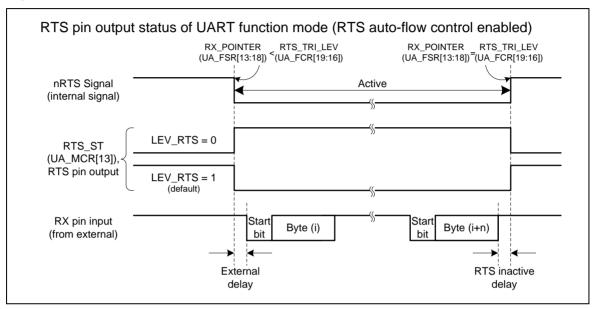


Figure 6-64 UART RTS Auto Flow Control Enabled

As shown in the following figure, in software mode (AUTO_RTS_EN(UA_IER[12])=0) the RTS flow is directly controlled by software programming of RTS(UA_MCR[1]) control bit.

Setting LEV_RTS(UA_MCR[9]) can control the RTS pin output is inverse or non-inverse from RTS(UA_MCR[1]) control bit. User can read the RTS_ST(UA_MCR[13]) bit to get real RTS pin output voltage logic status.

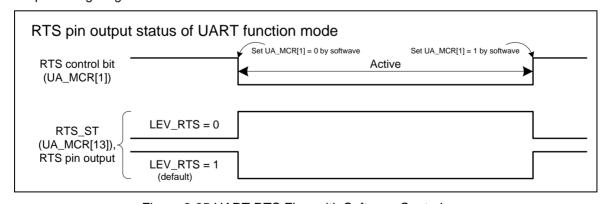


Figure 6-65 UART RTS Flow with Software Control

6.11.5.6 IrDA Function Mode

The UART Controller also provides Serial IrDA (SIR, Serial Infrared) function (user must set UA_FUN_SEL [1:0] to '10' to enable the IrDA function). The SIR specification defines a short-range infrared asynchronous serial transmission mode with one start bit, 8 data bits, and 1 stop bit. The maximum data rate is 115.2 kbps. The IrDA SIR block contains an IrDA SIR protocol encoder/decoder. The IrDA SIR protocol is half-duplex only. So it cannot transmit and receive data at the same time. The IrDA SIR physical layer specifies a minimum 10 ms transfer delay between transmission and reception, and this delay feature must be implemented by software.

In IrDA mode, the DIV_X_EN (UA_BAUD [29]) register must be disabled.

Baud Rate = Clock / (16 * BRD), where BRD is Baud Rate Divider in UA_BAUD register.

The following diagram demonstrates the IrDA control block diagram.

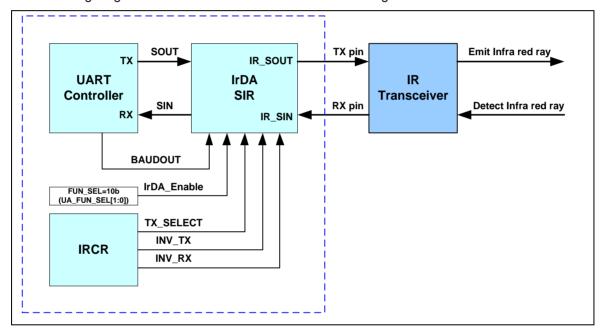


Figure 6-66 IrDA Control Block Diagram

IrDA SIR Transmit Encoder

The IrDA SIR Transmit Encoder modulates Non-Return-to Zero (NRZ) transmit bit stream output from UART. The IrDA SIR physical layer specifies the use of Return-to-Zero, Inverted (RZI) modulation scheme which represents logic 0 as an infra light pulse. The modulated output pulse stream is transmitted to an external output driver and infrared light emitting diode.

In Normal mode, the transmitted pulse width is specified as 3/16 period of baud rate.

IrDA SIR Receive Decoder

The IrDA SIR Receive Decoder demodulates the Return-to-Zero bit stream from the input detector and outputs the NRZ serial bits stream to the UART received data input. The decoder input is normally high in idle state. (Because of this, IRCR (INV_RX [6]) should be set as 1 by default).

A start bit is detected when the decoder input is LOW.

IrDA SIR Operation

The IrDA SIR encoder/decoder provides functionality which converts between UART data stream and half-duplex serial SIR interface. The following diagram is IrDA encoder/decoder waveform.

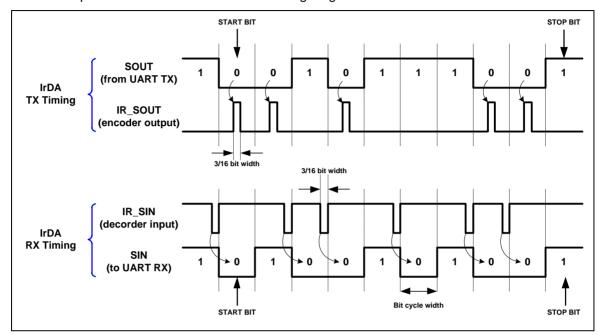


Figure 6-67 IrDA TX/RX Timing Diagram

6.11.5.7 LIN (Local Interconnection Network) Function Mode

The UART Controller supports LIN function (user must set UA_FUN_SEL [1:0] to '01' to enable LIN function). In LIN function mode, each byte field is initialed by a start bit with value 0 (dominant), followed by 8 data bits (LSB is first) and ended by 1 stop bit with value one (recessive) in accordance with the LIN standard. The following diagram is the structure of LIN function mode:

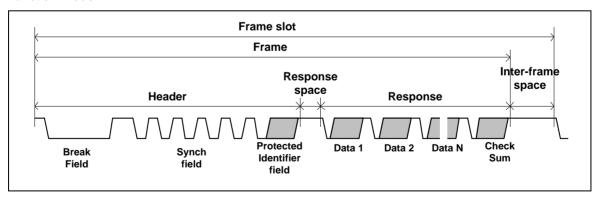


Figure 6-68 Structure of LIN Frame

The program flow of LIN bus transmit transfer (TX) is shown as follows:

- 1. Setting the UA_FUN_SEL[1:0] to '01' to enable LIN bus mode.
- 2. Fill UA_LIN_BKFL in UA_LIN_BCNT to choose break field length. (The break field length is UA_LIN_BKFL + 2).
- 3. Fill 0x55 to UA THR to request synch field transmission.
- 4. Request identifier field transmission by writing the protected identifier value in the UA THR
- 5. Setting the LIN_TX_EN bit in UA_LIN_BCNT register to start transmission. (When break filed operation is finished, LIN_TX_EN will be cleared automatically).
- 6. When the STOP bit of the last byte THR has been sent to bus, hardware will set flag TE_FLAG in UA_FSR to 1.
- 7. Fill N bytes data and checksum to UA_THR then repeat step 5 and 6 to transmit the data.

The program flow of LIN bus receiver transfer (RX) is show as follows:

- 1. Setting the UA FUN SEL[1:0] to '01' to enable LIN bus mode.
- 2. Setting the LIN_RX_EN bit in UA_LIN_BCNT register to enable LIN RX mode.
- Waiting for the flag LIN_RX_BREAK_IF in UA_ISR to check RX received break field or not.
- 4. Waiting for the flag RDA_IF in UA_ISR and read back the UR_RBR register.

6.11.5.8 RS-485 Function Mode

Another alternate function of UART Controller is RS-485 function (user must set UA_FUN_SEL [1:0] to '11' to enable RS-485 function), and direction control provided by RTS pin or can program GPIO (P0.3 for RTS0 and P0.1 for RTS1) to implement the function by software. The RS-485 transceiver control is implemented by using the RTS control signal from an asynchronous serial port to enable the RS-485 driver. Many characteristics of the RX and TX are same as UART in RS-485 mode

The controller can configuration of it as an RS-485 addressable slave and the RS-485 master transmitter will identify an address character by setting the parity (9-th bit) to 1. For data characters, the parity is set to 0. Software can use UA_LCR register to control the 9-th bit (When the PBE, EPE and SPE are set, the 9-th bit is transmitted 0 and when PBE and SPE are set and EPE is cleared, the 9-th bit is transmitted 1).

The controller supports three operation modes: RS-485 Normal Multidrop Operation Mode (NMM), RS-485 Auto Address Detection Operation Mode (AAD) and RS-485 Auto Direction Control Operation Mode (AUD). Software can choose any operation mode by programming the UA_ALT_CSR register, and drive the transfer delay time between the last stop bit leaving the TX FIFO and the de-assertion of by setting DLY (UA_TOR [15:8]) register.

RS-485 Normal Multidrop Operation Mode (NMM)

In RS-485 Normal Multidrop Operation Mode, in first, software must decide the data which before the address byte be detected will be stored in RX FIFO or not. If software wants to ignore any data before address byte detected, the flow is set RX_DIS (UA_FCR [8]) then enable RS485_NMM (UA_ALT_CSR [8]) and the receiver will ignore any data until an address byte is detected (bit 9 = 1) and the address byte data will be stored in the RX FIFO. If software wants to receive any data before address byte detected, the flow is disables RX_DIS (UA_FCR [8]) then

enable RS485_NMM (UA_ALT_CSR [8]) and the receiver will received any data.

If an address byte is detected (bit 9 = 1), it will generate an interrupt to CPU and RX_DIS (UA_FCR [8]) can decide whether accepting the following data bytes are stored in the RX FIFO. If software disables receiver by setting RX_DIS (UA_FCR [8]) register, when a next address byte is detected, the controller will clear the RX_DIS (UA_FCR [8]) bit and the address byte data will be stored in the RX FIFO.

RS-485 Auto Address Detection Operation Mode (AAD)

In RS-485 Auto Address Detection Operation Mode, the receiver will ignore any data until an address byte is detected (bit 9=1) and the address byte data matches the ADDR_MATCH (UA_ALT_CSR[31:24]) value. The address byte data will be stored in the RX FIFO. The all received byte data will be accepted and stored in the RX FIFO until and address byte data not match the ADDR_MATCH (UA_ALT_CSR[31:24]) value.

RS-485 Auto Direction Mode (AUD)

Another option function of RS-485 controllers is **RS-485 auto direction control function**. User must set RS485_AUD(UA_ALT_CSR[10]) to 1 to enabled RS-485 auto direction mode. The RS-485 transceiver control is implemented using the RTS control signal from an asynchronous serial port. The RTS line is connected to the RS-485 transceiver enable pin such that setting the RTS line to high (logic 1) enables the RS-485 transceiver. Setting the RTS line to low (logic 0) puts the transceiver into the tri-state condition to disabled. User can set LEV_RTS in UA_MCR register to change the RTS driving level.

The following diagram demonstrates the RS-485 RTS driving level in AUD mode. The RTS pin will be automatically driven during TX data transmission.

Setting LEV_RTS(UA_MCR[9]) can control RTS pin output driving level. User can read the RTS_ST(UA_MCR[13]) bit to get real RTS pin output voltage logic status.

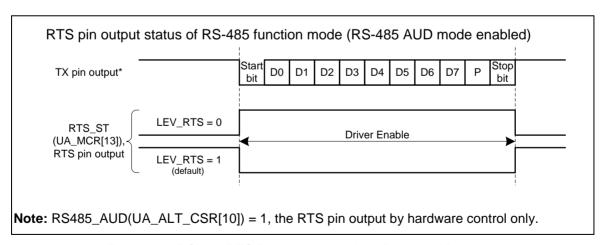


Figure 6-69 RS-485 RTS Driving Level in Auto Direction Mode

The following diagram demonstrates the RS-485 RTS driving level in software control (RS485_AUD(UA_ALT_CSR[10])=0). The RTS driving level is controlled by programing the RTS(UA_MCR[1]) control bit.

Setting LEV_RTS(UA_MCR[9]) can control the RTS pin output is inverse or non-inverse from RTS(UA_MCR[1]) control bit. User can read the RTS_ST(UA_MCR[13]) bit to get real RTS pin output voltage logic status.

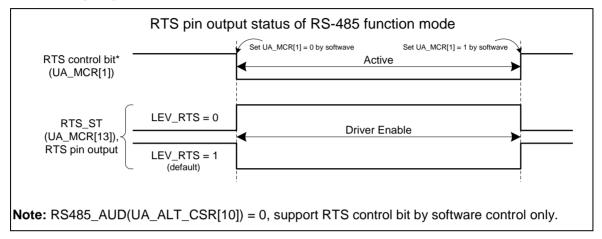


Figure 6-70 RS-485 RTS Driving Level with Software Control

Program Sequence Example:

- 1. Program FUN SEL in UA FUN SEL to select RS-485 function.
- 2. Program the RX_DIS bit in UA_FCR register to determine enable or disable the receiver RS-485 receiver
- 3. Program the RS485 NMM or RS485 AAD mode.
- 4. If the RS485_AAD mode is selected, the ADDR_MATCH is programmed for auto address match value.
- 5. Determine auto direction control by programming RS485_AUD.

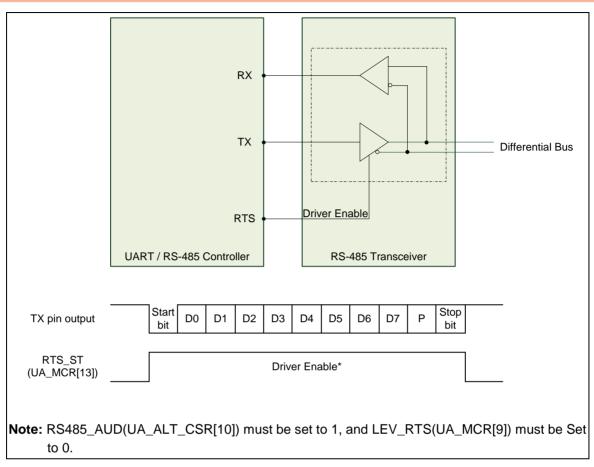


Figure 6-71 Structure of RS-485 Frame

6.11.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
UARTO_BA = 0	UART Base Address: UART0_BA = 0x4005_0000 UART1_BA = 0x4015_0000							
UA_RBR x = 0, 1	UARTx_BA+0x00	R	UART Receive Buffer Register	Undefined				
UA_THR x = 0, 1	UARTx_BA+0x00	W	UART Transmit Holding Register	Undefined				
UA_IER x = 0, 1	UARTx_BA+0x04	R/W	UART Interrupt Enable Register	0x0000_0000				
UA_FCR x = 0, 1	UARTx_BA+0x08	R/W	UART FIFO Control Register	0x0000_0101				
UA_LCR x = 0, 1	UARTx_BA+0x0C	R/W	UART Line Control Register	0x0000_0000				
UA_MCR x = 0, 1	UARTx_BA+0x10	R/W	UART Modem Control Register	0x0000_0200				
UA_MSR x = 0, 1	UARTx_BA+0x14	R/W	UART Modem Status Register	0x0000_0110				
UA_FSR x = 0, 1	UARTx_BA+0x18	R/W	UART FIFO Status Register	0x1040_4000				
UA_ISR x = 0, 1	UARTx_BA+0x1C	R/W	UART Interrupt Status Register	0x0000_0002				
UA_TOR x = 0, 1	UARTx_BA+0x20	R/W	UART Time-out Register	0x0000_0000				
UA_BAUD x = 0, 1	UARTx_BA+0x24	R/W	UART Baud Rate Divisor Register	0x0F00_0000				
UA_IRCR x = 0, 1	UARTx_BA+0x28	R/W	UART IrDA Control Register	0x0000_0040				
UA_ALT_CSR x = 0, 1	UARTx_BA+0x2C	R/W	UART Alternate Control/Status Register	0x0000_0000				
UA_FUN_SEL x = 0, 1	UARTx_BA+0x30	R/W	UART Function Select Register	0x0000_0000				

6.11.7 Register Description

UART Receive Buffer Register (UA_RBR)

Register	Offset	R/W	Description	Reset Value
UA_RBR x = 0, 1	UARTx_BA+0x00	R	UART Receive Buffer Register	Undefined

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	RBR									

Bits	Description				
[31:8]	Reserved	Reserved.			
[7:0]	RBR	Receive Buffer Register (Read Only) By reading this register, the UART Controller will return an 8-bit data received from UART_RX pin (LSB first).			

UART Transmit Holding Register (UA_THR)

Register	Offset	R/W	Description	Reset Value
UA_THR x=0,1	UARTx_BA+0x00	W	UART Transmit Holding Register	Undefined

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	THR									

Bits	Description	escription					
[31:8]	Reserved	eserved.					
[7:0]	THR	Transmit Holding Register By writing to this register, the UART Controller will send out an 8-bit data through the UART_TX pin (LSB first).					

UART Interrupt Enable Register (UA_IER)

Register	Offset	R/W	Description	Reset Value
UA_IER x=0,1	UARTx_BA+0x04	R/W	UART Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
Rese	rved	AUTO_CTS_EN	AUTO_RTS_ EN	TIME_OUT_EN	Reserved		LIN_RX_BRK _IEN			
7	6	5	4	3	2	1	0			
Reserved	WAKE_EN	BUF_ERR_IEN	RTO_IEN	MODEM_IEN	RLS_IEN	THRE_IEN	RDA_IEN			

Bits	Description	
[31:14]	Reserved	Reserved.
[13]	AUTO_CTS_EN	CTS Auto-flow Control Enable Control 0 = CTS auto-flow control Disabled. 1 = CTS auto-flow control Enabled. Note: When CTS auto-flow is enabled, the UART will send data to external device when CTS input assert (UART will not send data to device until CTS is asserted).
[12]	AUTO_RTS_EN	RTS Auto-flow Control Enable Control 0 = RTS auto-flow control Disabled. 1 = RTS auto-flow control Enabled. Note: When RTS auto-flow is enabled, if the number of bytes in the RX FIFO equals the RTS_TRI_LEV (UA_FCR [19:16]), the UART will reassert RTS signal.
[11]	TIME_OUT_EN	Time-out Counter Enable Control 0 = Time-out counter Disabled. 1 = Time-out counter Enabled.
[10:9]	Reserved	Reserved.
[8]	LIN_RX_BRK_IEN	LIN RX Break Field Detected Interrupt Enable Control 0 = LIN bus RX break filed interrupt Disabled. 1 = LIN bus RX break filed interrupt Enabled. Note: This bit is used for LIN function mode.
[7]	Reserved	Reserved.
[6]	WAKE_EN	UART Wake-up Function Enable Control 0 = UART wake-up function Disabled. 1 = UART wake-up function Enabled. Note: when the chip is in Power-down mode, an external CTS change will wake-up chip from Power-down mode.

-		
[5]	BUF_ERR_IEN	Buffer Error Interrupt Enable Control 0 = BUF_ERR_INT Masked off. 1 = BUF_ERR_INT Enabled.
[4]	RTO_IEN	RX Time-out Interrupt Enable Control 0 = TOUT_INT Masked off. 1 = TOUT_INT Enabled.
[3]	MODEM_IEN	Modem Status Interrupt Enable Control 0 = MODEM_INT Masked off. 1 = MODEM_INT Enabled.
[2]	RLS_IEN	Receive Line Status Interrupt Enable Control 0 = RLS_INT Masked off. 1 = RLS_INT Enabled.
[1]	THRE_IEN	Transmit Holding Register Empty Interrupt Enable Control 0 = THRE_INT Masked off. 1 = THRE_INT Enabled.
[0]	RDA_IEN	Receive Data Available Interrupt Enable Control 0 = RDA_INT Masked off. 1 = RDA_INT Enabled.

UART FIFO Control Register (UA_FCR)

nuvoTon

Register	Offset	R/W	Description	Reset Value
UA_FCR x=0,1	UARTx_BA+0x08	R/W	UART FIFO Control Register	0x0000_0101

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Rese	erved		RTS_TRI_LEV				
15	14	13	12	11	10	9	8	
			Reserved				RX_DIS	
7	6	5	4	3	2	1	0	
	RF	ITL		Reserved	TFR	RFR	Reserved	

Bits	Description	
[31:20]	Reserved	Reserved.
		RTS Trigger Level (for Auto-flow Control Use)
		0000 = RTS Trigger Level is 1 byte.
		0001 = RTS Trigger Level is 4 bytes.
[19:16]	RTS_TRI_LEV	0010 = RTS Trigger Level is 8 bytes.
		0011 = RTS Trigger Level is 14 bytes.
		Other = Reserved.
		Note: This field is used for RTS auto-flow control.
[15:9]	Reserved	Reserved.
		Receiver Disable Register
		The receiver is disabled or not (set 1 to disable receiver)
[8]	RX DIS	0 = Receiver Enabled.
[0]	IXX_DIG	1 = Receiver Disabled.
		Note: This field is used for RS-485 Normal Multi-drop mode. It should be programmed before RS-485_NMM (UA_ALT_CSR [8]) is programmed.
		RX FIFO Interrupt (RDA_INT) Trigger Level
		When the number of bytes in the receive FIFO equals the RFITL then the RDA_IF will be set (if RDA_IEN in UA_IER register is enable, an interrupt will generated).
		0000 = RX FIFO Interrupt Trigger Level is 1 byte.
[7:4]	RFITL	0001 = RX FIFO Interrupt Trigger Level is 4 bytes.
		0010 = RX FIFO Interrupt Trigger Level is 8 bytes.
		0011 = RX FIFO Interrupt Trigger Level is 14 bytes.
		Other = Reserved.
[3]	Reserved	Reserved.
[2]	TFR	TX Field Software Reset
[-]		When TX_RST is set, all the byte in the transmit FIFO and TX internal state machine are

[0]	Reserved	Reserved.
		Note: This bit will automatically clear at least 3 UART Controller peripheral clock cycles.
		1 = Reset the RX internal state machine and pointers.
[1]	RFR	0 = No effect.
		When RX_RST is set, all the byte in the receiver FIFO and RX internal state machine are cleared.
		RX Field Software Reset
		Note: This bit will automatically clear at least 3 UART Controller peripheral clock cycles.
		1 = Reset the TX internal state machine and pointers.
		0 = No effect.
		cleared.

UART Line Control Register (UA_LCR)

Register	Offset	R/W	Description	Reset Value
UA_LCR x=0,1	UARTx_BA+0x0C	R/W	UART Line Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	7 6 5 4 3 2 1 0								
Reserved	всв	SPE	EPE	PBE	NSB	WLS			

Bits	Description	Description					
[31:7]	Reserved	Reserved.					
[6]	всв	Break Control Bit When this bit is set to logic 1, the serial data output (TX) is forced to the Spacing State (logic 0). This bit acts only on TX and has no effect on the transmitter logic. 0 = Break control Disabled. 1 = Break control Enabled.					
[5]	SPE	Stick Parity Enable Control 0 = Stick parity Disabled. 1 = If PBE (UA_LCR[3]) and EBE (UA_LCR[4]) are logic 1, the parity bit is transmitted and checked as logic 0. If PBE (UA_LCR[3]) is 1 and EBE (UA_LCR[4]) is 0 then the parity bit is transmitted and checked as 1.					
[4]	EPE	Even Parity Enable Control 0 = Odd number of logic 1's is transmitted and checked in each word. 1 = Even number of logic 1's is transmitted and checked in each word. This bit has effect only when PBE (UA_LCR[3]) is set.					
[3]	PBE	Parity Bit Enable Control 0 = No parity bit. 1 = Parity bit is generated on each outgoing character and is checked on each incoming data.					
[2]	NSB	Number of "STOP Bit" 0 = One "STOP bit" is generated in the transmitted data. 1 = When select 5-bit word length, 1.5 "STOP bit" is generated in the transmitted data. When select 6-, 7- and 8-bit word length, 2 "STOP bit" is generated in the transmitted data.					
[1:0]	WLS	Word Length Selection 00 = Word length is 5-bit. 01 = Word length is 6-bit. 10 = Word length is 7-bit.					

NOS1 BN/CN/CH GEXIES LECINICAL XETEXENCE MANO

11 = Word length is 8-bit.	

UART Modem Control Register (UA_MCR)

Register	Offset	R/W	Description	Reset Value
UA_MCR x=0,1	UARTx_BA+0x10	R/W	UART Modem Control Register	0x0000_0200

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
Rese	erved	RTS_ST		Reserved		LEV_RTS	Reserved		
7	6	5	4	3	2	1	0		
	Reserved						Reserved		

Bits	Description	
[31:14]	Reserved	Reserved.
[13]	RTS_ST	RTS Pin Status (Read Only) This bit mirror from RTS pin output of voltage logic status. 0 = RTS pin output is low level voltage logic state. 1 = RTS pin output is high level voltage logic state.
[12:10]	Reserved	Reserved.
[9]	LEV_RTS	RTS Pin Active Level This bit defines the active level state of RTS pin output. 0 = RTS pin output is high level active. 1 = RTS pin output is low level active. Note1: Refer to Figure 6-64 and Figure 6-65 for UART function mode. Note2: Refer to Figure 6-69 and Figure 6-70 for RS-485 function mode.
[8:2]	Reserved	Reserved.
[1]	RTS	RTS (Request-to-send) Signal Control This bit is direct control internal RTS signal active or not, and then drive the RTS pin output with LEV_RTS bit configuration. 0 = RTS signal is active. 1 = RTS signal is inactive. Note1: This RTS signal control bit is not effective when RTS auto-flow control is enabled in UART function mode. Note2: This RTS signal control bit is not effective when RS-485 auto direction mode (AUD) is enabled in RS-485 function mode.
[0]	Reserved	Reserved.

UART Modem Status Register (UA_MSR)

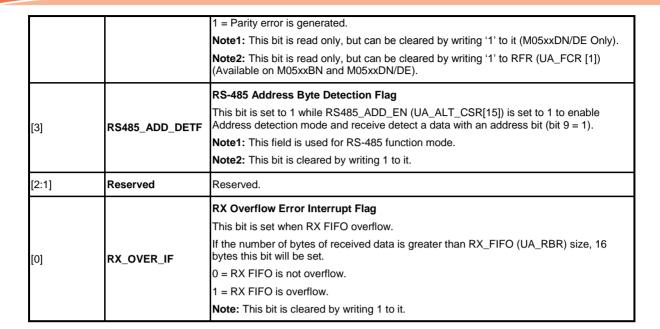
Register	Offset	R/W	Description	Reset Value
UA_MSR x=0,1	UARTx_BA+0x14	R/W	UART Modem Status Register	0x0000_0110

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Res						LEV_CTS
7	6	5	4	3	2	1	0
	Reserved				Reserved		DCTSF

Bits	Description				
[31:9]	Reserved	Reserved.			
		CTS Pin Active Level			
		This bit defines the active level state of CTS pin input.			
[8]	LEV_CTS	0 = CTS pin input is high level active.			
		1 = CTS pin input is low level active.			
		Note: Refer to Figure 6-63 for more information.			
[7:5]	Reserved	Reserved.			
		CTS Pin Status (Read Only)			
		This bit mirror from CTS pin input of voltage logic status.			
[4]	стs st	0 = CTS pin input is low level voltage logic state.			
[-]	0.0_0.	1 = CTS pin input is high level voltage logic state.			
		Note: This bit echoes when UART Controller peripheral clock is enabled, and CTS multifunction port is selected.			
[3:1]	Reserved	Reserved.			
		Detect CTS State Change Flag			
		This bit is set whenever CTS input has change state, and it will generate Modem interrupt to CPU when MODEM_IEN (UA_IER [3]) is set to 1.			
[0]	DCTSF	0 = CTS input has not change state.			
		1 = CTS input has change state.			
		Note: This bit is cleared by writing 1 to it.			

UART FIFO Status Register (UA_FSR)

Register	Offset	R/W	Description	Reset Value
UA_FSR x=0,1	UARTx_BA+0x18	R/W	UART FIFO Status Register	0x1040_4000


31	30	29	28	27	26	25	24
	Reserved			TE_FLAG Reserved			TX_OVER_IF
23	22	21	20	19	18	17	16
TX_FULL	TX_EMPTY			TX_PO	INTER		
15	14	13	12	11	10	9	8
RX_FULL	RX_EMPTY	RX_POINTER					
7	6	5	4	3	2	1	0
Reserved	BIF	FEF PEF RS485_ADD_ Reserved RX_C				RX_OVER_IF	

Bits	Description			
[31:29]	Reserved	Reserved.		
		Transmitter Empty Flag (Read Only) This bit is set by hardware when TX FIFO (UA_THR) is empty and the STOP bit of the		
[28]	TE_FLAG	last byte has been transmitted. 0 = TX FIFO is not empty.		
		1 = TX FIFO is empty.Note: This bit is cleared automatically when TX FIFO is not empty or the last byte transmission has not completed.		
[27:25]	Reserved	Reserved.		
[24]	TX_OVER_IF	TX Overflow Error Interrupt Flag If TX FIFO (UA_THR) is full, an additional write to UA_THR will cause this bit to logic 1. 0 = TX FIFO is not overflow. 1 = TX FIFO is overflow. Note: This bit is cleared by writing 1 to it.		
[23]	TX_FULL	Transmitter FIFO Full (Read Only) This bit indicates TX FIFO full or not. 0 = TX FIFO is not full. 1 = TX FIFO is full. Note: This bit is set when the number of usage in TX FIFO Buffer is equal to 16, otherwise is cleared by hardware.		
[22] TX_EMPTY		Transmitter FIFO Empty (Read Only) This bit indicates TX FIFO empty or not. 0 = TX FIFO is not empty. 1 = TX FIFO is empty. Note: When the last byte of TX FIFO has been transferred to Transmitter Shift Register, hardware sets this bit high. It will be cleared when writing data into THR (TX FIFO not		

		Jamesty)
		empty).
[21:16]	TX_POINTER	TX FIFO Pointer (Read Only) This field indicates the TX FIFO Buffer Pointer. When CPU writes one byte into UA_THR, TX_POINTER increases one. When one byte of TX FIFO is transferred to Transmitter Shift Register, TX_POINTER decreases one.
		The Maximum value shown in TX_POINTER is 15. When the using level of TX FIFO Buffer equal to 16, the TX_FULL bit is set to 1 and TX_POINTER will show 0. As one byte of TX FIFO is transferred to Transmitter Shift Register, the TX_FULL bit is cleared to 0 and TX_POINTER will show 15.
		Receiver FIFO Full (Read Only)
		This bit initiates RX FIFO full or not.
[15]	RX_FULL	0 = RX FIFO is not full.
,	_	1 = RX FIFO is full.
		Note: This bit is set when the number of usage in RX FIFO Buffer is equal to 16, otherwise is cleared by hardware.
		Receiver FIFO Empty (Read Only)
		This bit initiate RX FIFO empty or not.
[14]	RX_EMPTY	0 = RX FIFO is not empty.
[17]	TOK_ _	1 = RX FIFO is empty.
		Note: When the last byte of RX FIFO has been read by CPU, hardware sets this bit high. It will be cleared when UART receives any new data.
		RX FIFO Pointer (Read Only)
[13:8]	RX POINTER	This field indicates the RX FIFO Buffer Pointer. When UART receives one byte from external device, RX_POINTER increases one. When one byte of RX FIFO is read by CPU, RX_POINTER decreases one.
[10.0]	KX_I SINTER	The Maximum value shown in RX_POINTER is 15. When the using level of RX FIFO Buffer equal to 16, the RX_FULL bit is set to 1 and RX_POINTER will show 0. As one byte of RX FIFO is read by CPU, the RX_FULL bit is cleared to 0 and RX_POINTER will show 15.
[7]	Reserved	Reserved.
		Break Interrupt Flag (Read Only)
		This bit is set to logic 1 whenever the received data input (RX) is held in the "spacing state" (logic 0) for longer than a full word transmission time (that is, the total time of "start bit" + data bits + parity + stop bits).
[6]	BIF	0 = No Break interrupt is generated.
		1 = Break interrupt is generated.
		Note1: This bit is read only, but can be cleared by writing '1' to it (M05xxDN/DE Only).
		Note2: This bit is read only, but can be cleared by writing '1' to RFR (UA_FCR [1]) (Available on M05xxBN and M05xxDN/DE).
		Framing Error Flag (Read Only)
		This bit is set to logic 1 whenever the received character does not have a valid "stop bit" (that is, the stop bit following the last data bit or parity bit is detected as logic 0).
[6]	FEF	0 = No framing error is generated.
[5]	FEF	1 = Framing error is generated.
		Note1: This bit is read only, but can be cleared by writing '1' to it (M05xxDN/DE Only).
		Note2: This bit is read only, but can be cleared by writing '1' to RFR (UA_FCR [1]) (Available on M05xxBN and M05xxDN/DE).
		Parity Error Flag (Read Only)
[4]	PEF	This bit is set to logic 1 whenever the received character does not have a valid "parity bit".
		0 = No parity error is generated.

nuvoton

UART Interrupt Status Control Register (UA_ISR)

Register	Offset	R/W	Description	Reset Value
UA_ISR x=0,1	UARTx_BA+0x1C	R/W	UART Interrupt Status Register	0x0000_0002

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
LIN_RX_BRE AK_INT	Reserved	BUF_ERR_IN T	TOUT_INT	MODEM_INT	RLS_INT	THRE_INT	RDA_INT
7	6	5	4	3	2	1	0
LIN_RX_BRE AK_IF	Reserved	BUF_ERR_IF	TOUT_IF	MODEM_IF	RLS_IF	THRE_IF	RDA_IF

Bits	Description				
[31:14]	Reserved	Reserved.			
[15]	LIN_RX_BREAK_I NT	LIN Bus RX Break Field Detected Interrupt Indicator (Read Only) This bit is set if LIN_RX_BRK_IEN and LIN_RX_BREAK_IF are both set to 1. 0 = No LIN RX Break interrupt is generated. 1 = LIN RX Break interrupt is generated.			
[14]	Reserved	Reserved.			
[13]	BUF_ERR_INT	Buffer Error Interrupt Indicator (Read Only) This bit is set if BUF_ERR_IEN and BUF_ERR_IF are both set to 1. 0 = No buffer error interrupt is generated. 1 = buffer error interrupt is generated.			
[12]	TOUT_INT	Time-out Interrupt Indicator (Read Only) This bit is set if RTO_IEN and TOUT_IF are both set to 1. 0 = No Time-out interrupt is generated. 1 = Time-out interrupt is generated.			
[11]	MODEM_INT	MODEM Status Interrupt Indicator (Read Only) This bit is set if MODEM_IEN and MODEM_IF are both set to 1. 0 = No Modem interrupt is generated. 1 = Modem interrupt is generated.			
[10]	RLS_INT	Receive Line Status Interrupt Indicator (Read Only) This bit is set if RLS_IEN and RLS_IF are both set to 1. 0 = No RLS interrupt is generated. 1 = RLS interrupt is generated.			
[9]	THRE_INT	Transmit Holding Register Empty Interrupt Indicator (Read Only) This bit is set if THRE_IEN and THRE_IF are both set to 1.			

nuvoTon

		O. No TUDE intermed in concepts if
		0 = No THRE interrupt is generated.
		1 = THRE interrupt is generated.
		Receive Data Available Interrupt Indicator (Read Only)
[8]	RDA_INT	This bit is set if RDA_IEN and RDA_IF are both set to 1.
[O]	INDA_INT	0 = No RDA interrupt is generated.
		1 = RDA interrupt is generated.
		LIN Bus RX Break Field Detected Flag
		This bit is set when RX received LIN Break Field. If LIN_RX_BRK_IEN (UA_IER [8]) is
[7]	LIN_RX_BREAK_I	enabled the LIN RX Break interrupt will be generated.
[/]	F	0 = No LIN RX Break received.
		1 = LIN RX Break received.
		Note: This bit is cleared by writing 1 to it.
[6]	Reserved	Reserved.
		Buffer Error Interrupt Flag (Read Only)
		This bit is set when the TX/RX FIFO overflow flag (TX_OVER_IF or RX_OVER_IF) is set. On M05xxBN, this bit is also set when Break Interrupt Flag, Parity Error Flag or Frame Error Flag (BIF, PEF or FEF) is set.
		When BUF_ERR_IF is set, the transfer is not correct. If BUF_ERR_IEN (UA_IER [5]) is enabled, the buffer error interrupt will be generated.
[5]	BUF_ERR_IF	0 = No buffer error interrupt flag is generated.
		1 = Buffer error interrupt flag is generated.
		Note1: On M05xxDN/DE, this bit is read only and reset to 0 when all bits of TX_OVER_IF and RX_OVER_IF are cleared. (M05xxDN/DE Only)
		Note2: On M05xxBN, this bit is read only and reset to 0 when all bits of TX_OVER_IF, RX_OVER_IF, BIF, FEF and PEF are cleared. (M05xxBN Only)
		Time-out Interrupt Flag (Read Only)
[4]	TOUT_IF	This bit is set when the RX FIFO is not empty and no activities occurred in the RX FIFO and the time-out counter equal to TOIC. If RTO_IEN (UA_IER [4]) is enabled, the Tout interrupt will be generated.
[4]	1001_11	0 = No Time-out interrupt flag is generated.
		1 = Time-out interrupt flag is generated.
		Note: This bit is read only and user can read UA_RBR (RX is in active) to clear it.
		MODEM Interrupt Flag (Read Only)
		This bit is set when the CTS pin has state change (DCTSF = 1). If UA_IER [MODEM_IEN] is enabled, the Modem interrupt will be generated.
[3]	MODEM_IF	0 = No Modem interrupt flag is generated.
[0]	IIIODEIII_II	1 = Modem interrupt flag is generated.
		Note: This bit is read only and reset to 0 when bit DCTSF is cleared by a write 1 on DCTSF.
		Receive Line Interrupt Flag (Read Only)
		This bit is set when the RX receive data have parity error, framing error or break error (at least one of 3 bits, BIF, FEF and PEF, is set). If RLS_IEN (UA_IER [2]) is enabled, the RLS interrupt will be generated.
		0 = No RLS interrupt flag is generated.
[2]	RLS_IF	1 = RLS interrupt flag is generated.
		Note1: In RS-485 function mode, this field is set including "receiver detect and received address byte character (bit 9 = 1) bit". At the same time, the bit of RS485_ADD_DETF (UA_FSR[3]) is also set.
		Note2: This bit is read only and reset to 0 when all bits of BIF, FEF, PEF and RS485_ADD_DETF are cleared.

		Transmit Holding Register Empty Interrupt Flag (Read Only)
[1]		This bit is set when the last data of TX FIFO is transferred to Transmitter Shift Register. If THRE_IEN (UA_IER [1]) is enabled, the THRE interrupt will be generated.
	THRE_IF	0 = No THRE interrupt flag is generated.
		1 = THRE interrupt flag is generated.
		Note: This bit is read only and it will be cleared when writing data into THR (TX FIFO not empty).
		Receive Data Available Interrupt Flag (Read Only)
		When the number of bytes in the RX FIFO equals the RFITL then the RDA_IF will be set. If RDA_IEN (UA_IER [0]) is enabled, the RDA interrupt will be generated.
[0]	RDA_IF	When the number of bytes in the RX FIFO equals the RFITL then the RDA_IF will be set. If
[0]	RDA_IF	When the number of bytes in the RX FIFO equals the RFITL then the RDA_IF will be set. If RDA_IEN (UA_IER [0]) is enabled, the RDA interrupt will be generated.

UART Time-out Register (UA_TOR)

Register	Offset	R/W	Description	Reset Value
UA_TOR x=0,1	UARTx_BA+0x20	R/W	UART Time-out Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	DLY								
7 6 5 4 3 2 1 0									
	TOIC								

Bits	Description	
[31:16]	Reserved	Reserved.
[15:8]	DLY	TX Delay Time Value This field is use to programming the transfer delay time between the last stop bit and next start bit. TX Byte (i) Start Stop Start
[7:0]	TOIC	Time-out Interrupt Comparator The time-out counter resets and starts counting (the counting clock = baud rate) whenever the RX FIFO receives a new data word. Once the content of time-out counter (TOUT_CNT) is equal to that of time-out interrupt comparator (TOIC), a receiver time-out interrupt (TOUT_INT) is generated if RTO_IEN (UA_IER [4]). A new incoming data word or RX FIFO empty clears TOUT_INT. In order to avoid receiver time-out interrupt generation immediately during one character is being received, TOIC value should be set between 40 and 255. So, for example, if TOIC is set with 40, the time-out interrupt is generated after four characters are not received when 1 stop bit and no parity check is set for UART transfer.

UART Baud Rate Divider Register (UA_BAUD)

Register	Offset	R/W	Description	Reset Value
UA_BAUD x=0,1	UARTx_BA+0x24	R/W	UART Baud Rate Divisor Register	0x0F00_0000

31	30	29	28	27	26	25	24	
Rese	Reserved DIV_X_EN		DIV_X_ONE		DIVIDER_X			
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
	BRD							
7	7 6 5 4 3 2 1 0							
	BRD							

Bits	Description	
[31:30]	Reserved	Reserved.
		Divider X Enable Control
		The BRD = Baud Rate Divider, and the baud rate equation is Baud Rate = Clock / [M * (BRD + 2)]; The default value of M is 16.
[29]	DIV_X_EN	0 = Divider X Disabled (the equation of M = 16).
		1 = Divider X Enabled (the equation of M = X+1, but DIVIDER_X [27:24] must >= 8).
		Note1: Refer to the section 6.11.5.1 for more information.
		Note2: In IrDA function mode, this bit must disable.
		Divider X Equal 1
[20]	DIV V ONE	0 = Divider M = X (the equation of M = X+1, but DIVIDER_X[27:24] must >= 8).
[28]	DIV_X_ONE	1 = Divider M = 1 (the equation of M = 1, but BRD [15:0] must >= 8).
		Note1: Refer to the section 6.11.5.1 for more information.
[07.04]	DIVIDED V	Divider X
[27:24]	DIVIDER_X	The baud rate divider M = X+1.
[23:16]	Reserved	Reserved.
[45.0]	BRD	Baud Rate Divider
[15:0]		The field indicated the baud rate divider.

UART IrDA Control Register (UART_IRCR)

Register	Offset	R/W	Description	Reset Value
UA_IRCR x=0,1	UARTx_BA+0x28	R/W	UART IrDA Control Register	0x0000_0040

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	Reserved								
7 6 5 4 3 2 1 0							0		
Reserved	INV_RX	INV_TX	Reserved			TX_SELECT	Reserved		

Bits	Description	Description					
[31:7]	Reserved	Reserved.					
[6]	INV_RX	Inverse RX Input Control 0 = No inversion. 1 = Inverse RX input signal.					
[5]	INV_TX	Inverse RX Output Control 0 = No inversion. 1 = Inverse TX output signal.					
[4:2]	Reserved	Reserved.					
[1]	TX_SELECT	IrDA Receiver Enable Control 0 = IrDA receiver Enabled. 1 = IrDA transmitter Enabled.					
[0]	Reserved	Reserved.					

UART Alternate Control/Status Register (UA_ALT_CSR)

Register	Offset	R/W	Description	Reset Value
UA_ALT_CSR x=0,1	UARTx_BA+0x2C	R/W	UART Alternate Control/Status Register	0x0000_0000

31	30	29	28	27	26	25	24
			ADDR_	MATCH			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
RS485_ADD_ EN	Reserved				RS485_AUD	RS485_AAD	RS485_NMM
7	6	5	4	3	2	1	0
LIN_TX_EN	LIN_RX_EN Reserved			UA_LIN_BKFL			

Bits	Description	Description				
[31:24]	ADDR_MATCH	Address Match Value Register This field contains the RS-485 address match values. Note: This field is used for RS-485 auto address detection mode.				
[23:16]	Reserved	Reserved.				
[15]	RS485_ADD_EN	RS-485 Address Detection Enable Control This bit is use to enable RS-485 Address Detection mode. 0 = RS-485 address detection mode Disabled. 1 = RS-485 address detection mode Enabled. Note: This field is used for RS-485 any operation mode.				
[14:11]	Reserved	Reserved.				
[10]	RS485_AUD	RS-485 Auto Direction Mode (AUD) Control 0 = RS-485 Auto Direction Operation Mode (AUD) Disabled. 1 = RS-485 Auto Direction Operation Mode (AUD) Enabled. Note: It can be active with RS485_AAD or RS485_NMM operation mode.				
[9]	RS485_AAD	RS-485 Auto Address Detection Operation Mode (AAD) Control 0 = RS-485 Auto Address Detection Operation Mode (AAD) Disabled. 1 = RS-485 Auto Address Detection Operation Mode (AAD) Enabled. Note: It cannot be active with RS485_NMM operation mode.				
[8]	RS485_NMM	RS-485 Normal Multi-drop Operation Mode (NMM) Control 0 = RS-485 Normal Multi-drop Operation Mode (NMM) Disabled. 1 = RS-485 Normal Multi-drop Operation Mode (NMM) Enabled. Note: It cannot be active with RS485_AAD operation mode.				
[7]	LIN_TX_EN	LIN TX Break Mode Enable Control 0 = LIN TX Break Mode Disabled.				

		LIN TX Break Mode Enabled. Note: When TX break field transfer operation finished, this bit will be cleared automatically.
[6]	LIN_RX_EN	LIN RX Enable Control 0 = LIN RX mode Disabled. 1 = LIN RX mode Enabled.
[5:4]	Reserved	Reserved.
[3:0]	UA_LIN_BKFL	UART LIN Break Field Length This field indicates a 4-bit LIN TX break field count. Note: This break field length is UA_LIN_BKFL + 2.

UART Function Select Register (UA_FUN_SEL)

Register	Offset	R/W	Description	Reset Value
UA_FUN_SEL x=0,1	UARTx_BA+0x30	R/W	UART Function Select Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
Reserved							
7	6	5	4	3	2	1	0
Reserved				FUN_SEL			

Bits	Description		
[31:2]	Reserved	Reserved.	
	FUN_SEL	Function Select	
		UART Controller function mode selection.	
[4.0]		00 = UART function mode.	
[1:0]		01 = LIN function mode.	
		10 = IrDA function mode.	
		11 = RS-485 function mode.	

6.12 I²C Serial Interface Controller (I²C)

6.12.1 Overview

 I^2C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange between devices. The I^2C standard is a true multi-master bus including collision detection and arbitration that prevents data corruption if two or more masters attempt to control the bus simultaneously.

There are two sets of I²C which supports Power-down wake-up function in M05xxDN/DE series.

6.12.2 Features

The I²C bus uses two wires (SDA and SCL) to transfer information between devices connected to the bus. The main features of the I²C bus include:

- Supports up to two I²C ports
- Master/Slave mode
- Bidirectional data transfer between masters and slaves
- Multi-master bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allowing devices with different bit rates to communicate via one serial bus
- Serial clock synchronization used as a handshake mechanism to suspend and resume serial transfer
- Built-in a 14-bit time-out counter requesting the I²C interrupt if the I²C bus hangs up and timer-out counter overflows.
- Programmable clocks allowing for versatile rate control
- Supports 7-bit addressing mode
- Supports multiple address recognition (four slave address with mask option)
- Supports Power-down Wake-up function (M05xxDN/DE Only)

6.12.3 Basic Configuration

The basic configurations of I²C0 are as follows:

- I²C0 pins are configured on P3_MFP [13:12] register.
- Enable I²C0 clock (I2C0_EN) on APBCLK [8] register.
- Reset I²C0 controller (I2C0_RST) on IPRSTC2 [8] register.

The basic configurations of I²C1 are as follows:

- I²C1 pins are configured on P2_MFP [5:4] or P4_MFP[5:4] registers.
- Enable I²C1 clock (I2C1 EN) on APBCLK [9] register.
- Reset I²C1 controller (I2C1 RST) on IPRSTC2 [9] register.

6.12.4 Functional Description

On I²C bus, data is transferred between a Master and a Slave. Data bits transfer on the SCL and SDA lines are synchronously on a byte-by-byte basis. Each data byte is 8-bit long. There is one SCL clock pulse for each data bit with the MSB being transmitted first, and an acknowledge bit follows each transferred byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted as a command (START or STOP). Please refer to the following figure for more detailed I²C BUS Timing.

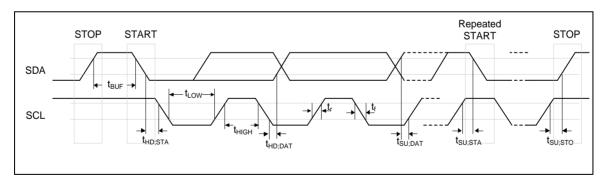


Figure 6-72 I²C Bus Timing

The device's on-chip I²C provides the serial interface that meets the I²C bus standard mode specification. The I²C port handles byte transfers autonomously. To enable this port, the bit ENS1 in I2CON should be set to '1'. The I²C hardware interfaces to the I²C bus via two pins: SDA and SCL. When I/O pins are used as I²C ports, user must set the pins function to I²C in advance.

Note: Pull-up resistor is needed for I²C operation as the SDA and SCL are open-drain pins.

6.12.5 I²C Protocol

The following figure shows the typical I²C protocol. Normally, a standard communication consists of four parts:

- 1) START or Repeated START signal generation
- 2) Slave address and R/W bit transfer
- 3) Data transfer
- 4) STOP signal generation

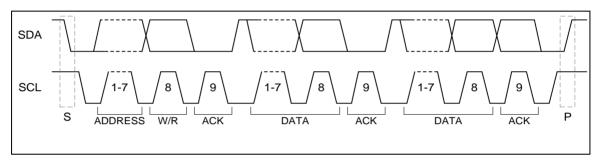


Figure 6-73 I²C Protocol

6.12.5.1 START or Repeated START signal

When the bus is free/idle, meaning no master device is engaging the bus (both SCL and SDA lines are high), a master can initiate a transfer by sending a START signal. A START signal, usually referred to as the "S" bit, is defined as a HIGH to LOW transition on the SDA line while SCL is HIGH. The START signal denotes the beginning of a new data transmission.

A Repeated START is not a STOP signal between two START signals and usually referred to as the "Sr" bit. The master uses this method to communicate with another slave or the same slave in a different transfer direction (e.g. from writing to a device to reading from a device) without releasing the bus.

6.12.5.2 STOP signal

The master can terminate the communication by generating a STOP signal. A STOP signal, usually referred to as the "P" bit, is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH.

The following figure shows the waveform of START, Repeat START and STOP.

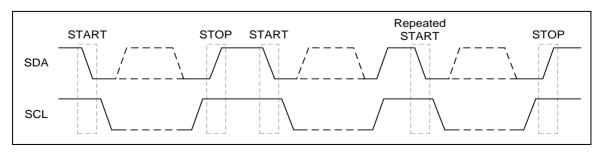


Figure 6-74 START and STOP Conditions

6.12.5.3 Slave Address Transfer

The first byte of data transferred by the master immediately after the START signal is the Slave address (SLA). This is a 7-bit calling address followed by a Read/Write (R/W) bit. The R/W bit signals of the slave indicate the data transfer direction. No two slaves in the system can have the same address. Only the slave with an address that matches the one transmitted by the master will respond by returning an acknowledge bit by pulling the SDA low at the 9th SCL clock cycle.

6.12.5.4 Data Transfer

When a slave receives a correct address with an R/W bit, the data will follow R/W bit specified to transfer. Each transferred byte is followed by an acknowledge bit on the 9th SCL clock cycle. If the slave signals a Not Acknowledge (NACK), the master can generate a STOP signal to abort the data transfer or generate a Repeated START signal and start a new transfer cycle.

If the master, as a receiving device, does Not Acknowledge (NACK) the slave, the slave releases the SDA line for the master to generate a STOP or Repeated START signal.

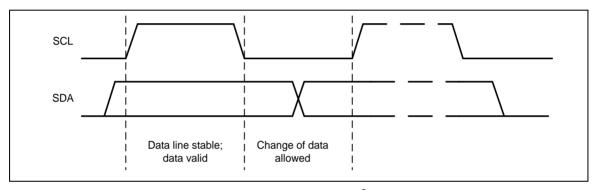


Figure 6-75 Bit Transfer on the I²C Bus

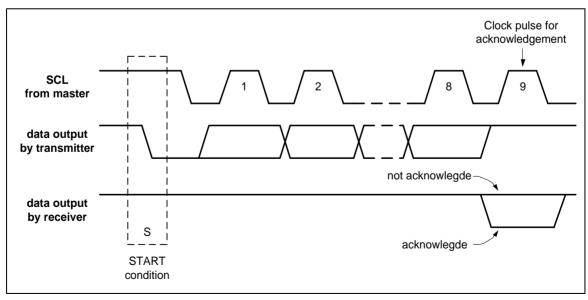


Figure 6-76 Acknowledge on the I²C Bus

6.12.5.5 Data transfer on the 2 C bus

The following figure shows a master transmits data to slave. A master addresses a slave with a 7-bit address and 1-bit write index to denote that the master wants to transmit data to the slave. The master keeps transmitting data after the slave returns acknowledge to the master.

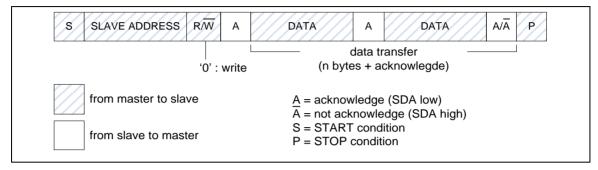


Figure 6-77 Master Transmits Data to Slave

The following figure shows a master read data from slave. A master addresses a slave with a 7-bit address and 1-bit read index to denote that the master wants to read data from the slave. The slave will start transmitting data after the slave returns acknowledge to the master.

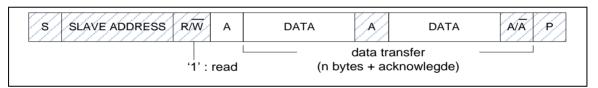


Figure 6-78 Master Reads Data from Slave

6.12.6 I²C Protocol Registers

To control I²C port through the following fifteen special function registers: I2CON (control register), I2CSTATUS (status register), I2CDAT (data register), I2CADDRn (address registers, n=0~3), I2CADMn (address mask registers, n=0~3), I2CLK (clock rate register), I2CTOC (Time-out counter register), I2CWKUPCON(wake-up control register) and I2CWKUPSTS(wake-up status register).

Address Registers (I2CADDR)

The I²C port is equipped with four slave address registers, I2CADDRn (n=0~3). The contents of the register are irrelevant when I²C is in Master mode. In Slave mode, the bit field I2CADDRn[7:1] must be loaded with the chip's own slave address. The I²C hardware will react if the contents of I2CADDRn are matched with the received slave address.

The I²C ports support the "General Call" function. If the GC bit (I2CADDRn [0]) is set the I²C port hardware will respond to General Call address (00H). Clear GC bit to disable general call function.

When the GC bit is set and the I²C is in Slave mode, it can receive the general call address by 00H after Master send general call address to I²C bus, then it will follow status of GC mode.

Slave Address Mask Registers (I2CADM)

The I²C bus controller supports multiple address recognition with four address mask registers I2CADMn (n=0~3). When the bit in the address mask register is set to 1, it means the received corresponding address bit is "Don't care". If the bit is set to 0, it means the received corresponding register bit should be exactly the same as address register.

Data Register (I2CDAT)

This register contains a byte of serial data to be transmitted or a byte which just has been received. The CPU can be read from or written to the 8-bit (I2CDAT [7:0]) directly while it is not in the process of shifting a byte. When I²C is in a defined state and the serial interrupt flag (SI) is set, data in I2CDAT [7:0] remains stable. While data is being shifted out, data on the bus is simultaneously being shifted in; I2CDAT [7:0] always contains the last data byte presented on the bus.

The acknowledge bit is controlled by the I²C hardware and cannot be accessed by the CPU. Serial data is shifted into I2CDAT [7:0] on the rising edges of serial clock pulses on the SCL line. When a byte has been shifted into I2CDAT [7:0], the serial data is available in I2CDAT [7:0], and the acknowledge bit (ACK or NACK) is returned by the control logic during the ninth clock pulse. In order to monitor bus status while sending data, the bus date will be shifted to I2CDATA[7:0] when sending I2CDATA[7:0] to bus. In the case of sending data, serial data bits are shifted out from I2CDAT [7:0] on the falling edge of SCL clocks, and is shifted to I2CDAT [7:0] on the rising edge of SCL clocks.

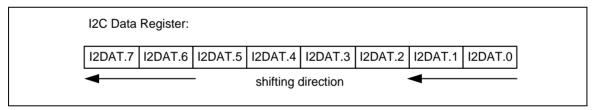


Figure 6-79 I²C Data Shifting Direction

Control Register (I2CON)

The CPU can be read from and written to I2CON [7:0] directly. When the I²C port is enabled by setting ENS1 (I2CON [6]) to high, the internal states will be controlled by I2CON and I²C logic hardware.

There are two bits are affected by hardware: the SI bit is set when the I^2C hardware requests a serial interrupt, and the STO bit is cleared when a STOP condition is present on the bus. The STO bit is also cleared when ENS1 = 0.

Once a new status code is generated and stored in I2CSTATUS, the I²C Interrupt Flag bit SI (I2CON [3]) will be set automatically. If the Enable Interrupt bit EI (I2CON [7]) is set at this time, the I²C interrupt will be generated. The bit field I2CSTATUS[7:0] stores the internal state code, the content keeps stable until SI is cleared by software.

Status Register (I2CSTATUS)

I2CSTATUS [7:0] is an 8-bit read-only register. The bit field I2CSTATUS [7:0] contains the status code and there are 26 possible status codes. All states are listed in 0When I2CSTATUS [7:0] is F8H, no serial interrupt is requested. All other I2CSTATUS [7:0] values correspond to the defined I^2 C states. When each of these states is entered, a status interrupt is requested (SI = 1). A valid status code is present in I2CSTATUS[7:0] one cycle after SI set by hardware and is still present one cycle after SI reset by software.

In addition, the state 00H stands for a Bus Error, which occurs when a START or STOP condition is present at an incorrect position in the I²C format frame. A Bus Error may occur during the serial transfer of an address byte, a data byte or an acknowledge bit. To recover I²C from bus error, STO should be set and SI should be cleared to enter Not Addressed Slave mode. Then STO is cleared to release bus and to wait for a new communication. The I²C bus cannot recognize stop condition during this action when a bus error occurs.

Master Mod	e	Slave Mode)
STATUS	Description	STATUS	Description
0x08	Start	0xA0	Slave Transmit Repeat Start or Stop
0x10	Master Repeat Start	0xA8	Slave Transmit Address ACK
0x18	Master Transmit Address ACK	0xB0	Slave Transmit Arbitration Lost
0x20	Master Transmit Address NACK	0xB8	Slave Transmit Data ACK
0x28	Master Transmit Data ACK	0xC0	Slave Transmit Data NACK
0x30	Master Transmit Data NACK	0xC8	Slave Transmit Last Data ACK
0x38	Master Arbitration Lost	0x60	Slave Receive Address ACK
0x40	Master Receive Address ACK	0x68	Slave Receive Arbitration Lost
0x48	Master Receive Address NACK	0x80	Slave Receive Data ACK
0x50	Master Receive Data ACK	0x88	Slave Receive Data NACK
0x58	Master Receive Data NACK	0x70	GC mode Address ACK
0x00	Bus error	0x78	GC mode Arbitration Lost
		0x90	GC mode Data ACK
		0x98	GC mode Data NACK
0xF8	Bus Released Note: Status "0xF8" exists in both mas	ster/slave modes, a	and it won't raise interrupt.

Table 6-20 I²C Status Code Description

Clock Baud Rate Bits (I2CLK)

The data baud rate of I²C is determines by I2CLK [7:0] register when I²C is in Master Mode, and it is not necessary in a Slave mode. In the Slave mode, I²C will automatically synchronize it with any clock frequency from master I²C device.

The data baud rate of I^2C setting is Data Baud Rate of I^2C = (system clock) / (4x (I2CLK [7:0] +1)). If system clock = 16 MHz, the I2CLK [7:0] = 40 (28H), the data baud rate of I^2C = 16 MHz/ (4x (40 +1)) = 97.5 Kbits/sec.

Time-out Counter Register (I2CTOC)

There is a 14-bit time-out counter which can be used to deal with the I^2C bus hang-up. If the time-out counter is enabled, the counter starts up counting until it overflows (TIF=1) and generates I^2C interrupt to CPU or stops counting by clearing ENTI to 0. When time-out counter is enabled, writing 1 to the SI flag will reset counter and re-start up counting after SI is cleared. If I^2C bus hangs up, it causes the I2CSTATUS and flag SI are not updated for a period, the 14-bit time-out counter may overflow and acknowledge CPU the I^2C interrupt. Refer to the following figure for the 14-bit time-out counter. User may write 1 to clear TIF to 0.

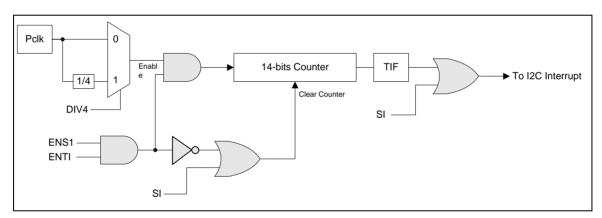


Figure 6-80 I²C Time-out Count Block Diagram

Wake-up Control Register (I2CWKUPCON)

When chip enters Power-down mode, other I²C master can wake-up our chip by addressing our I²C device, user must configure the related setting before entering Sleep mode. When the chip is woken-up by address match with one of the four address register, the following data will be abandoned at this time.

Wake-up Status Register (I2CWKUPSTS)

When system is woken up by other I²C master device, WKUPIF is set to indicate this event. User needs write "1" to clear this bit.

6.12.7 Operation Modes

The on-chip I²C ports support three operation modes, Master, Slave, and General Call Mode.

In a given application, I²C port may operate as a master or as a slave. In Slave mode, the I²C port hardware looks for its own slave address and the general call address. If one of these addresses is detected, and if the slave is willing to receive or transmit data from/to master(by setting the AA bit), acknowledge pulse will be transmitted out on the 9th clock, hence an interrupt is requested on both master and slave devices if interrupt is enabled. When the microcontroller wishes to become the bus master, hardware waits until the bus is free before entering Master mode so that a possible slave action is not be interrupted. If bus arbitration is lost in Master mode, I²C port switches to Slave mode immediately and can detect its own slave address in the same serial transfer.

To control the I²C bus transfer in each mode, user needs to set I2CON, I2CDAT registers according to current status code of I2CSTATUS register. In other words, for each I²C bus action, user needs to check current status by I2CSTATUS register, and then set I2CON, I2CDAT registers to take bus action. Finally, check the response status by I2CSTATUS.

The bits, STA, STO and AA in I2CON register are used to control the next state of the I²C hardware after SI flag of I2CON [3] register is cleared. Upon completion of the new action, a new status code will be updated in I2CSTATUS register and the SI flag of I2CON register will be set. If the I²C interrupt control bit EI (I2CON [7]) is set, appropriate action or software branch of the new status code can be performed in the Interrupt service routine.

The following figure shows the current I^2C status code is 0x08, and then set I2CDATA=SLA+W and (STA,STO,SI,AA) = (0,0,1,x) to send the address to I^2C bus. If a slave on the bus matches the address and response ACK, the I2CSTATUS will be updated by status code 0x18.

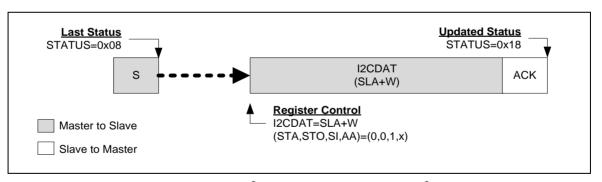


Figure 6-81 Control I²C Bus according to Current I²C Status

6.12.7.1 Master Mode

In below figures, all possible protocols for I²C master are shown. User needs to follow proper path of the flow to implement required I²C protocol.

In other words, user can send a START signal to bus and I²C will be in Master Transmitter mode (Figure 6-82) or Master receiver mode (Figure 6-83) after START signal has been sent successfully and new status code would be 0x08. Followed by START signal, user can send slave address, read/write bit, data and Repeat START, STOP to perform I²C protocol.

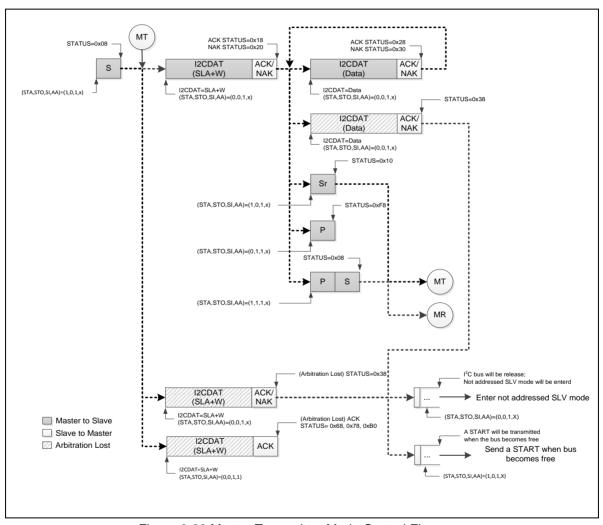
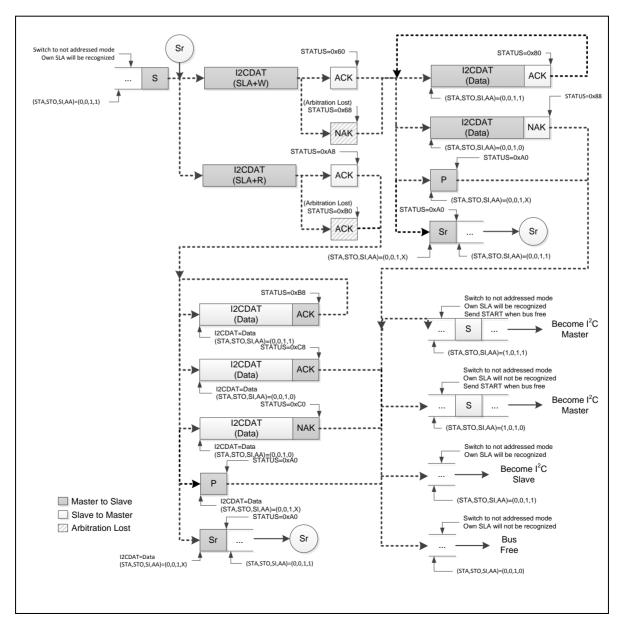


Figure 6-82 Master Transmitter Mode Control Flow

nuvoton

Figure 6-23 Master Receiver Mode Control Flow

If the I²C is in Master mode and gets arbitration lost, the status code will be 0x38. In status 0x38, user may set (STA, STO, SI, AA) = (1, 0, 1, X) to send START to re-start Master operation when bus become free. Otherwise, user may set (STA, STO, SI, AA) = (0, 0, 1, X) to release I²C bus and enter not addressed Slave mode.



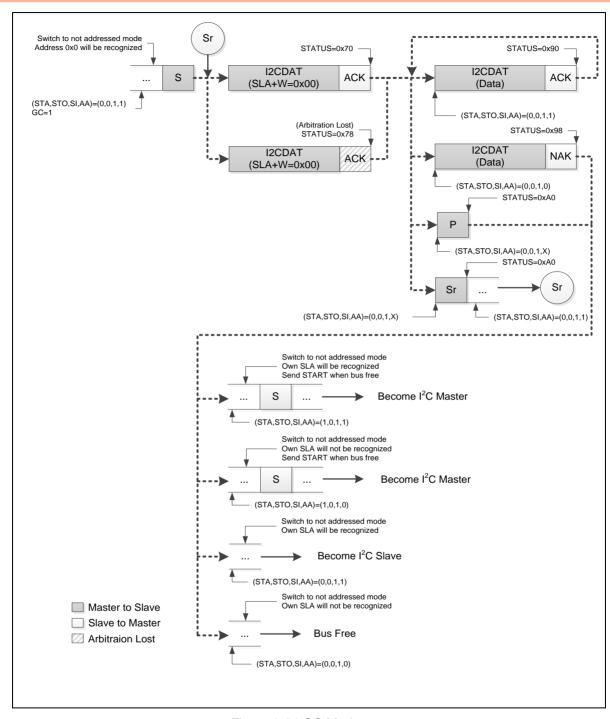
6.12.7.2 Slave Mode

When reset default, I^2C is not addressed and will not recognize the address on I^2C bus. User can set slave address by I2CADDRx and set (STA, STO, SI, AA) = (0, 0, 1, 1) to let I^2C recognize the address sent by master. Figure 6-83 shows all the possible flow for I^2C in Slave mode. Users need to follow a proper flow (as shown in Figure 6-83 to implement their own I^2C protocol.

If bus arbitration is lost in Master mode, I²C port switches to Slave mode immediately and can detect its own slave address in the same serial transfer. If the detected address is SLA+W (Master want to write data to Slave) after arbitration lost, the status code is 0x68. If the detected address is SLA+R (Master want to read data from Slave) after arbitration lost, the status code is 0xB0.

Note: During I²C communication, the SCL clock will be released when writing '1' to clear SI flag in Slave mode.

Figure 6-83 Save Mode Control Flow


If I²C is still receiving data in addressed Slave mode but got a STOP or Repeat START, the status code will be 0xA0. User could follow the action for status code 0x88 as shown in the above figure when getting 0xA0 status.

If I²C is still transmitting data in addressed Slave mode but got a STOP or Repeat START, the status code will be 0xA0. User could follow the action for status code 0xC8 as shown in the above figure when getting 0xA0 status.

Note: After slave gets status of 0x88, 0xC8, 0xC0 and 0xA0, slave can switch to not address mode and own SLA will not be recognized. If entering this status, slave will not receive any I^2C signal or address from master. At this status, I^2C should be reset to leave this status.

6.12.7.3 General Call (GC) Mode

If the GC bit (I2CADDRn [0]) is set, the I^2 C port hardware will respond to General Call address (00H). User can clear GC bit to disable general call function. When the GC bit is set and the I^2 C is in Slave mode, it can receive the general call address by 0x00 after master send general call address to I^2 C bus, then it will follow status of GC mode.

nuvoTon

Figure 6-84 GC Mode

If I²C is still receiving data in GC mode but got a STOP or Repeat START, the status code will be 0xA0. User could follow the action for status code 0x98 in above figure when getting 0xA0 status.

Note: After slave gets status of 0x98 and 0xA0, slave can switch to not address mode and own SLA will not be recognized. If entering this status, slave will not receive any I²C signal or address from master. At this time, I²C controller should be reset to leave this status.

6.12.7.4 Multi-Master

In some applications, there are two or more masters on the same I²C bus to access slaves, and the masters may transmit data simultaneously. The I²C in the M05xxBN and M05xxDN/DE supports multi-master by including collision detection and arbitration to prevent data corruption.

- When I2CSTATUS = 0x38, an "Arbitration Lost" is received. Arbitration lost event maybe occur during the send START bit, data bits or STOP bit. User could set (STA, STO, SI, AA) = (1, 0, 1, X) to send START again when bus free, or set (STA, STO, SI, AA) = (0, 0, 1, X) to send STOP to back to not addressed Slave mode.
- When I2CSTATUS = 0x00, a "Bus Error" is received. To recover I²C bus from a bus error, STO should be set and SI should be cleared, and then STO is cleared to release bus.
 - Set (STA, STO, SI, AA) = (0, 1, 1, X) to stop current transfer
 - Set (STA, STO, SI, AA) = (0, 0, 1, X) to release bus

6.12.7.5 Example for Random Read on EEPROM

The following steps are used to configure the I²C related registers when using I²C to read data from EEPROM.

- Set the multi-function pin in the "GP3_MFP" and "ALT_MFP" registers as SCL and SDA pins.
- 2. Enable I²C APB clock, I2C_EN=1 in the "APBCLK" register.
- 3. Set I2C_RST=1 to reset I²C controller then set I²C controller to normal operation, I2C RST=0 in the "IPRSTC2" register.
- 4. Set ENS1=1 to enable I²C controller in the "I2CON" register.
- 5. Give I²C clock a divided register value for I²C clock rate in the "I2CLK".
- 6. Set SETENA=0x00040000 in the "NVIC ISER" register to set I²C IRQ.
- 7. Set El=1 to enable I²C Interrupt in the "I2CON" register.
- 8. Set I²C address registers which are "I2CADDR0~I2CADDR3".

Random read operation is one of the methods of access EEPROM. The method allows the master to access any address of EEPROM space. The following figure shows the EEPROM random read operation.

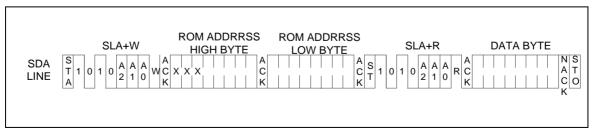


Figure 6-85 EEPROM Random Read

The following figure shows how to use I²C controller to implement the protocol of EEPROM random read.

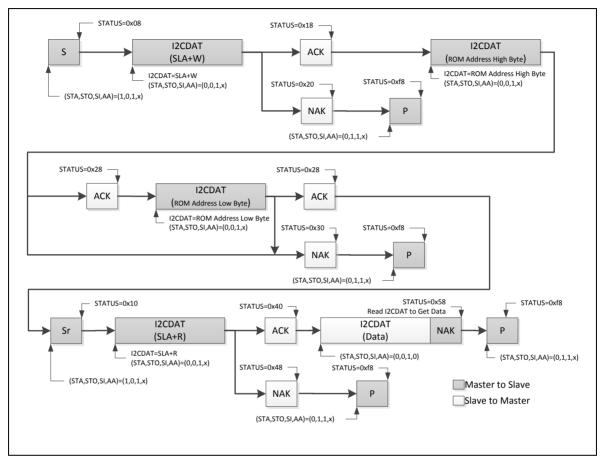


Figure 6-86 Protocol of EEPROM Random Read

The I²C controller sends START to bus to be a master. Then it sends a SLA+W (Slave address + Write bit) to EERPOM followed by two bytes data address to set the EEPROM address to read. Finally, a Repeat START followed by SLA+R is sent to read the data from EEPROM.

6.12.8 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value	
I ² C Base Address: I2C0_BA = 0x4002_0000 I2C1_BA = 0x4012_0000 x=0, 1					
I2CON x=0,1	I2Cx_BA+0x00	R/W	I ² C Control Register	0x0000_0000	
I2CADDR0 x=0,1	I2Cx_BA+0x04	R/W	I ² C Slave Address Register0	0x0000_0000	
I2CDAT x=0,1	I2Cx_BA+0x08	R/W	I ² C Data Register	0x0000_0000	
I2CSTATUS x=0,1	I2Cx_BA+0x0C	R	I ² C Status Register	0x0000_00F8	
I2CLK x=0,1	I2Cx_BA+0x10	R/W	I ² C Clock Divided Register	0x0000_0000	
I2CTOC x=0,1	I2Cx_BA+0x14	R/W	I ² C Time-out Counter Register	0x0000_0000	
I2CADDR1 x=0,1	I2Cx_BA+0x18	R/W	I ² C Slave Address Register1	0x0000_0000	
I2CADDR2 x=0,1	I2Cx_BA+0x1C	R/W	I ² C Slave Address Register2	0x0000_0000	
I2CADDR3 x=0,1	I2Cx_BA+0x20	R/W	I ² C Slave Address Register3	0x0000_0000	
I2CADM0 x=0,1	I2Cx_BA+0x24	R/W	I ² C Slave Address Mask Register0	0x0000_0000	
I2CADM1 x=0,1	I2Cx_BA+0x28	R/W	I ² C Slave Address Mask Register1	0x0000_0000	
I2CADM2 x=0,1	I2Cx_BA+0x2C	R/W	I ² C Slave Address Mask Register2	0x0000_0000	
I2CADM3 x=0,1	I2Cx_BA+0x30	R/W	I ² C Slave Address Mask Register3	0x0000_0000	
I2CWKUPCON x=0,1	I2Cx_BA+0x3C	R/W	I ² C Wake-up Control Register (M05xxDN/DE Only)	0x0000_0000	
I2CWKUPSTS x=0,1	I2Cx_BA+0x40	R/W	I ² C Wake-up Status Register (M05xxDN/DE Only)	0x0000_0000	
Note: I2C1_BA	is for M05xxDN/DE Only	'.			

6.12.9 Register Description

I²C Control Register (I2CON)

Register	Offset	R/W	Description	Reset Value
I2CON	I2Cx_BA+0x00	R/W	I ² C Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
El	ENS1	STA	sто	SI	AA	Rese	erved

Bits	Description	
[31:8]	Reserved	Reserved.
[7]	EI	 I²C Interrupt Enable Control 0 = I²C interrupt Disabled. 1 = I²C interrupt Enabled.
[6]	ENS1	I ² C Controller Enable Control 0 = I ² C Controller Disabled. 1 = I ² C Controller Enabled. Set to enable I ² C serial function controller. When ENS1=1 the I ² C serial function enables. The function of multi-function pins must be set to I ² C first.
[5]	STA	I ² C START Control Setting STA to logic 1 to enter Master mode, the I ² C hardware sends a START or repeat START condition to bus when the bus is free.
[4]	sто	I ² C STOP Control In master mode, setting STO to transmit a STOP condition to bus then I ² C hardware will check the bus condition if a STOP condition is detected this bit will be cleared by hardware automatically. In Slave mode, setting STO resets I ² C hardware to the defined "not addressed" Slave mode. This means it is NO LONGER in the slave receiver mode to receive data from the master transmit device.
[3]	SI	I ² C Interrupt Flag When a new I ² C state is present in the I2CSTATUS register, the SI flag is set by hardware, and if bit EI (I2CON [7]) is set, the I ² C interrupt is requested. SI must be cleared by software. Clear SI is by writing 1 to it.
[2]	AA	Assert Acknowledge Control When AA=1 prior to address or data received, an acknowledged (low level to SDA) will be returned during the acknowledge clock pulse on the SCL line when 1.) A slave is acknowledging the address sent from master, 2.) The receiver devices are acknowledging the data sent by transmitter. When AA=0 prior to address or data received, a Not acknowledged (high level to SDA) will be returned during the acknowledge clock pulse on

		the SCL line.
[1:0]	Reserved	Reserved.

I²C Data Register (I2CDAT)

Register	Offset	R/W	Description	Reset Value
I2CDAT	I2Cx_BA+0x08	R/W	I ² C Data Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	I2CDAT						

Bits	Description	Description			
[31:8]	Reserved	Reserved.			
[7:0]	I I2CDAT	I ² C Data Register Bit [7:0] is located with the 8-bit transferred data of I ² C serial port.			

I²C Status Register (I2CSTATUS)

Register	Offset	R/W	Description	Reset Value
I2CSTATUS	I2Cx_BA+0x0C	R	I ² C Status Register	0x0000_00F8

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	I2CSTATUS						

Bits	Description	Description			
[31:8]	Reserved	Reserved.			
[7:0]	I2CSTATUS	I ² C Status The three least significant bits are always 0. The five most significant bits contain the status code. There are 26 possible status codes. When I2CSTATUS contains F8H, no serial interrupt is requested. All other I2CSTATUS values correspond to defined I ² C states. When each of these states is entered, a status interrupt is requested (SI = 1). A valid status code is present in I2CSTATUS one cycle after SI is set by hardware and is still present one cycle after SI has been reset by software. In addition, states 00H stands for a Bus Error. A Bus Error occurs when a START or STOP condition is present at an incorrect position in the formation frame. A bus error may occur during the serial transfer of an			

I²C Clock Divided Register (I2CLK)

Register	Offset	R/W	Description	Reset Value
I2CLK	I2Cx_BA+0x10	R/W	I ² C Clock Divided Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	I2CLK						

Bits	Description			
[31:8]	Reserved	Reserved Reserved.		
[7:0]	I2CLK	I^2C Clock Divided The I^2C clock rate bits: Data Baud Rate of I^2C = PCLK / (4x (I2CLK+1)). Note: The minimum value of I2CLK is 4.		

I²C Time-out Control Register (I2CTOC)

Register	Offset	R/W	Description	Reset Value
I2CTOC	I2Cx_BA+0x14	R/W	I ² C Time-out Counter Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved			ENTI	DIV4	TIF	

Bits	Description	Description					
[31:3]	Reserved	Reserved.					
		Time-out Counter Enable Control 0 = Time-out counter Disabled.					
[2]	ENTI	1 = Time-out counter Enabled.					
		Note: When the 14 bit Time-out counter is enabled, it will start counting when SI is cleared. Writing 1 to the Si flag will reset the counter and re-start up counting after SI is cleared.					
		Time-out Counter Input Clock Divided by 4					
[4]	DIV4	0 = Time-out counter input clock divided by 4 Disabled.					
[1]	DIV4	1 = Time-out counter input clock divided by 4 Enabled.					
		Note: When Enabled, the time-out period is extended 4 times.					
		Time-out Flag					
[0]	TIF	This bit is set by hardware when I^2C time-out happened and it can interrupt CPU if I^2C interrupt enable bit (EI) is set to 1.					
		Note: Software can write 1 to clear this bit.					

I²C Slave Address Register (I2CADDRx)

Register	Offset	R/W	Description	Reset Value
I2CADDR0	I2Cx_BA+0x04	R/W	I ² C Slave Address Register0	0x0000_0000
I2CADDR1	I2Cx_BA+0x18	R/W	I ² C Slave Address Register1	0x0000_0000
I2CADDR2	I2Cx_BA+0x1C	R/W	I ² C Slave Address Register2	0x0000_0000
I2CADDR3	I2Cx_BA+0x20	R/W	I ² C Slave Address Register3	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
I2CADDR					GC		

Bits	Description	Description		
[31:8]	Reserved	Reserved.		
[7:1]	I2CADDR	I ² C Address Register The content of this register is irrelevant when I ² C is in Master mode. In Slave mode, the seven most significant bits must be loaded with the chip's own address. The I ² C hardware will react if one of the addresses is matched.		
[0]	GC	General Call Function Enable Control 0 = General Call function Disabled. 1 = General Call Function Enabled.		

1²C Slave Address Mask Register (I2CADMx)

Register	Offset	R/W	Description	Reset Value
I2CADM0	I2Cx_BA+0x24	R/W	I ² C Slave Address Mask Register0	0x0000_0000
I2CADM1	I2Cx_BA+0x28	R/W	I ² C Slave Address Mask Register1	0x0000_0000
I2CADM2	I2Cx_BA+0x2C	R/W	I ² C Slave Address Mask Register2	0x0000_0000
I2CADM3	I2Cx_BA+0x30	R/W	I ² C Slave Address Mask Register3	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
I2CADM					Reserved		

Bits	Description				
[31:8]	Reserved	served Reserved.			
[7:1]	I2CADM	I^2C Address Mask $0 = I^2C$ address mask Disabled (the received corresponding register bit should be exactly the same as address register). $1 = I^2C$ address mask Enabled (the received corresponding address bit is "Don't care").			
[0]	Reserved	Reserved.			

I²C Wake-up Control Register (I2CWKUPCON) (M05xxDN/DE Only)

Register	Offset	R/W	Description	Reset Value
I2CWKUPCON	I2Cx_BA+0x3C	R/W	I ² C Wake-up Control Register (M05xxDN/DE Only)	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved					WKUPEN		

Bits	Description		
[31:1]	Reserved	served Reserved.	
[0]	WKUPEN	I ² C Wakeup Function Enable Control 0 = I ² C wake-up function Disabled. 1 = I ² C wake-up function Enabled.	

I²C Wake-up Status Register (I2CWKUPSTS) (M05xxDN/DE Only)

Register	Offset	R/W	Description	Reset Value
I2CWKUPSTS	I2Cx_BA+0x40	R/W	I ² C Wake-up Status Register (M05xxDN/DE Only)	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved					WKUPIF		

Bits	Description		
[31:1]	Reserved.		
[0]	WKUPIF	I ² C Wake-up Interrupt Flag When chip is woken up from Power-Down mode by I ² C, this bit is set to 1. Software can write 1 to clear this bit.	

6.13 Serial Peripheral Interface (SPI)

6.13.1 Overview

The Serial Peripheral Interface (SPI) applies to synchronous serial data communication and allows full-duplex transfer. Devices communicate in Master/Slave mode with 4-wire bi-direction interface. The NuMicro® M051 series contains up to two sets of SPI controllers performing a serial-to-parallel conversion on data received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. Each SPI controller can be configured as a master or a slave device.

6.13.2 Features

- Up to two sets of SPI controllers
- Supports Master or Slave mode operation
- Configurable transfer bit length
- Provides burst mode operation, transmit/receive can be transferred up to two times word transaction in one transfer
- Provides FIFO buffers
- Supports MSB or LSB first transfer
- Supports byte reorder function
- Supports byte or word suspend mode
- Supports two programmable bus clock frequencies in Master mode
- Supports Slave 3-wire mode
- SPI bus clock rate can be configured to equal the system clock rate

	M05xxBN	M05xxDN/DE
Variable Clock Function	•	-
Burst Mode	•	-
FIFO Mode	-	•
DIV_ONE Function	•	-
Width of DIVIDER	16 bits	8 bits
SPI Peripheral Clock Source	HCLK	HCLK or PLL

Table 6-21 M05xxBN and M05xxDN/DE Function Difference List (SPI)

6.13.3 Block Diagram

nuvoTon

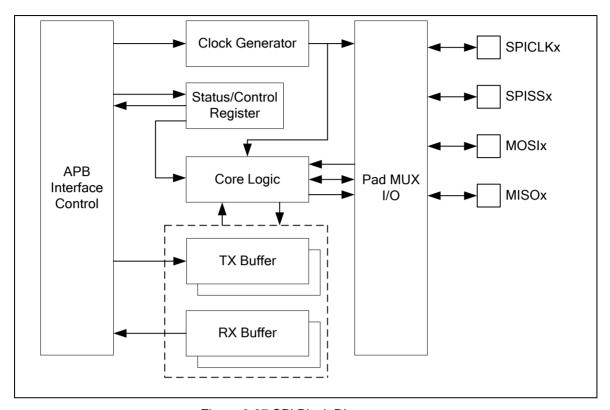


Figure 6-87 SPI Block Diagram

6.13.4 Basic Configuration

The SPI pin functions are configured in P0_MFP and P1_MFP registers. The SPI0 and SPI1 peripheral clock can be enabled in APBCLK[12] and APBCLK[13]. On M05xxDN/DE, the SPI peripheral clock source is selected in CLKSEL1[4] and CLKSEL1[5].

6.13.5 Functional Description

6.13.5.1 Terminology

SPI Peripheral Clock and SPI Bus Clock

The SPI controller needs the SPI peripheral clock to drive the SPI logic unit to perform the data transfer. The SPI bus clock is the clock presented on SPICLKx pin. The SPI clock frequency calculation of M05xxBN is different from that of M05xxDN/DE.

On M05xxBN

In M05xxBN SPI Master mode, the SPI peripheral clock frequency is determined by the setting of DIVIDER (SPI_DIVIDER[15:0]) and DIV_ONE (SPI_CNTRL2[0]). If DIV_ONE bit is set to 1, the SPI bus clock frequency is equal to system clock frequency. When the variable bus clock function is disabled, the SPI peripheral clock is equal to the SPI bus clock. M05xxBN SPI supports variable bus clock if the VARCLK_EN bit (SPI_CTL[23]) is set to 1. In this case, the output frequency of bus clock can be programmed as one of the two different frequencies which depends on the value of DIVIDER (SPI_DIVIDER[15:0]) and DIVIDER2 (SPI_DIVIDER[31:16]). The bus clock frequency of each cycle depends on the setting of the SPI VARCLK register.

In M05xxBN SPI Slave mode, the off-chip master device drives the bus clock through the SPICLK input pin to this SPI controller. The system clock is designated to be the SPI peripheral clock. The SPI peripheral clock rate of slave device must be faster than the SPI bus clock rate 5 times at least.

On M05xxDN/DE

In M05xxDN/DE SPI Master mode and Slave mode, the SPI peripheral clock frequency is determined by the settings of clock source, BCn (SPI_CNTRL2[31]) option and clock divisor (SPI_DIVIDER[7:0]). The SPIx_S bit of CLKSEL1 register determines the clock source of the SPI peripheral clock. The clock source can be HCLK or PLL output clock. Set the BCn bit to 0 for the compatible SPI clock frequency calculation of previous products. The DIVIDER setting of SPI_DIVIDER register determines the divisor of the clock frequency calculation.

In M05xxDN/DE SPI Master mode, the SPI peripheral clock is equal to the SPI bus clock.

In M05xxDN/DE SPI Slave mode, the SPI bus clock is provided by an off-chip master device. The SPI peripheral clock frequency of slave device must be faster than the bus clock frequency of the master device connected together. The frequency of SPI peripheral clock cannot be faster than the APB clock frequency regardless of Master mode or Slave mode.

Master/Slave Mode

This SPI controller can be set as Master or Slave mode by setting the SLAVE bit (SPI_CNTRL[18]) to communicate with the off-chip SPI slave or master device. The application block diagrams in Master or Slave mode are shown below.

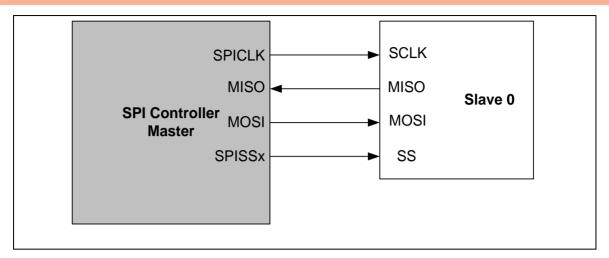


Figure 6-88 SPI Master Mode Application Block Diagram

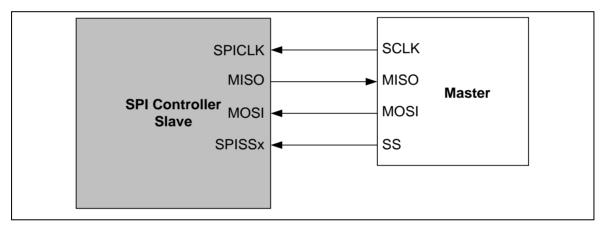


Figure 6-89 SPI Slave Mode Application Block Diagram

Clock Polarity

nuvoton

The CLKP bit (SPI_CTL[11]) defines the bus clock idle state. If CLKP = 1, the output SPICLK is idle at high state, otherwise it is at low state if CLKP = 0.

Transmit/Receive Bit Length

The bit length of a transaction word is defined in TX_BIT_LEN bit field (SPI_CNTRL[7:3]). It can be configured up to 32-bit length in a transaction word for transmitting and receiving.

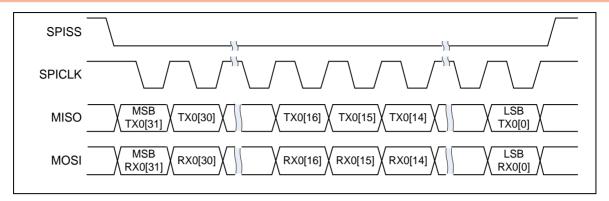


Figure 6-90 32-bit in One Transaction

LSB First

The LSB bit (SPI_CNTRL[10]) defines the data transmission either from LSB or MSB firstly to start to transmit/receive data.

Transmit Edge

The TX_NEG bit (SPI_CNTRL[2]) defines the data transmitted out either on negative edge or on positive edge of bus clock SPICLK.

Receive Edge

The Rx_NEG bit (SPI_CNTRL[1]) defines the data received in either on negative edge or on positive edge of bus clock SPICLK.

Note: The settings of TX_NEG and RX_NEG are mutual exclusive. In other words, don't transmit and receive data at the same clock edge.

Word Suspend

The four bits field of SP_CYCLE (SPI_CNTRL[15:12]) provide a configurable suspend interval between two successive transaction words in Master mode. The definition of the suspend interval is the interval between the last clock edge of the preceding transaction word and the first clock edge of the following transaction word.

On M05xxBN, the default value of SP_CYCLE is 0x0 (2 bus clock cycles), and the SP_CYCLE setting will not take effect on data transfer process if TX_NUM is set to 0x00. On M05xxDN/DE, the default value of SP_CYCLE is 0x3 (3.5 bus clock cycles), and the SP_CYCLE setting will not take effect to the word suspend interval if software disables the FIFO mode.

Slave Selection

In Master mode, each SPI controller can drive one off-chip slave device through the slave select output pin, SPISSx. In Slave mode, the off-chip master device drives the slave select signal from the SPISSx input pin to this SPI controller. In Master/Slave mode, the active state of slave select signal can be programmed to low active or high active in SS_LVL bit (SPI_SSR[2]), and the SS_LTRIG bit (SPI_SSR[4]) defines the slave select signal SPISSx is level trigger or edge trigger. The selection of trigger condition depends on what type of peripheral slave/master device is connected.

In Slave mode, if the SS_LTRIG bit is configured as level trigger, the LTRIG_FLAG bit (SPI_SSR[5]) is used to indicate if both the number of received data and the number of received bits meet the requirement which defined in TX_NUM and TX_BIT_LEN among one transaction done (the transaction done means the unit transfer interrupt flag is set to 1 when the slave select signal is inactivated or the SPI controller finishes one data transfer.)

Level-trigger / Edge-trigger

In Slave mode, the slave select signal can be configured as level-trigger or edge-trigger. In edge-trigger, the data transfer starts from an active edge of the slave select signal and ends on an inactive edge of the slave select signal. The unit-transfer interrupt flag (SPI_CNTRL[16]) will be set to 1 as an inactive edge is detected. If master does not send an inactive edge to slave, the transfer procedure will not be completed and the unit-transfer interrupt flag of slave will not be set. In level-trigger, the unit-transfer interrupt flag of slave will be set when one of the following two conditions occurs. The first condition is that if the number of transferred bits matches the settings of TX_NUM and TX_BIT_LEN, the unit-transfer interrupt flag of slave will be set. The TX_NUM setting is not available on M05xxDN/DE, only the setting of TX_BIT_LEN will be considered. The second condition, if master set the slave select pin to inactive level during the transfer in progress, it will force slave device to terminate the current transfer no matter how many bits have been transferred and the unit-transfer interrupt flag will be set. User can read the status of LTRIG FLAG bit to check if the data has been completely transferred.

6.13.5.2 Automatic Slave Selection

In Master mode, if the AUTOSS bit (SPI_SSR[3]) is set, the slave select signal will be generated automatically and output to SPISSx pin according to SSR bit (SPI_SSR[0]) whether be enabled or not. This means that the slave select signal will be asserted by the SPI controller when data transfer is started by setting the GO_BUSY bit (SPI_CNTRL[0]) and will be de-asserted after the data transfer is finished. If the AUTOSS bit is cleared, the slave select output signal will be asserted/de-asserted by setting/clearing the SSR bit. The active state of the slave select output signal is specified in SS_LVL bit (SPI_SSR[2]).

6.13.5.3 Variable Bus Clock Frequency (M05xxBN Only)

In Master mode, if the VARCLK_EN bit (SPI_CNTRL[23]) is set to 1, the output of SPI bus clock can be programmed as variable frequency pattern. The SPI bus clock period of each cycle depends on the setting of the SPI_VARCLK register. When the variable clock function is enabled, the TX_BIT_LEN setting must be set as 0x10 to configure the data transfer as 16-bit transfer mode. The SPI_VARCLK[31] determines the clock period of the first clock cycle. If SPI_VARCLK[31] is 0, the first clock cycle depends on the DIVIDER setting; if it is 1, the first clock cycle depends on the DIVIDER2 setting. Two successive bits in VARCLK[30:1] defines one clock cycle. If the two successive bits are 00, the clock cycle depends on the DIVIDER setting; if they are 11, the clock cycle depends on the DIVIDER2 setting. The bit field VARCLK[30:29] defines the second clock cycle of SPI bus clock of a transaction, and the bit field VARCLK[28:27] defines the third clock cycle, and so on. The VARCLK[0] has no meaning. The following figure shows the timing relationship among the SPI bus clock, VARCLK setting, DIVIDER setting and DIVIDER2 setting.

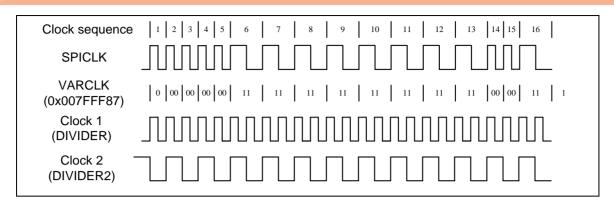


Figure 6-91 Variable Bus Clock Frequency

6.13.5.4 Burst Mode (M05xxBN Only)

nuvoton

The SPI controller can switch to Burst mode by setting TX_NUM bit field (SPI_CNTRL[9:8]) to 0x01. In burst mode, SPI can transmit/receive two transactions in one transfer. The bit length of each transaction is determined by TX BIT LEN bit field. The SPI burst mode waveform is shown below:

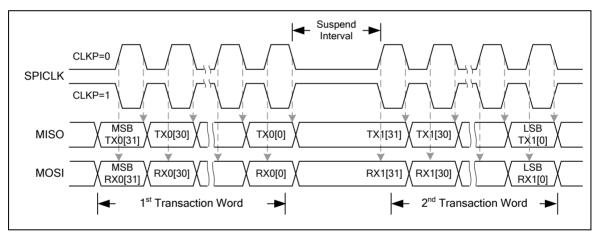


Figure 6-92 Two Transactions in One Transfer (Burst Mode)

6.13.5.5 Byte Reorder Function

When the transfer is set as MSB first (LSB = 0) and the byte reorder function is enabled, the data stored in the TX buffer and RX buffer will be rearranged in the order as [Byte0, Byte1, Byte2, Byte3] when the bit length is configured as 32-bit (TX BIT LEN=0). The sequence of transmitted/received data will be Byte0, Byte1, Byte2, and then Byte3. If the TX_BIT_LEN bit field is set to 24, the data in TX buffer and RX buffer will be rearranged as [unknown byte, Byte0, Byte1, Byte2]. The SPI controller will transmit/receive data with the sequence of Byte0, Byte1 and then Byte2. Each byte will be transmitted/received with MSB first. The rule of 16-bit mode is the same as above. Byte reorder function is only available when TX BIT LEN is configured as 16, 24, or 32 bits.

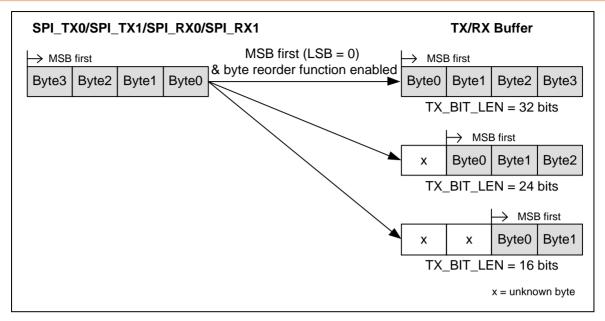


Figure 6-93 Byte Reorder

6.13.5.6 Byte Suspend Function

Both settings of byte suspend interval and word suspend interval are configured in SP_CYCLE.

In M05xxBN Master mode, if SPI_CNTRL[19] is set to 1, the hardware will insert a suspend interval $2 \sim 17$ bus clock periods between two successive bytes in a transaction word. Note that when enabling the byte suspend function, the setting of TX_BIT_LEN must be configured as 32 bits only.

In M05xxDN/DE Master mode, if the byte reorder function is enabled by setting SPI_CNTRL[19] to 1, the hardware will insert a suspend interval of $0.5 \sim 15.5$ bus clock periods between two successive bytes in a transaction word. The setting of TX_BIT_LEN can be configured as 16, 24 or 32 bits.

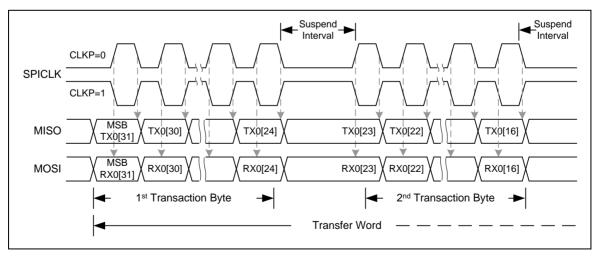


Figure 6-94 Timing Waveform for Byte Suspend

REORDER	Description
00	Disable both byte reorder function and byte suspend interval.
01	Enable byte reorder function and insert a byte suspend internal (2~17 SPICLK) among each byte. The setting of TX_BIT_LEN must be configured as 0x00 (32 bits/ word)
10	Enable byte reorder function but disable byte suspend function
11	Disable byte reorder function, but insert a suspend interval (2~17 SPICLK) among each byte. The setting of TX_BIT_LEN must be configured as 0x00 (32 bits/ word)

Table 6-22 Byte Order and Byte Suspend Configurations on M05xxBN

6.13.5.7 Slave 3-wire Mode

When the NOSLVSEL bit (SPI_CNTRL2[8]) is set by software to enable the Slave 3-wire mode, the SPI controller can work with no slave select signal in Slave mode. The NOSLVSEL bit only takes effect in Slave mode. Only three pins, SPICLK, MISO, and MOSI, are required to communicate with a SPI master. The SPISS pin can be configured as a GPIO. When the NOSLVSEL bit is set to 1, the SPI slave will be ready to transmit/receive data after the GO_BUSY bit is set to 1. As the number of received bits meets the requirement which defined in TX BIT LEN and TX NUM, the unit-transfer interrupt flag, IF (SPI CNTRL[16]), will be set to 1.

Note: In Slave 3-wire mode, the SS_LTRIG bit (SPI_SSR[4]) should be set as 1.

6.13.5.8 FIFO Mode (M05xxDN/DE Only)

The SPI controllers support FIFO mode when the FIFO bit, SPI_CNTRL[21], is set as 1. The SPI controllers equip with four 32-bit wide transmit and receive FIFO buffers.

The transmit FIFO buffer is a 4-layer depth, 32-bit wide, first-in, first-out register buffer. The software can write data to the transmit FIFO buffer by writing the SPI_TX0 register. The data stored in the transmit FIFO buffer will be read and sent out by the transmission control logic. If the 4-layer transmit FIFO buffer is full, the TX_FULL bit will be set to 1. When the SPI transmission logic unit draws out the last datum of the transmit FIFO buffer, so that the 4-layer transmit FIFO buffer is empty, the TX_EMPTY bit will be set to 1. Note that the TX_EMPTY flag is set to 1 while the last transaction is still in progress.

The received FIFO buffer is also a 4-layer depth, 32-bit wide, first-in, first-out register buffer. The receive control logic will store the received data to this buffer. The software can read the FIFO buffer data from SPI_RX0 register. There are FIFO related status bits, like RX_EMPTY and RX FULL, to indicate the current status of FIFO buffer.

In FIFO mode, the software can set the transmitting and receiving threshold by setting the TX_THRESHOLD and RX_THRESHOLD settings. When the count of valid data stored in transmit FIFO buffer is less than or equal to TX_THRESHOLD setting, the TX_INTSTS bit will be set to 1. When the count of valid data stored in receive FIFO buffer is larger than RX_THRESHOLD setting, the RX_INTSTS bit will be set to 1.

In FIFO mode, the software can write 4 data to the SPI transmit FIFO buffer in advance. When the SPI controller operates with FIFO mode, the GO_BUSY bit of SPI_CNTRL register will be controlled by hardware, software should not modify the content of SPI_CNTRL register unless

Write SPI_TX0 buffer MOSIx pin in master mode Transmit buffer 0 MISOx pin in slave mode APB MISOx pin in master mode Receive buffer 0 or MOSIx pin in slave mode Read SPI RX0 buffer

clearing the FIFO bit to disable the FIFO mode.

nuvoton

Figure 6-95 FIFO Mode Block Diagram

In Master mode transmission operation, the TX_EMPTY flag will be cleared to 0 when the FIFO bit is set to 1 and the software write the first datum to the SPI TX0 register. The transmission starts immediately as long as the transmit FIFO buffer is not empty. User can write the next data into SPI_TX0 register immediately. The SPI controller will insert a suspend interval between two successive transactions in FIFO mode and the period of suspend interval is decided by the setting of SP_CYCLE (SPI_CNTRL [15:12]). User can write data into SPI_TX0 register as long as the TX_FULL flag is 0.

The subsequent transactions will be triggered automatically if the transmitted data are updated in time. If the SPI TX0 register is not updated after all data transfer are done, the transfer will stop.

In Master mode reception operation, the serial data are received from MISOx pin and stored to receive FIFO buffer. The RX_EMPTY flag will be cleared to 0 while the receive FIFO buffer contain unread data. The software can read the received data from SPI_RX0 register as long as the RX EMPTY flag is 0. If the receive FIFO buffer contain 4 unread data, the RX FULL flag will be set to 1. The SPI controller will stop receiving data until the software read the SPI_RX0 register.

In Slave mode, when the FIFO bit is set as 1, the GO BUSY bit will be set as 1 by hardware automatically. If user wants to stop the Slave mode SPI data transfer, both the FIFO bit and GO BUSY bit must be cleared to 0 by software.

In Slave mode transmission operation, when the software writes data to SPI_TX0 register, the data will be loaded into transmit FIFO buffer and the TX_EMPTY flag will be set to 0. The transmission will start when the slave device receives clock signal from master. The software can write data to SPI_TX0 register as long as TX_FULL flag is 0. After all data have been drawn out by the SPI transmission logic unit and the software does not update the SPI_TX0 register, the TX_EMPTY flag will be set to 1.

In Slave mode reception operation, the serial data is received from MOSIx pin and stored to SPI_RX0 register. The reception mechanism is similar to Master mode reception operation.

6.13.5.9 Interrupt

SPI unit-transfer interrupt

As the SPI controller finishes a unit transfer, the unit-transfer interrupt flag IF (SPI_CNTRL[16]) will be set to 1. The unit-transfer interrupt event will generate an interrupt to CPU if the unit-transfer interrupt enable bit IE (SPI_CNTRL[17]) is set. The unit-transfer interrupt flag can be cleared only by writing 1 to it.

SPI Slave 3-wire mode start interrupt

In Slave 3-wire mode, the Slave 3-wire mode start interrupt flag, SLV_START_INTSTS (SPI_CNTRL2[11]), will be set to 1 when the slave senses the SPI bus clock signal. The SPI controller will issue an interrupt if the SSTA_INTEN bit (SPI_CNTRL2[10]) is set to 1. If the count of the received bits is less than the bit length setting of TX_BIT_LEN and there is no more SPI bus clock input over the expected time period which is defined by user, user can set the SLV_ABORT bit (SPI_CNTRL2[9]) to abort the current transfer. The unit-transfer interrupt flag, IF, will be set to 1 if the SLV_ABORT bit is set to 1 by software.

Receive FIFO time-out interrupt (M05xxDN/DE Only)

In FIFO mode, there is time-out function to inform user. If there is a received data in the FIFO and it does not be read by software over 64 SPI periperal clock periods in Master mode or over 576 SPI periperal clock periods in Slave mode, it will send a time-out interrupt to the system if the time-out interrupt enable bit, FIFO CTL[21], is set to 1.

Transmit FIFO interrupt (M05xxDN/DE Only)

In FIFO mode, if the valid data count of the transmit FIFO buffer is less than or equal to the setting value of TX_THRESHOLD, the transmit FIFO interrupt flag will be set to 1. The SPI controller will generate a transmit FIFO interrupt to the system if the transmit FIFO interrupt enable bit, SPI FIFO CTL[3], is set to 1.

Receive FIFO interrupt (M05xxDN/DE Only)

In FIFO mode, if the valid data count of the receive FIFO buffer is larger than the setting value of RX_THRESHOLD, the receive FIFO interrupt flag will be set to 1. The SPI controller will generate a receive FIFO interrupt to the system if the receive FIFO interrupt enable bit, SPI_FIFO_CTL[2], is set to 1.

6.13.6 Timing Diagram

nuvoton

The active state of slave select signal can be defined by the settings of SS LVL bit (SPI SSR[2]) and SS LTRIG bit (SPI SSR[4]). The bus clock (SPICLK) idle state can be configured as high state or low state by setting the CLKP bit (SPI_CNTRL[11]). It also provides the bit length of a transaction word in TX BIT LEN bit field (SPI CNTRL[7:3]), the transaction number in TX NUM bit field (SPI_CNTRL[9:8]), and transmit/receive data from MSB or LSB first in LSB bit (SPI CNTRL[10]). User also can select which edge of bus clock to transmit/receive data in TX NEG/RX NEG (SPI CNTRL[2]/SPI CNTRL[1]) bit. Four SPI timing diagrams for master/slave operations and the related settings are shown below.

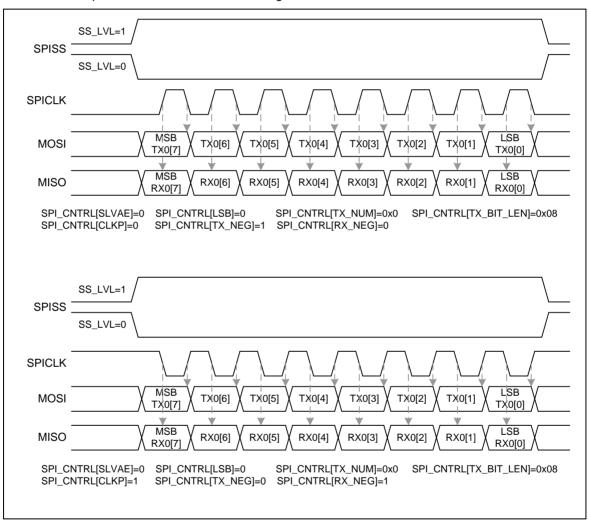


Figure 6-96 SPI Timing in Master Mode

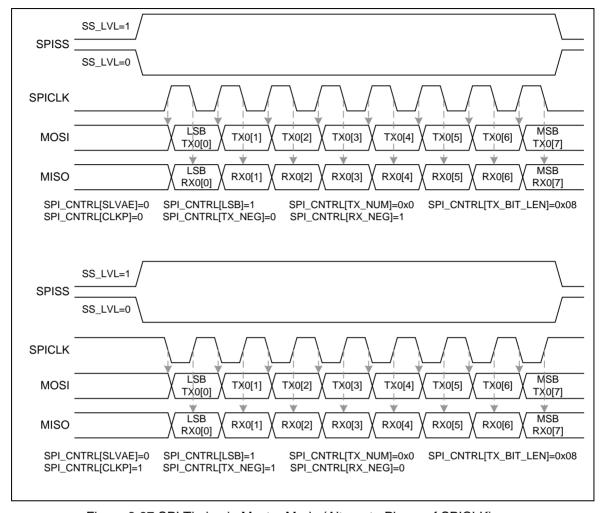


Figure 6-97 SPI Timing in Master Mode (Alternate Phase of SPICLK)

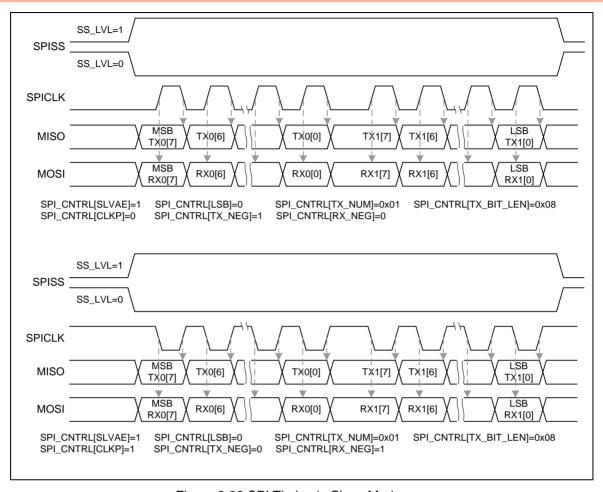


Figure 6-98 SPI Timing in Slave Mode

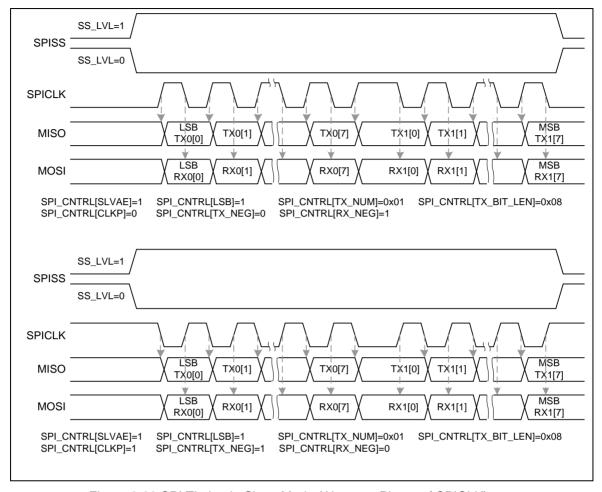


Figure 6-99 SPI Timing in Slave Mode (Alternate Phase of SPICLK)

6.13.7 Programming Examples

nuvoton

Example 1: SPI controller is set as a master to access an off-chip slave device with following specifications on M05xxDN/DE:

- Data bit is latched on positive edge of bus clock
- Data bit is driven on negative edge of bus clock
- Data is transferred from MSB first
- Data width is 8 bits
- SPICLK is idle at low state
- Only one byte of data to be transmitted/received in a transaction
- Connect with an off-chip slave device. Slave select signal is active low

The operation flow is described below.

- 1) Set the DIVIDER (SPI_DIVIDER[7:0]) to determine the output frequency of bus clock.
- 2) Write the related settings into the SPI_CNTRL register to control the SPI master actions.

- 1. Set this SPI controller as master device in SLAVE bit (SPI_CNTRL[18] = 0).
- 2. Force the bus clock idle state at low in CLKP bit (SPI_CNTRL[11] = 0).
- Select data transmitted on negative edge of bus clock in TX_NEG bit (SPI_CNTRL[2] =

 1).
- 4. Select data latched on positive edge of bus clock in RX_NEG bit (SPI_CNTRL[1] = 0).
- Set the bit length of word transfer as 8-bit in TX_BIT_LEN bit field (SPI_CNTRL[7:3] = 0x08).
- 6. Set MSB transfer first in MSB bit (SPI_CNTRL[10] = 0), and need not to care the SP_CYCLE bit field (SPI_CNTRL[15:12]) due to it is not in FIFO mode in this case.
- 3) Write the SPI_SSR register a proper value for the related settings of Master mode.
 - Clear the Automatic Slave Select bit AUTOSS(SPI_SSR[3] = 0).
 Select low level trigger output of slave select signal in the Slave Select Active Level control bit, SS_LVL (SPI_SSR[2] = 0).
 - Set the slave select signal to be active by setting the Slave Select control bit SSR (SPI_SSR[0]) to active the off-chip slave device.
- 4) If this SPI master attempts to transmit (write) one byte data to the off-chip slave device, write the byte data that will be transmitted into the SPI TX0 register.
- 5) If this SPI master just only attempts to receive (read) one byte data from the off-chip slave device and does not care what data will be transmitted, the SPI_TX0 register does not need to be updated by software.
- 6) Set the GO_BUSY bit (SPI_CNTRL[0] = 1) to start the data transfer with the SPI interface.
- 7) Waiting for SPI interrupt (if the Interrupt Enable IE bit was set) or just polling the GO_BUSY bit till it is cleared to 0 by hardware automatically.
- 8) Read out the received one byte data from SPI_RX0[7:0].
- 9) Go to 4) to continue another data transfer or set SSR[0] bit to 0 to inactivate the off-chip slave device.

The following is a sample based on M051 series BSP for the SPI data transfer described above.

```
/* Set module clock divider. SPI clock rate = HCLK / ((11+1)*2) = 2MHz */
SPI0->DIVIDER = SPI0->DIVIDER & (~SPI_DIVIDER_DIVIDER_MSk) | SPI_DIVIDER_DIV(11);

/* Configure SPI0 as a master, MSB first, clock idle low, falling clock edge Tx, rising edge Rx and 8-bit transaction */
SPI0->CNTRL = SPI_CNTRL_MASTER_MODE | SPI_CNTRL_MSB_FIRST | SPI_CNTRL_CLK_IDLE_LOW |
SPI_CNTRL_TX_FALLING | SPI_CNTRL_RX_RISING | SPI_CNTRL_TX_BIT_LEN(8);

/* Disable the automatic hardware slave select function. Select the SS pin and configure as low-active. */
SPI0->SSR = SPI_SSR_SW_SS_PIN_LOW;

/* write the first data of source buffer to Tx register of SPI0. */
_SPI_WRITE_TX_BUFFER0(SPI0, SourceData[0]);

/* Start the data transfer */
_SPI_SET_GO(SPI0);

/* Check the GO_BUSY bit */
While(SPI0->CNTRL & SPI_CNTRL_GO_BUSY);

/* Read the received data */
DestData[0] = _SPI_GET_RX0_DATA(SPI0)&0xFF;
...
```


Example 2: The SPI controller is set as a slave device and connects with an off-chip master device. The off-chip master device communicates with the on-chip SPI slave controller through the SPI interface with the following specifications on M05xxDN/DE:

- Data bit is latched on positive edge of bus clock
- Data bit is driven on negative edge of bus clock
- Data is transferred from LSB first
- Data width is 8 bits
- SPICLK is idle at high state
- Only one byte of data to be transmitted/received in a transaction
- Slave select signal is high level trigger

The operation flow is described below.

- 1) Set the DIVIDER (SPI_DIVIDER[7:0]) to determine the slave peripheral clock frequency. The slave peripheral clock frequency must be larger than the SPI bus clock frequency.
- Write the SPI_SSR register a proper value for the related settings of Slave mode. Select high level and level trigger for the input of slave select signal by setting the Slave Select Active Level control bit SS_LVL (SPI_SSR[2] = 1) and the Slave Select Level Trigger bit SS_LTRIG (SPI_SSR[4] = 1).
- 3) Write the related settings into the SPI_CNTRL register to control this SPI slave actions.
 - 1. Set this SPI controller as slave device in SLAVE bit (SPI_CNTRL[18] = 1).
 - 2. Select the bus clock idle state at high in CLKP bit (SPI_CNTRL[11] = 1).
 - Select data transmitted on negative edge of bus clock in TX_NEG bit (SPI_CNTRL[2] =

 1).
 - Select data latched on positive edge of bus clock in RX NEG bit (SPI CNTRL[1] = 0).
 - Set the bit length of word transfer as 8-bit in TX_BIT_LEN bit field (SPI_CNTRL[7:3] = 0x08).
 - 6. Set only one time of word transfer in TX_NUM (SPI_CNTRL[9:8] = 0x0).
 - 7. Set LSB transfer first in LSB bit (SPI_CNTRL[10] = 1), and need not to care the SP CYCLE bit field (SPI_CNTRL[15:12]) due to it is not burst mode in this case.
- 4) If this SPI slave attempts to transmit (be read) one byte data to the off-chip master device, write the byte data that will be transmitted into the SPI_TX0 register.
- 5) If this SPI slave just only attempts to receive (be written) one byte data from the off-chip master device and does not care what data will be transmitted, the SPI_TX0 register does not need to be updated by software.
- 6) Set the GO_BUSY bit (SPI_CNTRL[0] = 1) to wait for the slave select trigger input and bus clock input from the off-chip master device to start the data transfer with the SPI interface.
- 7) Waiting for SPI interrupt (if the Interrupt Enable IE bit was set), or just polling the GO_BUSY bit till it is cleared to 0 by hardware automatically.
- 8) Read out the received one byte data from SPI RX0[7:0].
- 9) Go to 4) to continue another data transfer or clear the GO_BUSY bit to stop data transfer.

The following is a sample based on M051 series BSP for the SPI data transfer described above.

6.13.8 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	/W Description				
SPI0_BA = 0x40	SPI Base Address: SPI0_BA = 0x4003_0000 SPI1_BA = 0x4003_4000						
SPI_CNTRL x=0,1	SPIx_BA+0x00	R/W	Control and Status Register	0x0500_0004			
SPI_DIVIDER x=0,1	SPIx_BA+0x04	R/W	Clock Divider Register	0x0000_0000			
SPI_SSR x=0,1	SPIx_BA+0x08	R/W	Slave Select Register	0x0000_0000			
SPI_RX0 x=0,1	SPIx_BA+0x10	R	Data Receive Register 0	0x0000_0000			
SPI_RX1 x=0,1	SPIx_BA+0x14	R	Data Receive Register 1 (M05xxBN Only)	0x0000_0000			
SPI_TX0 x=0,1	SPIx_BA+0x20	W	Data Transmit Register 0	0x0000_0000			
SPI_TX1 x=0,1	SPIx_BA+0x24	W	Data Transmit Register 1 (M05xxBN Only)	0x0000_0000			
SPI_VARCLK x=0,1	SPIx_BA+0x34	R/W	Variable Clock Pattern Register (M05xxBN Only)	0x007F_FF87			
SPI_CNTRL2 x=0,1	SPIx_BA+0x3C	R/W	Control and Status Register 2	0x0000_0000			
SPI_FIFO_CTL x=0,1	SPIx_BA+0x40	R/W	SPI FIFO Control Register (M05xxDN/DE Only)	0x2200_0000			
SPI_STATUS x=0,1	SPIx_BA+0x44	R/W	SPI Status Register (M05xxDN/DE Only)	0x0500_0000			

6.13.9 Register Description

SPI Control and Status Register (SPI_CNTRL)

Register	Offset	R/W	Description	Reset Value
SPI_CNTRL	SPIx_BA+0x00	R/W	Control and Status Register	0x0500_0004

M05xxBN:

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
VARCLK_EN	Reserved		REORDER		SLAVE	IE	IF			
15	14	13	12	11	10	9	8			
	SP_CYCLE				LSB	TX_	NUM			
7	7 6 5 4			3	2	1	0			
TX_BIT_LEN					TX_NEG	RX_NEG	GO_BUSY			

M05xxDN/DE:

31	30	29	28	27	26	25	24
	Reserved				TX_EMPTY	RX_FULL	RX_EMPTY
23 22 21 20				19	18	17	16
Rese	erved	FIFO	Reserved	REORDER	SLAVE	IE	IF
15	14	13	12	11	10	9	8
	SP_C	YCLE		CLKP	LSB	Rese	erved
7	6	5	4	3	2	1	0
TX_BIT_LEN					TX_NEG	RX_NEG	GO_BUSY

Bits	Description	Description						
[31:28]	Reserved	Reserved.						
[27]	TX_FULL	Transmit FIFO Buffer Full Indicator (Read Only) (M05xxDN/DE Only) It is a mutual mirror bit of SPI_STATUS[27]. 0 = Indicates that the transmit FIFO buffer is not full. 1 = Indicates that the transmit FIFO buffer is full.						
[26]	TX_EMPTY	Transmit FIFO Buffer Empty Indicator (Read Only) (M05xxDN/DE Only) It is a mutual mirror bit of SPI_STATUS[26]. 0 = Indicates that the transmit FIFO buffer is not empty. 1 = Indicates that the transmit FIFO buffer is empty.						
[25]	RX_FULL	Receive FIFO Buffer Full Indicator (Read Only) (M05xxDN/DE Only) It is a mutual mirror bit of SPI_STATUS[25]. 0 = Indicates that the receive FIOF buffer is not full. 1 = Indicates that the receive FIFO buffer is full.						

		Receive FIFO Buffer Empty Indicator (Read Only) (M05xxDN/DE Only)				
[24]	RX_EMPTY	It is a mutual mirror bit of SPI_CNTRL[24].				
[]		0 = Indicates that the receive FIFO buffer is not empty.				
		1 = Indicates that the receive FIFO buffer is empty.				
		Variable Clock Enable Control (M05xxBN Master Mode Only)				
		0 = The bus clock output frequency is fixed and decided only by the value of DIVIDER.				
[23]	VARCLK_EN	1 = The bus clock output frequency is variable. The output frequency is decided by the value of VARCLK, DIVIDER, and DIVIDER2.				
		Note: When this VARCLK_EN bit is set, the setting of TX_BIT_LEN must be programmed as 0x10 (16-bit mode).				
[22]	Reserved	Reserved.				
		FIFO Mode Enable Control (M05xxDN/DE Only)				
		In Master mode, if the FIFO mode is enabled, the GO_BUSY bit will be set to 1 automatically after writing data into the 8-depth transmit FIFO. When all data stored at transmit FIFO buffer are transferred, the GO_BUSY bit will back to 0.				
[21]	FIFO	0 = FIFO Mode Disabled.				
		1 = FIFO Mode Enabled.				
		Note 1: Before enabling FIFO mode, the other related settings should be set in advance.				
		Note 2: On M05xxBN, this bit must be 0.				
		Byte Reorder Function and Byte Suspend Function Selection				
		On M05xxBN:				
		00 = Disable both byte reorder and byte suspend functions.				
		01 = Enable byte reorder function and insert a byte suspend interval (2~17 SPICLK cycles) among each byte. The setting of TX_BIT_LEN must be configured as 0x00 (32 bits).				
		10 = Enable byte reorder function, but disable byte suspend function.				
		11 = Disable byte reorder function, but insert a suspend interval (2~17 SPICLK cycles) among each byte. The setting of TX_BIT_LEN must be configured as 0x00 (32 bits).				
		Note 1: The byte reorder function is only available if TX_BIT_LEN is defined as 16, 24, and 32 bits.				
[20:19]	REORDER	Note 2: In Slave mode with level-trigger configuration, if the byte suspend function is enabled, the slave select pin must be kept at active state during the successive four bytes transfer.				
		On M05xxDN/DE:				
		00 = Byte reorder function and byte suspend function are Disabled.				
		01 = Byte reorder function Enabled. Byte suspend interval is determined by the setting of SP_CYCLE. Set SP_CYCLE to 0 to disabled byte suspend function.				
		10 = Reserved.				
		11 = Reserved.				
		Note: Byte reorder function is only available if TX_BIT_LEN is defined as 16, 24, and 32 bits.				
		Slave Mode Control				
[18]	SLAVE	0 = Master mode.				
		1 = Slave mode.				
		Unit-transfer Interrupt Enable Control				
[17]	IE	0 = SPI unit-transfer interrupt Disabled.				
		1 = SPI unit-transfer interrupt Enabled.				
		Unit-transfer Interrupt Flag				
[16]	IF	0 = No transaction has been finished since this bit was cleared to 0.				
~]	[-	1 = SPI controller has finished one unit transfer.				
		5. 1 55. II Short that thirthead one with transform				

		Note: This bit will be cleared by writing 1 to itself.
		Suspend Interval (Master Only)
		These four bits provide configurable suspend interval between two successive transactions in a transfer. The definition of the suspend interval is the interval between the last clock edge of the preceding transaction word and the first clock edge of the following transaction word.
		On M05xxBN:
		The default value is 0x0. When TX_NUM = 00b and REORDER = 00b/10b, setting this field has no effect on transfer. The desired suspend interval is obtained according to the following equation:
		For byte suspend interval and burst mode suspend interval:
		(SP_CYCLE[3:0] + 2) * period of SPICLK + 1 system clock cycle
		Example:
		SP_CYCLE = 0x0 2 SPICLK clock cycle + 1 system clock cycle.
		SP_CYCLE = 0x1 3 SPICLK clock cycle + 1 system clock cycle.
[45,40]	0D 0V0LE	SP_CYCLE = 0xE 16 SPICLK clock cycle + 1 system clock cycle.
[15:12]	SP_CYCLE	SP_CYCLE = 0xF 17 SPICLK clock cycle + 1 system clock cycle.
		If the SPI bus clock rate equals system clock rate, that is to say, the DIV_ONE feature is enabled, the burst mode suspend interval period is
		(SP_CYCLE[3:0] * 2 + 3.5) * period of system clock
		On M05xxDN/DE:
		The default value is 0x3. The period of the suspend interval is obtained according to the following equation:
		(SP_CYCLE[3:0] + 0.5) * period of SPICLK clock cycle
		Example:
		SP_CYCLE = 0x0 0.5 SPICLK clock cycle.
		SP_CYCLE = 0x1 1.5 SPICLK clock cycle.
		SP_CYCLE = 0xE 14.5 SPICLK clock cycle.
		SP_CYCLE = 0xF 15.5 SPICLK clock cycle.
		Clock Polarity
[11]	CLKP	0 = SPICLK idle low.
		1 = SPICLK idle high.
		LSB First
[10]	LSB	0 = The MSB is transmitted/received first.
		1 = The LSB is transmitted/received first.
		Numbers of Transmit/Receive Word (M05xxBN Only)
		This field specifies how many transmit/receive word numbers should be executed in one transfer.
[9:8]		00 = Burst mode Disabled. Only one word will be transferred when the GO_BUSY bit is se to 1.
	TX_NUM	01 = Burst mode Enabled. Two successive words will be transferred when the GO_BUSY bit is set to 1.
		10 = Reserved.
		11 = Reserved.
		Note: In Slave mode with level-trigger configuration, if TX_NUM is set to 01, the slave
		select pin must be kept at active state during the successive data transfer.
[7:3]	TX_BIT_LEN	Transfer Bit Length
رد. ۱	IV_PII_FEM	Transier bit Lengtii

		- I
		This field specifies how many bits can be transmitted / received in one transaction. The minimum bit length is 8 bits and can up to 32 bits.
		TX_BIT_LEN = 0x08 8 bit.
		TX_BIT_LEN = 0x09 9 bits.
		TX_BIT_LEN = 0x1F 31 bits.
		TX_BIT_LEN = 0x00 32 bits.
		Transmit on Negative Edge
[2]	TX_NEG	0 = The transmitted data output signal is driven on the rising edge of SPICLK.
		1 = The transmitted data output signal is driven on the falling edge of SPICLK.
		Receive on Negative Edge
[1]	RX_NEG	0 = The received data input signal is latched on the rising edge of SPICLK.
		1 = The received data input signal is latched on the falling edge of SPICLK.
		SPI Transfer Trigger and Busy Status
		On M05xxBN:
		During the data transfer, this bit keeps the value of 1. As the transfer is finished, this bit will be cleared automatically.
		0 = Writing 0 to this bit to stop data transfer if SPI is transferring.
		1 = In Master mode, writing 1 to this bit will start the SPI data transfer; in Slave mode, writing 1 to this bit indicates that the slave is ready to communicate with a master.
		Note: All registers should be set before writing 1 to the GO_BUSY bit.
		On M05xxDN/DE:
[0]	GO_BUSY	In FIFO mode, this bit will be controlled by hardware. Software cannot modify this bit.
		If FIFO mode is disabled, during the data transfer, this bit keeps the value of 1. As the transfer is finished, this bit will be cleared automatically.
		0 = Writing 0 to this bit to stop data transfer if SPI is transferring.
		1 = In Master mode, writing 1 to this bit to start the SPI data transfer; in Slave mode, writing 1 to this bit indicates that the slave is ready to communicate with a master.
		Note 1: When FIFO mode is disabled, all configurations should be ready before writing 1 to the GO_BUSY bit.
		Note 2: In M05xxDN/DE SPI Slave mode, if FIFO mode is disabled and the SPI bus clock is kept at idle state during a data transfer, the GO_BUSY bit will not be cleared to 0 when slave select signal goes to inactive state.

SPI Divider Register (SPI_DIVIDER)

Register	Offset	R/W	Description	Reset Value
SPI_DIVIDER	SPIx_BA+0x04	R/W	Clock Divider Register	0x0000_0000

31	30	29	28	27	26	25	24		
	DIVIDER2								
23	22	21	20	19	18	17	16		
			DIVII	DER2					
15	14	13	12	11	10	9	8		
			DIVI	DER					
7 6 5 4 3 2 1 0									
	DIVIDER								

Bits	Description	
[31:16]	DIVIDER2	Clock Divider 2 (M05xxBN Master Mode Only) The value in this field is the 2^{nd} frequency divider for generating the bus clock on the output SPICLK. The desired frequency is obtained according to the following equation: $f_{sclk} = \frac{f_{pclk}}{(DIVIDER2+1)*2}$ If VARCLK_EN is cleared to 0, this setting is unmeaning.
[15:0]	DIVIDER	Clock Divider On M05xxBN: Only available in Master mode. The value in this field is the frequency divider to determine the master's peripheral clock frequency and the bus clock frequency on the SPICLK output pin. The desired frequency is obtained according to the following equation: $f_{scilk} = \frac{f_{pcilk}}{(DIVIDER+1)*2}$ In Slave mode, the period of SPI bus clock driven by a master shall equal or over 5 times the period of PCLK. In other words, the maximum frequency of SPI bus clock is the fifth of the frequency of slave's PCLK. On M05xxDN/DE: Only DIVIDER[7:0] is available. The value in this field is the frequency divider to determine the SPI peripheral clock frequency, f_{spi} , and the SPI master's bus clock frequency on the SPICLK output pin. The frequency is obtained according to the following equation. If the bit of BCn, SPI_CNTRL2[31], is set to 0, $f_{spi} = \frac{f_{SPI_clock_src}}{(DIVIDER+1)*2}$ else if BCn is set to 1, $f_{spi} = \frac{f_{SPI_clock_src}}{(DIVIDER+1)}$

SPI Slave Select Register (SPI_SSR)

Register	Offset	R/W	Description	Reset Value
SPI_SSR	SPIx_BA+0x08	R/W	Slave Select Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Rese	erved	LTRIG_FLAG	SS_LTRIG	AUTOSS	SS_LVL	Reserved	SSR

Bits	Description	
[31:6]	Reserved	Reserved.
		Level Trigger Flag When the SS_LTRIG bit is set in Slave mode, this bit can be read to indicate the received bit number is met the requirement or not.
[5]	LTRIG_FLAG	0 = The transaction number or the transferred bit length of one transaction does not meet the specified requirements.
		1 = The transaction number and the transferred bit length met the specified requirements which defined in TX_NUM and TX_BIT_LEN. The TX_NUM setting is not available on M05xxDN/DE, only the setting of TX_BIT_LEN will be considered. Note: This bit is READ only and only available in Slave mode.
		Slave Select Level Trigger Enable (Slave Only)
[4] SS_I	SS_LTRIG	0 = The input slave select signal is edge-trigger. This is the default value. It depends on SS_LVL to decide the signal is active at falling-edge or rising-edge.
		1 = The slave select signal will be level-trigger. It depends on SS_LVL to decide the signal is active low or active high.
		Automatic Slave Select Function Enable (Master Only)
[3]	AUTOSS	0 = If this bit is cleared, slave select signal will be asserted/de-asserted by setting /clearing SSR bit.
[S]	A01033	1 = If this bit is set, SPISSx signal will be generated automatically, which means that slave select signal will be asserted by the SPI controller when transmit/receive is started by setting GO_BUSY, and will be de-asserted after each transmit/receive is finished.
		Slave Select Active Level
[2]	SS_LVL	This bit defines the active status of slave select signal (SPISSx).
		0 = The slave select signal SPISSx is active at low-level/falling-edge.1 = The slave select signal SPISSx is active at high-level/rising-edge.
[4]	Reserved	Reserved.
[1]	Reserved	
101	005	Slave Select Control (Master Only)
[0]	SSR	If AUTOSS bit is cleared to 0, 0 = Set the SPISSx line to inactive state.

1 = Set the proper SPISSx line to active state.
If AUTOSS bit is set to 1,
0 = Keep the SPISSx line at inactive state.
1 = Select the SPISSx line to be automatically driven to active state for the duration of transmission/reception, and will be driven to inactive state for the rest of the time. The active state of SPISSx is specified in SS_LVL bit.

SPI Data Receive Register (SPI_RX)

Register	Offset	R/W	Description	Reset Value
SPI_RX0	SPIx_BA+0x10	R	Data Receive Register 0	0x0000_0000
SPI_RX1	SPIx_BA+0x14	R	Data Receive Register 1 (M05xxBN Only)	0x0000_0000

31	30	29	28	27	26	25	24	
	RX							
23	22	21	20	19	18	17	16	
			R	Х				
15	14	13	12	11	10	9	8	
	RX							
7	6	5	4	3	2	1	0	
	RX							

Bits	Description			
		Data Receive Register		
[31:0]	RX	The Data Receive Registers hold the value of received data of the last executed transfer. Valid bits depend on the transmit bit length field in the SPI_CNTRL register.		
[55]		For example, if TX_BIT_LEN is set to 0x08 and TX_NUM is set to 0x0, bit RX0[7:0] holds the received data. The values of the other bits are unknown. The Data Receive Registers are read-only registers.		

SPI Data Transmit Register (SPI_TX)

Register	Offset	R/W	Description	Reset Value
SPI_TX0	SPIx_BA+0x20	W	Data Transmit Register 0	0x0000_0000
SPI_TX1	SPIx_BA+0x24	W	Data Transmit Register 1 (M05xxBN Only)	0x0000_0000

31	30	29	28	27	26	25	24
	TX						
23	22	21	20	19	18	17	16
			Т	х			
15	14	13	12	11	10	9	8
			Т	х			
7	6	5	4	3	2	1	0
	тх						

Bits	Description		
		Data Transmit Register	
		The Data Transmit Registers hold the data to be transmitted in the next transfer. Valid bits depend on the transmit bit length field in the CNTRL register.	
[31:0]		For example, if TX_BIT_LEN is set to 0x08 and the TX_NUM is set to 0x0, the bit TX0[7:0] will be transmitted in next transfer. If TX_BIT_LEN is set to 0x00 and TX_NUM is set to 0x1, the SPI controller will perform two 32-bit transmit/receive successive using the same setting. The transmission sequence is TX0[31:0] first and then TX1[31:0].	

SPI Variable Clock Pattern Register (SPI_VARCLK)

Register	Offset	R/W	Description	Reset Value
SPI_VARCLK	SPIx_BA+0x34	R/W	Variable Clock Pattern Register (M05xxBN Only)	0x007F_FF87

31	30	29	28	27	26	25	24
			VAR	CLK			
23	22	21	20	19	18	17	16
			VAR	CLK			
15	14	13	12	11	10	9	8
	VARCLK						
7	6	5	4	3	2	1	0
	VARCLK						

Bits	Description	
		Variable Clock Pattern
[31:0]	VARCLK	The value in this field is the frequency patterns of the SPI bus clock. If the bit pattern of VARCLK is '0', the output frequency of SPICLK is according the value of DIVIDER. If the bit patterns of VARCLK are '1', the output frequency of SPICLK is according the value of DIVIDER2. Refer to the SPI_DIVIDER register.
		Note: Refer to the Variable Bus Clock Frequency paragraph for more detailed description.

SPI Control and Status Register 2 (SPI_CNTRL2)

Register	Offset	R/W	Description	Reset Value
SPI_CNTRL2	SPIx_BA+0x3C	R/W	Control and Status Register 2	0x0000_0000

On M05xxBN:

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved				SSTA_ INTEN	SLV_ABORT	NOSLVSEL
7	6	5	4	3	2	1	0
Reserved						DIV_ONE	

On M05xxDN/DE:

31	30	29	28	27	26	25	24
BCn		Reserved					
23	22	21	20	19	18	17	16
	Reserved						SS_INT_OPT
15	14	13	12	11	10	9	8
	Reserved				SSTA_ INTEN	SLV_ABORT	NOSLVSEL
7	6	5	4	3	2	1	0
	Reserved						

Bits	Description	Description				
[31]	BCn	Clock Configuration Backward Compatible Option (M05xxDN/DE Only) 0 = The clock configuration is backward compatible to M05xxBN. 1 = The clock configuration is not backward compatible to M05xxBN. Refer to the description of SPI_DIVIDER register for details.				
[30:17]	Reserved	Reserved.				
[16]	SS_INT_OPT	Slave Select Inactive Interrupt Option (M05xxDN/DE Only) This setting is only available if the SPI controller is configured as level trigger slave device. 0 = As the slave select signal goes to inactive level, the IF bit will NOT be set to 1. 1 = As the slave select signal goes to inactive level, the IF bit will be set to 1.				
[15:12]	Reserved	Reserved.				
[11]	SLV_START_INTSTS	Slave 3-wire Mode Start Interrupt Status This bit dedicates if a transaction has started in Slave 3-wire mode. It is a mutual mirror bit of SPI_STATUS[11].				

the SSTA_INTEN bit the cleared automatically in Slave 3-wire mode. If the child defined by user
in Slave 3-wire mode. If
ch is defined by user
ch is defined by user
force the transfer done.
0 as the current to 0.
umber of received bits TX_NUM. The y the setting of
and there is no more e, user can set this bit unit transfer interrupt
re after it is set to 1 by
e. The SPI controller O, and SPI_MOSI when
node. When this bit is a after the GO_BUSY
4]) shall be set as 1.
Only)
SPI_DIVIDER register.
equals the system clock
nd the VARCLK_EN rder function, byte bled.

SPI FIFO Control Register (SPI_FIFO_CTL)

Register	Offset	R/W	Description	Reset Value
SPI_FIFO_CTL	SPIx_BA+0x40	R/W	SPI FIFO Control Register (M05xxDN/DE Only)	0x2200_0000

31	30	29	28	27	26	25	24
Rese	erved	TX_THRESHOLD		Reserved		RX_THRESHOLD	
23	22	21	20	19	18	17	16
Rese	erved	TIMEOUT_IN TEN	Reserved				
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved	RXOV_INTE N	Reserved		TX_INTEN	RX_INTEN	TX_CLR	RX_CLR

Bits	Description	
[31:30]	Reserved	Reserved.
[29:28]	TX_THRESHOLD	Transmit FIFO Threshold If the valid data count of the transmit FIFO buffer is less than or equal to the TX_THRESHOLD setting, the TX_INTSTS bit will be set to 1, else the TX_INTSTS bit will be cleared to 0.
[27:26]	Reserved	Reserved.
[25:24]	RX_THRESHOLD	Received FIFO Threshold If the valid data count of the receive FIFO buffer is larger than the RX_THRESHOLD setting, the RX_INTSTS bit will be set to 1, else the RX_INTSTS bit will be cleared to 0.
[23:22]	Reserved	Reserved.
[21]	TIMEOUT_INTEN	Receive FIFO Time-out Interrupt Enable Control 0 = Time-out interrupt Disabled. 1 = Time-out interrupt Enabled.
[20:7]	Reserved	Reserved.
[6]	RXOV_INTEN	Receive FIFO Overrun Interrupt Enable Control 0 = Receive FIFO overrun interrupt Disabled. 1 = Receive FIFO overrun interrupt Enabled.
[5:4]	Reserved	Reserved.
[3]	TX_INTEN	Transmit Threshold Interrupt Enable Control 0 = Transmit threshold interrupt Disabled. 1 = Transmit threshold interrupt Enabled.
[2]	RX_INTEN	Receive Threshold Interrupt Enable Control 0 = Receive threshold interrupt Disabled. 1 = Receive threshold interrupt Enabled.

[1]	TX_CLR	Clear Transmit FIFO Buffer 0 = No effect. 1 = Clear transmit FIFO buffer. The TX_FULL flag will be cleared to 0 and the TX_EMPTY flag will be set to 1. This bit will be cleared to 0 by hardware after software sets it to 1 and the transmit FIFO is cleared.
[0]	RX_CLR	Clear Receive FIFO Buffer 0 = No effect. 1 = Clear receive FIFO buffer. The RX_FULL flag will be cleared to 0 and the RX_EMPTY flag will be set to 1. This bit will be cleared to 0 by hardware after software sets it to 1 and the receive FIFO is cleared.

SPI Status Register (SPI_STATUS)

Register	Offset	R/W	Description	Reset Value
SPI_STATUS	SPIx_BA+0x44	R/W	SPI Status Register (M05xxDN/DE Only)	0x0500_0000

31	30	29	28	27	26	25	24
	TX_FIFO_COUNT			TX_FULL	TX_EMPTY	RX_FULL	RX_EMPTY
23	22	21	20	19	18	17	16
	Reserved				Reserved		IF
15	14	13	12	11	10	9	8
	RX_FIFO_COUNT					Reserved	
7	6	5	4	3	2	1	0
Reserved TX_INTSTS			TX_INTSTS	Reserved	RX_OVERRU N	Reserved	RX_INTSTS

Bits	Description	
[31:28]	TX_FIFO_COUNT	Transmit FIFO Data Count (Read Only) Indicates the valid data count of transmit FIFO buffer.
[27]	TX_FULL	Transmit FIFO Buffer Full Indicator (Read Only) It is a mutual mirror bit of SPI_CNTRL[27]. 0 = The transmit FIFO buffer is not full. 1 = The transmit FIFO buffer is full.
[26]	TX_EMPTY	Transmit FIFO Buffer Empty Indicator (Read Only) It is a mutual mirror bit of SPI_CNTRL[26]. 0 = The transmit FIFO buffer is not empty. 1 = The transmit FIFO buffer is empty.
[25]	RX_FULL	Receive FIFO Buffer Full Indicator (Read Only) It is a mutual mirror bit of SPI_CNTRL[25]. 0 = The receive FIFO buffer is not full. 1 = The receive FIFO buffer is full.
[24]	RX_EMPTY	Receive FIFO Buffer Empty Indicator (Read Only) It is a mutual mirror bit of SPI_CNTRL[24]. 0 = The receive FIFO buffer is not empty. 1 = The receive FIFO buffer is empty.
[23:21]	Reserved	Reserved.
[20]	TIMEOUT	Time-out Interrupt Flag 0 = No receive FIFO time-out event. 1 = The receive FIFO buffer is not empty and it does not be read over 64 SPI clock periods in Master mode or over 576 SPI peripheral clock periods in Slave mode. When the received FIFO buffer is read by software, the time-out status will be cleared automatically. Note: This bit will be cleared by writing 1 to itself.
[19:17]	Reserved	Reserved.

[16]	IF	SPI Unit-transfer Interrupt Flag
		It is a mutual mirror bit of SPI_CNTRL[16].
		0 = The transfer does not finish yet.
		1 = The SPI controller has finished one unit transfer.
		Note: This bit will be cleared by writing 1 to itself.
[15:12]	RX_FIFO_COUNT	Receive FIFO Data Count (Read Only)
		Indicates the valid data count of receive FIFO buffer.
[11]	SLV_START_INTSTS	Slave Start Interrupt Status
		It is used to dedicate that the transfer has started in Slave 3-wire mode. It's a mutual mirror bit of SPI_CNTRL2[11].
		0 = The transfer is not started.
		1 = The transfer has started in Slave 3-wire mode. It will be cleared as transfer done or by writing one to this bit.
[10:5]	Reserved	Reserved.
[4]	TX_INTSTS	Transmit FIFO Threshold Interrupt Status (Read Only)
		0 = The valid data count within the transmit FIFO buffer is larger than the setting value of TX_THRESHOLD.
		1 = The valid data count within the transmit FIFO buffer is less than or equal to the setting value of TX_THRESHOLD.
		Note: If TX_INTEN = 1 and TX_INTSTS = 1, the SPI controller will generate a SPI interrupt request.
[3]	Reserved	Reserved.
[2]	RX_OVERRUN	Receive FIFO Overrun Status
		When the receive FIFO buffer is full, the follow-up data will be dropped and this bit will be set to 1.
		Note: This bit will be cleared by writing 1 to itself.
[1]	Reserved	Reserved.
[0]	RX_INTSTS	Receive FIFO Threshold Interrupt Status (Read Only)
		0 = The valid data count within the Rx FIFO buffer is smaller than or equal to the setting value of RX_THRESHOLD.
		1 = The valid data count within the receive FIFO buffer is larger than the setting value of RX_THRESHOLD.
		Note: If RX_INTEN = 1 and RX_INTSTS = 1, the SPI controller will generate a SPI interrupt request.

6.14 Analog-to-Digital Converter (ADC)

6.14.1 Overview

The NuMicro® M05xxBN/DN/DE series contains one 12-bit successive approximation analog-to-digital converter (SAR A/D converter) with eight input channels. The A/D converter supports four operation modes: Single, Burst, Single-cycle Scan and Continuous Scan mode. The A/D converter can be started by software, external pin (STADC/P3.2) or PWM trigger (M05xxDN/DE only).

6.14.2 Features

- Analog input voltage range: 0 ~ AV_{DD}.
- 12-bit resolution and 10-bit accuracy is guaranteed
- Up to eight single-end analog input channels or 4 differential analog input channels
- Maximum ADC peripheral clock frequency is 16 MHz
- Up to 760 kSPS sample rate
- Four operation modes:
 - ♦ Single mode: A/D conversion is performed one time on a specified channel.
 - Burst mode: A/D converter samples and converts the specified single channel and sequentially stores the result in FIFO.
 - Single-cycle Scan mode: A/D conversion is performed only one cycle on all specified channels with the sequence from the smallest numbered channel to the largest numbered channel.
 - Continuous Scan mode: A/D converter continuously performs Single-cycle Scan mode until software stops A/D conversion.
- An A/D conversion can be started by:
 - Software Write 1 to ADST bit
 - External pin (STADC)
 - ◆ PWM trigger with optional start delay period (M05xxDN/DE only)
- Each conversion result is held in data register of each channel with valid and overrun indicators.
- Conversion result can be compared with specified value and user can select whether to generate an interrupt when conversion result matches the compare register setting.
- Channel 7 supports 3 input sources: external analog voltage, internal band-gap voltage and
- Internal temperature sensor output.

6.14.3 Block Diagram

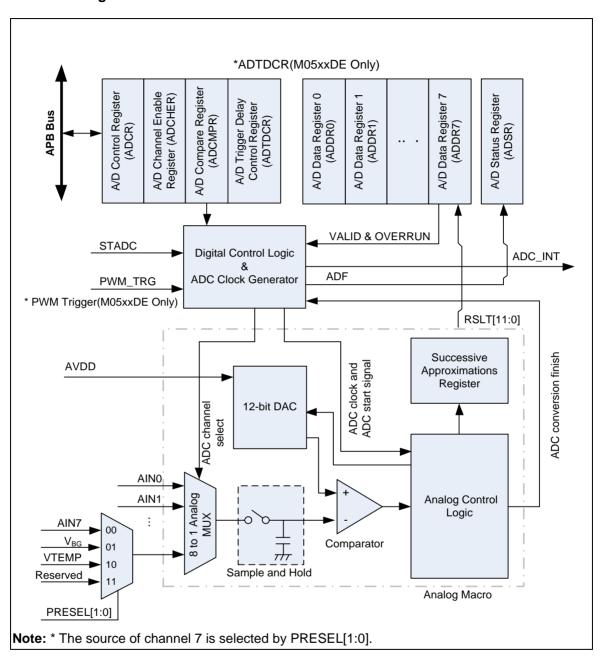


Figure 6-100 AD Controller Block Diagram

6.14.4 Basic Configuration

The ADC pin functions are configured in P1_MFP register. It is recommended to disable the digital input path of the analog input pins to avoid the leakage current. User can disable the digital input path by configuring P1_OFFD register.

The ADC peripheral clock can be enabled in APBCLK[28]. The ADC peripheral clock source is selected by CLKSEL1[3:2]. The clock prescalar is determined by CLKDIV[23:16].

6.14.5 Functional Description

The A/D converter operates by successive approximation with 12-bit resolution. The ADC has four operation modes: Single, Burst, Single-cycle Scan mode and Continuous Scan mode. When user wants to change the operation mode or analog input channel, in order to prevent incorrect operation, software must clear ADST bit to 0 in advance.

6.14.5.1 ADC peripheral Clock Generator

The maximum sampling rate is up to 760 kSPS. The ADC has four clock sources selected by ADC_S (CLKSEL1[3:2]), the ADC peripheral clock frequency is divided by an 8-bit pre-scalar with the following formula:

ADC peripheral clock frequency = (ADC peripheral clock source frequency) / (ADC_N+1); where the 8-bit ADC_N is located in register CLKDIV[23:16].

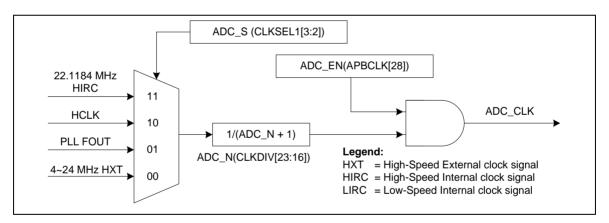
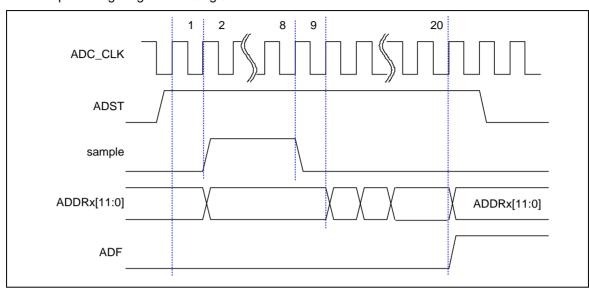


Figure 6-101 ADC Peripheral Clock Control

6.14.5.2 Single Mode

In Single mode, A/D conversion is performed only once on the specified single channel. The operations are as follows:


- 1. A/D conversion will be started when the ADST bit of ADCR is set to 1 by software or external trigger input.
- When A/D conversion is finished, the result is stored in the A/D data register corresponding to the channel.
- The ADF bit of ADSR register will be set to 1. If the ADIE bit of ADCR register is set to 1, the ADC interrupt will be asserted.
- 4. The ADST bit remains 1 during A/D conversion. When A/D conversion ends, the ADST bit is automatically cleared to 0 and the A/D converter enters idle state.

Note 1: If software enables more than one channel in Single mode, only the channel with the smallest number will be selected and the other enabled channels will be ignored.

Note 2: When hardware clears the ADST bit, the ADST bit must be kept at 0 at least one ADC peripheral clock period before setting it to 1 again, otherwise the A/D converter may not work (M05xxBN only).

Note 3: If ADST bit is cleared to 0 when ADC is in converting, the BUSY bit will be cleared to 0 immediately, ADC will finish the current conversion and save the result to the ADDRx register of the enabled channel (M05xxBN only). But ADC cannot finish the current conversion and A/D converter enters idle state directly (M05xxDN/DE only).

Through the ADC Driver, user can call the flow below to operate Single mode.

An example timing diagram for Single mode is shown below.

Figure 6-102 Single Mode Conversion Timing Diagram

6.14.5.3 Burst Mode

nuvoton

In Burst mode, A/D converter samples and converts the specified single channel and sequentially stores the result into FIFO (up to 8 samples). The operations are as follows:

- When the ADST bit in ADCR is set to 1 by software or external trigger input, A/D conversion is started on the channel with the smallest number.
- When A/D conversion for the specified channel is completed, the result is sequentially transferred to FIFO and can be accessed only from the A/D data register 0.
- When more than 4 samples in FIFO, the ADF bit in ADSR is set to 1. If the ADIE bit is set to 1 at this time, an ADC interrupt is requested after finishing the A/D conversion.
- Steps 2 to 3 are repeated as long as the ADST bit remains set to 1. When the ADST bit is cleared to 0, ADC controller will finish current conversion and enter the idle state (M05xxBN only). But, ADC cannot finish the current conversion and A/D converter enters idle state directly (M05xxDN/DE only).

Note 1: If software enables more than one channel in Burst mode, only the channel with the smallest number is converted and other enabled channels will be ignored.

Note 2: In Burst mode, ADC does not support 2's complement output format, the DMOF bit must be cleared to 0 (M05xxBN only).

By Nuvoton ADC Driver, user can call the flow as shown below to operate Burst mode.

```
/* Set the ADC operation mode as Burst, input mode as single-end and enable the ADC converter */
     ADC->ADCR = (ADC ADCR ADMD BURST
                       | ADC_ADCR_DIFFEN_SINGLE_END
                       | ADC_ADCR_ADEN_CONVERTER_ENABLE);
/* Enable analog input channel 2 */
```

```
_ADC_SET_CHANNEL(1<<2);
/* Clear the A/D interrupt flag for safe */
      ADC->ADSR = ADC ADSR ADF Msk;
/* Enable the ADC interrupt */
      ADC ENABLE ADC INT();
      NVIC_EnableIRQ(ADC_IRQn);
/* start A/D conversion */
      _ADC_START_CONVERT();
```

6.14.5.4 Single-Cycle Scan Mode

nuvoton

In Single-cycle Scan mode, A/D converter samples and converts all of the specified channels once in the sequence from the smallest number enabled channel to the largest number enabled channel. Operations are as follows:

- When the ADST bit in ADCR is set to 1 by software or external trigger input, A/D conversion is started on the channel with the smallest number.
- When A/D conversion for each enabled channel is completed, the result is sequentially transferred to the A/D data register corresponding to each channel.
- When the conversions of all the enabled channels are completed, the ADF bit in ADSR is set to 1. If the ADC interrupt function is enabled, the ADC interrupt occurs.
- 4. After ADC finishes one cycle conversion, the ADST bit is automatically cleared to 0 and the A/D converter enters idle state. If ADST is cleared to 0 before all enabled ADC channels conversion done. ADC controller will finish current conversion and the result of the smallest enabled ADC channel will become unpredictable (M05xxBN only). But, ADC cannot finish the current conversion and A/D converter enters idle state directly (M05xxDN/DE only). Note that after the hardware clears the ADST bit to 0, the ADST bit must be kept at 0 at least one ADC peripheral clock period before setting it to 1 again, otherwise the A/D converter may not work (M05xxBN only).

Through the ADC Driver, user can call the flow as shown below to operate Single-cycle Scan mode.

```
/* Set the ADC operation mode as Single-cycle, input mode as single-end and enable the ADC converter */
      ADC->ADCR = (ADC_ADCR_ADMD_SINGLE_CYCLE
                         | ADC_ADCR_DIFFEN_SINGLE_END
                         | ADC_ADCR_ADEN_CONVERTER_ENABLE);
/* Enable analog input channel 0, 1, 2 and 3 */
       _ADC_SET_CHANNEL(0xF);
/* clear the A/D interrupt flag for safe */
      ADC->ADSR = ADC ADSR ADF Msk;
/* start A/D conversion */
```

```
_ADC_START_CONVERT();
/* Wait conversion done */
      ADC WAIT CONVERSION DONE():
```

An example timing diagram for Single-cycle Scan mode on enabled channels (0, 2, 3 and 7) is shown below.

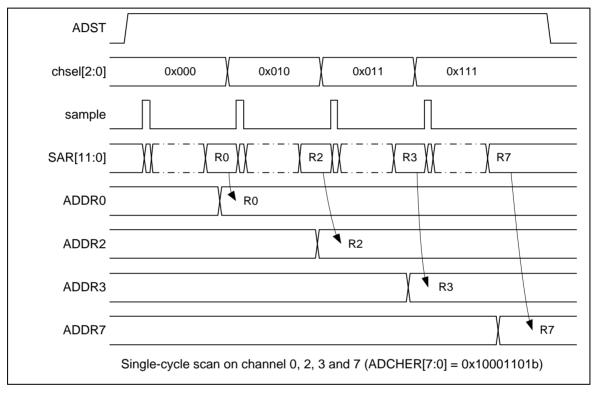


Figure 6-103 Single-Cycle Scan Mode on Enabled Channels Timing Diagram

6.14.5.5 Continuous Scan Mode

nuvoTon

In Continuous Scan mode, A/D conversion is performed sequentially on the specified channels that enabled by CHEN bits in ADCHER register (maximum 8 channels for ADC). The operations are as follows:

- 1. When the ADST bit in ADCR is set to 1 by software or external trigger input, A/D conversion is started on the channel with the smallest number.
- 2. When A/D conversion for each enabled channel is completed, the result of each enabled channel is stored in the A/D data register corresponding to each enabled channel.
- 3. When A/D converter completes the conversions of all enabled channels sequentially, the ADF bit (ADSR[0]) will be set to 1. If the ADC interrupt function is enabled, the ADC interrupt occurs. The conversion of the enabled channel with the smallest number will start again if software does not clear the ADST bit.
- 4. As long as the ADST bit remains at 1, the step 2 ~ 3 will be repeated. When ADST is cleared

to 0, ADC controller will finish the current conversion and the result of the smallest enabled ADC channel will become unpredictable (M05xxBN only). But, ADC cannot finish the current conversion and A/D converter enters idle state directly (M05xxDN/DE only).

Through the ADC Driver, user can call the flow as shown below to operate Continuous Scan mode.

An example timing diagram for Continuous Scan mode on enabled channels (0, 2, 3 and 7) is shown below.

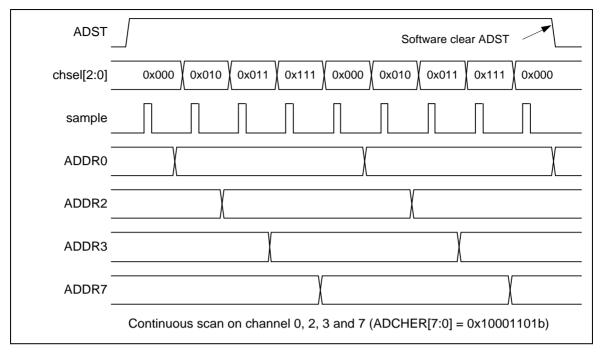


Figure 6-104 Continuous Scan Mode on Enabled Channels Timing Diagram

6.14.5.6 External Trigger Input Sampling and A/D Conversion Time

In Single-cycle Scan mode, A/D conversion can be triggered by external pin request. When the TRGEN bit of ADCR register is set to 1 to enable ADC external trigger function, setting the TRGS[1:0] bits to 00b is to select external trigger input from the STADC pin. Software can set TRGCOND[1:0] to select trigger condition is falling/rising edge or low/high level. If level trigger condition is selected, the STADC pin must be kept at specified state at least 8 PCLKs. The ADST bit will be set to 1 at the 9th PCLK and start to convert. Conversion will keep going if external trigger input is kept at active state in level trigger mode. It is stopped only when external condition trigger condition disappears. If edge trigger condition is selected, the high and low state must be kept at least 4 PLCKs. Pulse that is shorter than this specification will be ignored.

Note: User must enable the external trigger function or enable ADC at least 4 PCLKs after enabling ADC peripheral clock.

6.14.5.7 Internal Reference Voltage

The band-gap voltage reference (V_{BG}) is an internal fixed reference voltage regardless of power supply variations. The V_{BG} output is internally connected to ADC channel 7 source multiplexer and Analog Comparators's (ACMP) negative input side.

For battery power detection application, user can use the V_{BG} as ADC input channel such that user can convert the A/D conversion result to calculate AV_{DD} with following formula.

$$AV_{DD} = ((2 \land N) / R) * V_{BG}$$

N: ADC resolution

R: A/D conversion result

V_{BG}: Band-gap voltage

nuvoTon

The block diagram is shown as Figure 6-105.

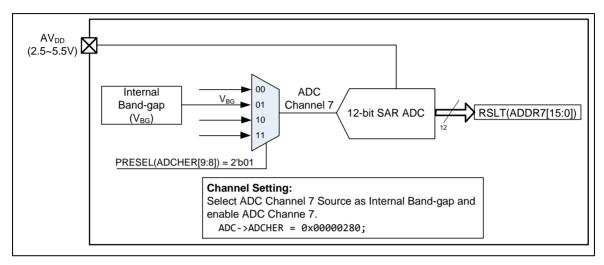


Figure 6-105 V_{BG} for Measuring AV_{DD} Application Block Diagram

For example, the V_{BG} typical value is 1.25 V, the ADC is 12-bit resolution, select V_{BG} as ADC channel 7 input source, and enable ADC channel 7. Then trigger ADC to converse.

If the A/D conversion result is 1707:

N = 12

R = 1707

 $V_{BG} = 1.25 \text{ V}$

 $AV_{DD} = ((2 ^ 12) / 1707) * 1.25 = (4096 / 1707) * 1.25 = 3 V$

If the A/D conversion result is 2048:

$$AV_{DD} = ((2 \land 12) / 2048) * 1.25 = (4096 / 2048) * 1.25 = 2.5 V$$

6.14.5.8 PWM trigger

In Single-cycle Scan mode, A/D conversion can be triggered by PWM request (M05xxDN/DE only). When the TRGEN is set to high to enable ADC external hardware trigger function, setting the TRGS[1:0] bits to 11b is to select external hardware trigger input source from PWM trigger. When PWM trigger is enabled, setting PTDT[7:0] bits can insert a delay time between PWM trigger condition and ADC start conversion.

6.14.5.9 Conversion Result Monitor by Compare Mode Function

The NuMicro® M05xxBN/DN/DE series ADC controller provides two compare registers, ADCMPR0 and ADCMPR1, to monitor maximum two specified channels. Software can select which channel to be monitored by setting CMPCH (ADCMPRx[5:0]). CMPCOND bit is used to determine the compare condition. If CMPCOND bit is cleared to 0, the internal match counter will increase one when the conversion result is less than the value specified in CMPD[11:0]; if CMPCOND bit is set to 1, the internal match counter will increase one when the conversion result is greater than or equal to the value specified in CMPD[11:0]. When the conversion of the channel specified by CMPCH is completed, the comparing action will be triggered one time automatically. When the compare result meets the setting, compare match counter will increase 1, otherwise, the compare match counter will be clear to 0. When the match counter reaches the setting of (CMPMATCNT+1) then CMPF bit will be set to 1, if CMPIE bit is set then an ADC_INT interrupt request is generated. Software can use it to monitor the external analog input pin voltage transition in scan mode without imposing a load on software. The detailed logic diagram is shown below.

Note: If user enables differential input mode, the conversion result can be expressed with binary straight format (unsigned format) or 2's complement format (signed format). Software can set DMOF[31] bit of ADSR register to select output format. When differential input mode is enabled, the digital compare function does not support 2's complement output format, the DMOF bit must be cleared to 0 (M05xxBN only).

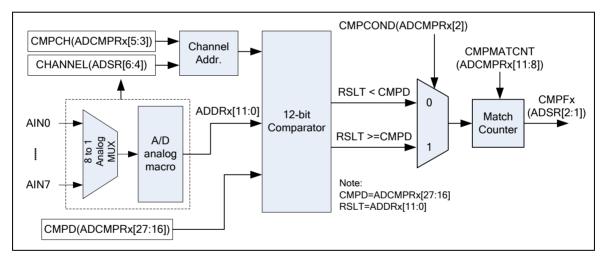


Figure 6-106 A/D Conversion Result Monitor Logic Diagram

6.14.5.10 Interrupt Sources

There are three interrupt sources of ADC interrupt. When an ADC operation mode finishes its conversion, the A/D conversion end flag, ADF, will be set to 1. The CMPF0 and CMPF1 are the compare flags of compare function. When the conversion result meets the settings of ADCMPR0/1, the corresponding flag will be set to 1. When one of the flags, ADF, CMPF0 and CMPF1, is set to 1 and the corresponding interrupt enable bit, ADIE of ADCR and CMPIE of ADCMPR0/1, is set to 1, the ADC interrupt will be asserted. Software can clear these flags to revoke the interrupt request.

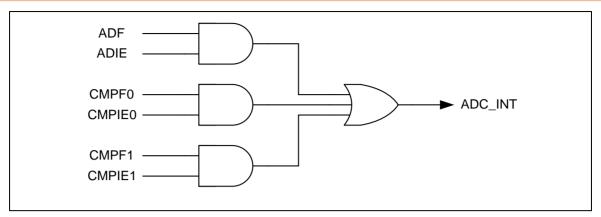


Figure 6-107 A/D Controller Interrupt

6.14.6 Register Map

R: read only, W: write only, R/W: both read and write.

Register	Offset	R/W	Description	Reset Value			
	ADC Base Address: ADC_BA = 0x400E_0000						
ADDR0	ADC_BA+0x00	R	ADC Data Register 0	0x0000_0000			
ADDR1	ADC_BA+0x04	R	ADC Data Register 1	0x0000_0000			
ADDR2	ADC_BA+0x08	R	ADC Data Register 2	0x0000_0000			
ADDR3	ADC_BA+0x0C	R	ADC Data Register 3	0x0000_0000			
ADDR4	ADC_BA+0x10	R	ADC Data Register 4	0x0000_0000			
ADDR5	ADC_BA+0x14	R	ADC Data Register 5	0x0000_0000			
ADDR6	ADC_BA+0x18	R	ADC Data Register 6	0x0000_0000			
ADDR7	ADC_BA+0x1C	R	ADC Data Register 7	0x0000_0000			
ADCR	ADC_BA+0x20	R/W	ADC Control Register	0x0000_0000			
ADCHER	ADC_BA+0x24	R/W	ADC Channel Enable Register	0x0000_0000			
ADCMPR0	ADC_BA+0x28	R/W	ADC Compare Register 0	0x0000_0000			
ADCMPR1	ADC_BA+0x2C	R/W	ADC Compare Register 1	0x0000_0000			
ADSR	ADC_BA+0x30	R/W	ADC Status Register	0x0000_0000			
ADTDCR	ADC_BA+0x44	R/W	ADC Trigger Delay Control Register (M05xxDN/DE Only)	0x0000_0000			

6.14.7 Register Description

ADC Data Registers (ADDR0 ~ ADDR7)

Register	Offset	R/W	Description	Reset Value
ADDR0	ADC_BA+0x00	R	ADC Data Register 0	0x0000_0000
ADDR1	ADC_BA+0x04	R	ADC Data Register 1	0x0000_0000
ADDR2	ADC_BA+0x08	R	ADC Data Register 2	0x0000_0000
ADDR3	ADC_BA+0x0C	R	ADC Data Register 3	0x0000_0000
ADDR4	ADC_BA+0x10	R	ADC Data Register 4	0x0000_0000
ADDR5	ADC_BA+0x14	R	ADC Data Register 5	0x0000_0000
ADDR6	ADC_BA+0x18	R	ADC Data Register 6	0x0000_0000
ADDR7	ADC_BA+0x1C	R	ADC Data Register 7	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						OVERRUN
15	14	13	12	11	10	9	8
	RSLT						
7	6	5	4	3	2	1	0
RSLT							

Bits	Description	Description		
[31:18]	Reserved	Reserved.		
		Valid Flag		
		0 = Data in RSLT bits is not valid.		
		1 = Data in RSLT bits is valid.		
[17]	VALID	This bit will be set to 1 when the conversion of the corresponding channel is completed. This bit will be cleared to 0 by hardware after ADDR register is read.		
		This is a read only bit.		
		Note: When ADC is converting, if user wants to monitor the VALID flag of a specified channel, user should poll the VALID bit of ADSR register instead of polling this bit (M05xxBN only).		
		Overrun Flag (Read Only)		
		0 = Data in RSLT is not overwrote.		
[16]	OVERRUN	1 = Data in RSLT is overwrote.		
		If converted data in RSLT has not been read before new conversion result is loaded to this register, OVERRUN is set to 1. It is cleared by hardware after ADDR register is read.		

[15:0]	RSLT	A/D Conversion Result
[15.0]		This field contains conversion result of ADC.

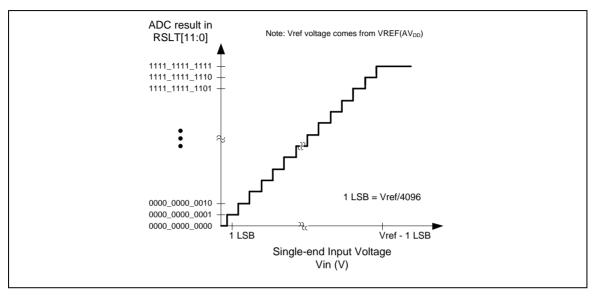


Figure 6-108 Conversion Result Mapping Diagram of ADC Single-end Input

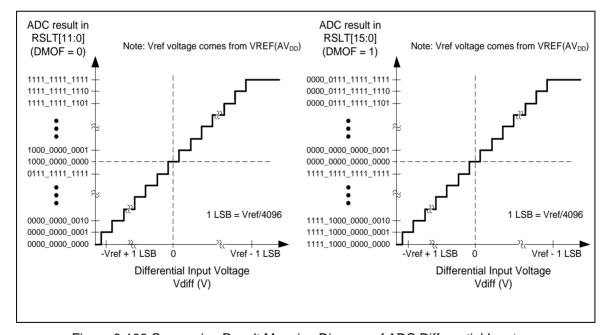


Figure 6-109 Conversion Result Mapping Diagram of ADC Differential Input

ADC Control Register (ADCR)

nuvoTon

Register	Offset	R/W	Description	Reset Value
ADCR	ADC_BA+0x20	R/W	ADC Control Register	0x0000_0000

31	30	29	28	27	26	25	24
DMOF		Reserved					
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved			ADST	DIFFEN	Reserved	TRGEN
7	6	5	4	3	2	1	0
TRGC	COND	TR	GS	AD	MD	ADIE	ADEN

Bits	Description	Description					
		Differential Input Mode Output Format	Differential Input Mode Output Format				
		0 = A/D Conversion result will be filled in F format (straight binary format).	0 = A/D Conversion result will be filled in RSLT at ADDRx registers with unsigned format (straight binary format).				
[31]	DMOF	1 = A/D Conversion result will be filled in F complement format.	RSLT at ADDRx re	egisters with 2's			
		Note: Burst mode and ADC compare functions format, this DMOF bit must be cleared to					
[30:12]	Reserved	Reserved.					
		A/D Conversion Start					
[11]	ADST	will be cleared to 0 by hardware automatic Single-cycle Scan mode. In Continuous S	ADST bit can be set to 1 from two sources: software or external pin STADC. ADST will be cleared to 0 by hardware automatically at the ends of Single mode and Single-cycle Scan mode. In Continuous Scan mode and Burst mode, A/D conversion is continuously performed until software writes 0 to this bit or chip is reset.				
ניין	Aboi	0 = Conversion stops and A/D converter enters idle state.					
		1 = Conversion starts.					
		Note: After the ADST bit is cleared to 0, user must wait at least one ADC peripheral clock cycle before setting the ADST bit to 1 again (M05xxBN only).					
		Differential Input Mode Control					
		0 = Single-end analog input mode.					
		1 = Differential analog input mode.					
		Differential Input Paired Channel	ADC Analog	g Input			
			V_{plus}	V_{minus}			
[10]	DIFFEN	0	AIN0	AIN1			
		1	AIN2	AIN3			
		2	AIN4	AIN5			
		3	AIN6	AIN7			
		Differential input voltage (V_{diff}) = V_{plus} - V_{plus} is the inverted analog input.	$\mathbf{V}_{ ext{minus}}$, where $V_{ ext{plus}}$	is the analog input; V _{minus}			

		Note: In Differential Input mode, only the even number of the two corresponding channels needs to be enabled in ADCHER register. The conversion result will be placed to the corresponding data register of the enabled channel.
[9]	Reserved	Reserved.
		External Trigger Enable Control
101	TDOEN	Enable or disable triggering of A/D conversion by external STADC pin. If external trigger is enabled, the ADST bit can be set to 1 by the selected hardware trigger source.
[8]	TRGEN	0= External trigger Disabled.
		1= External trigger Enabled.
		Note: The ADC external trigger function is only supported in Single-cycle Scan mode.
		External Trigger Condition
		These two bits decide external pin STADC trigger event is level or edge. The signal must be kept at stable state at least 8 PCLKs for level trigger and at least 4 PCLKs for edge trigger.
[7:6]	TRGCOND	00 = Low level.
		01 = High level.
		10 = Falling edge.
		11 = Rising edge.
		Hardware Trigger Source
		00 = A/D conversion is started by external STADC pin.
[5:4]	TRGS	11 = A/D conversion is started by PWM trigger.
		Software should clear TRGEN bit and ADST bit to 0 before changing TRGS.
		Note: ADC hardware trigger source does not support PWM trigger (M05xxBN only).
		A/D Converter Operation Mode Control
		00 = Single conversion.
		01 = Burst conversion.
[3:2]	ADMD	10 = Single-cycle Scan.
		11 = Continuous Scan. Note1: When changing the operation mode, software should clear ADST bit firstly.
		Note: In Burst mode, the A/D result data always at Data Register 0.
		, , , , , , , , , , , , , , , , , , , ,
		A/D Interrupt Enable Control
[1]	ADIE	A/D conversion end interrupt request is generated if ADIE bit is set to 1. 0 = A/D interrupt function Disabled.
		1 = A/D interrupt function Disabled.
		<u>'</u>
		A/D Converter Enable 0 = A/D converter Disabled.
[0]	ADEN	1 = A/D converter Enabled.
		Note: Before starting A/D conversion function, this bit should be set to 1. Clear it to 0 to disable A/D converter analog circuit to save power consumption.

ADC Channel Enable Register (ADCHER)

Register	Offset	R/W	Description	Reset Value
ADCHER	ADC_BA+0x24	R/W	ADC Channel Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
		Rese	erved			PRE	SEL
7 6 5 4 3 2 1 0					0		
	CHEN						

Bits	Description	Description			
[31:10]	Reserved	Reserved.			
[9:8]	PRESEL[1:0]	Analog Input Channel 7 Source Selection 00 = External analog input. 01 = Internal band-gap voltage. 10 = Internal temperature sensor. 11 = Reserved. Note: When the band-gap voltage is selected as the analog input source of ADC channel 7, ADC peripheral clock rate needs to be limited to lower than 300 kHz.			
[7:0]	CHEN	Analog Input Channel Enable Control Set CHEN[7:0] to enable the corresponding analog input channel 7 ~ 0. If DIFFEN bit is set to 1, only the even number channel needs to be enabled. 0 = Channel Disabled. 1 = Channel Enabled.			

A/D Compare Register 0/1 (ADCMPR0/1)

Register	Offset	R/W	Description	Reset Value
ADCMPR0	ADC_BA+0x28	R/W	ADC Compare Register 0	0x0000_0000
ADCMPR1	ADC_BA+0x2C	R/W	ADC Compare Register 1	0x0000_0000

31	30	29	28	27	26	25	24
Reserved				CMPD			
23	22	21	20	19	18	17	16
			CM	IPD			
15	14	13	12	11	10	9	8
	Rese	erved		CMPMATCNT			
7	6	5	4	3	2	1	0
Reserved CMPCH				CMPCOND	CMPIE	CMPEN	

Bits	Description				
[31:28]	Reserved	Reserved.			
[27:16]	CMPD	Comparison Data The 12-bit data is used to compare with conversion result of specified channel. Note: When DIFFEN bit is set to 1, ADC comparator compares CMPD with conversion result with unsigned format (M05xxBN only). CMPD should be filled in unsigned format (straight binary format).			
[15:12]	Reserved	Reserved.			
[11:8]	CMPMATCNT	Compare Match Count When the specified A/D channel analog conversion result matches the compare condition defined by CMPCOND[2], the internal match counter will increase 1. When the internal counter reaches the value to (CMPMATCNT +1), the CMPFx bit will be set.			
[7:6]	Reserved	Reserved.			
[5:3]	СМРСН	Compare Channel Selection 000 = Channel 0 conversion result is selected to be compared. 001 = Channel 1 conversion result is selected to be compared. 010 = Channel 2 conversion result is selected to be compared. 011 = Channel 3 conversion result is selected to be compared. 100 = Channel 4 conversion result is selected to be compared. 101 = Channel 5 conversion result is selected to be compared. 110 = Channel 6 conversion result is selected to be compared. 111 = Channel 7 conversion result is selected to be compared.			
[2]	CMPCOND	Compare Condition 0= Set the compare condition as that when a 12-bit A/D conversion result is less than the 12-bit CMPD (ADCMPRx[27:16]), the internal match counter will increase one. 1= Set the compare condition as that when a 12-bit A/D conversion result is greater			

		than or equal to the 12-bit CMPD (ADCMPRx[27:16]), the internal match counter will increase one.
		Note: When the internal counter reaches to (CMPMATCNT +1), the CMPFx bit will be set.
		Compare Interrupt Enable Control
[1]	CMPIE	If the compare function is enabled and the compare condition matches the setting of CMPCOND and CMPMATCNT, CMPFx bit will be asserted, in the meanwhile, if CMPIE is set to 1, a compare interrupt request is generated.
		0 = Compare function interrupt Disabled.
		1 = Compare function interrupt Enabled.
		Compare Enable Control
[0]	CMPEN	Set this bit to 1 to enable ADC controller to compare CMPD[11:0] with specified channel conversion result when converted data is loaded into ADDR register.
		0 = Compare function Disabled.
		1 = Compare function Enabled.

A/D Status Register (ADSR)

Register	Offset	R/W	Description	Reset Value
ADSR	ADC_BA+0x30	R/W	ADC Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	OVERRUN							
15	14	13	12	11	10	9	8	
	VALID							
7	6	5	4	3	2	1	0	
Reserved	Reserved CHANNEL			BUSY	CMPF1	CMPF0	ADF	

Bits	Description				
[31:24]	Reserved	Reserved.			
[23:16]	OVERRUN	Overrun Flag (Read Only) It is a mirror of OVERRUN bit in ADDRx register. When ADC is in Burst mode and the FIFO is overrun, all bits of OVERRUN[7:0] will be set to 1.			
[15:8]	VALID	Data Valid Flag (Read Only) It is a mirror of VALID bit in ADDRx register. When ADC is in Burst mode and any conversion result is valid, all bits of VALID[7:0] will be set to 1.			
[7]	Reserved	Reserved.			
[6:4]	CHANNEL	Current Conversion Channel When BUSY=1, this filed reflects current conversion channel. When BUSY=0, it shows the number of the next converted channel. It is read only.			
[3]	BUSY	BUSY/IDLE This bit is a mirror of ADST bit in ADCR register. It is read only. 0 = A/D converter is in idle state. 1 = A/D converter is busy at conversion.			
[2]	CMPF1	Compare Flag 1 When the A/D conversion result of the selected channel meets setting condition in ADCMPR1 then this bit is set to 1; it is cleared by writing 1 to self. 0 = Conversion result in ADDR does not meet ADCMPR1 setting. 1 = Conversion result in ADDR meets ADCMPR1 setting.			
[1]	CMPF0	Compare Flag 0 When the A/D conversion result of the selected channel meets setting condition in ADCMPR0 then this bit is set to 1. This bit is cleared by writing 1 to it. 0 = Conversion result in ADDR does not meet ADCMPR0 setting. 1 = Conversion result in ADDR meets ADCMPR0 setting.			

		A/D Conversion End Flag
		A status flag that indicates the end of A/D conversion. Software can write 1 to clear this bit.
[0]	ADF	ADF is set to 1 at the following three conditions:
[0]	ADF	When A/D conversion ends in Single mode.
		When A/D conversion ends on all specified channels in Single-cycle Scan mode and Continuous Scan mode.
		3. When more than 4 samples in FIFO in Burst mode.

ADC Trigger Delay Control Register (ADTDCR)

Register	Offset	R/W	Description	Reset Value
ADTDCR	ADC_BA+0x44	R/W	ADC Trigger Delay Control Register (M05xxDN/DE Only)	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
	PTDT							

Bits	Description	escription			
[31:8]	Reserved	Reserved.			
[7:0]	PTDT	PWM Trigger Delay Time Set this field will delay ADC start conversion time after PWM trigger. PWM trigger delay time is (4 * PTDT) * system clock			

6.15 Analog Comparator (ACMP)

6.15.1 Overview

The M05xxBN/DN/DE contains up to four comparators which can be used in a number of different configurations. The comparator output is logic 1 when positive input greater than negative input, otherwise the output is 0. Each comparator can be configured to generate interrupt request when the comparator output value changes.

6.15.2 Features

- Analog input voltage range: 0 ~ AV_{DD}.
- Supports Hysteresis function
- Optional internal reference voltage source for each comparator negative input
- Two interrupt vectors for the four analog comparators

	M05xxBN	M05xxDN	M05xxDE
Number of ACMP	2	4	4
ACMP Output Inverse Function	-	-	•

Table 6-23 M05xxBN and M05xxDN/DE Function Difference List (ACMP)

6.15.3 Block Diagram

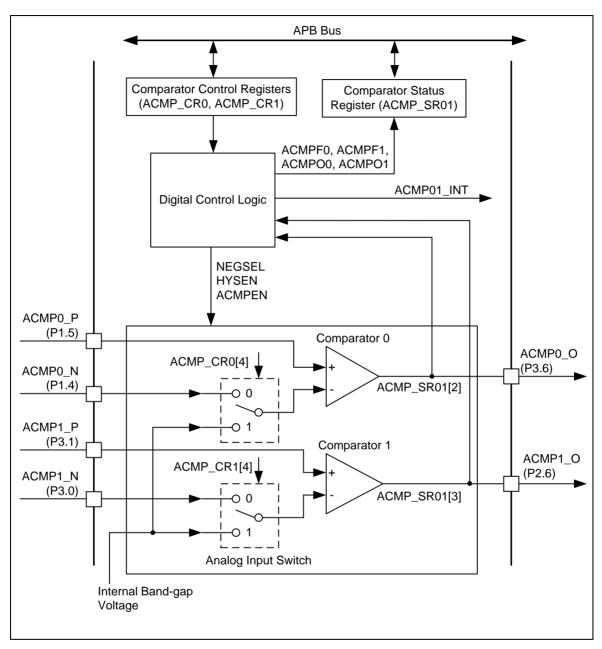


Figure 6-110 Analog Comparator 0/1 Block Diagram

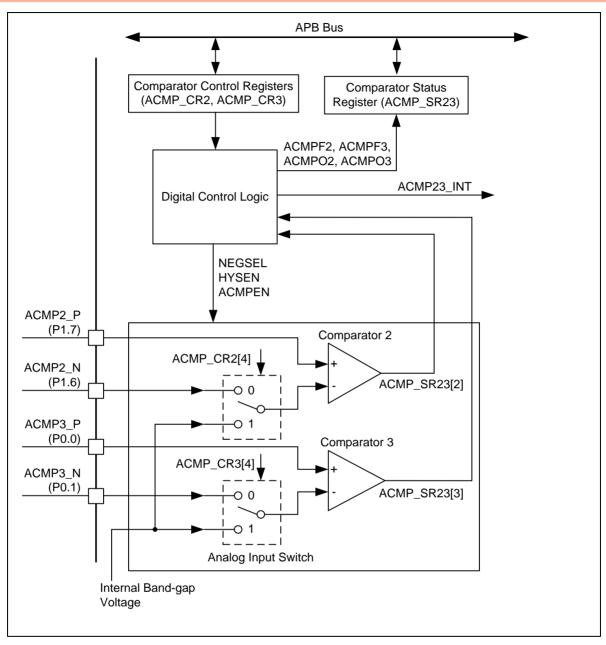


Figure 6-111 Analog Comparator 2/3 Block Diagram (M05xxDN/DE Only)

6.15.4 Basic Configuration

The ACMP pin functions are configured in P0_MFP, P1_MFP, P2_MFP and P3_MFP registers. It is recommended to disable the digital input path of the analog input pins to avoid the leakage current. The digital input path can be disabled by configuring P0_OFFD, P1_OFFD and P3_OFFD registers. If a GPIO pin is configured as an ACMP input pin, this pin should not be set as Pushpull Output mode in the Px_PMD register. Input mode is the safest configuration. If Open-drain Output mode or Quasi-bidirectional mode is selected, do not output 0 on this GPIO pin. The default GPIO output value is 1. The default Px_PMD setting after chip reset is Quasi-bidirectional mode on M05xxBN. The default Px_PMD setting is determined by user configuration on M05xxDN/DE. It could be configured as Input mode or Quasi-bidirectional mode in M05xxDN/DE user configuration.

The ACMP01 and ACMP23 peripheral clocks can be enabled in APBCLK[30] and APBCLK[31].

6.15.5 Functional Description

6.15.5.1 Interrupt Sources

nuvoTon

The output of comparators are sampled by PCLK and reflected at ACMPOx of ACMP SR01/23 register. If ACMPIE of ACMP_CRx register is set to 1, the comparator interrupt will be enabled. As the output state of comparator is changed, the comparator interrupt will be asserted and the corresponding flag. ACMPFx, will be set. Software can clear the flag to 0 by writing 1 to it.

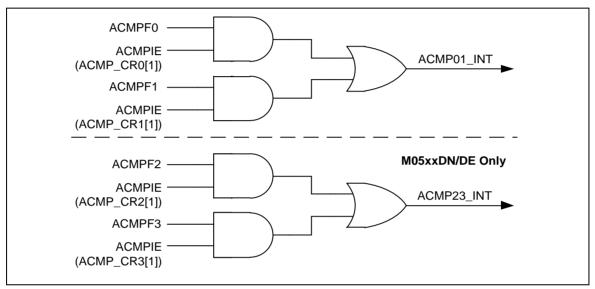


Figure 6-112 Analog Comparator Controller Interrupt Sources

6.15.5.2 Hysteresis Function

The analog comparator provides hysteresis function to make the comparator output transition more stable. If comparator output is 0, it will not change to 1 until the positive input voltage exceeds the negative input voltage by a positive hysteresis voltage. Similarly, if comparator output is 1, it will not change to 0 until the positive input voltage drops below the negative input voltage by a negative hysteresis voltage.

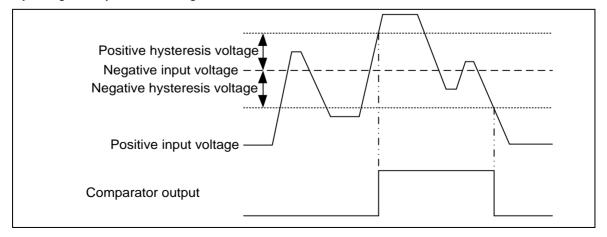


Figure 6-113 Comparator Hysteresis Function

6.15.6 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
ACMP Base Address: ACMP01_BA = 0x400D_0000 ACMP23_BA = 0x401D_0000							
ACMP_CR0	ACMP01_BA+0x00	R/W	Analog Comparator 0 Control Register	0x0000_0000			
ACMP_CR1	ACMP01_BA+0x04	R/W	Analog Comparator 1 Control Register	0x0000_0000			
ACMP_SR01	ACMP01_BA+0x08	R/W	Analog Comparator 0/1 Status Register	0x0000_0000			
ACMP_CR2	ACMP23_BA+0x00	R/W	Analog Comparator 2 Control Register (M05xxDN/DE Only)	0x0000_0000			
ACMP_CR3	ACMP23_BA+0x04	R/W	Analog Comparator 3 Control Register (M05xxDN/DE Only)	0x0000_0000			
ACMP_SR23	ACMP23_BA+0x08	R/W	Analog Comparator 2/3 Status Register (M05xxDN/DE Only)	0x0000_0000			
Note: ACMP23_BA is for M05xxDN/DE Only.							

6.15.7 Register Description

Analog Comparator 0 Control Register (ACMP_CR0)

Register	Offset	R/W	Description	Reset Value
ACMP_CR0	ACMP01_BA+0x00	R/W	Analog Comparator 0 Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved	ACMPOINV	Reserved	NEGSEL	Reserved	HYSEN	ACMPIE	ACMPEN			

Bits	Description	
[31:7]	Reserved	Reserved.
[6]	ACMPOINV	Analog Comparator 0 Output Inverse Enable Control (M05xxDE Only) 0 = The comparator output inverse function Disabled. 1 = The comparator output inverse function Enabled.
[5]	Reserved	Reserved.
[4]	NEGSEL	Analog Comparator 0 Negative Input Selection 0 = The source of the negative comparator input is from ACMP0_N pin. 1 = The internal band-gap voltage is selected as the source of negative comparator input.
[3]	Reserved	Reserved.
[2]	HYSEN	Analog Comparator 0 Hysteresis Enable Control 0 = Hysteresis function Disabled. 1 = Hysteresis function Enabled.
[1]	ACMPIE	Analog Comparator 0 Interrupt Enable Control 0 = Interrupt function Disabled. 1 = Interrupt function Enabled.
[0]	ACMPEN	Analog Comparator 0 Enable Control 0 = Analog Comparator 0 Disabled. 1 = Analog Comparator 0 Enabled. Note: Analog comparator output needs to wait 2 us stable time after ACMPEN is set.

Analog Comparator 1 Control Register (ACMP_CR1)

Register	Offset	R/W	Description	Reset Value
ACMP_CR1	ACMP01_BA+0x04	R/W	Analog Comparator 1 Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved	ACMPOINV	Reserved	NEGSEL	Reserved	HYSEN	ACMPIE	ACMPEN			

Bits	Description	
[31:7]	Reserved	Reserved.
[6]	ACMPOINV	Analog Comparator 1 Output Inverse Enable Control (M05xxDE Only) 0 = The comparator output inverse function Disabled. 1 = The comparator output inverse function Enabled.
[5]	Reserved	Reserved.
[4]	NEGSEL	Analog Comparator 1 Negative Input Selection 0 = The source of the negative comparator input is from ACMP1_N pin. 1 = The internal band-gap voltage is selected as the source of negative comparator input.
[3]	Reserved	Reserved.
[2]	HYSEN	Analog Comparator 1 Hysteresis Enable Control 0 = Hysteresis function Disabled. 1 = Hysteresis function Enabled.
[1]	ACMPIE	Analog Comparator 1 Interrupt Enable Control 0 = Interrupt function Disabled. 1 = Interrupt function Enabled.
[0]	ACMPEN	Analog Comparator 1 Enable Control 0 = Analog comparator 1 Disabled. 1 = Analog comparator 1 Enabled. Note: Analog comparator output needs to wait 2 us stable time after ACMPEN is set.

Analog Comparator 0/1 Status Register (ACMP_SR01)

Register	Offset	R/W	Description	Reset Value
ACMP_SR01	ACMP01_BA+0x08	R/W	Analog Comparator 0/1 Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Reserved				ACMPO0	ACMPF1	ACMPF0		

Bits	Description	
[31:4]	Reserved	Reserved.
		Analog Comparator 1 Output
[3]	ACMPO1	Synchronized to the APB clock to allow reading by software. Cleared when the comparator 1 is disabled (ACMP_CR1[0] = 0).
		0 = Analog comparator 1 outputs 0.
		1 = Analog comparator 1 outputs 1.
		Analog Comparator 0 Output
[2]	ACMPO0	Synchronized to the APB clock to allow reading by software. Cleared when the comparator 0 is disabled $(ACMP_CR0[0] = 0)$.
		0 = Analog comparator 0 outputs 0.
		1 = Analog comparator 0 outputs 1.
		Analog Comparator 1 Flag
		This bit is set by hardware whenever the comparator 1 output changes state. This will generate an interrupt if ACMP_CR1[1] is set to 1.
[1]	ACMPF1	0 = Analog comparator 1 output does not change.
		1 = Analog comparator 1 output changed since this bit was cleared to 0.
		Note: Write 1 to clear this bit to 0.
		Analog Comparator 0 Flag
		This bit is set by hardware whenever the comparator 0 output changes state. This will generate an interrupt if ACMP_CR0[1] is set to 1.
[0]	ACMPF0	0 = Analog comparator 0 output does not change.
		1 = Analog comparator 0 output changed since this bit was cleared to 0.
		Note: Write 1 to clear this bit to 0.

Analog Comparator 2 Control Register (ACMP_CR2)

Register	Offset	R/W	Description	Reset Value
ACMP_CR2	ACMP23_BA+0x00	R/W	Analog Comparator 2 Control Register (M05xxDN/DE Only)	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved	ACMPOINV	Reserved	NEGSEL	Reserved	HYSEN	ACMPIE	ACMPEN			

Bits	Description	
[31:7]	Reserved	Reserved.
[6]	ACMPOINV	Analog Comparator 2 Output Inverse Enable Control (M05xxDE Only) 0 = The comparator output inverse function Disabled. 1 = The comparator output inverse function Enabled.
[5]	Reserved	Reserved.
[4]	NEGSEL	Analog Comparator 2 Negative Input Selection 0 = The source of the negative comparator input is from ACMP2_N pin. 1 = The internal band-gap voltage is selected as the source of negative comparator input.
[3]	Reserved	Reserved.
[2]	HYSEN	Analog Comparator 2 Hysteresis Enable Control 0 = Hysteresis function Disabled. 1 = Hysteresis function Enabled.
[1]	ACMPIE	Analog Comparator 2 Interrupt Enable Control 0 = Interrupt function Disabled. 1 = Interrupt function Enabled.
[0]	ACMPEN	Analog Comparator 2 Enable Control 0 = Analog Comparator 2 Disabled. 1 = Analog Comparator 2 Enabled. Note: Analog comparator output needs to wait 2 us stable time after ACMPEN is set.

Analog Comparator 3 Control Register (ACMP_CR3)

Register	Offset	R/W	Description	Reset Value
ACMP_CR3	ACMP23_BA+0x04	R/W	Analog Comparator 3 Control Register (M05xxDN/DE Only)	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	7 6 5 4 3 2 1 0						0	
Reserved	ACMPOINV	Reserved	NEGSEL	Reserved	HYSEN	ACMPIE	ACMPEN	

Bits	Description	
[31:7]	Reserved	Reserved.
[6]	ACMPOINV	Analog Comparator 3 Output Inverse Enable Control (M05xxDE Only) 0 = The comparator output inverse function Disabled. 1 = The comparator output inverse function Enabled.
[5]	Reserved	Reserved.
[4]	NEGSEL	Analog Comparator 3 Negative Input Selection 0 = The source of the negative comparator input is from ACMP3_N pin. 1 = The internal band-gap voltage is selected as the source of negative comparator input.
[3]	Reserved	Reserved.
[2]	HYSEN	Analog Comparator 3 Hysteresis Enable Control 0 = Hysteresis function Disabled. 1 = Hysteresis function Enabled.
[1]	ACMPIE	Analog Comparator 3 Interrupt Enable Control 0 = Interrupt function Disabled. 1 = Interrupt function Enabled.
[0]	ACMPEN	Analog Comparator 3 Enable Control 0 = Analog comparator 3 Disabled. 1 = Analog comparator 3 Enabled. Note: Analog comparator output needs to wait 2 us stable time after ACMPEN is set.

Analog Comparator 2/3 Status Register (ACMP_SR23)

Register	Offset	R/W	Description	Reset Value
ACMP_SR23	ACMP23_BA+0x08	R/W	Analog Comparator 2/3 Status Register (M05xxDN/DE Only)	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Reserved				ACMPO2	ACMPF3	ACMPF2		

Bits	Description	
[31:4]	Reserved	Reserved.
		Analog Comparator 3 Output
[3]	ACMPO3	Synchronized to the APB clock to allow reading by software. Cleared when the comparator 3 is disabled (ACMP_CR3 $[0] = 0$).
		0 = Analog comparator 3 outputs 0.
		1 = Analog comparator 3 outputs 1.
		Analog Comparator 2 Output
[2]	ACMPO2	Synchronized to the APB clock to allow reading by software. Cleared when the comparator 2 is disabled (ACMP_CR2 $[0] = 0$).
		0 = Analog comparator 2 outputs 0.
		1 = Analog comparator 2 outputs 1.
		Analog Comparator 3 Flag
		This bit is set by hardware whenever the comparator 3 output changes state. This will generate an interrupt if ACMP_CR3[1] is set to 1.
[1]	ACMPF3	0 = Analog comparator 3 output does not change.
		1 = Analog comparator 3 output changed since this bit was cleared to 0.
		Note: Write 1 to clear this bit to 0.
		Analog Comparator 2 Flag
		This bit is set by hardware whenever the comparator 2 output changes state. This will generate an interrupt if ACMP_CR2[1] is set to 1.
[0]	ACMPF2	0 = Analog comparator 2 output does not change.
		1 = Analog comparator 2 output changed since this bit was cleared to 0.
		Note: Write 1 to clear this bit to 0.

6.16 Hardware Divider (HDIV) (M05xxDN/DE Only)

6.16.1 Overview

The hardware divider (HDIV) is useful to the high performance application. The hardware divider is a signed, integer divider with both quotient and remainder outputs. The hardware divider function is only available on M05xxDN/DE.

6.16.2 Features

- Signed (two's complement) integer calculation
- 32-bit dividend with 16-bit divisor calculation capacity
- 32-bit quotient and 32-bit remainder outputs (16-bit remainder with sign extends to 32-bit)
- Divided by zero warning flag
- 6 HCLK clocks taken for one cycle calculation
- Write divisor to trigger calculation
- Waiting for calculation ready automatically when reading quotient and remainder

6.16.3 Basic Configuration

Before using the hardware divider, the clock of hardware divider must be enabled. To enable hardware divider, it needs to set HDIV_EN on AHBCLK[4] to 1.

6.16.4 Functional Description

nuvoton

To use hardware divider, it needs to set dividend first. Then set divisor and the hardware divider will trigger calculation automatically after divisor written. The calculation results including the quotient and remainder could be got by reading DIVQUO and DIVREM register. If CPU reads DIVQUO or DIVREM before hardware divider calculation finishing, CPU will be held until hardware divider finishing the calculation. Therefore, CPU can always get valid results after trigger one hardware divider calculation without software delay.

DIV0 flag of DIVSTS will be set if divisor is 0.

The dividend is 32-bit signed integer and divisor is 16-bit signed integer. The quotient is 32-bit signed integer and the remainder is 16-bit signed integer.

The following figure shows the operation flow of hardware divider. To calculation X / Y, CPU needs to write X to DIVIDEND register, and then write Y to DIVISOR. CPU can read DIVQUO and DIVREM registers to get calculation results after DIVISOR been written.

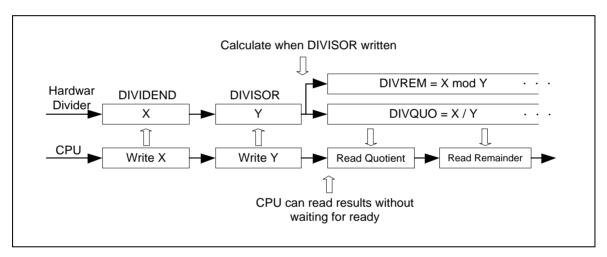


Figure 6-114 Hardware Divider Operation Flow

6.16.5 Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value		
HDIV_BA = 0x5001_4000						
DIVIDEND	HDIV_BA+0x00	R/W	Dividend Source Register	0x0000_0000		
DIVISOR	HDIV_BA+0x04	R/W	Divisor Source Resister	0x0000_FFFF		
DIVQUO	HDIV_BA+0x08	R/W	Quotient Result Resister	0x0000_0000		
DIVREM	HDIV_BA+0x0C	R/W	Remainder Result Register	0x0000_0000		
DIVSTS	HDIV_BA+0x10	R	Divider Status Register	0x0000_0001		

6.16.6 Register Description

Dividend Source Register (DIVIDEND)

Register	Offset	R/W	Description	Reset Value
DIVIDEND	HDIV_BA+0x00	R/W	Dividend Source Register	0x0000_0000

31	30	29	28	27	26	25	24		
	DIVIDEND								
23	22	21	20	19	18	17	16		
			DIVID	DEND					
15	14	13	12	11	10	9	8		
	DIVIDEND								
7	7 6 5 4 3 2 1 0								
	DIVIDEND								

Bits	Description				
[31:0]	DIVIDEND	Dividend Source This register is given the dividend of divider before calculation starting.			

Divisor Source Register (DIVISOR)

Register	Offset	R/W	Description	Reset Value
DIVISOR	HDIV_BA+0x04	R/W	Divisor Source Resister	0x0000_FFFF

31	30	29	28	27	26	25	24
			Res	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	DIVISOR						
7	6	5	4	3	2	1	0
	DIVISOR						

Bits	Description				
[31:16]	Reserved	ed Reserved.			
[15:0]	DIVISOR	Divisor Source This register is given the divisor of divider before calculation starts. Note: When this register is written, hardware divider will start calculate.			

Quotient Result Register (DIVQUO)

Register	Offset	R/W	Description	Reset Value
DIVQUO	HDIV_BA+0x08	R/W	Quotient Result Resister	0x0000_0000

31	30	29	28	27	26	25	24
			QUO ⁻	ΓΙΕΝΤ			
23	22	21	20	19	18	17	16
	QUOTIENT						
15	14	13	12	11	10	9	8
			QUO ⁻	ΓΙΕΝΤ			
7	6	5	4	3	2	1	0
	QUOTIENT						

Bits	Description	
[31:0]	QUOTIENT	Quotient Result This register holds the quotient result of divider after calculation complete.

Remainder Result Register (DIVREM)

Register	Offset	R/W	Description	Reset Value
DIVREM	HDIV_BA+0x0C	R/W	Remainder Result Register	0x0000_0000

31	30	29	28	27	26	25	24
			REMA	INDER			
23	22	21	20	19	18	17	16
	REMAINDER						
15	14	13	12	11	10	9	8
	REMAINDER						
7	6	5	4	3	2	1	0
	REMAINDER						

Bits	Description			
[31:16]	REMAINDER[31:16]	Sign Extension of REMAINDER[15:0] The remainder of hardware divider is 16-bit sign integer (REMAINDER[15:0]) with sign extension (REMAINDER[31:16]) to 32-bit integer.		
[15:0]	REMAINDER[15:0]	Remainder Result This register holds the remainder result of divider after calculation complete.		

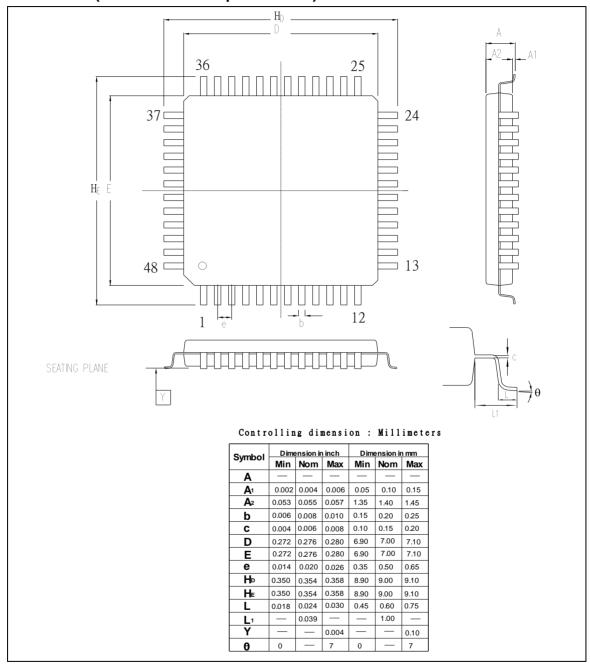
Divider Status Register (DIVSTS)

nuvoTon

Register	Offset	R/W	Description	Reset Value
DIVSTS	HDIV_BA+0x10	R	Divider Status Register	0x0000_0001

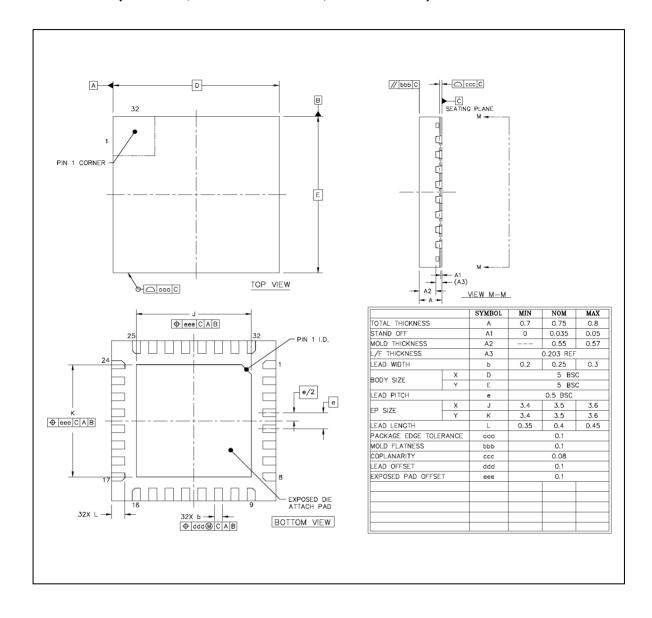
31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved						DIV0	Reserved

Bits	Description				
[31:2]	Reserved	Reserved.			
	Divisor Zero Warning				
		0 = The divisor is not 0.			
[1]	DIV0	1 = The divisor is 0.			
		Note: The DIV0 flag is used to indicate divide-by-zero situation and updated whenever DIVISOR is written. This register is read only.			
[0]	Reserved	Reserved.			


7 ELECTRICAL CHARACTERISTICS

Please refer to the relative Datasheet for detailed information about the M051 Series electrical characteristics.

M051 BN/DN/DE SERIES TECHNICAL REFERENCE MANUA


8 PACKAGE DIMENSIONS

8.1 LQFP-48 (7x7x1.4mm² Footprint 2.0mm)

8.2 QFN-33 (5X5 mm², Thickness 0.8mm, Pitch 0.5 mm)

9 REVISION HISTORY

Date	Revision	Des	cription
2013.09.15	1.00	1.	Initially issued.
		1.	Changed the order of Chapter 5 BLOCK DIAGRAM and Chapter 6 FUNCTIONAL DESCRIPTION.
		2.	Fixed typos and obscure description.
		3.	Fixed the number of COMP. sets in 4.2 NuMicro [®] M051 Series M05xxDN Selection Guide and 4.3 NuMicro [®] M051 Series M05xxDE Selection Guide.
2015.05.12	1.01	4.	Added pin diagram note in Figure 4-2 NuMicro® M051 Series QFN-33 Pin Diagram and Figure 4-3 NuMicro® M051 Series LQFP-48 Pin Diagram.
		5.	Added clock switching note in Chapter 6.3 Clock Controller.
		6.	Removed description about ACMP output inverse function available on M05xxDN.
		1.	Changed NuMicro™ to NuMicro [®] .
		2.	Added M051xxDN series to supporting list in register description of ACMP23_EN(APBCLK[31]) in 6.3.6 Register Description.
		3.	Added M051xxDN series to supporting list in register description of I2C1_EN(APBCLK[9]) in 6.3.6 Register Description.
2015.10.05	1.02	4.	Added M051xxDN series to supporting list in Figure 6-112 Analog Comparator Controller Interrupt Sources.
		5.	Added M051xxDN series to clock source from LIRC supporting list in register description of PWM23_S(CLKSEL1[31:30]), PWM01_S(CLKSEL1[29:28]), PWM67_S(CLKSEL2[7:6]) and PWM45_S(CLKSEL2[5:4]) in 6.3.6 Register Description.
		6.	Changed the register description of P4_ ALT(P4_MFP[3]) in 6.2.6 System Manager Controller Register Map.
		1.	Added Section 6.2.11 Register Protection.
2016.04.13	1.03	2.	Fixed the error about AV_{DD} and V_{REF} mark in Figure 6-100 AD Controller Block Diagram.
		3.	Added Section 6.14.5.7 Internal Reference Voltage.

1051 BN/UN/UE SERIES FECENICAL REFERENCE MANC

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.