

Nov. 16, 2015 Page 1 of 56 Rev 1.00

AN0004

Application Note for 32-bit NuMicro® Family

Document Information

Abstract This application note describes how to implement HDMI (high-definition
multimedia interface) CEC (consumer electronics control) functions as a
TV set or a projector that support the HDMI-CEC protocol based on the
Timer Capture function of NuMicro® family Cortex® -M0 M051 and M0518
series microcontrollers (MCUs).

Apply to NuMicro® M051 and M0518 series which support the Timer Capture
function.

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

HDMI-CEC Application Note & Sample Code

http://www.nuvoton.com/

Nov. 16, 2015 Page 2 of 56 Rev 1.00

AN0004

Table of Contents

1 OVERVIEW .. 5

1.1 The Purpose of HDMI-CEC ... 5

2 HDMI-CEC SPECIFICATION ABSTRACT .. 6

2.1 Introduction to CEC ... 6

2.2 CEC Communication ... 6

2.2.1 Address.. 6
2.2.2 CEC Format .. 9
2.2.3 CEC Features ... 14

3 TIMER CAPTURE FUNCTION .. 16

3.1 Timer Controller ... 16

3.1.1 Timer Controller of M051 Series .. 16
3.1.2 Timer Controller of M0518 Series .. 17

3.2 Timer Event Capture Function .. 18

3.3 Use the Timer Capture to Measure the CEC Signal ... 19

4 EXAMPLE CODE ... 20

4.1 Hardware System Structure ... 20

4.2 Firmware Description .. 22

4.2.1 Main Function and System Initialization ... 22
4.2.2 Interrupt Handler .. 33
4.2.3 CEC Sub-functions .. 41
4.2.4 Test Results .. 47

Nov. 16, 2015 Page 3 of 56 Rev 1.00

AN0004

List of Figures

Figure 1-1 Home Entertainment Structure ... 5

Figure 2-1 CEC and DDC Line Connections ... 6

Figure 2-2 Physical Addresses within an HDMI Cluster .. 7

Figure 2-3 Physical and Logical Addressing within a HDMI Cluster 9

Figure 2-4 CEC Messages in a CEC Feature ... 10

Figure 2-5 Message Structure .. 10

Figure 2-6 Data Block Format .. 11

Figure 2-7 Header Block Format ... 12

Figure 2-8 Start Bit Timing .. 12

Figure 2-9 Data Bit Timing .. 13

Figure 2-10 Asserted Bit Timing .. 13

Figure 2-11 Typical Scenario for One Touch Play Feature ... 14

Figure 2-12 Typical Scenario for Broadcast (System) Standby Feature 15

Figure 2-13 Typical Scenario for Standby Feature to a Specific Device 15

Figure 3-1 Clock Source of Timer Controller in M051 Series ... 16

Figure 3-2 Block Diagram of Timer Controller in M051 Series ... 17

Figure 3-3 Clock Source of Timer Controller in M0518 Series ... 17

Figure 3-4 Block Diagram of Timer Controller in M0518 Series ... 18

Figure 3-5 Timing Waveform of Timer 1 Capturing .. 19

Figure 4-1 Hardware System Structure .. 20

Figure 4-2 Main Function Flow Chart .. 23

Figure 4-3 CEC State Machine .. 34

Figure 4-4 Receiving CEC Flow Chart .. 35

Figure 4-5 Transmitting CEC Flow Chart ... 42

Figure 4-6 Test Result with SONY PS3 .. 48

Figure 4-7 Test Result with Philips DVD Player .. 49

Figure 4-8 Test Result with Google Chromecast .. 50

Figure 4-9 Test Result with Google Chromecast (Continued) .. 51

Nov. 16, 2015 Page 4 of 56 Rev 1.00

AN0004

List of Tables

Table 2-1 Logical Address .. 8

Table 4-1 Pin Function and GPIO Mode .. 21

Table 4-2 CEC Messages ... 54

Nov. 16, 2015 Page 5 of 56 Rev 1.00

AN0004

1 Overview

This application note describes how to implement HDMI (high-definition multimedia interface)
CEC (consumer electronics control) functions as a TV set or a projector that support the
HDMI-CEC protocol based on the Timer Capture function of NuMicro® family Cortex® -M0
M051 and M0518 series microcontroller (MCU). At first, the abstract of HDMI-CEC structure
and format from the HDMI-CEC specification will be introduced. Then, the Timer Capture
function of M051 series and M0518 series will be briefly explained. Finally, the example code
and the results using a tiny EVB board of M0516LDN or M0518SD2AE chip will be present to
demonstrate the HDMI-CEC behavior, and emulated as a TV set or a projector connected
with SONY PS3, Philips DVD player and Google Chromecast.

1.1 The Purpose of HDMI-CEC

Figure 1-1 shows the home entertainment structure in universal home. The purpose of CEC is
to reduce the remote controllers to control all the HDMI devices connected together through
the HDMI cables serially.

AVR

TV

Remote Control

DVD Player

SONY PS3

BD Player

HDMI Cable

Google
Chromecast

Figure 1-1 Home Entertainment Structure

Nov. 16, 2015 Page 6 of 56 Rev 1.00

AN0004

2 HDMI-CEC Specification Abstract

2.1 Introduction to CEC

CEC is the appendix supplement 1 to the HDMI standard. It is a protocol that provides high-
level control functions between all of the various audiovisual products in a user’s environment.
For more details, refer to the “High-Definition Multimedia Interface” Specification that is
available from www.hdmi.org.

2.2 CEC Communication

2.2.1 Address

2.2.1.1 Physical Address

To allow CEC to be able to address specific physical devices and control switches, all devices
shall have a physical address. This connectivity has to be worked out whenever a new device
is added to the cluster. The physical address discovery process uses only the DDC/EDID
(Display Data Channel/Extended Display Identification Data) mechanism and can be applied
to all HDMI Sinks and Repeaters, not only to CEC-capable devices. The CEC and DDC
connections are shown in Figure 2-1.

DDC line CEC bus

Figure 2-1 CEC and DDC Line Connections

The CEC line is directly connected to all nodes on the network. After discovering their own
physical address, the CEC devices transmit their physical and logical addresses to all other
devices, thus allowing any device to create a map of the network.

http://www.hdmi.org/

Nov. 16, 2015 Page 7 of 56 Rev 1.00

AN0004

Physical Address Discovery

The physical address of each node is determined through the physical address discovery
process. This process is dynamic in that it automatically adjusts physical addresses as
required as devices are physically or electrically added or removed from the device tree.

All Sinks and Repeaters shall perform the steps of physical address discovery and
propagation even if those devices are not CEC-capable. Sources are not required to
determine their own physical address unless they are CEC-capable.

All addresses are 4 digits long allowing for a 5–device-deep hierarchy. All are identified in the
form of n.n.n.n in the following description. An example of this is given in Figure 2-1.

PVR
2.3.1.0

STB
2.3.0.0

D-VHS
2.2.0.0

DVD
2.1.0.0

not present
1.0.0.0

A/V Receiver/
Amplifier

2.0.0.0

0.0.0.0

EDID
1.0.0.0

EDID
2.0.0.0

Figure 2-2 Physical Addresses within an HDMI Cluster

2.2.1.2 Logical Address

Each device appearing on the control signal line has a logical address which is allocated to
only one device in the system. This address defines a device type as well as being a unique
identifier. These are specified in Table 2-1.

Logical Address Device

0 TV

1 Recording Device 1

2 Recording Device 2

Nov. 16, 2015 Page 8 of 56 Rev 1.00

AN0004

3 Tuner 1

4 Playback Device 1

5 Audio System

6 Tuner 2

7 Tuner 3

8 Playback Device 2

9 Recording Device 3

10 Tuner 4

11 Playback Device 3

12 Reserved

13 Reserved

14 Free Use

15 Unregistered (as initiator address)
Broadcast (as destination address)

Table 2-1 Logical Address

All CEC devices have both a physical and logical address, whereas non-CEC devices only
have a physical address. The following diagram shows the physical and logical addressing
within a HDMI cluster.

Nov. 16, 2015 Page 9 of 56 Rev 1.00

AN0004

PC Game Box
PA=1.1.1.2
LA=8

Set Top Box
PA=1.1.1.3
LA=3

Security Camera
PA=1.1.1.1
LA=14

Switcher
PA=1.1.1.0
LA=15

AVR
PA=1.1.0.0
LA=5

Recording Device
PA=1.0.0.0
LA=1

Digital TV
PA=0.0.0.0
LA=0

DVD Player
PA=1.1.2.0
LA=4

out in 1 in 2 in 3 out in 1 in 2 out in 1 out out

in 1

out out

Physical Address (PA)
Logical Address (LA)

Figure 2-3 Physical and Logical Addressing within a HDMI Cluster

2.2.2 CEC Format

2.2.2.1 CEC Message

Each CEC feature contains one or more messages to perform a special CEC feature, for
example, a “One Touch Play” feature described in the section 2.2.3.1 that it needs two
messages to achieve it. The following table shows the complete CEC messages in a CEC
feature that communication on a CEC bus. Each message is a single frame; the details of
each block of the frame are given in the subsequent sections. The maximum message size
(header block plus opcode block plus operand blocks) is 16 * 10 bits and message structure
is shown below.

Nov. 16, 2015 Page 10 of 56 Rev 1.00

AN0004

CEC Feature

CEC Message 1

Start Command

CEC Header Block

CEC Data Block 1

‧

‧

CEC Data Block N

‧

‧

CEC Message N

Start Command

CEC Header Block

CEC Data Block 1

‧

‧

CEC Data Block N

Figure 2-4 CEC Messages in a CEC Feature

Start Bit Header Block

Opcode

Data Block N

10 bits 10 bits 10 bits

Operand

Data Block 1

10 bits

Data Block 2

Operand
0 to 14

Operands

Figure 2-5 Message Structure

Nov. 16, 2015 Page 11 of 56 Rev 1.00

AN0004

2.2.2.2 CEC Frame

The CEC bus is a single wire protocol that can connect up to 10 audiovisual devices through
standard HDMI cable. The CEC transaction is made up of a start bit, a 10-bit header and a
sequence of n 10-bit data blocks. The Header block and the Data blocks each contain an
end-of-message (EOM) bit and an acknowledge (ACK) bit.

Data Block

All Data Blocks and Header Blocks are ten bits long and have the same basic structure, as
shown in Figure 2-6 . The information bits are data, opcodes or addresses, depending on
context. The control bits, EOM and ACK, are always present and always have the same
usage.

Data Block

7 6 5 4 3 2 1 0 -- --

Informational Bits EOM ACK

Figure 2-6 Data Block Format

EOM (End of Message)

= 0, one or more data blocks follow.

= 1, the message is complete.

ACK (Acknowledge)

= 0, Ack.

Header Block

The Header Block consists of the source logical address field, the destination logical address
field, the end of message bit (EOM) and the acknowledge bit (ACK) as shown in Figure 2-7.
The addresses for the devices are specified in Table 2-1.

Nov. 16, 2015 Page 12 of 56 Rev 1.00

AN0004

Header Block

3 2 1 0 3 2 1 0 -- --

Initiator Address Destination Address EOM ACK

Figure 2-7 Header Block Format

2.2.2.3 CEC Timing

Start Bit Timing

The pulse format of the start bit is shown in Figure 2-8. It is unique and identifies the start of a
frame. The start bit has to be validated by its low duration (a) and its total duration (b).

Total start cycle time (b)

Low pulse time (a)

Time (ms)

3
.5

3
.7

3
.9

4
.3

4
.5

4
.70

Device Output

Figure 2-8 Start Bit Timing

Data Bit Timing

All remaining data bits in the frame, after the start bit, have consistent timing. There are,
however, two types of bits; an initiator asserted bit and a follower asserted bit. All bits apart
from the acknowledge bit are asserted by the initiator. Figure 2-9 shows both logical 1 and
logical 0 timing diagrams for an initiator asserted bit.

The high to low transition at the end of a data bit is the start of the next data bit and only
occurs if there is a following data bit. After transmission of the final bit the CEC line remains
high.

Nov. 16, 2015 Page 13 of 56 Rev 1.00

AN0004

Time (ms)

1
.3

1
.5

1
.7

2
.0

5

2
.4

2
.7

5

0

Device Output Logic 0

Device Output Logic 1

0
.4

0
.6

0
.8

2
.0

5

2
.4

2
.7

5

0

Figure 2-9 Data Bit Timing

Asserted Bit Timing

Figure 2-10 shows an example bit with both the initiator and follower where the follower may
assert the bit to a logical 0 to acknowledge a data block. The initiator outputs a logical 1, thus
allowing the follower to change the CEC state by pulling the control line low for the duration of
the safe sample period.

Time (ms)

1
.3

1
.5

1
.7

2
.0

5

2
.4

2
.7

5

0

0
.4

0
.6

0
.8

2
.0

5

2
.4

2
.7

5

0

Initiator Output

Follower Output

Figure 2-10 Asserted Bit Timing

Nov. 16, 2015 Page 14 of 56 Rev 1.00

AN0004

2.2.3 CEC Features

This section describes the message transfer and additional details for a number of common
features enabled by CEC. Note that where a feature is supported, all messages within that
feature should be implemented. This document only describes two utility CEC features and
the other features that user can refer to the related HDMI-CEC specification.

2.2.3.1 One Touch Play

The One Touch Play feature allows a device to be played and become the active source with
a single button press.

TV

If Required:
TV powers on;
TV enters the Image
Display state

Switches to
relevant HDMI
connector

Broadcast to all
devices including TV

<Image View On>

<Active Source>

User presses Play

Playback
Device

Figure 2-11 Typical Scenario for One Touch Play Feature

2.2.3.2 System Standby

There are two kinds of standby functions in CEC system standby feature, one is the
broadcast standby and the other is device standby. The following message is used for the
System Standby feature:

Broadcast Standby

The broadcast message <Standby> can be used to switch all CEC devices to standby. A
typical scenario where the user sets the whole system to standby is shown below.

Nov. 16, 2015 Page 15 of 56 Rev 1.00

AN0004

User selects System Standby

TV

<Standby> (broadcast address)

Device 1 Device 2 Device 3

All devices go
to Standby

Figure 2-12 Typical Scenario for Broadcast (System) Standby Feature

Device Standby

A device can switch another single device into standby by sending the message <Standby>
as a directly addressed message to it.

User selects specific Standby

TV

<Standby> (specific device address)

Device
Single device
goes to
Standby

Figure 2-13 Typical Scenario for Standby Feature to a Specific Device

Nov. 16, 2015 Page 16 of 56 Rev 1.00

AN0004

3 Timer Capture Function

3.1 Timer Controller

In the NuMicro® family M051 and M0518 series, the Timer Controller includes four 32-bit
timers, TIMER0 ~ TIMER3, allowing user to easily implement a timer control for applications.
The timer can perform functions, such as frequency measurement, delay timing, clock
generation, event-counting by external input pins, and interval measurement by external
capture pins.

3.1.1 Timer Controller of M051 Series

The clock sources and block diagram of Timer Controller in the M051 series are shown as
follows.

101

010
HCLK

4~24 MHz HXT

 TMR0_S (CLKSEL1[10:8])

 TMR1_S (CLKSEL1[14:12])

 TMR2_S (CLKSEL1[18:16])

 TMR3_S (CLKSEL1[22:20])

TMR0_EN (APBCLK[2])

TMR1_EN (APBCLK[3])

TMR2_EN (APBCLK[4])

TMR3_EN (APBCLK[5])

TMRx_CLK (x=0~3)

10 kHz LIRC
[1]

000

011
TM0/TM1/TM2/TM3

[2]

Legend:

HXT = High-Speed External clock signal

HIRC = High-Speed Internal clock signal

LIRC = Low-Speed Internal clock signal

111
22.1184 MHz HIRC

Note1: Clock source is from 10 kHz LIRC (M051xxDE Only).

Note2: Clock source is from external trigger TM0/TM1/TM2/TM3 (M051xxDE Only).

Figure 3-1 Clock Source of Timer Controller in M051 Series

Nov. 16, 2015 Page 17 of 56 Rev 1.00

AN0004

Timer

interrupt

T0 - T3

24-bit

up counter

8-bit

prescale

0

1

CTB

(TCSR[24])

TMRx_CLK

CEN (TCSR[30])

CRST (TCSR[26])

0

1

TX_PHASE

(TEXCON[0])

Reset counter

TDR

(TDR[23:0])

TCMP

(TCMPR[23:0])

+
-

=
TIF

(TISR[0])

Reset counterTDR_EN

(TCSR[16])

Load

TCAP

(TCAP[23:0])00

01

10

TEX_EDGE

(TEXCON[2:1])

TEXEN

(TEXCON[3])

RSTCAPSEL

(TEXCON[4])

TEXIF

(TEXISR[0])

TEXIEN(TEXCON[5])

Load

IE

(TCSR[29])

0

1

TM0_EXT

 TM1_EXT

 TM2_EXT

 TM3_EXT

0

1
ACMPA0

 ACMPA1

 ACMPB0

 ACMPB1

CAP_SRC

(TCSRx[22])

TEXDB

(TEXCON[6])

De-bounce

Controll

Figure 3-2 Block Diagram of Timer Controller in M051 Series

3.1.2 Timer Controller of M0518 Series

The clock sources and block diagram of Timer Controller in the M0518 series are shown as
follows.

111

010

001

HCLK

Reserved

4~24 MHz HXT

TMR0_S (CLKSEL1[10:8])

TMR1_S (CLKSEL1[14:12])

TMR2_S (CLKSEL1[18:16])

TMR3_S (CLKSEL1[22:20])

TMR0_EN (APBCLK[2])

TMR1_EN (APBCLK[3])

TMR2_EN (APBCLK[4])

TMR3_EN (APBCLK[5])

TMRx_CLK (x=0~3)

22.1184 MHz HIRC

000

011
TM0/TM1/TM2/TM3

101
10 kHz LIRC

Legend:

HXT = High-Speed External clock signal

HIRC = High-Speed Internal clock signal

LIRC = Low-Speed Internal clock signal

Figure 3-3 Clock Source of Timer Controller in M0518 Series

Nov. 16, 2015 Page 18 of 56 Rev 1.00

AN0004

Timer

interrupt

TM0-

TM3

Internal 24-bit

up-counter

8-bit

pre-scale

0

1

CTB

(TCSR[24])

TMRx_CLK

CEN (TCSR[30])

CRST (TCSR[26])

0

1

TX_PHASE

(TEXCON[0])

Reset counter

24-bit TDR

(TDR[23:0])

24-bit TCMPR[23:0]

+
-

=
TIF

(TISR[0])

Reset counter
TDR_EN

(TCSR[16])

Load

24-bit TCAP

(TCAP[23:0])

00

01

10

TM0_EXT

TM1_EXT

TM2_EXT

TM3_EXT

TEX_EDGE

(TEXCON[2:1])

TEXEN

(TEXCON[3])

RSTCAPSEL

(TEXCON[4])

TEXIF

(TEXISR[0])

TEXIEN (TEXCON[5])

Load

TWF

(TISR[1])

IE

(TCSR[29])

Timer

wakeup

WAKE_EN

(TCSR[23])

0

1

Figure 3-4 Block Diagram of Timer Controller in M0518 Series

3.2 Timer Event Capture Function

The Timer Event Capture function is just one of Timer functions and used to capture the
Timer Data Register (TDR) value to Timer Capture Data Register (TCAP) while the edge
transition is detected on TMx_EXT pin (x= 0~3). In this mode, RSTCAPSEL (TEXCON[4]) bit
should be set as 0 to select the transition edge at TMx_EXT pin when using this event
capture function, and the timer peripheral clock source should be set as HCLK (TMRx_S[2:0]
= 2 in clock control register CLKSEL1).

The TMx_EXT pin de-bounce circuit can be enabled or disabled by TEXDB (TEXCON[6]) bit
through software. The transition frequency of TMx_EXT pin should be less than 1/3 HCLK if
the TMx_EXT pin de-bounce is disabled or less than 1/8 HCLK if TMx_EXT pin de-bounce is
enabled to assure the capture function can be work normally. User can also select edge
transition detection at TMx_EXT pin by TEX_EDGE (TEXCON[2:1]) bits.

In event capture mode, user does not need to know which timer counting operation mode is
selected in software. The capture event occurred only if edge transition on TMx_EXT pin is
detected.

For more details about Timer Controller and the related control registers of M051 series or
M0518 series, refer to the TRM (Technical Reference Manual) specification documents that
are available from Nuvoton website: www.nuvoton.com/hq/products/microcontrollers/arm-
cortex-m0-mcus/Technical-Reference-Manual?__locale=en.

http://www.nuvoton.com/hq/products/microcontrollers/arm-cortex-m0-mcus/Technical-Reference-Manual?__locale=en
http://www.nuvoton.com/hq/products/microcontrollers/arm-cortex-m0-mcus/Technical-Reference-Manual?__locale=en

Nov. 16, 2015 Page 19 of 56 Rev 1.00

AN0004

3.3 Use the Timer Capture to Measure the CEC Signal

The example code uses the Timer 1 event capture hardware logical circuit to measure the low
pulse duration of CEC signal from the TM1_EXT input pin, and judges this low pulse duration
whether it matches the timing of start bit, logic 0 or logic 1 for each data bit of header block
and data block. The low pulse duration is captured into TCAP register by Timer 1 controller
hardware shown as the red lines from Figure 3-1 to Figure 3-4, which the clock source of
Timer 1 controller is HCLK and when there are any edge-transition detected at the TM1_EXT
pin and this event also generates the Timer 1 interrupt under the TEXIEN bit is enabled.

Figure 3-5 shows the timing waveform for Timer 1 to reset or capture the internal counter at
the falling-edge or rising-edge of input CEC signal.

<Image View On> message : 40 04

Start Bit

High
Impedance

Header Block
Initiator Bits

Header Block
Destination Bits

Header
Block
EOM

Header
Block
ACK

Data Block
Informational Bits

Data
Block
EOM

Data
Block
ACK

High
Impedance

CEC_State 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1 0 00 0 0 00 0 0 0 0 0 0 1 0 0 1 0

Transmit
(Tx_flag = 1)

Receive
(Tx_flag = 0)

Monitor the Start bit,
if not still high -> arb. loss

Return ACK,
if the received Destination Bits belong to mine

Monitor the ACK bit of Header Block,
if no ACK -> No Destination Device found

Monitor the ACK bit of Data Block,
if no ACK -> No ACK from Device error

Return ACK,
if the received Data Block belongs to mine

Timer1
Caputure

reset Timer1 counter capture Timer1 counter monitor on the bus return ACK to the bus

Monitor the Initiator bits of Header Block,
if not equal -> arb. loss

Figure 3-5 Timing Waveform of Timer 1 Capturing

Nov. 16, 2015 Page 20 of 56 Rev 1.00

AN0004

4 Example Code

4.1 Hardware System Structure

To demonstrate the CEC functions on the M051 series and M0518 series with SONY PS3,
Philips DVD or Google Chromecast, one of the two tiny EVB boards, NuTiny-SDK-M051
(M0516LDN) or NuTiny-SDK-M0518 (M0518SD2AE), and a HDMI Splitter will be used to
develop the hardware system. The system structure for the demonstration is shown as
follows.

At first, the CEC (pin 13) line of HDMI connector is connected to the two GPIO1 and
TM1_EXT pins of tiny EVB board. Also, the Ground (pin 17) line of HDMI connector is
connected to the GND pin of tiny EVB board. An extra 2.7 kΩ resistor is necessary to pull-up
the CEC line to 3.3V. The GPIO2 controls the LED on/off state to indicate whether this chip
had received the <Image View On> or <Text View On> message of “One Touch Play” feature
from the PS3 or DVD Player or Chromecast. The key button is an external interrupt input to
trigger this chip to send out the <Device Standby> message of “System Standby” feature to
lead the relative device to enter the standby state.

CEC

HDMI Splitter

2.7K ohm

3.3V
HDMI Cable

LED

3.3V

330 ohm

Key Button

GND

PS3 /
DVD Player /
Chromecast

HDMI HDMI HDMIHDMI

TV / Projector
(Non-CEC device for display only)

HDMI

M051/M0518
Tiny EVB

Board

GPIO1 TM1_EXT

G
P

IO
3

G
P

IO
2

TXD0

out
out

in

CEC Device emulated
as a TV or Projector

Optional

Pin 13: CEC Pin 17: Ground

GND

Ground

 1 3 5 7 9 11 13 15 17 19

 2 4 6 8 10 12 14 16 18

Figure 4-1 Hardware System Structure

Nov. 16, 2015 Page 21 of 56 Rev 1.00

AN0004

Table 4-1 shows the pin function, GPIO mode and pin number respectively on M051-LQFP48

or M0518-LQFP64 chip for each pin used in the demonstration of CEC.

Pin Name

Function Description

GPIO Mode

M051
LQFP48

Pin No.

M0518
LQFP64

Pin No.

TM1_EXT Timer 1 capture input to measure the
low pulse width of CEC signal on CEC
bus

Input P3.3 PE.5

GPIO1 To output CEC protocol to CEC bus Open-Drain P3.2 PB.11

GPIO2 To turn on/off LED to pretend TV or
projector on or off state

Output P3.6 PB.13

GPIO3 Key button interrupt input to trigger
chip to send out the “Device Standby”
message

Quasi-

bidirectional

P4.3 PB.10

TXD0 To show the message on PC through
the COM port

Output P3.1 PB.1

Table 4-1 Pin Function and GPIO Mode

For more details about the tiny EVB boards of M051 or M0518 series, refer to the User
Manual documents and PCB files that are available from Nuvoton website:
www.nuvoton.com/hq/support/tool-and-software/development-tool-hardware/development-
kit/?__locale=en

http://www.nuvoton.com/hq/support/tool-and-software/development-tool-hardware/development-kit/?__locale=en
http://www.nuvoton.com/hq/support/tool-and-software/development-tool-hardware/development-kit/?__locale=en

Nov. 16, 2015 Page 22 of 56 Rev 1.00

AN0004

4.2 Firmware Description

In this firmware description, the M0518 series will be used as an example for interpretation.
The M0518 CEC firmware source code, like a TV set or a projector that support the HDMI-
CEC protocol, is created based on the M0518 series BSP V3.00.002. User can download the
last version of M0518 series BSP from Nuvoton website: www.nuvoton.com/hq/support/tool-
and-software/software/?__locale=en

4.2.1 Main Function and System Initialization

4.2.1.1 Main Function

The source code is used to define the parameters of CEC timing and the general CEC

commands, declare the variables and do the initialization for system clock, UART 0, GPIO

and Timers. Finally, the code is waiting for a key button interrupt to send out the “Device

Standby” command on the CEC bus to lead the device to enter the standby state. Otherwise,

it shows the CEC messages if they are received from or monitored on the CEC bus that the

messages are sent by the other device. Figure 4-2 shows the main function flow chart.

http://www.nuvoton.com/hq/support/tool-and-software/software/?__locale=en
http://www.nuvoton.com/hq/support/tool-and-software/software/?__locale=en

Nov. 16, 2015 Page 23 of 56 Rev 1.00

AN0004

UART0 Initialization and

show “HDMI CEC

Sample Code”

Decode CEC Command

Set GPIO modes and
functions

Timer 0 Initialization
For delay function

Timer 1 Initialization
for timer capture

function

Key_flag = 1?

No

Yes

main

System Initialization

Send out the “Device

Standby”message

Rx_CEC_Data_flag = 1?
No

Yes

CEC_Head_Dest_flag = 1?

Show “Received CEC

Data: xx xx xx”

Show “Monitored CEC

Data: xx xx xx”

No

Yes

Key button interrupt
ISR

to set Key_flag = 1

key button interrupt

reutrun

Figure 4-2 Main Function Flow Chart

Nov. 16, 2015 Page 24 of 56 Rev 1.00

AN0004

#include <stdio.h>

#include "M0518.h"

#include "cec_ctrl.h"

#define PLL_CLOCK 48000000

/* Definition for CEC */

// Bit Timing

#define CEC_START_BIT_L 37 // 37 x 100us = 3.7ms

#define CEC_START_BIT_H 8 // 8 x 100us = 0.8ms

#define CEC_BIT_1_L 6 // 6 x 100us = 0.6ms

#define CEC_BIT_1_H 18 // 18 x 100us = 1.8ms

#define CEC_BIT_0_L 15 // 15 x 100us = 1.5ms

#define CEC_BIT_0_H 9 // 9 x 100us = 0.9ms

#define CEC_MAX_RETRY 5 // Retry

#define CEC_FREE_TIME_PI 7*24 // Present Initator wants to send
another frame immediately after its previous frame

#define CEC_FREE_TIME_NI 5*24 // New Initator wants to send a frame

#define CEC_FREE_TIME_RS 3*24 // Previous attempt to send frame
unsuccessful

// Destination of Header Block

#define CEC_HEAD_DEST 0x00 // Header Block Destination

// Tolerance

#define Percent 0.05 // 5 %

#define Percent0 0.13 // 13 %

#define Percent1 0.33 // 33 %

// Start Bit range

#define STB_MAX (CEC_START_BIT_L * 4800 * (1 + Percent))

#define STB_MIN (CEC_START_BIT_L * 4800 * (1 - Percent))

// Bit = 0 range

#define BIT_0_MAX (CEC_BIT_0_L * 4800 * (1 + Percent0))

#define BIT_0_MIN (CEC_BIT_0_L * 4800 * (1 - Percent0))

// Bit = 1 range

#define BIT_1_MAX (CEC_BIT_1_L * 4800 * (1 + Percent1))

#define BIT_1_MIN (CEC_BIT_1_L * 4800 * (1 - Percent1))

/* Definition for CEC Commands */

#define Give_Physical_Address 0x83

#define Report_Physical_Address 0x84

#define Give_Device_Power_Status 0x8f

Nov. 16, 2015 Page 25 of 56 Rev 1.00

AN0004

#define Report_Power_Status 0x90

#define Active_Source 0x82

#define Inactive_Source 0x9d

#define Image_View_On 0x04

#define Text_View_On 0x0d

#define Get_CEC_Version 0x9f

#define CEC_Version 0x9e

#define Give_Device_Vendor_ID 0x8c

#define Device_Vendor_ID 0x87

#define Manu_Status 0x8e

#define Feature_Abort 0x00

#define Standby 0x36

/* Declare variables */

volatile uint32_t Timer0_int_cnt = 0; // Timer0 interrupt counter

volatile uint8_t CEC_State = 0; // CEC State

volatile uint8_t CEC_STB_Ready = 0; // CEC STart Bit is Ready

volatile uint8_t CEC_HEAD = 0; // Received Header

volatile uint8_t CEC_DATA = 0; // Received Data

volatile int8_t CEC_EOM_H = -1; // End of Message for Header
Block

volatile int8_t CEC_EOM_D = -1; // End of Message for Data
Block

volatile int8_t CEC_ACK_H = -1; // ACK for Header Block

volatile int8_t CEC_ACK_D = -1; // ACK for Data Block

volatile uint8_t Initiator_Device = 0; // Initiator Device

volatile uint8_t Tx_Retry_Cnt = 0; // Tx Retry Count

volatile uint8_t CEC_Head_Dest_flag = 0; // CEC Header Dest. is correct

volatile uint8_t CEC_Broadcast_flag = 0; // 1=CEC Broadcast Command,
0=None

volatile uint8_t Tx_flag = 0; // 1=Tx, 0=Rx

volatile uint8_t Tx_NACK_H = 0; // Tx receive NACK for Header
Block

volatile uint8_t Tx_NACK_D = 0; // Tx receive NACK for Data
Block

volatile uint8_t Rx_CEC_Data_flag = 0; // 1=received CEC data, 0=None

volatile uint8_t Rx_CEC_Data_Len = 0; // Received data length

volatile uint8_t RX_DATA[17] = {0}; // Received Data

Nov. 16, 2015 Page 26 of 56 Rev 1.00

AN0004

volatile uint8_t Key_flag = 0; // 1=key interrupt flag,
0=None

volatile uint8_t TMR1_flag = 0; // 1=TMR1 ISR, 0=No TMR1_ISR

uint8_t REPORT_PHYSICAL_ADDRESS[5] = {0x0f,Report_Physical_Address,0x00,0x00,
0x00};

uint8_t DEVICE_VENDOR_ID[5] = {0x0f,Device_Vendor_ID,0x00,0x00,0x00};

uint8_t CEC_VERSION[3] = {0x00,CEC_Version,0x04}; // 0x04:1.3a

uint8_t REPORT_POWER_STATUS[3] = {0x00,Report_Power_Status,0x00};// 0x00:On,
0x01:OFF

uint8_t STANDBY[2] = {0x00,Standby}; // 0x04: DVD Player/Chromecast, 0x08:SONY PS3

/*--*/

/* MAIN function */

/*--*/

int main (void)

{

 uint8_t i;

 /* Init System, IP clock and multi-function I/O */

 SYS_Init();

 /* Init UART0 for printf */

 UART0_Init();

 printf("+--+\n");

 printf("| HDMI CEC Sample Code |\n");

 printf("+--+\n");

 printf("\n");

 /* Use PB.13 to turn on/off LED */

 GPIO_SetMode(PB, BIT13, GPIO_PMD_OUTPUT);

 PB13 = 1;

 /* Configure PB.10 as Quasi-bidirectional mode and enable interrupt by falling edge
trigger */

 GPIO_SetMode(PB, BIT10, GPIO_PMD_QUASI);

 GPIO_EnableInt(PB, 10, GPIO_INT_FALLING);

 NVIC_EnableIRQ(GPAB_IRQn);

 /* Enable interrupt de-bounce function and select de-bounce sampling cycle time is
1024 clocks of LIRC clock */

Nov. 16, 2015 Page 27 of 56 Rev 1.00

AN0004

 GPIO_SET_DEBOUNCE_TIME(GPIO_DBCLKSRC_LIRC, GPIO_DBCLKSEL_1024);

 GPIO_ENABLE_DEBOUNCE(PB, BIT10);

 /* Initial PB.11 as Open-drain mode and output high */

 GPIO_SetMode(PB, BIT11, GPIO_PMD_OPEN_DRAIN);

 PB11 = 1;

 /* set PE.5 as Input mode */

 GPIO_SetMode(PE, BIT5, GPIO_PMD_INPUT);

 PE5 = 1;

 /* Initial Timer0 for Delay function */

 Init_Timer0();

 /* Initial Timer1 for Timer Capture function */

 Init_Timer1();

 Tx_flag = 0;

 Key_flag = 0;

 Rx_CEC_Data_flag = 0;

 while(1){

 if(Key_flag == 1){

 GPIO_DisableInt(PB, 10);

 Key_flag = 0;

 STANDBY[0] = Initiator_Device; // Device Standby, 0x0f: Broadcast
Standby

 Send_CEC_Command(STANDBY, 2);

 GPIO_EnableInt(PB, 10, GPIO_INT_FALLING);

 }else if(Rx_CEC_Data_flag == 1){

 Rx_CEC_Data_flag = 0;

 if(CEC_Head_Dest_flag == 1){

 printf("\nReceived CEC Data: ");

 for(i=0;i<Rx_CEC_Data_Len;i++)

 printf("%02x ", RX_DATA[i]);

 Decode_CEC_Command();

 }else{

 printf("\nMonitored CEC Data: ");

 for(i=0;i<Rx_CEC_Data_Len;i++)

 printf("%02x ", RX_DATA[i]);

Nov. 16, 2015 Page 28 of 56 Rev 1.00

AN0004

 }

 }

 }

}

4.2.1.2 System Initialization

The source code is used to enable the external crystal 12 MHz, PLL and peripheral clocks,

and determine the clock sources and multi-functions for the related peripherals. The system

clock HCLK that comes from PLL output is 48 MHz.

void SYS_Init(void)

{

/*--*/

/* Init System Clock */

/*--*/

 /* Unlock protected registers */

 SYS_UnlockReg();

 /* Enable external 12MHz XTAL */

 CLK->PWRCON |= CLK_PWRCON_XTL12M_EN_Msk;

 /* Enable internal 10kHz RC */

 CLK->PWRCON |= CLK_PWRCON_OSC10K_EN_Msk;

 /* PLL_OUT = 48 MHz */

 CLK->PLLCON = 0xCA6E;

 /* Waiting for clock ready */

 CLK_WaitClockReady(CLK_CLKSTATUS_PLL_STB_Msk | CLK_CLKSTATUS_OSC10K_STB_Msk |
CLK_CLKSTATUS_XTL12M_STB_Msk);

 /* Switch HCLK clock source to PLL */

 CLK->CLKSEL0 = CLK_CLKSEL0_HCLK_S_PLL;

 /* Enable IP clock */

 CLK->APBCLK = CLK_APBCLK_UART0_EN_Msk | CLK_APBCLK_TMR0_EN_Msk |
CLK_APBCLK_TMR1_EN_Msk;

 /* IP clock source */

 CLK->CLKSEL1 = CLK_CLKSEL1_UART_S_PLL | CLK_CLKSEL1_TMR0_S_HXT |
CLK_CLKSEL1_TMR1_S_HCLK;

Nov. 16, 2015 Page 29 of 56 Rev 1.00

AN0004

 /* Update System Core Clock */

 /* User can use SystemCoreClockUpdate() to calculate PllClock, SystemCoreClock and
CycylesPerUs automatically. */

 PllClock = PLL_CLOCK; // PLL

 SystemCoreClock = PLL_CLOCK / 1; // HCLK

 CyclesPerUs = PLL_CLOCK / 1000000; // For SYS_SysTickDelay()

/*--*/

/* Init I/O Multi-function */

/*--*/

 /* Set PB multi-function pins for UART0 RXD, TXD */

 SYS->GPB_MFP = SYS_GPB_MFP_PB0_UART0_RXD | SYS_GPB_MFP_PB1_UART0_TXD;

 /* Set PE multi-function pins for TM1_EXT on PE.5 */

 SYS->GPE_MFP |= SYS_GPE_MFP_PE5_TM1_EXT;

 SYS->ALT_MFP |= SYS_ALT_MFP_PE5_TM1_EXT;

 SYS->ALT_MFP2 |= SYS_ALT_MFP2_PE5_TM1_EXT;

 /* Lock protected registers */

 SYS_LockReg();

}

4.2.1.3 UART0 Initialization

The source code is used to set UART port 0 to show debugging message, the baud rate

which is 115200, 8-bit data, none parity and 1 stop bit.

void UART0_Init(void)

{

/*--*/

/* Init UART */

/*--*/

 /* Reset IP */

 SYS_ResetModule(UART0_RST);

 /* Configure UART0 and set UART0 Baudrate */

 UART_Open(UART0, 115200);

}

Nov. 16, 2015 Page 30 of 56 Rev 1.00

AN0004

4.2.1.4 Timer0 Initialization and Delay Sub-function

The source code is used to set the related control registers of Timer 0. The clock source is

external 12 MHz crystal and it operates in periodic mode and generates the interrupt per 100

us. The Timer0_Delay() sub-function is just used to create the regular delay time in this

firmware code, which is based on 100 us.

//*******************************

// Initial Timer0 interrupt (100us)

//

// Use 12 MHz crystal as Timer0 clock source

// Use mode 1 (periodic mode)

// Timer0 is 24-bit resolution

//*******************************

void Init_Timer0(void)

{

 /* Reset Timer0 counter, prescale and disable Timer0 (CEN = 0) */

 TIMER0->TCSR |= TIMER_TCSR_CRST_Msk;

 /* Select Operation mode */

 TIMER0->TCSR &= ~TIMER_TCSR_MODE_Msk;

 TIMER0->TCSR |= TIMER_PERIODIC_MODE; // Select periodic mode for
operation mode and enable TDR function

 /* Select Time out period = (Period of timer clock input) * (8-bit Prescale + 1) *
(24-bit TCMP) = 0.0000833ms * 1 * 1200 = 100us */

 TIMER0->TCSR &= ~TIMER_TCSR_PRESCALE_Msk; // Set Prescale [0~255], must be set
as 0

 TIMER0->TCMPR = 1200; // Set TCMPR [0~16777215]

 /* Disable Timer0 */

 TIMER0->TCSR &= ~TIMER_TCSR_CEN_Msk;

 /* Enable Timer0 interrupt and NVIC IRQ */

 TIMER0->TCSR |= TIMER_TCSR_IE_Msk; // Enable Timer0 interrupt

 NVIC_EnableIRQ(TMR0_IRQn); // Enable Timer0 NVIC IRQ

 NVIC_SetPriority(TMR0_IRQn, 0); // Set Timer0 to 1st interrupt priority

 /* Clear Timer0 interrupt counter */

 Timer0_int_cnt = 0;

}

Nov. 16, 2015 Page 31 of 56 Rev 1.00

AN0004

//*******************************

// Timer0 Delay (N x 100us)

//

//*******************************

void Timer0_Delay(uint32_t N)

{

/* Reset Timer0 counter, prescale and disable Timer0 */

 TIMER0->TCSR |= TIMER_TCSR_CRST_Msk;

 /* Reset Timer0 interrupt counter */

 Timer0_int_cnt = 0;

 /* Enable Timer0 */

 TIMER0->TCSR |= TIMER_TCSR_CEN_Msk;

 /* Wait msec */

 while(1){

 if(Timer0_int_cnt >= N)

 break;

 }

 /* Disable Timer0 */

 TIMER0->TCSR &= ~TIMER_TCSR_CEN_Msk;

}

4.2.1.5 Timer1 Initialization

The source code is used to set the related control registers of Timer 1. The clock source is

from HCLK, 48 MHz in this example code, and it operates just for the Timer Capture function

to measure the duration about CEC bit timing.

//*******************************

// Initial Timer1 for CEC Decoder

//

// Use HCLK as Timer1 clock source

// Use Timer Capture Function

// Timer1 is 24-bit resolution

//*******************************

void Init_Timer1(void)

{

Nov. 16, 2015 Page 32 of 56 Rev 1.00

AN0004

 /* Reset Timer1 counter, prescale and disable Timer1 (CEN = 0) */

 TIMER1->TCSR |= TIMER_TCSR_CRST_Msk;

 /* Select Operation mode */

 TIMER1->TCSR &= ~TIMER_TCSR_MODE_Msk;

 TIMER1->TCSR |= TIMER_ONESHOT_MODE; // Select one-shot mode for operation
mode and enable TDR function

 /* Select Time out period = (Period of timer clock input) * (8-bit Prescale +
1) * (24-bit TCMP) */

 TIMER1->TCSR &= ~TIMER_TCSR_PRESCALE_Msk; // Set Prescale [0~255], must be set
as 0

 TIMER1->TCMPR = 0xFFFFFF;

 /* Set TM1_EXT at falling-edge interrupt and to reset counter */

 TIMER1->TEXCON &= ~TIMER_TEXCON_TEX_EDGE_Msk;

 TIMER1->TEXCON |= TIMER_CAPTURE_COUNTER_RESET_MODE;

 /* Enable TM1_EXT debounce function */

 TIMER1->TEXCON |= TIMER_TEXCON_TEXDB_Msk;

 /* Enable TM1_EXT interrupt */

 TIMER1->TEXCON |= TIMER_TEXCON_TEXIEN_Msk;

 /* Enable TM1_EXT pin */

 TIMER1->TEXCON |= TIMER_TEXCON_TEXEN_Msk;

 /* Disable Timer1 */

 TIMER1->TCSR &= ~TIMER_TCSR_CEN_Msk;

/* Enable Timer1 interrupt and NVIC IRQ */

 TIMER1->TCSR |= TIMER_TCSR_IE_Msk; // Enable Timer1 interrupt

 NVIC_EnableIRQ(TMR1_IRQn); // Enable Timer1 NVIC IRQ

 NVIC_SetPriority(TMR1_IRQn, 3); // Set Timer1 to lowest interrupt
priority

 /* Reset CEC state */

 CEC_State = 0;

}

Nov. 16, 2015 Page 33 of 56 Rev 1.00

AN0004

4.2.2 Interrupt Handler

4.2.2.1 GPIO Port A and B Interrupt Handler

The source code is used to o make sure the interrupt generated by PB.10 and set the key flag

(Key_flag).

void GPAB_IRQHandler(void)

{

 /* To check if PB.10 interrupt occurred */

 if(GPIO_GET_INT_FLAG(PB, BIT10)){

 Key_flag = 1;

 GPIO_CLR_INT_FLAG(PB, BIT10);

 }else{

 /* Un-expected interrupt. Just clear all PA, PB interrupts */

 PA->ISRC = PA->ISRC;

 PB->ISRC = PB->ISRC;

 printf("\nUn-expected interrupts.");

 }

}

4.2.2.2 Timer 0 Interrupt Handler

The source code is used to increase the Timer 0 interrupt count (Timer0_int_cnt) by 1 when

each time the Timer 0 generated the interrupt per 100 us.

//*******************************

// Timer0 call back function (Timer0 interrupt subroutine)

//

//*******************************

void TMR0_IRQHandler(void)

{

 /* Clear TIMER0 Timeout Interrupt Flag */

 TIMER0->TISR = TIMER_TISR_TIF_Msk;

 /* Timer0 interrupt counter + 1 */

 Timer0_int_cnt = Timer0_int_cnt + 1;

}

Nov. 16, 2015 Page 34 of 56 Rev 1.00

AN0004

4.2.2.3 Timer 1 Interrupt Handler

In this Timer 1 interrupt handler, the Timer Capture hardware measures the duration of CEC

bit timing and judge the duration is start bit, logic 0 or logic 1. Also, it stores the received bit

data from CEC bus for Header Block and Data Block and then responds the ACK bit if

needed. The CEC state machine for the receiving and transmitting CEC signal is shown as

follows.

CEC Idle
CEC_State = 0

Header Block
bits and EOM
bit Receiving

Data Block
bits and EOM
bit Receiving

Start bit received

Tx_flag = 0 &&
CEC_Head_Dest_flag = 1

1 <= CEC_State <= 9

Check ACK or
return ACK

Tx_flag = 1 &&
arb. loss at Start bit

11 <= CEC_State <= 19

Tx_flag = 1 &&
ACK received

Check ACK or
return ACK

CEC_State = 10

Return
ACK

Return
ACK

CEC_EOM_H = 0

CEC_State = 20

CEC_EOM_H = 1

Tx_flag = 0 &&
CEC_Head_Dest_flag = 1

CEC_EOM_D = 1

CEC_EOM_D = 0

Tx_flag = 1 &&
ACK received

Tx_flag = 1 &&
NACK received

Tx_flag = 1 &&
NACK received

Tx_flag = 1 &&
arb. loss at Initiator bits

Figure 4-3 CEC State Machine

Nov. 16, 2015 Page 35 of 56 Rev 1.00

AN0004

Figure 4-4 shows the flow chart for Timer 1 capture to receive the CEC signal from the

bus.

PE5 = Low ?

Yes

No

CEC_State = ?

20

Store CEC_HEAD
10

Set TM1_EXT to capture
counter at rising-edge

and start Timer 1

Header Dest. is
Correct?

No

Yes
CEC_State = 11 EOM_H/_D = 0 ?

No

Reset Timer 1 counter,
prescale and disable

Timer 1

CEC_State = ?

Others

others

Store CEC_DATA

Tx_flag = 0 ?
No (Tx)

Yes (Rx)

Set TM1_EXT to reset
counter at falling-edge

and return ACK

Yes

Start

Return

Return

Return

Set TM1_EXT to reset
counter at falling-edge

0 Meet
Start-bit Timing?

Yes
CEC_State + 1

No

Return

>= 1 AND < 9 Store Header Bits

= 9

= 10

>= 11 AND < 19
Store Data Bits

= 19

= 20

In Tx,
= ACK ?

In Tx,
= ACK ?

Store EOM_H Bit

Store EOM_D Bit

Yes

No

CEC_State = 0

CEC_State = 0

CEC_State + 1

No

Yes

CEC_State + 1

CEC_State = 11

Rx_Data_Len + 1

Return

Return
Return

CEC_State = 0

CEC_State = 0

Figure 4-4 Receiving CEC Flow Chart

//*******************************

// Timer1 call back function (Timer1 interrupt subroutine)

//

//*******************************

void TMR1_IRQHandler(void)

{

 uint32_t TCAP1_tmp = 0;

 /* Clear TIMER1 Capture Interrupt Flag */

 TIMER1->TEXISR = TIMER_TEXISR_TEXIF_Msk;

 TMR1_flag = 1;

Nov. 16, 2015 Page 36 of 56 Rev 1.00

AN0004

 // CEC Bus is Low

 if(PE5 == 0){

 // ACK for Header Block and Data Block

 if(((CEC_State == 10) || (CEC_State == 20)) && (CEC_STB_Ready == 1)){

 if(CEC_State == 10)

 RX_DATA[Rx_CEC_Data_Len] = CEC_HEAD;

 else

 RX_DATA[Rx_CEC_Data_Len] = CEC_DATA;

 Rx_CEC_Data_Len++;

 // Rx

 if(Tx_flag == 0){

 if(CEC_Head_Dest_flag == 1){

 /* Set T1EX at falling-edge interrupt and to reset
counter */

 TIMER1->TEXCON &= ~TIMER_TEXCON_TEX_EDGE_Msk;

 TIMER1->TEXCON |= TIMER_CAPTURE_COUNTER_RESET_MODE;

 /* ACK: PB.11 output low 1.5ms */

 PB11 = 0;

 Timer0_Delay(CEC_BIT_0_L);

 PB11 = 1;

 }

 // Next Data

 if(((CEC_State == 10) && (CEC_EOM_H == 0)) || \

((CEC_State == 20) && (CEC_EOM_D == 0))){

 CEC_State = 11;

 // The End

 }else{

 PB11 = 1;

 CEC_State = 0;

 CEC_STB_Ready = 0;

 Rx_CEC_Data_flag = 1;

 }

 }

 // Tx

 else{

 /* Set T1EX at rising-edge interrupt and to capture counter */

Nov. 16, 2015 Page 37 of 56 Rev 1.00

AN0004

 TIMER1->TEXCON |= TIMER_CAPTURE_RISING_EDGE;

 TIMER1->TEXCON &= ~TIMER_TEXCON_RSTCAPSEL_Msk;

 /* Enable Timer1 */

 TIMER1->TCSR |= TIMER_TCSR_CEN_Msk;

 }

 }

 // The Other non-ACK Fields

 else{

 /* Set T1EX at rising-edge interrupt and to capture counter */

 TIMER1->TEXCON |= TIMER_CAPTURE_RISING_EDGE;

 TIMER1->TEXCON &= ~TIMER_TEXCON_RSTCAPSEL_Msk;

 /* Enable Timer1 */

 TIMER1->TCSR |= TIMER_TCSR_CEN_Msk;

 }

 }

 // CEC Bus is High

 else{

 TCAP1_tmp = TIMER1->TCAP;

 /* Set T1EX at falling-edge interrupt and to reset counter */

 TIMER1->TEXCON &= ~TIMER_TEXCON_TEX_EDGE_Msk;

 TIMER1->TEXCON |= TIMER_TEXCON_RSTCAPSEL_Msk;

 /* Disable Timer1 (CEN = 0) */

 TIMER1->TCSR &= ~TIMER_TCSR_CEN_Msk;

 // Start Bit

 if(CEC_State == 0){

 CEC_State++;

 if((TCAP1_tmp >= STB_MIN) && (TCAP1_tmp <= STB_MAX)){ // Start bit

 CEC_STB_Ready = 1; // Set STart Bit Ready

 CEC_HEAD = 0;

 CEC_EOM_H = -1;

 CEC_ACK_H = -1;

 CEC_EOM_D = -1;

 CEC_ACK_D = -1;

 CEC_Head_Dest_flag = 0;

 Rx_CEC_Data_flag = 0;

 Rx_CEC_Data_Len = 0;

Nov. 16, 2015 Page 38 of 56 Rev 1.00

AN0004

 }else{

 CEC_State = 0;

 CEC_STB_Ready = 0;

 }

 }

 // Header Block

 else if((CEC_State >= 1 && CEC_State < 9) && (CEC_STB_Ready == 1)){

 CEC_State++;

 CEC_HEAD = CEC_HEAD << 1;

 if((TCAP1_tmp >= BIT_1_MIN) && (TCAP1_tmp <= BIT_1_MAX)) // 1
 CEC_HEAD |= 0x01;

 else if((TCAP1_tmp >= BIT_0_MIN) && (TCAP1_tmp <= BIT_0_MAX)) //
0

 CEC_HEAD &= 0xFE;

 else{

 CEC_State = 0;

 CEC_STB_Ready = 0;

 }

 }

 // End of Message for Header Block

 else if((CEC_State == 9) && (CEC_STB_Ready == 1)){

 CEC_State++;

 // Rx

 if(Tx_flag == 0){

 /* Check the Destination whether is belong to this device? */

 if((CEC_HEAD & 0x0F) == CEC_HEAD_DEST)

 CEC_Head_Dest_flag = 1;

 }

 if((TCAP1_tmp >= BIT_1_MIN) && (TCAP1_tmp <= BIT_1_MAX)) // 1

 CEC_EOM_H = 1;

 else if((TCAP1_tmp >= BIT_0_MIN) && (TCAP1_tmp <= BIT_0_MAX)) // 0

 CEC_EOM_H = 0;

 else{

 CEC_State = 0;

 CEC_STB_Ready = 0;

 }

 }

 // ACK for Header Block

Nov. 16, 2015 Page 39 of 56 Rev 1.00

AN0004

 else if((CEC_State == 10) && (CEC_STB_Ready == 1)){

 // Tx

 if(Tx_flag == 1){

 if((TCAP1_tmp >= BIT_1_MIN) && (TCAP1_tmp <= BIT_1_MAX))
// 1 CEC_ACK_H = 1;

 else if((TCAP1_tmp >= BIT_0_MIN) && (TCAP1_tmp <= BIT_0_MAX))
 // 0 CEC_ACK_H = 0;

 /* Receive Not ACK for Header Block */

 if(CEC_ACK_H != 0){

 PB11 = 1;

 CEC_State = 0;

 CEC_STB_Ready = 0;

 Tx_NACK_H = 1;

 }else

 CEC_State = 11;

 }

 }

 // Data Blcok

 else if((CEC_State >= 11 && CEC_State < 19) && (CEC_STB_Ready == 1)){

 CEC_State++;

 CEC_DATA = CEC_DATA << 1;

 if((TCAP1_tmp >= BIT_1_MIN) && (TCAP1_tmp <= BIT_1_MAX)) // 1

 CEC_DATA |= 0x01;

 else if((TCAP1_tmp >= BIT_0_MIN) && (TCAP1_tmp <= BIT_0_MAX)) // 0

 CEC_DATA &= 0xFE;

 else{

 CEC_State = 0;

 CEC_STB_Ready = 0;

 }

 }

 // End of Message for Data Block

 else if((CEC_State == 19) && (CEC_STB_Ready == 1)){

 CEC_State++;

 if((TCAP1_tmp >= BIT_1_MIN) && (TCAP1_tmp <= BIT_1_MAX)) // 1

 CEC_EOM_D = 1;

 else if((TCAP1_tmp >= BIT_0_MIN) && (TCAP1_tmp <= BIT_0_MAX)) // 0

 CEC_EOM_D = 0;

 else{

Nov. 16, 2015 Page 40 of 56 Rev 1.00

AN0004

 CEC_State = 0;

 CEC_STB_Ready = 0;

 }

 }

 // ACK for Data Block

 else if((CEC_State == 20) && (CEC_STB_Ready == 1)){

 // Tx

 if(Tx_flag == 1){

 if((TCAP1_tmp >= BIT_1_MIN) && (TCAP1_tmp <= BIT_1_MAX))
 // 1

 CEC_ACK_D = 1;

 else if((TCAP1_tmp >= BIT_0_MIN) && (TCAP1_tmp <= BIT_0_MAX))
// 0

 CEC_ACK_D = 0;

 /* Receive Not ACK for Data Block */

 if(CEC_ACK_D != 0){

 PB11 = 1;

 CEC_State = 0;

 CEC_STB_Ready = 0;

 Tx_NACK_D = 1;

 }else

 CEC_State = 11;

 }

 }

 }

}

Nov. 16, 2015 Page 41 of 56 Rev 1.00

AN0004

4.2.3 CEC Sub-functions

This paragraph describes three CEC related sub-functions.

4.2.3.1 Send CEC Command

This sub-function tries to send the CEC command to the CEC bus. If it occurs transmitting fail
due the arbitration loss or the other reasons, it will retry to send out the command again till
this command be sent out successfully or the retrying count reaches to the maximum retried
limitation.

//*******************************

// Send CEC Command

//

//

//*******************************

void Send_CEC_Command(uint8_t data[], uint8_t byte_len)

{

 uint8_t i;

 for(Tx_Retry_Cnt = 0; Tx_Retry_Cnt < CEC_MAX_RETRY; Tx_Retry_Cnt++){

 if(SendCEC(data, byte_len) == 0){

 printf("\nTransmitted CEC Data: ");

 for(i=0;i<byte_len;i++)

 printf("%02x ", data[i]);

 break;

 }else{

 printf("\nRe-transmit!!! <%d>", Tx_Retry_Cnt);

 }

 }

}

Nov. 16, 2015 Page 42 of 56 Rev 1.00

AN0004

4.2.3.2 Send CEC Format

This sub-function checks the CEC bus status firstly and waiting for the bus is free, then it
generates the start bit, data bit of Header Block and Data Block, EOM bit and ACK bit that
follow the timing definition in HDMI-CEC specification. The flow chart of transmitting the CEC
signal to the bus is shown in Figure 4-5.

PB11 = High ?

Delay Time for
New Initiator

Yes

No

After 100us,
PB11 = Low ?

No

PB11 Send Out
Start Bit Low Pulse

Yes Arb. Loss at
Start Bit

PB11 Send Out
Header Initiator Bits

Initiator Bits equal?

Yes

No Arb. Loss at
Initiator Bits

PB11 Send Out
Header Destination Bits

PB11 Send Out
Header EOM + ACK Bit

ACK from Device?
No No Destination

Device Found

Yes

PB11 Send Out
Data Information Bits

PB11 Send Out
Data EOM Bit

ACK from Device?
No ACK in
Data Block

Yes

PB11 Send Out
Data ACK Bit

No

EOM
=0, data blocks follow
=1, the message is complete

EOM
=0, one or more data blocks follow
=1, the message is complete

No More Data Blocks?

Yes

No

Return 0

Start

A

A

Return -1

Figure 4-5 Transmitting CEC Flow Chart

//*******************************

// Send CEC Format

//

// PortB.11

//*******************************

Nov. 16, 2015 Page 43 of 56 Rev 1.00

AN0004

int8_t SendCEC(uint8_t data[], uint8_t byte_len)

{

 uint8_t nbyte;

 int8_t nbit;

 Tx_flag = 1; // 1=Transmit

 Tx_NACK_H = 0; // clear Tx_NACK_H

 Tx_NACK_D = 0; // clear Tx_NACK_D

 CEC_Broadcast_flag = ((data[0] & 0x0f) == 0x0f);

 /* Waitting for PB.11 (CEC BUS) to release High */

 while(PB11 == 0);

 /* Check CEC Bus = High that over free time >= 5 * 2.4ms */

 TMR1_flag = 0;

 // Delay free time >= 5 * 2.4ms

 Timer0_Delay(CEC_FREE_TIME_NI);

 if(TMR1_flag != 0){

 printf("\nDetect CEC Bus = Low!!!");

 // Turn back as a follower

 Tx_flag = 0;

 // Delay free time >= 3 * 2.4ms

 Timer0_Delay(CEC_FREE_TIME_RS);

 return -1;

 }

 /* Send out Start Bit */

 PB11 = 0;

 Timer0_Delay(CEC_START_BIT_L);

 PB11 = 1;

 if(PB11 == 0){

 printf("\nArbitration Loss at Start Bit!!!");

 // Turn back as a follower

 Tx_flag = 0;

 // Delay free time >= 3 * 2.4ms

 Timer0_Delay(CEC_FREE_TIME_RS);

 return -1;

 }

 Timer0_Delay(CEC_START_BIT_H);

Nov. 16, 2015 Page 44 of 56 Rev 1.00

AN0004

 /* Send out Header Code and Data Code */

 for(nbyte=0; nbyte < byte_len; nbyte++){

 /* Send out Bits of Header Code and Data Code */

 for(nbit=7; nbit >= 0; nbit--){

 if(data[nbyte] & (1 << nbit)){ // MSB first

 PB11 = 0;

 Timer0_Delay(CEC_BIT_1_L);

 PB11 = 1;

 Timer0_Delay(CEC_BIT_1_H);

 }else{

 PB11 = 0;

 Timer0_Delay(CEC_BIT_0_L);

 PB11 = 1;

 Timer0_Delay(CEC_BIT_0_H);

 }

 if((nbyte == 0) && (nbit >= 4)){

 if(((data[0] >> nbit) & 0x01) != (CEC_HEAD & 0x01)){

 printf("\nArbitration Loss at Initiator Bits!!!");

 // Turn back as a follower

 Tx_flag = 0;

 // Delay free time >= 3 * 2.4ms

 Timer0_Delay(CEC_FREE_TIME_RS);

 return -1;

 }

 }

 }

 /* Send out EOM Bit */

 if(nbyte == byte_len - 1){

 PB11 = 0;

 Timer0_Delay(CEC_BIT_1_L);

 PB11 = 1;

 Timer0_Delay(CEC_BIT_1_H);

 }else{

 PB11 = 0;

 Timer0_Delay(CEC_BIT_0_L);

 PB11 = 1;

 Timer0_Delay(CEC_BIT_0_H);

 }

 /* Send out ACK Bit = 1 */

Nov. 16, 2015 Page 45 of 56 Rev 1.00

AN0004

 PB11 = 0;

 Timer0_Delay(CEC_BIT_1_L);

 PB11 = 1;

 Timer0_Delay(CEC_BIT_1_H);

 /* Check ACK for Header Block */

 if(nbyte == 0 && Tx_NACK_H == 1){

 if(CEC_Broadcast_flag == 0){

 printf("\nNo Found Destination Device!!!");

 // Turn back as a follower

 Tx_flag = 0;

 // Delay free time >= 3 * 2.4ms

 Timer0_Delay(CEC_FREE_TIME_RS);

 return -1;

 }

 }else if(nbyte != 0 && Tx_NACK_D == 1){

 if(CEC_Broadcast_flag == 0){

 printf("\nNo ACK for Data Block!!!");

 // Turn back as a follower

 Tx_flag = 0;

 // Delay free time >= 3 * 2.4ms

 Timer0_Delay(CEC_FREE_TIME_RS);

 return -1;

 }

 }

 }

 // Turn back as a follower

 Tx_flag = 0;

 // Delay free time >= 7 * 2.4ms for next time to transmit

 Timer0_Delay(CEC_FREE_TIME_PI);

 return 0;

}

Nov. 16, 2015 Page 46 of 56 Rev 1.00

AN0004

4.2.3.3 Decode CEC Command

This sub-function decoded the received CEC command from the other device.

//*******************************

// Decode CEC Command

//

//

//*******************************

void Decode_CEC_Command(void)

{

 Initiator_Device = (RX_DATA[0] & 0xf0) >> 4;

 switch(RX_DATA[1]){

 case Give_Physical_Address:

 Send_CEC_Command(REPORT_PHYSICAL_ADDRESS, 5);

 break;

 case Give_Device_Vendor_ID:

 Send_CEC_Command(DEVICE_VENDOR_ID, 5);

 break;

 case Give_Device_Power_Status:

 REPORT_POWER_STATUS[0] = Initiator_Device;

 Send_CEC_Command(REPORT_POWER_STATUS, 3);

 break;

 case Get_CEC_Version:

 CEC_VERSION[0] = Initiator_Device;

 Send_CEC_Command(CEC_VERSION, 3);

 break;

 case Image_View_On:

 PB13 = 0; // Turn on LED (as TV/Projector on)

 break;

 case Text_View_On:

 PB13 = 0; // Turn on LED (as TV/Projector on)

 break;

 case Inactive_Source:

 PB13 = 1; // Turn off LED (as TV/Projector off)

 break;

 default:

 break;

 }

 }

Nov. 16, 2015 Page 47 of 56 Rev 1.00

AN0004

4.2.4 Test Results

Finally, three CEC-supporting devices, SONY PS3, Philips DVD player and Google
Chromecast connected with the M051 or M0518 tiny board are used to verify the CEC
functions. The results are shown as follows.

4.2.4.1 Connection with SONY PS3

In Figure 4-6, the first line shows “Monitored CEC Data: 88”, which means that the MCU
device monitored the CEC messages from CEC bus. The first and only one byte “88” is a
header block, and the initiator address, the higher nibble 0x8, indicates that this message is
transmitted out by SONY PS3 device, but the destination address, the lower nibble 0x8, does
not belong to this device that MCU emulated as a TV, the logical address is 0x0. This is a
<Polling> message due to only one byte without the other opcode or parameters. The related
CEC message description are described in section 4.2.4.4.

The 7th line shows “Received CEC Data: 80 0d”, which means that the MCU device received
the CEC messages from CEC bus. The first byte “80” is a header block, and the destination
address, the lower nibble 0x0, belongs to this MCU device. Thus, the MCU receives these
messages and responds the relative messages to CEC bus or does relative operations. The
second byte “0d” is an opcode of <Text View On> message to turn on the TV or projector (as
emulated LED on the tiny board) if it is off by default.

The 12th line shows “Transmitted CEC Data: 08 36”, it means this MCU transmitted the CEC
messages to CEC bus. The first byte “08” is a header block, and the initiator address, the
higher nibble 0x8, indicates that this message is transmitted out from MCU device, and this
destination address, the lower nibble 0x8, is for SONY PS3 device. The second byte “36” is
an opcode of <Standby> message for the SONY PS3 to enter the standby state.

Nov. 16, 2015 Page 48 of 56 Rev 1.00

AN0004

Figure 4-6 Test Result with SONY PS3

Nov. 16, 2015 Page 49 of 56 Rev 1.00

AN0004

4.2.4.2 Connection with Philips DVD Player

Figure 4-7 Test Result with Philips DVD Player

Nov. 16, 2015 Page 50 of 56 Rev 1.00

AN0004

4.2.4.3 Connection with Google Chromecast

Figure 4-8 Test Result with Google Chromecast

Nov. 16, 2015 Page 51 of 56 Rev 1.00

AN0004

Figure 4-9 Test Result with Google Chromecast (Continued)

Nov. 16, 2015 Page 52 of 56 Rev 1.00

AN0004

4.2.4.4 CEC Message Description

Table 4-2 shows the related description about these messages at the test results above. For
more opcodes, parameters and description on these or the other messages that user can
refer to the HDMI-CEC specification in detail.

Opcode Value Description Parameters Response

<Polling
Message>

- Used by any device for
device discovery – similar to
ping in other protocols.

None Shall set a low level ACK.

<Give Physical

Address>

0x83 A request to a device to
return its physical address.

None <Report Physical Address>

<Report Physical
Address>

0x84 Used to inform all other
devices of the mapping
between physical and logical
address of the initiator.

[Physical
Address]

[Device Type]

<Give Device
Vendor ID>

0x8C Requests the Vendor ID
from a device.

None <Device Vendor ID>

<Device Vendor
ID>

0x87 Reports the vendor ID of this
device.

[Vendor ID] Any other interested device
may store the vendor ID of
the device.

<Active Source> 0x82 Used by a new source to
indicate that it has started to
transmit a stream OR used
in response to a <Request
Active Source>

[Physical
Address]

A current active source
should take appropriate
action. TV should switch to
the appropriate input. Any
CEC switches between
source and root shall switch
to the appropriate input and
come out of standby if
necessary.

<Inactive Source> 0x9D Used by the currently active
source to inform the TV that
it has no video to be
presented to the user, or is
going into standby as the
result of a local user
command on the device.

[Physical
Address]

The TV may display its own
internal tuner and shall send
an <Active Source> with the
address of the TV; or The
TV may send <Set Stream
Path> to another device for
display.

<Image View On> 0x04 Sent by a source device to
the TV whenever it enters
the active state (alternatively
it may send <Text View

None Turn on (if not on). If in ‘Text
Display’ state then the TV
enters ‘Image Display’ state.
Note: Should not change TV

Nov. 16, 2015 Page 53 of 56 Rev 1.00

AN0004

On>). menu or PIP status.

<Text View On> 0x0D As <Image View On>, but
should also remove any text,
menus and PIP windows
from the TV’s display.

None As <Image View On>, but
should remove PIPs and
menus from the screen. The
TV enters ‘Image Display’
state regardless of its
previous state.

<Standby> 0x36 Switches one or all devices
into standby mode. Can be
used as a broadcast
message or be addressed to
a specific device.

None Switch the device into
standby.

Ignore the message if
already in standby.

<CEC Version> 0x9E <Get CEC Version> [CEC Version]

<Get CEC
Version>

0x9F Used by a device to enquire
which version of CEC the
target supports

None The source responds with a
<CEC Version> message
indicating the CEC version

<Menu Status> 0x8E Used to indicate to the TV
that the device is
showing/has removed a
menu and requests the
remote control keys to be
passed though.

[Menu State] If Menu State indicates
activated, TV enters ‘Device
Menu Active’ state and
forwards those Remote
control commands to the
initiator. If deactivated, TV
enters ‘Device Menu
Inactive’ state and stops
forwarding remote control
commands.

<Get Menu
Language>

0x91 Sent by a device capable of
character generation (for
OSD and Menus) to a TV in
order to discover the
currently selected Menu
language. Also used by a TV
during installation to
discover the currently set
menu language of other
devices.

None

<Give Device
Power

Status>

0x8F Used to determine the

current power status of

a target device

None <Report Power Status>

<Report Power
Status>

0x90 Used to inform are questing
device of the current power
status

[Power Status]

Nov. 16, 2015 Page 54 of 56 Rev 1.00

AN0004

<Feature Abort> 0x00 Used as a response to
indicate that the device does
not support the requested
message type, or that it
cannot execute it at the
present time.

[Feature
Opcode]

[Abort Reason]

Assume that request is not
supported or has not been
actioned.

<Abort> Message 0xFF This message is reserved
for testing purposes.

None

Table 4-2 CEC Messages

Nov. 16, 2015 Page 55 of 56 Rev 1.00

AN0004

Revision History

Date Revision Description

2015.11.16 1.00 1. Initially issued.

Nov. 16, 2015 Page 56 of 56 Rev 1.00

AN0004

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.

 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

	1 Overview
	1.1 The Purpose of HDMI-CEC

	2 HDMI-CEC Specification Abstract
	2.1 Introduction to CEC
	2.2 CEC Communication
	2.2.1 Address
	2.2.1.1 Physical Address
	2.2.1.2 Logical Address

	2.2.2 CEC Format
	2.2.2.1 CEC Message
	2.2.2.2 CEC Frame
	2.2.2.3 CEC Timing

	2.2.3 CEC Features
	2.2.3.1 One Touch Play
	2.2.3.2 System Standby

	3 Timer Capture Function
	3.1 Timer Controller
	3.1.1 Timer Controller of M051 Series
	3.1.2 Timer Controller of M0518 Series

	3.2 Timer Event Capture Function
	3.3 Use the Timer Capture to Measure the CEC Signal

	4 Example Code
	4.1 Hardware System Structure
	4.2 Firmware Description
	4.2.1 Main Function and System Initialization
	4.2.1.1 Main Function
	4.2.1.2 System Initialization
	4.2.1.3 UART0 Initialization
	4.2.1.4 Timer0 Initialization and Delay Sub-function
	4.2.1.5 Timer1 Initialization

	4.2.2 Interrupt Handler
	4.2.2.1 GPIO Port A and B Interrupt Handler
	4.2.2.2 Timer 0 Interrupt Handler
	4.2.2.3 Timer 1 Interrupt Handler

	4.2.3 CEC Sub-functions
	4.2.3.1 Send CEC Command
	4.2.3.2 Send CEC Format
	4.2.3.3 Decode CEC Command

	4.2.4 Test Results
	4.2.4.1 Connection with SONY PS3
	4.2.4.2 Connection with Philips DVD Player
	4.2.4.3 Connection with Google Chromecast
	4.2.4.4 CEC Message Description

