

Aug. 01, 2019 Page 1 of 11 Rev 1.00

NUC123 Series

Example Code Introduction for 32-bit NuMicro® Family

Information

Application Demonstrate the implementation of USB vendor command

BSP Version NUC123 Series BSP CMSIS V3.01.001

Hardware NuTiny-EVB-NUC123-LQFP64 v1.0

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Implementation of Vendor Command

)

http://www.nuvoton.com/

Aug. 01, 2019 Page 2 of 11 Rev 1.00

NUC123 Series

1 Function Description

1.1 Introduction

This document demonstrates how to implement a vendor command on a USB HID device. It

includes 2 vendor command, read and write. USB tool, Bus Hound is used to show the

transfer procedure and vendor command sending. User can observe the transfer result

through UART terminal tool also.

1.2 Principle

Figure 1: Control Read and Write Sequences

USB vendor command is based on control transfer. It has 3 stages, setup stage, data stage
and status stage, shown in Figure 1. Setup stage and status stage are necessary. Data stage
is optional depending on application.

Aug. 01, 2019 Page 3 of 11 Rev 1.00

NUC123 Series

Figure 2: Format of Setup Data

This demonstration implements vendor command doing 64 bytes data reading and writing.
Packet in setup stage must compliant with the USB control transfer setup packet format
shown in Figure 2. Thus we came up with the command format in Table 1. In this table, field,
bmRequestType, defines the command type and transfer direction. Field, bRequest, is the
command we define for the reading and writing, 0x1 is the writing command and 0x2 is the
reading command. Field, wLength, is the transfer length of payload. Other fields not
mentioned are not used in this demonstration so set them as 0.

Vendor-Defined Command bmRequestType bRequest wValue wIndex wLength

VENDOR_WRITE_TEST 0x40 0x01 0 0 0x40
VENDOR_READ_TEST 0xC0 0x02 0 0 0x40

Table 1: Setup packet of Vendor Command

1.3 Demo Result

USB tool, Bus Hound, is used for control transfer demonstration. Execute the tool after the
device connected desktop, the device tree will show the device on device tree. In Figure 3, we
can see the device with hexadecimal VID 0416 and PID B001 which is the device we
demonstrate. Follow the steps shown in Figure 3 to enter the window, Bus Commander.

Aug. 01, 2019 Page 4 of 11 Rev 1.00

NUC123 Series

Figure 3: Device Tree on Bus Hound

1.3.1 Reading Command

In bus commander window, execute the following steps to observe the behavior of transfer
shown in Figure 4:

1. Check the initial value which is 0x00 ~ 0x3f in data buffer by pressing any key through

terminal tool after the program is running.

2. Input the reading command defined in Table 1.

3. Press “Run” button to execute reading command.

4. We can see that the received payload in Bus Commander window are the same with

the data shown in step 1. It indicates the transfer is complete.

1

2

3

Aug. 01, 2019 Page 5 of 11 Rev 1.00

NUC123 Series

Figure 4: Operation of Reading Command

1.3.2 Writing Command
In bus commander window, execute the following steps to observe the behavior of transfer
shown in Figure 5.

1. Check the initial value which is 0x00 ~ 0x3f in data buffer by pressing any key through

terminal tool after the program is running.

2. Input the writing command defined in Table 1.

3. Input data to the data field in Bus Commander window.

4. Press “Run” button to execute writing command.

5. Press any key in terminal window, we can see that the received payload in terminal

window are the same with the data shown in step 3. It indicates that the input data in

Bus Hound are written to the buffer in device.

Figure 5: Operation of Writing Command

12

4

3

12

3

4

5

Aug. 01, 2019 Page 6 of 11 Rev 1.00

NUC123 Series

2 Code Description

2.1 main.c

Call function, USBD_SetVendorRequest(), to assign vendor command handler,
VENDOR_Request(), for subsequent vendor command handling.

/* Set Callback function for Vendor Command */
 USBD_SetVendorRequest(VENDOR_Request);

2.2 hid_vendor_command.h, hid_vendor_command.c

File, hid_vendor_command.h defines the writing command as 0x1, reading command as 0x2.
/*!<USB VENDOR CMD */
#define VENDOR_WRITE_TEST 0x1
#define VENDOR_READ_TEST 0x2

Function, VENDOR_Request is for vendor command handling. At the beginning, keep the
setup packet in a local buffer for subsequent processing.
void VENDOR_Request(void)
{
 uint8_t buf[8];
 uint32_t wLength;

 USBD_GetSetupPacket(buf);

 wLength = buf[7];
 wLength = buf[6] | (wLength << 8);

buf[0] is the field which is bmRequestType refer to Table 1. It indicates data transfer direction
and command type. The handler has two parts handling different direction of transmission.
The setup stage is handled by USB driver. Function, VENDOR_Request, only handles data
stage and status stage.
In data stage, it needs checking if the field, bRequest(buf[1]), is the command to be
processed. And call function, USBD_PrepareCtrlIn(), setting the buffer address and payload
length.

 if(buf[0] & 0x80) /* request data transfer direction */
 {
 /* Device to host */
 switch(buf[1])
 {
 case VENDOR_READ_TEST:
 {
 wLength = Minimum(wLength, sizeof(g_au8temp));

 /* Data stage */
 USBD_PrepareCtrlIn((uint8_t *)g_au8temp, wLength);

In status stage, set data toggle flag as 1. And call USBD_PrepareCtrlOut() for endpoint 0 and

Aug. 01, 2019 Page 7 of 11 Rev 1.00

NUC123 Series

payload setting. There is no data for transmitting in status stage so all parameters are 0.
 /* Status stage */
 USBD_SET_DATA1(EP1);
 USBD_PrepareCtrlOut(0, 0);
 break;
 }

 default:
 {
 /* Setup error, stall the device */
 USBD_SetStall(EP0);
 USBD_SetStall(EP1);
 break;
 }
 }
 }

When writing command, VENDOR_WRITE_TEST, received, call USB driver
USBD_PrepareCtrlOut() setting buffer address and payload length for output direction data
receiving in data stage. No data transferring in status stage, so set zero size in endpoint 0
payload. Received data will be in buffer, g_au8temp, after transfer is done.
 else
 {
 /* Host to device */
 switch(buf[1])
 {
 case VENDOR_WRITE_TEST:
 {
 /* Data stage*/
 USBD_PrepareCtrlOut(g_au8temp, wLength);

 /* Status stage */
 USBD_SET_DATA1(EP0);
 USBD_SET_PAYLOAD_LEN(EP0, 0);
 break;
 }

 default:
 {
 /* Setup error, stall the device */
 USBD_SetStall(EP0);
 USBD_SetStall(EP1);
 break;
 }
 }
 }
}

Aug. 01, 2019 Page 8 of 11 Rev 1.00

NUC123 Series

3 Software and Hardware Environment

 Software Environment

 BSP version

 NUC123 Series BSP CMSIS V3.01.001

 IDE version

 Keil uVersion 5.26

 Tool for testing

 Terminal tool, ex: putty(https://www.putty.org/)

 Bus Hound(http://www.perisoft.net/bushound/)

 Hardware Environment

 Circuit components

 NuTiny-EVB-NUC123-LQFP64 v1.0 C

 USB mini USB cable

 USB-UART TTL

 Diagram

 UART TTL Module

UART0_RX (PB.0) ↔ UART_TX

UART0_TX (PB.1) ↔ UART_RX

GND → GND

USB ↔

 PC(USB Host)

NUC123SD4AN0

https://www.putty.org/
http://www.perisoft.net/bushound/

Aug. 01, 2019 Page 9 of 11 Rev 1.00

NUC123 Series

4 Directory Information

 EC_NUC123_USBD_HID_Vendor_Command_V1.00

 Library Sample code header and source files

 CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.

 Device CMSIS compliant device header file

 StdDriver All peripheral driver header and source files

 SampleCode

 ExampleCode Source file of example code

 KEIL KEIL project file

Aug. 01, 2019 Page 10 of 11 Rev 1.00

NUC123 Series

5 How to Execute Example Code

1. Browsing into sample code folder by Directory Information(section 4) and double click

NUC123_USBD_HID_Vendor_Command.uvproj.

2. Enter Keil compile mode

a. Build

b. Download

c. Start/Stop debug session

3. Enter debug mode

a. Run

Aug. 01, 2019 Page 11 of 11 Rev 1.00

NUC123 Series

6 Revision History

Date Revision Description

Aug. 1, 2019 1.00 1. Initially issued.

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.

 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or

safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

	1 Function Description
	1.1 Introduction
	1.2 Principle
	1.3 Demo Result
	1.3.1 Reading Command
	1.3.2 Writing Command

	2 Code Description
	2.1 main.c
	2.2 hid_vendor_command.h, hid_vendor_command.c

	3 Software and Hardware Environment
	4 Directory Information
	5 How to Execute Example Code
	6 Revision History

