NUVOTON NUC123 Series

I Implementation of Vendor Command

Example Code Introduction for 32-bit NuMicro® Family

Information

Application Demonstrate the implementation of USB vendor command
BSP Version NUC123 Series BSP CMSIS v3.01.001

Hardware NuTiny-EVB-NUC123-LQFP64 v1.0

The information described in this document is the exclusive intellectual property of
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

Www.nuvoton.com

Aug. 01, 2019 Page 1of 11 Rev 1.00

http://www.nuvoton.com/

NnUvoToN

1 Function Description

1.1 Introduction

NUC123 Series

This document demonstrates how to implement a vendor command on a USB HID device. It

includes 2 vendor command, read and write. USB tool, Bus Hound is used to show the

transfer procedure and vendor command sending. User can observe the transfer result

through UART terminal tool also.

1.2 Principle
Setup Data Status
Stage Stage Stage
! A N7 % N A \
‘(’3\’0!:"0' SETUP (0) OuT (1) OuT (0) OuUT (01) IN (1)
rite
DATAO DATA1 DATAO DATAO0/1 DATA1
gon(tjrol SETUP (0) IN (1) IN (0) IN (0/1) OUT (1)
ea
DATAO DATA1 DATAO DATAO0/1 DATA1
Setup Status
Stage Stage
A A
/ v
No-data SETUP (0) IN (1)
Control

DATAOD

DATA1

Figure 1: Control Read and Write Sequences

USB vendor command is based on control transfer. It has 3 stages, setup stage, data stage
and status stage, shown in Figure 1. Setup stage and status stage are necessary. Data stage
Is optional depending on application.

Aug. 01, 2019

Page 2 of 11

Rev 1.00

NUvVOoOTOoN NUC123 Series

Offset Field Size Value Description
0 bmRequestType 1 Bitmap Characteristics of request:
D7: Data transfer direction

0 = Host-to-device
1 = Device-to-host

D6...5: Type
0 = Standard
1 =Class
2 = Vendor
3 = Reserved

D4..0: Recipient
0 = Device
1 = Interface
2 = Endpoint
3 = Other
4..31 = Reserved

1 bRequest 1 Value Specific request (refer toa Table 9-3)

2 wValue 2 Value Word-sized field that varies according to
request

4 windex 2 Index or Word-sized field that varies according to

Offset request; typically used to pass an index or

offset

6 wlLength 2 Count Number of bytes to transfer if there is a
Data stage

Figure 2: Format of Setup Data

This demonstration implements vendor command doing 64 bytes data reading and writing.
Packet in setup stage must compliant with the USB control transfer setup packet format
shown in Figure 2. Thus we came up with the command format in Table 1. In this table, field,
bmRequestType, defines the command type and transfer direction. Field, bRequest, is the
command we define for the reading and writing, Ox1 is the writing command and 0x2 is the
reading command. Field, wLength, is the transfer length of payload. Other fields not
mentioned are not used in this demonstration so set them as 0.

Vendor-Defined Command bmRequestType bRequest wValue windex wLength

VENDOR_WRITE_TEST 0x40 0x01 0 0 0x40
VENDOR_READ_TEST 0xCO 0x02 0 0 0x40
Table 1: Setup packet of Vendor Command

1.3 Demo Result

USB tool, Bus Hound, is used for control transfer demonstration. Execute the tool after the
device connected desktop, the device tree will show the device on device tree. In Figure 3, we
can see the device with hexadecimal VID 0416 and PID B0OO1l which is the device we
demonstrate. Follow the steps shown in Figure 3 to enter the window, Bus Commander.

Aug. 01, 2019 Page 3 of 11 Rev 1.00

NUVOTON NUC123 Series

Bus Hound - m} X
? i
-y Perisoft
Capture Save Seftings | Devices Help Exit A

Click in the check box to select a device

-E [0] Intel(R) 8 Series Chipset Family SATA AHCI Controller ~
i ll= [1] Samsung 55D 860 EVO 500GEB
M (2] DameWare Virtual Keyboard Emulation for Standard Keyboard
-"_' [3] Intel[R) USB 3.0 eXtensible Host Controller - 1.0 [Microsofi]
g (8] VSB Root Hub [USB 3.0]
(9] Generic USB Hub
14] Generic USB Hub

43) USB Input Device
N ‘® [44] HID-compliant mouse

~ [16] Silicon Labs CP210x USB to UART Bridge [COM3)
= USB Composite Device
40) USB Input Device
42] HID-compliant device
3 Nuvoton Nu-Link USB
[10) Generic USB Hub
29] USB Input Device
% [32] HID-compliant mouse
USB Composite Device
33) USB Input Device
W% [35] HID Keyboard Device v

I~ Auto select hot plugged devices
3[[agzeecmms]
Properties:

Figure 3: Device Tree on Bus Hound

1.3.1 Reading Command

In bus commander window, execute the following steps to observe the behavior of transfer
shown in Figure 4:

1.

w

Check the initial value which is 0x00 ~ 0x3f in data buffer by pressing any key through
terminal tool after the program is running.

Input the reading command defined in Table 1.

Press “Run” button to execute reading command.

We can see that the received payload in Bus Commander window are the same with
the data shown in step 1. It indicates the transfer is complete.

Aug. 01, 2019 Page 4 of 11 Rev 1.00

NUvVOoOTOoN NUC123 Series

Bus Commander - (43) USB Input Device - O > ¥ COMS3 - Tera Term VT — [m] he
=) TAF'|] ATA USB lEireWirel F‘Olth'g] Help I File Edit Setup Control Window Help
= 139 =
% Reset | Reset D [:I Regall | Recall
Fun Fipe | Device |HotPlug| Lock | Clear | Load | Sawe | —Up Doun

B N S
Interrupt In 03 01

Type Reg Value Index Length 2
[@ [[[ow[os [w[or venoor
Offset Hex Bytes Data

00000000 00 5 09 0a Ob Oc 0d Oe Of ..
00000010 10 1% la 1lb lc 1d le 1f
00000020 20 21 22 2 P P 29 2a 2b 2c 2f
00000030 30 31 3 3a 3b 3c 3f
00000040

complete

Figure 4: Operation of Reading Command

1.3.2 Writing Command
In bus commander window, execute the following steps to observe the behavior of transfer
shown in Figure 5.

1. Check the initial value which is 0x00 ~ 0x3f in data buffer by pressing any key through

terminal tool after the program is running.

Input the writing command defined in Table 1.

Input data to the data field in Bus Commander window.

Press “Run” button to execute writing command.

Press any key in terminal window, we can see that the received payload in terminal
window are the same with the data shown in step 3. It indicates that the input data in
Bus Hound are written to the buffer in device.

& COMS3 - Tera Term VT - O X

o bk wn

et
s

File Edit Setup Control Window Help

5031 /ATAPI| ATA USB | Fiewie | Port1/0 | Help |

W2 ®ew g Dol

't t ' <
Bun Fire | Devioe | HotPlug| Look | Clear | Load | Sawe Regat! | Fecat! th Ve ommand Sam
[Endpoint [Type [Direction [Ciass [subclass [Protocor [Max Packet
0 Control__Iniout 01 02 8

1 Interrupt In 03 01 02 8
@3 04 05 @6 07

Type Req \Value Index Length |2

[so_[or_[oo[ow [oo[oo [s[oo venoom

Offset
00000000 aa 55 01 23 45 &7 8% 10-11 11 11 00 OO0 00 00 00 .U.#Eg
00000010 00 00 00 00 00 OO OO0 00-00 00 00 00 00 00 00 00 .
00000020 00 00 aa aa aa 00 00 00-00 00 OO0 OO0 OO0 OO0 OO0 OO .
00000030 00 00 0O OO0 OO OO0 OO0 00-00 OO 00 00 00 00 00 f£0 .
00000040

complete

Figure 5: Operation of Writing Command

Aug. 01, 2019 Page 5 of 11 Rev 1.00

NUvVOoOTOoN NUC123 Series

2 Code Description

2.1 main.c

Call function, USBD_SetVendorRequest(), to assign vendor command handler,
VENDOR_Request(), for subsequent vendor command handling.

/* Set Callback function for Vendor Command */
USBD_SetVendorRequest(VENDOR_Request);

2.2 hid_vendor_command.h, hid_vendor_command.c

File, hid_vendor _command.h defines the writing command as 0x1, reading command as 0x2.

/*!1<USB VENDOR CMD */
#define VENDOR_WRITE_TEST ©ox1
#define VENDOR_READ_TEST ©x2

Function, VENDOR_Request is for vendor command handling. At the beginning, keep the
setup packet in a local buffer for subsequent processing.

void VENDOR Request(void)

{
uint8 t buf[8];
uint32_t wLength;

USBD_GetSetupPacket(buf);

wLength
wLength

buf[7];
buf[6] | (wLength << 8);

buf[0] is the field which is bmRequestType refer to Table 1. It indicates data transfer direction
and command type. The handler has two parts handling different direction of transmission.
The setup stage is handled by USB driver. Function, VENDOR_Request, only handles data
stage and status stage.

In data stage, it needs checking if the field, bRequest(buf[1]), is the command to be
processed. And call function, USBD_PrepareCitrlin(), setting the buffer address and payload
length.

if(buf[@] & 0x80) /* request data transfer direction */

/* Device to host */
switch(buf[1])
{

case VENDOR_READ_TEST:

{
wLength = Minimum(wLength, sizeof(g_au8temp));

/* Data stage */
USBD_PrepareCtrlIn((uint8_ t *)g au8temp, wlLength);

In status stage, set data toggle flag as 1. And call USBD_PrepareCtrlOut() for endpoint O and

Aug. 01, 2019 Page 6 of 11 Rev 1.00

NUvVOoOTOoN NUC123 Series

payload setting. There is no data for transmitting in status stage so all parameters are 0.

/* Status stage */
USBD_SET DATAL1(EP1);
USBD_PrepareCtrlout(e, 0);

break;

}

default:

{
/* Setup error, stall the device */
USBD_SetStall(EPQ);
USBD_SetStall(EP1);
break;

}

}

When writng command, VENDOR WRITE_TEST, received, call USB driver
USBD_PrepareCtrlOut() setting buffer address and payload length for output direction data
receiving in data stage. No data transferring in status stage, so set zero size in endpoint 0
payload. Received data will be in buffer, g_au8temp, after transfer is done.

else

/* Host to device */

switch(buf[1])
{
case VENDOR_WRITE_TEST:
{
/* Data stage*/
USBD_PrepareCtrlOut(g_au8temp, wlLength);
/* Status stage */
USBD_SET DATA1(EPO);
USBD_SET_PAYLOAD LEN(EPO, ©);
break;
}
default:
{
/* Setup error, stall the device */
USBD_SetStall(EPO);
USBD_SetStall(EP1);
break;
}

Aug. 01, 2019 Page 7 of 11 Rev 1.00

NUVOTON NUC123 Series
3 Software and Hardware Environment
® Software Environment
B BSP version
€ NUC123 Series BSP CMSIS Vv3.01.001
B [IDE version
€ Keil uVersion 5.26
B Tool for testing
€ Terminal tool, ex: putty(https://www.putty.org/)
€ Bus Hound(http://www.perisoft.net/bushound/)
® Hardware Environment
B Circuit components
€ NuTiny-EVB-NUC123-LQFP64 v1.0 C
€ USB mini USB cable
¢ USB-UARTTTL
B Diagram
UART TTL Module
UARTO_RX (PB.0) UART_TX
UARTO_TX (PB.1) UART RX
GND GND
USB
PC(USB Host)
NUC123SD4ANO
Aug. 01, 2019 Page 8 of 11 Rev 1.00

https://www.putty.org/
http://www.perisoft.net/bushound/

NUVOTON NUC123 Series

4 Directory Information

7 EC_NUC123 USBD_HID_Vendor_Command_V1.00

=~ Library Sample code header and source files
~ CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.
~ Device CMSIS compliant device header file
I~ StdDriver All peripheral driver header and source files

I~ SampleCode

7~ ExampleCode Source file of example code

7~ KEIL KEIL project file

Aug. 01, 2019 Page 9 of 11 Rev 1.00

NUVOTON NUC123 Series

5 How to Execute Example Code

1. Browsing into sample code folder by Directory Information(section 4) and double click
NUC123 USBD HID Vendor_Command.uvproj.

2. Enter Keil compile mode

a. Build

b. Download

c. Start/Stop debug session
3. Enter debug mode

a. Run

Aug. 01, 2019 Page 10 of 11 Rev 1.00

NUvVOoOTOoN NUC123 Series

6 Revision History

Date Revision Description

Aug. 1, 2019 1.00 1. Initially issued.

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.
Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

Flease note that all data and specifications are subject to change without notice.
All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.

Aug. 01, 2019 Page 11 of 11 Rev 1.00

	1 Function Description
	1.1 Introduction
	1.2 Principle
	1.3 Demo Result
	1.3.1 Reading Command
	1.3.2 Writing Command

	2 Code Description
	2.1 main.c
	2.2 hid_vendor_command.h, hid_vendor_command.c

	3 Software and Hardware Environment
	4 Directory Information
	5 How to Execute Example Code
	6 Revision History

