

Oct. 01, 2019 Page 1 of 9 Rev 1.00

M480 Series

Example Code Introduction for 32-bit NuMicro® Family

Information

Application
This sample code uses SPI Flash as back end storage through
SPIM interface

BSP Version M480 Series BSP CMSIS V3.04.000

Hardware NuMaker-PFM-M487 Ver 3.0

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

SPI flash as a storage for USB MSC

http://www.nuvoton.com/

Oct. 01, 2019 Page 2 of 9 Rev 1.00

M480 Series

1 Function Description

1.1 Introduction

In the sample code, the M480 acts as a USB 2.0 flash drive. It uses the SPIM interface as an

back end storage for SPI Flash and has a file system. This function can be used as an

alternative to the SD card as a storage space. The write speed is approximately 128 bytes per

second.

The user must set the storage memory starting position and the total memory space size

through MSC_Init(SectorOffset, TotalSector). A Sector is 512 KB. Since the SPI Flash limit

requires at least 4KB to be cleared at a time, 4KB of content is read first, and deleted and

then rewritten. The USB handler is in MSC_ProcessCmd(), and M480 will perform the

corresponding processing according to the received command.

1.2 Demo Result

After execution, the following information will be printed.

After connecting the USB2.0 slot on the NuMaker-PFM-M487 to the computer, the following

icon appears

Oct. 01, 2019 Page 3 of 9 Rev 1.00

M480 Series

2 Code Description

First, do initialize in main.c and read the external SPI flash ID, then set the storage location

and storage size of the flash drive, and finally wait for the connection to the computer and

execute the USB processing program in MSC_ProcessCmd():

int32_t main(void)

{

 /* Init System, IP clock and multi-function I/O

 In the end of SYS_Init() will issue SYS_LockReg()

 to lock protected register. If user want to write

 protected register, please issue SYS_UnlockReg()

 to unlock protected register if necessary */

 SYS_Init();

 /* Init UART to 115200-8n1 for print message */

 UART_Open(UART0, 115200);

 printf("+---+\n");

 printf("| HSUSB Mass Storage Sample Code |\n");

 printf("| use SPI flash as back end storage through SPIM interface |\n");

 printf("+---+\n");

 printf("disk size is : %d KB\n", (disk_size*512)/1024);

 SYS_UnlockReg();

 /* SPIM init */

 SPIM_Init();

 HSUSBD_Open(&gsHSInfo, MSC_ClassRequest, NULL);

 /* Massstorage init */

 MSC_Init(memory_offset, disk_size);

 /* Enable USBD interrupt */

 NVIC_EnableIRQ(USBD20_IRQn);

 /* Start transaction */

 while (1) {

 if (HSUSBD_IS_ATTACHED()) {

Oct. 01, 2019 Page 4 of 9 Rev 1.00

M480 Series

 HSUSBD_Start();

 break;

 }

 }

 /* Massstorage process */

 while (1) {

 if (g_hsusbd_Configured)

 MSC_ProcessCmd();

 }

}

Read and write SPI flash code as follows:

/* Read data through SPIM */

void MSC_ReadMedia(uint32_t addr, uint32_t size, uint8_t *buffer)

{

 SPIM_Read(addr + g_SectorsOffset, size, buffer);

}

/* Write data through SPIM */

void MSC_WriteMedia(uint32_t addr, uint32_t size, uint8_t *buffer)

{

 SPIM_Write(addr + g_SectorsOffset, size, buffer);

}

Oct. 01, 2019 Page 5 of 9 Rev 1.00

M480 Series

3 Software and Hardware Environment

 Software environment

 BSP version

 M480 Series BSP CMSIS V3.04.000

 IDE version

 Keil uVersion 5.26

 Hardware environment

 Circuit components

 NuMaker-PFM-M487 or other M480 Development Board

 Diagram

The SPI flash is connected through the SPIM interface, and the transmission protocol is

processed in a hardware to improve the read/write speed of the SPI flash. Use the USB2.0

OTG slot to connect to computer and you will see the disk on your computer.

SPIM_MOSI (PC.0) ↔ IO0

SPIM_MISO (PC.1) ↔ IO1

SPIM_CLK (PC.2) CLK

SPIM_SS (PC.3) /CS

SPIM_D2 (PC.5) IO2

SPIM_D3 (PC.4) IO3

M480 W25Q32

Oct. 01, 2019 Page 6 of 9 Rev 1.00

M480 Series

4 Directory Information

 EC_M480_ HSUSBD_MassStorage_SPIMFlash_V1.00

 Library Sample code header and source files

 CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.

 Device CMSIS compliant device header file

 StdDriver All peripheral driver header and source files

 SampleCode

 ExampleCode Source file of example code

Oct. 01, 2019 Page 7 of 9 Rev 1.00

M480 Series

5 How to Execute Example Code

1. Browsing into sample code folder by Directory Information (section 4) and double click

HSUSBD_MassStorage_SPIMFlash.uvproj

2. Enter Keil compile mode

a. Build

b. Download

c. Start/Stop debug session

3. Enter debug mode

a. Run

Oct. 01, 2019 Page 8 of 9 Rev 1.00

M480 Series

6 Revision History

Date Revision Description

Oct. 01, 2019 1.00 1. Initially issued.

Oct. 01, 2019 Page 9 of 9 Rev 1.00

M480 Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

