

Dec. 02, 2019 Page 1 of 10 Rev 1.00

M480 Series

Example Code Introduction for 32-bit NuMicro® Family

Information

Application Demo the PWM Synchronous function

BSP Version M480 Series BSP CMSIS V3.04.000

Hardware NuMaker-FPM-M487 v3.0

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

M480 PWM Synchronous

)

http://www.nuvoton.com/

Dec. 02, 2019 Page 2 of 10 Rev 1.00

M480 Series

1 Function Description

1.1 Introduction

The PWM Synchronous function is used for making different PWM channel in phase. User

can control phase value and direction. Be sure to set PWM in complementary mode when

using this function. The SYNC_IN signal for the first EPWM0 pair counter comes from

EPWM0_SYNC_IN pin, and the others come from the SYNC_OUT signal of the previous

EPWM pair counter.

1.2 Demo Result

After trigger by SYNC_IN or SWSYNC or Counter, the selected channel will start
synchronizing.

Dec. 02, 2019 Page 3 of 10 Rev 1.00

M480 Series

2 Code Description

These functions are used to initialize and enable EPWM. In the EPWM_ConfigOutputChannel
() function, setting the clock source、frequency and duty for the selected channel.

 /* Configure EPWM generator and get the nearest frequency in edge aligned auto-reload
mode*/

 EPWM_ConfigOutputChannel (EPWM_T *epwm, uint32_t u32ChannelNum, uint32_t u32Frequency,
uint32_t u32DutyCycle);

 PWM_EnableOutput (EPWM_T *epwm, uint32_t u32ChannelMask);

 /* Configure synchronization phase of selected channel*/

 EPWM_ConfigSyncPhase (EPWM_T *epwm, uint32_t u32ChannelNum, uint32_t u32SyncSrc,
uint32_t u32Direction, uint32_t u32StartPhase);

 /* Enable SYNC phase of selected channel */

 EPWM_EnableSyncPhase (EPWM_T *epwm, uint32_t u32ChannelMask);

 /* set PWM1 module in Complementary MODE */

 EPWM_ENABLE_COMPLEMENTARY_MODE (EPWM_T *pwm);

/**

 * @brief This function Configure EPWM generator and get the nearest frequency in edge
aligned (up counter type) auto-reload mode

 * @param[in] epwm The pointer of the specified EPWM module

 * - EPWM0: EPWM Group 0

 * - EPWM1: EPWM Group 1

 * @param[in] u32ChannelNum EPWM channel number. Valid values are between 0~5

 * @param[in] u32Frequency Target generator frequency

 * @param[in] u32DutyCycle Target generator duty cycle percentage. Valid range are between
0 ~ 100. 10 means 10%, 20 means 20%...

 * @return Nearest frequency clock in nano second

 * @note Since every two channels, (0 & 1), (2 & 3), shares a prescaler. Call this API to
configure EPWM frequency may affect

 * existing frequency of other channel.

 * @note This function is used for initial stage.

 * To change duty cycle later, it should get the configured period value and
calculate the new comparator value.

 */

uint32_t EPWM_ConfigOutputChannel (EPWM_T *epwm, uint32_t u32ChannelNum, uint32_t
u32Frequency, uint32_t u32DutyCycle)

{

 uint32_t u32Src;

 uint32_t u32EPWMClockSrc;

 uint32_t i;

Dec. 02, 2019 Page 4 of 10 Rev 1.00

M480 Series

 uint32_t u32Prescale = 1U, u32CNR = 0xFFFFU;

 if(epwm == EPWM0)

 {

 u32Src = CLK->CLKSEL2 & CLK_CLKSEL2_EPWM0SEL_Msk;

 }

 else /* (epwm == EPWM1) */

 {

 u32Src = CLK->CLKSEL2 & CLK_CLKSEL2_EPWM1SEL_Msk;

 }

 if(u32Src == 0U)

 {

 /* clock source is from PLL clock */

 u32EPWMClockSrc = CLK_GetPLLClockFreq();

 }

 else

 {

 /* clock source is from PCLK */

 SystemCoreClockUpdate();

 if(epwm == EPWM0)

 {

 u32EPWMClockSrc = CLK_GetPCLK0Freq();

 }

 else /* (epwm == EPWM1) */

 {

 u32EPWMClockSrc = CLK_GetPCLK1Freq();

 }

 }

 for(u32Prescale = 1U; u32Prescale < 0xFFFU; u32Prescale++) /* prescale resolution is
12bits: 0~0xFFF */

 {

 i = (u32EPWMClockSrc / u32Frequency) / u32Prescale;

 /* If target value is larger than CNR, need to use a larger prescaler */

 if(i < (0x10000U))

 {

 u32CNR = i;

 break;

 }

 }

Dec. 02, 2019 Page 5 of 10 Rev 1.00

M480 Series

 /* Store return value here 'cos we're goanna change u16Prescale & u16CNR to the real
value to fill into register */

 i = u32EPWMClockSrc / (u32Prescale * u32CNR);

 /* convert to real register value */

 /* every two channels share a prescaler */

 u32Prescale -= 1U;

 EPWM_SET_PRESCALER(epwm, u32ChannelNum, u32Prescale);

 /* set EPWM to up-down counter type(edge aligned) and auto-reload mode */

 (epwm)->CTL1 = ((epwm)->CTL1 & ~(((1UL << EPWM_CTL1_CNTTYPE0_Pos) << (u32ChannelNum <<
1U))|((1UL << EPWM_CTL1_CNTMODE0_Pos) << u32ChannelNum)));

 u32CNR -= 1U;

 EPWM_SET_CNR(epwm, u32ChannelNum, u32CNR);

 EPWM_SET_CMR(epwm, u32ChannelNum, u32DutyCycle * (u32CNR + 1U) / 100U);

 (epwm)->WGCTL0 = ((epwm)->WGCTL0 & ~(((1UL << EPWM_WGCTL0_PRDPCTL0_Pos) | (1UL <<
EPWM_WGCTL0_ZPCTL0_Pos)) << (u32ChannelNum << 1U))) | \

 ((uint32_t)EPWM_OUTPUT_HIGH << ((u32ChannelNum << 1U) +
(uint32_t)EPWM_WGCTL0_ZPCTL0_Pos));

 (epwm)->WGCTL1 = ((epwm)->WGCTL1 & ~(((1UL << EPWM_WGCTL1_CMPDCTL0_Pos) | (1UL <<
EPWM_WGCTL1_CMPUCTL0_Pos)) << (u32ChannelNum << 1U))) | \

 ((uint32_t)EPWM_OUTPUT_LOW << ((u32ChannelNum << 1U) +
(uint32_t)EPWM_WGCTL1_CMPUCTL0_Pos));

 return(i);

}

Dec. 02, 2019 Page 6 of 10 Rev 1.00

M480 Series

3 Software and Hardware Environment

 Software Environment

 BSP version

 M480 Series BSP CMSIS V3.04.000

 IDE version

 Keil uVersion 5.28

 Hardware Environment

 Circuit components

 NuMaker-FPM-M487

 Diagram

M480's UART0_RX (PB.12) and UART0_TX (PB.13) are connected to Nu-Link Me to print the

message. Set COM port and Baud. The number of the COM Port can be found in the device

manager "NuBridge Virtual Com Port (COMX)" and Baud is set to 115200.

UART0_RX (PB.12) ↔ TX

UART0_TX (PB.13) ↔ RX

NuMaker-FPM-M487 Nu-Link-Me

Dec. 02, 2019 Page 7 of 10 Rev 1.00

M480 Series

4 Directory Information

 EC_M480_PWM_Synchronous_V1.00

 Library Sample code header and source files

 CMSIS Cortex® Microcontroller Software Interface Standard
(CMSIS) by Arm® Corp.

 Device CMSIS compliant device header file

 StdDriver All peripheral driver header and source files

 SampleCode

 ExampleCode Source file of example code

Dec. 02, 2019 Page 8 of 10 Rev 1.00

M480 Series

5 How to Execute Example Code

1. Browsing into sample code folder by Directory Information (section 4) and double click

M480_PWM_Sync.uvprojx.

2. Enter Keil compile mode

a. Build

b. Download

c. Start/Stop debug session

3. Enter debug mode

a. Run

Dec. 02, 2019 Page 9 of 10 Rev 1.00

M480 Series

6 Revision History

Date Revision Description

Dec. 2, 2019 1.00 1. Initially issued.

Dec. 02, 2019 Page 10 of 10 Rev 1.00

M480 Series

Important Notice
Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.
 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.
All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

