

Jul 7, 2016 Page 1 of 14 Rev 1.00

ER6008

Errata Sheet for 32-bit NuMicro™ Family

Document Information

Abstract This errata sheet describes the functional problem known at the
release date of this document.

Apply to NUC505 Series.

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

NUC505 Series Errata Sheet

http://www.nuvoton.com/

Jul 7, 2016 Page 2 of 14 Rev 1.00

ER6008

Table of Contents

1 OVERVIEW .. 3

2 FUNCTIONAL PROBLEMS ... 4

2.1 Arbitration Problem of USBD Endpoints Data Buffer .. 4

2.2 Arbitration Problem of USBD Endpoints Data Buffer .. 11

2.3 Control SETUP Transaction Failed ... 12

Jul 7, 2016 Page 3 of 14 Rev 1.00

ER6008

1 Overview

Functional Problem Description

Arbitration problem
of USBD endpoints
data buffer

USB buffer arbitration issue:

The written data will be unexpected if the Cortex® -M4 core and any
other master concurrently write data into USBD endpoints data buffer;
vice versa, the read data will be unexpected if the Cortex® -M4 core
and any other master concurrently read data from USBD endpoints
data buffer.

ISO IN access issue:

The read data will be unexpected if Host reads ISO IN endpoint data
buffer and any other master (Cortex® -M4 core or USB DMA) reads
data concurrently from USBD endpoints data buffer.

USBD Endpoint
Number problem

All endpoints of a USB device controller cannot be configured as the
same Endpoint Number.

Control SETUP
Transaction Failed

Control SETUP Transaction may fail when the SPLIT transaction
occurs.

Jul 7, 2016 Page 4 of 14 Rev 1.00

ER6008

2 Functional Problems

2.1 Arbitration Problem of USBD Endpoints Data Buffer

Description:

For USBD controller, there’s a data buffer shared by all endpoints. The IN/OUT transfer data
are temporarily stored in this data buffer. During USB device operation, the masters including
Cortex® -M4 core, USBD DMA and remote USB Host may access this data concurrently.

Problem:

If the Cortex® -M4 core and any other master concurrently read or write the data buffer, the
read or written data will be unexpected. If the remote USB Host reads the ISO endpoint data
buffer and any one mater (Cortex® -M4 core or USB DMA) read the endpoint data buffer
concurrently, the read data will be unexpected.

Control Endpoint
Data Buffer

USB RAM Buffer EPA Data Buffer EPB Data Buffer

0 64 576 1088 n

USB Engine

USB Host

Cortex-M4

Figure 2-1 USB Endpoints Data Buffer

Cortex® -M4 core access issue:

For example, if the Cortex® -M4 core writes data into IN endpoint buffer and remote USB Host
issues OUT transfer to write data buffer at the same time, the written data will be unexpected.
Similarly, if the Cortex® -M4 core is reading data from OUT endpoint buffer while the remote
USB host is issuing IN transfer to read data buffer, the read data will be unexpected.

ISO IN access issue:

If any master (Cortex® -M4 core or USB DMA) is reading data from endpoint buffer while the
remote USB host is issuing IN transfer for ISO endpoint to read data buffer, the read data will
be unexpected.

Jul 7, 2016 Page 5 of 14 Rev 1.00

ER6008

Workaround:

USBD firmware should prevent such case that may cause data unexpected and here are
workaround solutions for the arbitration problem.

 Cortex® -M4 core access issue

 User must make sure that no any other master reads or writes endpoints data buffer

concurrently

 ISO IN access issue

 Prevent to read data and USB Host reads ISO IN endpoints data buffer concurrently

 Before reading endpoint data buffer, it needs to make sure that the ISO IN data

buffer is empty (already read by USB Host).

The following example illustrates an USB device application example with ISO IN endpoint

and Cortex® -M4 core Read/Write (for Control Endpoint), and introduces how to apply the

above rules to avoid data unexpected issue.

Audio Device– Speaker & Microphone:

A UAC (USB Audio Class) application consists of Control Endpoint, ISO IN Endpoint, ISO
OUT Endpoint, and interrupt IN Endpoint.

IN /
OUT

Endpoint
Data Buffer

EPA
ISO
OUT

[W3] Write[W1] Write [R1] Read

[R2] Read [W2] Write

USB Engine

IN /
OUT

Control IN / OUT

[R3] Read

EPB
ISO
IN

[W4] Write

[R4] Read

EPC
Interrupt

IN

[W5] Write

[R5] Read

USB Host

Device Firmware

Figure 2-2 Audio Class Device

Jul 7, 2016 Page 6 of 14 Rev 1.00

ER6008

The UAC application uses:

 Control Endpoint to get (or set) volume control, mute control and sampling rate (use the

Cortex® -M4 core).

 ISO IN Endpoint to transfer record data (Use USBD DMA).

 ISO OUT Endpoint to transfer audio data for playback (Use USBD DMA).

 Interrupt IN Endpoint to transfer HID data (Use USBD DMA).

Cortex® -M4 core access issue:

First, unless you can make sure that Cortex® -M4 core and any other master will not read or
write endpoints data buffer concurrently, please use USBD DMA to access endpoints data
buffer instead of Cortex® -M4 core.

Here is a workaround solution (for Control Endpoint only) that using the Cortex® -M4 core to
access Control Endpoint data buffer and avoid the data unexpected issue.

UAC Class request belongs to the Control Read and Write Sequence (see Figure 2-3) and it
contains Setup stages, Data stage, and Status stages.

Figure 2-3 Control Read and Write Sequences

For Control Write sequence (e.g. Set Volume):

The data unexpected condition is that the Cortex® -M4 core reads the Control Endpoint data
buffer (see Figure 2-2 [R2]) while Host issues ISO IN transfer (see Figure 2-2[R4]) or Interrupt
IN transfer (see Figure 2-2 [R5]).

Jul 7, 2016 Page 7 of 14 Rev 1.00

ER6008

Normally, user can read Control Endpoint data buffer when getting the data received interrupt

(after Data Stage). But the data unexpected issue may occur when USB Host may issue IN

Token (Host reads) for other endpoints before Status Stage (see Figure 2-4).

Setup Stage

Data Stage

Status Stage

Cortex-M4 core Reads &

Host may issue IN Token

(Read) for other endpoint

Figure 2-4 Control Write Sequence (Unsafe Reading Timing)

To avoid this situation, user can read Control Endpoint data buffer when getting the Control IN
Token for Status Stage instead of the time after getting data received interrupt. In Status
Stage, Host does nothing and only waits the ACK from device. Thus, it is safe to read the
data from Control endpoint data buffer in Status Stage by the Cortex® -M4 core (see Figure
2-5).

Setup Stage

Data Stage

Status Stage

Host may issue IN Token

(Read) for other endpoint

Cortex-M4 core Reads

Figure 2-5 Control Write Sequence (Safe Reading Timing)

Jul 7, 2016 Page 8 of 14 Rev 1.00

ER6008

For Control Read Sequence (e.g. Get Volume):

The data unexpected condition is that the Cortex® -M4 core writes the Control Endpoint data
buffer (see Figure 2-2[W2]) while Host issues ISO OUT transfer (see Figure 2-2 [W4]).

Normally, user can write Control Endpoint data buffer after receiving the command (after Step
Stage). But the data unexpected issue may occur when USB Host may issue OUT Token
(Host writes) for other endpoints before Data Stage (see Figure 2-6).

Setup Stage

Data Stage

Status Stage

Cortex-M4 core Writes &

Host may issue OUT Token

(Write) for other endpoint

Figure 2-6 Control Read Sequence (Unsafe Reading Timing)

To avoid this situation, user can write Control Endpoint data buffer when getting the Control
IN Token for Data Stage instead of the time after getting command. In Data Stage, Host does
nothing and only waits the data from device. Thus, it is safe to write the data from Control
endpoint data buffer in Data Stage by the Cortex® -M4 core (see Figure 2-7).

Jul 7, 2016 Page 9 of 14 Rev 1.00

ER6008

Setup Stage

Data Stage

Status Stage

Host may issue OUT Token

(Write) for other endpoint

Cortex-M4 core Writes

Figure 2-7 Control Read Sequence (Safe Reading Timing)

ISO IN Issue:

In addition to the Cortex® -M4 core access issue, the data unexpected issue may still occur
when USBD DMA reads the ISO OUT Endpoint data buffer (see Figure 2-2[R3]) while Host
issues ISO IN transfer (see Figure 2-2 [R4]).

Here are some examples for the timing that USBD DMA reads the ISO OUT Endpoint data
buffer (see Figure 2-2[R3]) and Host issues ISO IN transfer (see Figure 2-2 [R4]). If IN token
and OUT token come too closely, the data unexpected case may occur. Figure 2-8 shows the
safe timing cases (Timing 1 to Timing 3) and the unsafe timing case (Timing 4).

ISO IN Token Interrupt

Timing 1: ISO OUT Received Interrupt

Timing 2: ISO OUT Received Interrupt

Timing 3: ISO OUT Received Interrupt

Timing 4: ISO OUT Received Interrupt

Host Read ISO IN Device Write ISO IN Device Read ISO OUT Data may be unexpected
1 ms

Figure 2-8 Example for Time to Access the Endpoint Buffer

Here is a solution to avoid the unsafe case (see Figure 2-8 Timing 4).

Jul 7, 2016 Page 10 of 14 Rev 1.00

ER6008

The USB Device firmware needs to service ISO IN and ISO OUT interrupt only when the
other one endpoint data buffer is empty. If USB Device firmware reads ISO OUT Endpoint
after ISO IN endpoint is empty, Host will not read data from ISO IN Endpoint even when Host
issue IN Token. The USB Device firmware writes ISO IN Endpoint after ISO OUT Endpoint is
empty to make sure that it reads ISO OUT data first if there is data in ISO OUT Endpoint data
buffer. It balances the time to service ISO IN and OUT Endpoints (see Figure 2-9).

Read ISO OUT Endpoint after ISO IN Endpoint is empty (Host has no data to read from ISO IN Endpoint)

Host Read ISO IN Device Write ISO IN Device Read ISO OUT

ISO IN Token Interrupt

Timing 4: ISO OUT Received Interrupt

Write ISO IN Endpoint after ISO OUT Endpoint is empty (It balances the time to service ISO IN & OUT Endpoints)

Figure 2-9 Solution Timing for UAC Example

Jul 7, 2016 Page 11 of 14 Rev 1.00

ER6008

2.2 Arbitration Problem of USBD Endpoints Data Buffer

Description:

All endpoints of USB device controller cannot be configured as the same Endpoint Number.

Problem:

The USB device controller didn’t check the direction when getting data from host. If
configuring EPA and EPB with the same endpoint number, one for IN, and the other for OUT,
the OUT data will be received into EPA buffer. The data in EPA buffer will be over-written.

Workaround:

Provide the Endpoints with different endpoint numbers.

Jul 7, 2016 Page 12 of 14 Rev 1.00

ER6008

2.3 Control SETUP Transaction Failed

Description:

The USB Device controller receives all the Setup Tokens (even though the token is not for it)
on USB Bus and only responds (ACK/NAK/NYET/STALL) to the token for it.

Problem:

Host controllers and hubs support one additional transaction type called split transactions.
This transaction type allows full- and low-speed devices to be attached to hubs operating at
high speed. The USB Device controller may not respond (ACK/NAK/NYET/STALL) to the
Setup token for it when split transactions occur and other full- or low-speed devices also do
the Control SETUP Transaction.

Workaround:

No workaround solution.

Jul 7, 2016 Page 13 of 14 Rev 1.00

ER6008

Revision History

Date Revision Description

2016.07.07 1.00 1. Initially issued.

Jul 7, 2016 Page 14 of 14 Rev 1.00

ER6008

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.

 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

	1 Overview
	2 Functional Problems
	2.1 Arbitration Problem of USBD Endpoints Data Buffer
	2.2 Arbitration Problem of USBD Endpoints Data Buffer
	2.3 Control SETUP Transaction Failed

