NUVvVOTON ER6009

I NUCA442/472 Series Errata Sheet

Errata Sheet for 32-bit NuMicro”~ Family

Document Information

Abstract This errata sheet describes the functional problem known at the release
date of this document.

Apply to NUC442/472 Series.

The information described in this document is the exclusive intellectual property of
Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Nov. 25, 2016 Page 10of 14 Rev 1.00

http://www.nuvoton.com/

NUVvVOTON ER6009

Table of Contents

1 OVERVIEW ccsctsssssssssssssssssmssnssnssnssnssssssssssnssnssnssnssnssnssnssssnsans 3
2 FUNCTIONAL PROBLEMS cioiissssmssssssssmssassens 4
2.1 Arbitration Problem of USBD Endpoints Data Buffer 4
2.2 USBD ENdpPOint NUMDET ottt sssssseeseseesesassssassssassssssesessesessssesassasassssasas 11
2.3 Control SETUP Transaction Failedciiierceiirsiinnseiieeneiercssssssssssssseesesessessssesassssassssanes 12

Nov. 25, 2016 Page 2 of 14 Rev 1.00

NUVvVOTON ER6009

1 Overview

Functional Problem

Description

Arbitration problem of
USBD endpoints data
buffer

USB buffer arbitration issue:

The written data will be unexpected if the Cortex®-M4 core and any other
master concurrently write data into USBD endpoints data buffer; vice versa,
the read data will be unexpected if the Cortex®-M4 core and any other
master concurrently read data from USBD endpoints data buffer.

ISO IN access issue;

The read data will be unexpected if Host reads ISO IN endpoint data buffer
and any other master (Cortex®-M4 core or USB DMA) reads data
concurrently from USBD endpoints data buffer.

USBD Endpoint
Number problem

All endpoints of a USB device controller cannot be configured as the same
Endpoint Number.

Control SETUP

Transaction Failed

Control SETUP Transaction may fail when the SPLIT transaction occurs.

Nov. 25, 2016

Page 3 of 14 Rev 1.00

NUVvVOTON ER6009

2 Functional Problems

2.1 Arbitration Problem of USBD Endpoints Data Buffer

Description:

For USBD controller, there’s a data buffer shared by all endpoints. The IN/OUT transfer data
are temporarily stored in this data buffer. During USB device operation, the masters including
Cortex®-M4 core, USBD DMA and remote USB Host may access this data concurrently.

Problem:

If the Cortex®-M4 core and any other master concurrently read or write the data buffer, the
read or written data will be unexpected. If the remote USB Host reads the ISO endpoint data
buffer and any one mater (Cortex®-M4 core or USB DMA) read the endpoint data buffer
concurrently, the read data will be unexpected.

USB Host
A

USB Engine

A A A
USB RAM Buff? EPA Data Buffer EPB Data Buffer

Control Endpoint™ ‘64 4 576 b 1088 n

Data Buffer

A A

Cortex-M4

Figure 2-1 USB Endpoints Data Buffer

Cortex®-M4 core access issue:

For example, if the Cortex®-M4 core writes data into IN endpoint buffer and remote USB Host
issues OUT transfer to write data buffer at the same time, the written data will be unexpected.
Similarly, if the Cortex®-M4 core is reading data from OUT endpoint buffer while the remote
USB host is issuing IN transfer to read data buffer, the read data will be unexpected.

ISO IN access issue:

If any master (Cortex®-M4 core or USB DMA) is reading data from endpoint buffer while the
remote USB host is issuing IN transfer for ISO endpoint to read data buffer, the read data will
be unexpected.

Nov. 25, 2016 Page 4 of 14 Rev 1.00

NUVvVOTON ER6009

Workaround:

USBD firmware should prevent such case that may cause data unexpected and here are
workaround solutions for the arbitration problem.
® Cortex®-M4 core access issue
B User must make sure that no any other master reads or writes endpoints data buffer
concurrently
® [SO IN access issue
B Prevent to read data and USB Host reads ISO IN endpoints data buffer concurrently
€ Before reading endpoint data buffer, it needs to make sure that the ISO IN data
buffer is empty (already read by USB Host).

The following example illustrates an USB device application example with ISO IN endpoint
and Cortex®-M4 core Read/Write (for Control Endpoint), and introduces how to apply the
above rules to avoid data unexpected issue.

Audio Device- Speaker & Microphone:

A UAC (USB Audio Class) application consists of Control Endpoint, ISO IN Endpoint, ISO
OUT Endpoint, and interrupt IN Endpoint.

USB Host
Y 2
/ USB Engme [W1] Write [R1] Read [W3] Write [R4] Read [R5] Read \
h 4
Endpoint EPA EPB EPC
Dat % lff) Control IN/OUT ISO ING) Interrupt
ata buller OUT N N
[R2] Read [W2] Write [R3]fead [W4] ‘Write [W5] ‘Write
K Device Firmware /

Figure 2-2 Audio Class Device

Nov. 25, 2016 Page 5 of 14 Rev 1.00

NUVvVOTON ER6009

The UAC application uses:

® Control Endpoint to get (or set) volume control, mute control and sampling rate (use the
Cortex®-M4 core).

® [SO IN Endpoint to transfer record data (Use USBD DMA).

ISO OUT Endpoint to transfer audio data for playback (Use USBD DMA).

® Interrupt IN Endpoint to transfer HID data (Use USBD DMA).

Cortex®-M4 core access issue:

First, unless you can make sure that Cortex®-M4 core and any other master will not read or
write endpoints data buffer concurrently, please use USBD DMA to access endpoints data
buffer instead of Cortex®-M4 core.

Here is a workaround solution (for Control Endpoint only) that using the Cortex®-M4 core to
access Control Endpoint data buffer and avoid the data unexpected issue.

UAC Class request belongs to the Control Read and Write Sequence (see Figure 2-3) and it
contains Setup stages, Data stage, and Status stages.

Setup Data Status
Stage Stage Stage
A I M
f’:vo!][”o' | SETUP (0) | | ouT (1) | | OUT (0) | | OUT (01) I I IN (1) I
rite
DATAD DATA1 DATAOQ DATAO0M DATA1
gonéfo' | SETUP (0) | | IN (1) | | IN (0) | | IN (011) I I OUT (1) I
ed
DATAOD DATA1 DATAO DATAO0/M DATA1
Setup Status
Stage Stage
A ——
No-data SETUP (0 IN (1
Control I i | I i |
DATAD DATA1

Figure 2-3 Control Read and Write Sequences

For Control Write sequence (e.g. Set Volume):

The data unexpected condition is that the Cortex®-M4 core reads the Control Endpoint data
buffer (see Figure 2-2 [R2]) while Host issues ISO IN transfer (see Figure 2-2 [R4]) or
Interrupt IN transfer (see Figure 2-2 [R5]).

Nov. 25, 2016 Page 6 of 14 Rev 1.00

NUVvVOTON ER6009

Normally, user can read Control Endpoint data buffer when getting the data received interrupt
(after Data Stage). But the data unexpected issue may occur when USB Host may issue IN
Token (Host reads) for other endpoints before Status Stage (see Figure 2-4).

Setup Stage

F ﬁGK EQF Pit Len
S 0p000001 0x4E 268 880 ns | 20 Bits (3 Bytea) 5.850 us 21430 035 332
n

IETE ~oor [ERG [SREE D Eoe

] I . 7
E * psta [GRGI6I EOP
30000 l s | iz |2 byres|0xDFFD| 266 680 ns| 63 Sits (7 Bytes) || 312000 ns 21 480 D4s 832 Data Stage
BEEEE A EOP Fit Len m
30001 & 5 [T r.l 4B | 200009 ns | 20 Bits (2 Bytes) 2010 us 21 . 490 653 500 Cortex-M4 core Reads &

<4—Host may issue IN Token
(Read) for other endpoint

L 21.4 &
| 20003 II I 21 . 480 062 400 |

: = e

20004 1 s 00000001 008 4 ﬂ 0:(16 238 Bﬂﬂ ns | 28 Bits (& Bytas) 2350 680 ns 21 . 490 068 282 Status Stage
[z0008 | s |IEETE D2 |0 byces|0x0000 | 266,660 rs| 38 Bits (5 Evtes) || 200660 ns 21,430 071 566

20008 s b 298 132 us 21490 074 700

v

Figure 2-4 Control Write Sequence (Unsafe Reading Timing)

To avoid this situation, user can read Control Endpoint data buffer when getting the Control IN
Token for Status Stage instead of the time after getting data received interrupt. In Status
Stage, Host does nothing and only waits the ACK from device. Thus, it is safe to read the

data from Control endpoint data buffer in Status Stage by the Cortex®-M4 core (see Figure
2-5).

[Foce | B SETUR anor [EIEG CRCH - Eoe
= Bll| oocooooes Qx84 0 | 0x14 268680 ns| 28 Bits (5 Bytes)|| 118880 e 21 . 430 026 688
F *_Gala Setup Stage
s |IEEIEE 0z3 2 byres|0xAFos| 208000 ns| 100 Bis (13 Bytes) || 243330 ns 21. 450023 710
=
ZHHE Ell| ooooooos

00000001
J DATA1 * Dota [[ERGHSI) ECP
s

00000001 0:02 |2 byses|0xDEFD| 262 880 ns | €3 Bits 7 Bytes) || 212000 ns 21 480 042 832 Data Stage
ol ECF Fit Len
30001 5 | IEETTEEE 0xaB__| 200,000 ns| 20 Bits (3 Bytes) || 2010 us 21 450 083 200

Host may issue IN Token
] Anor |[EiEG SRS EuP m Len Idle r: o i
-nm (Read) for other endpoint

<+— Cortex-M4 core Reads
Status Stage

Fsﬁﬂ EQF Pit Len
50000 on0000D1 DK‘E 2040 800 ns | 20 Bits (3 Byies) 20 132 us 21450 074 700

v

Figure 2-5 Control Write Sequence (Safe Reading Timing)

Nov. 25, 2016 Page 7 of 14 Rev 1.00

NnUuUvoToN

For Control Read Sequence (e.g. Get Volume):

ER6009

The data unexpected condition is that the Cortex®-M4 core writes the Control Endpoint data

buffer (see Figure 2-2 [W2]) while Host issues ISO OUT transfer

(see Figure 2-2 [W4]).

Normally, user can write Control Endpoint data buffer after receiving the command (after Step

Stage). But the data unexpected issue may occur when USB

Host may issue OUT Token

(Host writes) for other endpoints before Data Stage (see Figure 2-6).

=T

i 833

1N A00R [EIEL] [EHEs P EcE
s I:lnm

ldi= Time Siamp

217.32) ns 1.035 £42 732
amp

F00 88 ns | 1,038 831 132
200.880 ns 1.035 684 368 |

Put Len

20 Bits (3 Byies)

E:!F‘

Pnﬂml EOP Pt Len
00000001 “03050 ns | 20 Bits (2 Bytes) 2,850 us . 035 898 250

538

X BT &
F DATA1 ' Dats eS| ECE &
 sar | #E)[eoooooo: 9502 |0 byces|0x9000]200.080 rs| 38 Bits 15 Bvies)| | 310800 rs 1.035 705 550
EOP Pt Len
00000001 DxLE 268,680 ns| 20 Bits (2 Bytes) || 7E93Zus 1. 035 708 800

Setup Stage

Cortex-M4 core Writes &
<4—Host may issue OUT Token
(Write) for other endpoint

Data Stage

Status Stage

Figure 2-6 Control Read Sequence (Unsafe Reading Timing)

To avoid this situation, user can write Control Endpoint data buffer when getting the Control
IN Token for Data Stage instead of the time after getting command. In Data Stage, Host does
nothing and only waits the data from device. Thus, it is safe to write the data from Control
endpoint data buffer in Data Stage by the Cortex®-M4 core (see Figure 2-7).

=T

i 833

[A00R [EIEL] [EHEs P EcE
s I:lnm

ldi= Time Siamp

217.32) n: 1.035 £42 732
mi

E3E H 1=

i

538
l!‘

4

Setup Stage

Host may issue OUT Token
(Write) for other endpoint

<— Cortex-M4 core Writes

Data Stage

Status Stage

Figure 2-7 Control Read Sequence (Safe Reading Timing)

Nov. 25, 2016 Page 8 of 14

Rev 1.00

NUVvVOTON ER6009

ISO IN Issue:

In addition to the Cortex®-M4 core access issue, the data unexpected issue may still occur
when USBD DMA reads the ISO OUT Endpoint data buffer (see Figure 2-2 [R3]) while Host
issues ISO IN transfer (see Figure 2-2 [R4]).

Here are some examples for the timing that USBD DMA reads the ISO OUT Endpoint data
buffer (see Figure 2-2 [R3]) and Host issues ISO IN transfer (see Figure 2-2 [R4]). If IN token
and OUT token come too closely, the data unexpected case may occur. Figure 2-8 shows the
safe timing cases (Timing 1 to Timing 3) and the unsafe timing case (Timing 4).

ISO IN Token Interrupt
Timing 1: ISO OUT Received Interrupt I__:. EJ I__:. I__:. I__:- l__J I
Timing 2: 1SO OUT Received Interrupt —*+—F——~+—F7—+—13 :: |- :: |- _: | -
Timing 3: 1SO OUT Received Interrupt —* e =y | - :: | - :: |- _: |- _:
Timing 4: ISO OUT Received Interrupt L—t I_—t I_—ﬂ Lﬁ Eﬂ I_:E‘_
-*| HostRead ISOIN [] Device Write ISOIN 1| Device Read 1SOOUT [JJJ] Data may be unexpected ——"4—

Figure 2-8 Example for Time to Access the Endpoint Buffer

Here is a solution to avoid the unsafe case (see Figure 2-8 Timing 4).

The USB Device firmware needs to service ISO IN and ISO OUT interrupt only when the
other one endpoint data buffer is empty. If USB Device firmware reads ISO OUT Endpoint
after ISO IN endpoint is empty, Host will not read data from 1ISO IN Endpoint even when Host
issue IN Token. The USB Device firmware writes ISO IN Endpoint after ISO OUT Endpoint is
empty to make sure that it reads 1ISO OUT data first if there is data in ISO OUT Endpoint data
buffer. It balances the time to service ISO IN and OUT Endpoints (see Figure 2-9).

Nov. 25, 2016 Page 9 of 14 Rev 1.00

NUVvVOTON ER6009

Read ISO OUT Endpoint after ISO IN Endpoint is empty (Host has no data to read from ISO IN Endpoint)

T T

ISO IN Token Interrupt —; ™ .
Timing 4: ISO OUT Received Interrupt 14— Heto 2 1o mE= mO o

Write ISO IN Endpoint after ISO OUT Endpoint is empty (It balances the time to service ISO IN & OUT Endpoints)

[*7] HostRead ISOIN | | Device Write ISOIN || Device Read ISO OUT

L

Figure 2-9 Solution Timing for UAC Example

Nov. 25, 2016 Page 10 of 14 Rev 1.00

NUVvVOTON ER6009

2.2 USBD Endpoint Number

Description:
All endpoints of USB device controller cannot be configured as the same Endpoint Number.

Problem:

The USB device controller didn't check the direction when getting data from host. If
configuring EPA and EPB with the same endpoint number, one for IN, and the other for OUT,
the OUT data will be received into EPA buffer. The data in EPA buffer will be over-written.

Workaround:
Provide the Endpoints with different endpoint numbers.

Nov. 25, 2016 Page 11 of 14 Rev 1.00

NUVvVOTON ER6009

2.3 Control SETUP Transaction Failed

Description:

The USB Device controller receives all the Setup Tokens (even though the token is not for it)
on USB Bus and only responds (ACK/NAK/NYET/STALL) to the token for it.

Problem:

Host controllers and hubs support one additional transaction type called split transactions.
This transaction type allows full- and low-speed devices to be attached to hubs operating at
high speed. The USB Device controller may not respond (ACK/NAK/NYET/STALL) to the
Setup token for it when split transactions occur and other full- or low-speed devices also do
the Control SETUP Transaction.

Workaround:
No workaround solution.

Nov. 25, 2016 Page 12 of 14 Rev 1.00

NUVvVOTON ER6009

Revision History

Date Revision Description

2016.11.25 1.00 1. Initially issued.

Nov. 25, 2016 Page 13 of 14 Rev 1.00

NUVvVOTON ER6009

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

Flease note that all data and specifications are subject to change without notice.
All the trademanrks of products and companies mentioned in this datasheet belong to their respective owners.

Nov. 25, 2016 Page 14 of 14 Rev 1.00

	1 Overview
	2 Functional Problems
	2.1 Arbitration Problem of USBD Endpoints Data Buffer
	2.2 USBD Endpoint Number
	2.3 Control SETUP Transaction Failed

