

Aug. 03, 2022 Page 1 of 13 Rev 1.03

ER6001

Errata Sheet for 32-bit NuMicro™ Family

Document Information

Abstract This errata sheet describes the functional problem known at the
release date of this document.

Apply to Nano102/112 Series.

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Nano102/112 Series Errata Sheet

http://www.nuvoton.com/

Aug. 03, 2022 Page 2 of 13 Rev 1.03

ER6001

Table of Contents

1 OVERVIEW .. 3

2 FUNCTIONAL PROBLEMS ... 4

2.1 User Config0 Bit 31 .. 4

2.2 GPIO Debounce Function ... 5

2.3 User Config BOD Level Selection ... 9

2.4 BOD Reset Flag .. 10

2.5 HIRC Auto-Trim .. 11

Aug. 03, 2022 Page 3 of 13 Rev 1.03

ER6001

1 Overview

Functional Problem Description

User Config0 Bit 31 If the user config0 bit 31 is set as 0, Watchdog Timer (WDT) will be disabled
after reset and cannot be enabled by software.

GPIO Debounce
Function

GPIO Hardware debounce function cannot filter all noise.

User Config BOD
Level Selection

BOD (Brown-out Detection) reset level set by user configuration does not
always take effect.

BOD Reset Flag BOD (Brown-out Detection) reset flag has no effect.

HIRC Auto-Trim Auto-trim may fail in case that trim value spans from 0xFF to 0x100.

Aug. 03, 2022 Page 4 of 13 Rev 1.03

ER6001

2 Functional Problems

2.1 User Config0 Bit 31

Description:

If Nuvoton related tools (e.g. ICP, ISP, NuGang Programmer, Nu-Link Driver for Keil or IAR)
are used to program the user Config0 bit 31 and this bit is set to 0, Watchdog Timer (WDT)
will be disabled after reset and cannot be enabled by software.

Problem:

If the User Config0 bit 31 is set as 0 by the above tools, it is intended to enable WDT after
system reset, and software is not allowed to disable WDT during system operation. However,
when the circuit is trying to enable WDT, there is no valid clock for WDT yet, so the WDT
remains disabled state, and software cannot change its state during system operation unless
this bit is set to 1 and system is reset.

Workaround:

If the system needs to use WDT, this bit must be set to 1.Therefore, if the Nano102/112
series is programmed by the following Nuvoton tools, please refer to the corresponding tool
version or higher.

Tool Version

ICP Programing Tool V1.28.6386

ISP Programing Tool V1.46

NuGang Programmer V6.24

Nu-Link Driver for Keil V1.28.6386

Nu-Link Driver for IAR V1.28.6386

Aug. 03, 2022 Page 5 of 13 Rev 1.03

ER6001

2.2 GPIO Debounce Function

Description:

GPIO de-bounce function failed.

Problem:

The GPIO de-bounce function cannot filter noise present at I/O pins completely.

Workaround:

Do not use the GPIO hardware debounce function. Use software debounce to filter unwanted
input noise.

One software debounce method is to work with GPIO interrupt and a timer. The GPIO
interrupt could be used to detect any I/O transient. The timer could be used to check if the I/O
has transient within a period of time. By detect I/O transient with a period of time, user can
skip all I/O transients shorter than specified period of time to achieve I/O debounce function.

The following figure shows the behavior of the software debounce flow. The timer is re-started
whenever I/O transient. If there is no I/O transient within time-out period, the GPIO pin state at
time-out will be assigned to a debounce result. If there is an I/O transient within time-out
period, the timer will just be re-started without updating any debounce result.

GPIO Pin

Debounce

Result

Debounce

Time

Timer Re-start

Timerout

Timer Re-start

Timerout
Timer Re-start

Timerout
Update debounce

result when timeout

A recommended software debounce steps are as follows:

1. Enable timer clock

2. Select timer clock source as LIRC (10 kHz)

3. Reset timer counter

4. Enable timer IRQ

Aug. 03, 2022 Page 6 of 13 Rev 1.03

ER6001

5. Set GPIO pin as input

6. Enable GPIO pin interrupt with rising and falling interrupt type.

7. Enable GPIO IRQ

8. Prepare the GPIO IRQ handler:

a. Reset timer counter

b. Set timer time-out value (Debounce time)

c. Start timer with one shot mode

d. Clear GPIO interrupt flag

9. Prepare the timer IRQ handler:

a. Get the debounce result

b. Clear timer interrupt flag

The following code is an example to debounce pin PC.8. Timer 0 is used as the debounce
timer. The debounce result is assigned to a global variable g_u32Debounce. PC.9 is used to
monitor the result of g_u32Debounce.

#define DEBOUNCE_TIME 30 /* Debounce time in 0.1ms unit */

volatile uint32_t g_u32Debounce = 0; /* Global variable for debounce result */

void DBNCE_Init(void)

{

 /* Enable Timer Clock Source */

 CLK->APBCLK |= CLK_APBCLK_TMR0_EN_Msk;

 /* Select Clock as LIRC 10kHz */

 CLK->CLKSEL1 = (CLK->CLKSEL1 & (~CLK_CLKSEL1_TMR0_S_Msk)) | CLK_CLKSEL1_TMR0_S_LIRC;

 /* Reset Timer */

 TIMER0->CTL = TIMER_CTL_SW_RST_Msk;

 while(TIMER0->CTL);

 /* Enable Timer IRQ */

 NVIC_EnableIRQ(TMR0_IRQn);

 /**

 Modify Here:

 All Debounce GPIO should be configured here.

Aug. 03, 2022 Page 7 of 13 Rev 1.03

ER6001

 1. Set GPIO to be input mode

 2. Enable GPIO interrupt with rising + falling edge trigger.

 3. Enable GPIO IRQ

 ***/

 /* Set GPIO Input */

 PC->PMD = (PC->PMD & (~(0x3<<8*2))) | (GPIO_PMD_INPUT << 8*2);

 /* Interrupt Type: Both Edge */

 PC->IMD |= (GPIO_IMD_EDGE << 8);

 PC->IER |= (1 << GP_IER_FIER8_Pos) | (1 << GP_IER_RIER8_Pos);

 /* Enable GPIO IRQ */

 NVIC_EnableIRQ(GPABC_IRQn);

}

void TMR0_IRQHandler(void)

{

 /**

 Modify Here:

 Debounce Ok when timer timeout.

 All GPIO debounce result should be return by global variable here.

 ***/

 g_u32Debounce = PC8;

 /* Clear Timer Interrupt Flag */

 TIMER0->ISR = TIMER_ISR_TMR_IS_Msk;

}

void GPABC_IRQHandler(void)

{

 /* Reset Timer Counter */

 TIMER0->CTL = TIMER_CTL_SW_RST_Msk;

 while(TIMER0->CTL);

 /* Debounce Time */

 TIMER0->CMPR = DEBOUNCE_TIME - 1;

 /* Start Timer */

 TIMER0->IER |= TIMER_IER_TMR_IE_Msk;

Aug. 03, 2022 Page 8 of 13 Rev 1.03

ER6001

 TIMER0->CTL = TIMER_CTL_TMR_EN_Msk | TIMER_ONESHOT_MODE;

 while(TIMER0->ISR & TIMER_ISR_TMR_IS_Msk);

 /**

 Modify Here:

 Clear relative GPIO interrupt flag here

 ***/

 GPIO_CLR_INT_FLAG(PC, (1 << 8));

}

int main(void)

{

 /* Unlock Protected Registers */

 SYS_UnlockReg();

 /* Configure PC.9 as Output mode */

 PC->PMD = (PC->PMD & (~GP_PMD_PMD9_Msk)) | (GPIO_PMD_OUTPUT << GP_PMD_PMD9_Pos);

 DBNCE_Init();

 while(1)

 {

 PC9 = g_u32Debounce;

 }

}

Aug. 03, 2022 Page 9 of 13 Rev 1.03

ER6001

2.3 User Config BOD Level Selection

Description:

BOD (Brown-out Detection) reset level set by user configuration does not always take effect.

Problem:

The BOD reset level in user configuration has no effect if the system reset source is POR
(Power-on Reset) or BOD.

Workaround:

If the BOD reset function is required, configure BODCTL register to select the desired BOD
reset level at the beginning of user program.

Aug. 03, 2022 Page 10 of 13 Rev 1.03

ER6001

2.4 BOD Reset Flag

Description:

Starting from version F, the BOD (Brown-out Detection) reset flag, RSTS_BOD
(RST_SRC[4]), is always read back as 0 even though the BOD function itself works properly.

Problem:

Since this bit is always read as 0, it cannot be used to tell if the system is reset by a BOD
event or not.

Workaround:

Check RST_SRC register, and if none of the reset flag is set, the reset source must be BOD.
Following code is an implementation supports all versions of Nano102/112 series MCUs.

int main(void)

{

 if((SYS->RST_SRC == 0) || (SYS->RST_SRC & SYS_RST_SRC_RSTS_BOD_Msk)) {

 /* System reset by BOD */

 }

 /* Clear system reset source flag */

 SYS->RST_SRC = SYS->RST_SRC;

}

Aug. 03, 2022 Page 11 of 13 Rev 1.03

ER6001

2.5 HIRC Auto-Trim

Description:

This chip supports auto-trim function, HIRC trim, according to the accurate LXT (32.768 kHz
crystal oscillator), which automatically gets accurate HIRC output frequency, 1% deviation
within all temperature ranges.

An internal trim value determines the degree of HIRC trim. Increasing the trim value can
obtain about 0.2% HIRC frequency adjustment. However, when the trim value steps from
0xFF to 0x100, it can induce a much larger change of HIRC frequency, about 2.0% ~ 2.5%.

Problem:

While performing auto-trim by writing a non-zero value to TRIM_SEL(IRCTRIMCTL[1:0]), if
the trim step spans from 0xFF to 0x100, a valid trim value may not be found. For example,
suppose that the best trim value is 0xFF plus one step (+ 0.2%) and the next step 0x100 is
actually increased 2%, the auto-trim function can never succeed in this case.

Workaround:

Once falling into this condition, there is no workaround to make the auto-trim succeed. It is
suggested to always check TRIM_FAIL_INT(IRCTRIMINT[1]). Once the auto-trim failed, an
immediate retry is likely to be failed. In this situation, it is suggested to disable auto-trim until
the temperature is obviously changed.

Aug. 03, 2022 Page 12 of 13 Rev 1.03

ER6001

Revision History

Date Revision Description

2015.01.14 1.00 1. Initially issued.

2016.07.06 1.01

1. Added GPIO debounce issue and software
debounce method.

2. Added BOD problem

2017.04.18 1.02 1. Added BOD reset flag issue.

2022.08.03 1.03 1. Added HIRC auto-trim issue.

Aug. 03, 2022 Page 13 of 13 Rev 1.03

ER6001

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.

 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

	1 Overview
	2 Functional Problems
	2.1 User Config0 Bit 31
	2.2 GPIO Debounce Function
	2.3 User Config BOD Level Selection
	2.4 BOD Reset Flag
	2.5 HIRC Auto-Trim

