# Arm<sup>®</sup> Cortex<sup>®</sup>-M 32-bit Microcontroller

# NuMicro<sup>®</sup> Family NUC131 Series Technical Reference Manual

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com



| I | ABLE O    | F CONTENTS                                      |       |
|---|-----------|-------------------------------------------------|-------|
| 1 | GENER     | RAL DESCRIPTION                                 | 13    |
| 2 | FEATU     | RES                                             | 14    |
| 3 | ABBRE     | EVIATIONS                                       | 17    |
| 4 |           | INFORMATION LIST AND PIN CONFIGURATION          |       |
|   |           | licro <sup>®</sup> NUC131 Series Selection Code |       |
|   |           | licro® NUC131 Series Features and Peripherals   |       |
|   |           | Configuration                                   |       |
|   |           | NuMicro® NUC131 Series Pin Diagram              |       |
|   |           | Description                                     |       |
|   |           | NuMicro® NUC131 Series Pin Description          |       |
| 5 |           | ( DIAGRAM                                       |       |
| Ŭ |           | licro <sup>®</sup> NUC131 Series Block Diagram  |       |
| 6 |           | IONAL DESCRIPTION                               |       |
| U |           | 1 <sup>®</sup> Cortex <sup>®</sup> -M0 Core     |       |
|   |           |                                                 |       |
|   |           | em Manager<br>Overview                          |       |
|   |           | System Reset                                    |       |
|   |           | System Power Distribution                       |       |
|   |           | System Memory Map                               |       |
|   |           | Register Map                                    |       |
|   |           | Register Description                            |       |
|   |           | System Timer (SysTick)                          |       |
|   |           | Vested Vectored Interrupt Controller (NVIC)     |       |
|   |           | System Control                                  |       |
|   |           | k Controller                                    |       |
|   |           | Overview                                        |       |
|   |           | System Clock and SysTick Clock                  |       |
|   |           | Power-down Mode Clock                           |       |
|   | 6.3.4 F   | requency Divider Output                         | . 120 |
|   |           | Register Map                                    |       |
|   | 6.3.6 R   | Register Description                            | . 122 |
|   | 6.4 Flash | h Memory Controller (FMC)                       | .146  |
|   |           | Overview                                        |       |
|   |           |                                                 |       |



| 6.4.2   | Features                                    | 146 |
|---------|---------------------------------------------|-----|
| 6.4.3   | Block Diagram                               | 147 |
| 6.4.4   | Functional Description                      | 148 |
| 6.4.5   | Register Map                                | 159 |
| 6.4.6   | Register Description                        | 160 |
| 6.5 Ge  | eneral Purpose I/O (GPIO)                   | 169 |
| 6.5.1   | Overview                                    | 169 |
| 6.5.2   | Features                                    | 169 |
| 6.5.3   | Basic Configuration                         | 170 |
| 6.5.4   | Functional Description                      | 170 |
| 6.5.5   | Register Map                                | 173 |
| 6.5.6   | Register Description                        | 176 |
| 6.6 Tin | mer Controller (TIMER)                      | 189 |
| 6.6.1   | Overview                                    | 189 |
| 6.6.2   | Features                                    | 189 |
| 6.6.3   | Block Diagram                               | 190 |
| 6.6.4   | Basic Configuration                         | 192 |
| 6.6.5   | Functional Description                      | 192 |
| 6.6.6   | Register Map                                | 195 |
| 6.6.7   | Register Description                        | 197 |
| 6.7 PW  | VM Generator and Capture Timer (PWM)        | 206 |
| 6.7.1   | Overview                                    | 206 |
| 6.7.2   | Features                                    | 206 |
| 6.7.3   | Block Diagram                               | 208 |
| 6.7.4   | Basic Configuration                         | 211 |
| 6.7.5   | Functional Description                      | 211 |
| 6.7.6   | Register Map                                | 232 |
| 6.7.7   | Register Description                        | 236 |
| 6.8 Ba  | asic PWM Generator and Capture Timer (BPWM) | 286 |
| 6.8.1   | Overview                                    | 286 |
| 6.8.2   | Features                                    | 286 |
| 6.8.3   | Block Diagram                               | 288 |
| 6.8.4   | Basic Configuration                         | 290 |
| 6.8.5   | Functional Description                      | 290 |
| 6.8.6   | Register Map                                | 306 |
|         |                                             |     |



| 6.8.7 Register Description                                           |
|----------------------------------------------------------------------|
| 6.9 Watchdog Timer (WDT)                                             |
| 6.9.1 Overview                                                       |
| 6.9.2 Features                                                       |
| 6.9.3 Block Diagram                                                  |
| 6.9.4 Basic Configuration                                            |
| 6.9.5 Functional Description                                         |
| 6.9.6 Register Map                                                   |
| 6.9.7 Register Description                                           |
| 6.10 Window Watchdog Timer (WWDT)                                    |
| 6.10.1 Overview                                                      |
| 6.10.2 Features                                                      |
| 6.10.3 Block Diagram353                                              |
| 6.10.4 Basic Configuration                                           |
| 6.10.5 Functional Description                                        |
| 6.10.6 Register Map                                                  |
| 6.10.7 Register Description                                          |
| 6.11 UART Interface Controller (UART)                                |
| 6.11.1 Overview                                                      |
| 6.11.2 Features                                                      |
| 6.11.3 Block Diagram                                                 |
| 6.11.4 Basic Configuration                                           |
| 6.11.5 Functional Description                                        |
| 6.11.6 Register Map                                                  |
| 6.11.7 Register Description                                          |
| 6.12 I <sup>2</sup> C Serial Interface Controller (I <sup>2</sup> C) |
| 6.12.1 Overview                                                      |
| 6.12.2 Features                                                      |
| 6.12.3 Basic Configuration417                                        |
| 6.12.4 Block Diagram                                                 |
| 6.12.5 Functional Description                                        |
| 6.12.6 Example for Random Read on EEPROM                             |
| 6.12.7 Register Map                                                  |
| 6.12.8 Register Description                                          |
| 6.13 Serial Peripheral Interface (SPI)445                            |
|                                                                      |

|    | 6.13.1 Overview                               | 445 |
|----|-----------------------------------------------|-----|
|    | 6.13.2 Features                               | 445 |
|    | 6.13.3 Block Diagram                          | 446 |
|    | 6.13.4 Basic Configuration                    | 446 |
|    | 6.13.5 Functional Description                 | 446 |
|    | 6.13.6 Timing Diagram                         | 455 |
|    | 6.13.7 Programming Examples                   | 457 |
|    | 6.13.8 Register Map                           | 460 |
|    | 6.13.9 Register Description                   | 461 |
|    | 6.14 Controller Area Network (CAN)            | 476 |
|    | 6.14.1 Overview                               | 476 |
|    | 6.14.2 Features                               | 476 |
|    | 6.14.3 Block Diagram                          | 477 |
|    | 6.14.4 Basic Configuration                    | 478 |
|    | 6.14.5 Functional Description                 | 478 |
|    | 6.14.6 Test Mode                              | 480 |
|    | 6.14.7 CAN Communications                     | 482 |
|    | 6.14.8 CAN Interface Reset State              | 500 |
|    | 6.14.9 Register Description                   | 504 |
|    | 6.14.10 Register Map                          | 504 |
|    | 6.15 Analog-to-Digital Converter (ADC)        | 540 |
|    | 6.15.1 Overview                               | 540 |
|    | 6.15.2 Features                               | 540 |
|    | 6.15.3 Block Diagram                          | 541 |
|    | 6.15.4 Basic Configuration                    | 541 |
|    | 6.15.5 Functional Description                 | 541 |
|    | 6.15.6 Register Map                           | 547 |
|    | 6.15.7 Register Description                   | 548 |
| 7  | APPLICATION CIRCUIT                           | 557 |
| 8  | ELECTRICAL CHARACTERISTICS                    | 558 |
| 9  | PACKAGE DIMENSIONS                            | 559 |
|    | 9.1 64-pin LQFP (7x7x1.4 mm footprint 2.0 mm) | 559 |
|    | 9.2 48-pin LQFP (7x7x1.4 mm footprint 2.0 mm) | 560 |
| 10 | 0REVISION HISTORY                             | 561 |



| 18  |
|-----|
| 20  |
| 21  |
| 28  |
| 29  |
| 32  |
| 116 |
| 117 |
| 118 |
| 118 |
| 120 |
| 120 |
| 147 |
| 147 |
| 149 |
| 150 |
| 155 |
| 156 |
| 157 |
| 158 |
| 170 |
| 171 |
| 171 |
| 190 |
| 191 |
| 193 |
| 208 |
| 209 |
| 209 |
| 210 |
| 211 |
| 212 |
| 212 |
| 213 |
| 213 |
|     |



| Figure 6.7-10 PWM CMPDAT Events in Up-Down Counter Type                               | 214 |
|---------------------------------------------------------------------------------------|-----|
| Figure 6.7-11 PWM Double Buffering Illustration                                       | 214 |
| Figure 6.7-12 Period Loading Mode with Up-Counter Type                                | 215 |
| Figure 6.7-13 Immediately Loading Mode with Up-Counter Type                           | 216 |
| Figure 6.7-14 Center Loading Mode with Up-Down-Counter Type                           | 217 |
| Figure 6.7-15 PWM Pulse Generation                                                    | 218 |
| Figure 6.7-16 PWM 0% to 100% Pulse Generation                                         | 218 |
| Figure 6.7-17 PWM Independent Mode Waveform                                           | 220 |
| Figure 6.7-18 PWM Complementary Mode Waveform                                         | 220 |
| Figure 6.7-19 PWM_CH0 Output Control in Independent Mode                              | 221 |
| Figure 6.7-20 PWM_CH0 and PWM_CH1 Output Control in Complementary Mode2               | 221 |
| Figure 6.7-21 Dead-Time Insertion                                                     | 222 |
| Figure 6.7-22 Illustration of Mask Control Waveform                                   | 222 |
| Figure 6.7-23 Brake Noise Filter Block Diagram                                        | 223 |
| Figure 6.7-24 Brake Block Diagram for PWM_CH0 and PWM_CH1 Pair2                       | 224 |
| Figure 6.7-25 Edge Detector Waveform for PWM_CH0 and PWM_CH1 Pair2                    | 225 |
| Figure 6.7-26 Level Detector Waveform for PWM_CH0 and PWM_CH1 Pair2                   | 225 |
| Figure 6.7-27 Brake Source Block Diagram                                              | 226 |
| Figure 6.7-28 Brake System Fail Block Diagram                                         | 226 |
| Figure 6.7-29 Initial State and Polarity Control with Rising Edge Dead-Time Insertion | 227 |
| Figure 6.7-30 PWM_CH0 and PWM_CH1 Pair Interrupt Architecture Diagram2                | 228 |
| Figure 6.7-31 PWM_CH0 and PWM_CH1 Pair Trigger ADC Block Diagram                      | 229 |
| Figure 6.7-32 PWM Trigger ADC in Up-Down Counter Type Timing Waveform                 | 229 |
| Figure 6.7-33 PWM_CH0 Capture Block Diagram                                           | 230 |
| Figure 6.7-34 Capture Operation Waveform                                              | 231 |
| Figure 6.8-1 BPWM Generator Overview Block Diagram                                    | 288 |
| Figure 6.8-2 BPWM System Clock Source Control                                         | 289 |
| Figure 6.8-3 BPWM Clock Source Control                                                | 289 |
| Figure 6.8-4 BPWM Independent Mode Architecture Diagram                               | 290 |
| Figure 6.8-5 BPWM_CH0 CLKPSC waveform                                                 | 291 |
| Figure 6.8-6 BPWM Up Counter Type                                                     | 291 |
| Figure 6.8-7 BPWM Down Counter Type                                                   | 292 |
| Figure 6.8-8 BPWM Up-Down Counter Type                                                | 292 |
| Figure 6.8-9 BPWM CMPDAT Events in Up-Down Counter Type                               | 293 |
| Figure 6.8-10 BPWM Double Buffering Illustration                                      | 293 |
| Figure 6.8-11 Period Loading Mode with Up-Counter Type                                | 294 |



| Figure 6.8-12 Immediately Loading Mode with Up-Counter Type                                                     | 295 |
|-----------------------------------------------------------------------------------------------------------------|-----|
| Figure 6.8-13 Center Loading Mode with Up-Down-Counter Type                                                     | 296 |
| Figure 6.8-14 BPWM Pulse Generation                                                                             | 297 |
| Figure 6.8-15 BPWM 0% to 100% Pulse Generation                                                                  | 297 |
| Figure 6.8-16 BPWM_CH0 Output Control 3 Steps                                                                   | 298 |
| Figure 6.8-17 Illustration of Mask Control Waveform                                                             | 299 |
| Figure 6.8-18 Initial State and Polarity Control                                                                | 300 |
| Figure 6.8-19 BPWM_CH0 and BPWM_CH1 Pair Interrupt Architecture Diagram                                         | 301 |
| Figure 6.8-20 BPWM_CH0 and BPWM_CH1 Pair Trigger ADC Block Diagram                                              | 302 |
| Figure 6.8-21 BPWM Trigger ADC in Up-Down Counter Type Timing Waveform                                          | 302 |
| Figure 6.8-22 BPWM_CH0 Capture Block Diagram                                                                    | 303 |
| Figure 6.8-23 Capture Operation Waveform                                                                        | 304 |
| Figure 6.9-1 Watchdog Timer Clock Control                                                                       | 345 |
| Figure 6.9-2 Watchdog Timer Block Diagram                                                                       | 345 |
| Figure 6.9-3 Watchdog Timer Time-out Interval and Reset Period Timing                                           | 347 |
| Figure 6.10-1 Window Watchdog Timer Clock Control                                                               | 353 |
| Figure 6.10-2 Window Watchdog Timer Block Diagram                                                               | 353 |
| Figure 6.10-3 Window Watchdog Timer Reset and Reload Behavior                                                   | 355 |
| Figure 6.11-1 UART Clock Control Diagram                                                                        | 363 |
| Figure 6.11-2 UART Block Diagram                                                                                | 364 |
| Figure 6.11-3 Auto-Baud Rate Measurement                                                                        | 368 |
| Figure 6.11-4 Transmit Delay Time Operation                                                                     | 368 |
| Figure 6.11-5 Auto Flow Control Block Diagram                                                                   | 372 |
| Figure 6.11-6 UART CTS Auto Flow Control Enabled                                                                | 372 |
| Figure 6.11-7 UART RTS Auto Flow Control Enabled                                                                | 373 |
| Figure 6.11-8 UART RTS Flow with Software Control                                                               | 373 |
| Figure 6.11-9 IrDA Control Block Diagram                                                                        | 374 |
| Figure 6.11-10 IrDA TX/RX Timing Diagram                                                                        | 375 |
| Figure 6.11-11 Structure of LIN Frame                                                                           | 375 |
| Figure 6.11-12 Structure of LIN Byte                                                                            | 376 |
| Figure 6.11-13 Break Detection in LIN Mode                                                                      | 378 |
| Figure 6.11-14 LIN Frame ID and Parity Format                                                                   | 378 |
| Figure 6.11-15 LIN Sync Field Measurement                                                                       | 381 |
| Figure 6.11-16 UA_BAUD Update Sequence in Automatic Resynchronization Mode when LINS_DUM_EN (UA_LIN_CTL[3]) = 1 | 382 |
| Figure 6.11-17 UA_BAUD Update Sequence in Automatic Resynchronization Mode when LINS_DUM_EN (UA_LIN_CTL[3])= 0  | 382 |



| Figure 6.11-18 RS-485 RTS Driving Level in Auto Direction Mode                          | 385 |
|-----------------------------------------------------------------------------------------|-----|
| Figure 6.11-19 RS-485 RTS Driving Level with Software Control                           | 385 |
| Figure 6.11-20 Structure of RS-485 Frame                                                | 386 |
| Figure 6.12-1 I <sup>2</sup> C Controller Block Diagram                                 | 417 |
| Figure 6.12-2 I <sup>2</sup> C Bus Timing                                               | 418 |
| Figure 6.12-3 I <sup>2</sup> C Protocol                                                 | 418 |
| Figure 6.12-4 START and STOP Conditions                                                 | 419 |
| Figure 6.12-5 Bit Transfer on the I <sup>2</sup> C Bus                                  | 420 |
| Figure 6.12-6 Acknowledge on the I <sup>2</sup> C Bus                                   | 420 |
| Figure 6.12-7 Master Transmits Data to Slave                                            | 421 |
| Figure 6.12-8 Master Reads Data from Slave                                              | 421 |
| Figure 6.12-9 Control I <sup>2</sup> C Bus according to Current I <sup>2</sup> C Status | 422 |
| Figure 6.12-10 Master Transmitter Mode Control Flow                                     | 423 |
| Figure 6.12-11 Master Receiver Mode Control Flow                                        | 424 |
| Figure 6.12-12 Save Mode Control Flow                                                   | 425 |
| Figure 6.12-13 GC Mode                                                                  | 427 |
| Figure 6.12-14 Arbitration Lost.                                                        | 428 |
| Figure 6.12-15 I <sup>2</sup> C Data Shifting Direction                                 | 429 |
| Figure 6.12-16 I <sup>2</sup> C Time-out Count Block Diagram                            | 431 |
| Figure 6.12-17 EEPROM Random Read                                                       | 432 |
| Figure 6.12-18 Protocol of EEPROM Random Read                                           | 433 |
| Figure 6.13-1 SPI Block Diagram                                                         | 446 |
| Figure 6.13-2 SPI Master Mode Application Block Diagram                                 | 447 |
| Figure 6.13-3 SPI Slave Mode Application Block Diagram                                  | 447 |
| Figure 6.13-4 32-Bit in One Transaction (Master Mode)                                   | 448 |
| Figure 6.13-5 Variable Bus Clock Frequency                                              | 450 |
| Figure 6.13-6 Byte Reorder Function                                                     | 450 |
| Figure 6.13-7 Timing Waveform for Byte Suspend (Master Mode)                            | 451 |
| Figure 6.13-8 Bit Sequence of Dual Output Mode                                          | 452 |
| Figure 6.13-9 Bit Sequence of Dual Input Mode                                           | 452 |
| Figure 6.13-10 FIFO Mode Block Diagram                                                  | 453 |
| Figure 6.13-11 SPI Timing in Master Mode                                                | 455 |
| Figure 6.13-12 SPI Timing in Master Mode (Alternate Phase of SPI Bus Clock)             | 456 |
| Figure 6.13-13 SPI Timing in Slave Mode                                                 | 456 |
| Figure 6.13-14 SPI Timing in Slave Mode (Alternate Phase of SPI Bus Clock)              | 457 |
| Figure 6.14-1 CAN Peripheral Block Diagram                                              | 478 |



| Figure 6.14-2 CAN Core in Silent Mode                                                 | 480 |
|---------------------------------------------------------------------------------------|-----|
| Figure 6.14-3 CAN Core in Loop Back Mode                                              | 481 |
| Figure 6.14-4 CAN Core in Loop Back Mode Combined with Silent Mode                    | 482 |
| Figure 6.14-5 Data Transfer between IFn Registers and Message                         | 484 |
| Figure 6.14-6 Application Software Handling of a FIFO Buffer                          | 489 |
| Figure 6.14-7 Bit Timing                                                              | 491 |
| Figure 6.14-8 Propagation Time Segment                                                | 492 |
| Figure 6.14-9 Synchronization on "late" and "early" Edges                             | 494 |
| Figure 6.14-10 Filtering of Short Dominant Spikes                                     | 495 |
| Figure 6.14-11 Structure of the CAN Core's CAN Protocol Controller                    | 497 |
| Figure 6.15-1 ADC Controller Block Diagram                                            | 541 |
| Figure 6.15-2 ADC Clock Control                                                       | 542 |
| Figure 6.15-3 Single Mode Conversion Timing Diagram                                   | 543 |
| Figure 6.15-4 Single-Cycle Scan on Enabled Channels Timing Diagram                    | 544 |
| Figure 6.15-5 Continuous Scan on Enabled Channels Timing Diagram                      | 545 |
| Figure 6.15-6 A/D Conversion Result Monitor Logics Diagram                            | 546 |
| Figure 6.15-7 A/D Controller Interrupt                                                | 546 |
| Figure 6.15-8 ADC Single-end Input Conversion Voltage and Conversion Result Mapping   | 549 |
| Figure 6.15-9 ADC Differential Input Conversion Voltage and Conversion Result Mapping | 549 |



| Table 3-1 List of Abbreviations                                         | 17  |
|-------------------------------------------------------------------------|-----|
| Table 6.2-1 Address Space Assignments for On-Chip Controllers           | 34  |
| Table 6.2-2 Exception Model                                             | 83  |
| Table 6.2-3 System Interrupt Map                                        | 84  |
| Table 6.2-4 Vector Table Format                                         | 85  |
| Table 6.3-1 Chip Idle/Power-down Mode Control Table                     | 124 |
| Table 6.4-1 Memory Address Map (DFVSEN = 1)                             | 148 |
| Table 6.4-2 Memory Address Map (DFVSEN = 0)                             | 149 |
| Table 6.4-3 ISP Command List                                            | 158 |
| Table 6.7-1 PWM and BPWM Features Different Table                       | 207 |
| Table 6.7-2 PWM System Clock Source Control Registers Setting Table     | 209 |
| Table 6.7-3 PWM Pulse Generation Event Priority for Up-Counter          | 219 |
| Table 6.7-4 PWM Pulse Generation Event Priority for Down-Counter        | 219 |
| Table 6.7-5 PWM Pulse Generation Event Priority for Up-Down-Counter     | 219 |
| Table 6.8-1 PWM and BPWM Features Different Table                       | 287 |
| Table 6.8-2 BPWM System Clock Source Control Registers Setting Table    | 289 |
| Table 6.8-3 BPWM Pulse Generation Event Priority for Up-Counter         | 297 |
| Table 6.8-4 BPWM Pulse Generation Event Priority for Down-Counter       | 298 |
| Table 6.8-5 BPWM Pulse Generation Event Priority for Up-Down-Counter    | 298 |
| Table 6.8-6 PWM and BPWM Features Different Table                       | 305 |
| Table 6.9-1 Watchdog Timer Time-out Interval Period Selection           | 346 |
| Table 6.10-1 Window Watchdog Timer Prescale Value Selection             | 354 |
| Table 6.10-2 WINCMP Setting Limitation                                  | 355 |
| Table 6.11-1 UART Interface Controller Pin                              | 365 |
| Table 6.11-2 UART Baud Rate Equation                                    | 366 |
| Table 6.11-3 UART Controller Baud Rate Parameter Setting Table          | 366 |
| Table 6.11-4 UART Controller Baud Rate Register (UA_BAUD) Setting Table | 367 |
| Table 6.11-5 UART Controller Interrupt Source and Flag List             | 370 |
| Table 6.11-6 UART Line Control of Word and Stop Length Setting          | 371 |
| Table 6.11-7 UART Line Control of Parity Bit Setting                    | 371 |
| Table 6.11-8 LIN Header Selection in Master Mode                        | 376 |
| Table 6.12-1 I <sup>2</sup> C Status Code Description                   | 431 |
| Table 6.14-1 Initialization of a Transmit Object                        | 486 |
| Table 6.14-2 Initialization of a Receive Object                         | 487 |
| Table 6.14-3 CAN Bit Time Parameters                                    | 491 |
|                                                                         |     |



| Table 6.14-4 CAN Register Map for Each Bit Function              | 503 |
|------------------------------------------------------------------|-----|
| Table 6.14-5 Error Codes                                         | 509 |
| Table 6.14-6 Source of Interrupts                                | 512 |
| Table 6.14-7 IF1 and IF2 Message Interface Register              | 515 |
| Table 6.14-8 Structure of a Message Object in the Message Memory | 529 |



# 1 GENERAL DESCRIPTION

The NUC131 series is a 32-bit ARM® Cortex®-M0 based microcontroller running up to 50 MHz with built-in Controller Area Network (CAN) 2.0 B interface, designed for automotive, industrial control applications which needs reliable and robust CAN communication.

The NUC131 series features 36/68 KB Flash, 8 KB SRAM, and 4 KB ISP ROM, operating voltage from 2.5 V to 5.5 V and temperature range from -40 °C to 105 °C. In addition to the CAN interface, it is equipped with plenty of peripheral devices, such as 6 set of UARTs, 2 set of I<sup>2</sup>C, 1 set SPI, 24 channels of 100 MHz high resolution PWMs with brake function and complimentary output to drive both stepping motor or HVAC compresser; 760 kSPS 12-bit ADC to sample different kind of data from sensors.



# 2 FEATURES

- Arm<sup>®</sup> Cortex<sup>®</sup>-M0 core
  - Runs up to 50 MHz
  - One 24-bit system timer
  - Supports low power sleep mode
  - Single-cycle 32-bit hardware multiplier
  - NVIC for the 32 interrupt inputs, each with 4-levels of priority
  - Serial Wire Debug supports with 2 watchpoints/4 breakpoints
- Built-in LDO for wide operating voltage ranged from 2.5 V to 5.5 V
- Flash Memory
  - 36/68 KB Flash for program code
  - Configurable Flash memory for data memory (Data Flash), 4 KB flash for ISP loader
  - Supports In-System-Program (ISP) and In-Application-Program (IAP) application code update
  - 512 byte page erase for flash
  - Supports 2-wired ICP update through SWD/ICE interface
  - Supports fast parallel programming mode by external programmer
- SRAM Memory
  - 8 KB embedded SRAM
- Clock Control
  - Flexible selection for different applications
  - Built-in 22.1184 MHz high speed oscillator for system operation
    - Trimmed to  $\pm 1$  % at +25 °C and  $V_{DD} = 5$  V
    - Trimmed to  $\pm 2$  % at -40 °C ~ +105 °C and  $V_{DD} = 2.5$  V ~ 5.5 V
  - Built-in 10 kHz low speed oscillator for Watchdog Timer and Wake-up operation
  - Supports one PLL output frequency up to 200 MHz, BPWM/PWM clock frequency up to 100 MHz, and System operation frequency up to 50 MHz
  - External 4~24 MHz high speed crystal input for precise timing operation
- GPIO
  - Four I/O modes:
    - Quasi-bidirectional
    - Push-pull output
    - Open-drain output
    - Input only with high impendence
  - TTL/Schmitt trigger input selectable
  - I/O pin configured as interrupt source with edge/level setting
- Timer
  - Supports 4 sets of 32-bit timers with 24-bit up-timer and one 8-bit prescale counter
  - Independent clock source for each timer
  - Provides one-shot, periodic, toggle and continuous counting operation modes
  - Supports event counting function
  - Supports input capture function
- Watchdog Timer
  - Multiple clock sources
    - System clock (HCLK)
    - Internal 10 kHz oscillator (LIRC)
  - 8 selectable time-out period from 1.6 ms ~ 26.0 sec (depending on clock source)
  - Wake-up from Power-down or Idle mode
  - Interrupt or reset selectable on watchdog time-out
- Window Watchdog Timer
  - 6-bit down counter with 11-bit prescale for wide range window selected
- BPWM/Capture
  - Supports maximum clock frequency up to 100 MHz
  - Supports up to two BPWM modules, each module provides one 16-bit timer and 6 output



#### channels

- Supports independent mode for BPWM output/Capture input channel
- Supports 12-bit pre-scalar from 1 to 4096
- Supports 16-bit resolution BPWM counter
  - Up, down and up/down counter operation type
- Supports mask function and tri-state enable for each BPWM pin
- Supports interrupt on the following events:
  - BPWM counter match zero, period value or compared value
- Supports trigger ADC on the following events:
  - BPWM counter match zero, period value or compared value
- Supports up to 12 capture input channels with 16-bit resolution
- Supports rising edges, falling edges or both edges capture condition
- Supports input rising edges, falling edges or both edges capture interrupt
- Supports rising edges, falling edges or both edges capture with counter reload option

# PWM/Capture

- Supports maximum clock frequency up to 100 MHz
- Supports up to two PWM modules, each module provides three 16-bit timers and 6 output channels
- Supports independent mode for PWM output/Capture input channel
- Supports complementary mode for 3 complementary paired PWM output channel
  - Dead-time insertion with 12-bit resolution
  - Two compared values during one period
- Supports 12-bit pre-scalar from 1 to 4096
- Supports 16-bit resolution PWM counter
  - Up, down and up/down counter operation type
- Supports mask function and tri-state enable for each PWM pin
- Supports brake function
  - Brake source from pin and system safety events (clock failed, Brown-out detection and CPU lockup)
  - Noise filter for brake source from pin
  - Edge detect brake source to control brake state until brake interrupt cleared
  - Level detect brake source to auto recover function after brake condition removed
- Supports interrupt on the following events:
  - PWM counter match zero, period value or compared value
  - Brake condition happened
- Supports trigger ADC on the following events:
- PWM counter match zero, period value or compared value
- Supports up to 12 capture input channels with 16-bit resolution
- Supports rising edges, falling edges or both edges capture condition
- Supports input rising edges, falling edges or both edges capture interrupt
- Supports rising edges, falling edges or both edges capture with counter reload option

# • UART

- Up to six UART controllers
- UART0 and UART1 ports with flow control (TXD, RXD, nCTS and nRTS)
- UART0, UART1 and UART2 with 16-byte FIFO for standard device
- Supports IrDA (SIR) and LIN function
- Supports RS-485 9-bit mode and direction control
- Supports auto baud-rate generator

## SPI

- One set of SPI controller
- Supports SPI Master/Slave mode
- Full duplex synchronous serial data transfer
- Variable length of transfer data from 8 to 32 bits
- MSB or LSB first data transfer
- Rx and Tx on both rising or falling edge of serial clock independently



- Supports Byte Suspend mode in 32-bit transmission
- Supports three wire, no slave select signal, bi-direction interface

# ● I<sup>2</sup>C

- Up to two sets of I<sup>2</sup>C devices
- Master/Slave mode
- Bidirectional data transfer between masters and slaves
- Multi-master bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allowing devices with different bit rates to communicate via one serial bus
- Serial clock synchronization used as a handshake mechanism to suspend and resume serial transfer
- Programmable clocks allowing for versatile rate control
- Supports multiple address recognition (four slave address with mask option)
- Supports wake-up function

## CAN 2.0

- One set of CAN device
- Supports CAN protocol version 2.0 part A and B
- Bit rates up to 1 Mbit/s
- 32 Message Objects
- Each Message Object has its own identifier mask
- Programmable FIFO mode (concatenation of Message Object)
- Maskable interrupt
- Disabled Automatic Re-transmission mode for Time Triggered CAN applications
- Support power-down wake-up function

#### ADC

- 12-bit SAR ADC with 760 kSPS
- Up to 8-ch single-end input or 4-ch differential input
- Single scan/single cycle scan/continuous scan
- Each channel with individual result register
- Scan on enabled channels
- Threshold voltage detection
- Conversion started by software programming or external input
- 96-bit unique ID (UID)
- 128-bit unique customer ID(UCID)
- Brown-out Detector
  - With 4 levels: 4.4 V / 3.7 V / 2.7 V / 2.2 V
  - Supports Brown-out Interrupt and Reset option.
- Low Voltage Reset
  - Threshold voltage level: 2.0 V
- Operating Temperature: -40°C ~ +105°C
- Packages:
  - All Green package (RoHS)
  - LQFP 64-pin (7mm x 7mm)
  - LQFP 48-pin (7mm x 7mm)



# **3 ABBREVIATIONS**

| Acronym | Description                                     |
|---------|-------------------------------------------------|
| ADC     | Analog-to-Digital Converter                     |
| APB     | Advanced Peripheral Bus                         |
| AHB     | Advanced High-Performance Bus                   |
| BOD     | Brown-out Detection                             |
| BPWM    | Basic Pulse Width Modulation                    |
| CAN     | Controller Area Network                         |
| DAP     | Debug Access Port                               |
| FIFO    | First In, First Out                             |
| FMC     | Flash Memory Controller                         |
| GPIO    | General-Purpose Input/Output                    |
| HCLK    | The Clock of Advanced High-Performance Bus      |
| HIRC    | 22.1184 MHz Internal High Speed RC Oscillator   |
| HXT     | 4~24 MHz External High Speed Crystal Oscillator |
| IAP     | In Application Programming                      |
| ICP     | In Circuit Programming                          |
| ISP     | In System Programming                           |
| LDO     | Low Dropout Regulator                           |
| LIN     | Local Interconnect Network                      |
| LIRC    | 10 kHz internal low speed RC oscillator (LIRC)  |
| MPU     | Memory Protection Unit                          |
| NVIC    | Nested Vectored Interrupt Controller            |
| PCLK    | The Clock of Advanced Peripheral Bus            |
| PLL     | Phase-Locked Loop                               |
| PWM     | Pulse Width Modulation                          |
| SPI     | Serial Peripheral Interface                     |
| SPS     | Samples per Second                              |
| TMR     | Timer Controller                                |
| UART    | Universal Asynchronous Receiver/Transmitter     |
| UCID    | Unique Customer ID                              |
| WDT     | Watchdog Timer                                  |
| WWDT    | Window Watchdog Timer                           |

Table 3-1 List of Abbreviations

# PARTS INFORMATION LIST AND PIN CONFIGURATION

# 4.1 NuMicro® NUC131 Series Selection Code

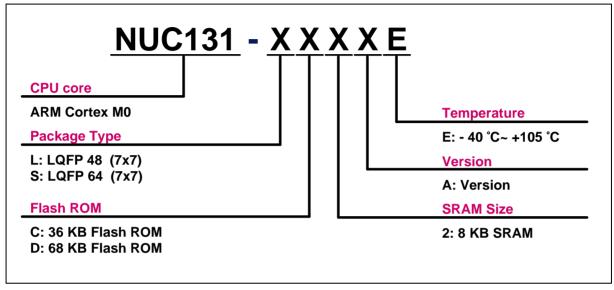



Figure 4.1-1 NuMicro® NUC131 Series Selection Code



# 4.2 NuMicro® NUC131 Series Features and Peripherals

|             |            |          | <u> </u>        |              |     |                |      | Con | necti | vity |     |              |              |             |         |
|-------------|------------|----------|-----------------|--------------|-----|----------------|------|-----|-------|------|-----|--------------|--------------|-------------|---------|
| Part Number | APROM (KB) | RAM (KB) | Data Flash (KB) | ISP ROM (KB) | 0/I | Timer (32-Bit) | UART | SPI | l²C   | LIN  | CAN | PWM (16-Bit) | ADC (12-Bit) | ISP/ICP/IAP | Package |
| NUC131LC2AE | 36         | 8        | Configurable    | 4            | 42  | 4              | 6    | 1   | 2     | 3    | 1   | 24           | 8 ch         | ٧           | LQFP48  |
| NUC131LD2AE | 68         | 8        | Configurable    | 4            | 42  | 4              | 6    | 1   | 2     | 3    | 1   | 24           | 8 ch         | ٧           | LQFP48  |
| NUC131SC2AE | 36         | 8        | Configurable    | 4            | 56  | 4              | 6    | 1   | 2     | 3    | 1   | 24           | 8 ch         | ٧           | LQFP64  |
| NUC131SD2AE | 68         | 8        | Configurable    | 4            | 56  | 4              | 6    | 1   | 2     | 3    | 1   | 24           | 8 ch         | ٧           | LQFP64  |



# 4.3 Pin Configuration

# 4.3.1 NuMicro® NUC131 Series Pin Diagram

4.3.1.1 NuMicro® NUC131SxxAE LQFP 64 pin (7 mm \* 7mm)

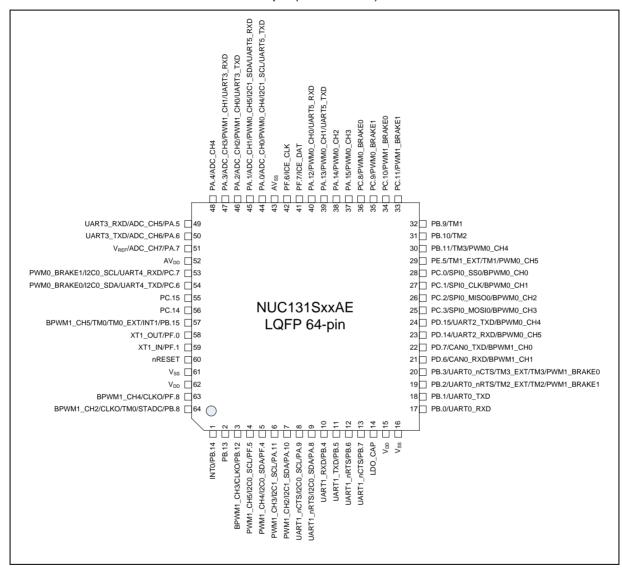



Figure 4.3-1 NuMicro® NUC131SxxAE LQFP 64-pin Diagram



# 4.3.1.2 NuMicro® NUC131LxxAE LQFP 48 pin

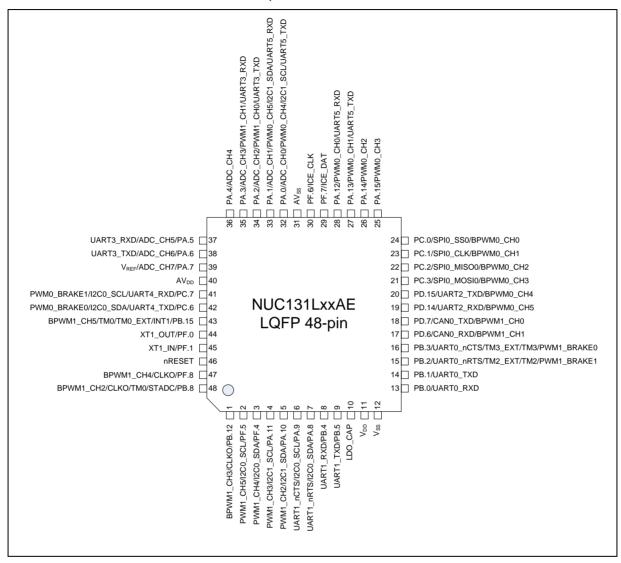



Figure 4.3-2 NuMicro® NUC131LxxAE LQFP 48-pin Diagram

# 4.4 Pin Description

nuvoTon

# 4.4.1 NuMicro® NUC131 Series Pin Description

| Pin No.        |                |            |             |                                        |
|----------------|----------------|------------|-------------|----------------------------------------|
| LQFP<br>64-pin | LQFP<br>48-pin | Pin Name   | Pin<br>Type | Description                            |
| 1              |                | PB.14      | I/O         | General purpose digital I/O pin.       |
| 1              |                | INT0       | ı           | External interrupt0 input pin.         |
| 2              |                | PB.13      | 1/0         | General purpose digital I/O pin.       |
|                |                | PB.12      | 1/0         | General purpose digital I/O pin.       |
| 3              | 1              | CLKO       | 0           | Frequency divider clock output pin.    |
| 3 1            |                | BPWM1_CH3  | 1/0         | BPWM1 CH3 output/Capture input.        |
|                |                | PF.5       | I/O         | General purpose digital I/O pin.       |
| 4              | 2              | I2C0_SCL   | I/O         | I2C0 clock pin.                        |
|                |                | PWM1_CH5   | I/O         | PWM1 CH5 output/Capture input.         |
|                |                | PF.4       | I/O         | General purpose digital I/O pin.       |
| 5              | 3              | I2C0_SDA   | I/O         | I2C0 data input/output pin.            |
|                |                | PWM1_CH4   | 1/0         | PWM1 CH4 output/Capture input.         |
|                |                | PA.11      | 1/0         | General purpose digital I/O pin.       |
| 6              | 4              | I2C1_SCL   | 1/0         | I2C1 clock pin.                        |
|                |                | PWM1_CH3   | 1/0         | PWM1 CH3 output/Capture input.         |
|                |                | PA.10      | I/O         | General purpose digital I/O pin.       |
| 7              | 5              | I2C1_SDA   | 1/0         | I2C1 data input/output pin.            |
|                |                | PWM1_CH2   | I/O         | PWM1 CH2 output/Capture input.         |
|                |                | PA.9       | 1/0         | General purpose digital I/O pin.       |
| 8              | 6              | I2C0_SCL   | I/O         | I2C0 clock pin.                        |
|                |                | UART1_nCTS | ı           | Clear to Send input pin for UART1.     |
|                |                | PA.8       | I/O         | General purpose digital I/O pin.       |
| 9              | 7              | I2C0_SDA   | I/O         | I2C0 data input/output pin.            |
|                |                | UART1_nRTS | 0           | Request to Send output pin for UART1.  |
| 40             |                | PB.4       | I/O         | General purpose digital I/O pin.       |
| 10             | 8              | UART1_RXD  | ı           | Data receiver input pin for UART1.     |
| 4.             |                | PB.5       | I/O         | General purpose digital I/O pin.       |
| 11             | 9              | UART1_TXD  | 0           | Data transmitter output pin for UART1. |
| 12             |                | PB.6       | I/O         | General purpose digital I/O pin.       |



| Pin            | No.            |                          |             |                                                                                 |
|----------------|----------------|--------------------------|-------------|---------------------------------------------------------------------------------|
| LQFP<br>64-pin | LQFP<br>48-pin | Pin Name                 | Pin<br>Type | Description                                                                     |
|                |                | UART1_nRTS               | 0           | Request to Send output pin for UART1.                                           |
| 40             |                | PB.7                     | 1/0         | General purpose digital I/O pin.                                                |
| 13             |                | UART1_nCTS               | I           | Clear to Send input pin for UART1.                                              |
| 14             | 10             | LDO_CAP                  | Р           | LDO output pin.                                                                 |
| 15             | 11             | $V_{DD}$                 | Р           | Power supply for I/O ports and LDO source for internal PLL and digital circuit. |
| 16             | 12             | $V_{SS}$                 | Р           | Ground pin for digital circuit.                                                 |
| 17             | 13             | PB.0 I/O G UARTO_RXD I D |             | General purpose digital I/O pin.                                                |
| 17             | 13             |                          |             | Data receiver input pin for UART0.                                              |
| 18             | 14             | PB.1 <b>I/O</b> (        |             | General purpose digital I/O pin.                                                |
| 10             | 14             | UART0_TXD                | 0           | Data transmitter output pin for UART0.                                          |
|                |                | PB.2                     | 1/0         | General purpose digital I/O pin.                                                |
|                |                | UART0_nRTS               | 0           | Request to Send output pin for UART0.                                           |
| 19             | 15             | TM2_EXT                  | ı           | Timer2 external capture input pin.                                              |
|                |                | TM2                      | 0           | Timer2 toggle output pin.                                                       |
|                |                | PWM1_BRAKE1              | -           | PWM1 brake input pin.                                                           |
|                |                | PB.3                     | 1/0         | General purpose digital I/O pin.                                                |
|                |                | UART0_nCTS               | -           | Clear to Send input pin for UART0.                                              |
| 20             | 16             | TM3_EXT                  | ı           | Timer3 external capture input pin.                                              |
|                |                | тмз                      | 0           | Timer3 toggle output pin.                                                       |
|                |                | PWM1_BRAKE0              | I           | PWM1 brake input pin.                                                           |
|                |                | PD.6                     | I/O         | General purpose digital I/O pin.                                                |
| 21             | 17             | CAN0_RXD                 | ı           | Data receiver input pin for CAN0.                                               |
|                |                | BPWM1_CH1                | I/O         | BPWM1 CH1 output/Capture input.                                                 |
|                |                | PD.7                     | I/O         | General purpose digital I/O pin.                                                |
| 22             | 18             | CAN0_TXD                 | 0           | Data transmitter output pin for CAN0.                                           |
|                |                | BPWM1_CH0                | 1/0         | BPWM1 CH0 output/Capture input.                                                 |
|                |                | PD.14                    | I/O         | General purpose digital I/O pin.                                                |
| 23             | 19             | UART2_RXD                | I           | Data receiver input pin for UART2.                                              |
|                |                | BPWM0_CH5                | I/O         | BPWM0 CH5 output/Capture input.                                                 |
| 24             | 20             | PD.15                    | I/O         | General purpose digital I/O pin.                                                |
|                | 20             | UART2_TXD                | 0           | Data transmitter output pin for UART2.                                          |
|                |                |                          |             |                                                                                 |

| Pin No.        |                |             |             |                                             |
|----------------|----------------|-------------|-------------|---------------------------------------------|
| LQFP<br>64-pin | LQFP<br>48-pin | Pin Name    | Pin<br>Type | Description                                 |
|                |                | BPWM0_CH4   | I/O         | BPWM0 CH4 input/Capture input.              |
|                |                | PC.3        | I/O         | General purpose digital I/O pin.            |
| 25             | 21             | SPI0_MOSI0  | 1/0         | SPI0 MOSI (Master Out, Slave In) pin.       |
|                |                | BPWM0_CH3   | 0           | BPWM0 CH3 input/Capture input.              |
|                |                | PC.2        | 1/0         | General purpose digital I/O pin.            |
| 26             | 22             | SPI0_MISO0  | 1/0         | SPI0 MISO (Master In, Slave Out) pin.       |
|                |                | BPWM0_CH2   | _           | BPWM0 CH2 input/Capture input.              |
|                |                | PC.1        | 1/0         | General purpose digital I/O pin.            |
| 27             | 23             | SPI0_CLK    | 1/0         | SPI0 serial clock pin.                      |
|                |                | BPWM0_CH1   | 1/0         | BPWM0 CH1 input/Capture input.              |
|                |                | PC.0        | 1/0         | General purpose digital I/O pin.            |
| 28             | 24             | SPI0_SS0    | 1/0         | SPI0 slave select pin.                      |
|                |                | BPWM0_CH0   | 1/0         | BPWM0 CH0 input/Capture input.              |
|                |                | PE.5        | 1/0         | General purpose digital I/O pin.            |
| 20             |                | PWM0_CH5    | 1/0         | PWM0 CH5 output/Capture input.              |
| 29             |                | TM1_EXT     | ı           | Timer1 external capture input pin.          |
|                |                | TM1         | 0           | Timer1 toggle output pin.                   |
|                |                | PB.11       | 1/0         | General purpose digital I/O pin.            |
| 30             |                | TM3         | 1/0         | Timer3 event counter input / toggle output. |
|                |                | PWM0_CH4    | 1/0         | PWM0 CH4 output/Capture input.              |
| 31             |                | PB.10       | 1/0         | General purpose digital I/O pin.            |
| 31             |                | TM2         | 1/0         | Timer2 event counter input / toggle output. |
| 32             |                | PB.9        | 1/0         | General purpose digital I/O pin.            |
| 32             |                | TM1         | 1/0         | Timer1 event counter input / toggle output. |
| 33             |                | PC.11       | 1/0         | General purpose digital I/O pin.            |
| 33             |                | PWM1_BRAKE1 | ı           | PWM1 brake input pin.                       |
| 34             |                | PC.10       | 1/0         | General purpose digital I/O pin.            |
| J4             |                | PWM1_BRAKE0 | I           | PWM1 brake input pin.                       |
| 35             |                | PC.9        | 1/0         | General purpose digital I/O pin.            |
| 30             |                | PWM0_BRAKE1 | I           | PWM0 brake input pin.                       |
| 36             |                | PC.8        | 1/0         | General purpose digital I/O pin.            |

| Pin            | No.            |                  |             |                                                                                                                          |
|----------------|----------------|------------------|-------------|--------------------------------------------------------------------------------------------------------------------------|
| LQFP<br>64-pin | LQFP<br>48-pin | Pin Name         | Pin<br>Type | Description                                                                                                              |
|                |                | PWM0_BRAKE0      | I           | PWM0 brake input pin.                                                                                                    |
| 27             | 25             | PA.15            | I/O         | General purpose digital I/O pin.                                                                                         |
| 37             | 25             | PWM0_CH3         | I/O         | PWM0 CH3 output/Capture input.                                                                                           |
| 38             | 26             | PA.14            | 1/0         | General purpose digital I/O pin.                                                                                         |
| 30             | 20             | PWM0_CH2         | 1/0         | PWM0 CH2 output/Capture input.                                                                                           |
|                |                | PA.13            | 1/0         | General purpose digital I/O pin.                                                                                         |
| 39             | 27             | PWM0_CH1         | 1/0         | PWM0 CH1 output/Capture input.                                                                                           |
| U              |                | UART5_TXD        | 0           | Data transmitter output pin for UART5.                                                                                   |
|                |                | PA.12            | 1/0         | General purpose digital I/O pin.                                                                                         |
| 40             | 28             | PWM0_CH0         | 1/0         | PWM0 CH0 output/Capture input.                                                                                           |
|                |                | UART5_RXD        | -           | Data receiver input pin for UART5.                                                                                       |
|                |                | PF.7             | 1/0         | General purpose digital I/O pin.                                                                                         |
| 41             | 29             | ICE_DAT          | I/O         | Serial wire debugger data pin.<br><b>Note:</b> It is recommended to use 100 k $\Omega$ pull-up resistor on ICE_DAT pin.  |
|                |                | PF.6             | I/O         | General purpose digital I/O pin.                                                                                         |
| 42             | 30             | ICE_CLK          | I           | Serial wire debugger clock pin.<br><b>Note:</b> It is recommended to use 100 k $\Omega$ pull-up resistor on ICE_CLK pin. |
| 43             | 31             | AV <sub>SS</sub> | AP          | Ground pin for analog circuit.                                                                                           |
|                |                | PA.0             | I/O         | General purpose digital I/O pin.                                                                                         |
|                |                | ADC_CH0          | AI          | ADC_CH0 analog input.                                                                                                    |
| 44             | 32             | PWM0_CH4         | I/O         | PWM0 CH4 output/Capture input.                                                                                           |
|                |                | I2C1_SCL         | I/O         | I2C1 clock pin.                                                                                                          |
|                |                | UART5_TXD        | 0           | Data transmitter output pin for UART5.                                                                                   |
|                |                | PA.1             | 1/0         | General purpose digital I/O pin.                                                                                         |
|                |                | ADC_CH1          | AI          | ADC_CH1 analog input.                                                                                                    |
| 45             | 33             | PWM0_CH5         | I/O         | PWM0 CH5 output/Capture input.                                                                                           |
|                |                | I2C1_SDA         | I/O         | I2C1 data input/output pin.                                                                                              |
|                |                | UART5_RXD        | I           | Data receiver input pin for UART5.                                                                                       |
|                | _              | PA.2             | I/O         | General purpose digital I/O pin.                                                                                         |
| 46             | 34             | ADC_CH2          | Al          | ADC_CH2 analog input.                                                                                                    |
| 40             | 34             | PWM1_CH0         | I/O         | PWM1 CH0 output/Capture input.                                                                                           |
|                |                | UART3_TXD        | 0           | Data transmitter output pin for UART3.                                                                                   |

| Pin No.        |                |             |             |                                           |
|----------------|----------------|-------------|-------------|-------------------------------------------|
| LQFP<br>64-pin | LQFP<br>48-pin | Pin Name    | Pin<br>Type | Description                               |
|                |                | PA.3        | I/O         | General purpose digital I/O pin.          |
| 47             | 25             | ADC_CH3     | Al          | ADC_CH3 analog input.                     |
| 47             | 35             | PWM1_CH1    | I/O         | PWM1 CH1 output/Capture input.            |
|                |                | UART3_RXD   | I           | Data receiver input pin for UART3.        |
| 40             | 36             | PA.4        | I/O         | General purpose digital I/O pin.          |
| 48             | 30             | ADC_CH4     | Al          | ADC_CH4 analog input.                     |
|                |                | PA.5        | I/O         | General purpose digital I/O pin.          |
| 49             | 37             | ADC_CH5     | Al          | ADC_CH5 analog input.                     |
|                |                | UART3_RXD   | I           | Data receiver input pin for UART3.        |
|                |                | PA.6        | 1/0         | General purpose digital I/O pin.          |
| 50             | 38             | ADC_CH6     | AI          | ADC_CH6 analog input.                     |
|                |                | UART3_TXD   | 0           | Data transmitter output pin for UART3.    |
|                |                | PA.7        | 1/0         | General purpose digital I/O pin.          |
| 51             | 39             | ADC_CH7     | AI          | ADC_CH7 analog input.                     |
|                |                | $V_{REF}$   | AP          | Voltage reference input for ADC.          |
| 52             | 40             | $AV_{DD}$   | AP          | Power supply for internal analog circuit. |
|                |                | PC.7        | 1/0         | General purpose digital I/O pin.          |
| 53             | 41             | UART4_RXD   | _           | Data reveiver input pin for UART4.        |
| 33             | 41             | I2C0_SCL    | 1/0         | I2C0 clock pin.                           |
|                |                | PWM0_BRAKE1 | -           | PWM0 brake input pin.                     |
|                |                | PC.6        | 1/0         | General purpose digital I/O pin.          |
| 54             | 42             | UART4_TXD   | 0           | Data transmitter output pin for UART4.    |
| 54             | 42             | I2C0_SDA    | I/O         | I2C0 data input/output pin.               |
|                |                | PWM0_BRAKE0 | _           | PWM0 brake input pin.                     |
| 55             |                | PC.15       | I/O         | General purpose digital I/O pin.          |
| 56             |                | PC.14       | I/O         | General purpose digital I/O pin.          |
|                |                | PB.15       | I/O         | General purpose digital I/O pin.          |
|                |                | INT1        | ı           | External interrupt1 input pin.            |
| 57             | 43             | TM0_EXT     | I           | Timer0 external capture input pin.        |
|                |                | ТМ0         | 0           | Timer0 toggle output pin.                 |
|                |                | BPWM1_CH5   | I/O         | BPWM1 CH5 output/Capture input.           |
| 58             | 44             | PF.0        | I/O         | General purpose digital I/O pin.          |



| Pin            | No.            |                 |             |                                                                                                                                                                                                                      |
|----------------|----------------|-----------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LQFP<br>64-pin | LQFP<br>48-pin | Pin Name        | Pin<br>Type | Description                                                                                                                                                                                                          |
|                |                | XT1_OUT         | 0           | External 4~24 MHz (high speed) crystal output pin.                                                                                                                                                                   |
| 59             | 45             | PF.1            | 1/0         | General purpose digital I/O pin.                                                                                                                                                                                     |
| 39             | 43             | XT1_IN          | _           | External 4~24 MHz (high speed) crystal input pin.                                                                                                                                                                    |
| 60             | 46             | nRESET          | I           | External reset input: active LOW, with an internal pull-up. Set this pin low reset chip to initial state.<br><b>Note:</b> It is recommended to use 10 k $\Omega$ pull-up resistor and 10 uF capacitor on nRESET pin. |
| 61             |                | V <sub>SS</sub> | Р           | Ground pin for digital circuit.                                                                                                                                                                                      |
| 62             |                | $V_{DD}$        | Р           | Power supply for I/O ports and LDO source for internal PLL and digital circuit.                                                                                                                                      |
|                |                | PF.8            | I/O         | General purpose digital I/O pin.                                                                                                                                                                                     |
| 63             | 47             | CLKO            | 0           | Frequency divider clock output pin.                                                                                                                                                                                  |
|                |                | BPWM1_CH4       | 1/0         | BPWM1 CH4 output/Capture input.                                                                                                                                                                                      |
|                |                | PB.8            | 1/0         | General purpose digital I/O pin.                                                                                                                                                                                     |
|                |                | STADC           | 1           | ADC external trigger input.                                                                                                                                                                                          |
| 64             | 48             | TM0             | 1/0         | Timer0 event counter input / toggle output.                                                                                                                                                                          |
|                |                | CLKO            | 0           | Frequency divider clock output pin.                                                                                                                                                                                  |
|                |                | BPWM1_CH2       | 1/0         | BPWM1 CH2 output/Capture input.                                                                                                                                                                                      |

Note: Pin Type I = Digital Input, O = Digital Output; AI = Analog Input; P = Power Pin; AP = Analog Power



# 5 BLOCK DIAGRAM

# 5.1 NuMicro® NUC131 Series Block Diagram

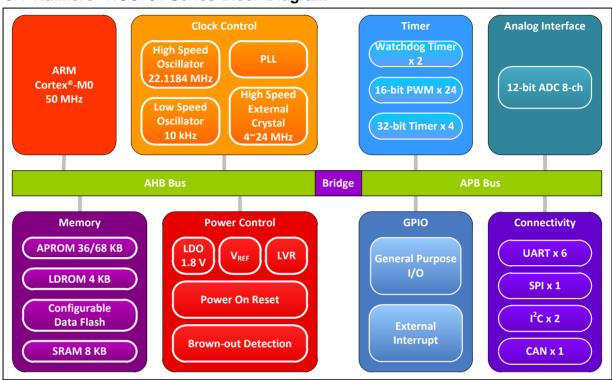



Figure 5.1-1 NuMicro® NUC131 Series Block Diagram



# **6 FUNCTIONAL DESCRIPTION**

# 6.1 ARM® Cortex®-M0 Core

The Cortex<sup>®</sup>-M0 processor is a configurable, multistage, 32-bit RISC processor, which has an AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug functionality. The processor can execute Thumb code and is compatible with other Cortex<sup>®</sup>-M profile processor. The profile supports two modes -Thread mode and Handler mode. Handler mode is entered as a result of an exception. An exception return can only be issued in Handler mode. Thread mode is entered on Reset, and can be entered as a result of an exception return. Figure 6.1-1 shows the functional controller of processor.

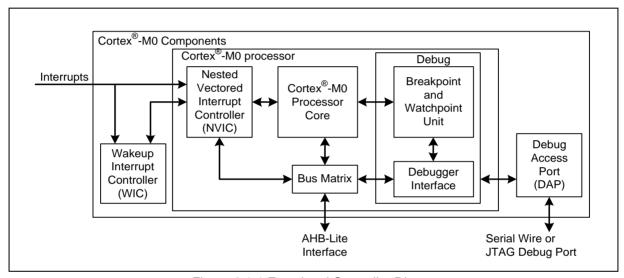



Figure 6.1-1 Functional Controller Diagram

The implemented device provides the following components and features:

- A low gate count processor:
  - ARMv6-M Thumb® instruction set
  - Thumb-2 technology
  - ARMv6-M compliant 24-bit SysTick timer
  - A 32-bit hardware multiplier
  - System interface supported with little-endian data accesses
  - Ability to have deterministic, fixed-latency, interrupt handling
  - Load/store-multiples and multicycle-multiplies that can be abandoned and restarted to facilitate rapid interrupt handling
  - C Application Binary Interface compliant exception model. This is the ARMv6-M, C Application Binary Interface (C-ABI) compliant exception model that enables the use of pure C functions as interrupt handlers
  - Low Power Sleep mode entry using Wait For Interrupt (WFI), Wait For Event (WFE) instructions, or the return from interrupt sleep-on-exit feature

## NVIC:



- 32 external interrupt inputs, each with four levels of priority
- Dedicated Non-maskable Interrupt (NMI) input
- Supports for both level-sensitive and pulse-sensitive interrupt lines
- Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power Sleep mode

# Debug support

- Four hardware breakpoints
- Two watchpoints
- Program Counter Sampling Register (PCSR) for non-intrusive code profiling
- Single step and vector catch capabilities

# Bus interfaces:

- Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all system peripherals and memory
- Single 32-bit slave port that supports the DAP (Debug Access Port)



# 6.2 System Manager

## 6.2.1 Overview

System management includes the following sections:

- System Resets
- System Memory Map
- System management registers for Part Number ID, chip reset and on-chip controllers reset, multi-functional pin control
- System Timer (SysTick)
- Nested Vectored Interrupt Controller (NVIC)
- System Control registers

# 6.2.2 System Reset

The system reset can be issued by one of the following listed events. For these reset event flags can be read by RSTSRC register.

- Power-on Reset
- Low level on the nRESET pin
- Watchdog Time-out Reset
- Low Voltage Reset
- Brown-out Detector Reset
- CPU Reset
- System Reset

System Reset and Power-on Reset all reset the whole chip including all peripherals. The difference between System Reset and Power-on Reset is external crystal circuit and BS (ISPCON[1]) bit. System Reset does not reset external crystal circuit and BS (ISPCON[1]) bit, but Power-on Reset does.

# 6.2.3 System Power Distribution

In this chip, the power distribution is divided into three segments.

- Analog power from AV<sub>DD</sub> and AV<sub>SS</sub> provides the power for analog components operation.
- Digital power from V<sub>DD</sub> and V<sub>SS</sub> supplies the power to the internal regulator which provides a fixed 1.8 V power for digital operation and I/O pins.

The outputs of internal voltage regulators, LDO, require an external capacitor which should be located close to the corresponding pin. Analog power ( $AV_{DD}$ ) should be the same voltage level with the digital power ( $V_{DD}$ ). Figure 6.2-1 shows the NuMicro<sup>®</sup> NUC131 power distribution.

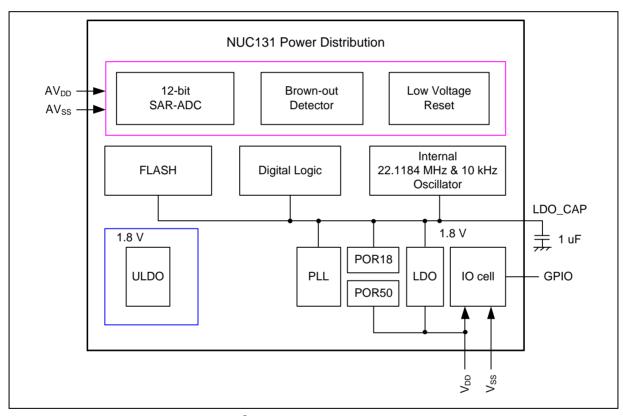



Figure 6.2-1 NuMicro® NUC131 Series Power Distribution Diagram



# 6.2.4 System Memory Map

The NuMicro® NUC131 series provides 4G-byte addressing space. The memory locations assigned to each on-chip controllers are shown in the Table 6.2-1. The detailed register definition, memory space, and programming detailed will be described in the following sections for each on-chip peripheral. The NuMicro® NUC131 series only supports little-endian data format.

| Address Space                    | Token            | Controllers                                       |
|----------------------------------|------------------|---------------------------------------------------|
| Flash and SRAM Memory Space      |                  |                                                   |
| 0x0000_0000 - 0x0001_0FFF        | FLASH_BA         | FLASH Memory Space (68 KB)                        |
| 0x2000_0000 - 0x2000_3FFF        | SRAM_BA          | SRAM Memory Space (8 KB)                          |
| AHB Controllers Space (0x5000_0  | 000 – 0x501F_FFF | F)                                                |
| 0x5000_0000 – 0x5000_01FF        | GCR_BA           | System Global Control Registers                   |
| 0x5000_0200 - 0x5000_02FF        | CLK_BA           | Clock Control Registers                           |
| 0x5000_0300 - 0x5000_03FF        | INT_BA           | Interrupt Multiplexer Control Registers           |
| 0x5000_4000 - 0x5000_7FFF        | GPIO_BA          | GPIO Control Registers                            |
| 0x5000_C000 - 0x5000_FFFF        | FMC_BA           | Flash Memory Control Registers                    |
| APB1 Controllers Space (0x4000_0 | 0000 ~ 0x400F_FF | FF)                                               |
| 0x4000_4000 - 0x4000_7FFF        | WDT_BA           | Watchdog Timer Control Registers                  |
| 0x4001_0000 - 0x4001_3FFF        | TMR01_BA         | Timer0/Timer1 Control Registers                   |
| 0x4002_0000 - 0x4002_3FFF        | I2C0_BA          | I2C0 Interface Control Registers                  |
| 0x4003_0000 - 0x4003_3FFF        | SPI0_BA          | SPI0 with master/slave function Control Registers |
| 0x4004_0000 - 0x4004_3FFF        | PWM0_BA          | PWM0 Control Registers                            |
| 0x4004_4000 - 0x4004_7FFF        | BPWM0_BA         | BPWM0 Control Registers                           |
| 0x4005_0000 - 0x4005_3FFF        | UART0_BA         | UART0 Control Registers                           |
| 0x4005_4000 - 0x4005_7FFF        | UART3_BA         | UART3 Control Registers                           |
| 0x4005_8000 - 0x4005_BFFF        | UART4_BA         | UART4 Control Registers                           |
| 0x400E_0000 - 0x400E_FFFF        | ADC_BA           | Analog-Digital-Converter (ADC) Control Registers  |
| APB2 Controllers Space (0x4010_0 | 0000 ~ 0x401F_FF | FF)                                               |
| 0x4011_0000 - 0x4011_3FFF        | TMR23_BA         | Timer2/Timer3 Control Registers                   |
| 0x4012_0000 - 0x4012_3FFF        | I2C1_BA          | I2C1 Interface Control Registers                  |
| 0x4014_0000 - 0x4014_3FFF        | PWM1_BA          | PWM1 Control Registers                            |
| 0x4014_4000 - 0x4014_7FFF        | BPWM1_BA         | BPWM1 Control Registers                           |
| 0x4015_0000 - 0x4015_3FFF        | UART1_BA         | UART1 Control Registers                           |
| 0x4015_4000 - 0x4015_7FFF        | UART2_BA         | UART2 Control Registers                           |
| 0x4015_8000 - 0x4015_BFFF        | UART5_BA         | UART5 Control Registers                           |



| 0x4018_0000 - 0x4018_3FFF                            | CAN0_BA | CAN0 Bus Control Registers                      |  |  |  |  |  |
|------------------------------------------------------|---------|-------------------------------------------------|--|--|--|--|--|
| System Controllers Space (0xE000_E000 ~ 0xE000_EFFF) |         |                                                 |  |  |  |  |  |
| 0xE000_E010 - 0xE000_E0FF                            | SCS_BA  | System Timer Control Registers                  |  |  |  |  |  |
| 0xE000_E100 - 0xE000_ECFF                            | SCS_BA  | External Interrupt Controller Control Registers |  |  |  |  |  |
| 0xE000_ED00 - 0xE000_ED8F                            | SCS_BA  | System Control Registers                        |  |  |  |  |  |

Table 6.2-1 Address Space Assignments for On-Chip Controllers



# 6.2.5 Register Map

R: read only, W: write only, R/W: both read and write

| Register                       | Offset        | R/W | Description                                             | Reset Value                |
|--------------------------------|---------------|-----|---------------------------------------------------------|----------------------------|
| GCR Base Addr<br>GCR_BA = 0x50 |               |     |                                                         |                            |
| PDID                           | GCR_BA+0x00 R |     | Part Device Identification Number Register              | 0x2014_0018 <sup>[1]</sup> |
| RSTSRC                         | GCR_BA+0x04   | R/W | System Reset Source Register                            | 0x0000_00XX                |
| IPRSTC1                        | GCR_BA+0x08   | R/W | Peripheral Reset Control Register 1                     | 0x0000_0000                |
| IPRSTC2                        | GCR_BA+0x0C   | R/W | Peripheral Reset Control Register 2                     | 0x0000_0000                |
| IPRSTC3                        | GCR_BA+0x10   | R/W | Peripheral Reset Control Register 3                     | 0x0000_0000                |
| BODCR                          | GCR_BA+0x18   | R/W | Brown-out Detector Control Register                     | 0x0000_038X                |
| PORCR                          | GCR_BA+0x24   | R/W | Power-on-Reset Controller Register                      | 0x0000_XXXX                |
| VREFCR                         | GCR_BA+0x28   | R/W | VREF Controller Register                                | 0x0000_0010                |
| GPA_MFP                        | GCR_BA+0x30   | R/W | GPIOA Multiple Function and Input Type Control Register | 0x0000_0000                |
| GPB_MFP                        | GCR_BA+0x34   | R/W | GPIOB Multiple Function and Input Type Control Register | 0x0000_0000                |
| GPC_MFP                        | GCR_BA+0x38   | R/W | GPIOC Multiple Function and Input Type Control Register | 0x0000_0000                |
| GPD_MFP                        | GCR_BA+0x3C   | R/W | GPIOD Multiple Function and Input Type Control Register | 0x0000_0000                |
| GPE_MFP                        | GCR_BA+0x40   | R/W | GPIOE Multiple Function and Input Type Control Register | 0x0000_0000                |
| GPF_MFP                        | GCR_BA+0x44   | R/W | GPIOF Multiple Function and Input Type Control Register | 0x0000_00CX                |
| ALT_MFP                        | GCR_BA+0x50   | R/W | Alternative Multiple Function Pin Control Register      | 0x0000_0000                |
| ALT_MFP2                       | GCR_BA+0x5C   | R/W | Alternative Multiple Function Pin Control Register 2    | 0x0000_0000                |
| ALT_MFP3                       | GCR_BA+0x60   | R/W | Alternative Multiple Function Pin Control Register 3    | 0x0000_0000                |
| ALT_MFP4                       | GCR_BA+0x64   | R/W | Alternative Multiple Function Pin Control Register 4    | 0x0000_0000                |
| REGWRPROT                      | GCR_BA+0x100  | R/W | Register Write Protection Register                      | 0x0000_0000                |

Note: [1] It depends on the part number.



# 6.2.6 Register Description

# Part Device ID Code Register (PDID)

| Register | Offset      | R/W | Description                                | Reset Value                |
|----------|-------------|-----|--------------------------------------------|----------------------------|
| PDID     | GCR_BA+0x00 | R   | Part Device Identification Number Register | 0x2014_0018 <sup>[1]</sup> |

[1] Each part number has a unique default reset value.

| 31   | 30 | 29 | 28 | 27 | 26 | 25 | 24 |  |
|------|----|----|----|----|----|----|----|--|
| PDID |    |    |    |    |    |    |    |  |
| 23   | 22 | 21 | 20 | 19 | 18 | 17 | 16 |  |
| PDID |    |    |    |    |    |    |    |  |
| 15   | 14 | 13 | 12 | 11 | 10 | 9  | 8  |  |
| PDID |    |    |    |    |    |    |    |  |
| 7    | 6  | 5  | 4  | 3  | 2  | 1  | 0  |  |
| PDID |    |    |    |    |    |    |    |  |

| Bits   | Description |                                                                                                                                                      |  |  |
|--------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:0] | PDID        | Part Device Identification Number  This register reflects device part number code. Software can read this register to identify which device is used. |  |  |



## System Reset Source Register (RSTSRC)

This register provides specific information for software to identify this chip's reset source from last operation.

| Register | Offset      | R/W | Description                  | Reset Value |
|----------|-------------|-----|------------------------------|-------------|
| RSTSRC   | GCR_BA+0x04 | R/W | System Reset Source Register | 0x0000_00XX |

| 31       | 30       | 29       | 28       | 27       | 26       | 25         | 24       |  |  |
|----------|----------|----------|----------|----------|----------|------------|----------|--|--|
|          | Reserved |          |          |          |          |            |          |  |  |
| 23       | 22       | 21       | 20       | 19       | 18       | 17         | 16       |  |  |
|          | Reserved |          |          |          |          |            |          |  |  |
| 15       | 14       | 13       | 12       | 11       | 10       | 9          | 8        |  |  |
|          | Reserved |          |          |          |          |            |          |  |  |
| 7        | 6        | 5        | 4        | 3        | 2        | 1          | 0        |  |  |
| RSTS_CPU | Reserved | RSTS_SYS | RSTS_BOD | RSTS_LVR | RSTS_WDT | RSTS_RESET | RSTS_POR |  |  |

| Bits   | Description | Description                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:8] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| [7]    | RSTS_CPU    | CPU Reset Flag  The RSTS_CPU flag Is set by hardware if software writes CPU_RST (IPRSTC1[1]) 1 To reset Cortex®-M0 coreand flash memory controller (FMC).  0 = No reset from CPU.  1 = Cortex®-M0 CPU core and FMC are reset by software setting CPU_RST (IPRSTC1[1]) to 1.  Note: Write 1 to clear this bit to 0.                                                                                                                           |  |  |  |  |  |
| [6]    | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| [5]    | RSTS_SYS    | SYS Reset Flag  The RSTS_SYS flag Is set by the "Reset Signal" from the Cortex®-M0 coreto indicate the previous reset source.  0 = No reset from Cortex®-M0.  1 = The Cortex®-M0 had issued the reset signal to reset the system by writing 1 to bit SYSRESETREQ (AIRCR[2], Application Interrupt and Reset Control Register, address = 0xE000ED0C) in system control registers of Cortex®-M0 kernel.  Note: Write 1 to clear this bit to 0. |  |  |  |  |  |
| [4]    | RSTS_BOD    | Brown-Out Detector Reset Flag The RSTS_BOD flag is set by the "Reset Signal" from the Brown-Out Detector to indicate the previous reset source.  0 = No reset from BOD.  1 = The BOD had issued the reset signal to reset the system.  Note: Write 1 to clear this bit to 0.                                                                                                                                                                 |  |  |  |  |  |
| [3]    | RSTS_LVR    | Low Voltage Reset Flag  The RSTS_LVR flag is set by the "Reset Signal" from the Low-Voltage-Reset controller to                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |

|     |            | Territoria de la compansión de la compan |
|-----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |            | indicate the previous reset source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |            | 0 = No reset from LVR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |            | 1 = The LVR controller had issued the reset signal to reset the system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |            | Note: Write 1 to clear this bit to 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |            | Watchdog Timer Reset Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |            | The RSTS_WDT flag is set by the "Reset Signal" from the watchdog timer or window watchdog timer to indicate the previous reset source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |            | 0 = No reset from watchdog timer or window watchdog timer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| [2] | RSTS_WDT   | 1 = The watchdog timer or window watchdog timer had issued the reset signal to reset the system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |            | Note1: Write 1 to clear this bit to 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |            | <b>Note2:</b> Watchdog Timer register WTRF (WTCR[2]) bit is set if the system has been reset by WDT time-out reset. Window Watchdog Timer register WWDTRF (WWDTSR) bit is set if the system has been reset by WWDT time-out reset.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |            | Reset Pin Reset Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |            | The RSTS_RESET flag is set by the "Reset Signal" from the nRESET Pin to indicate the previous reset source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [1] | RSTS_RESET | 0 = No reset from nRESET pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |            | 1 = The Pin nRESET had issued the reset signal to reset the system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |            | Note: Write 1 to clear this bit to 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |            | Power-On Reset Flag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |            | Power-On Reset Flag  The RSTS_POR Flag is set by the "Reset Signal" from the Power-On Reset (POR) vontroller or bit CHIP_RST (IPRSTC1[0]) to indicate the previous reset source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| [0] | RSTS_POR   | The RSTS_POR Flag is set by the "Reset Signal" from the Power-On Reset (POR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| [0] | RSTS_POR   | The RSTS_POR Flag is set by the "Reset Signal" from the Power-On Reset (POR) vontroller or bit CHIP_RST (IPRSTC1[0]) to indicate the previous reset source.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |



# Peripheral Reset Control Register 1 (IPRSTC1)

| Register | Offset      | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| IPRSTC1  | GCR_BA+0x08 | R/W | Peripheral Reset Control Register 1 | 0x0000_0000 |

| 31 | 30       | 29 | 28   | 27    | 26 | 25 | 24       |  |  |
|----|----------|----|------|-------|----|----|----------|--|--|
|    | Reserved |    |      |       |    |    |          |  |  |
| 23 | 22       | 21 | 20   | 19    | 18 | 17 | 16       |  |  |
|    | Reserved |    |      |       |    |    |          |  |  |
| 15 | 14       | 13 | 12   | 11    | 10 | 9  | 8        |  |  |
|    |          |    | Rese | erved |    |    |          |  |  |
| 7  | 6        | 5  | 4    | 3     | 2  | 1  | 0        |  |  |
|    | Reserved |    |      |       |    |    | CHIP_RST |  |  |

| Bits   | Description |                                                                                                                                                                                                                       |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:2] | Reserved    | Reserved.                                                                                                                                                                                                             |
|        |             | CPU Kernel One-Shot Reset (Write Protect)                                                                                                                                                                             |
|        |             | Setting this bit will only reset the CPU coreand Flash Memory Controller(FMC), and this bit will automatically return 0 after the two clock cycles.                                                                   |
| [1]    | CPU RST     | 0 = CPU normal operation.                                                                                                                                                                                             |
| 1      |             | 1 = CPU one-shot reset.                                                                                                                                                                                               |
|        |             | <b>Note:</b> This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100. |
|        |             | CHIP One-Shot Reset (Write Protect)                                                                                                                                                                                   |
|        |             | Setting this bit will reset the whole chip, including CPU coreand all peripherals, and this bit will automatically return to 0 after the 2 clock cycles.                                                              |
|        |             | The CHIP_RST is the same as the POR reset, all the chip controllers are reset and the chip setting from flash are also reload.                                                                                        |
| [0]    | CHIP_RST    | For the difference between CHIP_RST and SYSRESETREQ, please refer to section 6.2.2.                                                                                                                                   |
|        |             | 0 = CHIP normal operation.                                                                                                                                                                                            |
|        |             | 1 = CHIP one-shot reset.                                                                                                                                                                                              |
|        |             | <b>Note:</b> This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100. |

## Peripheral Reset Control Register 2 (IPRSTC2)

nuvoTon

Setting these bits to 1 will generate asynchronous reset signals to the corresponding module. User needs to set these bits to 0 to release the corresponding module from reset state.

| Register | Offset      | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| IPRSTC2  | GCR_BA+0x0C | R/W | Peripheral Reset Control Register 2 | 0x0000_0000 |

| 31   | 30       | 29       | 28       | 27       | 26        | 25        | 24        |
|------|----------|----------|----------|----------|-----------|-----------|-----------|
|      | Reserved |          | ADC_RST  | Reserved |           |           | CAN0_RST  |
| 23   | 23 22 21 |          |          | 19       | 18        | 17        | 16        |
|      |          | Reserved |          |          | UART2_RST | UART1_RST | UARTO_RST |
| 15   | 14       | 13       | 12       | 11       | 10        | 9         | 8         |
|      | Reserved |          |          | Rese     | erved     | I2C1_RST  | I2C0_RST  |
| 7    | 6        | 5        | 4        | 3        | 2         | 1         | 0         |
| Rese | erved    | TMR3_RST | TMR2_RST | TMR1_RST | TMR0_RST  | GPIO_RST  | Reserved  |

| Bits    | Description |                                                                                             |  |  |  |  |
|---------|-------------|---------------------------------------------------------------------------------------------|--|--|--|--|
| [31:29] | Reserved    | Reserved.                                                                                   |  |  |  |  |
| [28]    | ADC_RST     | ADC Controller Reset  0 = ADC controller normal operation.  1 = ADC controller reset.       |  |  |  |  |
| [27:25] | Reserved    | Reserved.                                                                                   |  |  |  |  |
| [24]    | CAN0_RST    | CAN0 Controller Reset  0 = CAN0 controller normal operation.  1 = CAN0 controller reset.    |  |  |  |  |
| [23:19] | Reserved    | Reserved.                                                                                   |  |  |  |  |
| [18]    | UART2_RST   | UART2 Controller Reset  0 = UART2 controller normal operation.  1 = UART2 controller reset. |  |  |  |  |
| [17]    | UART1_RST   | UART1 Controller Reset  0 = UART1 controller normal operation.  1 = UART1 controller reset. |  |  |  |  |
| [16]    | UART0_RST   | UART0 Controller Reset  0 = UART0 controller normal operation.  1 = UART0 controller reset. |  |  |  |  |
| [15:13] | Reserved    | Reserved.                                                                                   |  |  |  |  |
| [12]    | SPIO_RST    | SPI0 Controller Reset  0 = SPI0 controller normal operation.  1 = SPI0 controller reset.    |  |  |  |  |



| [11:10] | Reserved | Reserved.                                                                                                                    |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------|
| [9]     | I2C1_RST | <ul> <li>I2C1 Controller Reset</li> <li>0 = I2C1 controller normal operation.</li> <li>1 = I2C1 controller reset.</li> </ul> |
| [8]     | I2C0_RST | <ul> <li>I2C0 Controller Reset</li> <li>0 = I2C0 controller normal operation.</li> <li>1 = I2C0 controller reset.</li> </ul> |
| [7:6]   | Reserved | Reserved.                                                                                                                    |
| [5]     | TMR3_RST | Timer3 Controller Reset  0 = Timer3 controller normal operation.  1 = Timer3 controller reset.                               |
| [4]     | TMR2_RST | Timer2 Controller Reset  0 = Timer2 controller normal operation.  1 = Timer2 controller reset.                               |
| [3]     | TMR1_RST | Timer1 Controller Reset  0 = Timer1 controller normal operation.  1 = Timer1 controller reset.                               |
| [2]     | TMR0_RST | Timer0 Controller Reset  0 = Timer0 controller normal operation.  1 = Timer0 controller reset.                               |
| [1]     | GPIO_RST | GPIO Controller Reset  0 = GPIO controller normal operation.  1 = GPIO controller reset.                                     |
| [0]     | Reserved | Reserved.                                                                                                                    |

## Peripheral Reset Control Register 3 (IPRSTC3)

nuvoTon

Setting these bits to 1 will generate asynchronous reset signals to the corresponding module. User needs to set these bits to 0 to release corresponding module from reset state.

| Register | Offset      | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| IPRSTC3  | GCR_BA+0x10 | R/W | Peripheral Reset Control Register 3 | 0x0000_0000 |

| 31       | 30            | 29       | 28 | 27 | 26        | 25        | 24        |  |  |
|----------|---------------|----------|----|----|-----------|-----------|-----------|--|--|
| Reserved |               |          |    |    |           |           |           |  |  |
| 23       | 22            | 21       | 20 | 19 | 18        | 17        | 16        |  |  |
|          | Reserved BPWM |          |    |    |           | PWM1_RST  | PWM0_RST  |  |  |
| 15       | 15 14 13 12   |          |    |    | 10        | 9         | 8         |  |  |
|          |               | Reserved |    |    | UART5_RST | UART4_RST | UART3_RST |  |  |
| 7        | 6             | 5        | 4  | 3  | 2         | 1         | 0         |  |  |
|          | Reserved      |          |    |    |           |           |           |  |  |

| Bits    | Description |                                                                                             |  |  |  |  |
|---------|-------------|---------------------------------------------------------------------------------------------|--|--|--|--|
| [31:20] | Reserved    | Reserved.                                                                                   |  |  |  |  |
| [19]    | BPWM1_RST   | BPWM1 Controller Reset  0 = BPWM1 controller normal operation.  1 = BPWM1 controller reset. |  |  |  |  |
| [18]    | BPWM0_RST   | BPWM0 Controller Reset  0 = BPWM0 controller normal operation.  1 = BPWM0 controller reset. |  |  |  |  |
| [17]    | PWM1_RST    | PWM1 Controller Reset  0 = PWM1 controller normal operation.  1 = PWM1 controller reset.    |  |  |  |  |
| [16]    | PWM0_RST    | PWM0 Controller Reset  0 = PWM0 controller normal operation.  1 = PWM0 controller reset.    |  |  |  |  |
| [15:11] | Reserved    | Reserved.                                                                                   |  |  |  |  |
| [10]    | UART5_RST   | UART5 Controller Reset  0 = UART5 controller normal operation.  1 = UART5 controller reset. |  |  |  |  |
| [9]     | UART4_RST   | UART4 Controller Reset  0 = UART4 controller normal operation.  1 = UART4 controller reset. |  |  |  |  |
| [8]     | UART3_RST   | UART3 Controller Reset 0 = UART3 controller normal operation.                               |  |  |  |  |

| I |       |          | 1 = UART3 controller reset. |
|---|-------|----------|-----------------------------|
| I | [7:0] | Reserved | Reserved.                   |

#### **Brown-out Detector Control Register (BODCR)**

nuvoton

Partial of the BODCR control registers values are initiated by the flash configuration and partial bits are write-protected bit. Programming write-protected bits needs to write "59h", "16h", "88h" to address 0x5000\_0100 to disable register protection. Refer to the register REGWRPROT at address GCR BA+0x100.

| Register | Offset      | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| BODCR    | GCR_BA+0x18 | R/W | Brown-out Detector Control Register | 0x0000_038X |

| 31       | 30                | 29      | 28       | 27        | 26     | 25       | 24     |  |  |
|----------|-------------------|---------|----------|-----------|--------|----------|--------|--|--|
| Reserved |                   |         |          |           |        |          |        |  |  |
| 23       | 22                | 21      | 20       | 19        | 18     | 17       | 16     |  |  |
|          | Reserved          |         |          |           |        |          |        |  |  |
| 15       | 14                | 13      | 12       | 11        | 10     | 9        | 8      |  |  |
| Reserved | Reserved LVRDGSEL |         |          |           |        | BODDGSEL |        |  |  |
| 7        | 6                 | 5       | 4        | 3         | 2      | 1        | 0      |  |  |
| LVR_EN   | BOD_OUT           | BOD_LPM | BOD_INTF | BOD_RSTEN | BOD_VL |          | BOD_EN |  |  |

| Bits    | Description |                                                                                                                                                                                                                       |
|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:15] | Reserved    | Reserved.                                                                                                                                                                                                             |
|         |             | LVR Output De-Glitch Time Select (Write Protect)                                                                                                                                                                      |
|         |             | 000 = Without de-glitch function.                                                                                                                                                                                     |
|         |             | 001 = 4 system clock (HCLK).                                                                                                                                                                                          |
|         |             | 010 = 8 system clock (HCLK).                                                                                                                                                                                          |
|         |             | 011 = 16 system clock (HCLK).                                                                                                                                                                                         |
| [14:12] | LVRDGSEL    | 100 = 32 system clock (HCLK).                                                                                                                                                                                         |
|         |             | 101 = 64 system clock (HCLK).                                                                                                                                                                                         |
|         |             | 110 = 128 system clock (HCLK).                                                                                                                                                                                        |
|         |             | 111 = 256 system clock (HCLK).                                                                                                                                                                                        |
|         |             | <b>Note:</b> This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100. |
| [11]    | Reserved    | Reserved.                                                                                                                                                                                                             |
|         |             | Brown-Out Detector Output De-Glitch Time Select (Write Protect)                                                                                                                                                       |
|         |             | 000 = BOD output is sampled by RC10K clock.                                                                                                                                                                           |
|         |             | 001 = 4 system clock (HCLK).                                                                                                                                                                                          |
|         | 2022051     | 010 = 8 system clock (HCLK).                                                                                                                                                                                          |
| [10:8]  | BODDGSEL    | 011 = 16 system clock (HCLK).                                                                                                                                                                                         |
|         |             | 100 = 32 system clock (HCLK).                                                                                                                                                                                         |
|         |             | 101 = 64 system clock (HCLK).                                                                                                                                                                                         |
|         |             | 110 = 128 system clock (HCLK).                                                                                                                                                                                        |



|       | T         | 144 050 4 1 4 (1014)                                                                                                                                                                                                                                                                                                             |
|-------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |           | 111 = 256 system clock (HCLK).                                                                                                                                                                                                                                                                                                   |
|       |           | <b>Note:</b> This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.                                                                                                            |
|       |           | Low Voltage Reset Enable Control (Write Protect)                                                                                                                                                                                                                                                                                 |
|       |           | The LVR function reset the chip when the input power voltage is lower than LVR circuit setting. LVR function is enabled by default.                                                                                                                                                                                              |
|       |           | 0 = Low Voltage Reset function Disabled.                                                                                                                                                                                                                                                                                         |
| [7]   | LVR_EN    | 1 = Low Voltage Reset function Enabled – After enabling the bit, the LVR function will be active with 100us delay for LVR output stable (default).                                                                                                                                                                               |
|       |           | <b>Note:</b> This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.                                                                                                            |
|       |           | Brown-Out Detector Output Status                                                                                                                                                                                                                                                                                                 |
| [6]   | BOD_OUT   | 0 = Brown-out Detector output status is 0. It means the detected voltage is higher than BOD_VL setting or BOD_EN is 0.                                                                                                                                                                                                           |
|       |           | 1 = Brown-out Detector output status is 1. It means the detected voltage is lower than BOD_VL setting. If the BOD_EN is 0, BOD function disabled, this bit always responds to 0.                                                                                                                                                 |
|       |           | Brown-Out Detector Low Power Mode (Write Protect)                                                                                                                                                                                                                                                                                |
|       |           | 0 = BOD operated in Normal mode (default).                                                                                                                                                                                                                                                                                       |
| [5]   | BOD_LPM   | 1 = BOD Low Power mode Enabled.                                                                                                                                                                                                                                                                                                  |
|       |           | <b>Note1:</b> The BOD consumes about 100 uA in Normal mode, and the low power mode can reduce the current to about 1/10 but slow the BOD response.                                                                                                                                                                               |
|       |           | <b>Note2:</b> This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.                                                                                                           |
|       |           | Brown-Out Detector Interrupt Flag                                                                                                                                                                                                                                                                                                |
|       |           | 0 = Brown-out Detector does not detect any voltage draft at $V_{DD}$ down through or up through the voltage of BOD_VL setting.                                                                                                                                                                                                   |
| [4]   | BOD_INTF  | 1 = When Brown-out Detector detects the $V_{DD}$ is dropped down through the voltage of BOD_VL setting or the $V_{DD}$ is raised up through the voltage of BOD_VL setting, this bit is set to 1 and the Brown-out interrupt is requested if Brown-out interrupt is enabled.                                                      |
|       |           | Note: Write 1 to clear this bit to 0.                                                                                                                                                                                                                                                                                            |
|       |           | Brown-Out Reset Enable Control (Write Protect)                                                                                                                                                                                                                                                                                   |
|       |           | 0 = Brown-out "INTERRUPT" function Enabled.                                                                                                                                                                                                                                                                                      |
|       |           | 1 = Brown-out "RESET" function Enabled.                                                                                                                                                                                                                                                                                          |
|       |           | While the Brown-out Detector function is enabled (BOD_EN high) and BOD reset function is enabled (BOD_RSTEN high), BOD will assert a signal to reset chip when the detected voltage is lower than the threshold (BOD_OUT high).                                                                                                  |
| [3]   | BOD_RSTEN | Note1: While the BOD function is enabled (BOD_EN high) and BOD interrupt function is enabled (BOD_RSTEN low), BOD will assert an interrupt if BOD_OUT is high. BOD interrupt will keep till to the BOD_EN set to 0. BOD interrupt can be blocked by disabling the NVIC BOD interrupt or disabling BOD function (set BOD_EN low). |
|       |           | <b>Note2:</b> The default value is set by flash controller user configuration register CBORST (CONFIG0[20]) bit.                                                                                                                                                                                                                 |
|       |           | <b>Note3:</b> This bit is the protected bit. It means programming this needs to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.                                                                                                        |
|       |           | Brown-Out Detector Threshold Voltage Selection (Write Protect)                                                                                                                                                                                                                                                                   |
| [2:1] | BOD_VL    | The default value is set by flash memory controller user configuration register CBOV (CONFIG0[22:21]) bit.                                                                                                                                                                                                                       |
|       |           | 00 = Brown-out voltage is 2.2V.                                                                                                                                                                                                                                                                                                  |
| L     | 1         |                                                                                                                                                                                                                                                                                                                                  |

|     |        | 01 = Brown-out voltage is 2.7V.                                                                                                                                                                                          |  |  |  |
|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     |        | 10 = Brown-out voltage is 3.7V.                                                                                                                                                                                          |  |  |  |
|     |        | 11 = Brown-out voltage is 4.4V.                                                                                                                                                                                          |  |  |  |
|     |        | <b>Note:</b> This bit is the protected bit. It means programming this needs to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100. |  |  |  |
|     |        | Brown-Out Detector Enable Control (Write Protect)                                                                                                                                                                        |  |  |  |
|     |        | The default value is set by flash memory controller user configuration register CBODEN (CONFIG0[23]) bit.                                                                                                                |  |  |  |
| [0] | BOD EN | 0 = Brown-out Detector function Disabled.                                                                                                                                                                                |  |  |  |
| [O] | BOD_EN | 1 = Brown-out Detector function Enabled.                                                                                                                                                                                 |  |  |  |
|     |        | Note: This bit is the protected bit. It means programming this needs to write "59h", "16h",                                                                                                                              |  |  |  |



# Power-on-Reset Control Register (PORCR)

| Register | Offset      | R/W | Description                        | Reset Value |
|----------|-------------|-----|------------------------------------|-------------|
| PORCR    | GCR_BA+0x24 | R/W | Power-on-Reset Controller Register | 0x0000_XXXX |

| 31       | 30              | 29 | 28     | 27     | 26 | 25 | 24 |  |  |
|----------|-----------------|----|--------|--------|----|----|----|--|--|
| Reserved |                 |    |        |        |    |    |    |  |  |
| 23       | 22              | 21 | 20     | 19     | 18 | 17 | 16 |  |  |
|          | Reserved        |    |        |        |    |    |    |  |  |
| 15       | 14              | 13 | 12     | 11     | 10 | 9  | 8  |  |  |
|          |                 |    | POR_DI | S_CODE |    |    |    |  |  |
| 7        | 7 6 5 4 3 2 1 0 |    |        |        |    |    |    |  |  |
|          |                 |    | POR_DI | S_CODE |    |    |    |  |  |

| Bits    | Description  | escription                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|---------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:16] | Reserved     | Reserved.                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| [15:0]  | POR_DIS_CODE | Power-On-Reset Enable Control (Write Protect)                                                                                                                                                                                                                              |  |  |  |  |  |
|         |              | When powered on, the POR circuit generates a reset signal to reset the whole chip function, but noise on the power may cause the POR active again. User can disable internal POR circuit to avoid unpredictable noise to cause chip reset by writing 0x5AA5 to this field. |  |  |  |  |  |
|         |              | The POR function will be active again when this field is set to another value or chip is reset by other reset source, including:                                                                                                                                           |  |  |  |  |  |
|         |              | nRESET, Watchdog Timer reset, Window Watchdog Timer reset, LVR reset, BOD reset, ICE reset command and the software-chip reset function                                                                                                                                    |  |  |  |  |  |
|         |              | <b>Note:</b> This bit is the protected bit. It means programming this needs to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.                                                   |  |  |  |  |  |

# **VREF Control Register (VREFCR)**

| Register | Offset      | R/W | Description           | Reset Value |
|----------|-------------|-----|-----------------------|-------------|
| VREFCR   | GCR_BA+0x28 | R/W | VREF Control Register | 0x0000_0010 |

| 31             | 30       | 29 | 28   | 27    | 26   | 25    | 24 |
|----------------|----------|----|------|-------|------|-------|----|
|                |          |    | Rese | erved |      |       |    |
| 23             | 22       | 21 | 20   | 19    | 18   | 17    | 16 |
|                | Reserved |    |      |       |      |       |    |
| 15             | 14       | 13 | 12   | 11    | 10   | 9     | 8  |
|                |          |    | Rese | erved |      |       |    |
| 7              | 6        | 5  | 4    | 3     | 2    | 1     | 0  |
| Reserved ADC_V |          |    |      |       | Rese | erved |    |

| Bits   | Description | Description                                                                                                                                                                                                    |  |  |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:5] | Reserved    | Reserved.                                                                                                                                                                                                      |  |  |
|        |             | ADC VREF Path Control (Write Protect)  0 = ADC VREF is from V <sub>REF</sub> pin.  1 = ADC VREF is from AV <sub>DD</sub> .                                                                                     |  |  |
| [4]    | ADC_VREFSEL | Note: This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100. |  |  |
| [3:0]  | Reserved    | Reserved.                                                                                                                                                                                                      |  |  |



# **GPIOA Multiple Function Pin and Input Type Control Register (GPA\_MFP)**

| Register | Offset      | R/W | Description                                             | Reset Value |
|----------|-------------|-----|---------------------------------------------------------|-------------|
| GPA_MFP  | GCR_BA+0x30 | R/W | GPIOA Multiple Function and Input Type Control Register | 0x0000_0000 |

| 31 | 30      | 29 | 28   | 27   | 26 | 25 | 24 |
|----|---------|----|------|------|----|----|----|
|    |         |    | GPA_ | TYPE |    |    |    |
| 23 | 22      | 21 | 20   | 19   | 18 | 17 | 16 |
|    |         |    | GPA_ | TYPE |    |    |    |
| 15 | 14      | 13 | 12   | 11   | 10 | 9  | 8  |
|    | GPA_MFP |    |      |      |    |    |    |
| 7  | 6       | 5  | 4    | 3    | 2  | 1  | 0  |
|    | GPA_MFP |    |      |      |    |    |    |

| Bits    | Description |                                                                                                                                                                                                                                                                                                             |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:16] | GPA_TYPEn   | Trigger Function Selection  0 = GPIOA[15:0] I/O input Schmitt Trigger function Disabled.  1 = GPIOA[15:0] I/O input Schmitt Trigger function Enabled.                                                                                                                                                       |
| [15]    | GPA_MFP15   | PA.15 Pin Function Selection  Bit GPA_MFP15 determines the PA.15 function.  0 = GPIO function is selected.  1 = PWM0_CH3 function is selected.                                                                                                                                                              |
| [14]    | GPA_MFP14   | PA.14 Pin Function Selection Bit GPA_MFP14 determines the PA.14 function.  0 = GPIO function is selected.  1 = PWM0_CH2 function is selected.                                                                                                                                                               |
| [13]    | GPA_MFP13   | PA.13 Pin Function Selection  Bits PA13_UR5TXD (ALT_MFP4[9]) and GPA_MFP13 determine the PA.13 function.  (PA13_UR5TXD, GPA_MFP13) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = PWM0_CH1 function is selected.  (1, 1) = UART5_TXD function is selected. |
| [12]    | GPA_MFP12   | PA.12 Pin Function Selection  Bits PA12_UR5RXD (ALT_MFP4[8]) and GPA_MFP12 determine the PA.12 function.  (PA12_UR5RXD, GPA_MFP12) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = PWM0_CH0 function is selected.  (1, 1) = UART5_RXD function is selected. |

| [11] | GPA_MFP11 | PA.11 Pin Function Selection Bits PA11_PWM13 (ALT_MFP3[9]) and GPA_MFP11 determine the PA.11 function.  (PA11_PWM13, GPA_MFP11) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = I2C1_SCL function is selected.  (1, 1) = PWM1_CH3 function is selected. |
|------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [10] | GPA_MFP10 | PA.10 Pin Function Selection Bits PA10_PWM12 (ALT_MFP3[8]) and GPA_MFP10 determine the PA.10 function.  (PA10_PWM12, GPA_MFP10) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = I2C1_SDA function is selected.  (1, 1) = PWM1_CH2 function is selected. |
| [9]  | GPA_MFP9  | PA.9 Pin Function Selection  Bits PA9_UR1CTS (ALT_MFP4[1]) and GPA_MFP9 determine the PA.9 function.  (PA9_UR1CTS, GPA_MFP9) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = I2C0_SCL function is selected.  (1, 1) = UART1_nCTS function is selected.  |
| [8]  | GPA_MFP8  | PA.8 Pin Function Selection Bits PA8_UR1RTS (ALT_MFP4[0]) and GPA_MFP8 determine the PA.8 function.  (PA8_UR1RTS, GPA_MFP8) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = I2C0_SDA function is selected.  (1, 1) = UART1_nRTS function is selected.   |
| [7]  | GPA_MFP7  | PA.7 Pin Function Selection Bits PA7_VREF (ALT_MFP4[14]) and GPA_MFP7 determine the PA.7 function.  (PA7_VREF, GPA_MFP7) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = ADC7 function is selected.  (1, 1) = Vref function is selected.                |
| [6]  | GPA_MFP6  | PA.6 Pin Function Selection Bits PA6_UR3TXD (ALT_MFP4[5]) and GPA_MFP6 determine the PA.6 function.  (PA6_UR3TXD, GPA_MFP6) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = ADC6 function is selected.  (1, 1) = UART3_TXD function is selected.        |
| [5]  | GPA_MFP5  | PA.5 Pin Function Selection Bits PA5_UR3RXD (ALT_MFP4[4]) and GPA_MFP5 determine the PA.5 function.  (PA5_UR3RXD, GPA_MFP5) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = ADC5 function is selected.  (1, 1) = UART3_RXD function is selected.        |

| _   |               |                                                                                                                              |
|-----|---------------|------------------------------------------------------------------------------------------------------------------------------|
|     |               | PA.4 Pin Function Selection                                                                                                  |
| [4] | GPA_MFP4      | Bit GPA_MFP4 determines the PA.4 function.                                                                                   |
| [4] | OI A_IIII 1 4 | 0 = GPIO function is selected.                                                                                               |
|     |               | 1 = ADC4 function is selected.                                                                                               |
|     |               | PA.3 Pin Function Selection                                                                                                  |
|     |               | Bits PA3_PWM11 (ALT_MFP3[7]), PA3_UR3RXD (ALT_MFP4[2]) and GPA_MFP3 determine the PA.3 function.                             |
| [3] | GPA MFP3      | (PA3_PWM11, PA3_UR3RXD, GPA_MFP3) value and function mapping is as following list.                                           |
| ات  | GI A_IIII I G | (0, 0, 0) = GPIO function is selected.                                                                                       |
|     |               | (0, 0, 1) = ADC3 function is selected.                                                                                       |
|     |               | (0, 1, 1) = UART3_RXD function is selected.                                                                                  |
|     |               | (1, 0, 1) = PWM1_CH1 function is selected.                                                                                   |
|     |               | PA.2 Pin Function Selection                                                                                                  |
|     |               | Bits PA2_PWM10 (ALT_MFP3[6]), PA2_UR3TXD (ALT_MFP4[3]) and GPA_MFP2 determine the PA.2 function.                             |
| [2] | GPA MFP2      | (PA2_PWM10, PA2_UR3TXD, GPA_MFP2) value and function mapping is as following list.                                           |
|     | _             | (0, 0, 0) = GPIO function is selected.                                                                                       |
|     |               | (0, 0, 1) = ADC2 function is selected.                                                                                       |
|     |               | (0, 1, 1) = UART3_TXD function is selected.                                                                                  |
|     |               | (1, 0, 1) = PWM1_CH0 function is selected.                                                                                   |
|     |               | PA.1 Pin Function Selection                                                                                                  |
|     |               | Bits PA1_PWM05 (ALT_MFP3[5]), PA1_UR5RXD (ALT_MFP4[6]), PA1_I2C1SDA (ALT_MFP4[13]) and GPA_MFP1 determine the PA.1 function. |
|     |               | (PA1_PWM05, PA1_UR5RXD, PA1_I2C1SDA, GPA_MFP1) value and function mapping is as following list.                              |
| [1] | GPA_MFP1      | (0, 0, 0, 0) = GPIO function is selected.                                                                                    |
|     |               | (0, 0, 0, 1) = ADC1 function is selected.                                                                                    |
|     |               | $(0, 0, 1, 1) = I2C1\_SDA$ function is selected.                                                                             |
|     |               | $(0, 1, 0, 1) = UART5_RXD$ function is selected.                                                                             |
|     |               | (1, 0, 0, 1) = PWM0_CH5 function is selected.                                                                                |
|     |               | PA.0 Pin Function Selection                                                                                                  |
|     |               | Bits PA0_PWM04 (ALT_MFP3[4]), PA0_UR5TXD (ALT_MFP4[7]), PA0_I2C1SCL (ALT_MFP4[12]) and GPA_MFP0 determine the PA.0 function. |
|     |               | (PA0_PWM04, PA0_UR5TXD, PA0_I2C1SCL, GPA_MFP0) value and function mapping is as following list.                              |
| [0] | GPA_MFP0      | (0, 0, 0, 0) = GPIO function is selected.                                                                                    |
|     |               | (0, 0, 0, 1) = ADC0 function is selected.                                                                                    |
|     |               | $(0, 0, 1, 1) = I2C1\_SCL$ function is selected.                                                                             |
|     |               | (0, 1, 0, 1) = UART5_TXD function is selected.                                                                               |
|     |               | (1, 0, 0, 1) = PWM0_CH4 function is selected.                                                                                |



# **GPIOB Multiple Function Pin and Input Type Control Register (GPB\_MFP)**

| Register | Offset      | R/W | Description                                             | Reset Value |
|----------|-------------|-----|---------------------------------------------------------|-------------|
| GPB_MFP  | GCR_BA+0x34 | R/W | GPIOB Multiple Function and Input Type Control Register | 0x0000_0000 |

| 31 | 30      | 29 | 28   | 27   | 26 | 25 | 24 |
|----|---------|----|------|------|----|----|----|
|    |         |    | GPB_ | TYPE |    |    |    |
| 23 | 22      | 21 | 20   | 19   | 18 | 17 | 16 |
|    |         |    | GPB_ | TYPE |    |    |    |
| 15 | 14      | 13 | 12   | 11   | 10 | 9  | 8  |
|    |         |    | GPB. | _MFP |    |    |    |
| 7  | 6       | 5  | 4    | 3    | 2  | 1  | 0  |
|    | GPB_MFP |    |      |      |    |    |    |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:16] | GPB_TYPEn   | Trigger Function Selection  0 = GPIOB[15:0] I/O input Schmitt Trigger function Disabled.  1 = GPIOB[15:0] I/O input Schmitt Trigger function Enabled.                                                                                                                                                                                                                                                                                                                                    |
| [15]    | GPB_MFP15   | PB.15 Pin Function Selection  Bits PB15_BPWM15 (ALT_MFP3[23]), PB15_T0EX (ALT_MFP[24]), PB15_TM0 (ALT_MFP2[2]) and GPB_MFP15 determine the PB.15 function.  (PB15_BPWM15, PB15_T0EX, PB15_TM0, GPB_MFP15) value and function mapping is as following list.  (0, 0, 0, 0) = GPIO function is selected.  (0, 0, 0, 1) = INT1 function is selected.  (0, 0, 1, 1) = TM0 function is selected.  (0, 1, 0, 1) = TM0_EXT function is selected.  (1, 0, 1, 1) = BPWM1_CH5 function is selected. |
| [14]    | GPB_MFP14   | PB.14 Pin Function Selection Bit GPB_MFP14 determines the PB.14 function.  0 = GPIO function is selected.  1 = INT0 function is selected.                                                                                                                                                                                                                                                                                                                                                |
| [13]    | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| [12]    | GPB_MFP12   | PB.12 Pin Function Selection Bits PB12_BPWM13 (ALT_MFP3[21]) and GPB_MFP12 determine the PB.12 function.  (PB12_BPWM13, GPB_MFP12) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = CLKO function is selected.  (1, 1) = BPWM1_CH3 function is selected.                                                                                                                                                                                  |
| [11]    | GPB_MFP11   | PB.11 Pin Function Selection Bits PB11_PWM04 (ALT_MFP3[24]) and GPB_MFP11 determine the PB.11 function.                                                                                                                                                                                                                                                                                                                                                                                  |

|      |           | (PB11_PWM04, GPB_MFP11) value and function mapping is as following list.                                                 |
|------|-----------|--------------------------------------------------------------------------------------------------------------------------|
|      |           | (0, 0) = GPIO function is selected.                                                                                      |
|      |           | (0, 1) = TM3 function is selected.                                                                                       |
|      |           | (1, 1) = PWM0_CH4 function is selected.                                                                                  |
|      |           | PB.10 Pin Function Selection                                                                                             |
|      |           | Bit GPB_MFP10 determines the PB.10 function.                                                                             |
| [10] | GPB_MFP10 | 0 = GPIO function is selected.                                                                                           |
|      |           | 1 = TM2 function is selected.                                                                                            |
|      |           | PB.9 Pin Function Selection                                                                                              |
|      |           | Bit GPB_MFP9 determines the PB.9 function.                                                                               |
| [9]  | GPB_MFP9  | 0 = GPIO function is selected.                                                                                           |
|      |           | 1 = TM1 function is selected.                                                                                            |
|      |           | PB.8 Pin Function Selection                                                                                              |
|      |           | Bits PB8_BPWM12 (ALT_MFP3[20]), PB8_CLKO (ALT_MFP[29]) and GPB_MFP8 determine the PB.8 function.                         |
|      |           | (PB8_BPWM12, PB8_CLKO, GPB_MFP8) value and function mapping is as following list.                                        |
| [8]  | GPB_MFP8  | (0, 0, 0) = GPIO function is selected.                                                                                   |
|      |           | (0, 0, 1) = TM0 function is selected.                                                                                    |
|      |           | (0, 1, 1) = CLKO function is selected.                                                                                   |
|      |           | (1, 0, 1) = BPWM1_CH2 function is selected.                                                                              |
|      |           | PB.7 Pin Function Selection                                                                                              |
| [-7] | ODD MEDZ  | Bit GPB_MFP7 determines the PB.7 function.                                                                               |
| [7]  | GPB_MFP7  | 0 = GPIO function is selected.                                                                                           |
|      |           | 1 = UART1_nCTS function is selected.                                                                                     |
|      |           | PB.6 Pin Function Selection                                                                                              |
| 101  | ODD MEDO  | Bit GPB_MFP6 determines the PB.6 function.                                                                               |
| [6]  | GPB_MFP6  | 0 = GPIO function is selected.                                                                                           |
|      |           | 1 = UART1_nRTS function is selected.                                                                                     |
|      |           | PB 5 Pin Function Selection                                                                                              |
| re1  | ODD MEDE  | Bit GPB_MFP5 determines the PB.5 function.                                                                               |
| [5]  | GPB_MFP5  | 0 = GPIO function is selected.                                                                                           |
|      |           | 1 = UART1_TXD function is selected.                                                                                      |
|      |           | PB.4 Pin Function Selection                                                                                              |
| F 41 | CDD MED4  | Bit GPB_MFP4 determines the PB.4 function.                                                                               |
| [4]  | GPB_MFP4  | 0 = GPIO function is selected.                                                                                           |
|      |           | 1 = UART1_RXD function is selected.                                                                                      |
|      |           | PB.3 Pin Function Selection                                                                                              |
|      |           | Bits PB3_TM3 (ALT_MFP2[5]), PB3_PWM1BK0 (ALT_MFP3[30]), PB3_T3EX (ALT_MFP[27]) and GPB_MFP3 determine the PB.3 function. |
|      |           | (PB3_TM3, PB3_PWM1BK0, PB3_T3EX, GPB_MFP3) value and function mapping is as following list.                              |
| [3]  | GPB_MFP3  | (0, 0, 0, 0) = GPIO function is selected.                                                                                |
|      |           | $(0, 0, 0, 1) = UART0_nCTS$ function is selected.                                                                        |
|      |           | (0, 0, 1, 1) = TM3_EXT function is selected.                                                                             |
|      |           | (0, 1, 0, 1) = PWM1_BRAKE0 function is selected.                                                                         |
|      |           | (1, 0, 0, 1) = TM3 function is selected.                                                                                 |

|     |            | PB.2 Pin Function Selection                                                                                              |
|-----|------------|--------------------------------------------------------------------------------------------------------------------------|
|     |            | Bits PB2_TM2 (ALT_MFP2[4]), PB2_PWM1BK1 (ALT_MFP3[31]), PB2_T2EX (ALT_MFP[26]) and GPB_MFP2 determine the PB.2 function. |
|     |            | (PB2_TM2, PB2_PWM1BK1, PB2_T2EX, GPB_MFP2) value and function mapping is as following list.                              |
| [2] | GPB_MFP2   | (0, 0, 0, 0) = GPIO function is selected.                                                                                |
|     |            | (0, 0, 0, 1) = UART0_nRTS function is selected.                                                                          |
|     |            | (0, 0, 1, 1) = TM2_EXT function is selected.                                                                             |
|     |            | (0, 1, 0, 1) = PWM1_BRAKE1 function is selected.                                                                         |
|     |            | (1, 0, 0, 1) = TM2 function is selected.                                                                                 |
|     | GPB_MFP1   | PB.1 Pin Function Selection                                                                                              |
| [4] |            | Bit GPB_MFP1 determines the PB.1 function.                                                                               |
| [1] |            | 0 = GPIO function is selected.                                                                                           |
|     |            | 1 = UART0_TXD function is selected.                                                                                      |
| [0] |            | PB.0 Pin Function Selection                                                                                              |
|     | GPB MFP0   | Bit GPB_MFP0 determines the PB.0 function.                                                                               |
| [0] | GED_INIEED | 0 = GPIO function is selected.                                                                                           |
|     |            | 1 = UART0_RXD function is selected.                                                                                      |



# **GPIOC Multiple Function Pin and input Type Control Register (GPC\_MFP)**

| Register | Offset      | R/W | Description                                             | Reset Value |
|----------|-------------|-----|---------------------------------------------------------|-------------|
| GPC_MFP  | GCR_BA+0x38 | R/W | GPIOC Multiple Function and Input Type Control Register | 0x0000_0000 |

| 31 | 30       | 29 | 28   | 27   | 26 | 25 | 24 |  |  |
|----|----------|----|------|------|----|----|----|--|--|
|    | GPC_TYPE |    |      |      |    |    |    |  |  |
| 23 | 22       | 21 | 20   | 19   | 18 | 17 | 16 |  |  |
|    | GPC_TYPE |    |      |      |    |    |    |  |  |
| 15 | 14       | 13 | 12   | 11   | 10 | 9  | 8  |  |  |
|    | GPC_MFP  |    |      |      |    |    |    |  |  |
| 7  | 6        | 5  | 4    | 3    | 2  | 1  | 0  |  |  |
|    |          |    | GPC. | _MFP |    |    |    |  |  |

| Bits    | Description |                                                                                                                                                       |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:16] | GPC_TYPEn   | Trigger Function Selection  0 = GPIOC[15:0] I/O input Schmitt Trigger function Disabled.  1 = GPIOC[15:0] I/O input Schmitt Trigger function Enabled. |
| [15:12] | Reserved    | Reserved.                                                                                                                                             |
| [11]    | GPC_MFP11   | PC.11 Pin Function Selection Bit GPC_MFP11 determines the PC.11 function.  0 = GPIO function is selected.  1 = PWM1_BRAKE1 function is selected.      |
| [10]    | GPC_MFP10   | PC.10 Pin Function Selection Bit GPC_MFP10 determines the PC.10 function.  0 = GPIO function is selected.  1 = PWM1_BRAKE0 function is selected.      |
| [9]     | GPC_MFP9    | PC.9 Pin Function Selection Bit GPC_MFP9 determines the PC.9 function.  0 = GPIO function is selected.  1 = PWM0_BRAKE1 function is selected.         |
| [8]     | GPC_MFP8    | PC.8 Pin Function Selection Bit GPC_MFP8 determines the PC.8 function. 0 = GPIO function is selected. 1 = PWM0_BRAKE0 function is selected.           |

| [7]   | GPC_MFP7 | PC.7 Pin Function Selection  Bits PC7_PWM0BK1 (ALT_MFP3[29]), PC7_I2C0SCL (ALT_MFP4[11]) and GPC_MFP7 determine the PC.7 function.  (PC7_PWM0BK1, PC7_I2C0SCL, GPC_MFP7) value and function mapping is as following list.  (0, 0, 0) = GPIO function is selected.  (0, 0, 1) = UART4_RXD function is selected.  (0, 1, 1) = I2C0_SCL function is selected.  (1, 0, 1) = PWM0_BRAKE1 function is selected. |
|-------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [6]   | GPC_MFP6 | PC.6 Pin Function Selection  Bits PC6_PWM0BK0 (ALT_MFP3[28]), PC6_I2C0SDA (ALT_MFP4[10]) and GPC_MFP6 determine the PC.6 function.  (PC6_PWM0BK0, PC6_I2C0SDA, GPC_MFP6) value and function mapping is as following list.  (0, 0, 0) = GPIO function is selected.  (0, 0, 1) = UART4_TXD function is selected.  (0, 1, 1) = I2C0_SDA function is selected.  (1, 0, 1) = PWM0_BRAKE0 function is selected. |
| [5:4] | Reserved | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                 |
| [3]   | GPC_MFP3 | PC.3 Pin Function Selection Bits PC3_BPWM03 (ALT_MFP3[15]) and GPC_MFP3 determine the PC.3 function.  (PC3_BPWM03, GPC_MFP3) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = SPI0_MOSI0 function is selected.  (1, 1) = BPWM0_CH3 function is selected.                                                                                                   |
| [2]   | GPC_MFP2 | PC.2 Pin Function Selection Bits PC2_BPWM02 (ALT_MFP3[14]) and GPC_MFP2 determine the PC.2 function.  (PC2_BPWM02, GPC_MFP2) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = SPI0_MISO0 function is selected.  (1, 1) = BPWM0_CH2 function is selected.                                                                                                   |
| [1]   | GPC_MFP1 | PC.1 Pin Function Selection  Bits PC1_BPWM01 (ALT_MFP3[13]) and GPC_MFP1 determine the PC.1 function.  (PC1_BPWM01, GPC_MFP1) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = SPI0_CLK function is selected.  (1, 1) = BPWM0_CH1 function is selected.                                                                                                    |
| [0]   | GPC_MFP0 | PC.0 Pin Function Selection Bits PC0_BPWM00 (ALT_MFP3[12]) and GPC_MFP0 determine the PC.0 function.  (PC0_BPWM00, GPC_MFP0) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = SPI0_SS0 function is selected.  (1, 1) = BPWM0_CH0 function is selected.                                                                                                     |



# **GPIOD Multiple Function Pin and Input Type Control Register (GPD\_MFP)**

| Register | Offset      | R/W | Description                                             | Reset Value |
|----------|-------------|-----|---------------------------------------------------------|-------------|
| GPD_MFP  | GCR_BA+0x3C | R/W | GPIOD Multiple Function and Input Type Control Register | 0x0000_0000 |

| 31 | 30       | 29 | 28   | 27   | 26 | 25 | 24 |  |  |
|----|----------|----|------|------|----|----|----|--|--|
|    | GPD_TYPE |    |      |      |    |    |    |  |  |
| 23 | 22       | 21 | 20   | 19   | 18 | 17 | 16 |  |  |
|    |          |    | GPD_ | TYPE |    |    |    |  |  |
| 15 | 14       | 13 | 12   | 11   | 10 | 9  | 8  |  |  |
|    | GPD_MFP  |    |      |      |    |    |    |  |  |
| 7  | 6        | 5  | 4    | 3    | 2  | 1  | 0  |  |  |
|    | GPD_MFP  |    |      |      |    |    |    |  |  |

| Bits    | Description | Description                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:16] | GPD_TYPEn   | Trigger Function Selection  0 = GPIOD[15:0] I/O input Schmitt Trigger function Disabled.  1 = GPIOD[15:0] I/O input Schmitt Trigger function Enabled.                                                                                                                                                        |  |  |  |  |  |  |
| [15]    | GPD_MFP15   | PD.15 Pin Function Selection Bits PD15_BPWM04 (ALT_MFP3[16]) and GPD_MFP15 determine the PD.15 function.  (PD15_BPWM04, GPD_MFP15) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = UART2_TXD function is selected.  (1, 1) = BPWM0_CH4 function is selected. |  |  |  |  |  |  |
| [14]    | GPD_MFP14   | PD.14 Pin Function Selection Bits PD14_BPWM05 (ALT_MFP3[17]) and GPD_MFP14 determine the PD.14 function.  (PD14_BPWM05, GPD_MFP14) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = UART2_RXD function is selected.  (1, 1) = BPWM0_CH5 function is selected. |  |  |  |  |  |  |
| [13:8]  | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| [7]     | GPD_MFP7    | PD.7 Pin Function Selection Bits PD7_BPWM10 (ALT_MFP3[18]) and GPD_MFP7 determine the PD.7 function.  (PD7_BPWM10, GPD_MFP7) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = CAN0_TXD function is selected.  (1, 1) = BPWM1_CH0 function is selected.        |  |  |  |  |  |  |
| [6]     | GPD_MFP6    | PD.6 Pin Function Selection Bits PD6_BPWM11 (ALT_MFP3[19]) and GPD_MFP6 determine the PD.6 function. (PD6_BPWM11, GPD_MFP6) value and function mapping is as following list.                                                                                                                                 |  |  |  |  |  |  |



| [5:0] | Reserved | Reserved.                                |
|-------|----------|------------------------------------------|
|       |          | (1, 1) = BPWM1_CH1 function is selected. |
|       |          | (0, 1) = CAN0_RXD function is selected.  |
|       |          | (0, 0) = GPIO function is selected.      |



# **GPIOE Multiple Function Pin and Input Type Control Register (GPE\_MFP)**

| Register | Offset      | R/W | Description                                             | Reset Value |
|----------|-------------|-----|---------------------------------------------------------|-------------|
| GPE_MFP  | GCR_BA+0x40 | R/W | GPIOE Multiple Function and Input Type Control Register | 0x0000_0000 |

| 31   | 30                         | 29        | 28   | 27       | 26 | 25 | 24 |  |  |  |
|------|----------------------------|-----------|------|----------|----|----|----|--|--|--|
|      | Reserved                   |           |      |          |    |    |    |  |  |  |
| 23   | 22                         | 21        | 20   | 19       | 18 | 17 | 16 |  |  |  |
| Rese | erved                      | GPE_TYPE5 |      | Reserved |    |    |    |  |  |  |
| 15   | 14                         | 13        | 12   | 11       | 10 | 9  | 8  |  |  |  |
|      |                            |           | Rese | erved    |    |    |    |  |  |  |
| 7    | 6                          | 5         | 4    | 3        | 2  | 1  | 0  |  |  |  |
| Rese | Reserved GPE_MFP5 Reserved |           |      |          |    |    |    |  |  |  |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:22] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| [21]    | GPE_TYPE5   | Trigger Function Selection  0 = GPIOE[5] I/O input Schmitt Trigger function Disabled.  1 = GPIOE[5] I/O input Schmitt Trigger function Enabled.                                                                                                                                                                                                                                 |  |  |  |
| [20:6]  | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
| [5]     | GPE_MFP5    | PE.5 Pin Function Selection  Bits PE5_T1EX (ALT_MFP[25]), PE5_TM1 (ALT_MFP2[3]) and GPE_MFP5 determine the PE.5 function.  (PE5_T1EX, PE5_TM1, GPE_MFP5) value and function mapping is as following list.  (0, 0, 0) = GPIO function is selected.  (0, 0, 1) = PWM0_CH5 function is selected.  (0, 1, 1) = TM1 function is selected.  (1, 0, 1) = TM1_EXT function is selected. |  |  |  |
| [4:0]   | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |



## **GPIOF Multiple Function Pin and Input Type Control Register (GPF\_MFP)**

| Register | Offset      | R/W | Description                                             | Reset Value |
|----------|-------------|-----|---------------------------------------------------------|-------------|
| GPF_MFP  | GCR_BA+0x44 | R/W | GPIOF Multiple Function and Input Type Control Register | 0x0000_00CX |

Note: The default value of GPF\_MFP[7]/GPF\_MFP[6] is 1. The default value of GPF\_MFP[1]/GPF\_MFP[0] is decided by user configuration CGPFMFP (CONFIG0[27]).

| 31            | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |
|---------------|----------|----|----|----|----|----|----|--|
| Reserved      |          |    |    |    |    |    |    |  |
| 23            | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |
|               | GPF_TYPE |    |    |    |    |    |    |  |
| 15            | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |
|               | Reserved |    |    |    |    |    |    |  |
| 7 6 5 4 3 2 1 |          |    |    |    |    |    |    |  |
|               | GPF_MFP  |    |    |    |    |    |    |  |

| Bits    | Description |                                                                                                                                                                                                                                                                                                    |
|---------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:25] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                          |
| [24:16] | GPF_TYPEn   | Trigger Function Selection  0 = GPIOF[8:0] I/O input Schmitt Trigger function Disabled.  1 = GPIOF[8:0] I/O input Schmitt Trigger function Enabled.                                                                                                                                                |
| [15:9]  | Reserved    | Reserved.                                                                                                                                                                                                                                                                                          |
| [8]     | GPF_MFP8    | PF.8 Pin Function Selection  Bit PF8_BPWM14 (ALT_MFP3[22]), GPF_MFP8 determines the PF.8 function.  (PF8_BPWM14, GPF_MFP8) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = CLKO function is selected.  (1, 0) = BPWM1_CH4 function is selected.    |
| [7]     | GPF_MFP7    | PF.7 Pin Function Selection Bit GPF_MFP7 determines the PF.7 function.  0 = GPIO function is selected.  1 = ICE_DAT function is selected.                                                                                                                                                          |
| [6]     | GPF_MFP6    | PF.6 Pin Function Selection  Bit GPF_MFP6 determines the PF.6 function.  0 = GPIO function is selected.  1 = ICE_CLK function is selected.                                                                                                                                                         |
| [5]     | GPF_MFP5    | PF.5 Pin Function Selection Bits PF5_PWM15 (ALT_MFP3[11]) and GPF_MFP5 determine the PF.5 function.  (PF5_PWM15, GPF_MFP5) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = I2C0_SCL function is selected.  (1, 1) = PWM1_CH5 function is selected. |

| [4]   | GPF_MFP4 | PF.4 Pin Function Selection  Bits PF4_PWM14 (ALT_MFP3[10]) and GPF_MFP4 determine the PF.4 function.  (PF4_PWM14, GPF_MFP4) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = I2C0_SDA function is selected.  (1, 1) = PWM1_CH4 function is selected. |
|-------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [3:2] | Reserved | Reserved.                                                                                                                                                                                                                                                                                           |
| [1]   | GPF_MFP1 | PF.1 Pin Function Selection  Bit GPF_MFP1 determine the PF.1 function.  0 = GPIO function is selected.  1 = XT1_IN function is selected.  Note: This bit is read only and is decided by user configuration CGPFMFP (CONFIG0[27]).                                                                   |
| [0]   | GPF_MFP0 | PF.0 Pin Function Selection Bit GPF_MFP0 determines the PF.0 function.  0 = GPIO function is selected.  1 = XT1_OUT function is selected.  Note: This bit is read only and is decided by user configuration CGPFMFP (CONFIG0[27]).                                                                  |



# **Alternative Multiple Function Pin Control Register (ALT\_MFP)**

| Register | Offset      | R/W | Description                                        | Reset Value |
|----------|-------------|-----|----------------------------------------------------|-------------|
| ALT_MFP  | GCR_BA+0x50 | R/W | Alternative Multiple Function Pin Control Register | 0x0000_0000 |

| 31   | 30              | 29 | 28       | 27       | 26       | 25       | 24        |  |
|------|-----------------|----|----------|----------|----------|----------|-----------|--|
| Rese | Reserved        |    | Reserved | PB3_T3EX | PB2_T2EX | PE5_T1EX | PB15_T0EX |  |
| 23   | 22              | 21 | 20       | 19       | 18       | 17       | 16        |  |
|      | Reserved        |    |          |          |          |          |           |  |
| 15   | 14              | 13 | 12       | 11       | 10       | 9        | 8         |  |
|      | Reserved        |    |          |          |          |          |           |  |
| 7    | 7 6 5 4 3 2 1 0 |    |          |          |          |          |           |  |
|      | Reserved        |    |          |          |          |          |           |  |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:30] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [29]    | PB8_CLKO    | PB.8 Pin Alternative Function Selection  Bits PB8_BPWM12 (ALT_MFP3[20]), PB8_CLKO (ALT_MFP[29]) and GPB_MFP8 determine the PB.8 function.  (PB8_BPWM12, PB8_CLKO, GPB_MFP8) value and function mapping is as following list.  (0, 0, 0) = GPIO function is selected.  (0, 0, 1) = TM0 function is selected.                                                                                                                                                                                          |
|         |             | (0, 1, 1) = CLKO function is selected.<br>(1, 0, 1) = BPWM1_CH2 function is selected.                                                                                                                                                                                                                                                                                                                                                                                                                |
| [28]    | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [27]    | PB3_T3EX    | PB.3 Pin Alternative Function Selection  Bits PB3_TM3 (ALT_MFP2[5]), PB3_PWM1BK0 (ALT_MFP3[30]), PB3_T3EX (ALT_MFP[27]) and GPB_MFP3 determine the PB.3 function.  (PB3_TM3, PB3_PWM1BK0, PB3_T3EX, GPB_MFP3) value and function mapping is as following list.  (0, 0, 0, 0) = GPIO function is selected.  (0, 0, 0, 1) = UART0_nCTS function is selected.  (0, 0, 1, 1) = TM3_EXT function is selected.  (0, 1, 0, 1) = PWM1_BRAKE0 function is selected.  (1, 0, 0, 1) = TM3 function is selected. |

|        | 1         | -                                                                                                                            |
|--------|-----------|------------------------------------------------------------------------------------------------------------------------------|
|        |           | PB.2 Pin Alternative Function Selection                                                                                      |
|        |           | Bits PB2_TM2 (ALT_MFP2[4]), PB2_PWM1BK1 (ALT_MFP3[31]), PB2_T2EX (ALT_MFP[26]) and GPB_MFP2 determine the PB.2 function.     |
|        |           | (PB2_TM2, PB2_PWM1BK1, PB2_T2EX, GPB_MFP2) value and function mapping is as following list.                                  |
| [26]   | PB2_T2EX  | (0, 0, 0, 0) = GPIO function is selected.                                                                                    |
|        |           | (0, 0, 0, 1) = UART0_nRTS function is selected.                                                                              |
|        |           | (0, 0, 1, 1) = TM2_EXT function is selected.                                                                                 |
|        |           | (0, 1, 0, 1) = PWM1_BRAKE1 function is selected.                                                                             |
|        |           | (1, 0, 0, 1) = TM2 function is selected.                                                                                     |
|        | PE5_T1EX  | PE.5 Pin Alternative Function Selection                                                                                      |
|        |           | Bits PE5_T1EX (ALT_MFP[25]), PE5_TM1 (ALT_MFP2[3]) and GPE_MFP5 determine the PE.5 function.                                 |
|        |           | (PE5_T1EX, PE5_TM1, GPE_MFP5) value and function mapping is as following list.                                               |
| [25]   |           | (0, 0, 0) = GPIO function is selected.                                                                                       |
|        |           | (0, 0, 1) = PWM0_CH5 function is selected.                                                                                   |
|        |           | (0, 1, 1) = TM1 function is selected.                                                                                        |
|        |           | (1, 0, 1) = TM1_EXT function is selected.                                                                                    |
|        |           | PB.15 Pin Alternative Function Selection                                                                                     |
|        |           | Bits PB15_BPWM15 (ALT_MFP3[23]), PB15_T0EX (ALT_MFP[24]), PB15_TM0 (ALT_MFP2[2]) and GPB_MFP15 determine the PB.15 function. |
|        |           | (PB15_BPWM15, PB15_T0EX, PB15_TM0, GPB_MFP15) value and function mapping is as following list.                               |
| [24]   | PB15_T0EX | (0, 0, 0, 0) = GPIO function is selected.                                                                                    |
|        |           | (0, 0, 0, 1) = INT1 function is selected.                                                                                    |
|        |           | (0, 0, 1, 1) = TM0 function is selected.                                                                                     |
|        |           | (0, 1, 0, 1) = TM0_EXT function is selected.                                                                                 |
|        |           | (1, 0, 1, 1) = BPWM1_CH5 function is selected.                                                                               |
| [23:0] | Reserved  | Reserved.                                                                                                                    |

**Alternative Multiple Function Pin Control Register 2 (ALT\_MFP2)** 

# NUC131 SERIES TECHNICAL REFERENCE MANUAL

| Register | Offset      | R/W | Description                                          | Reset Value |
|----------|-------------|-----|------------------------------------------------------|-------------|
| ALT_MFP2 | GCR_BA+0x5C | R/W | Alternative Multiple Function Pin Control Register 2 | 0x0000_0000 |

| 31                                                 | 30       | 29 | 28   | 27 | 26 | 25 | 24 |  |  |
|----------------------------------------------------|----------|----|------|----|----|----|----|--|--|
|                                                    | Reserved |    |      |    |    |    |    |  |  |
| 23                                                 | 22       | 21 | 20   | 19 | 18 | 17 | 16 |  |  |
|                                                    | Reserved |    |      |    |    |    |    |  |  |
| 15                                                 | 14       | 13 | 12   | 11 | 10 | 9  | 8  |  |  |
|                                                    | Reserved |    |      |    |    |    |    |  |  |
| 7                                                  | 6        | 5  | 4    | 3  | 2  | 1  | 0  |  |  |
| Reserved PB3_TM3 PB2_TM2 PE5_TM1 PB15_TM0 Reserved |          |    | rved |    |    |    |    |  |  |

| Bits   | Description |                                                                                                                          |
|--------|-------------|--------------------------------------------------------------------------------------------------------------------------|
| [31:6] | Reserved    | Reserved.                                                                                                                |
|        |             | PB.3 Pin Alternative Function Selection                                                                                  |
|        |             | Bits PB3_TM3 (ALT_MFP2[5]), PB3_PWM1BK0 (ALT_MFP3[30]), PB3_T3EX (ALT_MFP[27]) and GPB_MFP3 determine the PB.3 function. |
|        |             | (PB3_TM3, PB3_PWM1BK0, PB3_T3EX, GPB_MFP3) value and function mapping is as following list.                              |
| [5]    | PB3_TM3     | (0, 0, 0, 0) = GPIO function is selected.                                                                                |
|        |             | (0, 0, 0, 1) = UART0_nCTS function is selected.                                                                          |
|        |             | (0, 0, 1, 1) = TM3_EXT function is selected.                                                                             |
|        |             | (0, 1, 0, 1) = PWM1_BRAKE0 function is selected.                                                                         |
|        |             | (1, 0, 0, 1) = TM3 function is selected.                                                                                 |
|        |             | PB.2 Pin Alternative Function Selection                                                                                  |
|        |             | Bits PB2_TM2 (ALT_MFP2[4]), PB2_PWM1BK1 (ALT_MFP3[31]), PB2_T2EX (ALT_MFP[26]) and GPB_MFP2 determine the PB.2 function. |
|        |             | (PB2_TM2, PB2_PWM1BK1, PB2_T2EX, GPB_MFP2) value and function mapping is as following list.                              |
| [4]    | PB2_TM2     | (0, 0, 0, 0) = GPIO function is selected.                                                                                |
|        |             | (0, 0, 0, 1) = UART0_nRTS function is selected.                                                                          |
|        |             | $(0, 0, 1, 1) = TM2\_EXT$ function is selected.                                                                          |
|        |             | (0, 1, 0, 1) = PWM1_BRAKE1 function is selected.                                                                         |
|        |             | (1, 0, 0, 1) = TM2 function is selected.                                                                                 |



|       |          | PE.5 Pin Alternative Function Selection                                                                                      |
|-------|----------|------------------------------------------------------------------------------------------------------------------------------|
|       |          | Bits PE5_T1EX (ALT_MFP[25]), PE5_TM1 (ALT_MFP2[3]) and GPE_MFP5 determine the PE.5 function.                                 |
|       |          | (PE5_T1EX, PE5_TM1, GPE_MFP5) value and function mapping is as following list.                                               |
| [3]   | PE5_TM1  | (0, 0, 0) = GPIO function is selected.                                                                                       |
|       |          | (0, 0, 1) = PWM0_CH5 function is selected.                                                                                   |
|       |          | (0, 1, 1) = TM1 function is selected.                                                                                        |
|       |          | (1, 0, 1) = TM1_EXT function is selected.                                                                                    |
|       |          | PB.15 Pin Alternative Function Selection                                                                                     |
|       |          | Bits PB15_BPWM15 (ALT_MFP3[23]), PB15_T0EX (ALT_MFP[24]), PB15_TM0 (ALT_MFP2[2]) and GPB_MFP15 determine the PB.15 function. |
|       |          | (PB15_BPWM15, PB15_T0EX, PB15_TM0, GPB_MFP15) value and function mapping is as following list.                               |
| [2]   | PB15_TM0 | (0, 0, 0, 0) = GPIO function is selected.                                                                                    |
|       |          | (0, 0, 0, 1) = INT1 function is selected.                                                                                    |
|       |          | (0, 0, 1, 1) = TM0 function is selected.                                                                                     |
|       |          | (0, 1, 0, 1) = TM0_EXT function is selected.                                                                                 |
|       |          | (1, 0, 1, 1) = BPWM1_CH5 function is selected.                                                                               |
| [1:0] | Reserved | Reserved.                                                                                                                    |

## Alternative Multiple Function Pin Control Register 3 (ALT\_MFP3)

| Register | Offset      | R/W | Description                                          | Reset Value |
|----------|-------------|-----|------------------------------------------------------|-------------|
| ALT_MFP3 | GCR_BA+0x60 | R/W | Alternative Multiple Function Pin Control Register 3 | 0x0000_0000 |

| 31              | 30              | 29              | 28              | 27             | 26             | 25              | 24              |
|-----------------|-----------------|-----------------|-----------------|----------------|----------------|-----------------|-----------------|
| PB2_PWM1B<br>K1 | PB3_PWM1B<br>K0 | PC7_PWM0B<br>K1 | PC6_PWM0B<br>K0 |                | Reserved       |                 | PB11_PWM04      |
| 23              | 22              | 21              | 20              | 19             | 18             | 17              | 16              |
| PB15_BPWM<br>15 | PF8_BPWM14      | PB12_BPWM<br>13 | PB8_BPWM1<br>2  | PD6_BPWM1<br>1 | PD7_BPWM1<br>0 | PD14_BPWM<br>05 | PD15_BPWM<br>04 |
| 15              | 14              | 13              | 12              | 11             | 10             | 9               | 8               |
| PC3_BPWM0       | PC2_BPWM0<br>2  | PC1_BPWM0<br>1  | PC0_BPWM0<br>0  | PF5_PWM15      | PF4_PWM14      | PA11_PWM13      | PA10_PWM12      |
| 7               | 6               | 5               | 4               | 3              | 2              | 1               | 0               |
| PA3_PWM11       | PA2_PWM10       | PA1_PWM05       | PA0_PWM04       |                | Rese           | erved           |                 |

| Bits | Description |                                                                                                                          |  |  |  |
|------|-------------|--------------------------------------------------------------------------------------------------------------------------|--|--|--|
|      |             | PB.2 Pin Alternative Function Selection                                                                                  |  |  |  |
|      |             | Bits PB2_TM2 (ALT_MFP2[4]), PB2_PWM1BK1 (ALT_MFP3[31]), PB2_T2EX (ALT_MFP[26]) and GPB_MFP2 determine the PB.2 function. |  |  |  |
|      |             | (PB2_TM2, PB2_PWM1BK1, PB2_T2EX, GPB_MFP2) value and function mapping is as following list.                              |  |  |  |
| [31] | PB2_PWM1BK1 | (0, 0, 0, 0) = GPIO function is selected.                                                                                |  |  |  |
|      |             | $(0, 0, 0, 1) = UART0_nRTS$ function is selected.                                                                        |  |  |  |
|      |             | (0, 0, 1, 1) = TM2_EXT function is selected.                                                                             |  |  |  |
|      |             | (0, 1, 0, 1) = PWM1_BRAKE1 function is selected.                                                                         |  |  |  |
|      |             | (1, 0, 0, 1) = TM2 function is selected.                                                                                 |  |  |  |
|      |             | PB.3 Pin Alternative Function Selection                                                                                  |  |  |  |
|      |             | Bits PB3_TM3 (ALT_MFP2[5]), PB3_PWM1BK0 (ALT_MFP3[30]), PB3_T3EX (ALT_MFP[27]) and GPB_MFP3 determine the PB.3 function. |  |  |  |
|      |             | (PB3_TM3, PB3_PWM1BK0, PB3_T3EX, GPB_MFP3) value and function mapping is as following list.                              |  |  |  |
| [30] | PB3_PWM1BK0 | (0, 0, 0, 0) = GPIO function is selected.                                                                                |  |  |  |
|      |             | (0, 0, 0, 1) = UART0_nCTS function is selected.                                                                          |  |  |  |
|      |             | (0, 0, 1, 1) = TM3_EXT function is selected.                                                                             |  |  |  |
|      |             | (0, 1, 0, 1) = PWM1_BRAKE0 function is selected.                                                                         |  |  |  |
|      |             | (1, 0, 0, 1) = TM3 function is selected.                                                                                 |  |  |  |



| [29]    |                | PC.7 Pin Alternative Function Selection                                                                                                                                                                                       |
|---------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |                | Bits PC7_PWM0BK1 (ALT_MFP3[29]), PC7_I2C0SCL (ALT_MFP4[11]) and GPC_MFP7 determine the PC.7 function.                                                                                                                         |
|         | PC7_PWM0BK1    | (PC7_PWM0BK1, PC7_I2C0SCL, GPC_MFP7) value and function mapping is as following list.                                                                                                                                         |
| ,       |                | (0, 0, 0) = GPIO function is selected.                                                                                                                                                                                        |
|         |                | (0, 0, 1) = UART4_RXD function is selected.                                                                                                                                                                                   |
|         |                | (0, 1, 1) = I2C0_SCL function is selected.                                                                                                                                                                                    |
|         |                | (1, 0, 1) = PWM0_BRAKE1 function is selected.                                                                                                                                                                                 |
|         |                | PC.6 Pin Alternative Function Selection                                                                                                                                                                                       |
|         |                | Bits PC6_PWM0BK0 (ALT_MFP3[28]), PC6_I2C0SDA (ALT_MFP4[10]) and GPC_MFP6 determine the PC.6 function.                                                                                                                         |
| [28]    | PC6_PWM0BK0    | (PC6_PWM0BK0, PC6_I2C0SDA, GPB_MFP6) value and function mapping is as following list.                                                                                                                                         |
| [=0]    | . 555          | (0, 0, 0) = GPIO function is selected.                                                                                                                                                                                        |
|         |                | (0, 0, 1) = UART4_TXD function is selected.                                                                                                                                                                                   |
|         |                | (0, 1, 1) = I2C0_SDA function is selected.                                                                                                                                                                                    |
|         |                | (1, 0, 1) = PWM0_BRAKE0 function is selected.                                                                                                                                                                                 |
| [27:25] | Reserved       | Reserved.                                                                                                                                                                                                                     |
|         |                | PB.11 Pin Alternative Function Selection                                                                                                                                                                                      |
|         |                | Bits PB11_PWM04 (ALT_MFP3[24]) and GPB_MFP11 determine the PB.11 function.                                                                                                                                                    |
| [24]    | PB11_PWM04     | (PB11_PWM04, GPB_MFP11) value and function mapping is as following list.                                                                                                                                                      |
| [24]    | I BIT_I WIMO4  | (0, 0) = GPIO function is selected.                                                                                                                                                                                           |
|         |                | (0, 1) = TM3 function is selected.                                                                                                                                                                                            |
|         |                | (1, 1) = PWM0_CH4 function is selected.                                                                                                                                                                                       |
|         |                | PB.15 Pin Function Selection                                                                                                                                                                                                  |
|         |                | Bits PB15_BPWM15 (ALT_MFP3[23]), PB15_T0EX (ALT_MFP[24]), PB15_TM0 (ALT_MFP2[2]) and GPB_MFP15 determine the PB.15 function.                                                                                                  |
|         |                | (PB15_BPWM15, PB15_T0EX, PB15_TM0, GPB_MFP15) value and function mapping is as following list.                                                                                                                                |
| [23]    | PB15_BPWM15    | (0, 0, 0, 0) = GPIO function is selected.                                                                                                                                                                                     |
|         |                | (0, 0, 0, 1) = INT1 function is selected.                                                                                                                                                                                     |
|         |                | (0, 0, 1, 1) = TM0 function is selected.                                                                                                                                                                                      |
|         |                | $(0, 1, 0, 1) = TM0\_EXT$ function is selected.                                                                                                                                                                               |
|         |                | (1, 0, 1, 1) = BPWM1_CH5 function is selected.                                                                                                                                                                                |
|         |                | PF.8 Pin Function Selection                                                                                                                                                                                                   |
|         |                | Bit PF8_BPWM14 (ALT_MFP3[22]), GPF_MFP8 determines the PF.8 function.                                                                                                                                                         |
| [22]    | DEO DEMANA     | (PF8_BPWM14, GPF_MFP8) value and function mapping is as following list.                                                                                                                                                       |
| [22]    | PF8_BPWM14     | (0, 0) = GPIO function is selected.                                                                                                                                                                                           |
|         |                | (0, 1) = CLKO function is selected.                                                                                                                                                                                           |
|         |                | (1, 0) = BPWM1_CH4 function is selected.                                                                                                                                                                                      |
|         |                | PB.12 Pin Alternative Function Selection                                                                                                                                                                                      |
| [24]    |                | Bits PB12_BPWM13 (ALT_MFP3[21]) and GPB_MFP12 determine the PB.12 function.                                                                                                                                                   |
|         | DR12 DDWM12    | (PB12_BPWM13, GPB_MFP12) value and function mapping is as following list.                                                                                                                                                     |
| [۷]     | FD14_DFVVIVITS | (0, 0) = GPIO function is selected.                                                                                                                                                                                           |
|         |                | (0, 1) = CLKO function is selected.                                                                                                                                                                                           |
|         | · ·            | (1, 1) = BPWM1_CH3 function is selected.                                                                                                                                                                                      |
| [21]    | PB12_BPWM13    | Bits PB12_BPWM13 (ALT_MFP3[21]) and GPB_MFP12 determine the PB.12 function. (PB12_BPWM13, GPB_MFP12) value and function mapping is as following list. (0, 0) = GPIO function is selected. (0, 1) = CLKO function is selected. |

|      |               | PB.8 Pin Alternative Function Selection                                                          |
|------|---------------|--------------------------------------------------------------------------------------------------|
|      |               | Bits PB8_BPWM12 (ALT_MFP3[20]), PB8_CLKO (ALT_MFP[29]) and GPB_MFP8 determine the PB.8 function. |
| [20] | DD0 DDW4440   | (PB8_BPWM12, PB8_CLKO, GPB_MFP8) value and function mapping is as following list.                |
| [20] | PB8_BPWM12    | (0, 0, 0) = GPIO function is selected.                                                           |
|      |               | (0, 0, 1) = TM0 function is selected.                                                            |
|      |               | (0, 1, 1) = CLKO function is selected.                                                           |
|      |               | (1, 0, 1) = BPWM1_CH2 function is selected.                                                      |
|      |               | PD.6 Pin Alternative Function Selection                                                          |
|      |               | Bits PD6_BPWM11 (ALT_MFP3[19]) and GPD_MFP6 determine the PD.6 function.                         |
| [19] | PD6_BPWM11    | (PD6_BPWM11, GPD_MFP6) value and function mapping is as following list.                          |
| [19] | PD0_BPVVIVITI | (0, 0) = GPIO function is selected.                                                              |
|      |               | (0, 1) = CAN0_RXD function is selected.                                                          |
|      |               | (1, 1) = BPWM1_CH1 function is selected.                                                         |
|      |               | PD.7 Pin Alternative Function Selection                                                          |
|      |               | Bits PD7_BPWM10 (ALT_MFP3[18]) and GPD_MFP7 determine the PD.7 function.                         |
| [40] | DDZ DDWALLS   | (PD7_BPWM10, GPD_MFP7) value and function mapping is as following list.                          |
| [18] | PD7_BPWM10    | (0,0) = GPIO function is selected.                                                               |
|      |               | (0, 1) = CAN0_TXD function is selected.                                                          |
|      |               | (1, 1) = BPWM1_CH0 function is selected.                                                         |
|      |               | PD.14 Pin Alternative Function Selection                                                         |
|      |               | Bits PD14_BPWM05 (ALT_MFP3[17]) and GPD_MFP14 determine the PD.14 function.                      |
|      | DD44 DDW4465  | (PD14_BPWM05, GPD_MFP14) value and function mapping is as following list.                        |
| [17] | PD14_BPWM05   | (0, 0) = GPIO function is selected.                                                              |
|      |               | (0, 1) = UART2_RXD function is selected.                                                         |
|      |               | (1, 1) = BPWM0_CH5 function is selected.                                                         |
|      |               | PD.15 Pin Alternative Function Selection                                                         |
|      |               | Bits PD15_BPWM04 (ALT_MFP3[16]) and GPD_MFP15 determine the PD.15 function.                      |
| [46] | DD45 DDWM04   | (PD15_BPWM04, GPD_MFP15) value and function mapping is as following list.                        |
| [16] | PD15_BPWM04   | (0, 0) = GPIO function is selected.                                                              |
|      |               | (0, 1) = UART2_TXD function is selected.                                                         |
|      |               | (1, 1) = BPWM0_CH4 function is selected.                                                         |
|      |               | PC.3 Pin Alternative Function Selection                                                          |
|      |               | Bits PC3_BPWM03 (ALT_MFP3[15]) and GPC_MFP3 determine the PC.3 function.                         |
| [45] | DC3 BDWW03    | (PC3_BPWM03, GPC_MFP3) value and function mapping is as following list.                          |
| [15] | PC3_BPWM03    | (0, 0) = GPIO function is selected.                                                              |
|      |               | (0, 1) = SPI0_MOSI0 function is selected.                                                        |
|      |               | (1, 1) = BPWM0_CH3 function is selected.                                                         |
|      |               | PC.2 Pin Alternative Function Selection                                                          |
|      |               | Bits PC2_BPWM02 (ALT_MFP3[14]) and GPC_MFP2 determine the PC.2 function.                         |
|      |               | (PC2_BPWM02, GPC_MFP2) value and function mapping is as following list.                          |
| [14] | PC2_BPWM02    | (0, 0) = GPIO function is selected.                                                              |
|      |               | $(0, 1) = SPI0_MISO0$ function is selected.                                                      |
|      |               | (1, 1) = BPWM0_CH2 function is selected.                                                         |
|      |               | <u> </u>                                                                                         |

|      | T          | T                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [13] | PC1_BPWM01 | PC.1 Pin Alternative Function Selection  Bits PC1_BPWM01 (ALT_MFP3[13]) and GPC_MFP1 determine the PC.1 function.  (PC1_BPWM01, GPC_MFP1) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = SPIO_CLK function is selected.  (1, 1) = BPWM0_CH1 function is selected.                                                                                     |
| [12] | PC0_BPWM00 | PC.0 Pin Alternative Function Selection  Bits PC0_BPWM00 (ALT_MFP3[12]) and GPC_MFP0 determine the PC.0 function.  (PC0_BPWM00, GPC_MFP0) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = SPI0_SS0 function is selected.  (1, 1) = BPWM0_CH0 function is selected.                                                                                     |
| [11] | PF5_PWM15  | PF.5 Pin Alternative Function Selection Bits PF5_PWM15 (ALT_MFP3[11]) and GPF_MFP5 determine the PF.5 function. (PF5_PWM15, GPF_MFP5) value and function mapping is as following list. (0, 0) = GPIO function is selected. (0, 1) = I2C0_SCL function is selected. (1, 1) = PWM1_CH5 function is selected.                                                                                             |
| [10] | PF4_PWM14  | PF.4 Pin Alternative Function Selection  Bits PF4_PWM14 (ALT_MFP3[10]) and GPF_MFP4 determine the PF.4 function.  (PF4_PWM14, GPF_MFP4) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = I2C0_SDA function is selected.  (1, 1) = PWM1_CH4 function is selected.                                                                                        |
| [9]  | PA11_PWM13 | PA.11 Pin Alternative Function Selection  Bits PA11_PWM13 (ALT_MFP3[9]) and GPA_MFP11 determine the PA.11 function.  (PA11_PWM13, GPA_MFP11) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = I2C1_SCL function is selected.  (1, 1) = PWM1_CH3 function is selected.                                                                                   |
| [8]  | PA10_PWM12 | PA.10 Pin Alternative Function Selection  Bits PA10_PWM12 (ALT_MFP3[8]) and GPA_MFP10 determine the PA.10 function.  (PA10_PWM12, GPA_MFP10) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = I2C1_SDA function is selected.  (1, 1) = PWM1_CH2 function is selected.                                                                                   |
| [7]  | PA3_PWM11  | PA.3 Pin Alternative Function Selection  Bits PA3_PWM11 (ALT_MFP3[7]), PA3_UR3RXD (ALT_MFP4[2]) and GPA_MFP3 determine the PA.3 function.  (PA3_PWM11, PA3_UR3RXD, GPA_MFP3) value and function mapping is as following list.  (0, 0, 0) = GPIO function is selected.  (0, 0, 1) = ADC3 function is selected.  (0, 1, 1) = UART3_RXD function is selected.  (1, 0, 1) = PWM1_CH1 function is selected. |

|       | •          |                                                                                                                              |
|-------|------------|------------------------------------------------------------------------------------------------------------------------------|
|       |            | PA.2 Pin Alternative Function Selection                                                                                      |
| [6]   |            | Bits PA2_PWM10 (ALT_MFP3[6]), PA2_UR3TXD (ALT_MFP4[3]) and GPA_MFP2 determine the PA.2 function.                             |
|       | PA2 PWM10  | (PA2_PWM10, PA2_UR3TXD, GPA_MFP2) value and function mapping is as following list.                                           |
| ان    | AL_I WIIII | (0, 0, 0) = GPIO function is selected.                                                                                       |
|       |            | (0, 0, 1) = ADC2 function is selected.                                                                                       |
|       |            | (0, 1, 1) = UART3_TXD function is selected.                                                                                  |
|       |            | (1, 0, 1) = PWM1_CH0 function is selected.                                                                                   |
|       |            | PA.1 Pin Alternative Function Selection                                                                                      |
|       |            | Bits PA1_PWM05 (ALT_MFP3[5]), PA1_UR5RXD (ALT_MFP4[6]), PA1_I2C1SDA (ALT_MFP4[13]) and GPA_MFP1 determine the PA.1 function. |
|       | PA1_PWM05  | (PA1_PWM05, PA1_UR5RXD , PA1_I2C1SDA, GPA_MFP1) value and function mapping is as following list.                             |
| [5]   |            | (0, 0, 0, 0) = GPIO function is selected.                                                                                    |
|       |            | (0, 0, 0, 1) = ADC1 function is selected.                                                                                    |
|       |            | $(0, 0, 1, 1) = I2C1\_SDA$ function is selected.                                                                             |
|       |            | (0, 1, 0, 1) = UART5_RXD function is selected.                                                                               |
|       |            | (1, 0, 0, 1) = PWM0_CH5 function is selected.                                                                                |
|       |            | PA.0 Pin Alternative Function Selection                                                                                      |
|       |            | Bits PA0_PWM04 (ALT_MFP3[4]), PA0_UR5TXD (ALT_MFP4[7]), PA0_I2C1SCL (ALT_MFP4[12]) and GPA_MFP0 determine the PA.0 function. |
|       |            | (PA0_PWM04, PA0_UR5TXD, PA0_I2C1SCL, GPA_MFP0) value and function mapping is as following list.                              |
| [4]   | PA0_PWM04  | (0, 0, 0, 0) = GPIO function is selected.                                                                                    |
|       |            | (0, 0, 0, 1) = ADC0 function is selected.                                                                                    |
|       |            | $(0, 0, 1, 1) = I2C1\_SCL$ function is selected.                                                                             |
|       |            | (0, 1, 0, 1) = UART5_TXD function is selected.                                                                               |
|       |            | (1, 0, 0, 1) = PWM0_CH4 function is selected.                                                                                |
| [3:0] | Reserved   | Reserved.                                                                                                                    |
| 1     | •          | ·                                                                                                                            |



# Alternative Multiple Function Pin Control Register 4 (ALT\_MFP4)

| Register | Offset      | R/W | Description                                          | Reset Value |
|----------|-------------|-----|------------------------------------------------------|-------------|
| ALT_MFP4 | GCR_BA+0x64 | R/W | Alternative Multiple Function Pin Control Register 4 | 0x0000_0000 |

| 31         | 30         | 29          | 28          | 27          | 26          | 25              | 24              |
|------------|------------|-------------|-------------|-------------|-------------|-----------------|-----------------|
|            |            |             | Rese        | erved       |             |                 |                 |
| 23         | 22         | 21          | 20          | 19          | 18          | 17              | 16              |
|            |            |             | Rese        | erved       |             |                 |                 |
| 15         | 14         | 13          | 12          | 11          | 10          | 9               | 8               |
| Reserved   | PA7_VREF   | PA1_I2C1SDA | PA0_I2C1SCL | PC7_I2C0SCL | PC6_I2C0SDA | PA13_UR5TX<br>D | PA12_UR5RX<br>D |
| 7          | 6          | 5           | 4           | 3           | 2           | 1               | 0               |
| PA0_UR5TXD | PA1_UR5RXD | PA6_UR3TXD  | PA5_UR3RXD  | PA2_UR3TXD  | PA3_UR3RXD  | PA9_UR1CTS      | PA8_UR1RTS      |

| Bits                    | Description | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|-------------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:15]                 | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| [14]                    | PA7_VREF    | PA.7 Pin Alternative Function Selection  Bits PA7_VREF (ALT_MFP4[14]) and GPA_MFP7 determine the PA.7 function.  (PA7_VREF, GPA_MFP7) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = ADC7 function is selected.  (1, 1) = V <sub>REF</sub> function is selected.                                                                                                                                                                                          |  |  |
| [13]                    | PA1_I2C1SDA | PA.1 Pin Alternative Function Selection  Bits PA1_PWM05 (ALT_MFP3[5]), PA1_UR5RXD (ALT_MFP4[6]), PA1_I2C1SDA (ALT_MFP4[13]) and GPA_MFP1 determine the PA.1 function.  (PA1_PWM05, PA1_UR5RXD, PA1_I2C1SDA, GPA_MFP1) value and function mapping is as following list.  (0, 0, 0, 0) = GPIO function is selected.  (0, 0, 0, 1) = ADC1 function is selected.  (0, 0, 1, 1) = I2C1_SDA function is selected.  (0, 1, 0, 1) = WART5_RXD function is selected.  (1, 0, 0, 1) = PWM0_CH5 function is selected. |  |  |
| [12] <b>PA0_I2C1SCL</b> |             | PA.0 Pin Alternative Function Selection  Bits PA0_PWM04 (ALT_MFP3[4]), PA0_UR5TXD (ALT_MFP4[7]), PA0_I2C1SCL (ALT_MFP4[12]) and GPA_MFP0 determine the PA.0 function.  (PA0_PWM04, PA0_UR5TXD, PA0_I2C1SCL, GPA_MFP0) value and function mapping is as following list.  (0, 0, 0, 0) = GPIO function is selected.  (0, 0, 0, 1) = ADC0 function is selected.  (0, 0, 1, 1) = I2C1_SCL function is selected.  (0, 1, 0, 1) = UART5_TXD function is selected.  (1, 0, 0, 1) = PWM0_CH4 function is selected. |  |  |

|       | <u> </u>     |                                                                                                                              |
|-------|--------------|------------------------------------------------------------------------------------------------------------------------------|
| [11]  |              | PC.7 Pin Alternative Function Selection                                                                                      |
|       |              | Bits PC7_PWM0BK1 (ALT_MFP3[29]), PC7_I2C0SCL (ALT_MFP4[11]) and GPC_MFP7 determine the PC.7 function.                        |
|       | PC7_I2C0SCL  | (PC7_PWM0BK1, PC7_I2C0SCL, GPC_MFP7) value and function mapping is as following list.                                        |
| [,,,] | 1 07_1200002 | (0, 0, 0) = GPIO function is selected.                                                                                       |
|       |              | (0, 0, 1) = UART4_RXD function is selected.                                                                                  |
|       |              | $(0, 1, 1) = 12C0\_SCL$ function is selected.                                                                                |
|       |              | (1, 0, 1) = PWM0_BRAKE1 function is selected.                                                                                |
|       |              | PC.6 Pin Alternative Function Selection                                                                                      |
|       |              | Bits PC6_PWM0BK0 (ALT_MFP3[28]), PC6_I2C0SDA (ALT_MFP4[10]) and GPC_MFP6 determine the PC.6 function.                        |
| [10]  | PC6_I2C0SDA  | (PC6_PWM0BK0, PC6_I2C0SDA, GPC_MFP6) value and function mapping is as following list.                                        |
|       |              | (0, 0, 0) = GPIO function is selected.                                                                                       |
|       |              | (0, 0, 1) = UART4_TXD function is selected.                                                                                  |
|       |              | (0, 1, 1) = I2C0_SDA function is selected.                                                                                   |
|       |              | (1, 0, 1) = PWM0_BRAKE0 function is selected.                                                                                |
|       |              | PA.13 Pin Alternative Function Selection                                                                                     |
|       |              | Bits PA13_UR5TXD (ALT_MFP4[9]) and GPA_MFP13 determine the PA.13 function.                                                   |
| [9]   | PA13_UR5TXD  | (PA13_UR5TXD, GPA_MFP13) value and function mapping is as following list.                                                    |
| [0]   |              | (0, 0) = GPIO function is selected.                                                                                          |
|       |              | (0, 1) = PWM0_CH1 function is selected.                                                                                      |
|       |              | (1, 1) = UART5_TXD function is selected.                                                                                     |
|       |              | PA.12 Pin Alternative Function Selection                                                                                     |
|       |              | Bits PA12_UR5RXD (ALT_MFP4[8]) and GPA_MFP12 determine the PA.12 function.                                                   |
| [8]   | PA12_UR5RXD  | (PA12_UR5RXD, GPA_MFP12) value and function mapping is as following list.                                                    |
| [-]   |              | (0, 0) = GPIO function is selected.                                                                                          |
|       |              | (0, 1) = PWM0_CH0 function is selected.                                                                                      |
|       |              | (1, 1) = UART5_RXD function is selected.                                                                                     |
|       |              | PA.0 Pin Alternative Function Selection                                                                                      |
|       |              | Bits PA0_PWM04 (ALT_MFP3[4]), PA0_UR5TXD (ALT_MFP4[7]), PA0_I2C1SCL (ALT_MFP4[12]) and GPA_MFP0 determine the PA.0 function. |
|       |              | (PA0_PWM04, PA0_UR5TXD, PA0_I2C1SCL, GPA_MFP0) value and function mapping is as following list.                              |
| [7]   | PA0_UR5TXD   | (0, 0, 0, 0) = GPIO function is selected.                                                                                    |
|       |              | (0, 0, 0, 1) = ADC0 function is selected.                                                                                    |
|       |              | $(0, 0, 1, 1) = I2C1\_SCL$ function is selected.                                                                             |
|       |              | (0, 1, 0, 1) = UART5_TXD function is selected.                                                                               |
|       |              | (1, 0, 0, 1) = PWM0_CH4 function is selected.                                                                                |

|     |             | DA 4 Din Alternative Francisco Octobrilan                                                                                    |
|-----|-------------|------------------------------------------------------------------------------------------------------------------------------|
|     |             | PA.1 Pin Alternative Function Selection                                                                                      |
|     |             | Bits PA1_PWM05 (ALT_MFP3[5]), PA1_UR5RXD (ALT_MFP4[6]), PA1_I2C1SDA (ALT_MFP4[13]) and GPA_MFP1 determine the PA.1 function. |
|     |             | (PA1_PWM05, PA1_UR5RXD, PA1_I2C1SDA, GPA_MFP1) value and function mapping is as following list.                              |
| [6] | PA1_UR5RXD  | (0, 0, 0, 0) = GPIO function is selected.                                                                                    |
|     |             | (0, 0, 0, 1) = ADC1 function is selected.                                                                                    |
|     |             | $(0, 0, 1, 1) = I2C1\_SDA$ function is selected.                                                                             |
|     |             | (0, 1, 0, 1) = UART5_RXD function is selected.                                                                               |
|     |             | (1, 0, 0, 1) = PWM0_CH5 function is selected.                                                                                |
|     |             | PA.6 Pin Alternative Function Selection                                                                                      |
|     |             | Bits PA6_UR3TXD (ALT_MFP4[5]) and GPA_MFP6 determine the PA.6 function.                                                      |
| [5] | PA6_UR3TXD  | (PA6_UR3TXD, GPA_MFP6) value and function mapping is as following list.                                                      |
| 1-1 |             | (0, 0) = GPIO function is selected.                                                                                          |
|     |             | (0, 1) = ADC6 function is selected.                                                                                          |
|     |             | (1, 1) = UART3_TXD function is selected.                                                                                     |
|     |             | PA.5 Pin Alternative Function Selection                                                                                      |
|     |             | Bits PA5_UR3RXD (ALT_MFP4[4]) and GPA_MFP5 determine the PA.5 function.                                                      |
| [4] | PA5_UR3RXD  | (PA5_UR3RXD, GPA_MFP5) value and function mapping is as following list.                                                      |
| [ד] | I AO_ONONAD | (0, 0) = GPIO function is selected.                                                                                          |
|     |             | (0, 1) = ADC5 function is selected.                                                                                          |
|     |             | (1, 1) = UART3_RXD function is selected.                                                                                     |
|     |             | PA.2 Pin Alternative Function Selection                                                                                      |
|     |             | Bits PA2_PWM10 (ALT_MFP3[6]), PA2_UR3TXD (ALT_MFP4[3]) and GPA_MFP2 determine the PA.2 function.                             |
| [3] | PA2_UR3TXD  | (PA2_PWM10, PA2_UR3TXD, GPA_MFP2) value and function mapping is as following list.                                           |
|     | _           | (0, 0, 0) = GPIO function is selected.                                                                                       |
|     |             | (0, 0, 1) = ADC2 function is selected.                                                                                       |
|     |             | (0, 1, 1) = UART3_TXD function is selected.                                                                                  |
|     |             | (1, 0, 1) = PWM1_CH0 function is selected.                                                                                   |
|     |             | PA.3 Pin Alternative Function Selection                                                                                      |
|     |             | Bits PA3_PWM11 (ALT_MFP3[7]), PA3_UR3RXD (ALT_MFP4[2]) and GPA_MFP3 determine the PA.3 function.                             |
| [2] | PA3_UR3RXD  | (PA3_PWM11, PA3_UR3RXD, GPA_MFP3) value and function mapping is as following list.                                           |
| [ ] |             | (0, 0, 0) = GPIO function is selected.                                                                                       |
|     |             | (0, 0, 1) = ADC3 function is selected.                                                                                       |
|     |             | (0, 1, 1) = UART3_RXD function is selected.                                                                                  |
|     |             | (1, 0, 1) = PWM1_CH1 function is selected.                                                                                   |
|     |             | PA.9 Pin Alternative Function Selection                                                                                      |
|     |             | Bits PA9_UR1CTS (ALT_MFP4[1]) and GPA_MFP9 determine the PA.9 function.                                                      |
| [1] | PA9_UR1CTS  | (PA9_UR1CTS, GPA_MFP9) value and function mapping is as following list.                                                      |
| [1] | I AJ_UNICIS | (0, 0) = GPIO function is selected.                                                                                          |
|     |             | (0, 1) = I2C0_SCL function is selected.                                                                                      |
|     |             | (1, 1) = UART1_nCTS function is selected.                                                                                    |



| [0] | PA8_UR1RTS | PA.8 Pin Alternative Function Selection  Bits PA8_UR1RTS (ALT_MFP4[0]) and GPA_MFP8 determine the PA.8 function.  (PA8_UR1RTS, GPA_MFP8) value and function mapping is as following list.  (0, 0) = GPIO function is selected.  (0, 1) = I2C0_SDA function is selected. |
|-----|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | `          | (0, 1) = I2C0_SDA function is selected.<br>(1, 1) = UART1_nRTS function is selected.                                                                                                                                                                                    |



#### Register Write Protection Register (REGWRPROT)

Some of the system control registers need to be protected to avoid inadvertent write and disturb the chip operation. These system control registers are protected after the power on reset till user to disable register protection. For user to program these protected registers, a register protection disable sequence needs to be followed by a special programming. The register protection disable sequence is writing the data "59h", "16h" "88h" to the register REGWRPROT address at 0x5000\_0100 continuously. Any different data value, different sequence or any other write to other address during these three data writing will abort the whole sequence.

After the protection is disabled, user can check the protection disable bit at address 0x5000\_0100 bit0, 1 is protection disable, and 0 is protection enable. Then user can update the target protected register value and then write any data to the address "0x5000\_0100" to enable register protection.

This register is write for disable/enable register protection and read for the REGPROTDIS status.

| Register  | Offset       | R/W | Description                        | Reset Value |
|-----------|--------------|-----|------------------------------------|-------------|
| REGWRPROT | GCR_BA+0x100 | R/W | Register Write Protection Register | 0x0000_0000 |

| 31        | 30 | 29 | 28   | 27    | 26 | 25                           | 24 |
|-----------|----|----|------|-------|----|------------------------------|----|
|           |    |    | Rese | erved |    |                              |    |
| 23        | 22 | 21 | 20   | 19    | 18 | 17                           | 16 |
|           |    |    | Rese | erved |    |                              |    |
| 15        | 14 | 13 | 12   | 11    | 10 | 9                            | 8  |
|           |    |    | Rese | erved |    |                              |    |
| 7         | 6  | 5  | 4    | 3     | 2  | 1                            | 0  |
| REGWRPROT |    |    |      |       |    | REGWRPROT<br>/<br>REGPROTDIS |    |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:16] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| [7:0]   | REGWRPROT   | Register Write-Protection Code (Write Only)  Some registers have write-protection function. Writing these registers have to disable the protected function by writing the sequence value "59h", "16h", "88h" to this field. After this sequence is completed, the REGPROTDIS bit will be set to 1 and write-protection registers can be normal write.                                     |  |  |  |  |
| [0]     | REGPROTDIS  | Register Write-Protection Disable Index (Read Only)  0 = Write-protection is enabled for writing protected registers. Any write to the protected register is ignored.  1 = Write-protection is disabled for writing protected registers.  The Protected registers are:  IPRSTC1: address 0x5000_0008  BODCR: address 0x5000_0018  PORCR: address 0x5000_0024  VREFCR: address 0x5000_0028 |  |  |  |  |

**PWRCON**: address 0x5000\_0200 (bit[6] is not protected for power wake-up interrupt clear)

APBCLK bit[0]: address 0x5000\_0208 (bit[0] is Watchdog Timer clock enable)

CLKSEL0: address 0x5000\_0210 (for HCLK and CPU STCLK clock source selection)

CLKSEL1 bit[1:0]: address 0x5000\_0214 (for Watchdog Timer clock source selection)

NMI\_SEL bit[8]: address 0x5000\_0380 (for NMI\_EN clock source selection)

ISPCON: address 0x5000\_C000 (Flash ISP Control register)

ISPTRG: address 0x5000\_C010 (ISP Trigger Control register)
FATCON: address 0x5000\_C018

WTCR: address 0x4000\_4000
WTCRALT: address 0x4000\_4004

PWM\_CTL0: address 0x4004\_0000, 0x4014\_0000
PWM\_DTCTL0\_1: address 0x4004\_0070, 0x4014\_0070
PWM\_DTCTL2\_3: address 0x4004\_0074, 0x4014\_0074
PWM\_DTCTL4\_5: address 0x4004\_0078, 0x4014\_0078
PWM\_BRKCTL0\_1: address 0x4004\_00C8, 0x4014\_00C8
PWM\_BRKCTL2\_3: address 0x4004\_00CC, 0x4014\_00CC

PWM\_BRKCTL4\_5: address 0x4004\_00D0, 0x4014\_00D0
PWM\_SWBRK: address 0x4004\_00DC, 0x4014\_00DC
PWM INTEN1: address 0x4004\_00E4, 0x4014\_00E4

**PWM\_INTSTS1**: address 0x4004\_00EC, 0x4014\_00EC **BPWM\_CTL0**: address 0x4004\_4000, 0x4014\_4000

**Note:** The bits which are write-protected will be noted as" (Write Protect)" beside the description.



#### 6.2.7 System Timer (SysTick)

The Cortex<sup>®</sup>-M0 includes an integrated system timer, SysTick, which provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used as a Real Time Operating System (RTOS) tick timer or as a simple counter.

When system timer is enabled, it will count down from the value in the SysTick Current Value Register (SYST\_CVR) to 0, and reload (wrap) to the value in the SysTick Reload Value Register (SYST\_RVR) on the next clock cycle, then decrement on subsequent clocks. When the counter transitions to 0, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

The SYST\_CVR value is unknown on reset. Software should write to the register to clear it to 0 before enabling the feature. This ensures the timer will count from the SYST\_RVR value rather than an arbitrary value when it is enabled.

If the SYST\_RVR is 0, the timer will be maintained with a current value of 0 after it is reloaded with this value. This mechanism can be used to disable the feature independently from the timer enable bit.

For more detailed information, please refer to the "ARM® Cortex®-M0 Technical Reference Manual" and "ARM® v6-M Architecture Reference Manual".



## 6.2.7.1 System Timer Control Register Map

R: read only, W: write only, R/W: both read and write

| Register                                 | Offset      | R/W | Description                         | Reset Value |
|------------------------------------------|-------------|-----|-------------------------------------|-------------|
| SYST Base Address:  SCS_BA = 0xE000_E000 |             |     |                                     |             |
| SYST_CSR                                 | SCS_BA+0x10 | R/W | SysTick Control and Status Register | 0x0000_0000 |
| SYST_RVR                                 | SCS_BA+0x14 | R/W | SysTick Reload Value Register       | 0xXXXX_XXXX |
| SYST_CVR                                 | SCS_BA+0x18 | R/W | SysTick Current Value Register      | 0xXXXX_XXXX |



## 6.2.7.2 System Timer Control Register Description

## SysTick Control and Status (SYST CSR)

| Register | Offset      | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| SYST_CSR | SCS_BA+0x10 | R/W | SysTick Control and Status Register | 0x0000_0000 |

| 31 | 30       | 29       | 28       | 27      | 26     | 25 | 24        |
|----|----------|----------|----------|---------|--------|----|-----------|
|    |          |          | Rese     | erved   |        |    |           |
| 23 | 22       | 21       | 20       | 19      | 18     | 17 | 16        |
|    |          |          | Reserved |         |        |    | COUNTFLAG |
| 15 | 14       | 13       | 12       | 11      | 10     | 9  | 8         |
|    | Reserved |          |          |         |        |    |           |
| 7  | 6        | 5        | 4        | 3       | 2      | 1  | 0         |
|    |          | Reserved | CLKSRC   | TICKINT | ENABLE |    |           |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                               |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:17] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                     |
| [16]    | COUNTFLAG   | Returns 1 If Timer Counted To 0 Since Last Time This Register Was Read COUNTFLAG is set by a count transition from 1 to 0.  COUNTFLAG is cleared on read or by a write to the Current Value register.                                                                                                                                                         |
| [15:3]  | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                     |
| [2]     | CLKSRC      | System Tick Clock Source Selection  If CLKSRC (SYST_CSR[2]) = 1, SysTick clock source is from HCLK.  If CLKSRC (SYST_CSR[2]) = 0, SysTick clock source is defined by STCLK_S (CLKSEL0[5:3]).  0 = Clock source is (optional) external reference clock.  1 = Core clock used for SysTick.                                                                      |
| [1]     | TICKINT     | System Tick Interrupt Enabled  0 = Counting down to 0 does not cause the SysTick exception to be pended. Software can use COUNTFLAG to determine if a count to 0 has occurred.  1 = Counting down to 0 will cause the SysTick exception to be pended. Clearing the SysTick Current Value register by a write in software will not cause SysTick to be pended. |
| [0]     | ENABLE      | System Tick Counter Enabled  0 = Counter Disabled.  1 = Counter will operate in a multi-shot manner.                                                                                                                                                                                                                                                          |

## SysTick Reload Value Register (SYST\_RVR)

| Register | Offset      | R/W | Description                   | Reset Value |
|----------|-------------|-----|-------------------------------|-------------|
| SYST_RVR | SCS_BA+0x14 | R/W | SysTick Reload Value Register | 0xXXXX_XXXX |

| 31 | 30     | 29 | 28   | 27    | 26 | 25 | 24 |
|----|--------|----|------|-------|----|----|----|
|    |        |    | Rese | erved |    |    |    |
| 23 | 22     | 21 | 20   | 19    | 18 | 17 | 16 |
|    |        |    | REL  | OAD   |    |    |    |
| 15 | 14     | 13 | 12   | 11    | 10 | 9  | 8  |
|    | RELOAD |    |      |       |    |    |    |
| 7  | 6      | 5  | 4    | 3     | 2  | 1  | 0  |
|    | RELOAD |    |      |       |    |    |    |

| Bits    | Description | Description                                                               |  |  |  |  |
|---------|-------------|---------------------------------------------------------------------------|--|--|--|--|
| [31:24] | Reserved    | Reserved.                                                                 |  |  |  |  |
| [23:0]  | RELOAD      | Value to load into the Current Value register when the counter reaches 0. |  |  |  |  |



## SysTick Current Value Register (SYST\_CVR)

| Register | Offset      | R/W | Description                    | Reset Value |
|----------|-------------|-----|--------------------------------|-------------|
| SYST_CVR | SCS_BA+0x18 | R/W | SysTick Current Value Register | 0xXXXX_XXXX |

| 31 | 30       | 29 | 28   | 27   | 26 | 25 | 24 |  |  |  |
|----|----------|----|------|------|----|----|----|--|--|--|
|    | Reserved |    |      |      |    |    |    |  |  |  |
| 23 | 22       | 21 | 20   | 19   | 18 | 17 | 16 |  |  |  |
|    | CURRENT  |    |      |      |    |    |    |  |  |  |
| 15 | 14       | 13 | 12   | 11   | 10 | 9  | 8  |  |  |  |
|    |          |    | CURI | RENT |    |    |    |  |  |  |
| 7  | 6        | 5  | 4    | 3    | 2  | 1  | 0  |  |  |  |
|    | CURRENT  |    |      |      |    |    |    |  |  |  |

| Bits    | Description |                                                                                                                                                                                                                                                                   |  |  |  |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:24] | Reserved    | eserved Reserved.                                                                                                                                                                                                                                                 |  |  |  |
| [23:0]  | CURRENT     | System Tick Current Value  Current counter value. This is the value of the counter at the time it is sampled. The counter does not provide read-modify-write protection. The register is write-clear. A software write of any value will clear the register to 0. |  |  |  |

#### 6.2.8 Nested Vectored Interrupt Controller (NVIC)

The Cortex<sup>®</sup>-M0 provides an interrupt controller as an integral part of the exception mode, named as "Nested Vectored Interrupt Controller (NVIC)", which is closely coupled to the processor core and provides following features:

- Nested and Vectored interrupt support
- Automatic processor state saving and restoration
- Reduced and deterministic interrupt latency

The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in "Handler Mode". This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority. All of the interrupts and most of the system exceptions can be configured to different priority levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the current running one's priority. If the priority of the new interrupt is higher than the current one, the new interrupt handler will override the current handler.

When an interrupt is accepted, the starting address of the interrupt service routine (ISR) is fetched from a vector table in memory. There is no need to determine which interrupt is accepted and branch to the starting address of the correlated ISR by software. While the starting address is fetched, NVIC will also automatically save processor state including the registers "PC, PSR, LR, R0~R3, R12" to the stack. At the end of the ISR, the NVIC will restore the mentioned registers from stack and resume the normal execution. Thus it will take less and deterministic time to process the interrupt request.

The NVIC supports "Tail Chaining" which handles back-to-back interrupts efficiently without the overhead of states saving and restoration and therefore reduces delay time in switching to pending ISR at the end of current ISR. The NVIC also supports "Late Arrival" which improves the efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will give priority to the higher one without delay penalty. Thus it advances the real-time capability.

For more detailed information, please refer to the "ARM® Cortex®-M0 Technical Reference Manual" and "ARM® v6-M Architecture Reference Manual".

#### 6.2.8.1 Exception Model and System Interrupt Map

nuvoton

Table 6.2-2 and Table 6.2-3 lists the exception model supported by NuMicro<sup>®</sup> NUC131 series. Software can set four levels of priority on some of these exceptions as well as on all interrupts. The highest user-configurable priority is denoted as "0" and the lowest priority is denoted as "3". The default priority of all the user-configurable interrupts is "0". Note that priority "0" is treated as the fourth priority on the system, after three system exceptions "Reset", "NMI" and "Hard Fault".

| Exception Name           | Vector Number | Priority     |
|--------------------------|---------------|--------------|
| Reset                    | 1             | -3           |
| NMI                      | 2             | -2           |
| Hard Fault               | 3             | -1           |
| Reserved                 | 4 ~ 10        | Reserved     |
| SVCall                   | 11            | Configurable |
| Reserved                 | 12 ~ 13       | Reserved     |
| PendSV                   | 14            | Configurable |
| SysTick                  | 15            | Configurable |
| Interrupt (IRQ0 ~ IRQ31) | 16 ~ 47       | Configurable |

Table 6.2-2 Exception Model

| Vector<br>Number | Interrupt Number<br>(Bit In Interrupt<br>Registers) | Interrupt Name | Source<br>Module | Interrupt Description                                      |
|------------------|-----------------------------------------------------|----------------|------------------|------------------------------------------------------------|
| 1 ~ 15           | -                                                   | -              | -                | System exceptions                                          |
| 16               | 0                                                   | BOD_INT        | Brown-out        | Brown-out low voltage detected interrupt                   |
| 17               | 1                                                   | WDT_INT        | WDT              | Watchdog Timer interrupt                                   |
| 18               | 2                                                   | EINT0          | GPIO             | External signal interrupt from PB.14 pin                   |
| 19               | 3                                                   | EINT1          | GPIO             | External signal interrupt from PB.15 pin                   |
| 20               | 4                                                   | GPAB_INT       | GPIO             | External signal interrupt from PA[15:0]/PB[13:0]           |
| 21               | 5                                                   | GPCDEF_INT     | GPIO             | External interrupt from PC[15:0]/PD[15:0]/PE[15:0]/PF[8:0] |
| 22               | 6                                                   | -              | -                | Reserved                                                   |
| 23               | 7                                                   | -              | -                | Reserved                                                   |
| 24               | 8                                                   | TMR0_INT       | TMR0             | Timer 0 interrupt                                          |
| 25               | 9                                                   | TMR1_INT       | TMR1             | Timer 1 interrupt                                          |
| 26               | 10                                                  | TMR2_INT       | TMR2             | Timer 2 interrupt                                          |
| 27               | 11                                                  | TMR3_INT       | TMR3             | Timer 3 interrupt                                          |
| 28               | 12                                                  | UART02_INT     | UART0/2          | UART0 and UART2 interrupt                                  |
| 29               | 13                                                  | UART1_INT      | UART1            | UART1 interrupt                                            |

| 30 | 14 | SPI0_INT   | SPI0  | SPI0 interrupt                                                        |
|----|----|------------|-------|-----------------------------------------------------------------------|
| 31 | 15 | UART3_INT  | UART3 | UART3 interrupt                                                       |
| 32 | 16 | UART4_INT  | UART4 | UART4 interrupt                                                       |
| 33 | 17 | UART5_INT  | UART5 | UART5 interrupt                                                       |
| 34 | 18 | I2C0_INT   | I2C0  | I2C0 interrupt                                                        |
| 35 | 19 | I2C1_INT   | I2C1  | I2C1 interrupt                                                        |
| 36 | 20 | CAN0_INT   | CAN0  | CAN0 interrupt                                                        |
| 37 | 21 | -          | -     | Reserved                                                              |
| 38 | 22 | PWM0_INT   | PWM0  | PWM0 interrupt                                                        |
| 39 | 23 | PWM1_INT   | PWM1  | PWM1 interrupt                                                        |
| 40 | 24 | BPWM0_INT  | BPWM0 | BPWM0 interrupt                                                       |
| 41 | 25 | BPWM1_INT  | BPWM1 | BPWM1 interrupt                                                       |
| 42 | 26 | BRAKE0_INT | PWM0  | PWM0 brake interrupt                                                  |
| 43 | 27 | BRAKE1_INT | PWM1  | PWM1 brake interrupt                                                  |
| 44 | 28 | PWRWU_INT  | CLKC  | Clock controller interrupt for chip wake-up from Power-<br>down state |
| 45 | 29 | ADC_INT    | ADC   | ADC interrupt                                                         |
| 46 | 30 | CKD_INT    | CLKC  | Clock detection interrupt                                             |
| 47 | 31 | -          | -     | Reserved                                                              |

Table 6.2-3 System Interrupt Map



#### 6.2.8.2 Vector Table

When an interrupt is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table base address is fixed at 0x00000000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with exception handler entry as illustrated in previous section.

| Vector Table Word Offset | Description                                      |
|--------------------------|--------------------------------------------------|
| 0                        | SP_main – The Main stack pointer                 |
| Vector Number            | Exception Entry Pointer using that Vector Number |

Table 6.2-4 Vector Table Format

#### 6.2.8.3 Operation Description

NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current enabled state of the corresponding interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the interrupt will not activate. If an interrupt is Active when it is disabled, it remains in its Active state until cleared by reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt.

NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current pended state of the corresponding interrupts. The Clear-Pending Register has no effect on the execution status of an Active interrupt.

NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting four interrupts).

The general registers associated with the NVIC are all accessible from a block of memory in the System Control Space and will be described in next section.



# 6.2.8.4 NVIC Control Register Map

R: read only, W: write only, R/W: both read and write

| Register  | Offset                                     | R/W | Description                                 | Reset Value |  |  |  |  |
|-----------|--------------------------------------------|-----|---------------------------------------------|-------------|--|--|--|--|
|           | NVIC Base Address:<br>SCS_BA = 0xE000_E000 |     |                                             |             |  |  |  |  |
| NVIC_ISER | SCS_BA+0x100                               | R/W | IRQ0 ~ IRQ31 Set-Enable Control Register    | 0x0000_0000 |  |  |  |  |
| NVIC_ICER | SCS_BA+0x180                               | R/W | IRQ0 ~ IRQ31 Clear-Enable Control Register  | 0x0000_0000 |  |  |  |  |
| NVIC_ISPR | SCS_BA+0x200                               | R/W | IRQ0 ~ IRQ31 Set-Pending Control Register   | 0x0000_0000 |  |  |  |  |
| NVIC_ICPR | SCS_BA+0x280                               | R/W | IRQ0 ~ IRQ31 Clear-Pending Control Register | 0x0000_0000 |  |  |  |  |
| NVIC_IPR0 | SCS_BA+0x400                               | R/W | IRQ0 ~ IRQ3 Priority Control Register       | 0x0000_0000 |  |  |  |  |
| NVIC_IPR1 | SCS_BA+0x404                               | R/W | IRQ4 ~ IRQ7 Priority Control Register       | 0x0000_0000 |  |  |  |  |
| NVIC_IPR2 | SCS_BA+0x408                               | R/W | IRQ8 ~ IRQ11 Priority Control Register      | 0x0000_0000 |  |  |  |  |
| NVIC_IPR3 | SCS_BA+0x40C                               | R/W | IRQ12 ~ IRQ15 Priority Control Register     | 0x0000_0000 |  |  |  |  |
| NVIC_IPR4 | SCS_BA+0x410                               | R/W | IRQ16 ~ IRQ19 Priority Control Register     | 0x0000_0000 |  |  |  |  |
| NVIC_IPR5 | SCS_BA+0x414                               | R/W | IRQ20 ~ IRQ23 Priority Control Register     | 0x0000_0000 |  |  |  |  |
| NVIC_IPR6 | SCS_BA+0x418                               | R/W | IRQ24 ~ IRQ27 Priority Control Register     | 0x0000_0000 |  |  |  |  |
| NVIC_IPR7 | SCS_BA+0x41C                               | R/W | IRQ28 ~ IRQ31 Priority Control Register     | 0x0000_0000 |  |  |  |  |



## 6.2.8.5 NVIC Control Register Description

## IRQ0 ~ IRQ31 Set-Enable Control Register (NVIC ISER)

| Register  | Offset       | R/W | Description                              | Reset Value |
|-----------|--------------|-----|------------------------------------------|-------------|
| NVIC_ISER | SCS_BA+0x100 | R/W | IRQ0 ~ IRQ31 Set-Enable Control Register | 0x0000_0000 |

| 31 | 30     | 29 | 28  | 27  | 26 | 25 | 24 |  |
|----|--------|----|-----|-----|----|----|----|--|
|    |        |    | SET | ENA |    |    |    |  |
| 23 | 22     | 21 | 20  | 19  | 18 | 17 | 16 |  |
|    |        |    | SET | ENA |    |    |    |  |
| 15 | 14     | 13 | 12  | 11  | 10 | 9  | 8  |  |
|    |        |    | SET | ENA |    |    |    |  |
| 7  | 6      | 5  | 4   | 3   | 2  | 1  | 0  |  |
|    | SETENA |    |     |     |    |    |    |  |

| Bits   | Description |                                                                                                                                                                                                                                                                                                                                                                                               |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | SETENA      | Interrupt Enable Register  Enable one or more interrupts. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47).  Write Operation:  0 = No effect.  1 = Write 1 to enable associated interrupt.  Read Operation:  0 = Associated interrupt status is Disabled.  1 = Associated interrupt status is Enabled.  Read value indicates the current enable status. |



## IRQ0 ~ IRQ31 Clear-Enable Control Register (NVIC\_ICER)

| Register  | Offset       | R/W | Description                                | Reset Value |
|-----------|--------------|-----|--------------------------------------------|-------------|
| NVIC_ICER | SCS_BA+0x180 | R/W | IRQ0 ~ IRQ31 Clear-Enable Control Register | 0x0000_0000 |

| 31 | 30     | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|----|--------|----|----|----|----|----|----|--|--|--|
|    | CLRENA |    |    |    |    |    |    |  |  |  |
| 23 | 22     | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|    | CLRENA |    |    |    |    |    |    |  |  |  |
| 15 | 14     | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|    | CLRENA |    |    |    |    |    |    |  |  |  |
| 7  | 6      | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|    | CLRENA |    |    |    |    |    |    |  |  |  |

| Bits   | Description | Description                                                                                                             |  |  |  |  |
|--------|-------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|        |             | Interrupt Disable Control                                                                                               |  |  |  |  |
|        |             | Disable one or more interrupts. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). |  |  |  |  |
|        |             | Write Operation:                                                                                                        |  |  |  |  |
|        |             | 0 = No effect.                                                                                                          |  |  |  |  |
| [31:0] | CLRENA      | 1 = Write 1 to disable associated interrupt.                                                                            |  |  |  |  |
|        |             | Read Operation:                                                                                                         |  |  |  |  |
|        |             | 0 = Associated interrupt status is Disabled.                                                                            |  |  |  |  |
|        |             | 1 = Associated interrupt status is Enabled.                                                                             |  |  |  |  |
|        |             | Read value indicates the current enable status.                                                                         |  |  |  |  |



## IRQ0 ~ IRQ31 Set-Pending Control Register (NVIC\_ISPR)

| Register  | Offset       | R/W | Description                               | Reset Value |
|-----------|--------------|-----|-------------------------------------------|-------------|
| NVIC_ISPR | SCS_BA+0x200 | R/W | IRQ0 ~ IRQ31 Set-Pending Control Register | 0x0000_0000 |

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|----|---------|----|----|----|----|----|----|--|--|--|
|    | SETPEND |    |    |    |    |    |    |  |  |  |
| 23 | 22      | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|    | SETPEND |    |    |    |    |    |    |  |  |  |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|    | SETPEND |    |    |    |    |    |    |  |  |  |
| 7  | 6       | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|    | SETPEND |    |    |    |    |    |    |  |  |  |

| Bits   | Description | Description                                                                                                               |  |  |  |  |  |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|        |             | Set Interrupt Pending Register                                                                                            |  |  |  |  |  |
|        |             | Write Operation:                                                                                                          |  |  |  |  |  |
|        |             | 0 = No effect.                                                                                                            |  |  |  |  |  |
| [31:0] | SETPEND     | 1 = Write 1 to set pending state. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). |  |  |  |  |  |
|        |             | Read Operation:                                                                                                           |  |  |  |  |  |
|        |             | 0 = Associated interrupt in not in pending status.                                                                        |  |  |  |  |  |
|        |             | 1 = Associated interrupt is in pending status.                                                                            |  |  |  |  |  |
|        |             | Read value indicates the current pending status.                                                                          |  |  |  |  |  |

## IRQ0 ~ IRQ31 Clear-Pending Control Register (NVIC\_ICPR)

| Register  | Offset       | R/W | Description                                 | Reset Value |
|-----------|--------------|-----|---------------------------------------------|-------------|
| NVIC_ICPR | SCS_BA+0x280 | R/W | IRQ0 ~ IRQ31 Clear-Pending Control Register | 0x0000_0000 |

| 31 | 30      | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|----|---------|----|----|----|----|----|----|--|--|--|
|    | CLRPEND |    |    |    |    |    |    |  |  |  |
| 23 | 22      | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|    | CLRPEND |    |    |    |    |    |    |  |  |  |
| 15 | 14      | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|    | CLRPEND |    |    |    |    |    |    |  |  |  |
| 7  | 6       | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|    | CLRPEND |    |    |    |    |    |    |  |  |  |

| Bits             | Description |                                                                                                                             |
|------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------|
|                  |             | Clear Interrupt Pending Register                                                                                            |
|                  |             | Write Operation:                                                                                                            |
| [31:0] <b>CI</b> |             | 0 = No effect.                                                                                                              |
|                  | CLRPEND     | 1 = Write 1 to clear pending state. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). |
|                  |             | Read Operation:                                                                                                             |
|                  |             | 0 = Associated interrupt in not in pending status.                                                                          |
|                  |             | 1 = Associated interrupt is in pending status.                                                                              |
|                  |             | Read value indicates the current pending status.                                                                            |



## IRQ0 ~ IRQ3 Priority Register (NVIC\_IPR0)

| Register  | Offset       | R/W | Description                           | Reset Value |
|-----------|--------------|-----|---------------------------------------|-------------|
| NVIC_IPR0 | SCS_BA+0x400 | R/W | IRQ0 ~ IRQ3 Priority Control Register | 0x0000_0000 |

| 31    | 30  | 29       | 28 | 27   | 26    | 25 | 24 |  |
|-------|-----|----------|----|------|-------|----|----|--|
| PRI_3 |     |          |    | Rese | erved |    |    |  |
| 23    | 22  | 21       | 20 | 19   | 18    | 17 | 16 |  |
| PR    | I_2 | Reserved |    |      |       |    |    |  |
| 15    | 14  | 13       | 12 | 11   | 10    | 9  | 8  |  |
| PRI_1 |     |          |    | Rese | erved |    |    |  |
| 7     | 6   | 5        | 4  | 3    | 2     | 1  | 0  |  |
| PR    | I_0 | Reserved |    |      |       |    |    |  |

| Bits    | Description | Description                                                                            |  |  |  |  |  |
|---------|-------------|----------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:30] | PRI_3       | Priority Of IRQ3 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |
| [29:24] | Reserved    | Reserved.                                                                              |  |  |  |  |  |
| [23:22] | PRI_2       | Priority Of IRQ2 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |
| [21:16] | Reserved    | Reserved.                                                                              |  |  |  |  |  |
| [15:14] | PRI_1       | Priority Of IRQ1 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |
| [13:8]  | Reserved    | Reserved.                                                                              |  |  |  |  |  |
| [7:6]   | PRI_0       | Priority Of IRQ0 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |
| [5:0]   | Reserved    | Reserved.                                                                              |  |  |  |  |  |

## IRQ4 ~ IRQ7 Priority Register (NVIC\_IPR1)

| Register  | Offset       | R/W | Description                           | Reset Value |
|-----------|--------------|-----|---------------------------------------|-------------|
| NVIC_IPR1 | SCS_BA+0x404 | R/W | IRQ4 ~ IRQ7 Priority Control Register | 0x0000_0000 |

| 31    | 30  | 29       | 28       | 27 | 26 | 25 | 24 |  |  |
|-------|-----|----------|----------|----|----|----|----|--|--|
| PR    | I_7 |          | Reserved |    |    |    |    |  |  |
| 23    | 22  | 21       | 20       | 19 | 18 | 17 | 16 |  |  |
| PRI_6 |     | Reserved |          |    |    |    |    |  |  |
| 15    | 14  | 13       | 12       | 11 | 10 | 9  | 8  |  |  |
| PR    | I_5 | Reserved |          |    |    |    |    |  |  |
| 7     | 6   | 5        | 4        | 3  | 2  | 1  | 0  |  |  |
| PR    | I_4 | Reserved |          |    |    |    |    |  |  |

| Bits    | Description | escription                                                                             |  |  |  |  |  |  |
|---------|-------------|----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:30] | PRI_7       | Priority Of IRQ7 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [29:24] | Reserved    | Reserved.                                                                              |  |  |  |  |  |  |
| [23:22] | PRI_6       | Priority Of IRQ6 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [21:16] | Reserved    | Reserved.                                                                              |  |  |  |  |  |  |
| [15:14] | PRI_5       | Priority Of IRQ5 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [13:8]  | Reserved    | Reserved.                                                                              |  |  |  |  |  |  |
| [7:6]   | PRI_4       | Priority Of IRQ4 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [5:0]   | Reserved    | Reserved.                                                                              |  |  |  |  |  |  |



## IRQ8 ~ IRQ11 Priority Register (NVIC\_IPR2)

| Register  | Offset       | R/W | Description                            | Reset Value |
|-----------|--------------|-----|----------------------------------------|-------------|
| NVIC_IPR2 | SCS_BA+0x408 | R/W | IRQ8 ~ IRQ11 Priority Control Register | 0x0000_0000 |

| 31  | 30  | 29       | 28       | 27 | 26 | 25 | 24 |  |  |
|-----|-----|----------|----------|----|----|----|----|--|--|
| PRI | _11 |          | Reserved |    |    |    |    |  |  |
| 23  | 22  | 21       | 20       | 19 | 18 | 17 | 16 |  |  |
| PRI | _10 | Reserved |          |    |    |    |    |  |  |
| 15  | 14  | 13       | 12       | 11 | 10 | 9  | 8  |  |  |
| PR  | I_9 | Reserved |          |    |    |    |    |  |  |
| 7   | 6   | 5        | 4        | 3  | 2  | 1  | 0  |  |  |
| PR  | I_8 | Reserved |          |    |    |    |    |  |  |

| Bits    | Description | Description                                                                             |  |  |  |  |  |  |
|---------|-------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:30] | PRI_11      | Priority Of IRQ11 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [29:24] | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |
| [23:22] | PRI_10      | Priority Of IRQ10 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [21:16] | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |
| [15:14] | PRI_9       | Priority Of IRQ9 "0" denotes the highest priority and "3" denotes the lowest priority.  |  |  |  |  |  |  |
| [13:8]  | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |
| [7:6]   | PRI_8       | Priority Of IRQ8 "0" denotes the highest priority and "3" denotes the lowest priority.  |  |  |  |  |  |  |
| [5:0]   | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |

## IRQ12 ~ IRQ15 Priority Register (NVIC\_IPR3)

| Register  | Offset       | R/W | Description                             | Reset Value |
|-----------|--------------|-----|-----------------------------------------|-------------|
| NVIC_IPR3 | SCS_BA+0x40C | R/W | IRQ12 ~ IRQ15 Priority Control Register | 0x0000_0000 |

| 31     | 30  | 29       | 28       | 27   | 26    | 25 | 24 |  |  |
|--------|-----|----------|----------|------|-------|----|----|--|--|
| PRI_15 |     |          | Reserved |      |       |    |    |  |  |
| 23     | 22  | 21       | 20       | 19   | 18    | 17 | 16 |  |  |
| PRI_14 |     | Reserved |          |      |       |    |    |  |  |
| 15     | 14  | 13       | 12       | 11   | 10    | 9  | 8  |  |  |
| PRI    | _13 | Reserved |          |      |       |    |    |  |  |
| 7      | 6   | 5        | 4        | 3    | 2     | 1  | 0  |  |  |
| PRI_12 |     |          |          | Rese | erved |    |    |  |  |

| Bits    | Description | Description                                                                             |  |  |  |  |  |  |
|---------|-------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:30] | PRI_15      | Priority Of IRQ15 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [29:24] | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |
| [23:22] | PRI_14      | Priority Of IRQ14 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [21:16] | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |
| [15:14] | PRI_13      | Priority Of IRQ13 "0" denotes the highest priority and "3" denotes the lowest priority  |  |  |  |  |  |  |
| [13:8]  | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |
| [7:6]   | PRI_12      | Priority Of IRQ12 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [5:0]   | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |



## IRQ16 ~ IRQ19 Priority Register (NVIC\_IPR4)

| Register  | Offset       | R/W | Description                             | Reset Value |
|-----------|--------------|-----|-----------------------------------------|-------------|
| NVIC_IPR4 | SCS_BA+0x410 | R/W | IRQ16 ~ IRQ19 Priority Control Register | 0x0000_0000 |

| 31  | 30  | 29       | 28       | 27 | 26 | 25 | 24 |  |  |
|-----|-----|----------|----------|----|----|----|----|--|--|
| PRI | _19 |          | Reserved |    |    |    |    |  |  |
| 23  | 22  | 21       | 20       | 19 | 18 | 17 | 16 |  |  |
| PRI | _18 | Reserved |          |    |    |    |    |  |  |
| 15  | 14  | 13       | 12       | 11 | 10 | 9  | 8  |  |  |
| PRI | _17 | Reserved |          |    |    |    |    |  |  |
| 7   | 6   | 5        | 4        | 3  | 2  | 1  | 0  |  |  |
| PRI | _16 | Reserved |          |    |    |    |    |  |  |

| Bits    | Description | Description                                                                             |  |  |  |  |  |  |
|---------|-------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:30] | PRI_19      | Priority Of IRQ19 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [29:24] | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |
| [23:22] | PRI_18      | Priority Of IRQ18 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [21:16] | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |
| [15:14] | PRI_17      | Priority Of IRQ17 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [13:8]  | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |
| [7:6]   | PRI_16      | Priority Of IRQ16 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [5:0]   | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |



## IRQ20 ~ IRQ23 Priority Register (NVIC\_IPR5)

| Register  | Offset       | R/W | Description                             | Reset Value |
|-----------|--------------|-----|-----------------------------------------|-------------|
| NVIC_IPR5 | SCS_BA+0x414 | R/W | IRQ20 ~ IRQ23 Priority Control Register | 0x0000_0000 |

| 31     | 30  | 29       | 28       | 27    | 26 | 25 | 24 |  |  |
|--------|-----|----------|----------|-------|----|----|----|--|--|
| PRI_23 |     |          | Reserved |       |    |    |    |  |  |
| 23     | 22  | 21       | 20       | 19    | 18 | 17 | 16 |  |  |
| PRI    | _22 | Reserved |          |       |    |    |    |  |  |
| 15     | 14  | 13       | 12       | 11    | 10 | 9  | 8  |  |  |
| PRI    | _21 | Reserved |          |       |    |    |    |  |  |
| 7      | 6   | 5        | 4        | 3     | 2  | 1  | 0  |  |  |
| PRI_20 |     |          | Rese     | erved |    |    |    |  |  |

| Bits    | Description | Description                                                                             |  |  |  |  |  |  |
|---------|-------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:30] | PRI_23      | Priority Of IRQ23 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [29:24] | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |
| [23:22] | PRI_22      | Priority Of IRQ22 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [21:16] | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |
| [15:14] | PRI_21      | Priority Of IRQ21 "0" denotes the highest priority and "3" denotes the lowest priority  |  |  |  |  |  |  |
| [13:8]  | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |
| [7:6]   | PRI_20      | Priority Of IRQ20 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [5:0]   | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |



## IRQ24 ~ IRQ27 Priority Register (NVIC\_IPR6)

| Register  | Offset       | R/W | Description                             | Reset Value |
|-----------|--------------|-----|-----------------------------------------|-------------|
| NVIC_IPR6 | SCS_BA+0x418 | R/W | IRQ24 ~ IRQ27 Priority Control Register | 0x0000_0000 |

| 31  | 30     | 29       | 28       | 27   | 26    | 25 | 24 |  |  |
|-----|--------|----------|----------|------|-------|----|----|--|--|
| PRI | PRI_27 |          | Reserved |      |       |    |    |  |  |
| 23  | 22     | 21       | 20       | 19   | 18    | 17 | 16 |  |  |
| PRI | _26    | Reserved |          |      |       |    |    |  |  |
| 15  | 14     | 13       | 12       | 11   | 10    | 9  | 8  |  |  |
| PRI | _25    |          |          | Rese | erved |    |    |  |  |
| 7   | 6      | 5        | 4        | 3    | 2     | 1  | 0  |  |  |
| PRI | _24    | Reserved |          |      |       |    |    |  |  |

| Bits    | Description | Description                                                                              |  |  |  |  |  |  |
|---------|-------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:30] | PRI_27      | Priority Of IRQ27  "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [29:24] | Reserved    | Reserved.                                                                                |  |  |  |  |  |  |
| [23:22] | PRI_26      | Priority Of IRQ26 "0" denotes the highest priority and "3" denotes the lowest priority.  |  |  |  |  |  |  |
| [21:16] | Reserved    | Reserved.                                                                                |  |  |  |  |  |  |
| [15:14] | PRI_25      | Priority Of IRQ25 "0" denotes the highest priority and "3" denotes the lowest priority.  |  |  |  |  |  |  |
| [13:8]  | Reserved    | Reserved.                                                                                |  |  |  |  |  |  |
| [7:6]   | PRI_24      | Priority Of IRQ24  "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [5:0]   | Reserved    | Reserved.                                                                                |  |  |  |  |  |  |



## IRQ28 ~ IRQ31 Priority Register (NVIC\_IPR7)

| Register  | Offset       | R/W | Description                             | Reset Value |
|-----------|--------------|-----|-----------------------------------------|-------------|
| NVIC_IPR7 | SCS_BA+0x41C | R/W | IRQ28 ~ IRQ31 Priority Control Register | 0x0000_0000 |

| 31     | 30  | 29       | 28       | 27    | 26 | 25 | 24 |  |  |
|--------|-----|----------|----------|-------|----|----|----|--|--|
| PRI_31 |     |          | Reserved |       |    |    |    |  |  |
| 23     | 22  | 21       | 20       | 19    | 18 | 17 | 16 |  |  |
| PRI    | _30 | Reserved |          |       |    |    |    |  |  |
| 15     | 14  | 13       | 12       | 11    | 10 | 9  | 8  |  |  |
| PRI    | _29 | Reserved |          |       |    |    |    |  |  |
| 7      | 6   | 5        | 4        | 3     | 2  | 1  | 0  |  |  |
| PRI_28 |     |          | Rese     | erved |    |    |    |  |  |

| Bits    | Description | Description                                                                             |  |  |  |  |  |  |
|---------|-------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:30] | PRI_31      | Priority Of IRQ31 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [29:24] | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |
| [23:22] | PRI_30      | Priority Of IRQ30 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [21:16] | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |
| [15:14] | PRI_29      | Priority Of IRQ29 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [13:8]  | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |
| [7:6]   | PRI_28      | Priority Of IRQ28 "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |  |
| [5:0]   | Reserved    | Reserved.                                                                               |  |  |  |  |  |  |



#### 6.2.8.6 Interrupt Source Register Map

Besides the interrupt control registers associated with the NVIC, the NuMicro® NUC131 series also implement some specific control registers to facilitate the interrupt functions, including "interrupt source identification", "NMI source selection" and "interrupt test mode", which are described below.

R: read only, W: write only, R/W: both read and write

| Register                       | Offset      | R/W | Description                                | Reset Value |
|--------------------------------|-------------|-----|--------------------------------------------|-------------|
| INT Base Addi<br>INT_BA = 0x50 |             |     |                                            |             |
| IRQ0_SRC                       | INT_BA+0x00 | R   | IRQ0 (BOD) Interrupt Source Identity       | 0xXXXX_XXXX |
| IRQ1_SRC                       | INT_BA+0x04 | R   | IRQ1 (WDT) Interrupt Source Identity       | 0xXXXX_XXXX |
| IRQ2_SRC                       | INT_BA+0x08 | R   | IRQ2 (EINT0) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ3_SRC                       | INT_BA+0x0C | R   | IRQ3 (EINT1) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ4_SRC                       | INT_BA+0x10 | R   | IRQ4 (GPA/B) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ5_SRC                       | INT_BA+0x14 | R   | IRQ5 (GPC/D/E/F) Interrupt Source Identity | 0xXXXX_XXXX |
| IRQ6_SRC                       | INT_BA+0x18 | R   | Reserved                                   | 0xXXXX_XXXX |
| IRQ7_SRC                       | INT_BA+0x1C | R   | Reserved                                   | 0xXXXX_XXXX |
| IRQ8_SRC                       | INT_BA+0x20 | R   | IRQ8 (TMR0) Interrupt Source Identity      | 0xXXXX_XXXX |
| IRQ9_SRC                       | INT_BA+0x24 | R   | IRQ9 (TMR1) Interrupt Source Identity      | 0xXXXX_XXXX |
| IRQ10_SRC                      | INT_BA+0x28 | R   | IRQ10 (TMR2) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ11_SRC                      | INT_BA+0x2C | R   | IRQ11 (TMR3) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ12_SRC                      | INT_BA+0x30 | R   | IRQ12 (UART0/2) Interrupt Source Identity  | 0xXXXX_XXXX |
| IRQ13_SRC                      | INT_BA+0x34 | R   | IRQ13 (UART1) Interrupt Source Identity    | 0xXXXX_XXXX |
| IRQ14_SRC                      | INT_BA+0x38 | R   | IRQ14 (SPI0) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ15_SRC                      | INT_BA+0x3C | R   | IRQ15 (UART3) Interrupt Source Identity    | 0xXXXX_XXXX |
| IRQ16_SRC                      | INT_BA+0x40 | R   | IRQ16 (UART4) Interrupt Source Identity    | 0xXXXX_XXXX |
| IRQ17_SRC                      | INT_BA+0x44 | R   | IRQ17 (UART5) Interrupt Source Identity    | 0xXXXX_XXXX |
| IRQ18_SRC                      | INT_BA+0x48 | R   | IRQ18 (I2C0) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ19_SRC                      | INT_BA+0x4C | R   | IRQ19 (I2C1) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ20_SRC                      | INT_BA+0x50 | R   | IRQ20 (CAN0) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ21_SRC                      | INT_BA+0x54 | R   | Reserved                                   | 0xXXXX_XXXX |
| IRQ22_SRC                      | INT_BA+0x58 | R   | IRQ22 (PWM0) Interrupt Source Identity     | 0xXXXX_XXXX |



| IRQ23_SRC | INT_BA+0x5C | R   | IRQ23 (PWM1) Interrupt Source Identity       | 0xXXXX_XXXX |
|-----------|-------------|-----|----------------------------------------------|-------------|
| IRQ24_SRC | INT_BA+0x60 | R   | IRQ24 (BPWM0) Interrupt Source Identity      | 0xXXXX_XXXX |
| IRQ25_SRC | INT_BA+0x64 | R   | IRQ25 (BPWM1) Interrupt Source Identity      | 0xXXXX_XXXX |
| IRQ26_SRC | INT_BA+0x68 | R   | IRQ26 (BRAKE0) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ27_SRC | INT_BA+0x6C | R   | IRQ27 (BRAKE1) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ28_SRC | INT_BA+0x70 | R   | IRQ28 (PWRWU) Interrupt Source Identity      | 0xXXXX_XXXX |
| IRQ29_SRC | INT_BA+0x74 | R   | IRQ29 (ADC) Interrupt Source Identity        | 0xXXXX_XXXX |
| IRQ30_SRC | INT_BA+0x78 | R   | IRQ30 (CKD) Interrupt Source Identity        | 0xXXXX_XXXX |
| IRQ31_SRC | INT_BA+0x7C | R   | Reserved                                     | 0xXXXX_XXXX |
| NMI_SEL   | INT_BA+0x80 | R/W | NMI Source Interrupt Select Control Register | 0x0000_0000 |
| MCU_IRQ   | INT_BA+0x84 | R/W | MCU Interrupt Request Source Register        | 0x0000_0000 |
| MCU_IRQCR | INT_BA+0x88 | R/W | MCU Interrupt Request Control Register       | 0x0000_0000 |



## 6.2.8.7 Interrupt Source Register Description

## Interrupt Source Identity Register (IRQn\_SRC)

| Register  | Offset      | R/W | Description                                | Reset Value |
|-----------|-------------|-----|--------------------------------------------|-------------|
| IRQ0_SRC  | INT_BA+0x00 | R   | IRQ0 (BOD) Interrupt Source Identity       | 0xXXXX_XXXX |
| IRQ1_SRC  | INT_BA+0x04 | R   | IRQ1 (WDT) Interrupt Source Identity       | 0xXXXX_XXXX |
| IRQ2_SRC  | INT_BA+0x08 | R   | IRQ2 (EINT0) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ3_SRC  | INT_BA+0x0C | R   | IRQ3 (EINT1) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ4_SRC  | INT_BA+0x10 | R   | IRQ4 (GPA/B) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ5_SRC  | INT_BA+0x14 | R   | IRQ5 (GPC/D/E/F) Interrupt Source Identity | 0xXXXX_XXXX |
| IRQ6_SRC  | INT_BA+0x18 | R   | Reserved                                   | 0xXXXX_XXXX |
| IRQ7_SRC  | INT_BA+0x1C | R   | Reserved                                   | 0xXXXX_XXXX |
| IRQ8_SRC  | INT_BA+0x20 | R   | IRQ8 (TMR0) Interrupt Source Identity      | 0xXXXX_XXXX |
| IRQ9_SRC  | INT_BA+0x24 | R   | IRQ9 (TMR1) Interrupt Source Identity      | 0xXXXX_XXXX |
| IRQ10_SRC | INT_BA+0x28 | R   | IRQ10 (TMR2) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ11_SRC | INT_BA+0x2C | R   | IRQ11 (TMR3) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ12_SRC | INT_BA+0x30 | R   | IRQ12 (UART0/2) Interrupt Source Identity  | 0xXXXX_XXXX |
| IRQ13_SRC | INT_BA+0x34 | R   | IRQ13 (UART1) Interrupt Source Identity    | 0xXXXX_XXXX |
| IRQ14_SRC | INT_BA+0x38 | R   | IRQ14 (SPI0) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ15_SRC | INT_BA+0x3C | R   | IRQ15 (UART3) Interrupt Source Identity    | 0xXXXX_XXXX |
| IRQ16_SRC | INT_BA+0x40 | R   | IRQ16 (UART4) Interrupt Source Identity    | 0xXXXX_XXXX |
| IRQ17_SRC | INT_BA+0x44 | R   | IRQ17 (UART5) Interrupt Source Identity    | 0xXXXX_XXXX |
| IRQ18_SRC | INT_BA+0x48 | R   | IRQ18 (I2C0) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ19_SRC | INT_BA+0x4C | R   | IRQ19 (I2C1) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ20_SRC | INT_BA+0x50 | R   | IRQ20 (CAN0) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ21_SRC | INT_BA+0x54 | R   | Reserved                                   | 0xXXXX_XXXX |
| IRQ22_SRC | INT_BA+0x58 | R   | IRQ22 (PWM0) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ23_SRC | INT_BA+0x5C | R   | IRQ23 (PWM1) Interrupt Source Identity     | 0xXXXX_XXXX |
| IRQ24_SRC | INT_BA+0x60 | R   | IRQ24 (BPWM0) Interrupt Source Identity    | 0xXXXX_XXXX |
| IRQ25_SRC | INT_BA+0x64 | R   | IRQ25 (BPWM1) Interrupt Source Identity    | 0xXXXX_XXXX |
| IRQ26_SRC | INT_BA+0x68 | R   | IRQ26 (BRAKE0) Interrupt Source Identity   | 0xXXXX_XXXX |

| IRQ27_SRC | INT_BA+0x6C | R | IRQ27 (BRAKE1) Interrupt Source Identity | 0xXXXX_XXXX |
|-----------|-------------|---|------------------------------------------|-------------|
| IRQ28_SRC | INT_BA+0x70 | R | IRQ28 (PWRWU) Interrupt Source Identity  | 0xXXXX_XXXX |
| IRQ29_SRC | INT_BA+0x74 | R | IRQ29 (ADC) Interrupt Source Identity    | 0xXXXX_XXXX |
| IRQ30_SRC | INT_BA+0x78 | R | IRQ30 (CKD) Interrupt Source Identity    | 0xXXXX_XXXX |
| IRQ31_SRC | INT_BA+0x7C | R | Reserved                                 | 0xXXXX_XXXX |

| 31 | 30       | 29 | 28   | 27    | 26     | 25      | 24 |  |  |
|----|----------|----|------|-------|--------|---------|----|--|--|
|    |          |    | Rese | erved |        |         |    |  |  |
| 23 | 22       | 21 | 20   | 19    | 18     | 17      | 16 |  |  |
|    | Reserved |    |      |       |        |         |    |  |  |
| 15 | 14       | 13 | 12   | 11    | 10     | 9       | 8  |  |  |
|    | Reserved |    |      |       |        |         |    |  |  |
| 7  | 6        | 5  | 4    | 3     | 2      | 1       | 0  |  |  |
|    | Reserved |    |      |       | INT_SR | C[3:0]] |    |  |  |

| Bits   | Description | escription                                                         |  |  |
|--------|-------------|--------------------------------------------------------------------|--|--|
| [31:4] | Reserved    | Reserved.                                                          |  |  |
| [3:0]  | INT SRC     | Interrupt Source Define the interrupt sources for interrupt event. |  |  |

| Bits  | Address     | INT-Num | Description                                                   |
|-------|-------------|---------|---------------------------------------------------------------|
| [2:0] | INT_BA+0x00 | 0       | Bit2: 0 Bit1: 0 Bit0: BOD_INT                                 |
| [2:0] | INT_BA+0x04 | 1       | Bit2: 0 Bit1: WWDT_INT Bit0: WDT_INT                          |
| [2:0] | INT_BA+0x08 | 2       | Bit2: 0 Bit1: 0 Bit0: EINT0 – external interrupt 0 from PB.14 |
| [2:0] | INT_BA+0x0C | 3       | Bit2: 0 Bit1: 0 Bit0: EINT1 – external interrupt 1 from PB.15 |
| [2:0] | INT_BA+0x10 | 4       | Bit2: 0 Bit1: GPB_INT Bit0: GPA_INT                           |

|       |             |    | DIO ODE INT                                             |
|-------|-------------|----|---------------------------------------------------------|
| [3:0] | INT_BA+0x14 | 5  | Bit3: GPF_INT Bit2: GPE_INT Bit1: GPD_INT Bit0: GPC_INT |
| [2:0] | INT_BA+0x20 | 8  | Bit2: 0 Bit1: 0 Bit0: TMR0_INT                          |
| [2:0] | INT_BA+0x24 | 9  | Bit2: 0 Bit1: 0 Bit0: TMR1_INT                          |
| [2:0] | INT_BA+0x28 | 10 | Bit2: 0 Bit1: 0 Bit0: TMR2_INT                          |
| [2:0] | INT_BA+0x2C | 11 | Bit2: 0 Bit1: 0 Bit0: TMR3_INT                          |
| [2:0] | INT_BA+0x30 | 12 | Bit2: 0 Bit1: UART2_INT Bit0: UART0_INT                 |
| [2:0] | INT_BA+0x34 | 13 | Bit2: 0 Bit1: 0 Bit0: UART1_INT                         |
| [2:0] | INT_BA+0x38 | 14 | Bit2: 0 Bit1: 0 Bit0: SPI0_INT                          |
| [2:0] | INT_BA+0x3C | 15 | Bit2: 0 Bit1: 0 Bit0: UART3_INT                         |
| [2:0] | INT_BA+0x40 | 16 | Bit2: 0 Bit1: 0 Bit0: UART4_INT                         |
| [2:0] | INT_BA+0x44 | 17 | Bit2: 0 Bit1: 0 Bit0: UART5_INT                         |
| [2:0] | INT_BA+0x48 | 18 | Bit2: 0 Bit1: 0 Bit0: I2C0_INT                          |
| [2:0] | INT_BA+0x4C | 19 | Bit2: 0<br>Bit1: 0<br>Bit0: I2C1_INT                    |
| [2:0] | INT_BA+0x50 | 20 | Bit2: 0<br>Bit1: 0                                      |

|       |             |    | Bit0: CAN0_INT                   |
|-------|-------------|----|----------------------------------|
| [2:0] | INT_BA+0x58 | 22 | Bit2: 0 Bit1: 0 Bit0: PWM0_INT   |
| [2:0] | INT_BA+0x5C | 23 | Bit2: 0 Bit1: 0 Bit0: PWM1_INT   |
| [2:0] | INT_BA+0x60 | 24 | Bit2: 0 Bit1: 0 Bit0: BPWM0_INT  |
| [2:0] | INT_BA+0x64 | 25 | Bit2: 0 Bit1: 0 Bit0: BPWM1_INT  |
| [2:0] | INT_BA+0x68 | 26 | Bit2: 0 Bit1: 0 Bit0: BRAKE0_INT |
| [2:0] | INT_BA+0x6C | 27 | Bit2: 0 Bit1: 0 Bit0: BRAKE1_INT |
| [2:0] | INT_BA+0x70 | 28 | Bit2: 0 Bit1: 0 Bit0: PWRWU_INT  |
| [2:0] | INT_BA+0x74 | 29 | Bit2: 0 Bit1: 0 Bit0: ADC_INT    |
| [2:0] | INT_BA+0x78 | 30 | Bit2: 0 Bit1: 0 Bit0: CKD_INT    |



## NMI Source Interrupt Select Control Register (NMI\_SEL)

| Register | Offset      | R/W | Description                                  | Reset Value |
|----------|-------------|-----|----------------------------------------------|-------------|
| NMI_SEL  | INT_BA+0x80 | R/W | NMI Source Interrupt Select Control Register | 0x0000_0000 |

| 31       | 30       | 29 | 28   | 27    | 26      | 25 | 24 |  |
|----------|----------|----|------|-------|---------|----|----|--|
|          |          |    | Rese | erved |         |    |    |  |
| 23       | 22       | 21 | 20   | 19    | 18      | 17 | 16 |  |
|          | Reserved |    |      |       |         |    |    |  |
| 15       | 14       | 13 | 12   | 11    | 10      | 9  | 8  |  |
|          | Reserved |    |      |       |         |    |    |  |
| 7        | 6        | 5  | 4    | 3     | 2       | 1  | 0  |  |
| Reserved |          |    |      |       | NMI_SEL |    |    |  |

| Bits   | Description | escription                                                                                                                                                                                                            |  |  |  |  |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:9] | Reserved    | Reserved.                                                                                                                                                                                                             |  |  |  |  |
|        |             | NMI Interrupt Enable Control (Write Protect)                                                                                                                                                                          |  |  |  |  |
|        |             | 0 = NMI interrupt Disabled.                                                                                                                                                                                           |  |  |  |  |
| [8]    | NMI EN      | 1 = NMI interrupt Enabled.                                                                                                                                                                                            |  |  |  |  |
| ال     |             | <b>Note:</b> This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100. |  |  |  |  |
| [7:5]  | Reserved    | Reserved.                                                                                                                                                                                                             |  |  |  |  |
| [4:0]  |             | NMI Interrupt Source Selection                                                                                                                                                                                        |  |  |  |  |
|        | NMI_SEL     | The NMI interrupt to Cortex®-M0 can be selected from one of the peripheral interrupt by setting NMI_SEL.                                                                                                              |  |  |  |  |

## MCU Interrupt Request Source Register (MCU\_IRQ)

| Register | Offset      | R/W | Description                           | Reset Value |
|----------|-------------|-----|---------------------------------------|-------------|
| MCU_IRQ  | INT_BA+0x84 | R/W | MCU Interrupt Request Source Register | 0x0000_0000 |

| 31 | 30      | 29 | 28  | 27   | 26 | 25 | 24 |  |
|----|---------|----|-----|------|----|----|----|--|
|    |         |    | MCU | _IRQ |    |    |    |  |
| 23 | 22      | 21 | 20  | 19   | 18 | 17 | 16 |  |
|    |         |    | MCU | _IRQ |    |    |    |  |
| 15 | 14      | 13 | 12  | 11   | 10 | 9  | 8  |  |
|    | MCU_IRQ |    |     |      |    |    |    |  |
| 7  | 6       | 5  | 4   | 3    | 2  | 1  | 0  |  |
|    | MCU_IRQ |    |     |      |    |    |    |  |

| Bits           | Description | Description                                                                                                                                                                                                 |  |  |  |  |
|----------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                |             | MCU IRQ Source Register                                                                                                                                                                                     |  |  |  |  |
|                |             | The MCU_IRQ collects all the interrupts from the peripherals and generates the synchronous interrupt to Cortex®-M0. There are two modes to generate interrupt to Cortex®-M0, the normal mode and test mode. |  |  |  |  |
| [31:0] MCU_IRQ | MCU_IRQ     | The MCU_IRQ collects all interrupts from each peripheral and synchronizes them and interrupts the Cortex <sup>®</sup> -M0.                                                                                  |  |  |  |  |
|                |             | When the MCU_IRQ[n] is 0: Set MCU_IRQ[n] 1 will generate an interrupt to Cortex®-M0 NVIC[n].                                                                                                                |  |  |  |  |
|                |             | When the MCU_IRQ[n] is 1 (mean an interrupt is assert), setting 1 to the MCU_IRQ[n] 1 will clear the interrupt and setting MCU_IRQ[n] 0: has no effect.                                                     |  |  |  |  |



## MCU Interrupt Request Control Register (MCU\_IRQCR)

| Register  | Offset      | R/W | Description                            | Reset Value |
|-----------|-------------|-----|----------------------------------------|-------------|
| MCU_IRQCR | INT_BA+0x88 | R/W | MCU Interrupt Request Control Register | 0x0000_0000 |

| 31       | 30 | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|----------|----|----|----|----|----|----|----|--|--|--|
| Reserved |    |    |    |    |    |    |    |  |  |  |
| 23       | 22 | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
| Reserved |    |    |    |    |    |    |    |  |  |  |
| 15       | 14 | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
| Reserved |    |    |    |    |    |    |    |  |  |  |
| 7        | 6  | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
| Reserved |    |    |    |    |    |    |    |  |  |  |

| Bits   | Description |                                                                                                                                       |  |  |  |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:1] | Reserved    | Reserved.                                                                                                                             |  |  |  |
| [0]    |             | Fast IRQ Latency Enable Control                                                                                                       |  |  |  |
|        |             | 0 = MCU IRQ latency is fixed at 13 clock cycles of HCLK, MCU will enter IRQ handler after this fixed latency when interrupt happened. |  |  |  |
|        |             | 1 = MCU IRQ latency will not fixed, MCU will enter IRQ handler as soon as possible when interrupt happened.                           |  |  |  |

#### 6.2.9 System Control

nuvoton

The Cortex®-M0 status and operating mode control are managed by System Control Registers. Including CPUID, Cortex®-M0 interrupt priority and Cortex®-M0 power management can be controlled through these system control registers.

For more detailed information, please refer to the "ARM® Cortex®-M0 Technical Reference Manual" and "ARM® v6-M Architecture Reference Manual".

#### 6.2.9.1 System Control Register Map

R: read only, W: write only, R/W: both read and write

| Register                                  | Offset       | R/W | Description                                      | Reset Value |  |  |  |  |
|-------------------------------------------|--------------|-----|--------------------------------------------------|-------------|--|--|--|--|
| SCS Base Address:<br>SCS_BA = 0xE000_E000 |              |     |                                                  |             |  |  |  |  |
| CPUID                                     | SCS_BA+0xD00 | R   | CPUID Register                                   | 0x410C_C200 |  |  |  |  |
| ICSR                                      | SCS_BA+0xD04 | R/W | Interrupt Control and State Register             | 0x0000_0000 |  |  |  |  |
| AIRCR                                     | SCS_BA+0xD0C | R/W | Application Interrupt and Reset Control Register | 0xFA05_0000 |  |  |  |  |
| SCR                                       | SCS_BA+0xD10 | R/W | System Control Register                          | 0x0000_0000 |  |  |  |  |
| SHPR2                                     | SCS_BA+0xD1C | R/W | System Handler Priority Register 2               | 0x0000_0000 |  |  |  |  |
| SHPR3                                     | SCS_BA+0xD20 | R/W | System Handler Priority Register 3               | 0x0000_0000 |  |  |  |  |



# 6.2.9.2 System Control Register Description

# CPUID Register (CPUID)

| Register | Offset       | R/W | Description    | Reset Value |
|----------|--------------|-----|----------------|-------------|
| CPUID    | SCS_BA+0xD00 | R   | CPUID Register | 0x410C_C200 |

| 31          | 30               | 29    | 28    | 27            | 26 | 25 | 24 |  |  |
|-------------|------------------|-------|-------|---------------|----|----|----|--|--|
|             | IMPLEMENTER[7:0] |       |       |               |    |    |    |  |  |
| 23          | 22               | 21    | 20    | 19            | 18 | 17 | 16 |  |  |
|             | Rese             | erved |       | PART[3:0]     |    |    |    |  |  |
| 15          | 14               | 13    | 12    | 11            | 10 | 9  | 8  |  |  |
|             |                  |       | PARTN | O[11:4]       |    |    |    |  |  |
| 7           | 6                | 5     | 4     | 3             | 2  | 1  | 0  |  |  |
| PARTNO[3:0] |                  |       |       | REVISION[3:0] |    |    |    |  |  |

| Bits    | Description | Description                                                                      |  |  |  |  |
|---------|-------------|----------------------------------------------------------------------------------|--|--|--|--|
| [31:24] | IMPLEMENTER | Implementer Code Assigned By ARM Implementer code assigned by ARM. (ARM = 0x41). |  |  |  |  |
| [23:20] | Reserved    | eserved Reserved.                                                                |  |  |  |  |
| [19:16] | PART        | Architecture Of The Processor Read as 0xC for ARMv6-M parts.                     |  |  |  |  |
| [15:4]  | PARTNO      | Part Number Of The Processor Read as 0xC20.                                      |  |  |  |  |
| [3:0]   | REVISION    | Revision Number Read as 0x0.                                                     |  |  |  |  |

# **Interrupt Control State Register (ICSR)**

| Register | Offset       | R/W | Description                          | Reset Value |
|----------|--------------|-----|--------------------------------------|-------------|
| ICSR     | SCS_BA+0xD04 | R/W | Interrupt Control and State Register | 0x0000_0000 |

| 31         | 30         | 29        | 28        | 27        | 26        | 25               | 24       |
|------------|------------|-----------|-----------|-----------|-----------|------------------|----------|
| NMIPENDSET | Rese       | erved     | PENDSVSET | PENDSVCLR | PENDSTSET | PENDSTCLR        | Reserved |
| 23         | 22         | 21        | 20        | 19        | 18        | 17               | 16       |
| ISRPREEMPT | ISRPENDING |           | Rese      | erved     |           | VECTPENDING[5:4] |          |
| 15         | 14         | 13        | 12        | 11        | 10        | 9                | 8        |
|            | VECTPEN    | DING[3:0] |           | Reserved  |           |                  |          |
| 7          | 6          | 5         | 4         | 3         | 2         | 1                | 0        |
| Reserved   |            |           |           | VECTAC    | TIVE[5:0] |                  |          |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |             | NMI Set-Pending Bit                                                                                                                                                                                                                                                                                                                                             |
|         |             | Write Operation:                                                                                                                                                                                                                                                                                                                                                |
|         |             | 0 = No effect.                                                                                                                                                                                                                                                                                                                                                  |
|         |             | 1 = Changes NMI exception state to pending.                                                                                                                                                                                                                                                                                                                     |
| [04]    | NIMIDENDOST | Read Operation:                                                                                                                                                                                                                                                                                                                                                 |
| [31]    | NMIPENDSET  | 0 = NMI exception not pending.                                                                                                                                                                                                                                                                                                                                  |
|         |             | 1 = NMI exception pending.                                                                                                                                                                                                                                                                                                                                      |
|         |             | Because NMI is the highest-priority exception, normally the processor enters the NMI exception handler as soon as it detects a write of 1 to this bit. Entering the handler then clears this bit to 0. This means a read of this bit by the NMI exception handler returns 1 only if the NMI signal is reasserted while the processor is executing that handler. |
| [30:29] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                       |
|         |             | PendSV Set-Pending Bit                                                                                                                                                                                                                                                                                                                                          |
|         |             | Write Operation:                                                                                                                                                                                                                                                                                                                                                |
|         |             | 0 = No effect.                                                                                                                                                                                                                                                                                                                                                  |
| [28]    | PENDSVSET   | 1 = Changes PendSV exception state to pending.                                                                                                                                                                                                                                                                                                                  |
| [20]    | LNDSVSET    | Read Operation:                                                                                                                                                                                                                                                                                                                                                 |
|         |             | 0 = PendSV exception is not pending.                                                                                                                                                                                                                                                                                                                            |
|         |             | 1 = PendSV exception is pending.                                                                                                                                                                                                                                                                                                                                |
|         |             | <b>Note:</b> Writing 1 to this bit is the only way to set the PendSV exception state to pending.                                                                                                                                                                                                                                                                |
|         |             | PendSV Clear-Pending Bit                                                                                                                                                                                                                                                                                                                                        |
|         |             | Write Operation:                                                                                                                                                                                                                                                                                                                                                |
| [27]    | PENDSVCLR   | 0 = No effect.                                                                                                                                                                                                                                                                                                                                                  |
|         |             | 1 = Removes the pending state from the PendSV exception.                                                                                                                                                                                                                                                                                                        |
|         |             | This is a write only bit. When you want to clear PENDSV bit, you must "write 0 to PENDSVSET and write 1 to PENDSVCLR" at the same time.                                                                                                                                                                                                                         |
| [26]    | PENDSTSET   | SysTick Exception Set-Pending Bit                                                                                                                                                                                                                                                                                                                               |

| r       | 1           | White Operation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |             | Write Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |             | 0 = No effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |             | 1 = Changes SysTick exception state to pending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |             | Read Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |             | 0 = SysTick exception is not pending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |             | 1 = SysTick exception is pending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |             | SysTick Exception Clear-Pending Bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|         |             | Write Operation:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| [25]    | PENDSTCLR   | 0 = No effect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| [20]    | LINDSTOLK   | 1 = Removes the pending state from the SysTick exception.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |             | This is a write only bit. When you want to clear PENDST bit, you must "write 0 to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |             | PENDSTSET and write 1 to PENDSTCLR" at the same time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| [24]    | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1001    |             | If Set, A Pending Exception Will Be Serviced On Exit From The Debug Halt State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| [23]    | ISRPREEMPT  | This bit is read only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |             | Interrupt Pending Flag, Excluding NMI And Faults:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |             | 0 = Interrupt not pending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| [22]    | ISRPENDING  | 1 = Interrupt pending.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|         |             | This bit is read only.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| [21:18] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |             | Indicates The Exception Number Of The Highest Priority Pending Enabled Exception:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [17:12] | VECTPENDING | 0 = No pending exceptions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |             | Non-zero = Exception number of the highest priority pending enabled exception.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| [11:6]  | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |             | Contains The Active Exception Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| [5:0]   | VECTACTIVE  | 0 = Thread mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|         |             | Non-zero = Exception number of the currently active exception.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|         |             | The state of the s |

# **Application Interrupt and Reset Control Register (AIRCR)**

| Register | Offset       | R/W | Description                                      | Reset Value |
|----------|--------------|-----|--------------------------------------------------|-------------|
| AIRCR    | SCS_BA+0xD0C | R/W | Application Interrupt and Reset Control Register | 0xFA05_0000 |

| 31       | 30       | 29 | 28     | 27        | 26              | 25                | 24       |  |
|----------|----------|----|--------|-----------|-----------------|-------------------|----------|--|
|          |          |    | VECTOR | KEY[15:8] |                 |                   |          |  |
| 23       | 22       | 21 | 20     | 19        | 18              | 17                | 16       |  |
|          |          |    | VECTOR | KEY[7:0]  |                 |                   |          |  |
| 15       | 14       | 13 | 12     | 11        | 10              | 9                 | 8        |  |
|          | Reserved |    |        |           |                 |                   |          |  |
| 7        | 6        | 5  | 3      | 2         | 1               | 0                 |          |  |
| Reserved |          |    |        |           | SYSRESETRE<br>Q | VECTCLKAC<br>TIVE | Reserved |  |

| Bits             | Description   |                                                                                                                                                                                                                                                                      |
|------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |               | Register Access Key Write Operation:                                                                                                                                                                                                                                 |
| [31:16] <b>\</b> | VECTORKEY     | When writing to this register, the VECTORKEY field need to be set to 0x05FA, otherwise the write operation would be ignored. The VECTORKEY filed is used to prevent accidental write to this register from resetting the system or clearing of the exception status. |
|                  |               | Read Operation:                                                                                                                                                                                                                                                      |
|                  |               | Read as 0xFA05.                                                                                                                                                                                                                                                      |
| [15:3]           | Reserved      | Reserved.                                                                                                                                                                                                                                                            |
|                  |               | System Reset Request                                                                                                                                                                                                                                                 |
| [2]              | SYSRESETREQ   | Writing this bit 1 will cause a reset signal to be asserted to the chip to indicate a reset is requested.                                                                                                                                                            |
|                  |               | The bit is a write only bit and self-clears as part of the reset sequence.                                                                                                                                                                                           |
|                  |               | Exception Active Status Clear Bit                                                                                                                                                                                                                                    |
| [1]              | VECTCLRACTIVE | Reserved for debug use. When writing to the register, user must write 0 to this bit, otherwise behavior is unpredictable.                                                                                                                                            |
| [0]              | Reserved      | Reserved.                                                                                                                                                                                                                                                            |



# System Control Register (SCR)

| Register | Offset       | R/W | Description             | Reset Value |
|----------|--------------|-----|-------------------------|-------------|
| SCR      | SCS_BA+0xD10 | R/W | System Control Register | 0x0000_0000 |

| 31 | 30       | 29 | 28   | 27       | 26        | 25          | 24       |  |  |
|----|----------|----|------|----------|-----------|-------------|----------|--|--|
|    | Reserved |    |      |          |           |             |          |  |  |
| 23 | 22       | 21 | 20   | 19       | 18        | 17          | 16       |  |  |
|    |          |    | Rese | erved    |           |             |          |  |  |
| 15 | 14       | 13 | 12   | 11       | 10        | 9           | 8        |  |  |
|    | Reserved |    |      |          |           |             |          |  |  |
| 7  | 6        | 5  | 4    | 3        | 2         | 1           | 0        |  |  |
|    | Reserved |    |      | Reserved | SLEEPDEEP | SLEEPONEXIT | Reserved |  |  |

| Bits   | Description  | Description                                                                                                                                                                                        |  |  |  |  |  |  |
|--------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:5] | Reserved     | Reserved.                                                                                                                                                                                          |  |  |  |  |  |  |
|        |              | Send Event On Pending Bit                                                                                                                                                                          |  |  |  |  |  |  |
|        |              | 0 = Only enabled interrupts or events can wake-up the processor, disabled interrupts are excluded.                                                                                                 |  |  |  |  |  |  |
| [4]    | SEVONPEND    | 1 = Enabled events and all interrupts, including disabled interrupts, can wake-up the processor.                                                                                                   |  |  |  |  |  |  |
|        |              | When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not waiting for an event, the event is registered and affects the next WFE. |  |  |  |  |  |  |
|        |              | The processor also wakes up on execution of an SEV instruction or an external event.                                                                                                               |  |  |  |  |  |  |
| [3]    | Reserved     | Reserved.                                                                                                                                                                                          |  |  |  |  |  |  |
|        |              | Processor Deep Sleep And Sleep Mode Selection                                                                                                                                                      |  |  |  |  |  |  |
| [0]    | SLEEPDEEP    | Controls whether the processor uses sleep or deep sleep as its low power mode:                                                                                                                     |  |  |  |  |  |  |
| [2]    | SLEEPDEEP    | 0 = Sleep mode.                                                                                                                                                                                    |  |  |  |  |  |  |
|        |              | 1 = Deep Sleep mode.                                                                                                                                                                               |  |  |  |  |  |  |
|        |              | Sleep-On-Exit Enable Control                                                                                                                                                                       |  |  |  |  |  |  |
|        |              | This bit indicates sleep-on-exit when returning from Handler mode to Thread mode.                                                                                                                  |  |  |  |  |  |  |
| [1]    | SLEEPONEXIT  | 0 = Do not sleep when returning to Thread mode.                                                                                                                                                    |  |  |  |  |  |  |
| [1]    | OLLLI ONLXII | 1 = Enter Sleep or Deep Sleep when returning from ISR to Thread mode.                                                                                                                              |  |  |  |  |  |  |
|        |              | Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.                                                                                     |  |  |  |  |  |  |
| [0]    | Reserved     | Reserved.                                                                                                                                                                                          |  |  |  |  |  |  |

# **System Handler Priority Register 2 (SHPR2)**

| Register | Offset       | R/W | Description                        | Reset Value |
|----------|--------------|-----|------------------------------------|-------------|
| SHPR2    | SCS_BA+0xD1C | R/W | System Handler Priority Register 2 | 0x0000_0000 |

| 31    | 30       | 29 | 28   | 27    | 26    | 25 | 24 |
|-------|----------|----|------|-------|-------|----|----|
| PRI_1 | 1[1:0]   |    |      | Rese  | erved |    |    |
| 23    | 22       | 21 | 20   | 19    | 18    | 17 | 16 |
|       |          |    | Rese | erved |       |    |    |
| 15    | 14       | 13 | 12   | 11    | 10    | 9  | 8  |
|       | Reserved |    |      |       |       |    |    |
| 7     | 6        | 5  | 4    | 3     | 2     | 1  | 0  |
|       | Reserved |    |      |       |       |    |    |

| Bits    | Description | escription                                                                                                   |  |  |  |  |  |
|---------|-------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:30] | IPRI 11     | Priority Of System Handler 11 – SVCall "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |
| [29:0]  | Reserved    | Reserved.                                                                                                    |  |  |  |  |  |



# System Handler Priority Register 3 (SHPR3)

| Register | Offset       | R/W | Description                        | Reset Value |
|----------|--------------|-----|------------------------------------|-------------|
| SHPR3    | SCS_BA+0xD20 | R/W | System Handler Priority Register 3 | 0x0000_0000 |

| 31    | 30       | 29 | 28 | 27   | 26    | 25 | 24 |
|-------|----------|----|----|------|-------|----|----|
| PRI_1 | 5[1:0]   |    |    | Rese | erved |    |    |
| 23    | 22       | 21 | 20 | 19   | 18    | 17 | 16 |
| PRI_1 | 4[1:0]   |    |    | Rese | erved |    |    |
| 15    | 14       | 13 | 12 | 11   | 10    | 9  | 8  |
|       | Reserved |    |    |      |       |    |    |
| 7     | 6        | 5  | 4  | 3    | 2     | 1  | 0  |
|       | Reserved |    |    |      |       |    |    |

| Bits    | Description | Description                                                                                                   |  |  |  |  |  |
|---------|-------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:30] | IPRI 15     | Priority Of System Handler 15 – SysTick "0" denotes the highest priority and "3" denotes the lowest priority. |  |  |  |  |  |
| [29:24] | Reserved    | Reserved.                                                                                                     |  |  |  |  |  |
| [23:22] | IPRI 14     | Priority Of System Handler 14 – PendSV "0" denotes the highest priority and "3" denotes the lowest priority.  |  |  |  |  |  |
| [21:0]  | Reserved    | Reserved.                                                                                                     |  |  |  |  |  |

#### 6.3 Clock Controller

#### 6.3.1 Overview

The clock controller generates the clocks for the whole chip, including system clocks and all peripheral clocks. The clock controller also implements the power control function with the individually clock ON/OFF control, clock source selection and clock divider. The chip enters Power-down mode when Cortex®-M0 core executes the WFI instruction only if the PWR\_DOWN\_EN (PWRCON[7]) bit and PD\_WAIT\_CPU (PWRCON[8]) bit are both set to 1. After that, chip enters Power-down mode and wait for wake-up interrupt source triggered to leave Power-down mode. In the Power-down mode, the clock controller turns off the 4~24 MHz external high speed crystal oscillator and 22.1184 MHz internal high speed RC oscillator to reduce the overall system power consumption. The Figure 6.3-1 and Figure 6.3-2 show the clock generator and the overview of the clock source control.

The clock generator consists of 5 clock sources as listed below:

- 4~24 MHz external high speed crystal oscillator (HXT)
- Programmable PLL output clock frequency(PLL FOUT),PLL source can be from external 4~24 MHz external high speed crystal oscillator (HXT) or 22.1184 MHz internal high speed RC oscillator (HIRC))
- 22.1184 MHz internal high speed RC oscillator (HIRC)
- 10 kHz internal low speed RC oscillator (LIRC)

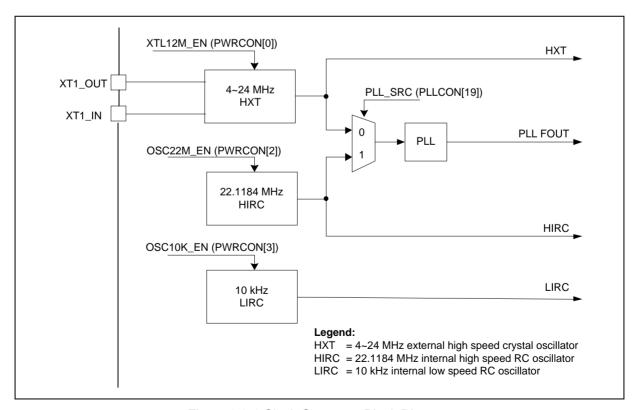
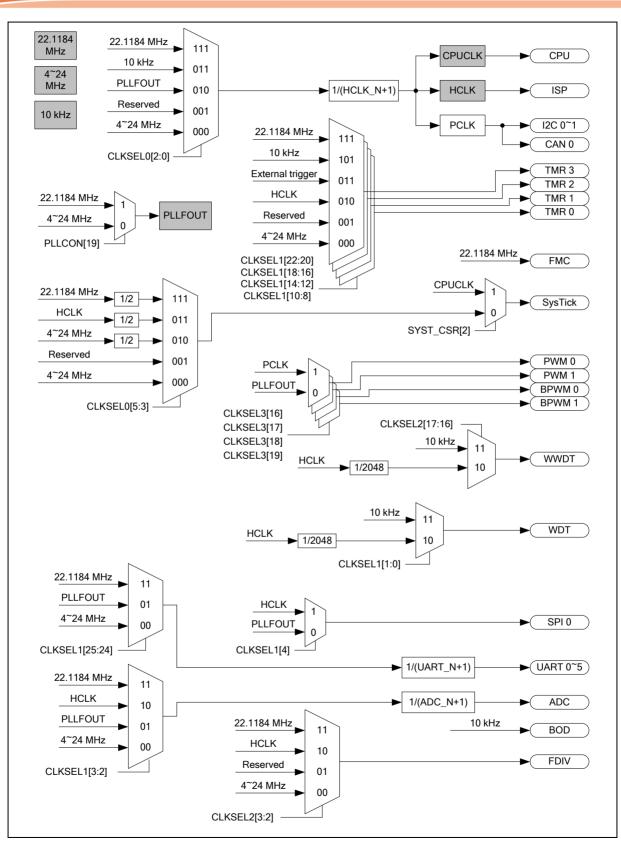




Figure 6.3-1 Clock Generator Block Diagram



nuvoton

Figure 6.3-2 Clock Generator Global View Diagram

#### 6.3.2 System Clock and SysTick Clock

The system clock has 4 clock sources which were generated from clock generator block. The clock source switch depends on the register HCLK\_S (CLKSEL0[2:0]). The block diagram is shown in Figure 6.3-3.

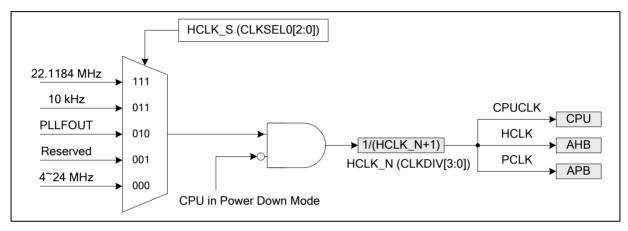



Figure 6.3-3 System Clock Block Diagram

The clock source of SysTick in Cortex<sup>®</sup>-M0 core can use CPU clock or external clock (SYST\_CSR[2]). If using external clock, the SysTick clock (STCLK) has 4 clock sources. The clock source switch depends on the setting of the register STCLK\_S (CLKSEL0[5:3]). The block diagram is shown in Figure 6.3-4.

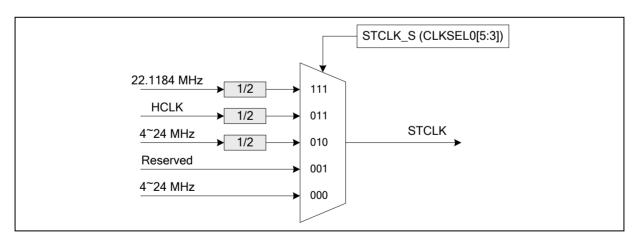



Figure 6.3-4 SysTick Clock Control Block Diagram



#### 6.3.3 Power-down Mode Clock

When chip enters Power-down mode, system clocks, some clock sources, and some peripheral clocks will be disabled. Some clock sources and peripherals clocks are still active in Power-down mode.

The clocks still kept active are listed below:

- Clock Generator
  - 10 kHz internal low speed RC oscillator (LIRC) clock
- WDT/Timer Peripherals Clock (when 10 kHz intertnal low speed RC oscillator (LIRC) is adopted as clock source)

#### 6.3.4 Frequency Divider Output

This device is equipped with a power-of-2 frequency divider which is composed by16 chained divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one multiplexer is reflected to CLKO function pin. Therefore there are 16 options of power-of-2 divided clocks with the frequency from  $F_{in}/2^1$  to  $F_{in}/2^{16}$  where Fin is input clock frequency to the clock divider.

The output formula is  $\mathbf{F}_{out} = \mathbf{F}_{in}/2^{(N+1)}$ , where  $\mathbf{F}_{in}$  is the input clock frequency,  $\mathbf{F}_{out}$  is the clock divider output frequency and N is the 4-bit value in FSEL (FRQDIV[3:0]).

When writing 1 to DIVIDER\_EN (FRQDIV[4]), the chained counter starts to count. When writing 0 to DIVIDER\_EN (FRQDIV[4]), the chained counter continuously runs till divided clock reaches low state and stay in low state.

If DIVIDER1(FRQDIV[5]) is set to 1, the frequency divider clock (FRQDIV\_CLK) will bypass power-of-2 frequency divider. The frequency divider clock will be output to CLKO pin directly.

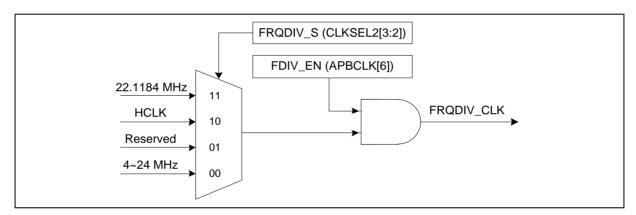



Figure 6.3-5 Clock Source of Frequency Divider

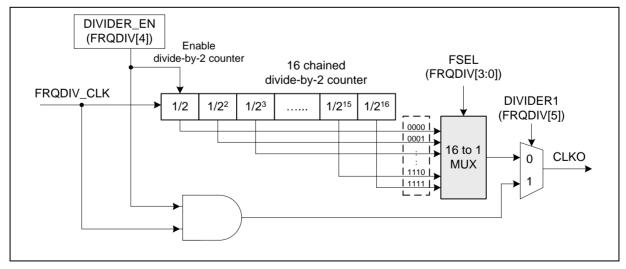



Figure 6.3-6 Frequency Divider Block Diagram



# 6.3.5 Register Map

R: read only, W: write only, R/W: both read and write

| Register                     | Offset      | R/W | Description                                      | Reset Value |
|------------------------------|-------------|-----|--------------------------------------------------|-------------|
| CLK Base Add<br>CLK_BA = 0x5 |             |     |                                                  |             |
| PWRCON                       | CLK_BA+0x00 | R/W | System Power-down Control Register               | 0x0000_001X |
| AHBCLK                       | CLK_BA+0x04 | R/W | AHB Devices Clock Enable Control Register        | 0x0000_0005 |
| APBCLK                       | CLK_BA+0x08 | R/W | APB Devices Clock Enable Control Register        | 0x0000_000X |
| CLKSTATUS                    | CLK_BA+0x0C | R/W | Clock status monitor Register                    | 0x0000_00XX |
| CLKSEL0                      | CLK_BA+0x10 | R/W | Clock Source Select Control Register 0           | 0x0000_003X |
| CLKSEL1                      | CLK_BA+0x14 | R/W | Clock Source Select Control Register 1           | 0xFFFF_FFFF |
| CLKDIV                       | CLK_BA+0x18 | R/W | Clock Divider Number Register                    | 0x0000_0000 |
| CLKSEL2                      | CLK_BA+0x1C | R/W | Clock Source Select Control Register 2           | 0x0002_00FF |
| PLLCON                       | CLK_BA+0x20 | R/W | PLL Control Register                             | 0x0005_C22E |
| FRQDIV                       | CLK_BA+0x24 | R/W | Frequency Divider Control Register               | 0x0000_0000 |
| APBCLK1                      | CLK_BA+0x30 | R/W | APB Devices Clock Enable Control Register 1      | 0x0000_0000 |
| CLKSEL3                      | CLK_BA+0x34 | R/W | Clock Source Select Control Register 3           | 0x000F_003F |
| CLKDCTL                      | CLK_BA+0x70 | R/W | Clock Fail Detector Control Register             | 0x0000_0000 |
| CLKDSTS                      | CLK_BA+0x74 | R/W | Clock Fail Detector Status Register              | 0x0000_0000 |
| CDUPB                        | CLK_BA+0x78 | R/W | Clock Frequency Detector Upper Boundary Register | 0x0000_0000 |
| CDLOWB                       | CLK_BA+0x7C | R/W | Clock Frequency Detector Lower Boundary Register | 0x0000_0000 |

### 6.3.6 Register Description

nuvoTon

### **System Power-down Control Register (PWRCON)**

Except the BIT[6], all the other bits are protected, programming these bits need to write "59h", "16h", "88h" to address 0x5000\_0100 to disable register protection. Refer to the register REGWRPROT at address GCR\_BA+0x100

| Register | Offset      | R/W | Description                        | Reset Value |
|----------|-------------|-----|------------------------------------|-------------|
| PWRCON   | CLK_BA+0x00 | R/W | System Power-down Control Register | 0x0000_001X |

| 31              | 30        | 29               | 28        | 27        | 26        | 25       | 24        |
|-----------------|-----------|------------------|-----------|-----------|-----------|----------|-----------|
|                 |           |                  | Rese      | erved     |           |          |           |
| 23              | 22        | 21               | 20        | 19        | 18        | 17       | 16        |
|                 |           |                  | Rese      | erved     |           |          |           |
| 15              | 14        | 13               | 12        | 11        | 10        | 9        | 8         |
|                 | Reserved  |                  |           |           |           |          |           |
| 7               | 6         | 5                | 4         | 3         | 2         | 1        | 0         |
| PWR_DOWN_<br>EN | PD_WU_STS | PD_WU_INT_<br>EN | PD_WU_DLY | OSC10K_EN | OSC22M_EN | Reserved | XTL12M_EN |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:18] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| [15:9]  | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                          |
| [8]     | PD_WAIT_CPU | Power-Down Entry Condition Control (Write Protect)  0 = Chip enters Power-down mode when the PWR_DOWN_EN bit is set to 1.  1 = Chip enters Power- down mode when the both PD_WAIT_CPU and PWR_DOWN_EN bits are set to 1 and CPU runs WFI instruction.  Note: This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register |
|         |             | REGWRPROT at address GCR_BA+0x100.  System Power-Down Enable Control (Write Protect)                                                                                                                                                                                                                                                                                                                                               |
|         |             | When this bit is set to 1, Power-down mode is enabled and chip Power-down behavior will depends on the PD_WAIT_CPU bit                                                                                                                                                                                                                                                                                                             |
|         |             | (a) If the PD_WAIT_CPU is 0, the chip enters Power-down mode immediately after the PWR_DOWN_EN bit set.                                                                                                                                                                                                                                                                                                                            |
| [7]     | PWR_DOWN_EN | (b) if the PD_WAIT_CPU is 1, the chip keeps active till the CPU sleep mode is also active and then the chip enters Power-down mode (recommend)                                                                                                                                                                                                                                                                                     |
|         |             | When chip wakes up from Power-down mode, this bit is cleared by hardware. User needs to set this bit again for next Power-down.                                                                                                                                                                                                                                                                                                    |
|         |             | In Power-down mode, 4~24 MHz external high speed crystal oscillator (HXT) and the 22.1184 MHz internal high speed RC oscillator (HIRC) will be disabled in this mode, but the 10 kHz internal low speed RC oscillator (LIRC) is not controlled by Power-down mode.                                                                                                                                                                 |
|         |             | In Power- down mode, the PLL and system clock are disabled, and ignored the clock source selection. The clocks of peripheral are not controlled by Power-down mode, if the                                                                                                                                                                                                                                                         |

|     | Ī            | peripheral clock source is from the 10 kHz internal low speed RC oscillator (LIRC).                                                                                                                                     |
|-----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |              | 0 = Chip operating normally or chip in Idle mode because of WFI command.                                                                                                                                                |
|     |              | 1 = Chip enters Power-down mode instantly or waits CPU sleep command WFI.                                                                                                                                               |
|     |              |                                                                                                                                                                                                                         |
|     |              | <b>Note:</b> This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.   |
|     |              | Power-Down Mode Wake-Up Interrupt Status                                                                                                                                                                                |
|     |              | Set by "Power-down wake-up event", it indicates that resume from Power-down mode".                                                                                                                                      |
| [6] | PD_WU_STS    | The flag is set if the GPIO, UART, WDT, I <sup>2</sup> C, TIMER, CAN, or BOD wake-up occurred.                                                                                                                          |
|     |              | Write 1 to clear the bit to 0.                                                                                                                                                                                          |
|     |              | Note: This bit is working only if PD_WU_INT_EN (PWRCON[5]) set to 1.                                                                                                                                                    |
|     |              | Power-Down Mode Wake-Up Interrupt Enable Control (Write Protect)                                                                                                                                                        |
|     |              | 0 = Power-down mode wake-up interrupt Disabled.                                                                                                                                                                         |
|     |              | 1 = Power-down mode wake-up interrupt Enabled.                                                                                                                                                                          |
| [5] | PD_WU_INT_EN | Note1: The interrupt will occur when both PD_WU_STS and PD_WU_INT_EN are high.                                                                                                                                          |
|     |              | <b>Note2:</b> This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.  |
|     |              | Wake-Up Delay Counter Enable Control (Write Protect)                                                                                                                                                                    |
|     |              | When the chip wakes up from Power-down mode, the clock control will delay certain clock cycles to wait system clock stable.                                                                                             |
| [4] | PD_WU_DLY    | The delayed clock cycle is 4096 clock cycles when chip works at 4~24 MHz external high speed crystal oscillator (HXT), and 256 clock cycles when chip works at 22.1184 MHz internal high speed oscillator (HIRC).       |
|     |              | 0 = Clock cycles delay Disabled.                                                                                                                                                                                        |
|     |              | 1 = Clock cycles delay Enabled.                                                                                                                                                                                         |
|     |              | <b>Note:</b> This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.   |
|     |              | 10 KHz Internal Low Speed RC Oscillator (LIRC) Enable Control (Write Protect)                                                                                                                                           |
|     |              | 0 = 10 kHz internal low speed RC oscillator (LIRC) Disabled.                                                                                                                                                            |
| [3] | OSC10K EN    | 1 = 10 kHz internal low speed RC oscillator (LIRC) Enabled.                                                                                                                                                             |
|     |              | <b>Note:</b> This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.   |
|     |              | 22.1184 MHz Internal High Speed RC Oscillator (HIRC) Enable Control (Write Protect)                                                                                                                                     |
|     |              | 0 = 22.1184 MHz internal high speed RC oscillator (HIRC) Disabled.                                                                                                                                                      |
| [2] | OSC22M_EN    | 1 = 22.1184 MHz internal high speed RC oscillator (HIRC) Enabled.                                                                                                                                                       |
|     |              | <b>Note:</b> This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.   |
| [1] | Reserved     | Reserved.                                                                                                                                                                                                               |
|     |              | 4~24 MHz External High Speed Crystal Oscillator (HXT) Enable Control (Write Protect)                                                                                                                                    |
| [0] | XTL12M_EN    | The bit default value is set by flash controller user configuration register CONFIG0[26:24]. When the default clock source is from 4~24 MHz external high speed crystal oscillator, this bit is set to 1 automatically. |
|     |              | 0 = 4 ~ 24 MHz external high speed crystal oscillator (HXT) Disabled.                                                                                                                                                   |
|     |              | 1 = 4 ~ 24 MHz external high speed crystal oscillator (HXT) Enabled.                                                                                                                                                    |
|     |              | Note: This bit is the protected bit, and programming it needs to write "59h", "16h", and                                                                                                                                |

|  | "88h" to address 0x5000_0100 to disable register protection. Refer to the register |
|--|------------------------------------------------------------------------------------|
|  | REGWRPROT at address GCR_BA+0x100.                                                 |

| Instruction                                          |   | PD_WAIT_CPU<br>(PWRCON[8]) | PWR_DOWN_EN<br>(PWRCON[7]) | CPU Run WFI<br>Instruction | Clock Disabled                                                                                                                            |
|------------------------------------------------------|---|----------------------------|----------------------------|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| Normal operation                                     | 0 | 0                          | 0                          | NO                         | All clocks be controlled by control register.                                                                                             |
| Idle mode<br>(CPU entering Sleep<br>mode)            | 0 | х                          | 0                          | YES                        | Only CPU clock disabled.                                                                                                                  |
| Power-down mode<br>(CPU entering Deep<br>Sleep mode) | 1 | 1                          | 1                          | YES                        | Most clocks are disabled except 10 kHz, only WDT/Timer peripheral clock still enable if their clock source are selected as 10 kHz (LIRC). |

Table 6.3-1 Chip Idle/Power-down Mode Control Table

When chip enters Power-down mode, user can wake-up chip using some interrupt sources. The related interrupt sources and NVIC IRQ enable bits (NVIC\_ISER) should be enabled before setting the PWR\_DOWN\_EN bit in PWRCON[7] to ensure chip can enter Power-down and wake-up successfully.



# AHB Devices Clock Enable Control Register (AHBCLK)

| Register | Offset      | R/W | Description                               | Reset Value |
|----------|-------------|-----|-------------------------------------------|-------------|
| AHBCLK   | CLK_BA+0x04 | R/W | AHB Devices Clock Enable Control Register | 0x0000_0005 |

| 31 | 30       | 29 | 28   | 27    | 26     | 25   | 24    |
|----|----------|----|------|-------|--------|------|-------|
|    | Reserved |    |      |       |        |      |       |
| 23 | 22       | 21 | 20   | 19    | 18     | 17   | 16    |
|    |          |    | Rese | erved |        |      |       |
| 15 | 14       | 13 | 12   | 11    | 10     | 9    | 8     |
|    |          |    | Rese | erved |        |      |       |
| 7  | 6        | 5  | 4    | 3     | 2      | 1    | 0     |
|    | Reserved |    |      |       | ISP_EN | Rese | erved |

| Bits   | Description |                                                                                                                                |  |  |
|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:3] | Reserved    | Reserved.                                                                                                                      |  |  |
| [2]    |             | Flash ISP Controller Clock Enable Control  0 = Flash ISP peripherial clock Disabled.  1 = Flash ISP peripherial clock Enabled. |  |  |
| [1:0]  | Reserved    | Reserved.                                                                                                                      |  |  |

### **APB Devices Clock Enable Register (APBCLK)**

nuvoTon

These bits of this register are used to enable/disable clock for peripheral controller clocks.

| Register | Offset      | R/W | Description                       | Reset Value |
|----------|-------------|-----|-----------------------------------|-------------|
| APBCLK   | CLK_BA+0x08 | R/W | APB Devices Clock Enable Register | 0x0000_000X |

| 31       | 30       | 29       | 28      | 27      | 26       | 25       | 24       |
|----------|----------|----------|---------|---------|----------|----------|----------|
|          | Reserved |          |         |         | Reserved |          |          |
| 23       | 22       | 21       | 20      | 19      | 18       | 17       | 16       |
|          |          | Reserved |         |         | UART2_EN | UART1_EN | UART0_EN |
| 15       | 14       | 13       | 12      | 11      | 10       | 9        | 8        |
|          | Reserved |          |         | Rese    | erved    | I2C1_EN  | I2C0_EN  |
| 7        | 6        | 5        | 4       | 3       | 2        | 1        | 0        |
| Reserved | FDIV_EN  | TMR3_EN  | TMR2_EN | TMR1_EN | TMR0_EN  | Reserved | WDT_EN   |

| Bits    | Description |                                                                                                      |
|---------|-------------|------------------------------------------------------------------------------------------------------|
| [31:29] | Reserved    | Reserved.                                                                                            |
| [28]    | ADC_EN      | Analog-Digital-Converter (ADC) Clock Enable Control  0 = ADC clock Disabled.  1 = ADC clock Enabled. |
| [27:25] | Reserved    | Reserved.                                                                                            |
| [24]    | CAN0_EN     | CAN Bus Controller-0 Clock Enable Control  0 = CAN0 clock Disabled.  1 = CAN0 clock Enabled.         |
| [23:19] | Reserved    | Reserved.                                                                                            |
| [18]    | UART2_EN    | UART2 Clock Enable Control 0 = UART2 clock Disabled. 1 = UART2 clock Enabled.                        |
| [17]    | UART1_EN    | UART1 Clock Enable Control  0 = UART1 clock Disabled.  1 = UART1 clock Enabled.                      |
| [16]    | UARTO_EN    | UART0 Clock Enable Control 0 = UART0 clock Disabled. 1 = UART0 clock Enabled.                        |
| [15:13] | Reserved    | Reserved.                                                                                            |
| [12]    | SPI0_EN     | SPI0 Clock Enable Control  0 = SPI0 clock Disabled.  1 = SPI0 clock Enabled.                         |

| [11:10] | Reserved | Reserved.                                                                                                                                                                                                                                                                                                                                  |
|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [9]     | I2C1_EN  | I2C1 Clock Enable Control 0 = I2C1 clock Disabled. 1 = I2C1 clock Enabled.                                                                                                                                                                                                                                                                 |
| [8]     | I2C0_EN  | I2C0 Clock Enable Control 0 = I2C0 clock Disabled. 1 = I2C0 clock Enabled.                                                                                                                                                                                                                                                                 |
| [7]     | Reserved | Reserved.                                                                                                                                                                                                                                                                                                                                  |
| [6]     | FDIV_EN  | Frequency Divider Output Clock Enable Control  0 = FDIV clock Disabled.  1 = FDIV clock Enabled.                                                                                                                                                                                                                                           |
| [5]     | TMR3_EN  | Timer3 Clock Enable Control 0 = Timer3 clock Disabled. 1 = Timer3 clock Enabled.                                                                                                                                                                                                                                                           |
| [4]     | TMR2_EN  | Timer2 Clock Enable Control  0 = Timer2 clock Disabled.  1 = Timer2 clock Enabled.                                                                                                                                                                                                                                                         |
| [3]     | TMR1_EN  | Timer1 Clock Enable Control  0 = Timer1 clock Disabled.  1 = Timer1 clock Enabled.                                                                                                                                                                                                                                                         |
| [2]     | TMR0_EN  | Timer0 Clock Enable Control  0 = Timer0 clock Disabled.  1 = Timer0 clock Enabled.                                                                                                                                                                                                                                                         |
| [1]     | Reserved | Reserved.                                                                                                                                                                                                                                                                                                                                  |
| [0]     | WDT_EN   | Watchdog Timer Clock Enable Control (Write Protect)  0 = Watchdog Timer clock Disabled.  1 = Watchdog Timer clock Enabled.  Note: This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100. |

### **Clock status Register (CLKSTATUS)**

nuvoTon

These bits of this register are used to monitor if the chip clock source stable or not, and whether clock switch failed.

| Register  | Offset      | R/W | Description                   | Reset Value |
|-----------|-------------|-----|-------------------------------|-------------|
| CLKSTATUS | CLK_BA+0x0C | R/W | Clock status monitor Register | 0x0000_00XX |

| 31              | 30       | 29 | 28             | 27             | 26      | 25       | 24         |
|-----------------|----------|----|----------------|----------------|---------|----------|------------|
|                 |          |    | Rese           | erved          |         |          |            |
| 23              | 22       | 21 | 20             | 19             | 18      | 17       | 16         |
|                 |          |    | Rese           | erved          |         |          |            |
| 15              | 14       | 13 | 12             | 11             | 10      | 9        | 8          |
|                 | Reserved |    |                |                |         |          |            |
| 7               | 6        | 5  | 4              | 3              | 2       | 1        | 0          |
| CLK_SW_<br>FAIL | Reserved |    | OSC22M_<br>STB | OSC10K_<br>STB | PLL_STB | Reserved | XTL12M_STB |

| Bits   | Description |                                                                                                                                                                                                                                                                                                                                                                                       |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                             |
|        |             | Clock Switching Fail Flag (Read Only) 0 = Clock switching success.                                                                                                                                                                                                                                                                                                                    |
| [7]    | CLK_SW_FAIL | 1 = Clock switching failure.  This bit is an index that if current system clock source is match as user defined at HCLK_S (CLKSEL[2:0]). When user switchs system clock, the system clock source will keep old clock until the new clock is stable. During the period that waiting new clock stable, this bit will be an index shows system clock source is not match as user wanted. |
| [6:5]  | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                             |
| [4]    | OSC22M_STB  | 22.1184 MHz Internal High Speed RC Oscillator (HIRC) Clock Source Stable Flag (Read Only)  0 = 22.1184 MHz internal high speed RC oscillator (HIRC) clock is not stable or disabled.  1 = 22.1184 MHz internal high speed RC oscillator (HIRC) clock is stable and enabled.                                                                                                           |
| [3]    | OSC10K_STB  | Internal 10 KHz Low Speed Oscillator (LIRC) Clock Source Stable Flag (Read Only)  0 = 10 kHz internal low speed RC oscillator (LIRC) clock is not stable or disabled.  1 = 10 kHz internal low speed RC oscillator (LIRC) clock is stable and enabled.                                                                                                                                |
| [2]    | PLL_STB     | Internal PLL Clock Source Stable Flag (Read Only)  0 = Internal PLL clock is not stable or disabled.  1 = Internal PLL clock is stable in normal mode.                                                                                                                                                                                                                                |
| [1]    | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                             |
| [0]    | XTL12M_STB  | 4~24 MHz External High Speed Crystal Oscillator (HXT) Clock Source Stable Flag (Read Only)  0 = 4~24 MHz external high speed crystal oscillator (HXT) clock is not stable or disabled.                                                                                                                                                                                                |

NOC131 SEXIES LECENICAL XELEXENCE MANOA

1 = 4~24 MHz external high speed crystal oscillator (HXT) clock is stable and enabled.

# **Clock Source Select Control Register 0 (CLKSEL0)**

| Register | Offset      | R/W | Description                            | Reset Value |
|----------|-------------|-----|----------------------------------------|-------------|
| CLKSEL0  | CLK_BA+0x10 | R/W | Clock Source Select Control Register 0 | 0x0000_003X |

| 31       | 30       | 29 | 28      | 27    | 26 | 25     | 24 |  |  |
|----------|----------|----|---------|-------|----|--------|----|--|--|
|          | Reserved |    |         |       |    |        |    |  |  |
| 23       | 22       | 21 | 20      | 19    | 18 | 17     | 16 |  |  |
|          |          |    | Rese    | erved |    |        |    |  |  |
| 15       | 14       | 13 | 12      | 11    | 10 | 9      | 8  |  |  |
|          | Reserved |    |         |       |    |        |    |  |  |
| 7        | 6        | 5  | 4       | 3     | 2  | 1      | 0  |  |  |
| Reserved |          |    | STCLK_S |       |    | HCLK_S |    |  |  |

| Bits   | Description |                                                                                                                                                                                                                              |
|--------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:6] | Reserved    | Reserved.                                                                                                                                                                                                                    |
|        |             | Cortex®-M0 SysTick Clock Source Select (Write Protect)                                                                                                                                                                       |
|        |             | If CLKSRC (SYST_CSR[2]) = 1, SysTick clock source is from HCLK.                                                                                                                                                              |
|        |             | If CLKSRC (SYST_CSR[2]) = 0, SysTick clock source is defined by STCLK_S (CLKSEL0[5:3]).                                                                                                                                      |
|        |             | 000 = Clock source from 4~24 MHz external high speed crystal oscillator (HXT).                                                                                                                                               |
|        |             | 001 = Reserved.                                                                                                                                                                                                              |
| [5:3]  | STCLK_S     | 010 = Clock source from 4~24 MHz external high speed crystal oscillator (HXT)/2.                                                                                                                                             |
|        |             | 011 = Clock source from HCLK/2.                                                                                                                                                                                              |
|        |             | 111 = Clock source from 22.1184 MHz internal high speed RC oscillator (HIRC)/2.                                                                                                                                              |
|        |             | <b>Note1:</b> These bits are protected bit. It means programming this bit needs to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100. |
|        |             | <b>Note2:</b> if SysTick clock source is not from HCLK (i.e. SYST_CSR[2] = 0), SysTick clock source must less than or equal to HCLK/2.                                                                                       |
|        |             | HCLK Clock Source Select (Write Protect)                                                                                                                                                                                     |
|        |             | Before clock switching, the related clock sources (both pre-select and new-select) must be enabled                                                                                                                           |
|        |             | 2. The 3-bit default value is reloaded from the value of CFOSC (CONFIG0[26:24]) in user configuration register of Flash controller by any reset. Therefore the default value is either 000b or 111b.                         |
| [2:0]  | HCLK_S      | 3. These bits are protected bit. It means programming this bit needs to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100.            |
|        |             | 000 = Clock source from 4~24 MHz external high speed crystal oscillator (HXT).                                                                                                                                               |
|        |             | 001 = Reserved.                                                                                                                                                                                                              |
|        |             | 010 = Clock source from PLL.                                                                                                                                                                                                 |
|        |             | 011 = Clock source from 10 kHz internal low speed RC oscillator (LIRC).                                                                                                                                                      |
|        |             | 111 = Clock source from 22.1184 MHz internalhigh speed RC oscillator (HIRC).                                                                                                                                                 |
|        |             | Note: This bit is the protected bit, and programming it needs to write "59h", "16h", and                                                                                                                                     |



| "88h" to address | x5000_0100 to disable register protection. Refer to the register |
|------------------|------------------------------------------------------------------|
| REGWRPROT at     | address GCR_BA+0x100.                                            |

### **Clock Source Select Control Register 1 (CLKSEL1)**

nuvoTon

Before clock switching, the related clock sources (pre-select and new-select) must be turned on.

| Register | Offset      | R/W | Description                            | Reset Value |
|----------|-------------|-----|----------------------------------------|-------------|
| CLKSEL1  | CLK_BA+0x14 | R/W | Clock Source Select Control Register 1 | 0xFFFF_FFFF |

| 31       | 30     | 29     | 28     | 27       | 26          | 25     | 24  |
|----------|--------|--------|--------|----------|-------------|--------|-----|
|          |        | Rese   | erved  |          |             | UART_S |     |
| 23       | 22     | 21     | 20     | 19       | 18          | 17     | 16  |
| Reserved | TMR3_S |        |        | Reserved | TMR2_S      |        |     |
| 15       | 14     | 13     | 12     | 11       | 10          | 9      | 8   |
| Reserved |        | TMR1_S |        | Reserved |             | TMR0_S |     |
| 7        | 6      | 5      | 4      | 3        | 2           | 1      | 0   |
| Reserved |        |        | SPI0_S | ADO      | ADC_S WDT_S |        | T_S |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:26] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                            |
| [25:24] | UART_S      | UART Clock Source Selection  00 = Clock source from 4~24 MHz external high speed crystal oscillator (HXT).  01 = Clock source from PLL.  11 = Clock source from 22.1184 MHz internal high speed RC oscillator (HIRC).                                                                                                                                                                |
| [23]    | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                            |
| [22:20] | TMR3_S      | TIMER3 Clock Source Selection  000 = Clock source from 4~24 MHz external high speed crystal oscillator (HXT).  001 = Reserved.  010 = Clock source from HCLK.  011 = Clock source from external trigger.  101 = Clock source from 10 kHz internal low speed RC oscillator (LIRC).  111 = Clock source from 22.1184 MHz internal high speed RC oscillator (HIRC).  Others = Reserved. |
| [19]    | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                            |
| [18:16] | TMR2_S      | TIMER2 Clock Source Selection  000 = Clock source from external 4~24 MHz high speed crystal oscillator (HXT).  001 = Reserved.  010 = Clock source from HCLK.  011 = Clock source from external trigger.  101 = Clock source from 10 kHz internal low speed RC oscillator (LIRC).  111 = Clock source from 22.1184 MHz internal high speed RC oscillator (HIRC).  Others = Reserved. |

| [15]    | Reserved | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [14:12] | TMR1_S   | TIMER1 Clock Source Selection  000 = Clock source from 4~24 MHz external high speed crystal oscillator (HXT).  001 = Reserved.  010 = Clock source from HCLK.  011 = Clock source from external trigger.  101 = Clock source from 10 kHz internal low speed RC oscillator (LIRC).  111 = Clock source from 22.1184 MHz internal high speed RC oscillator (HIRC).  Others = Reserved.                          |
| [11]    | Reserved | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                     |
| [10:8]  | TMR0_S   | TIMERO Clock Source Selection  000 = Clock source from 4~24 MHz external high speed crystal oscillator (HXT).  001 = Reserved.  010 = Clock source from HCLK.  011 = Clock source from external trigger.  101 = Clock source from 10 kHz internal low speed RC oscillator (LIRC).  111 = Clock source from 22.1184 MHz internal high speed RC oscillator (HIRC).  Others = Reserved.                          |
| [7:5]   | Reserved | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                     |
| [4]     | SPI0_S   | SPI0 Clock Source Selection  0 = Clock source from PLL.  1 = Clock source from HCLK.                                                                                                                                                                                                                                                                                                                          |
| [3:2]   | ADC_S    | ADC Clock Source Select  00 = Clock source from 4~24 MHz external high speed crystal oscillator (HXT).  01 = Clock source from PLL.  10 = Clock source from HCLK.  11 = Clock source from 22.1184 MHz internal high speed RC oscillator (HIRC).                                                                                                                                                               |
| [1:0]   | WDT_S    | Watchdog Timer Clock Source Select (Write Protect)  00 = Reserved.  01 = Reserved.  10 = Clock source from HCLK/2048.  11 = Clock source from 10 kHz internal low speed RC oscillator (LIRC).  Note: This bit is the protected bit, and programming it needs to write "59h", "16h", and "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100. |

# **Clock Divider Register (CLKDIV)**

| Register | Offset      | R/W | Description                   | Reset Value |
|----------|-------------|-----|-------------------------------|-------------|
| CLKDIV   | CLK_BA+0x18 | R/W | Clock Divider Number Register | 0x0000_0000 |

| 31 | 30       | 29    | 28  | 27     | 26  | 25  | 24 |  |  |
|----|----------|-------|-----|--------|-----|-----|----|--|--|
|    | Reserved |       |     |        |     |     |    |  |  |
| 23 | 22       | 21    | 20  | 19     | 18  | 17  | 16 |  |  |
|    |          |       | ADO | C_N    |     |     |    |  |  |
| 15 | 14       | 13    | 12  | 11     | 10  | 9   | 8  |  |  |
|    | Rese     | erved |     | UART_N |     |     |    |  |  |
| 7  | 6        | 5     | 4   | 3      | 2   | 1   | 0  |  |  |
|    | Reserved |       |     |        | HCL | K_N |    |  |  |

| Bits    | Description | escription                                                                                                            |  |  |  |  |  |
|---------|-------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [15:12] | Reserved    | Reserved.                                                                                                             |  |  |  |  |  |
| [23:16] | ADC_N       | ADC Clock Divide Number From ADC Clock Source  ADC clock frequency = (ADC clock source frequency) / (ADC_N + 1).      |  |  |  |  |  |
| [15:12] | Reserved    | Reserved.                                                                                                             |  |  |  |  |  |
| [11:8]  | UART_N      | UART Clock Divide Number From UART Clock Source  UART clock frequency = (UART clock source frequency) / (UART_N + 1). |  |  |  |  |  |
| [7:4]   | Reserved    | Reserved.                                                                                                             |  |  |  |  |  |
| [3:0]   | HCLK_N      | HCLK Clock Divide Number From HCLK Clock Source  HCLK clock frequency = (HCLK clock source frequency) / (HCLK_N + 1). |  |  |  |  |  |



### Clock Source Select Control Register 2 (CLKSEL2)

Before clock switching, the related clock sources (pre-select and new-select) must be turned on.

| Register | Offset      | R/W | Description                            | Reset Value |
|----------|-------------|-----|----------------------------------------|-------------|
| CLKSEL2  | CLK_BA+0x1C | R/W | Clock Source Select Control Register 2 | 0x0002_00FF |

| 31 | 30       | 29   | 28    | 27     | 26    | 25   | 24    |
|----|----------|------|-------|--------|-------|------|-------|
|    | Reserved |      |       |        |       |      |       |
| 23 | 22       | 21   | 20    | 19     | 18    | 17   | 16    |
|    |          | Rese | erved | wwdt_s |       |      | DT_S  |
| 15 | 14       | 13   | 12    | 11     | 10    | 9    | 8     |
|    |          |      | Rese  | erved  |       |      |       |
| 7  | 6        | 5    | 4     | 3      | 2     | 1    | 0     |
|    | Reserved |      |       | FRQI   | DIV_S | Rese | erved |

| Bits    | Description | Description                                                                                                                                                                                                                                    |  |  |  |  |  |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:18] | Reserved    | eserved.                                                                                                                                                                                                                                       |  |  |  |  |  |
| [17:16] | WWDT_S      | Window Watchdog Timer Clock Source Selection  10 = Clock source from HCLK/2048 clock.  11 = Clock source from 10 kHz internal low speed RC oscillator clock.                                                                                   |  |  |  |  |  |
| [15:4]  | Reserved    | Reserved.                                                                                                                                                                                                                                      |  |  |  |  |  |
| [3:2]   | FRQDIV_S    | Clock Divider Clock Source Selection  00 = Clock source from 4~24 MHz external high speed crystal oscillator clock.  01 = Reserved.  10 = Clock source from HCLK.  11 = Clock source from 22.1184 MHz internal high speed RC oscillator clock. |  |  |  |  |  |
| [1:0]   | Reserved    | Reserved.                                                                                                                                                                                                                                      |  |  |  |  |  |

#### **PLL Control Register (PLLCON)**

nuvoTon

The PLL reference clock input is from the 4~24 MHz external high speed crystal oscillator (HXT) clock input or from the 22.1184 MHz internal high speed RC oscillator (HIRC). These registers are used to control the PLL output frequency and PLL operating mode.

| Register | Offset      | R/W | Description          | Reset Value |
|----------|-------------|-----|----------------------|-------------|
| PLLCON   | CLK_BA+0x20 | R/W | PLL Control Register | 0x0005_C22E |

| 31  | 30       | 29    | 28 | 27      | 26 | 25 | 24    |
|-----|----------|-------|----|---------|----|----|-------|
|     | Reserved |       |    |         |    |    |       |
| 23  | 22       | 21    | 20 | 19      | 18 | 17 | 16    |
|     | Rese     | erved |    | PLL_SRC | OE | ВР | PD    |
| 15  | 14       | 13    | 12 | 11      | 10 | 9  | 8     |
| ОИТ | _DV      |       |    | IN_DV   |    |    | FB_DV |
| 7   | 6        | 5     | 4  | 3       | 2  | 1  | 0     |
|     | FB_DV    |       |    |         |    |    |       |

| Bits    | Description |                                                                                                                                                                                       |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:20] | Reserved    | Reserved.                                                                                                                                                                             |
| [19]    | PLL_SRC     | PLL Source Clock Selection  0 = PLL source clock from 4~24 MHz external high speed crystal oscillator.  1 = PLL source clock from 22.1184 MHz internal high speed RC oscillator.      |
| [18]    | OE          | PLL OE (FOUT Enable) Pin Control  0 = PLL FOUT Enabled.  1 = PLL FOUT is fixed low.                                                                                                   |
| [17]    | ВР          | PLL Bypass Control 0 = PLL is in Normal mode (default). 1 = PLL clock output is same as PLL source clock input.                                                                       |
| [16]    | PD          | Power-Down Mode  If the PWR_DOWN_EN bit is set to 1 in PWRCON register, the PLL will enter Power-down mode too.  0 = PLL is in Normal mode.  1 = PLL is in Power-down mode (default). |
| [15:14] | OUT_DV      | PLL Output Divider Control Bits Refer to the formulas below the table.                                                                                                                |
| [13:9]  | IN_DV       | PLL Input Divider Control Bits Refer to the formulas below the table.                                                                                                                 |
| [8:0]   | FB_DV       | PLL Feedback Divider Control Bits Refer to the formulas below the table.                                                                                                              |



#### **Output Clock Frequency Setting**

$$FOUT = FIN \times \frac{NF}{NR} \times \frac{1}{NO}$$

#### Constraint:

1. 3.2MHz < FIN < 150MHz

2. 
$$800KHz < \frac{FIN}{2*NR} < 7.5MHz$$

3. 
$$100MHz < FCO = FIN * \frac{NF}{NR} < 200MHz$$
  
 $120MHz < FCO$  is preferred

| Symbol | Description                                                                                          |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------------|--|--|--|--|
| FOUT   | utput Clock Frequency                                                                                |  |  |  |  |
| FIN    | put (Reference) Clock Frequency                                                                      |  |  |  |  |
| NR     | Input Divider (IN_DV + 2)                                                                            |  |  |  |  |
| NF     | Feedback Divider (FB_DV + 2)                                                                         |  |  |  |  |
| NO     | OUT_DV = "00" : NO = 1<br>OUT_DV = "01" : NO = 2<br>OUT_DV = "10" : NO = 2<br>OUT_DV = "11" : NO = 4 |  |  |  |  |

### **Default Frequency Setting**

The default value: 0xC22E

FIN = 12 MHz

NR = (1+2) = 3

NF = (46+2) = 48

NO = 4

 $FOUT = 12/4 \times 48 \times 1/3 = 48 \text{ MHz}$ 

# Frequency Divider Control Register (FRQDIV)

| Register | Offset      | R/W | Description                        | Reset Value |
|----------|-------------|-----|------------------------------------|-------------|
| FRQDIV   | CLK_BA+0x24 | R/W | Frequency Divider Control Register | 0x0000_0000 |

| 31                | 30       | 29 | 28         | 27    | 26 | 25 | 24 |
|-------------------|----------|----|------------|-------|----|----|----|
|                   | Reserved |    |            |       |    |    |    |
| 23                | 22       | 21 | 20         | 19    | 18 | 17 | 16 |
|                   |          |    | Rese       | erved |    |    |    |
| 15                | 14       | 13 | 12         | 11    | 10 | 9  | 8  |
|                   | Reserved |    |            |       |    |    |    |
| 7                 | 6        | 5  | 4          | 3     | 2  | 1  | 0  |
| Reserved DIVIDER1 |          |    | DIVIDER_EN |       | FS | EL |    |

| Bits   | Description | Description                                                                                                                                                                                                                              |  |  |  |  |
|--------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:6] | Reserved    | Reserved.                                                                                                                                                                                                                                |  |  |  |  |
| [5]    | DIVIDER1    | Frequency Divider One Enable Control  0 = Frequency divider will output clock with source frequency divided by FSEL.  1 = Frequency divider will output clock with source frequency.                                                     |  |  |  |  |
| [4]    | DIVIDER_EN  | Frequency Divider Enable Control  0 = Frequency divider function Disabled.  1 = Frequency divider function Enabled.                                                                                                                      |  |  |  |  |
| [3:0]  | FSEL        | Divider Output Frequency Selection Bits  The formula of output frequency is $F_{out} = F_{in}/2^{(N+1).}$ $F_{in}$ is the input clock frequency. $F_{out}$ is the frequency of divider output clock.  N is the 4-bit value of FSEL[3:0]. |  |  |  |  |



### APB Devices Clock Enable Register 1 (APBCLK1)

These bits of this register are used to enable/disable clock for peripheral controller clocks.

| Register | Offset      | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| APBCLK1  | CLK_BA+0x30 | R/W | APB Devices Clock Enable Register 1 | 0x0000_0000 |

| 31 | 30       | 29       | 28 | 27 | 26       | 25       | 24       |
|----|----------|----------|----|----|----------|----------|----------|
|    | Reserved |          |    |    |          |          |          |
| 23 | 22       | 21       | 20 | 19 | 18       | 17       | 16       |
|    | Reserved |          |    |    | BPWM0_EN | PWM1_EN  | PWM0_EN  |
| 15 | 14       | 13       | 12 | 11 | 10       | 9        | 8        |
|    |          | Reserved |    |    | UART5_EN | UART4_EN | UART3_EN |
| 7  | 6        | 5        | 4  | 3  | 2        | 1        | 0        |
|    | Reserved |          |    |    |          |          |          |

| Bits    | Description | Description                                                                     |  |  |  |  |  |  |
|---------|-------------|---------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:20] | Reserved    | Reserved.                                                                       |  |  |  |  |  |  |
| [19]    | BPWM1_EN    | BPWM1 Clock Enable Control  0 = BPWM1 clock Disabled.  1 = BPWM1 clock Enabled. |  |  |  |  |  |  |
| [18]    | BPWM0_EN    | BPWM0 Clock Enable Control 0 = BPWM0 clock Disabled. 1 = BPWM0 clock Enabled.   |  |  |  |  |  |  |
| [17]    | PWM1_EN     | PWM1 Clock Enable Control 0 = PWM1 clock Disabled. 1 = PWM1 clock Enabled.      |  |  |  |  |  |  |
| [16]    | PWM0_EN     | PWM0 Clock Enable Control 0 = PWM0 clock Disabled. 1 = PWM0 clock Enabled.      |  |  |  |  |  |  |
| [15:11] | Reserved    | Reserved.                                                                       |  |  |  |  |  |  |
| [10]    | UART5_EN    | UART5 Clock Enable Control  0 = UART5 clock Disabled.  1 = UART5 clock Enabled. |  |  |  |  |  |  |
| [9]     | UART4_EN    | UART4 Clock Enable Control  0 = UART4 clock Disabled.  1 = UART4 clock Enabled. |  |  |  |  |  |  |
| [8]     | UART3_EN    | UART3 Clock Enable Control 0 = UART3 clock Disabled. 1 = UART3 clock Enabled.   |  |  |  |  |  |  |



| [7:0] | Reserved | Reserved. |
|-------|----------|-----------|
|-------|----------|-----------|



### Clock Source Select Control Register 3 (CLKSEL3)

Before clock switching, the related clock sources (pre-select and new-select) must be turned on.

| Register | Offset      | R/W | Description                            | Reset Value |
|----------|-------------|-----|----------------------------------------|-------------|
| CLKSEL3  | CLK_BA+0x34 | R/W | Clock Source Select Control Register 3 | 0x000F_003F |

| 31 | 30       | 29    | 28 | 27      | 26      | 25     | 24     |  |  |  |
|----|----------|-------|----|---------|---------|--------|--------|--|--|--|
|    | Reserved |       |    |         |         |        |        |  |  |  |
| 23 | 22       | 21    | 20 | 19      | 18      | 17     | 16     |  |  |  |
|    | Rese     | erved |    | BPWM1_S | BPWM0_S | PWM1_S | PWM0_S |  |  |  |
| 15 | 14       | 13    | 12 | 11      | 10      | 9      | 8      |  |  |  |
|    | Reserved |       |    |         |         |        |        |  |  |  |
| 7  | 6        | 5     | 4  | 3       | 2       | 1      | 0      |  |  |  |
|    | Reserved |       |    |         |         |        |        |  |  |  |

| Bits    | Description |                                                                                                                                                |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:20] | Reserved    | Reserved.                                                                                                                                      |
| [19]    | BPWM1_S     | BPWM1 Clock Source Selection  The Engine clock source of BPWM1 is defined by BPWM1_S.  0 = Clock source from PLL.  1 = Clock source from PCLK. |
| [18]    | BPWM0_S     | BPWM0 Clock Source Selection  The Engine clock source of BPWM0 is defined by BPWM0_S.  0 = Clock source from PLL.  1 = Clock source from PCLK. |
| [17]    | PWM1_S      | PWM1 Clock Source Selection  The Engine clock source of PWM1 is defined by PWM1_S.  0 = Clock source from PLL.  1 = Clock source from PCLK.    |
| [16]    | PWM0_S      | PWM0 Clock Source Selection  The Engine clock source of PWM0 is defined by PWM0_S.  0 = Clock source from PLL.  1 = Clock source from PCLK.    |
| [15:0]  | Reserved    | Reserved.                                                                                                                                      |

# **Clock Fail Detector Control Register (CLKDCTL)**

| Register | Offset      | R/W | Description                          | Reset Value |
|----------|-------------|-----|--------------------------------------|-------------|
| CLKDCTL  | CLK_BA+0x70 | R/W | Clock Fail Detector Control Register | 0x0000_0000 |

| 31                       | 30       | 29 | 28 | 27 | 26   | 25    | 24 |  |  |  |
|--------------------------|----------|----|----|----|------|-------|----|--|--|--|
|                          | Reserved |    |    |    |      |       |    |  |  |  |
| 23                       | 22       | 21 | 20 | 19 | 18   | 17    | 16 |  |  |  |
|                          | Reserved |    |    |    |      |       |    |  |  |  |
| 15                       | 14       | 13 | 12 | 11 | 10   | 9     | 8  |  |  |  |
|                          | Reserved |    |    |    |      |       |    |  |  |  |
| 7                        | 6        | 5  | 4  | 3  | 2    | 1     | 0  |  |  |  |
| Reserved HXTFIEN HXTFDEN |          |    |    |    | Rese | erved |    |  |  |  |

| Bits    | Description |                                                                                                                                                                         |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:18] | Reserved    | Reserved.                                                                                                                                                               |
| [17]    | HXTFQIEN    | HXT Clock Frequency Monitor Interrupt Enable Control  0 = HXT clock frequency monitor fail interrupt Disabled.  1 = HXT clock frequency monitor fail interrupt Enabled. |
| [16]    | HXTFQDEN    | HXT Clock Frequency Monitor Enable Control  0 = HXT clock frequency monitor Disabled.  1 = HXT clock frequency monitor Enabled.                                         |
| [15:6]  | Reserved    | Reserved.                                                                                                                                                               |
| [5]     | HXTFIEN     | HXT Clock Fail Interrupt Enable Control  0 = HXT clock Fail interrupt Disabled.  1 = HXT clock Fail interrupt Enabled.                                                  |
| [4]     | HXTFDEN     | HXT Clock Fail Detector Enable Control  0 = HXT clock Fail detector Disabled.  1 = HXT clock Fail detector Enabled.                                                     |
| [3:0]   | Reserved    | Reserved.                                                                                                                                                               |



# **Clock Fail Detector Status Register (CLKDSTS)**

| Register | Offset      | R/W | Description                         | Reset Value |
|----------|-------------|-----|-------------------------------------|-------------|
| CLKDSTS  | CLK_BA+0x74 | R/W | Clock Fail Detector Status Register | 0x0000_0000 |

| 31       | 30            | 29 | 28       | 27    | 26 | 25 | 24     |  |
|----------|---------------|----|----------|-------|----|----|--------|--|
| Reserved |               |    |          |       |    |    |        |  |
| 23       | 22            | 21 | 20       | 19    | 18 | 17 | 16     |  |
|          |               |    | Rese     | erved |    |    |        |  |
| 15       | 14            | 13 | 12       | 11    | 10 | 9  | 8      |  |
| Reserved |               |    |          |       |    |    |        |  |
| 7        | 7 6 5 4 3 2 1 |    |          |       |    |    |        |  |
|          |               |    | Reserved |       |    |    | HXTFIF |  |

| Bits   | Description | Description                                                                                                               |  |  |  |  |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:9] | Reserved    | Reserved.                                                                                                                 |  |  |  |  |
| [8]    | HXTFQIF     | HXT Clock Frequency Monitor Interrupt Flag  0 = HXT clock normal.  1 = HXT clock frequency abnormal (write "1" to clear). |  |  |  |  |
| [7:1]  | Reserved    | Reserved.                                                                                                                 |  |  |  |  |
| [0]    | HXTFIF      | HXT Clock Fail Interrupt Flag  0 = HXT clock normal.  1 = HXT clock stop (write "1" to clear).                            |  |  |  |  |

# **Clock Frequency Detector Upper Boundary Register (CDUPB)**

| Register | Offset      | R/W | Description                                      | Reset Value |
|----------|-------------|-----|--------------------------------------------------|-------------|
| CDUPB    | CLK_BA+0x78 | R/W | Clock Frequency Detector Upper Boundary Register | 0x0000_0000 |

| 31 | 30              | 29 | 28 | 27 | 26 | 25 | 24 |  |  |
|----|-----------------|----|----|----|----|----|----|--|--|
|    | Reserved        |    |    |    |    |    |    |  |  |
| 23 | 22              | 21 | 20 | 19 | 18 | 17 | 16 |  |  |
|    | Reserved        |    |    |    |    |    |    |  |  |
| 15 | 14              | 13 | 12 | 11 | 10 | 9  | 8  |  |  |
|    | Reserved UPERBD |    |    |    |    |    |    |  |  |
| 7  | 6               | 5  | 4  | 3  | 2  | 1  | 0  |  |  |
|    | UPERBD          |    |    |    |    |    |    |  |  |

| Bits    | Description |                                                                                                                                                                                                                                 |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:10] | Reserved    | Reserved.                                                                                                                                                                                                                       |
| [9:0]   | UPERBD      | HXT Clock Frequency Detector Upper Boundary The bits define the high value of frequency monitor window. When HXT frequency monitor value higher than this register, the HXT frequency detect fail interrupt flag will set to 1. |



# **Clock Frequency Detector Lower Boundary Register (CDLOWB)**

| Register | Offset      | R/W | Description                                      | Reset Value |
|----------|-------------|-----|--------------------------------------------------|-------------|
| CDLOWB   | CLK_BA+0x7C | R/W | Clock Frequency Detector Lower Boundary Register | 0x0000_0000 |

| 31 | 30       | 29   | 28    | 27    | 26 | 25   | 24   |  |
|----|----------|------|-------|-------|----|------|------|--|
|    | Reserved |      |       |       |    |      |      |  |
| 23 | 22       | 21   | 20    | 19    | 18 | 17   | 16   |  |
|    |          |      | Rese  | erved |    |      |      |  |
| 15 | 14       | 13   | 12    | 11    | 10 | 9    | 8    |  |
|    |          | Rese | erved |       |    | LOWI | ERBD |  |
| 7  | 6        | 5    | 4     | 3     | 2  | 1    | 0    |  |
|    | LOWERBD  |      |       |       |    |      |      |  |

| Bits    | Description        |                                                                                                                                                                                                                                  |  |  |
|---------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:10] | Reserved Reserved. |                                                                                                                                                                                                                                  |  |  |
| [9:0]   | LOWERBD            | HXT Clock Frequency Detector Lower Boundary  The bits define the low value of frequency monitor window.  When HXT frequency monitor values lower than this register, the HXT frequency detect fail interrupt flag will set to 1. |  |  |

### 6.4 Flash Memory Controller (FMC)

#### 6.4.1 Overview

The NuMicro® NUC131 series has 36/68 Kbytes on-chip embedded Flash for application program memory (APROM) that can be updated through ISP procedure. The In-System-Programming (ISP) function enables user to update program memory when chip is soldered on PCB. After chip is powered on, Cortex®-M0 CPU fetches code from APROM or LDROM decided by boot select (CBS) in CONFIG0. By the way, the NuMicro® NUC131 series also provides additional Data Flash for user to store some application dependent data.

The NuMicro® NUC131 supports another flexible feature: configurable Data Flash size. The Data Flash size is decided by Data Flash variable size enable (DFVSEN), Data Flash enable (DFEN) in Config0 and Data Flash base address (DFBADR) in Config1. When DFVSEN is set to 1, the Data Flash size is fixed at 4K and the address is started from 0x0001\_F000, and the APROM size is become 32/64 KB. When DFVSEN is set to 0 and DFEN is set to 1, the Data Flash size is zero and the APROM size is 36/68 KB. When DFVSEN is set to 0 and DFEN is set to 0, the APROM and Data Flash share 36/68 KB continuous address and the start address of Data Flash is defined by (DFBADR) in Config1.

#### 6.4.2 Features

- Runs up to 50 MHz with zero wait cycle for continuous address read access
- All embedded flash memory supports 512 bytes page erase
- 36/68 KB application program memory (APROM)
- 4 KB In-System-Programming (ISP) loader program memory (LDROM)
- Configurable Data Flash size
- 512 bytes page erase unit
- Supports In-Application-Programming (IAP) to switch code between APROM and LDROM without reset
- In-System-Programming (ISP) to update on-chip Flash



#### 6.4.3 Block Diagram

The flash memory controller consists of AHB slave interface, ISP control logic, writer interface and flash macro interface timing control logic. The block diagram of flash memory controller is shown in Figure 6.4-1 and Figure 6.4-2:

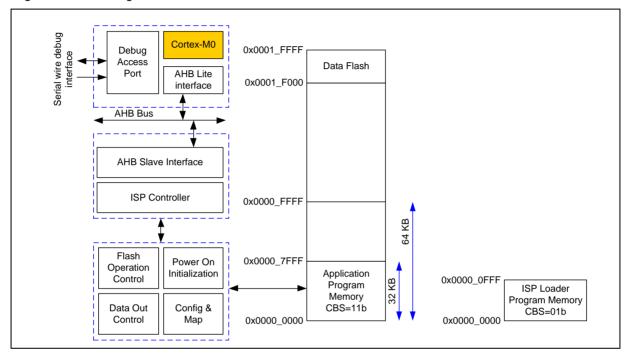



Figure 6.4-1 Flash Memory Control Block Diagram (DFVSEN = 1)

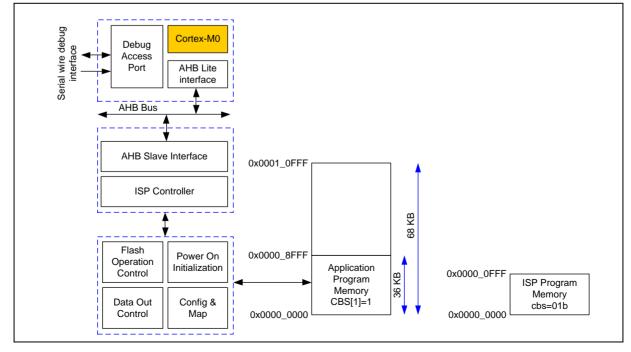



Figure 6.4-2 Flash Memory Control Block Diagram (DFVSEN = 0)

### 6.4.4 Functional Description

nuvoton

#### 6.4.4.1 Flash Memory Organization

The NuMicro® NUC131 series flash memory consists of program memory (APROM), Data Flash, ISP loader program memory (LDROM), and user configuration.

Program memory is main memory for user applications and called APROM. User can write their application to APROM and set system to boot from APROM.

ISP loader program memory is designed for a loader to implement In-System-Programming function. LDROM is independent to APROM and system can also be set to boot from LDROM. Therefore, user can use LDROM to avoid system boot fail when code of APROM was corrupted.

Data Flash is used for user to store data. It can be read by ISP read or memory read and programmed through ISP procedure. The size of each erase unit is 512 bytes. When DFVSEN is set to 1, Data Flash size is always 4 KB and start address is fixed at 0x0001 F000. When DFVSEN is set to 0 and DFEN is set to 1, the Data Flash size is zero and the APROM size is 68 KB. When DFVSEN is set to 0 and DFEN is set to 0, the APROM and Data Flash share 68 KB continuous address and the start address of Data Flash is defined by (DFBADR) in Config1.

User configuration provides several bytes to control system logic, such as flash security lock, boot select, Brown-out voltage level. Data Flash base address, etc.... User configuration works like a fuse for power on setting and loaded from flash memory to its corresponding control registers during chip powered on.

In NuMicro® Family, the flash memory organization is different to system memory map. Flash memory organization is used when user using ISP command to read, program or erase flash memory. System memory map is used when CPU access flash memory to fetch code or data. For example, When system is set to boot from LDROM by CBS = 01b, CPU will be able to fetch code of LDROM from 0x0 ~ 0x0FFF. However, if user want to read LDROM by ISP, they still need to read the address of LDROM as 0x0010 0000 ~ 0x0010 0FFF.

Table 6.4-1 and Table 6.4-2 show the address mapping information of APROM, LDROM, Data Flash and user configuration for 36/68 devices.

| Block Name            | Device Type | Size    | Start Address | End Address |  |
|-----------------------|-------------|---------|---------------|-------------|--|
| APROM                 | 36 KB       | 32 KB   | 0x0000_0000   | 0x0000_7FFF |  |
|                       | 68 KB       | 64 KB   | 0x0000_0000   | 0x0000_FFFF |  |
| Data Flash            | 36 KB       | 4 KB    | 0x0001_F000   | 0x0001 FFFF |  |
|                       | 68 KB       | 4 KB    | 0x0001_F000   | 0x0001_FFFF |  |
| LDROM                 | 36/68 KB    | 4 KB    | 0x0010_0000   | 0x0010_0FFF |  |
| User<br>Configuration | 36/68 KB    | 2 words | 0x0030_0000   | 0x0030_0004 |  |

Table 6.4-1 Memory Address Map (DFVSEN = 1)



| Block Name            | Device Type | Size          | Start Address | End Address                                           |  |
|-----------------------|-------------|---------------|---------------|-------------------------------------------------------|--|
| ADDOM                 | 36 KB       | (36-0.5*N) KB | 0x0000_0000   | 0x0000_8FFF (36KB, if DFEN=1)<br>DFBADR-1 (if DFEN=0) |  |
| APROM<br>68 KB        |             | (68-0.5*N) KB | 0x0000_0000   | 0x0001_0FFF (68KB, if DFEN=1)<br>DFBADR-1 (if DFEN=0) |  |
| Data Flash            | 36 KB       | 4 KB          | 0x0001_F000   | 0x0000_8FFF (36KB, if DFEN=0)                         |  |
| Data Flash            | 68 KB       | 4 KB          | 0x0001_F000   | 0x0001_0FFF (68KB, if DFEN=0)                         |  |
| LDROM                 | 36/68 KB    | 4 KB          | 0x0010_0000   |                                                       |  |
| User<br>Configuration | 36/68 KB    | 2 words       | 0x0030_0000   | 0x0030_0004                                           |  |

Table 6.4-2 Memory Address Map (DFVSEN = 0)

The Flash memory organization is shown as Figure 6.4-3, and Figure 6.4-4.

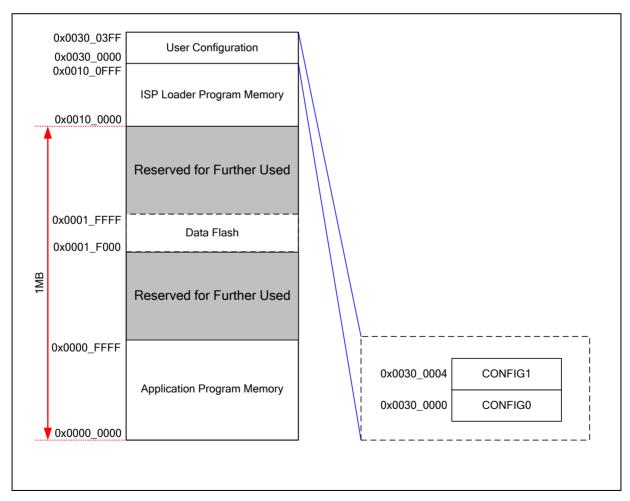



Figure 6.4-3 Flash Memory Organization (DFVSEN = 1)

nuvoton

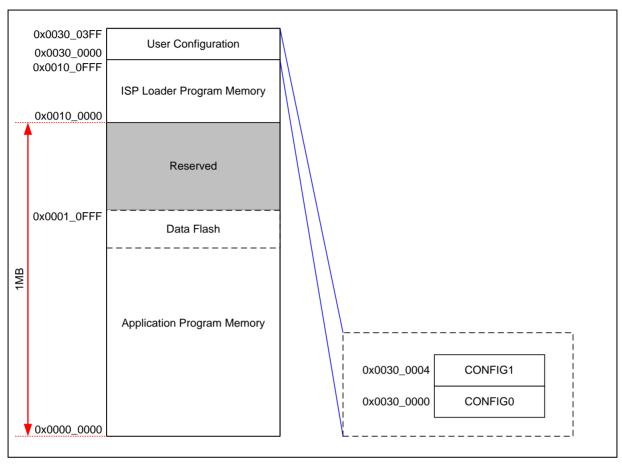



Figure 6.4-4 Flash Memory Organization (DFVSEN = 0)



#### 6.4.4.2 User Configuration

User configuration is internal programmable configuration area for boot options. The user configuration is located at 0x300000 of Flash Memory Organization and they are two 32 bits words. Any change on user configuration will take effect after system reboot.

### CONFIG0 (Address = $0x0030\_0000$ )

| 31        | 30        | 29                | 28     | 27      | 26       | 25   | 24    |
|-----------|-----------|-------------------|--------|---------|----------|------|-------|
| CWDTEN[2] | CWDTPDEN  | CWDTPDEN Reserved |        | CGPFMFP | CFOSC    |      |       |
| 23        | 22        | 21                | 20     | 19      | 18       | 17   | 16    |
| CBODEN    | CBOV CBOF |                   | CBORST |         | Reserved |      |       |
| 15        | 14        | 13                | 12     | 11      | 10       | 9    | 8     |
|           |           | Reserved          |        |         | CIOINI   | Rese | erved |
| 7         | 6         | 5                 | 4      | 3       | 2        | 1    | 0     |
| CI        | 38        | Reserved          | CWDT   | E[1:0]  | DFVSEN   | LOCK | DFEN  |

| CONFIG0 | Address = 0x000 | Address = 0x0030_0000                                                                                                                                                                                                                                                                                        |  |  |  |  |
|---------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Bits    | Description     |                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|         |                 | Watchdog Timer Hardware Enable Control                                                                                                                                                                                                                                                                       |  |  |  |  |
|         |                 | When watchdog timer hardware enable function is enabled, the watchdog enable bit WDTEN (WDT_CTL[7]) and watchdog reset enable bit RSTEN (WDT_CTL[1]) is set to 1 automatically after power on. The clock source of watchdog timer is force at LIRC and LIRC can't be disabled.                               |  |  |  |  |
| [24]    | CWDTEN[2]       | <b>CWDTEN[2:0]</b> is CONFIG0[31][4][3],                                                                                                                                                                                                                                                                     |  |  |  |  |
| [31]    | CWD1EN[2]       | 011 = WDT hardware enable function is active. WDT clock is always on except chip enters Power- down mode. When chip enter Power-down mode, WDT clock is always on if CWDTPDEN is 0 or WDT clock is controlled by LIRCEN (CLK_PWRCTL[3]) if CWDTPDEN is 1. Please refer to bit field description of CWDTPDEN. |  |  |  |  |
|         |                 | 111 = WDT hardware enable function is inactive.                                                                                                                                                                                                                                                              |  |  |  |  |
|         |                 | Others = WDT hardware enable function is active. WDT clock is always on.                                                                                                                                                                                                                                     |  |  |  |  |
|         |                 | Watchdog Clock Power-down Enable Control                                                                                                                                                                                                                                                                     |  |  |  |  |
|         |                 | 0 = OSC10K Watchdog Timer clock source is forced to be always enabled.                                                                                                                                                                                                                                       |  |  |  |  |
| [30]    | CWDTPDEN        | 1 = OSC10K Watchdog Timer clock source is controlled by OSC10K_EN (PWRCON[3]) when chip enters Power-down.                                                                                                                                                                                                   |  |  |  |  |
|         |                 | Note: This bit only works at CWDTEN is set to 0.                                                                                                                                                                                                                                                             |  |  |  |  |
| [29]    | Reserved        | Reserved                                                                                                                                                                                                                                                                                                     |  |  |  |  |
|         |                 | GPF Multi-function Selection                                                                                                                                                                                                                                                                                 |  |  |  |  |
|         | CODEMED         | 0 = XT1_IN and XT1_OUT pin is configured as GPIO function.                                                                                                                                                                                                                                                   |  |  |  |  |
| [27]    | CGPFMFP         | 1 = XT1_IN and XT1_OUT pin is used as external 4~24MHz crystal oscillator pin.                                                                                                                                                                                                                               |  |  |  |  |
|         |                 | Note: XT1_IN, XT1_OUT multi-function can only be changed by CGPFMFP.                                                                                                                                                                                                                                         |  |  |  |  |

| [26:24]      | CFOSC    | CPU Clock Source Selection after Reset  000 = External 4~24 MHz high speed crystal oscillator clock.  111 = Internal RC 22.1184 MHz high speed oscillator clock.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |          | Others = Reserved.  The value of CFOSC will be load to HCLK_S (CLKSEL0[2:0]) in system register after an reset occurs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |          | Brown-out Detector Enable Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| [23]         | CBODEN   | 0= Brown-out detect Enabled after powered on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |          | 1= Brown-out detect Disabled after powered on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              |          | Brown-out Voltage Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|              |          | 00 = 2.2 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| [22:21]      | СВОУ     | 01 = 2.7 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |          | 10 = 3.7 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |          | 11 = 4.4 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |          | Brown-out Reset Enable Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| [20]         | CBORST   | 0 = Brown-out reset Enabled after powered on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|              |          | 1 = Brown-out reset Disabled after powered on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| [19:11]      | Reserved | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1            |          | I/O Initial State Select                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |          | 0 = All GPIO default to be input tri-state mode after powered on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|              |          | 1 = All GPIO default to be Quasi-bidirectional mode after chip is powered on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| [10]         | CIOINI   | Note: For PF.0 and PF.1, this field is workable only when CGPFMFP (CONFIG0[27]) is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              |          | set as 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          | <b>Note:</b> It is recommended to use 100 kΩ pull-up resistor on both ICE_DAT and ICE_CLK pin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| [9:8]        | Reserved | Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              |          | Chip Boot Selection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|              |          | 00 = Boot from LDROM with IAP function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |          | 01 = Boot from LDROM without IAP function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| [7:6]        | CBS      | 01 = Boot from LDROM without IAP function. 10 = Boot from APROM with IAP function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| [7:6]        | CBS      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| [7:6]        | CBS      | 10 = Boot from APROM with IAP function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| [7:6]<br>[5] | CBS      | 10 = Boot from APROM with IAP function. 11 = Boot from APROM without IAP function. IAP function means APROM and LDROM can be executed and access by CPU without reset. When IAP function enabled, APROM base address is 0x0 and LDROM bas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              |          | 10 = Boot from APROM with IAP function. 11 = Boot from APROM without IAP function. IAP function means APROM and LDROM can be executed and access by CPU without reset. When IAP function enabled, APROM base address is 0x0 and LDROM base address is 0x100000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |          | 10 = Boot from APROM with IAP function. 11 = Boot from APROM without IAP function. IAP function means APROM and LDROM can be executed and access by CPU without reset. When IAP function enabled, APROM base address is 0x0 and LDROM base address is 0x100000.  Reserved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [5]          | Reserved | 10 = Boot from APROM with IAP function. 11 = Boot from APROM without IAP function. IAP function means APROM and LDROM can be executed and access by CPU without reset. When IAP function enabled, APROM base address is 0x0 and LDROM base address is 0x100000.  Reserved  Watchdog Timer Hardware Enable Control When watchdog timer hardware enable function is enabled, the watchdog enable b WDTEN (WDT_CTL[7]) and watchdog reset enable bit RSTEN (WDT_CTL[1]) is set to automatically after power on. The clock source of watchdog timer is force at LIRC and                                                                                                                                                                                                                                                                                                   |
|              |          | 10 = Boot from APROM with IAP function. 11 = Boot from APROM without IAP function. IAP function means APROM and LDROM can be executed and access by CPU without reset. When IAP function enabled, APROM base address is 0x0 and LDROM base address is 0x100000.  Reserved  Watchdog Timer Hardware Enable Control When watchdog timer hardware enable function is enabled, the watchdog enable b WDTEN (WDT_CTL[7]) and watchdog reset enable bit RSTEN (WDT_CTL[1]) is set to automatically after power on. The clock source of watchdog timer is force at LIRC an LIRC can't be disabled.                                                                                                                                                                                                                                                                            |
| [5]          | Reserved | 10 = Boot from APROM with IAP function.  11 = Boot from APROM without IAP function.  IAP function means APROM and LDROM can be executed and access by CPU without reset. When IAP function enabled, APROM base address is 0x0 and LDROM base address is 0x100000.  Reserved  Watchdog Timer Hardware Enable Control  When watchdog timer hardware enable function is enabled, the watchdog enable be WDTEN (WDT_CTL[7]) and watchdog reset enable bit RSTEN (WDT_CTL[1]) is set to automatically after power on. The clock source of watchdog timer is force at LIRC an LIRC can't be disabled.  CWDTEN[2:0] is CONFIG0[31][4][3],  011 = WDT hardware enable function is active. WDT clock is always on except chip enter Power-down mode. When chip enter Power-down mode, WDT clock is always on CWDTPDEN is 0 or WDT clock is controlled by LIRCEN (CLK_PWRCTL[3]) |



| [2] | DFVSEN | DATA Flash Variable Size Enable  0 = Data flash size is variable and it base address is based on DFBADR (Config1).  1 = Data flash size is fixed at 4K bytes.                                                                                                                                                                                                                                       |
|-----|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [1] | LOCK   | Security Lock  0 = Flash data is locked.  1 = Flash data is not locked.  When flash data is locked, only device ID, CONFIG0 and CONFIG1 can be read by writer and ICP through serial debug interface. Others data is locked as 0xFFFFFFFF. ISP can read data anywhere regardless of LOCK bit value.  User need to erase whole chip by ICP/Writer tool or erase user configuration by ISP to unlock. |
| [0] | DFEN   | Data Flash Enable Control  0 = Data Flash Enabled.  1 = Data Flash Disabled.  Note: This bit only workable if DFVSEN is set to 0. When DFVSEN is 0 and DFEN is 1, there is no data flash and APROM size is 68K bytes. When DFVSEN is 0 and DFEN is 0, the data flash is shared with APROM within 68K bytes, and the base address of data flash is decided by DFBADR (Config1)                       |

Brown-out detection function is for monitoring the voltage on  $V_{DD}$  pin. If  $V_{DD}$  voltage falls below level setting of CBOV, the BOD event will be triggered when BOD enabled. User can decide to use BOD reset by enable CBORST or just enable BOD interrupt by NVIC when BOD detected. Because BOD reset is issued whenever  $V_{DD}$  voltage falls below the level setting of CBOV, user must make sure the CBOV setting to avoid BOD reset right after BOD reset enabled. For example, if the  $V_{DD}$  is 3.3 V, CBOV could only be 00'b or 01'b. Otherwise, the system will be halted in BOD reset state when BOD reset is enabled and CBOV is 10'b or 11'b.

# **CONFIG1 (Address = 0x0030\_0004)**

| 31        | 30        | 29        | 28        | 27        | 26        | 25        | 24        |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
|           |           |           | Rese      | erved     |           |           |           |
| 23        | 22        | 21        | 20        | 19        | 18        | 17        | 16        |
|           | Reserved  |           |           |           | DFBADR.18 | DFBADR.17 | DFBADR.16 |
| 15        | 14        | 13        | 12        | 11        | 10        | 9         | 8         |
| DFBADR.15 | DFBADR.14 | DFBADR.13 | DFBADR.12 | DFBADR.11 | DFBADR.10 | DFBADR.9  | DFBADR.8  |
| 7         | 6         | 5         | 4         | 3         | 2         | 1         | 0         |
| DFBADR.7  | DFBADR.6  | DFBADR.5  | DFBADR.4  | DFBADR.3  | DFBADR.2  | DFBADR.1  | DFBADR.0  |

| Config  | Address = 0x0030_ | ddress = 0x0030_0004                                                                                                                                                                             |  |  |  |  |
|---------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Bits    | Description       |                                                                                                                                                                                                  |  |  |  |  |
| [31:20] | Reserved          | Reserved (It is mandatory to program 0x00 to these Reserved bits)                                                                                                                                |  |  |  |  |
| [19:0]  |                   | Data Flash Base Address  If DFVSEN is set to 0 and DFEN is 0, the data flash base address is defined by user. Since on-chip flash erase unit is 512 bytes, it is mandatory to keep bit 8-0 as 0. |  |  |  |  |



#### 6.4.4.3 Boot Selection

The NuMicro® NUC131 series provides In-System-Programming (ISP) feature to enable user to update program memory by a stand-alone ISP firmware. A dedicated 4 KB program memory (LDROM) is used to store ISP firmware. User can select to start program fetch from APROM or LDROM by CBS[1] in CONFIGO.

In addition to setting boot from APROM or LDROM, CBS in CONFIG0 is also used to control system memory map after booting. When CBS[0] = 1 and set CBS[1] = 1 to boot from APROM, the application in APROM will not be able to access LDROM by memory read. In other words, when CBS[0] = 1 and CBS[1] = 0 are set to boot from LDROM, the software executed in LDROM will not be able to access APROM by memory read. Figure 6.4-5 shows the memory map when booting from APROM and LDROM.

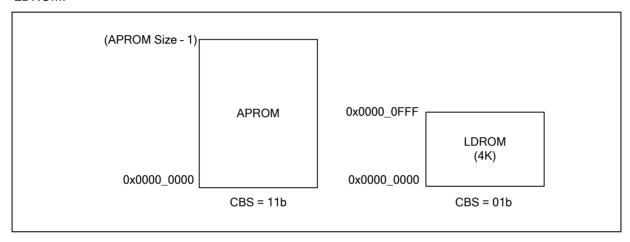



Figure 6.4-5 Program Executing Range for Booting from APROM and LDROM

For the application that software needs to execute code in APROM and call the functions in LDROM or to execute code in LDROM and call the APROM function without changing boot mode, CBS[0] needs to be set as 0 and this is called In-Application-Programming(IAP).

#### 6.4.4.4 In-Application-Programming (IAP)

The NuMicro® NUC131 series provides In-application-programming (IAP) function for user to switch the code executing between APROM and LDROM without a reset. User can enable the IAP function by re-booting chip and setting the chip boot selection bits in CONFIG0 (CBS[1:0]) as 10b or 00b.

In the case that the chip boots from APROM with the IAP function enabled (CBS[1:0] = 10b), the executable range of code includes all of APROM and LDROM. The address space of APROM is kept as the original size but the address space of the 4 KB LDROM is mapped to  $0x0010\_0000\sim0x0010\_0FFF$ .

In the case that the chip boots from LDROM with the IAP function enabled (CBS[1:0] = 00b), the executable range of code includes all of LDROM and almost all of APROM except for its first page. User cannot access the first page of APROM by CPU because the first page of executable code range becomes the mirror of the first page of LDROM as set by default. Meanwhile, the address space of 4 KB LDROM is mapped to  $0x0010\_0000\sim0x0010\_0FFF$ .

Please refer to Figure 6.4-6 for the address map while IAP is activating.

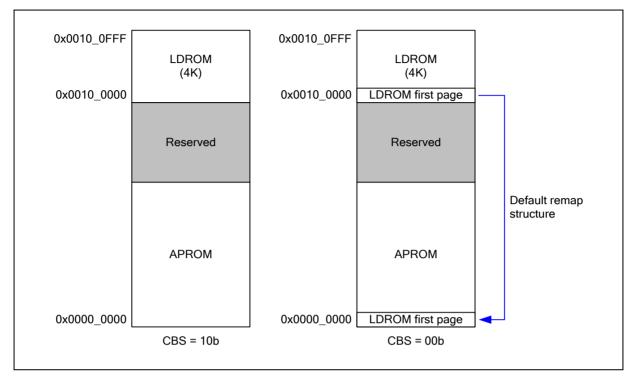
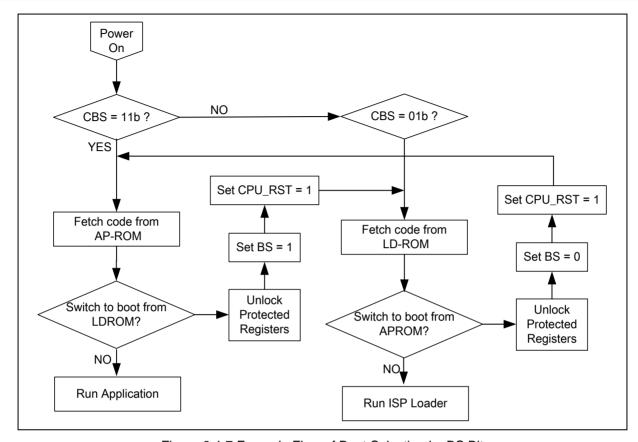



Figure 6.4-6 Executable Range of Code with IAP Function Enabled

When chip boots with the IAP function enabled, any other page within the executable range of code can be mirrored to the first page of executable code (0x0000 0000~0x0000 01FF) any time. User can change the remap address of the first executing page by filling the target remap address to ISPADR and then go through ISP procedure with the Vector Page Re-map command. After changing the remap address, user can check if the change is successful by reading the VECMAP field in the ISPSTA register.

#### 6.4.4.5 In-System-Programming (ISP)


The NuMicro® NUC131 series supports ISP mode which allows a device to be reprogrammed under software control and avoids system fail risk when download or programming fail. Furthermore, the capability to update the application firmware makes a wide range of applications possible.

ISP provides the ability to update system firmware on board. Various peripheral interfaces let ISP loader in LDROM to update application program code easily. The most common method to perform ISP is via UART along with the ISP loader in LDROM. General speaking, PC transfers the new APROM code through serial port. Then ISP loader receives it and re-programs into APROM through ISP commands.

#### 6.4.4.6 ISP Procedure

nuvoton

The NuMicro® NUC131 series supports booting from APROM or LDROM initially defined by user configuration. The change of user configuration needs to reboot system to make it take effect. If user wants to switch between APROM or LDROM mode without changing user configuration, he needs to control BS bit of ISPCON control register, then reset CPU by IPRSTC1 control register. The boot switching flow by BS bit is shown in Figure 6.4-7.



nuvoton

Figure 6.4-7 Example Flow of Boot Selection by BS Bit

Updating APROM by software in LDROM or updating LDROM by software in APROM can avoid a system failure when update fails.

The ISP controller supports to read, erase and program embedded flash memory. Several control bits of ISP controller are write-protected, thus it is necessary to unlock before we can set them. To unlock the protected register bits, software needs to write 0x59, 0x16 and 0x88 sequentially to REGWRPROT. If register is unlocked successfully, the value of REGWRPROT will be 1. The unlock sequence must not be interrupted by other access; otherwise it may fail to unlock.

After unlocking the protected register bits, user needs to set the ISPCON control register to decide to update LDROM, User Configuration, APROM and enable ISP controller.

Once the ISPCON register is set properly, user can set ISPCMD for erase, read or programming. Set ISPADR for target flash memory based on flash memory origination. ISPDAT can be used to set the data to program or used to return the read data according to ISPCMD.

Finally, set ISPGO bit of ISPTRG control register to perform the relative ISP function. The ISPGO bit is self-cleared when ISP function has been done. To make sure ISP function has been finished before CPU goes ahead, ISB instruction is used right after ISPGO setting.

Several error conditions are checked after ISP is completed. If an error condition occurs, ISP operation is not started and the ISP fail flag will be set instead. ISPFF flag can only be cleared by software. The next ISP procedure can be started even ISPFF bit is kept as 1. Therefore, it is recommended to check the ISPFF bit and clear it after each ISP operation if it is set to 1.

When the ISPGO bit is set, CPU will wait for ISP operation to finish during this period; the peripheral still keeps working as usual. If any interrupt request occurs, CPU will not service it till ISP operation is

nuvoton

finished. When ISP operation is finished, the ISPGO bit will be cleared by hardware automatically. User can check whether ISP operation is finished or not by the ISPGO bit. User should add ISB instruction next to the instruction in which ISPGO bit is set 1 to ensure correct execution of the instructions following ISP operation.

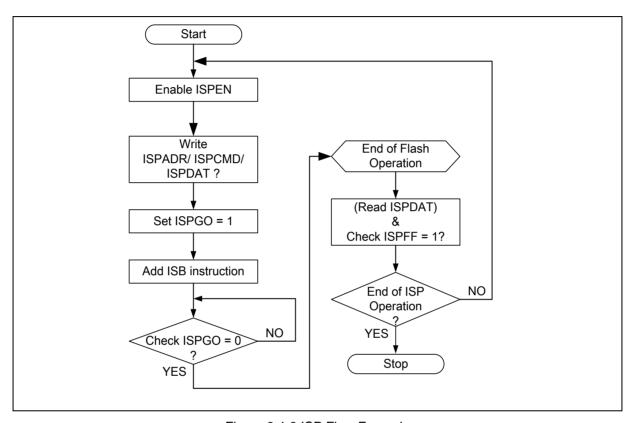



Figure 6.4-8 ISP Flow Example

| ISP Command               | ISPCMD                                                       | ISPADR                                                                          | ISPDAT           |
|---------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------|------------------|
| IFLASH Page Erase I0x22 I |                                                              | Valid address of flash memory origination. It must be 512 bytes page alignment. | N/A              |
| FLASH Program             | CLASH Program 0x21 Valid address of flash memory origination |                                                                                 | Programming Data |
| FLASH Read                | 0x00                                                         | Valid address of flash memory origination                                       | Return Data      |
|                           |                                                              | 0x0000_0000                                                                     | Unique ID Word 0 |
| Read Unique ID            | 0x04                                                         | 0x0000_0004                                                                     | Unique ID Word 1 |
|                           |                                                              | 0x0000_0008                                                                     | Unique ID Word 2 |
| Vector Page Re-Map        | 0x2E                                                         | Page in APROM or LDROM It must be 512 bytes page alignment                      | N/A              |

Table 6.4-3 ISP Command List



# 6.4.5 Register Map

R: read only, W: write only, R/W: both read and write

| Register                                  | Offset      | R/W | Description                        | Reset Value |  |  |  |  |
|-------------------------------------------|-------------|-----|------------------------------------|-------------|--|--|--|--|
| FMC Base Address:<br>FMC_BA = 0x5000_C000 |             |     |                                    |             |  |  |  |  |
| ISPCON                                    | FMC_BA+0x00 | R/W | ISP Control Register               | 0x0000_0000 |  |  |  |  |
| ISPADR                                    | FMC_BA+0x04 | R/W | ISP Address Register               | 0x0000_0000 |  |  |  |  |
| ISPDAT                                    | FMC_BA+0x08 | R/W | ISP Data Register                  | 0x0000_0000 |  |  |  |  |
| ISPCMD                                    | FMC_BA+0x0C | R/W | ISP Command Register               | 0x0000_0000 |  |  |  |  |
| ISPTRG                                    | FMC_BA+0x10 | R/W | ISP Trigger Control Register       | 0x0000_0000 |  |  |  |  |
| DFBADR                                    | FMC_BA+0x14 | R   | Data Flash Base Address            | 0x000X_XXXX |  |  |  |  |
| FATCON                                    | FMC_BA+0x18 | R/W | Flash Access Time Control Register | 0x0000_0000 |  |  |  |  |
| ISPSTA                                    | FMC_BA+0x40 | R/W | ISP Status Register                | 0x0000_0000 |  |  |  |  |



# 6.4.6 Register Description

# **ISP Control Register (ISPCON)**

| Register | Offset      | R/W | Description          | Reset Value |
|----------|-------------|-----|----------------------|-------------|
| ISPCON   | FMC_BA+0x00 | R/W | ISP Control Register | 0x0000_0000 |

| 31              | 30       | 29    | 28     | 27    | 26       | 25 | 24    |  |  |  |
|-----------------|----------|-------|--------|-------|----------|----|-------|--|--|--|
|                 | Reserved |       |        |       |          |    |       |  |  |  |
| 23              | 22       | 21    | 20     | 19    | 18       | 17 | 16    |  |  |  |
|                 | Reserved |       |        |       |          |    |       |  |  |  |
| 15              | 14       | 13    | 12     | 11    | 10       | 9  | 8     |  |  |  |
|                 | Reserved |       |        |       |          |    |       |  |  |  |
| 7 6 5 4 3 2 1 0 |          |       |        |       |          |    | 0     |  |  |  |
| Reserved        | ISPFF    | LDUEN | CFGUEN | APUEN | Reserved | BS | ISPEN |  |  |  |

| Bits   | Description |                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:7] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                    |
| [6]    | ISPFF       | ISP Fail Flag (Write Protect)  This bit is set by hardware when a triggered ISP meets any of the following conditions:  (1) APROM writes to itself if APUEN is set to 0.  (2) LDROM writes to itself if LDUEN is set to 0.  (3) CONFIG is erased/programmed if CFGUEN is set to 0.  (4) Destination address is illegal, such as over an available range.  Write 1 to clear to this bit to 0. |
| [5]    | LDUEN       | LDROM Update Enable Control (Write Protect)  0 = LDROM cannot be updated.  1 = LDROM can be updated when chip runs in APROM.                                                                                                                                                                                                                                                                 |
| [4]    | CFGUEN      | Enable Config Update By ISP (Write Protect)  0 = ISP update config-bit Disabled.  1 = ISP update config-bit Enabled.                                                                                                                                                                                                                                                                         |
| [3]    | APUEN       | APROM Update Enable Control (Write Protect)  0 = APROM cannot be updated when chip runs in APROM.  1 = APROM can be updated when chip runs in APROM.                                                                                                                                                                                                                                         |
| [2]    | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                    |



|     |       | Boot Select (Write Protect )                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [1] | BS    | Set/clear this bit to select next booting from LDROM/APROM, respectively. This bit also functions as chip booting status flag, which can be used to check where chip booted from. This bit is initiated with the inversed value of CBS in CONFIG0 after any reset is happened except CPU reset (RSTS_CPU is 1) or system reset (RSTS_SYS) is happened. |  |  |  |  |  |
|     |       | 0 = Boot from APROM.                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|     |       | 1 = Boot from LDROM.                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|     |       | ISP Enable Control (Write Protect )                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
| [0] | ISPEN | ISP function enable bit. Set this bit to enable ISP function.                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| [0] |       | 0 = ISP function Disabled.                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|     |       | 1 = ISP function Enabled.                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |

# **ISP Address Register (ISPADR)**

| Register | Offset      | R/W | Description          | Reset Value |
|----------|-------------|-----|----------------------|-------------|
| ISPADR   | FMC_BA+0x04 | R/W | ISP Address Register | 0x0000_0000 |

| 31              | 30            | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|-----------------|---------------|----|----|----|----|----|----|--|--|--|
|                 | ISPADR[31:24] |    |    |    |    |    |    |  |  |  |
| 23              | 22            | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|                 | ISPADR[23:16] |    |    |    |    |    |    |  |  |  |
| 15              | 14            | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|                 | ISPADR[15:8]  |    |    |    |    |    |    |  |  |  |
| 7 6 5 4 3 2 1 0 |               |    |    |    |    |    |    |  |  |  |
|                 | ISPADR[7:0]   |    |    |    |    |    |    |  |  |  |

| Bits   | Description |                                                                                                                                                                          |
|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:0] | ISPADR      | ISP Address The NuMicro® NUC131 series has a maximum of 17Kx32 (68 KB) embedded Flash, which supports word program only. ISPADR[1:0] must be kept 00b for ISP operation. |



# ISP Data Register (ISPDAT)

| Register | Offset      | R/W | Description       | Reset Value |
|----------|-------------|-----|-------------------|-------------|
| ISPDAT   | FMC_BA+0x08 | R/W | ISP Data Register | 0x0000_0000 |

| 31              | 30            | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |  |
|-----------------|---------------|----|----|----|----|----|----|--|--|--|--|
|                 | ISPDAT[31:24] |    |    |    |    |    |    |  |  |  |  |
| 23              | 22            | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |  |
|                 | ISPDAT[23:16] |    |    |    |    |    |    |  |  |  |  |
| 15              | 14            | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |  |
|                 | ISPDAT[15:8]  |    |    |    |    |    |    |  |  |  |  |
| 7 6 5 4 3 2 1 0 |               |    |    |    |    |    |    |  |  |  |  |
|                 | ISPDAT[7:0]   |    |    |    |    |    |    |  |  |  |  |

| Bits   | Description |                                                                                                                           |  |  |  |  |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:0] | ISPDAT      | ISP Data Write data to this register before ISP program operation. Read data from this register after ISP read operation. |  |  |  |  |

# **ISP Command Register (ISPCMD)**

| Register | Offset      | R/W | Description          | Reset Value |
|----------|-------------|-----|----------------------|-------------|
| ISPCMD   | FMC_BA+0x0C | R/W | ISP Command Register | 0x0000_0000 |

| 31              | 30              | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|-----------------|-----------------|----|----|----|----|----|----|--|--|--|
| Reserved        |                 |    |    |    |    |    |    |  |  |  |
| 23              | 22              | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|                 | Reserved        |    |    |    |    |    |    |  |  |  |
| 15              | 14              | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|                 | Reserved        |    |    |    |    |    |    |  |  |  |
| 7               | 7 6 5 4 3 2 1 0 |    |    |    |    |    |    |  |  |  |
| Reserved ISPCMD |                 |    |    |    |    |    |    |  |  |  |

| Bits   | Description |                                                                                                                                                                                          |  |  |  |
|--------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:6] | Reserved    | Reserved.                                                                                                                                                                                |  |  |  |
| [5:0]  | ISPCMD      | ISP Command ISP command table is shown below:  0x00 = Read.  0x04 = Read Unique ID.  0x0B = Read Company ID (0xDA).  0x21 = Program.  0x22 = Page Erase.  0x2E = Set Vector Page Re-Map. |  |  |  |



# ISP Trigger Control Register (ISPTRG)

| Register | Offset      | R/W | Description                  | Reset Value |
|----------|-------------|-----|------------------------------|-------------|
| ISPTRG   | FMC_BA+0x10 | R/W | ISP Trigger Control Register | 0x0000_0000 |

| 31       | 30            | 29 | 28             | 27 | 26 | 25 | 24    |  |  |
|----------|---------------|----|----------------|----|----|----|-------|--|--|
| Reserved |               |    |                |    |    |    |       |  |  |
| 23       | 22            | 21 | 21 20 19 18 17 |    |    |    | 16    |  |  |
| Reserved |               |    |                |    |    |    |       |  |  |
| 15       | 14            | 13 | 12             | 11 | 9  | 8  |       |  |  |
| Reserved |               |    |                |    |    |    |       |  |  |
| 7        | 7 6 5 4 3 2 1 |    |                |    |    |    |       |  |  |
| Reserved |               |    |                |    |    |    | ISPGO |  |  |

| Bits   | Description |                                                                                                                                                                                                                 |  |  |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:1] | Reserved    | Reserved.                                                                                                                                                                                                       |  |  |
|        |             | ISP Start Trigger (Write Protect)                                                                                                                                                                               |  |  |
|        |             | Write 1 to start ISP operation and this bit will be cleared to 0 by hardware automatically when ISP operation is finished.                                                                                      |  |  |
| [0]    | ISPGO       | 0 = ISP operation finished.                                                                                                                                                                                     |  |  |
| [0]    | 10.00       | 1 = ISP is in progress.                                                                                                                                                                                         |  |  |
|        |             | This bit is the protected bit, It means programming this bit needs to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Refer to the register REGWRPROT at address GCR_BA+0x100. |  |  |



# **Data Flash Base Address Register (DFBADR)**

| Register | Offset      | R/W | Description             | Reset Value |
|----------|-------------|-----|-------------------------|-------------|
| DFBADR   | FMC_BA+0x14 | R   | Data Flash Base Address | 0x000X_XXXX |

| 31              | 30            | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |  |
|-----------------|---------------|----|----|----|----|----|----|--|--|--|--|
|                 | DFBADR[31:23] |    |    |    |    |    |    |  |  |  |  |
| 23              | 22            | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |  |
|                 | DFBADR[23:16] |    |    |    |    |    |    |  |  |  |  |
| 15              | 14            | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |  |
|                 | DFBADR[15:8]  |    |    |    |    |    |    |  |  |  |  |
| 7 6 5 4 3 2 1 0 |               |    |    |    |    |    |    |  |  |  |  |
|                 | DFBADR[7:0]   |    |    |    |    |    |    |  |  |  |  |

| Bits   | Description |                                                                                                                                                                             |  |  |  |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|        |             | Data Flash Base Address                                                                                                                                                     |  |  |  |
|        | DFBADR      | This register indicates Data Flash start address. It is read only.                                                                                                          |  |  |  |
| [31:0] |             | When DFVSEN is set to 0, the data flash is shared with APROM. The data flash size is defined by user configuration and the content of this register is loaded from Config1. |  |  |  |
|        |             | When DFVSEN is set to 1, the data flash size is fixed as 4K and the start address can be read from this register is fixed at 0x0001_F000.                                   |  |  |  |



# Flash Access Time Control Register (FATCON)

| Register | Offset      | R/W | Description                        | Reset Value |
|----------|-------------|-----|------------------------------------|-------------|
| FATCON   | FMC_BA+0x18 | R/W | Flash Access Time Control Register | 0x0000_0000 |

| 31              | 30       | 29       | 28      | 27       | 26 | 25 | 24 |  |  |  |  |
|-----------------|----------|----------|---------|----------|----|----|----|--|--|--|--|
|                 | Reserved |          |         |          |    |    |    |  |  |  |  |
| 23              | 22       | 21       | 20      | 19       | 18 | 17 | 16 |  |  |  |  |
|                 | Reserved |          |         |          |    |    |    |  |  |  |  |
| 15              | 14       | 13       | 12      | 11       | 10 | 9  | 8  |  |  |  |  |
|                 | Reserved |          |         |          |    |    |    |  |  |  |  |
| 7 6 5 4 3 2 1 0 |          |          |         |          |    |    | 0  |  |  |  |  |
| Reserved        | FOMSEL1  | Reserved | FOMSEL0 | Reserved |    |    |    |  |  |  |  |

| Bits   | Description |                                                                                                                                         |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| [31:7] | Reserved    | Reserved.                                                                                                                               |
| [6]    | FOMSEL1     | Chip Frequency Optimization Mode Select1 (Write-protection Bit)                                                                         |
| [5]    | Reserved    | Reserved.                                                                                                                               |
|        |             | Chip Frequency Optimization Mode Select 0 (Write-Protection Bit)                                                                        |
|        |             | When CPU frequency is lower than 25 MHz, user can modify flash access delay cycle by FOMSEL1 and FOMSEL0 to improve system performance. |
|        |             | 00 = CPU runs up to 50MHz with zero wait cycle for continuous address read access.                                                      |
| [4]    | FOMSEL0     | 01 = CPU runs up to 25MHz with zero wait cycle for random address read access.                                                          |
|        |             | 10 = Reserved.                                                                                                                          |
|        |             | 11 = Reserved.                                                                                                                          |
|        |             | Where 00 means FOMSEL1 = 0, FOMSEL0 = 0; 01 means FOMSEL1 = 0, FOMSEL0 = 1 and etc.                                                     |
| [3:0]  | Reserved    | Reserved.                                                                                                                               |

# **ISP Status Register (ISPSTA)**

| Register | Offset      | R/W | Description         | Reset Value |
|----------|-------------|-----|---------------------|-------------|
| ISPSTA   | FMC_BA+0x40 | R/W | ISP Status Register | 0x0000_0000 |

| 31       | 30       | 29 | 28          | 27           | 26 | 25 | 24       |  |  |
|----------|----------|----|-------------|--------------|----|----|----------|--|--|
|          | Reserved |    |             |              |    |    |          |  |  |
| 23       | 22       | 21 | 20          | 19           | 18 | 17 | 16       |  |  |
|          | Reserved |    |             | VECMAP[11:7] |    |    |          |  |  |
| 15       | 14       | 13 | 12          | 11           | 10 | 9  | 8        |  |  |
|          |          |    | VECMAP[6:0] |              |    |    | Reserved |  |  |
| 7        | 6        | 5  | 4           | 3            | 2  | 1  | 0        |  |  |
| Reserved | ISPFF    |    | Reserved    |              |    | 38 | ISPGO    |  |  |

| Bits    | Description |                                                                                                                                |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------|
| [31:21] | Reserved    | Reserved.                                                                                                                      |
|         |             | Vector Page Mapping Address (Read Only)                                                                                        |
| [20:9]  | VECMAP      | The current flash address space 0x0000_0000~0x0000_01FF is mapping to address {VECMAP[11:0], 9'h000} ~ {VECMAP[11:0], 9'h1FF}. |
| [8:7]   | Reserved    | Reserved.                                                                                                                      |
|         |             | ISP Fail Flag (Write-Protection Bit)                                                                                           |
|         |             | This bit is set by hardware when a triggered ISP meets any of the following conditions:                                        |
|         |             | (1) APROM writes to itself                                                                                                     |
| [6]     | ISPFF       | (2) LDROM writes to itself                                                                                                     |
| [6]     | ISFFF       | (3) CONFIG is erased/programmed if CFGUEN is set to 0                                                                          |
|         |             | (4) Destination address is illegal, such as over an available range                                                            |
|         |             | Write 1 to clear this bit.                                                                                                     |
|         |             | Note: The function of this bit is the same as ISPCON bit6.                                                                     |
| [5:3]   | Reserved    | Reserved.                                                                                                                      |
| ro 41   | 000         | Chip Boot Selection (Read Only)                                                                                                |
| [2:1]   | CBS         | This is a mirror of CBS in CONFIG0.                                                                                            |
|         |             | ISP Start Trigger (Read Only)                                                                                                  |
|         |             | Write 1 to start ISP operation and this bit will be cleared to 0 by hardware automatically when ISP operation is finished.     |
| [0]     | ISPGO       | 0 = ISP operation finished.                                                                                                    |
|         |             | 1 = ISP operation progressed.                                                                                                  |
|         |             | Note: This bit is the same as ISPTRG bit0.                                                                                     |



### 6.5 General Purpose I/O (GPIO)

#### 6.5.1 Overview

The NuMicro® NUC131 series has up to 56 General Purpose I/O pins to be shared with other function pins depending on the chip configuration. These 56 pins are arranged in 6 ports named as GPIOA, GPIOB, GPIOC, GPIOD, GPIOE and GPIOF. The GPIOA/B port has the maximum of 16 pins. The GPIOC port has the maximum of 12 pins. The GPIOD port has the maximum of 4 pins. The GPIOE port has the maximum of 1 pin. The GPIOF port has the maximum of 7 pins. Each of the 56 pins is independent and has the corresponding register bits to control the pin mode function and data.

The I/O type of each of I/O pins can be configured by software individually as input, output, open-drain or Quasi-bidirectional mode. After reset, the I/O mode of all pins are depending on Config0[10] setting. In Quasi-bidirectional mode, I/O pin has a very weak individual pull-up resistor which is about 110~300  $K\Omega$  for  $V_{DD}$  from 5.0 V to 2.5 V.

#### 6.5.2 Features

- Four I/O modes:
  - Quasi-bidirectional
  - Push-Pull output
  - Open-Drain output
  - Input only with high impendence
- TTL/Schmitt trigger input selectable by GPx\_TYPE[15:0] in GPx\_MFP[31:16]
- I/O pin configured as interrupt source with edge/level setting
- Configurable default I/O mode of all pins after reset by Config0[10] setting
  - If Config[10] is 0, all GPIO pins in input tri-state mode after chip reset
  - If Config[10] is 1, all GPIO pins in Quasi-bidirectional mode after chip reset
- I/O pin internal pull-up resistor enabled only in Quasi-bidirectional I/O mode
- Enabling the pin interrupt function will also enable the pin wake-up function

#### 6.5.3 Basic Configuration

The GPIO pin functions are configured in GPA\_MFP, GPB\_MFP, GPC\_MFP, GPD\_MFP, GPE\_MFP, GPF MFP, ALT MFP2, ALT MFP3, and ALT MFP4 registers.

#### 6.5.4 Functional Description

#### 6.5.4.1 Input Mode Explanation

Set GPIOx\_PMD (PMDn[1:0]) to 00b as the GPIOx port[n] pin is in Input mode and the I/O pin is in tristate (high impedance) without output drive capability. The GPIOx\_PIN value reflects the status of the corresponding port pins.

#### 6.5.4.2 Push-pull Output Mode Explanation

Set GPIOx\_PMD (PMDn[1:0]) to 01b as the GPIOx port[n] pin is in Push-pull Output mode and the I/O pin supports digital output function with source/sink current capability. The bit value in the corresponding bit [n] of GPIOx\_DOUT is driven on the pin.

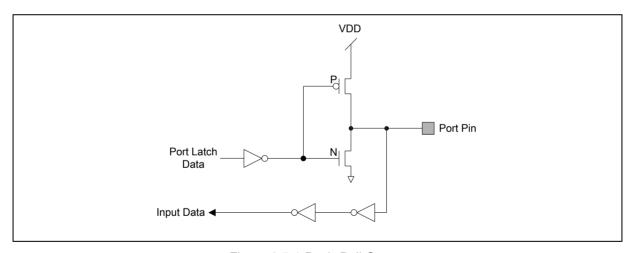



Figure 6.5-1 Push-Pull Output

#### 6.5.4.3 Open-drain Output Mode Explanation

Set GPIOx\_PMD (PMDn[1:0]) to 10b as the GPIOx port [n] pin is in Open-drain mode and the digital output function of I/O pin supports only sink current capability, an additional pull-up resistor is needed for driving high state. If the bit value in the corresponding bit [n] of GPIOx\_DOUT is 0, the pin drive a "low" output on the pin. If the bit value in the corresponding bit [n] of GPIOx\_DOUT is 1, the pin output drives high that is controlled by external pull-up resistor.

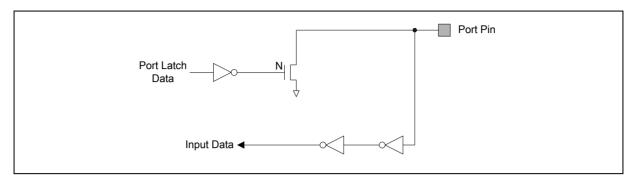



Figure 6.5-2 Open-Drain Output

#### 6.5.4.4 Quasi-bidirectional Mode Explanation

nuvoton

Set GPIOx\_PMD (PMDn[1:0]) to 11b as the GPIOx port [n] pin is in Quasi-bidirectional mode and the I/O pin supports digital output and input function at the same time but the source current is only up to hundreds of uA. Before the digital input function is performed the corresponding bit in GPIOx DOUT must be set to 1. The Quasi-bidirectional output is common on the 80C51 and most of its derivatives. If the bit value in the corresponding bit [n] of GPIOx DOUT is 0, the pin drive a "low" output on the pin. If the bit value in the corresponding bit [n] of GPIOx DOUT is 1, the pin will check the pin value. If pin value is high, no action takes. If pin state is low, then pin will drive strong high with 2 clock cycles on the pin and then disable the strong output drive and then the pin status is control by internal pull-up resistor. Note that the source current capability in Quasi-bidirectional mode is only about 200 uA to 30 uA for V<sub>DD</sub> form 5.0 V to 2.5 V.

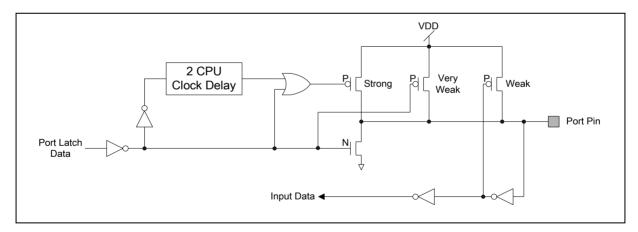



Figure 6.5-3 Quasi-bidirectional I/O Mode

#### 6.5.4.5 GPIO Interrupt and Wake-up Function

Each GPIO pin can be set as chip interrupt source by setting correlative GPIOx\_IEN bit and GPIOx IMD. There are four types of interrupt condition can be selected; low level trigger, high level trigger, falling edge trigger and rising edge trigger. For edge trigger condition, user can enable input signal de-bounce function to prevent unexpected interrupt happened which caused by noise. The debounce clock source and sampling cycle can be set through DEBOUNCE register.

The GPIO can also be the chip wake-up source when chip enters Idle mode or Power-down mode. The setting of wake-up trigger condition is the same as GPIO interrupt trigger, but there is one thing need to be noticed if using GPIO as chip wake-up source



#### To ensure the I/O status before enter into Power-down mode

When using toggle GPIO to wake-up system, user must make sure the I/O status before entering Idle mode or Power-down mode according to the relative wake-up settings.

For example, if configuring the wake-up event occurred by I/O rising edge/high level trigger, user must make sure the I/O status of specified pin is at low level before entering to Idle/Power-down mode; and if configure I/O falling edge/low level trigger to trigger a wake-up event, user must make sure the I/O status of specified pin is at high level before entering to Power-down mode.



# 6.5.5 Register Map

R: read only, W: write only, R/W: both read and write

| Register        | Offset        | R/W | Description                                        | Reset Value |
|-----------------|---------------|-----|----------------------------------------------------|-------------|
| GPIO Base Addre |               |     |                                                    |             |
| GPIOA_PMD       | GPIO_BA+0x000 | R/W | GPIO Port A Pin I/O Mode Control                   | 0xXXXX_XXXX |
| GPIOA_OFFD      | GPIO_BA+0x004 | R/W | GPIO Port A Pin Digital Input Path Disable Control | 0x0000_0000 |
| GPIOA_DOUT      | GPIO_BA+0x008 | R/W | GPIO Port A Data Output Value                      | 0x0000_FFFF |
| GPIOA_DMASK     | GPIO_BA+0x00C | R/W | GPIO Port A Data Output Write Mask                 | 0x0000_0000 |
| GPIOA_PIN       | GPIO_BA+0x010 | R   | GPIO Port A Pin Value                              | 0x0000_XXXX |
| GPIOA_DBEN      | GPIO_BA+0x014 | R/W | GPIO Port A De-bounce Enable                       | 0x0000_0000 |
| GPIOA_IMD       | GPIO_BA+0x018 | R/W | GPIO Port A Interrupt Mode Control                 | 0x0000_0000 |
| GPIOA_IEN       | GPIO_BA+0x01C | R/W | GPIO Port A Interrupt Enable                       | 0x0000_0000 |
| GPIOA_ISRC      | GPIO_BA+0x020 | R/W | GPIO Port A Interrupt Source Flag                  | 0x0000_0000 |
| GPIOB_PMD       | GPIO_BA+0x040 | R/W | GPIO Port B Pin I/O Mode Control                   | 0xXXXX_XXXX |
| GPIOB_OFFD      | GPIO_BA+0x044 | R/W | GPIO Port B Pin Digital Input Path Disable Control | 0x0000_0000 |
| GPIOB_DOUT      | GPIO_BA+0x048 | R/W | GPIO Port B Data Output Value                      | 0x0000_FFFF |
| GPIOB_DMASK     | GPIO_BA+0x04C | R/W | GPIO Port B Data Output Write Mask                 | 0x0000_0000 |
| GPIOB_PIN       | GPIO_BA+0x050 | R   | GPIO Port B Pin Value                              | 0x0000_XXXX |
| GPIOB_DBEN      | GPIO_BA+0x054 | R/W | GPIO Port B De-bounce Enable                       | 0x0000_0000 |
| GPIOB_IMD       | GPIO_BA+0x058 | R/W | GPIO Port B Interrupt Mode Control                 | 0x0000_0000 |
| GPIOB_IEN       | GPIO_BA+0x05C | R/W | GPIO Port B Interrupt Enable                       | 0x0000_0000 |
| GPIOB_ISRC      | GPIO_BA+0x060 | R/W | GPIO Port B Interrupt Source Flag                  | 0x0000_0000 |
| GPIOC_PMD       | GPIO_BA+0x080 | R/W | GPIO Port C Pin I/O Mode Control                   | 0xX0XX_X0XX |
| GPIOC_OFFD      | GPIO_BA+0x084 | R/W | GPIO Port C Pin Digital Input Path Disable Control | 0x0000_0000 |
| GPIOC_DOUT      | GPIO_BA+0x088 | R/W | GPIO Port C Data Output Value                      | 0x0000_CFCF |
| GPIOC_DMASK     | GPIO_BA+0x08C | R/W | GPIO Port C Data Output Write Mask                 | 0x0000_0000 |
| GPIOC_PIN       | GPIO_BA+0x090 | R   | GPIO Port C Pin Value                              | 0x0000_XXXX |
| GPIOC_DBEN      | GPIO_BA+0x094 | R/W | GPIO Port C De-bounce Enable                       | 0x0000_0000 |
| GPIOC_IMD       | GPIO_BA+0x098 | R/W | GPIO Port C Interrupt Mode Control                 | 0x0000_0000 |

| Register    | Offset        | R/W | Description                                        | Reset Value |
|-------------|---------------|-----|----------------------------------------------------|-------------|
| GPIOC_IEN   | GPIO_BA+0x09C | R/W | GPIO Port C Interrupt Enable                       | 0x0000_0000 |
| GPIOC_ISRC  | GPIO_BA+0x0A0 | R/W | GPIO Port C Interrupt Source Flag                  | 0x0000_0000 |
| GPIOD_PMD   | GPIO_BA+0x0C0 | R/W | GPIO Port D Pin I/O Mode Control                   | 0xX000_X000 |
| GPIOD_OFFD  | GPIO_BA+0x0C4 | R/W | GPIO Port D Pin Digital Input Path Disable Control | 0x0000_0000 |
| GPIOD_DOUT  | GPIO_BA+0x0C8 | R/W | GPIO Port D Data Output Value                      | 0x0000_C0C0 |
| GPIOD_DMASK | GPIO_BA+0x0CC | R/W | GPIO Port D Data Output Write Mask                 | 0x0000_0000 |
| GPIOD_PIN   | GPIO_BA+0x0D0 | R   | GPIO Port D Pin Value                              | 0x0000_X0X0 |
| GPIOD_DBEN  | GPIO_BA+0x0D4 | R/W | GPIO Port D De-bounce Enable                       | 0x0000_0000 |
| GPIOD_IMD   | GPIO_BA+0x0D8 | R/W | GPIO Port D Interrupt Mode Control                 | 0x0000_0000 |
| GPIOD_IEN   | GPIO_BA+0x0DC | R/W | GPIO Port D Interrupt Enable                       | 0x0000_0000 |
| GPIOD_ISRC  | GPIO_BA+0x0E0 | R/W | GPIO Port D Interrupt Source Flag                  | 0x0000_0000 |
| GPIOE_PMD   | GPIO_BA+0x100 | R/W | GPIO Port E Pin I/O Mode Control                   | 0x0000_0X00 |
| GPIOE_OFFD  | GPIO_BA+0x104 | R/W | GPIO Port E Pin Digital Input Path Disable Control | 0x0000_0000 |
| GPIOE_DOUT  | GPIO_BA+0x108 | R/W | GPIO Port E Data Output Value                      | 0x0000_0020 |
| GPIOE_DMASK | GPIO_BA+0x10C | R/W | GPIO Port E Data Output Write Mask                 | 0x0000_0000 |
| GPIOE_PIN   | GPIO_BA+0x110 | R   | GPIO Port E Pin Value                              | 0x0000_00X0 |
| GPIOE_DBEN  | GPIO_BA+0x114 | R/W | GPIO Port E De-bounce Enable                       | 0x0000_0000 |
| GPIOE_IMD   | GPIO_BA+0x118 | R/W | GPIO Port E Interrupt Mode Control                 | 0x0000_0000 |
| GPIOE_IEN   | GPIO_BA+0x11C | R/W | GPIO Port E Interrupt Enable                       | 0x0000_0000 |
| GPIOE_ISRC  | GPIO_BA+0x120 | R/W | GPIO Port E Interrupt Source Flag                  | 0x0000_0000 |
| GPIOF_PMD   | GPIO_BA+0x140 | R/W | GPIO Port F Pin I/O Mode Control                   | 0x000X_XX0X |
| GPIOF_OFFD  | GPIO_BA+0x144 | R/W | GPIO Port F Pin Digital Input Path Disable Control | 0x0000_0000 |
| GPIOF_DOUT  | GPIO_BA+0x148 | R/W | GPIO Port F Data Output Value                      | 0x0000_01F3 |
| GPIOF_DMASK | GPIO_BA+0x14C | R/W | GPIO Port F Data Output Write Mask                 | 0x0000_0000 |
| GPIOF_PIN   | GPIO_BA+0x150 | R   | GPIO Port F Pin Value                              | 0x0000_0XXX |
| GPIOF_DBEN  | GPIO_BA+0x154 | R/W | GPIO Port F De-bounce Enable                       | 0x0000_0000 |
| GPIOF_IMD   | GPIO_BA+0x158 | R/W | GPIO Port F Interrupt Mode Control                 | 0x0000_0000 |
| GPIOF_IEN   | GPIO_BA+0x15C | R/W | GPIO Port F Interrupt Enable                       | 0x0000_0000 |
| GPIOF_ISRC  | GPIO_BA+0x160 | R/W | GPIO Port F Interrupt Source Flag                  | 0x0000_0000 |



| Register                           | Offset                      | R/W | Description                          | Reset Value |
|------------------------------------|-----------------------------|-----|--------------------------------------|-------------|
| DBNCECON                           | GPIO_BA+0x180               | R/W | External Interrupt De-bounce Control | 0x0000_0020 |
| PAn_PDIO<br>n=0,115                | GPIO_BA+0x200<br>+ 0x04 * n | R/W | GPIO PA.n Pin Data Input/Output      | 0x0000_000X |
| PBn_PDIO<br>n=0,115                | GPIO_BA+0x240<br>+ 0x04 * n | R/W | GPIO PB.n Pin Data Input/Output      | 0x0000_000X |
| PCn_PDIO<br>n=0~3, 6~11, 14,<br>15 | GPIO_BA+0x280<br>+ 0x04 * n | R/W | GPIO PC.n Pin Data Input/Output      | 0x0000_000X |
| PDn_PDIO<br>n=6, 7, 14, 15         | GPIO_BA+0x2C0<br>+ 0x04 * n | R/W | GPIO PD.n Pin Data Input/Output      | 0x0000_000X |
| PEn_PDIO<br>n=5                    | GPIO_BA+0x300<br>+ 0x04 * n | R/W | GPIO PE.n Pin Data Input/Output      | 0x0000_000X |
| PFn_PDIO<br>n=0,1, 4, 8            | GPIO_BA+0x340<br>+ 0x04 * n | R/W | GPIO PF.n Pin Data Input/Output      | 0x0000_000X |

# 6.5.6 Register Description

nuvoTon

# GPIO Port [A/B/C/D/E/F] Pin I/O Mode Control (GPIOx\_PMD)

| Register  | Offset        | R/W | Description                      | Reset Value |
|-----------|---------------|-----|----------------------------------|-------------|
| GPIOA_PMD | GPIO_BA+0x000 | R/W | GPIO Port A Pin I/O Mode Control | 0xXXXX_XXXX |
| GPIOB_PMD | GPIO_BA+0x040 | R/W | GPIO Port B Pin I/O Mode Control | 0xXXXX_XXXX |
| GPIOC_PMD | GPIO_BA+0x080 | R/W | GPIO Port C Pin I/O Mode Control | 0xX0XX_X0XX |
| GPIOD_PMD | GPIO_BA+0x0C0 | R/W | GPIO Port D Pin I/O Mode Control | 0xX000_X000 |
| GPIOE_PMD | GPIO_BA+0x100 | R/W | GPIO Port E Pin I/O Mode Control | 0x0000_0X00 |
| GPIOF_PMD | GPIO_BA+0x140 | R/W | GPIO Port F Pin I/O Mode Control | 0x000X_XX0X |

| 31        | 30       | 29 | 28    | 27   | 26    | 25   | 24    |  |
|-----------|----------|----|-------|------|-------|------|-------|--|
| PM        | PMD15    |    | PMD14 |      | PMD13 |      | PMD12 |  |
| 23        | 22       | 21 | 20    | 19   | 18    | 17   | 16    |  |
| PM        | PMD11 PN |    | D10   | PMD9 |       | PMD8 |       |  |
| 15        | 14       | 13 | 12    | 11   | 10    | 9    | 8     |  |
| PM        | D7       | PM | D6    | PMD5 |       | PMD4 |       |  |
| 7         | 6        | 5  | 4     | 3    | 2     | 1    | 0     |  |
| PMD3 PMD2 |          | D2 | PMD1  |      | PMD0  |      |       |  |

| Bits                 | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [2n+1:2n]<br>n=0,115 | PMDn        | GPIOx I/O Pin[N] Mode Control  Determine each I/O mode of GPIOx pins.  00 = GPIO port [n] pin is in Input mode.  01 = GPIO port [n] pin is in Push-pull Output mode.  10 = GPIO port [n] pin is in Open-drain Output mode.  11 = GPIO port [n] pin is in Quasi-bidirectional mode.  Note1:  n = 0~15 for GPIOA/GPIOB;  n = 0~3, 6~11, 14, 15 for GPIOC;  n = 6, 7, 14, 15 for GPIOD;  n = 5 for GPIOE;  n = 0, 1, 4~8 for GPIOF.  Note2:  The initial value of this field is defined by CIOINI (CONFIG0[10]). If CIOINI is set to 1, the default value is 0xFFFF_FFFF and all pins will be Quasi-bidirectional mode after chip is powered on. If CIOINI is cleared to 0, the default value is 0x0000_0000 and all pins will be input only mode after chip is powered on. |



### GPIO Port [A/B/C/D/E/F] Pin Digital Input Path Disable Register (GPIOx\_OFFD)

| Register   | Offset        | R/W | Description                                         | Reset Value |
|------------|---------------|-----|-----------------------------------------------------|-------------|
| GPIOA_OFFD | GPIO_BA+0x004 | R/W | GPIO Port A Pin Digital Input Path Disable Register | 0x0000_0000 |
| GPIOB_OFFD | GPIO_BA+0x044 | R/W | GPIO Port B Pin Digital Input Path Disable Register | 0x0000_0000 |
| GPIOC_OFFD | GPIO_BA+0x084 | R/W | GPIO Port C Pin Digital Input Path Disable Register | 0x0000_0000 |
| GPIOD_OFFD | GPIO_BA+0x0C4 | R/W | GPIO Port D Pin Digital Input Path Disable Register | 0x0000_0000 |
| GPIOE_OFFD | GPIO_BA+0x104 | R/W | GPIO Port E Pin Digital Input Path Disable Register | 0x0000_0000 |
| GPIOF_OFFD | GPIO_BA+0x144 | R/W | GPIO Port F Pin Digital Input Path Disable Register | 0x0000_0000 |

| 31 | 30              | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|----|-----------------|----|----|----|----|----|----|--|--|--|
|    | OFFD            |    |    |    |    |    |    |  |  |  |
| 23 | 22              | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|    |                 |    | OF | FD |    |    |    |  |  |  |
| 15 | 14              | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|    | Reserved        |    |    |    |    |    |    |  |  |  |
| 7  | 7 6 5 4 3 2 1 0 |    |    |    |    |    |    |  |  |  |
|    | Reserved        |    |    |    |    |    |    |  |  |  |

| Bits    | Description |                                                                                                                                                                                                       |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |             | GPIOx Pin[N] Digital Input Path Disable Control                                                                                                                                                       |
|         |             | Each of these bits is used to control if the digital input path of corresponding GPIO pin is disabled. If input is analog signal, users can disable GPIO digital input path to avoid current leakage. |
|         |             | 0 = I/O digital input path Enabled.                                                                                                                                                                   |
| [n+16]  | OFFD        | 1 = I/O digital input path Disabled (digital input tied to low).                                                                                                                                      |
| n=0,115 |             | Note:                                                                                                                                                                                                 |
| ,,,,,,, |             | n = 0~15 for GPIOA/GPIOB;                                                                                                                                                                             |
|         |             | n = 0~3, 6~11, 14, 15 for GPIOC;                                                                                                                                                                      |
|         |             | n = 6, 7, 14, 15 for GPIOD;                                                                                                                                                                           |
|         |             | n = 5 for GPIOE;                                                                                                                                                                                      |
|         |             | n = 0, 1, 4~8 for GPIOF.                                                                                                                                                                              |
| [15:0]  | Reserved    | Reserved.                                                                                                                                                                                             |



# GPIO Port [A/B/C/D/E/F] Data Output Value (GPIOx\_DOUT)

| Register   | Offset        | R/W | Description                   | Reset Value |
|------------|---------------|-----|-------------------------------|-------------|
| GPIOA_DOUT | GPIO_BA+0x008 | R/W | GPIO Port A Data Output Value | 0x0000_FFFF |
| GPIOB_DOUT | GPIO_BA+0x048 | R/W | GPIO Port B Data Output Value | 0x0000_FFFF |
| GPIOC_DOUT | GPIO_BA+0x088 | R/W | GPIO Port C Data Output Value | 0x0000_CFCF |
| GPIOD_DOUT | GPIO_BA+0x0C8 | R/W | GPIO Port D Data Output Value | 0x0000_C0C0 |
| GPIOE_DOUT | GPIO_BA+0x108 | R/W | GPIO Port E Data Output Value | 0x0000_0020 |
| GPIOF_DOUT | GPIO_BA+0x148 | R/W | GPIO Port F Data Output Value | 0x0000_01F3 |

| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |
|----|----------|----|----|----|----|----|----|--|
|    | Reserved |    |    |    |    |    |    |  |
| 23 | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |
|    | Reserved |    |    |    |    |    |    |  |
| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |
|    | DOUT     |    |    |    |    |    |    |  |
| 7  | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |
|    | DOUT     |    |    |    |    |    |    |  |

| Bits      | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|-----------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:16]   | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
| [n]       |             | GPIOx Pin[N] Output Value  Each of these bits controls the status of a GPIO pin when the GPIO pin is configured as Push-pull output, open-drain output or quasi-bidirectional mode.  0 = GPIO port [A/B/C/D/E/F] Pin[n] will drive Low if the GPIO pin is configured as Push-pull output, Open-drain output or Quasi-bidirectional mode.  1 = GPIO port [A/B/C/D/E/F] Pin[n] will drive High if the GPIO pin is configured as Push-pull output or Quasi-bidirectional mode. |  |  |  |
| n = 0,115 |             | Note:<br>n = 0~15 for GPIOA/GPIOB;<br>n = 0~3, 6~11, 14, 15 for GPIOC;<br>n = 6, 7, 14, 15 for GPIOD;<br>n = 5 for GPIOE;<br>n = 0, 1, 4~8 for GPIOF.                                                                                                                                                                                                                                                                                                                       |  |  |  |



### GPIO Port [A/B/C/D/E/F] Data Output Write Mask (GPIOx \_DMASK)

| Register    | Offset        | R/W | Description                        | Reset Value |
|-------------|---------------|-----|------------------------------------|-------------|
| GPIOA_DMASK | GPIO_BA+0x00C | R/W | GPIO Port A Data Output Write Mask | 0x0000_0000 |
| GPIOB_DMASK | GPIO_BA+0x04C | R/W | GPIO Port B Data Output Write Mask | 0x0000_0000 |
| GPIOC_DMASK | GPIO_BA+0x08C | R/W | GPIO Port C Data Output Write Mask | 0x0000_0000 |
| GPIOD_DMASK | GPIO_BA+0x0CC | R/W | GPIO Port D Data Output Write Mask | 0x0000_0000 |
| GPIOE_DMASK | GPIO_BA+0x10C | R/W | GPIO Port E Data Output Write Mask | 0x0000_0000 |
| GPIOF_DMASK | GPIO_BA+0x14C | R/W | GPIO Port F Data Output Write Mask | 0x0000_0000 |

| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24 |
|----|----------|----|----|----|----|----|----|
|    | Reserved |    |    |    |    |    |    |
| 23 | 22       | 21 | 20 | 19 | 18 | 17 | 16 |
|    | Reserved |    |    |    |    |    |    |
| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8  |
|    | DMASK    |    |    |    |    |    |    |
| 7  | 6        | 5  | 4  | 3  | 2  | 1  | 0  |
|    | DMASK    |    |    |    |    |    |    |

| Bits             | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
|------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:16]          | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
| [n]<br>n = 0,115 | DMASK[n]    | Port [A/B/C/D/E/F] Data Output Write Mask  These bits are used to protect the corresponding register of GPIOx_DOUT[n] bit. When the DMASK[n] bit is set to 1, the corresponding GPIOx_DOUT[n] bit is protected. If the write signal is masked, write data to the protect bit is ignored.  0 = Corresponding GPIOx_DOUT[n] bit can be updated.  1 = Corresponding GPIOx_DOUT[n] bit protected.  Note1:  This function only protects the corresponding GPIOx_DOUT[n] bit, and will not protect the corresponding bit control register (PAn_PDIO, PBn_PDIO, PCn_PDIO, PDn_PDIO, PEn_PDIO and PFn_PDIO).  Note2:  n = 0~15 for GPIOA/GPIOB;  n = 0~3, 6~11, 14, 15 for GPIOC;  n = 6, 7, 14, 15 for GPIOD;  n = 5 for GPIOE;  n = 0, 1, 4~8 for GPIOF. |  |  |  |

# GPIO Port [A/B/C/D/E/F] Pin Value (GPIOx \_PIN)

| Register  | Offset        | R/W | Description           | Reset Value |
|-----------|---------------|-----|-----------------------|-------------|
| GPIOA_PIN | GPIO_BA+0x010 | R   | GPIO Port A Pin Value | 0x0000_XXXX |
| GPIOB_PIN | GPIO_BA+0x050 | R   | GPIO Port B Pin Value | 0x0000_XXXX |
| GPIOC_PIN | GPIO_BA+0x090 | R   | GPIO Port C Pin Value | 0x0000_XXXX |
| GPIOD_PIN | GPIO_BA+0x0D0 | R   | GPIO Port D Pin Value | 0x0000_X0X0 |
| GPIOE_PIN | GPIO_BA+0x110 | R   | GPIO Port E Pin Value | 0x0000_00X0 |
| GPIOF_PIN | GPIO_BA+0x150 | R   | GPIO Port F Pin Value | 0x0000_0XXX |

| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |
|----|----------|----|----|----|----|----|----|--|
|    | Reserved |    |    |    |    |    |    |  |
| 23 | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |
|    | Reserved |    |    |    |    |    |    |  |
| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |
|    | PIN      |    |    |    |    |    |    |  |
| 7  | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |
|    | PIN      |    |    |    |    |    |    |  |

| Bits      | Description |                                                                                                                                                                                 |  |  |  |
|-----------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:16]   | Reserved    | Reserved.                                                                                                                                                                       |  |  |  |
|           |             | Port [A/B/C/D/E/F] Pin Values                                                                                                                                                   |  |  |  |
|           |             | Each bit of the register reflects the actual status of the respective GPIO pin. If the bit is 1, it indicates the corresponding pin status is high, else the pin status is low. |  |  |  |
|           |             | Note:                                                                                                                                                                           |  |  |  |
| [n]       | PIN[n]      | n = 0~15 for GPIOA/GPIOB;                                                                                                                                                       |  |  |  |
| n = 0,115 |             | n = 0~3, 6~11, 14, 15 for GPIOC;                                                                                                                                                |  |  |  |
|           |             | n = 6, 7, 14, 15 for GPIOD;                                                                                                                                                     |  |  |  |
|           |             | n = 5 for GPIOE;                                                                                                                                                                |  |  |  |
|           |             | n = 0, 1, 4~8 for GPIOF.                                                                                                                                                        |  |  |  |



# GPIO Port [A/B/C/D/E/F] De-bounce Enable Register (GPIOx \_DBEN)

| Register   | Offset        | R/W | Description                           | Reset Value |
|------------|---------------|-----|---------------------------------------|-------------|
| GPIOA_DBEN | GPIO_BA+0x014 | R/W | GPIO Port A De-bounce Enable Register | 0x0000_0000 |
| GPIOB_DBEN | GPIO_BA+0x054 | R/W | GPIO Port B De-bounce Enable Register | 0x0000_0000 |
| GPIOC_DBEN | GPIO_BA+0x094 | R/W | GPIO Port C De-bounce Enable Register | 0x0000_0000 |
| GPIOD_DBEN | GPIO_BA+0x0D4 | R/W | GPIO Port D De-bounce Enable Register | 0x0000_0000 |
| GPIOE_DBEN | GPIO_BA+0x114 | R/W | GPIO Port E De-bounce Enable Register | 0x0000_0000 |
| GPIOF_DBEN | GPIO_BA+0x154 | R/W | GPIO Port F De-bounce Enable Register | 0x0000_0000 |

| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |
|----|----------|----|----|----|----|----|----|--|
|    | Reserved |    |    |    |    |    |    |  |
| 23 | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |
|    | Reserved |    |    |    |    |    |    |  |
| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |
|    | DBEN     |    |    |    |    |    |    |  |
| 7  | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |
|    | DBEN     |    |    |    |    |    |    |  |

| Bits                        | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|-----------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:16]                     | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
| [31:16]<br>[n]<br>n = 0,115 | DBEN[n]     | Reserved.  Port [A/B/C/D/E/F] Input Signal De-Bounce Enable Control  DBEN[n] is used to enable the de-bounce function for each corresponding bit. If the input signal pulse width cannot be sampled by continuous two de-bounce sample cycle, the input signal transition is seen as the signal bounce and will not trigger the interrupt. The de-bounce clock source is controlled by DBNCECON[4], one de-bounce sample cycle period is controlled by DBNCECON[3:0].  0 = Bit[n] de-bounce function Disabled.  1 = Bit[n] de-bounce function Enabled.  The de-bounce function is valid only for edge triggered interrupt. If the interrupt mode is level triggered, the de-bounce enable bit is ignored.  Note:  n = 0~15 for GPIOA/GPIOB; n = 0~3, 6~11, 14, 15 for GPIOC; n = 6, 7, 14, 15 for GPIOD; |  |  |  |
|                             |             | n = 5 for GPIOE;<br>$n = 0, 1, 4 \sim 8$ for GPIOF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |

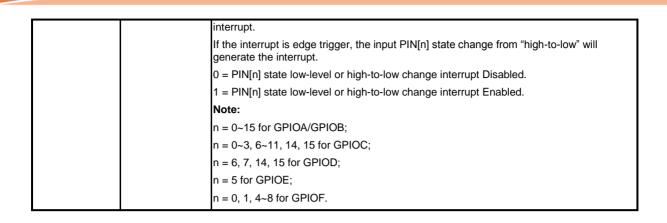
## GPIO Port [A/B/C/D/E/F] Interrupt Mode Control (GPIOx \_IMD)

| Register  | Offset        | R/W | Description                        | Reset Value |
|-----------|---------------|-----|------------------------------------|-------------|
| GPIOA_IMD | GPIO_BA+0x018 | R/W | GPIO Port A Interrupt Mode Control | 0x0000_0000 |
| GPIOB_IMD | GPIO_BA+0x058 | R/W | GPIO Port B Interrupt Mode Control | 0x0000_0000 |
| GPIOC_IMD | GPIO_BA+0x098 | R/W | GPIO Port C Interrupt Mode Control | 0x0000_0000 |
| GPIOD_IMD | GPIO_BA+0x0D8 | R/W | GPIO Port D Interrupt Mode Control | 0x0000_0000 |
| GPIOE_IMD | GPIO_BA+0x118 | R/W | GPIO Port E Interrupt Mode Control | 0x0000_0000 |
| GPIOF_IMD | GPIO_BA+0x158 | R/W | GPIO Port F Interrupt Mode Control | 0x0000_0000 |

| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |
|----|----------|----|----|----|----|----|----|--|
|    | Reserved |    |    |    |    |    |    |  |
| 23 | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |
|    | Reserved |    |    |    |    |    |    |  |
| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |
|    | IMD      |    |    |    |    |    |    |  |
| 7  | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |
|    | IMD      |    |    |    |    |    |    |  |

| Bits      | Description |                                                                                                                                                                                                                                                                                          |
|-----------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:16]   | Reserved    | Reserved.                                                                                                                                                                                                                                                                                |
|           |             | Port [A/B/C/D/E/F] Edge Or Level Detection Interrupt Control                                                                                                                                                                                                                             |
|           |             | IMD[n] is used to control the interrupt is by level trigger or by edge trigger. If the interrupt is by edge trigger, the trigger source can be controlled by de-bounce. If the interrupt is by level trigger, the input source is sampled by one HCLK clock and generates the interrupt. |
|           |             | 0 = Edge trigger interrupt.                                                                                                                                                                                                                                                              |
|           |             | 1 = Level trigger interrupt.                                                                                                                                                                                                                                                             |
| [n]       | IMPE-1      | If the pin is set as the level trigger interrupt, only one level can be set on the registers GPIOx_IEN. If both levels to trigger interrupt are set, the setting is ignored and no interrupt will occur.                                                                                 |
| n = 0,115 | IMD[n]      | The de-bounce function is valid only for edge triggered interrupt. If the interrupt mode is level triggered, the de-bounce enable bit is ignored.                                                                                                                                        |
|           |             | Note:                                                                                                                                                                                                                                                                                    |
|           |             | n = 0~15 for GPIOA/GPIOB;                                                                                                                                                                                                                                                                |
|           |             | n = 0~3, 6~11, 14, 15 for GPIOC;                                                                                                                                                                                                                                                         |
|           |             | n = 6, 7, 14, 15 for GPIOD;                                                                                                                                                                                                                                                              |
|           |             | n = 5 for GPIOE;                                                                                                                                                                                                                                                                         |
|           |             | n = 0, 1, 4~8  for GPIOF.                                                                                                                                                                                                                                                                |




# GPIO Port [A/B/C/D/E/F] Interrupt Enable Register (GPIOx \_IEN)

| Register  | Offset        | R/W | Description                           | Reset Value |
|-----------|---------------|-----|---------------------------------------|-------------|
| GPIOA_IEN | GPIO_BA+0x01C | R/W | GPIO Port A Interrupt Enable Register | 0x0000_0000 |
| GPIOB_IEN | GPIO_BA+0x05C | R/W | GPIO Port B Interrupt Enable Register | 0x0000_0000 |
| GPIOC_IEN | GPIO_BA+0x09C | R/W | GPIO Port C Interrupt Enable Register | 0x0000_0000 |
| GPIOD_IEN | GPIO_BA+0x0DC | R/W | GPIO Port D Interrupt Enable Register | 0x0000_0000 |
| GPIOE_IEN | GPIO_BA+0x11C | R/W | GPIO Port E Interrupt Enable Register | 0x0000_0000 |
| GPIOF_IEN | GPIO_BA+0x15C | R/W | GPIO Port F Interrupt Enable Register | 0x0000_0000 |

| 31 | 30    | 29 | 28 | 27 | 26 | 25 | 24 |  |
|----|-------|----|----|----|----|----|----|--|
|    | IR_EN |    |    |    |    |    |    |  |
| 23 | 22    | 21 | 20 | 19 | 18 | 17 | 16 |  |
|    | IR_EN |    |    |    |    |    |    |  |
| 15 | 14    | 13 | 12 | 11 | 10 | 9  | 8  |  |
|    | IF_EN |    |    |    |    |    |    |  |
| 7  | 6     | 5  | 4  | 3  | 2  | 1  | 0  |  |
|    | IF_EN |    |    |    |    |    |    |  |

| Bits                | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [n+16]<br>n = 0,115 | IR_EN[n]    | Port [A/B/C/D/E/F] Interrupt Enabled By Input Rising Edge Or Input Level High IR_EN[n] used to enable the interrupt for each of the corresponding input GPIO_PIN[n]. Set bit to 1 also enable the pin wake-up function.  When setting the IR_EN[n] bit to 1: If the interrupt is level trigger, the input PIN[n] state at level "high" will generate the interrupt.  If the interrupt is edge trigger, the input PIN[n] state change from "low-to-high" will generate the interrupt.  0 = PIN[n] level-high or low-to-high interrupt Disabled.  1 = PIN[n] level-high or low-to-high interrupt Enabled.  Note:  n = 0~15 for GPIOA/GPIOB;  n = 0~3, 6~11, 14, 15 for GPIOC;  n = 6, 7, 14, 15 for GPIOD;  n = 5 for GPIOE;  n = 0, 1, 4~8 for GPIOF. |
| [n]<br>n = 0,115    | IF_EN[n]    | Port [A/B/C/D/E/F] Interrupt Enabled By Input Falling Edge Or Input Level Low  IF_EN[n] is used to enable the interrupt for each of the corresponding input GPIO_PIN[n]. Set bit to 1 also enable the pin wake-up function.  When setting the IF_EN[n] bit to 1:  If the interrupt is level trigger, the input PIN[n] state at level "low" will generate the                                                                                                                                                                                                                                                                                                                                                                                         |

nuvoton





## GPIO Port [A/B/C/D/E/F] Interrupt Source Flag (GPIOx \_ISRC)

| Register   | Offset        | R/W | Description                       | Reset Value |
|------------|---------------|-----|-----------------------------------|-------------|
| GPIOA_ISRC | GPIO_BA+0x020 | R/W | GPIO Port A Interrupt Source Flag | 0x0000_0000 |
| GPIOB_ISRC | GPIO_BA+0x060 | R/W | GPIO Port B Interrupt Source Flag | 0x0000_0000 |
| GPIOC_ISRC | GPIO_BA+0x0A0 | R/W | GPIO Port C Interrupt Source Flag | 0x0000_0000 |
| GPIOD_ISRC | GPIO_BA+0x0E0 | R/W | GPIO Port D Interrupt Source Flag | 0x0000_0000 |
| GPIOE_ISRC | GPIO_BA+0x120 | R/W | GPIO Port E Interrupt Source Flag | 0x0000_0000 |
| GPIOF_ISRC | GPIO_BA+0x160 | R/W | GPIO Port F Interrupt Source Flag | 0x0000_0000 |

| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |
|----|----------|----|----|----|----|----|----|--|
|    | Reserved |    |    |    |    |    |    |  |
| 23 | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |
|    | Reserved |    |    |    |    |    |    |  |
| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |
|    | ISRC     |    |    |    |    |    |    |  |
| 7  | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |
|    | ISRC     |    |    |    |    |    |    |  |

| Bits             | Description |                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:16]          | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                               |  |  |  |
| [n]<br>n = 0,115 | ISRC[n]     | Port [A/B/C/D/E/F] Interrupt Source Flag  Read:  0 = No interrupt at GPIOx[n].  1 = GPIOx[n] generates an interrupt.  Write:  0= No action.  1= Clear the corresponding pending interrupt.  Note:  n = 0~15 for GPIOA/GPIOB;  n = 0~3, 6~11, 14, 15 for GPIOC;  n = 6, 7, 14, 15 for GPIOD;  n = 5 for GPIOE;  n = 0, 1, 4~8 for GPIOF. |  |  |  |



# **Interrupt De-bounce Cycle Control (DBNCECON)**

| Register | Offset        | R/W | Description                          | Reset Value |
|----------|---------------|-----|--------------------------------------|-------------|
| DBNCECON | GPIO_BA+0x180 | R/W | External Interrupt De-bounce Control | 0x0000_0020 |

| 31                                 | 30       | 29 | 28   | 27    | 26 | 25 | 24 |  |
|------------------------------------|----------|----|------|-------|----|----|----|--|
|                                    | Reserved |    |      |       |    |    |    |  |
| 23                                 | 22       | 21 | 20   | 19    | 18 | 17 | 16 |  |
|                                    |          |    | Rese | erved |    |    |    |  |
| 15                                 | 14       | 13 | 12   | 11    | 10 | 9  | 8  |  |
|                                    | Reserved |    |      |       |    |    |    |  |
| 7                                  | 6        | 5  | 4    | 3     | 2  | 1  | 0  |  |
| Reserved ICLK_ON DBCLKSRC DBCLKSEL |          |    |      |       |    |    |    |  |

| Bits  | Description | escription                                                                                                                                                                                                                                                                                   |                                              |  |  |  |  |
|-------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|--|--|--|
| [5]   | ICLK_ON     | Interrupt Clock On Mode  0 = Edge detection circuit is active only if I/O pin corresponding GPIOx_IEN bit is set to 1.  1 = All I/O pins edge detection circuit is always active after reset.  It is recommended to disable this bit to save system power if no special application concern. |                                              |  |  |  |  |
| [4]   | DBCLKSRC    | De-Bounce Counter Clock Source Selection  0 = De-bounce counter clock source is the HCLK.  1 = De-bounce counter clock source is the internal 10 kHz low speed oscillator.                                                                                                                   |                                              |  |  |  |  |
|       |             | De-Bounce Sam                                                                                                                                                                                                                                                                                | pling Cycle Selection                        |  |  |  |  |
|       |             | DBCLKSEL                                                                                                                                                                                                                                                                                     | Description                                  |  |  |  |  |
|       |             | 0                                                                                                                                                                                                                                                                                            | Sample interrupt input once per 1 clock      |  |  |  |  |
|       |             | 1                                                                                                                                                                                                                                                                                            | Sample interrupt input once per 2 clocks     |  |  |  |  |
|       |             | 2                                                                                                                                                                                                                                                                                            | Sample interrupt input once per 4 clocks     |  |  |  |  |
|       |             | 3                                                                                                                                                                                                                                                                                            | Sample interrupt input once per 8 clocks     |  |  |  |  |
| ro a) | DD01 1/051  | 4                                                                                                                                                                                                                                                                                            | Sample interrupt input once per 16 clocks    |  |  |  |  |
| [3:0] | DBCLKSEL    | 5                                                                                                                                                                                                                                                                                            | Sample interrupt input once per 32 clocks    |  |  |  |  |
|       |             | 6                                                                                                                                                                                                                                                                                            | Sample interrupt input once per 64 clocks    |  |  |  |  |
|       |             | 7                                                                                                                                                                                                                                                                                            | Sample interrupt input once per 128 clocks   |  |  |  |  |
|       |             | 8                                                                                                                                                                                                                                                                                            | Sample interrupt input once per 256 clocks   |  |  |  |  |
|       |             | 9                                                                                                                                                                                                                                                                                            | Sample interrupt input once per 2*256 clocks |  |  |  |  |
|       |             | 10                                                                                                                                                                                                                                                                                           | Sample interrupt input once per 4*256 clocks |  |  |  |  |
|       |             | 11                                                                                                                                                                                                                                                                                           | Sample interrupt input once per 8*256 clocks |  |  |  |  |



| 12 | Sample interrupt input once per 16*256 clocks  |
|----|------------------------------------------------|
| 13 | Sample interrupt input once per 32*256 clocks  |
| 14 | Sample interrupt input once per 64*256 clocks  |
| 15 | Sample interrupt input once per 128*256 clocks |

# **GPIO Px.n Pin Data Input/Output (Pxn\_PDIO)**

| Register                             | Offset                      | R/W | Description                     | Reset Value |
|--------------------------------------|-----------------------------|-----|---------------------------------|-------------|
| PAn_PDIO<br>n = 0,115                | GPIO_BA+0x200<br>+ 0x04 * n | R/W | GPIO PA.n Pin Data Input/Output | 0x0000_000X |
| PBn_PDIO<br>n = 0,115                | GPIO_BA+0x240<br>+ 0x04 * n | R/W | GPIO PB.n Pin Data Input/Output | 0x0000_000X |
| PCn_PDIO<br>n = 0~3, 6~11,<br>14, 15 | GPIO_BA+0x280<br>+ 0x04 * n | R/W | GPIO PC.n Pin Data Input/Output | 0x0000_000X |
| PDn_PDIO<br>n = 6, 7, 14, 15         | GPIO_BA+0x2C0<br>+ 0x04 * n | R/W | GPIO PD.n Pin Data Input/Output | 0x0000_000X |
| PEn_PDIO<br>n = 5                    | GPIO_BA+0x300<br>+ 0x04 * n | R/W | GPIO PE.n Pin Data Input/Output | 0x0000_000X |
| PFn_PDIO<br>n = 0, 1, 4~8            | GPIO_BA+0x340<br>+ 0x04 * n | R/W | GPIO PF.n Pin Data Input/Output | 0x0000_000X |

**Note:** x = A/B/C/D/E/F

| 31       | 30       | 29 | 28   | 27    | 26 | 25       | 24 |  |
|----------|----------|----|------|-------|----|----------|----|--|
|          | Reserved |    |      |       |    |          |    |  |
| 23       | 22       | 21 | 20   | 19    | 18 | 17       | 16 |  |
|          |          |    | Rese | erved |    |          |    |  |
| 15       | 14       | 13 | 12   | 11    | 10 | 9        | 8  |  |
|          | Reserved |    |      |       |    |          |    |  |
| 7        | 6        | 5  | 4    | 3     | 2  | 1        | 0  |  |
| Reserved |          |    |      |       |    | Pxn_PDIO |    |  |

| Bits         | escription |                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|--------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [O] <b>F</b> | Pxn_PDIO   | GPIO Px.N Pin Data Input/Output  Write this bit can control one GPIO pin output value.  0 = Corresponding GPIO pin set to low.  1 = Corresponding GPIO pin set to high.  Read this register to get GPIO pin status.  For example: writing PAO_PDIO will reflect the written value to bit GPIOA_DOUT[0], read PAO_PDIO will return the value of GPIOA_PIN[0].  Note: The write operation will not be affected by register GPIOx_DMASK. |  |



## 6.6 Timer Controller (TIMER)

#### 6.6.1 Overview

The timer controller includes four 32-bit timers, TIMER0 ~ TIMER3, allowing user to easily implement a timer control for applications. The timer can perform functions, such as frequency measurement, delay timing, clock generation, and event counting by external input pins, and interval measurement by external capture pins.

### 6.6.2 Features

- Four sets of 32-bit timers with 24-bit up counter and one 8-bit prescale counter
- Independent clock source for each timer
- Provides four timer counting modes: one-shot, periodic, toggle and continuous counting
- Time-out period = (Period of timer clock input) \* (8-bit prescale counter + 1) \* (24-bit TCMP)
- Maximum counting cycle time = (1 / T MHz) \* (2<sup>8</sup>) \* (2<sup>24</sup>), T is the period of timer clock
- 24-bit up counter value is readable through TDR (Timer Data Register)
- Supports event counting function to count the event from external counter pin (TM0~TM3)
- Supports external pin capture (TM0\_EXT~TM3\_EXT) for interval measurement
- Supports external pin capture (TM0 EXT~TM3 EXT) for reset 24-bit up counter
- Supports chip wake-up from Idle/Power-down mode if a timer interrupt signal is generated

### 6.6.3 Block Diagram

The Timer Controller block diagram and clock control are shown in Figure 6.6-1 and Figure 6.6-2.

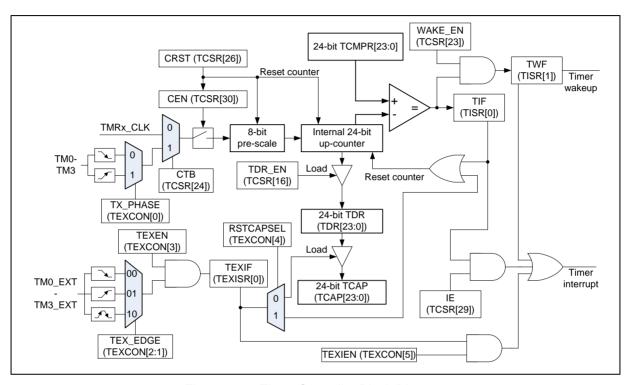



Figure 6.6-1 Timer Controller Block Diagram

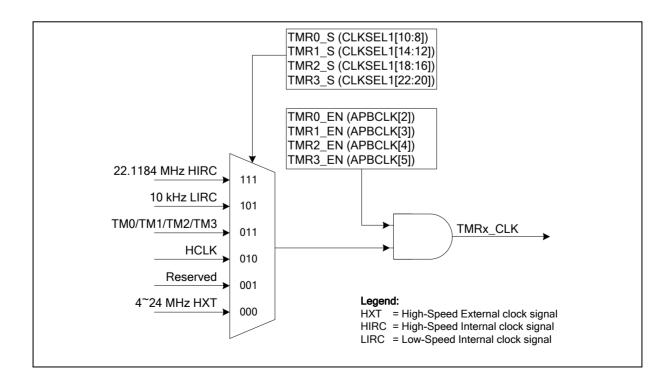



Figure 6.6-2 Clock Source of Timer Controller

### 6.6.4 Basic Configuration

The peripheral clock source of Timer0 ~ Timer3 can be enabled in APBCLK[5:2] and selected as different frequency in CLKSEL1[10:8] for Timer0, CLKSEL1[14:12] for Timer1, CLKSEL1[18:16] for Timer2 and CLKSEL1[22:20] for Timer3.

### 6.6.5 Functional Description

#### 6.6.5.1 Timer Interrupt Flag

Timer controller supports two interrupt flags; one is TIF flag and its set while timer counter value (TDR) matches the timer compared value (TCMP), the other is TEXIF flag and its set when the transition on the TMx\_EXT pin associated TEX\_EDGE setting.

#### 6.6.5.2 One-shot Mode

If timer controller is configured at one-shot mode (TCSR[28:27] is 00) and CEN (TCSR[30]) bit is set, the timer counter starts up counting. Once the TDR value reaches TCMP value, the TIF flag will be set to 1, TDR value and CEN bit is cleared by timer controller then timer counting operation stops. In the meantime, if the IE (TCSR[29]) bit is enabled, the timer interrupt signal is generated and sent to NVIC to inform CPU also.

### 6.6.5.3 Periodic Mode

If timer controller is configured at periodic mode (TCSR[28:27] is 01) and CEN bit is set, the timer counter starts up counting. Once the TDR value reaches TCMP value, the TIF flag will be set to 1, TDR value will be cleared by timer controller and timer counter operates counting again. In the meantime, if the IE bit is enabled, the timer interrupt signal is generated and sent to NVIC to inform CPU also. In this mode, timer controller operates counting and compares with TCMP value periodically until the CEN bit is cleared by software.

#### 6.6.5.4 Toggle-output Mode

If timer controller is configured at toggle-out mode (TCSR[28:27] is 10) and CEN bit is set, the timer counter starts up counting. The counting operation of toggle-out mode is almost the same as periodic mode, except toggle-out mode has associated TM0~TM3 pin to output signal while specify TIF bit is set. Thus, the toggle-output signal on TM0~TM3 pin is changing back and forth with 50% duty cycle.

## 6.6.5.5 Continuous Counting Mode

If timer controller is configured at continuous counting mode (TCSR[28:27] is 11) and CEN bit is set, the timer counter starts up counting. Once the TDR value reaches TCMP value, the TIF flag will be set to 1 and TDR value keeps up counting. In the meantime, if the IE bit is enabled, the timer interrupt signal is generated and sent to NVIC to inform CPU also. User can change different TCMP value immediately without disabling timer counting and restarting timer counting in this mode.

For example, TCMP value is set as 80, first. The TIF flag will set to 1 when TDR value is equal to 80, timer counter is kept counting and TDR value will not goes back to 0, it continues to count 81, 82, 83, $^{\circ}$  to  $2^{24}$ -1, 0, 1, 2, 3, $^{\circ}$  to  $2^{24}$ -1 again and again. Next, if software programs TCMP value as 200 and clears TIF flag, the TIF flag will set to 1 again when TDR value reaches programs TCMP as 500 and clears TIF flag, the TIF flag will set to 1 again when TDR value reaches



to 500.

In this mode, the timer counting is continuous. So, this operation mode is called as continuous counting mode.

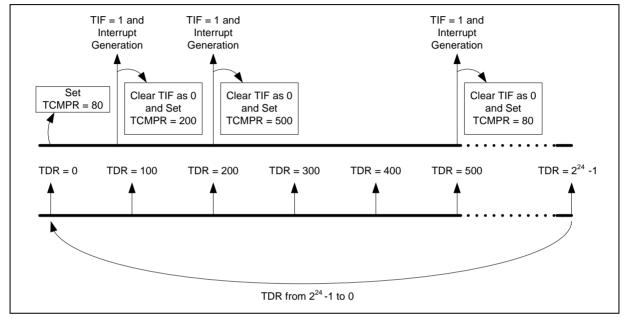



Figure 6.6-3 Continuous Counting Mode

#### 6.6.5.6 Event Counting Mode

Timer controller also provides an application which can count the input event from TMx pin (x=0~3) and the number of event will reflect to TDR value. It is also called as event counting function. In this function, CTB (TCSR[24]) bit should be set and the timer peripheral clock source should be set as HCLK.

Software can enable or disable TMx pin de-bounce circuit by TCDB (TEXCON[7]) bit. The input event frequency should be less than 1/3 HCLK if TMx pin de-bounce disabled or less than 1/8 HCLK if TMx pin de-bounce enabled to assure the returned TDR value is incorrect, and software can also select edge detection phase of TMx pin by TX\_PHASE (TEXCON[0]) bit.

In event counting mode, the timer counting operation mode can be selected as one-shot, periodic and continuous counting mode to counts the TDR value by input event from TMx pin.

### 6.6.5.7 External Capture Mode

The event capture function is used to capture Timer Data Register (TDR) value to Timer Capture Data Register (TCAP) value while edge transition detected on  $TMx_EXT$  pin (x= 0~3). In this mode, RSTCAPSEL (TEXCON[4]) bit should be as 0 for select  $TMx_EXT$  transition is using as the event capture function and the timer peripheral clock source should be set as HCLK.

Software can enable or disable TxEX pin de-bounce circuit by TEXDB (TEXCON[6]) bit. The transition frequency of TMx\_EXT pin should be less than 1/3 HCLK if TMx\_EXT pin de-bounce disabled or less than 1/8 HCLK if TMx\_EXT pin de-bounce enabled to assure the capture function can be work normally, and software can also select edge transition detection of TMx\_EXT pin by TEX\_EDGE (TEXCON[2:1]) bits.

NUC131 SERIES FECTNICAL REFERENCE MANUA

In event capture mode, software does not consider what timer counting operation mode is selected, the capture event occurred only if edge transition on TMx\_EXT pin is detected.

### 6.6.5.8 Event Reset Counter Mode

It also provides event reset counter function to reset TDR value while edge transition detected on  $TMx\_EXT$  pin (x= 0~3). In this mode, most the settings are the same as event capture function except RSTCAPSEL (TEXCON[4]) bit should be as 1 for select  $TMx\_EXT$  transition is using as the event reset counter.



# 6.6.6 Register Map

R: read only, W: write only, R/W: both read and write

| Register                                     | Offset        | R/W | Description                               | Reset Value |
|----------------------------------------------|---------------|-----|-------------------------------------------|-------------|
| TIMER Base A<br>TMR01_BA = 0<br>TMR23_BA = 0 | x4001_0000    |     |                                           |             |
| TCSR0                                        | TMR01_BA+0x00 | R/W | Timer0 Control and Status Register        | 0x0000_0005 |
| TCMPR0                                       | TMR01_BA+0x04 | R/W | Timer0 Compare Register                   | 0x0000_0000 |
| TISR0                                        | TMR01_BA+0x08 | R/W | Timer0 Interrupt Status Register          | 0x0000_0000 |
| TDR0                                         | TMR01_BA+0x0C | R   | Timer0 Data Register                      | 0x0000_0000 |
| TCAP0                                        | TMR01_BA+0x10 | R   | Timer0 Capture Data Register              | 0x0000_0000 |
| TEXCON0                                      | TMR01_BA+0x14 | R/W | Timer0 External Control Register          | 0x0000_0000 |
| TEXISR0                                      | TMR01_BA+0x18 | R/W | Timer0 External Interrupt Status Register | 0x0000_0000 |
| TCSR1                                        | TMR01_BA+0x20 | R/W | Timer1 Control and Status Register        | 0x0000_0005 |
| TCMPR1                                       | TMR01_BA+0x24 | R/W | Timer1 Compare Register                   | 0x0000_0000 |
| TISR1                                        | TMR01_BA+0x28 | R/W | Timer1 Interrupt Status Register          | 0x0000_0000 |
| TDR1                                         | TMR01_BA+0x2C | R   | Timer1 Data Register                      | 0x0000_0000 |
| TCAP1                                        | TMR01_BA+0x30 | R   | Timer1 Capture Data Register              | 0x0000_0000 |
| TEXCON1                                      | TMR01_BA+0x34 | R/W | Timer1 External Control Register          | 0x0000_0000 |
| TEXISR1                                      | TMR01_BA+0x38 | R/W | Timer1 External Interrupt Status Register | 0x0000_0000 |
| TCSR2                                        | TMR23_BA+0x00 | R/W | Timer2 Control and Status Register        | 0x0000_0005 |
| TCMPR2                                       | TMR23_BA+0x04 | R/W | Timer2 Compare Register                   | 0x0000_0000 |
| TISR2                                        | TMR23_BA+0x08 | R/W | Timer2 Interrupt Status Register          | 0x0000_0000 |
| TDR2                                         | TMR23_BA+0x0C | R   | Timer2 Data Register                      | 0x0000_0000 |
| TCAP2                                        | TMR23_BA+0x10 | R   | Timer2 Capture Data Register              | 0x0000_0000 |
| TEXCON2                                      | TMR23_BA+0x14 | R/W | Timer2 External Control Register          | 0x0000_0000 |
| TEXISR2                                      | TMR23_BA+0x18 | R/W | Timer2 External Interrupt Status Register | 0x0000_0000 |
| TCSR3                                        | TMR23_BA+0x20 | R/W | Timer3 Control and Status Register        | 0x0000_0005 |
| TCMPR3                                       | TMR23_BA+0x24 | R/W | Timer3 Compare Register                   | 0x0000_0000 |
| TISR3                                        | TMR23_BA+0x28 | R/W | Timer3 Interrupt Status Register          | 0x0000_0000 |
| TDR3                                         | TMR23_BA+0x2C | R   | Timer3 Data Register                      | 0x0000_0000 |



| TCAP3   | TMR23_BA+0x30 | R   | Timer3 Capture Data Register              | 0x0000_0000 |
|---------|---------------|-----|-------------------------------------------|-------------|
| TEXCON3 | TMR23_BA+0x34 | R/W | Timer3 External Control Register          | 0x0000_0000 |
| TEXISR3 | TMR23_BA+0x38 | R/W | Timer3 External Interrupt Status Register | 0x0000_0000 |



# 6.6.7 Register Description

# Timer Control Register (TCSR)

| Register | Offset        | R/W | Description                        | Reset Value |
|----------|---------------|-----|------------------------------------|-------------|
| TCSR0    | TMR01_BA+0x00 | R/W | Timer0 Control and Status Register | 0x0000_0005 |
| TCSR1    | TMR01_BA+0x20 | R/W | Timer1 Control and Status Register | 0x0000_0005 |
| TCSR2    | TMR23_BA+0x00 | R/W | Timer2 Control and Status Register | 0x0000_0005 |
| TCSR3    | TMR23_BA+0x20 | R/W | Timer3 Control and Status Register | 0x0000_0005 |

| 31             | 30       | 29 | 28 | 27             | 26              | 25       | 24     |
|----------------|----------|----|----|----------------|-----------------|----------|--------|
| DBGACK_<br>TMR | CEN      | ΙE | МС | DE             | CRST            | CACT     | СТВ    |
| 23             | 22       | 21 | 20 | 19             | 18              | 17       | 16     |
| WAKE_EN        | Reserved |    |    | TRG_PWM_E<br>N | TRG_SRC_SE<br>L | Reserved | TDR_EN |
| 15             | 14       | 13 | 12 | 11             | 10              | 9        | 8      |
|                | Reserved |    |    |                |                 |          |        |
| 7              | 6 5 4    |    |    | 3              | 2               | 1        | 0      |
| PRESCALE       |          |    |    |                |                 |          |        |

| Bits | Description | Description                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31] | DBGACK_TMR  | ICE Debug Mode Acknowledge Disable Control (Write Protect)  0 = ICE debug mode acknowledgement effects TIMER counting.  TIMER counter will be held while CPU is held by ICE.  1 = ICE debug mode acknowledgement Disabled.  TIMER counter will keep going no matter CPU is held by ICE or not.                                                          |  |  |  |  |  |
| [30] | CEN         | Timer Enable Control  0 = Stops/Suspends counting.  1 = Starts counting.  Note1: In stop status, and then set CEN to 1 will enable the 24-bit up counter to keep counting from the last stop counting value.  Note2: This bit is auto-cleared by hardware in one-shot mode (TCSR[28:27] = 00) when the timer interrupt flag TIF (TISR[0]) is generated. |  |  |  |  |  |
| [29] | IE          | Interrupt Enable Control  0 = Timer Interrupt function Disabled.  1 = Timer Interrupt function Enabled.  If this bit is enabled, when the timer interrupt flag TIF (TISR[0]) is set to 1, the timer interrupt signal is generated and inform to CPU.                                                                                                    |  |  |  |  |  |

|             | L                                                                                                                                                                                  |  |  |  |  |  |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|             | Timer Operating Mode                                                                                                                                                               |  |  |  |  |  |
|             | 00 = The Timer controller is operated in One-shot mode.                                                                                                                            |  |  |  |  |  |
| MODE        | 01 = The Timer controller is operated in Periodic mode.                                                                                                                            |  |  |  |  |  |
|             | 10 = The Timer controller is operated in Toggle-output mode.                                                                                                                       |  |  |  |  |  |
|             | 11 = The Timer controller is operated in Continuous Counting mode.                                                                                                                 |  |  |  |  |  |
|             | Timer Reset                                                                                                                                                                        |  |  |  |  |  |
| CRST        | 0 = No effect.                                                                                                                                                                     |  |  |  |  |  |
|             | 1 = Reset 8-bit prescale counter, 24-bit up counter value and CEN bit if CACT is 1.                                                                                                |  |  |  |  |  |
|             | Timer Active Status (Read Only)                                                                                                                                                    |  |  |  |  |  |
| CACT        | This bit indicates the 24-bit up counter status.                                                                                                                                   |  |  |  |  |  |
| CACT        | 0 = 24-bit up counter is not active.                                                                                                                                               |  |  |  |  |  |
|             | 1 = 24-bit up counter is active.                                                                                                                                                   |  |  |  |  |  |
|             | Counter Mode Enable Control                                                                                                                                                        |  |  |  |  |  |
|             | This bit is for external counting pin function enabled. When timer is used as an event counter, this bit should be set to 1 and select HCLK as timer clock source. Please refer to |  |  |  |  |  |
| СТВ         | 6.6.5.6 for detail description.                                                                                                                                                    |  |  |  |  |  |
|             | 0 = External counter mode Disabled.                                                                                                                                                |  |  |  |  |  |
|             | 1 = External counter mode Enabled.                                                                                                                                                 |  |  |  |  |  |
|             | Wake Up Function Enable Control                                                                                                                                                    |  |  |  |  |  |
| WAKE_EN     | 0 = Wake-up trigger event Disabled.                                                                                                                                                |  |  |  |  |  |
|             | 1 = Wake-up trigger event Enabled.                                                                                                                                                 |  |  |  |  |  |
| Reserved    | Reserved.                                                                                                                                                                          |  |  |  |  |  |
|             | Trigger PWM Enable Control                                                                                                                                                         |  |  |  |  |  |
|             | If this bit is set to 1, timer time-out interrupt or capture interrupt can be triggered PWM.                                                                                       |  |  |  |  |  |
| TRG_PWM_EN  | 0 = Timer interrupt trigger PWM Disabled.                                                                                                                                          |  |  |  |  |  |
|             | 1 = If TRG_SRC_SEL (TCSR[18]) = 0, time-out interrupt signal will trigger PWM.                                                                                                     |  |  |  |  |  |
|             | If TRG_SRC_SEL (TCSR[18]) = 1, capture interrupt signal will trigger PWM.                                                                                                          |  |  |  |  |  |
|             | Trigger Source Select Bit                                                                                                                                                          |  |  |  |  |  |
|             | This bit is used to select trigger source is from Timer time-out interrupt signal or capture                                                                                       |  |  |  |  |  |
| TRG_SRC_SEL | interrupt signal.                                                                                                                                                                  |  |  |  |  |  |
|             | 0 = Timer time-out interrupt signal is used to trigger PWM.                                                                                                                        |  |  |  |  |  |
|             | 1 = Capture interrupt signal is used to trigger PWM.                                                                                                                               |  |  |  |  |  |
| Reserved    | Reserved.                                                                                                                                                                          |  |  |  |  |  |
|             | Data Load Enable Control                                                                                                                                                           |  |  |  |  |  |
| TDR EN      | When TDR_EN is set, TDR (Timer Data Register) will be updated continuously with the 24-bit up-timer value as the timer is counting.                                                |  |  |  |  |  |
|             | 0 = Timer Data Register update Disabled.                                                                                                                                           |  |  |  |  |  |
|             | 1 = Timer Data Register update Enabled while Timer counter is active.                                                                                                              |  |  |  |  |  |
| Reserved    | Reserved.                                                                                                                                                                          |  |  |  |  |  |
|             | Prescale Counter                                                                                                                                                                   |  |  |  |  |  |
| PRESCALE    | Timer input clock source is divided by (PRESCALE+1) before it is fed to the Timer up                                                                                               |  |  |  |  |  |
|             | CACT  CTB  WAKE_EN  Reserved  TRG_PWM_EN  TRG_SRC_SEL  Reserved  TDR_EN  Reserved                                                                                                  |  |  |  |  |  |



# Timer Compare Register (TCMPR)

| Register | Offset        | R/W | Description             | Reset Value |
|----------|---------------|-----|-------------------------|-------------|
| TCMPR0   | TMR01_BA+0x04 | R/W | Timer0 Compare Register | 0x0000_0000 |
| TCMPR1   | TMR01_BA+0x24 | R/W | Timer1 Compare Register | 0x0000_0000 |
| TCMPR2   | TMR23_BA+0x04 | R/W | Timer2 Compare Register | 0x0000_0000 |
| TCMPR3   | TMR23_BA+0x24 | R/W | Timer3 Compare Register | 0x0000_0000 |

| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|----|----------|----|----|----|----|----|----|--|--|--|
|    | Reserved |    |    |    |    |    |    |  |  |  |
| 23 | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|    |          |    | тс | MP |    |    |    |  |  |  |
| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|    | ТСМР     |    |    |    |    |    |    |  |  |  |
| 7  | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|    |          |    | TC | MP |    |    |    |  |  |  |

| Bits    | Description | Description                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:24] | Reserved.   |                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|         |             | Timer Compared Value                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|         |             | TCMP is a 24-bit compared value register. When the internal 24-bit up counter value is equal to TCMP value, the TIF flag will set to 1.                                                                                                                                                                                                                                |  |  |  |  |
|         |             | Time-out period = (Period of Timer clock input) * (8-bit PRESCALE + 1) * (24-bit TCMP).                                                                                                                                                                                                                                                                                |  |  |  |  |
| [23:0]  |             | Note1: Never write 0x0 or 0x1 in TCMP field, or the core will run into unknown state.                                                                                                                                                                                                                                                                                  |  |  |  |  |
|         |             | <b>Note2:</b> When timer is operating at continuous counting mode, the 24-bit up counter will keep counting continuously even if user writes a new value into TCMP field. But if timer is operating at other modes, the 24-bit up counter will restart counting and using newest TCMP value to be the timer compared value if user writes a new value into TCMP field. |  |  |  |  |

# **Timer Interrupt Status Register (TISR)**

| Register | Offset        | R/W | Description                      | Reset Value |
|----------|---------------|-----|----------------------------------|-------------|
| TISR0    | TMR01_BA+0x08 | R/W | Timer0 Interrupt Status Register | 0x0000_0000 |
| TISR1    | TMR01_BA+0x28 | R/W | Timer1 Interrupt Status Register | 0x0000_0000 |
| TISR2    | TMR23_BA+0x08 | R/W | Timer2 Interrupt Status Register | 0x0000_0000 |
| TISR3    | TMR23_BA+0x28 | R/W | Timer3 Interrupt Status Register | 0x0000_0000 |

| 31 | 30       | 29  | 28  | 27 | 26 | 25 | 24 |  |  |  |
|----|----------|-----|-----|----|----|----|----|--|--|--|
|    | Reserved |     |     |    |    |    |    |  |  |  |
| 23 | 22       | 21  | 20  | 19 | 18 | 17 | 16 |  |  |  |
|    | Reserved |     |     |    |    |    |    |  |  |  |
| 15 | 14       | 13  | 12  | 11 | 10 | 9  | 8  |  |  |  |
|    | Reserved |     |     |    |    |    |    |  |  |  |
| 7  | 6        | 5   | 4   | 3  | 2  | 1  | 0  |  |  |  |
|    |          | TWF | TIF |    |    |    |    |  |  |  |

| Bits   | Description | Description                                                                                                                                                                                                              |  |  |  |  |  |
|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:2] | Reserved    | Reserved.                                                                                                                                                                                                                |  |  |  |  |  |
| [1]    | TWF         | Timer Wake-Up Flag  This bit indicates the interrupt wake-up flag status of Timer.  0 = Timer does not cause CPU wake-up.  1 = CPU wake-up from Idle or Power-down mode if Timer time-out interrupt signal generated.    |  |  |  |  |  |
|        |             | Note: This bit is cleared by writing 1 to it.                                                                                                                                                                            |  |  |  |  |  |
| [0]    | TIF         | Timer Interrupt Flag  This bit indicates the interrupt flag status of Timer while TDR value reaches to TCMP value.  0 = No effect.  1 = TDR value matches the TCMP value.  Note: This bit is cleared by writing 1 to it. |  |  |  |  |  |



# Timer Data Register (TDR)

| Register | Offset        | R/W | Description          | Reset Value |
|----------|---------------|-----|----------------------|-------------|
| TDR0     | TMR01_BA+0x0C | R   | Timer0 Data Register | 0x0000_0000 |
| TDR1     | TMR01_BA+0x2C | R   | Timer1 Data Register | 0x0000_0000 |
| TDR2     | TMR23_BA+0x0C | R   | Timer2 Data Register | 0x0000_0000 |
| TDR3     | TMR23_BA+0x2C | R   | Timer3 Data Register | 0x0000_0000 |

| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|----|----------|----|----|----|----|----|----|--|--|--|
|    | Reserved |    |    |    |    |    |    |  |  |  |
| 23 | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|    | TDR      |    |    |    |    |    |    |  |  |  |
| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|    |          |    | т  | OR |    |    |    |  |  |  |
| 7  | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|    | TDR      |    |    |    |    |    |    |  |  |  |

| Bits    | Description |                                                                                                                                      |  |  |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:24] | Reserved    | served Reserved.                                                                                                                     |  |  |
| [23:0]  |             | Timer Data Register  If TDR_EN (TCSR[16]) is set to 1, TDR register will be updated continuously to monitor 24-bit up counter value. |  |  |

# **Timer Capture Data Register (TCAP)**

| Register | Offset        | R/W | Description                  | Reset Value |
|----------|---------------|-----|------------------------------|-------------|
| TCAP0    | TMR01_BA+0x10 | R   | Timer0 Capture Data Register | 0x0000_0000 |
| TCAP1    | TMR01_BA+0x30 | R   | Timer1 Capture Data Register | 0x0000_0000 |
| TCAP2    | TMR23_BA+0x10 | R   | Timer2 Capture Data Register | 0x0000_0000 |
| TCAP3    | TMR23_BA+0x30 | R   | Timer3 Capture Data Register | 0x0000_0000 |

| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|----|----------|----|----|----|----|----|----|--|--|--|
|    | Reserved |    |    |    |    |    |    |  |  |  |
| 23 | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|    |          |    | тс | AP |    |    |    |  |  |  |
| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|    | TCAP     |    |    |    |    |    |    |  |  |  |
| 7  | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|    | TCAP     |    |    |    |    |    |    |  |  |  |

| Bits    | Description |                                                                                                                                                                             |  |  |
|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:24] | Reserved    | eserved Reserved.                                                                                                                                                           |  |  |
| [23:0]  |             | Timer Capture Data Register  When TEXIF (TEXISR[0]) flag and RSTCAPSEL (TEXCON[4]) is set to 1, the current TDR value will be auto-loaded into this TCAP filed immediately. |  |  |



# **Timer External Control Register (TEXCON)**

| Register | Offset        | R/W | Description                      | Reset Value |
|----------|---------------|-----|----------------------------------|-------------|
| TEXCON0  | TMR01_BA+0x14 | R/W | Timer0 External Control Register | 0x0000_0000 |
| TEXCON1  | TMR01_BA+0x34 | R/W | Timer1 External Control Register | 0x0000_0000 |
| TEXCON2  | TMR23_BA+0x14 | R/W | Timer2 External Control Register | 0x0000_0000 |
| TEXCON3  | TMR23_BA+0x34 | R/W | Timer3 External Control Register | 0x0000_0000 |

| 31   | 30       | 29     | 28        | 27    | 26   | 25   | 24       |
|------|----------|--------|-----------|-------|------|------|----------|
|      |          |        | Rese      | erved |      |      |          |
| 23   | 22       | 21     | 20        | 19    | 18   | 17   | 16       |
|      | Reserved |        |           |       |      |      |          |
| 15   | 14       | 13     | 12        | 11    | 10   | 9    | 8        |
|      | Reserved |        |           |       |      |      |          |
| 7    | 6        | 5      | 4         | 3     | 2    | 1    | 0        |
| TCDB | TEXDB    | TEXIEN | RSTCAPSEL | TEXEN | TEX_ | EDGE | TX_PHASE |

| Bits   | Description |                                                                                                                                                                                                                                                                             |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | Reserved    | Reserved.                                                                                                                                                                                                                                                                   |
| [7]    | TCDB        | Timer External Counter Input Pin De-Bounce Enable Control  0 = TMx pin de-bounce Disabled.  1 = TMx pin de-bounce Enabled.  If this bit is enabled, the edge detection of TMx pin is detected with de-bounce circuit.                                                       |
| [6]    | TEXDB       | Timer External Capture Input Pin De-Bounce Enable Control  0 = TMx_EXT pin de-bounce Disabled.  1 = TMx_EXT pin de-bounce Enabled.  If this bit is enabled, the edge detection of TMx_EXT pin is detected with de-bounce circuit.                                           |
| [5]    | TEXIEN      | Timer External Capture Interrupt Enable Control  0 = TMx_EXT pin detection Interrupt Disabled.  1 = TMx_EXT pin detection Interrupt Enabled.  If TEXIEN enabled, Timer will raise an external capture interrupt signal and inform to CPU while TEXIF flag is set to 1.      |
| [4]    | RSTCAPSEL   | Timer External Reset Counter / Timer External Capture Mode Selection  0 = Transition on TMx_EXT pin is using to save the TDR value into TCAP.(event capture function)  1 = Transition on TMx_EXT pin is using to reset the 24-bit up counter.(event reset counter function) |
| [3]    | TEXEN       | Timer External Pin Function Enable Control This bit enables the RSTCAPSEL function on the TMx_EXT pin.                                                                                                                                                                      |

|              |  | 0 = RSTCAPSEL function of TMx_EXT pin will be ignored. 1 = RSTCAPSEL function of TMx_EXT pin is active.                                                                                                                                                          |
|--------------|--|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [2:1]        |  | Timer External Capture Pin Edge Detect Selection  00 = A 1 to 0 transition on TMx_EXT pin will be detected.  01 = A 0 to 1 transition on TMx_EXT pin will be detected.  10 = Either 1 to 0 or 0 to 1 transition on TMx_EXT pin will be detected.  11 = Reserved. |
| [0] TX_PHASE |  | Timer External Count Pin Phase Detect Selection This bit indicates the detection phase of TMx_EXT pin.  0 = A falling edge of TMx_EXT pin will be counted.  1 = A rising edge of TMx_EXT pin will be counted.                                                    |



# Timer External Interrupt Status Register (TEXISR)

| Register | Offset        | R/W | Description                               | Reset Value |
|----------|---------------|-----|-------------------------------------------|-------------|
| TEXISR0  | TMR01_BA+0x18 | R/W | Timer0 External Interrupt Status Register | 0x0000_0000 |
| TEXISR1  | TMR01_BA+0x38 | R/W | Timer1 External Interrupt Status Register | 0x0000_0000 |
| TEXISR2  | TMR23_BA+0x18 | R/W | Timer2 External Interrupt Status Register | 0x0000_0000 |
| TEXISR3  | TMR23_BA+0x38 | R/W | Timer3 External Interrupt Status Register | 0x0000_0000 |

| 31       | 30       | 29 | 28   | 27    | 26 | 25 | 24    |
|----------|----------|----|------|-------|----|----|-------|
|          |          |    | Rese | erved |    |    |       |
| 23       | 22       | 21 | 20   | 19    | 18 | 17 | 16    |
|          | Reserved |    |      |       |    |    |       |
| 15       | 14       | 13 | 12   | 11    | 10 | 9  | 8     |
|          | Reserved |    |      |       |    |    |       |
| 7        | 6        | 5  | 4    | 3     | 2  | 1  | 0     |
| Reserved |          |    |      |       |    |    | TEXIF |

| Bits   | Description | Description                                                                                                                                                                                         |  |  |  |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:1] | Reserved    | Reserved.                                                                                                                                                                                           |  |  |  |
|        |             | Timer External Capture Interrupt Flag  This bit indicates the external capture interrupt flag status.                                                                                               |  |  |  |
| [0]    | TEXIF       | When TEXEN (TEXCON[3]) enabled, TMx_EXT pin selected as external capture function, and a transition on TMx_EXT pin matched the TEX_EDGE (TEXCON[2:1]) setting, this flag will set to 1 by hardware. |  |  |  |
|        |             | 0 = TMx_EXT pin interrupt did not occur.                                                                                                                                                            |  |  |  |
|        |             | 1 = TMx_EXT pin interrupt occurred.                                                                                                                                                                 |  |  |  |
|        |             | Note: This bit is cleared by writing 1 to it.                                                                                                                                                       |  |  |  |

## 6.7 PWM Generator and Capture Timer (PWM)

#### 6.7.1 Overview

The NUC131 series provides two PWM generators — PWM0 and PWM1 as shown in Figure 6.7-1. Each PWM supports 6 channels of PWM output or input capture. There is a 12-bit prescaler to support flexible clock to the 16-bit PWM counter with 16-bit comparator. The PWM counter supports up, down and up-down counter types. PWM uses the comparator compared with counter to generate events. These events are used to generate PWM pulse, interrupt and trigger signal for ADC to start conversion.

The PWM generator supports two standard PWM output modes: Independent mode and Complementary mode, which have difference architecture. In Complementary mode, there are two comparators to generate various PWM pulse with 12-bit dead-time generator. For PWM output control unit, it supports polarity output, independent pin mask, tri-state output enable and brake functions.

The PWM generator also supports input capture function to latch PWM counter value to the corresponding register when input channel has a rising transition, falling transition or both transition is happened.

#### 672 Features

#### 6.7.2.1 PWM function features

- Supports maximum clock frequency up to100 MHz
- Supports up to two PWM modules, each module provides 6 output channels
- Supports independent mode for PWM output/Capture input channel
- Supports complementary mode for 3 complementary paired PWM output channel
  - Dead-time insertion with 12-bit resolution
  - Two compared values during one period
- Supports 12-bit pre-scalar from 1 to 4096
- Supports 16-bit resolution PWM counter, each module provides 3 PWM counters
  - Up, down and up/down counter operation type
- Supports mask function and tri-state enable for each PWM pin
- Supports brake function
  - Brake source from pin and system safety events (clock failed, Brown-out detection and CPU lockup)
  - Noise filter for brake source from pin
  - Edge detect brake source to control brake state until brake interrupt cleared
  - Level detect brake source to auto recover function after brake condition removed
- Supports interrupt on the following events:
  - PWM counter match zero, period value or compared value
  - Brake condition happened
- Supports trigger ADC on the following events:



- PWM counter match zero, period value or compared value

## 6.7.2.2 Capture Function Features

- Supports up to 12 capture input channels with 16-bit resolution
- Supports rising or falling capture condition
- Supports input rising/falling capture interrupt
- Supports rising/falling capture with counter reload option

## 6.7.2.3 Compare table

| Feature            | PWM                                      | BPWM                                    |  |
|--------------------|------------------------------------------|-----------------------------------------|--|
| Counter number     | 2 channels share 1 timer, total 6 timers | 6 channels share 1 timer, total 1 timer |  |
| Complementary mode | V                                        | Х                                       |  |
| Dead-time function | V                                        | Х                                       |  |
| Brake function     | V                                        | Х                                       |  |
| Capture reload     | 2 channels reload 1 timer                | 6 channels reload 1 timer               |  |

Table 6.7-1 PWM and BPWM Features Different Table

### 6.7.3 Block Diagram

nuvoton

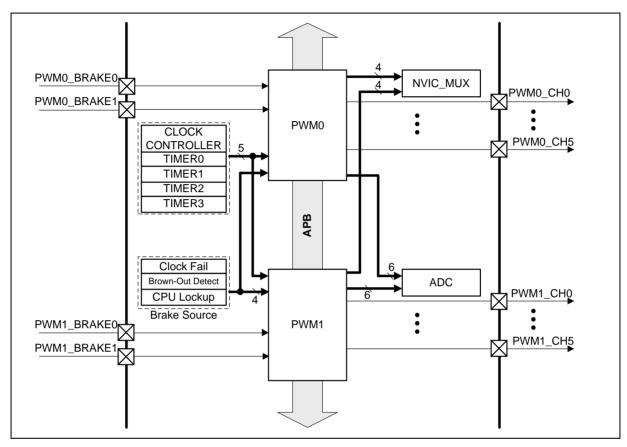
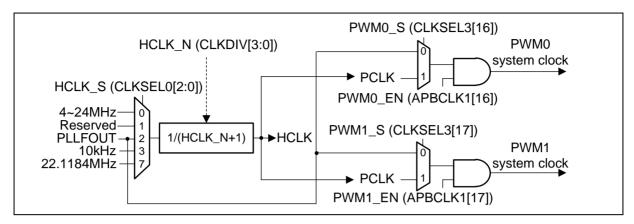




Figure 6.7-1 PWM Generator Overview Block Diagram

PWM system clock frequency can be set equal or double to HCLK frequency as Figure 6.7-2, the detail register setting, please refer to Table 6.7-2.

Each PWM generator has three clock source inputs, each clock source can be selected from system clock or four TIMER trigger PWM outputs as Figure 6.7-3 by ECLKSRC0 (PWM\_CLKSRC[2:0]) for PWM\_CLK0, ECLKSRC2 (PWM CLKSRC[10:8]) PWM CLK2 ECLKSRC4 for and (PWM CLKSRC[18:16]) for PWM CLK4.



nuvoton

Figure 6.7-2 PWM System Clock Source Control

| PWM System<br>Clock/HCLK<br>Frequency Ratio | HCLK_S<br>(CLKSEL0[2:0]) | HCLK_N<br>(CLKDIV[3:0]) | PWMn_S (CLKSEL3[X]),<br>(N, X) Denotes (0, 16) Or<br>(1, 17) |
|---------------------------------------------|--------------------------|-------------------------|--------------------------------------------------------------|
| 1/1                                         | Don't care               | Don't care              | 1                                                            |
| 2/1                                         | 2                        | 1                       | 0                                                            |

Table 6.7-2 PWM System Clock Source Control Registers Setting Table

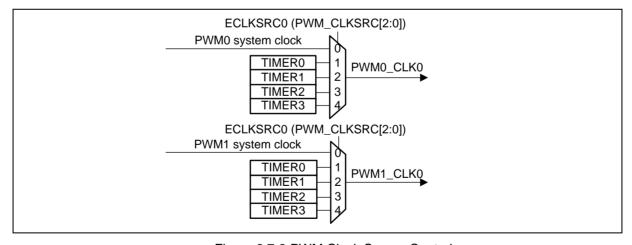



Figure 6.7-3 PWM Clock Source Control

Figure 6.7-4 and Figure 6.7-5 illustrate the architecture of PWM Independent mode and Complementary mode. Regardless of Independent mode or Complementary mode, paired channels' (PWM CH0 and PWM CH1, PWM CH2 and PWM CH3, PWM CH4 and PWM CH5) share the same counter. When the counter counts to 0, PERIOD (PWM PERIODn[15:0]) or equal to comparator, events will be generated. These events are passed to the corresponding generators to generate PWM pulse, interrupt signal and trigger signal for ADC to start conversion. Output control is used to changing PWM pulse output state; brake function in output control also generates interrupt events. In Complementary mode, even channel use odd channel comparator to generate events.

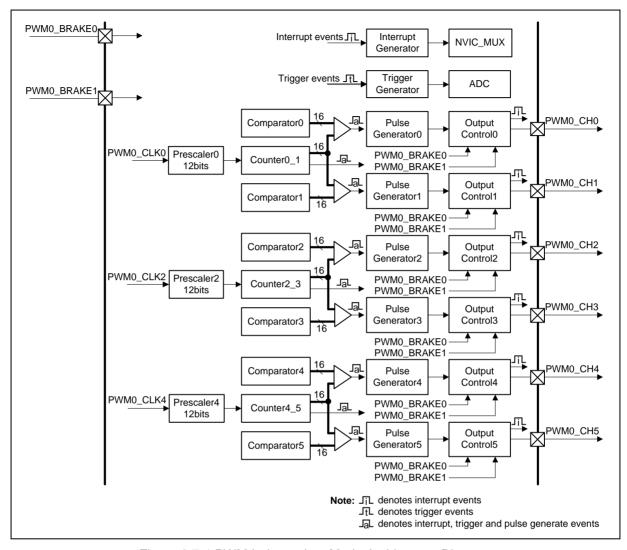



Figure 6.7-4 PWM Independent Mode Architecture Diagram

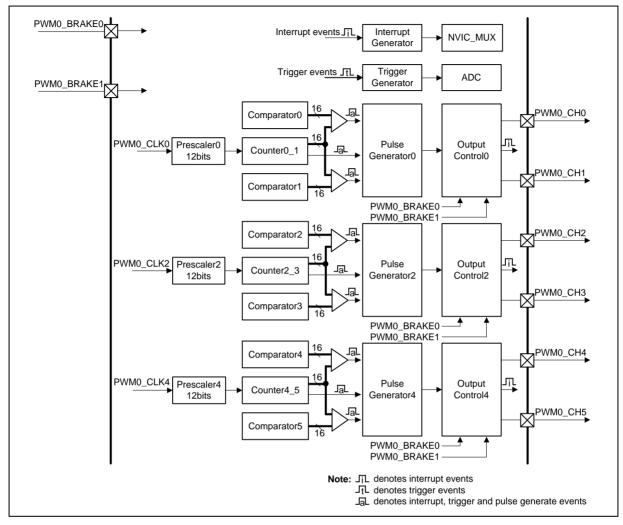



Figure 6.7-5 PWM Complementary Mode Architecture Diagram

### 6.7.4 Basic Configuration

nuvoton

The PWM pin function is configured in GPA MFP register, PWM BRAKE0 and PWM BRAKE1 pin functions are configured in GPB\_MFP and GPC\_MFP registers.

The PWM clock can be enabled in APBCLK1[17:16]. The PWM clock source is selected by CLKSEL3[17:16].

### 6.7.5 Functional Description

#### 6.7.5.1 PWM Prescaler

The PWM prescaler is used to divide clock source, prescaler counting CLKPSC +1 times, PWM counter only count once. CLKPSC (Clock Pre-scale Register) is set by CLKPSC (PWM\_CLKPSCn[11:0], n denotes 0, 2, 4). Figure 6.7-6 shows an example of PWM channel 0 CLKPSC waveform.

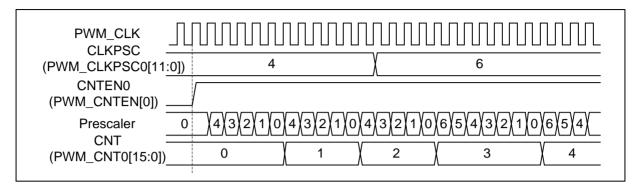



Figure 6.7-6 PWM\_CH0 CLKPSC waveform

#### 6.7.5.2 PWM Counter

PWM supports 3 counter types operation: Up Counter, Down Counter and Up-Down Counter types.

### 6.7.5.3 Up Counter Type

In the up counter operation, the 16 bits PWM counter is an up counter and starts up-counting from zero to PERIOD (PWM\_PERIODn[15:0], where n denotes channel number) to finish a PWM period. The current counter value can be found by reading the CNT (PWM\_CNTn[15:0]). PWM generates zero point event when counter counts to 0 and generates period point event when counting to PERIOD. The Figure 6.7-7 shows an example of up counter, wherein PWM period time = (PERIOD+1) \* PWM clock time.

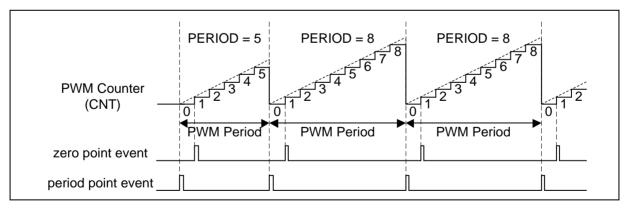



Figure 6.7-7 PWM Up Counter Type

#### 6.7.5.4 Down Counter Type

In the down counter type, the 16 bits PWM counter is a down counter and starts down-counting from PERIOD to zero to finish a PWM period, current counter value can read CNT to know. PWM generates zero point event when counter counts to 0 and period point event when counts to PERIOD. The Figure 6.7-8 is an example of down counter, a PWM period time = (PERIOD+1) \* PWM clock time.

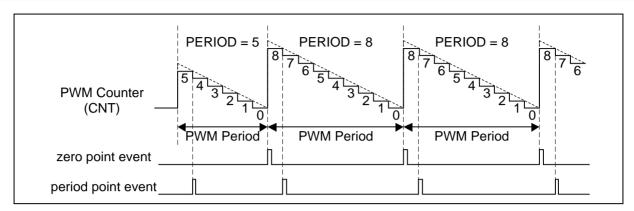



Figure 6.7-8 PWM Down Counter Type

### 6.7.5.5 Up-Down Counter Type

nuvoton

In up-down counter operation, the 16 bits PWM counter is an up-down counter and starts counting-up from zero to PERIOD and then starts counting down to zero to finish a PWM period. The current counter value can be found by reading the CNT. PWM generates zero point events when counter counts to 0 and generates center point event when counting to PERIOD. The Figure 6.7-9 shows an example of up-down counter, wherein PWM period time = (2\*PERIOD) \* PWM clock time. The DIRF (PWM CNTn[16]) is counter direction indicator flag, where high is up counting, and low is down counting.

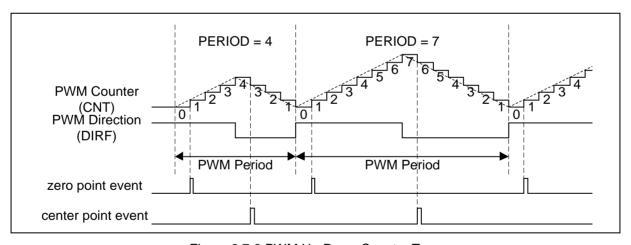



Figure 6.7-9 PWM Up-Down Counter Type

### 6.7.5.6 PWM Comparator

The CMPDAT (PWM\_CMPDATn[15:0]) is a basic comparator register of PWM channel n; each channel only has one CMPDAT. The CMPDAT's value is continuously compared to the corresponding complementary channel's counter value. When the counter is equal to compared register, PWM generates an event and uses the event to generate PWM pulse, interrupt or use to trigger ADC. In updown counter type, two events will be generated in a PWM period as shown in Figure 6.7-10.

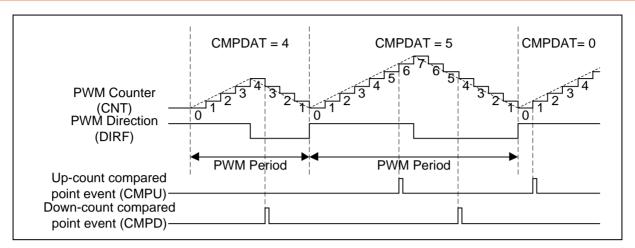



Figure 6.7-10 PWM CMPDAT Events in Up-Down Counter Type

## 6.7.5.7 PWM Double Buffering

The double buffering uses double buffers to separate software writing and hardware action operation timing. After registers are modified through software, hardware will load register value to the buffer register according to the loading mode timing. The hardware action is based on the buffer value. This can prevent asynchronously operation problem due to software and hardware asynchronism.

The PWM has double buffering function for PERIOD and CMPDAT. The concept of double buffering is used in loading modes, which are described in the following sections. For example, as shown in Figure 6.7-11, in period loading mode, writing PERIOD and CMPDAT through software, PWM will load new values to their buffer PBUF (PWM\_PBUFn[15:0]) and CMPBUF (PWM\_CMPBUFn[15:0]) at start of the next period without affecting the current period counter operation. There are 3 loading modes for loading value to buffer: period loading mode, immediately loading mode and center loading mode.

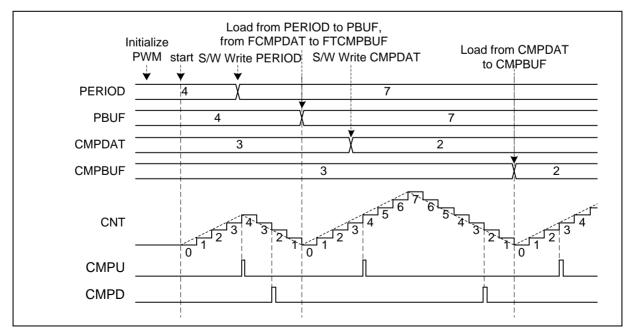



Figure 6.7-11 PWM Double Buffering Illustration



#### 6.7.5.8 Period Loading Mode

Period Loading mode is the default loading mode. It has lowest priority in loading modes. PERIOD and CMPDAT both will both load to their buffer while a period is completed. For example, after PWM counter up counts from zero to PERIOD in the up-counter operation or down counts from PERIOD to zero in the down-counter operation or up counts from zero to PERIOD and then down counts to zero in up-down counter operation.

Figure 6.7-12 shows period loading timing of up-count operation, where PERIOD DATA0 denotes the initial data of PERIOD, PERIOD DATA1 denotes the first updated PERIOD data by software and so on, CMPDAT also follows this rule. The following describes steps sequence of Figure 6.7-12. User can know the PERIOD and CMPDAT update condition, by watching PWM period and CMPU event.

- 1. Software writes CMPDAT DATA1 to CMPDAT at point 1.
- 2. Period loading CMPDAT DATA1 to CMPBUF at the end of PWM period at point 2.
- 3. Software writes PERIOD DATA1 to PERIOD at point 3.
- 4. Period loading PERIOD DATA1 to PBUF at the end of PWM period at point 4.
- 5. Software writes DATA2 to PERIOD at point 5.
- 6. Period loading DATA2 to PBUF at the end of PWM period at point 6.

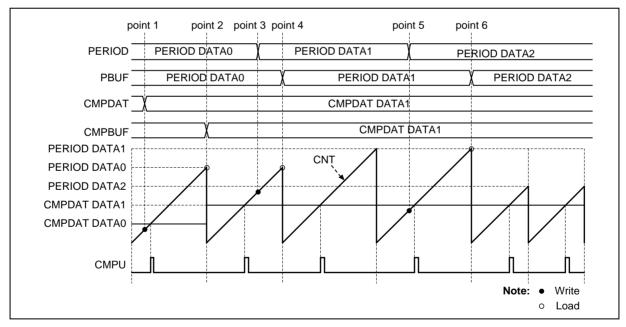



Figure 6.7-12 Period Loading Mode with Up-Counter Type

### 6.7.5.9 Immediately Loading Mode

If the IMMLDENn (PWM\_CTL0[21:16]) bit which corresponds to PWM channel n is set to 1, software will load a value to buffer from PERIOD and CMPDAT immediately while software updates PERIOD or CMPDAT. If the update PERIOD value is less than current counter value, counter will count wraparound. Immediately loading mode has the highest priority. If IMMLDENn has been set, other loading mode for channel n will become invalid. Figure 6.7-13 shows an example and its steps sequence is described below.

- Software writes CMPDAT DATA1 and hardware immediately loading CMPDAT DATA1 to CMPBUF at point 1.
- 2. Software writes PERIOD DATA1 which is greater than current counter value at point 2; counter will continue counting until equal to PERIOD DATA1 to finish a period loading.
- 3. Software writes PERIOD DATA2 which is less than the current counter value at point 3; counter will continue counting to its maximum value 0xFFFF and count wraparound from 0 to PERIOD DATA2 to finish this period loading.

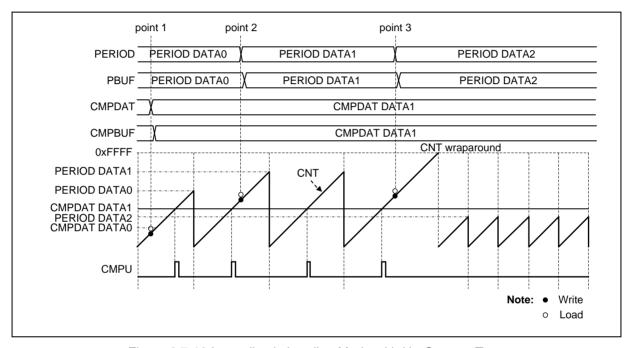



Figure 6.7-13 Immediately Loading Mode with Up-Counter Type

#### 6.7.5.10 Center Loading Mode

If the CTRLDn (PWM\_CTL0[5:0]) bit which corresponds to PWM channel n is set to 1 and in up-down counter type, CMPDAT will load to CMPBUFn in center of a period, that is, counter counts to PERIOD. PERIOD loading timing is the same as period loading mode. Figure 6.7-14 shows an example and its steps sequence is described below.

- 1. Software writes CMPDAT DATA1 at point 1.
- 2. Hardware loads CMPDAT DATA1 to CMPBUF at center of PWM period at point 2.
- 3. Software writes PERIOD DATA1 at point 3.
- 4. Hardware loads PERIOD DATA1 to PBUF at the end of PWM period at point 4.
- 5. Software writes CMPDAT DATA2 at point 5.
- 6. Hardware loads CMPDAT DATA2 to CMPBUF at center of PWM period at point 6.
- 7. Software writes PERIOD DATA2 at point 7.
- 8. Hardware loads PERIOD DATA2 to PBUF at the end of PWM period at point 8.

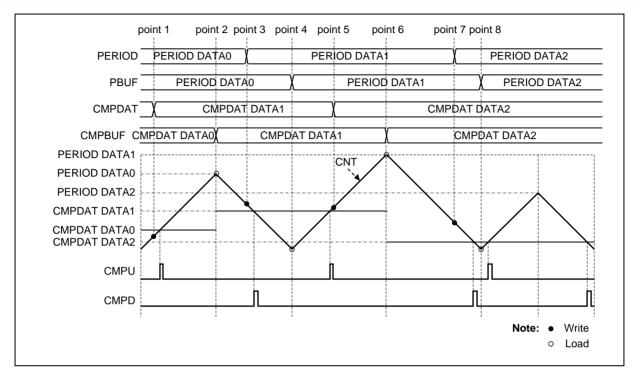



Figure 6.7-14 Center Loading Mode with Up-Down-Counter Type

#### 6.7.5.11PWM Pulse Generator

nuvoton

PWM pulse generator uses counter and comparator events to generate PWM pulse. The events are: zero point, period point in up counter type and down counter type, center point in up-down counter type and counter equal to comparator point in three types. As to up-down counter type, there are two counter equal comparator points, one at up count another at down count. Besides, Complementary mode has two comparators compared with counter, and thus comparing equal points will become four in up-down counter type and two for up or down counter type.

Each event point can decide PWM waveform to do nothing (X), set Low (L), set High (H) or toggle (T) by setting PWM WGCTL0 and PWM WGCTL1 registers. Using these points can easily generate asymmetric PWM pulse or variant waveform as shown in Figure 6.7-15. In the figure, PWM is in Complementary mode, there are two comparators n and m to generate PWM pulse. n denotes even channel number 0, 2, 4, m denotes odd channel number 1, 3, 5. n and m channels are complementary paired. Complementary mode uses two channels (CH0 and CH1, CH2 and CH3, CH4 and CH5) as a pair of PWM outputs to generate complement paired waveforms. CMPU denotes CNT is equal to CMPDAT when counting up. CMPD denotes CNT is equal to CMPDAT when counting down.

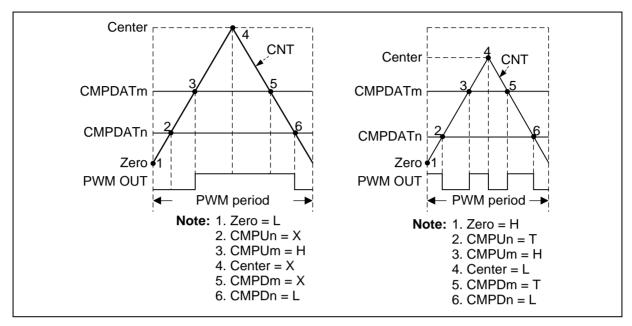



Figure 6.7-15 PWM Pulse Generation

The generation events may be sometimes set to the same value, as the reason, events priority between different counter types are list below, up counter type (Table 6.7-3), down counter type (Table 6.7-4) and up-down counter type (Table 6.7-5). By using event priority, user can easily generate 0% to 100% duty pulse as shown in Figure 6.7-16.

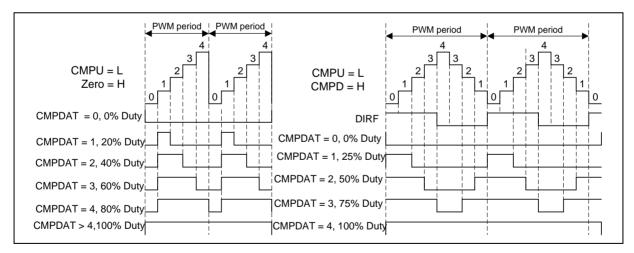



Figure 6.7-16 PWM 0% to 100% Pulse Generation

| Priority    | Up Event              |
|-------------|-----------------------|
| 1 (Highest) | CNT = period (PERIOD) |
| 2           | CNT = CMPUm           |
| 3           | CNT = CMPUn           |
| 4 (Lowest)  | CNT = zero            |

Table 6.7-3 PWM Pulse Generation Event Priority for Up-Counter

| Priority    | Down Event            |
|-------------|-----------------------|
| 1 (Highest) | CNT = zero            |
| 2           | CNT = CMPDm           |
| 3           | CNT = CMPDn           |
| 4 (Lowest)  | CNT = period (PERIOD) |

Table 6.7-4 PWM Pulse Generation Event Priority for Down-Counter

| Priority    | Up Event       | Down Event            |  |  |
|-------------|----------------|-----------------------|--|--|
| 1 (Highest) | CNT = CMPUm    | CNT = CMPDm           |  |  |
| 2           | CNT= CMPUn     | CNT = CMPDn           |  |  |
| 3           | CNT = zero     | CNT = center (PERIOD) |  |  |
| 4           | CNT = CMPDm    | CNT = CMPUm           |  |  |
| 5 (Lowest)  | PERIOD = CMPDn | CNT = CMPUn           |  |  |

Table 6.7-5 PWM Pulse Generation Event Priority for Up-Down-Counter

#### 6.7.5.12 PWM Output Mode

nuvoTon

The PWM supports two output modes: Independent mode which may be applied to DC motor system, Complementary mode with dead-time insertion which may be used in the application of AC induction motor and permanent magnet synchronous motor.

#### 6.7.5.13Independent mode

By default, the PWM is operating in Independent mode, Independent mode is enabled when channel n corresponding PWMMODEn (PWM\_CTL1[26:24]) bit set to 0. In this mode six PWM channels: PWM\_CH0, PWM\_CH1, PWM\_CH2, PWM\_CH3, PWM\_CH4 and PWM\_CH5 are running off its own period and duty as shown in Figure 6.7-17.

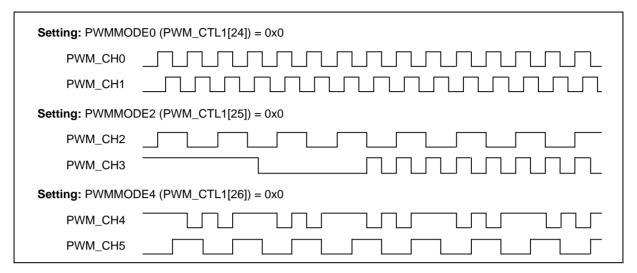



Figure 6.7-17 PWM Independent Mode Waveform

#### 6.7.5.14Complementary mode

nuvoton

Complementary mode is enabled when the pair channel corresponding PWMMODEn (PWM\_CTL1[26:24]) bit set to 1. In this mode there are 3 PWM generators utilized for Complementary mode, with total of 3 PWM output paired pins in this module. In Complimentary mode, the internal odd PWM signal must always be the complement of the corresponding even PWM signal. PWM CH1 will be the complement of PWM CH0, PWM CH3 will be the complement of PWM CH2 and PWM CH5 will be the complement of PWM CH4 as shown in Figure 6.7-18.

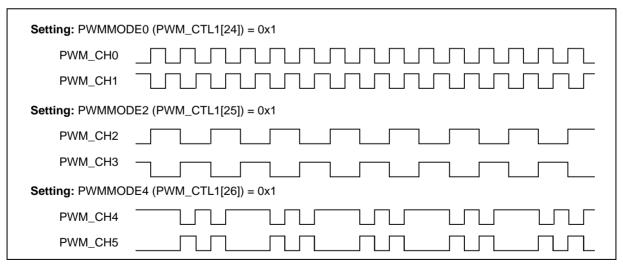



Figure 6.7-18 PWM Complementary Mode Waveform

#### 6.7.5.15PWM Output Control

After PWM pulse generation, there are four to six steps to control the output of PWM channels. In Independent mode, there are Mask, Brake, Pin Polarity and Output Enable four steps as shown in Figure 6.7-19. In Complementary mode, it needs two more steps to precede these four steps, Complementary channels and Dead-Time Insertion as shown in Figure 6.7-20.

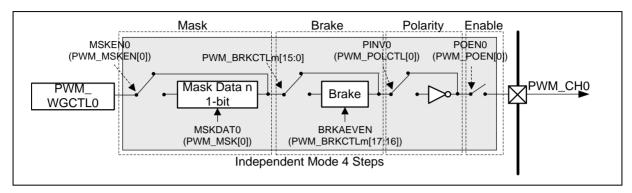



Figure 6.7-19 PWM CH0 Output Control in Independent Mode

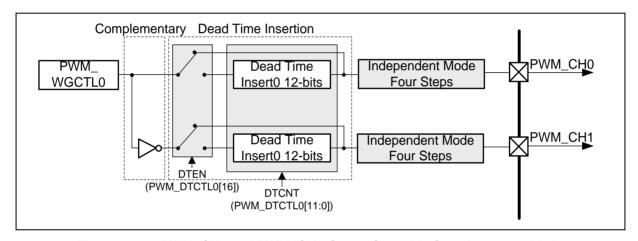



Figure 6.7-20 PWM CH0 and PWM CH1 Output Control in Complementary Mode

#### 6.7.5.16Dead-Time Insertion

nuvoton

In the complementary application, the complement channels may drive the external devices like power switches. The dead-time generator inserts a low level period called "dead-time" between complementary outputs to drive these devices safely and to prevent system or devices from the burnout damage. Hence the dead-time control is a crucial mechansism to the proper operation of the complementary system. By setting corresponding channel n DTEN (PWM DTCTLn[16]) bit to enable dead-time function and DTCNT (PWM\_DTCTLn[11:0]) to control dead-time period, the dead-time can be calculated from the following formula:

Dead-time = (DTCNT[11:0]+1) \* PWMx CLK period

Figure 6.7-21 indicates the dead-time insertion for one pair of PWM signals.

Dead-time insertion clock source can be selected from prescaler output by setting DTCKSEL (PWM\_DTCTLn[24]) to 1. By default, clock source is come from PWM\_CLK, which is prescaler input. Please note that the PWM DTCTLn is a write-protected register.

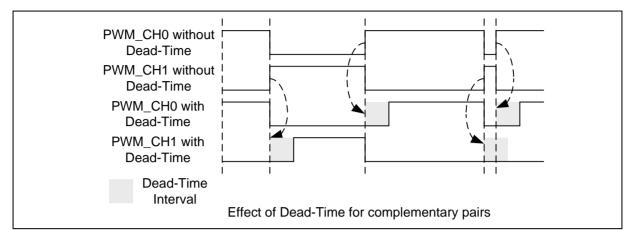



Figure 6.7-21 Dead-Time Insertion

#### 6.7.5.17PWM Mask Output Function

Each of the PWM channel output value can be manually overridden with the settings in the PWM Mask Enable Control Register (PWM\_MSKEN) and the PWM Masked Data Register (PWM\_MSK) With these settings, the PWM channel outputs can be assigned to specified logic states independent of the duty cycle comparison units. The PWM mask bits are useful when controlling various types of Electrically Commutated Motor (ECM) like a BLDC motor. The PWM\_MSKEN register contains six bits, MSKENn (PWM\_MSKEN[5:0]). If the MASKENn is set to active-high, the PWM channel n output will be overridden. The PWM\_MSK register contains six bits, MSKDATn (PWM\_MSK[5:0]). The bit value of the MSKDATn determines the state value of the PWM channel n output when the channel is overridden. Figure 6.7-22 shows an example of how PWM mask control can be used for the override feature.

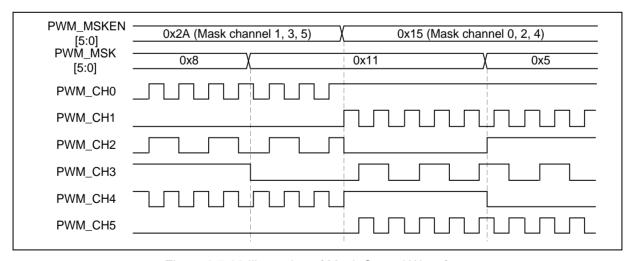



Figure 6.7-22 Illustration of Mask Control Waveform

#### 6.7.5.18PWM Brake

Each PWM module has two external input brake control signals. The external signals will be filtered by a 3-bit noise filter. In addition, it can be inversed by setting the bit BRKxPINV (PWM\_BNF[15, 7], x denotes input external pin 0 or 1) to realize the polarity setup for the brake control signals. The noise

filter sampling clock can be selected by setting bits BRKxFCS (PWM BNF[11:9, 3:1]) to fit different noise properties. Moreover, by setting the bits BRKxFCNT (PWM BNF[14:12, 6:4]), user can define by how many sampling clock cycles a filter will recognize the effective edge of the brake signal. Configuring the BRKxFEN (PWM BNF[8, 0]) will enable the noise filter function. By default, it is disabled.

nuvoton

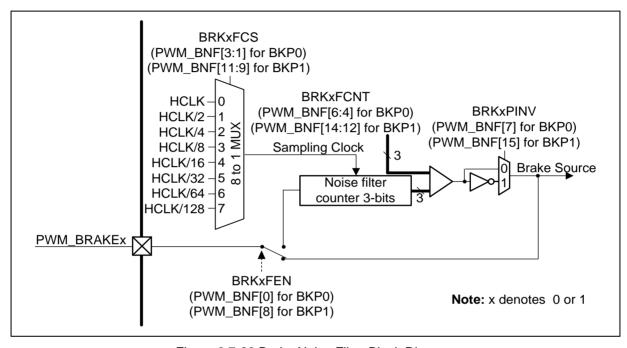



Figure 6.7-23 Brake Noise Filter Block Diagram

Each complementary channel pair shares a PWM brake function, as shown in Figure 6.7-24. To control paired channels to output safetv state. user can setup **BRKAEVEN** (PWM BRKCTL0 1[17:16]) for even channels and BRKAODD (PWM BRKCTL0 1[19:18]) for odd channels when the fault brake event happens. There are two brake detectors: Edge detector and Level detector. When the edge detector detects the brake signal and BRKEIENn m (PWM\_INTEN1[2:0]) is enabled, the brake function generates BRK\_INT. This interrupt needs software to clear, and the BRKESTSn (PWM\_INTSTS1[21:16]) brake state will keep until the next PWM period starts after the interrupt cleared. The brake function can also operate in another way through the level detector. Once the level detector detects the brake signal and the BRKLIENn m (PWM INTEN1[10:8]) is also enabled, the brake function will generate BRK INT, but BRKLSTSn (PWM INTSTS1[29:24]) brake state will auto recovery to normal output while level brake source recovery to high level and pass through "Low Level Detection" at the PWM waveform period when brake condition removed without clear interrupt.

nuvoton

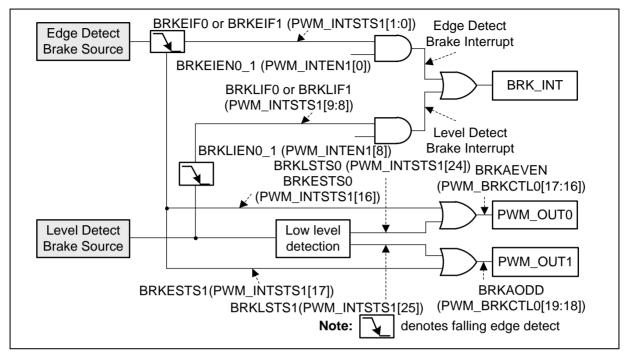
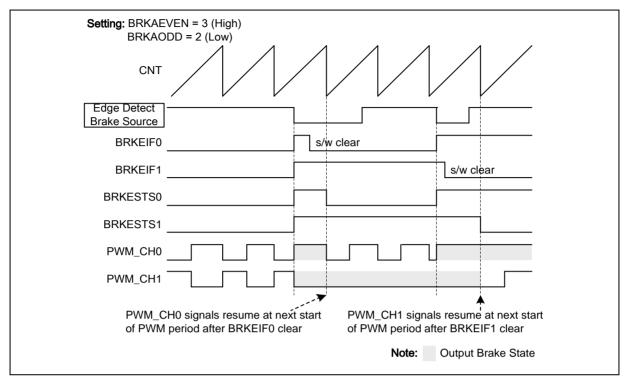




Figure 6.7-24 Brake Block Diagram for PWM CH0 and PWM CH1 Pair

Figure 6.7-25 illustrates the edge detector waveform for PWM CH0 and PWM CH1 pair. In this case, the edge detect brake source has occurred twice for the brake events. When the event occurs, both of the BRKEIF0 and BRKEIF1 flags are set and BRKESTS0 and BRKESTS1 are also set to indicate brake state of PWM\_CH0 and PWM\_CH1. For the first occurring event, software writes 1 to clear the BRKEIFO. After that, the BRKESTSO is cleared by hardware at the next start of the PWM period. At the same moment, the PWM CH0 outputs the normal waveform even though the brake event is still occurring. The second event also triggers the same flags, but at this time, software writes 1 to clear the BRKEIF1. Afterward, PWM CH1 outputs normally at the next start of the PWM period.

As a contrast to the edge detector example, Figure 6.7-26 illustrates the level detector waveform for PWM\_CH0 and PWM\_CH1 pair. In this case, the BRKLIF0 and BRKLIF1 can only indicate the brake event having occurred. The BRKLSTS0 and BRKLSTS1 brake states will automatically recover at the start of the next PWM period no matter at what states the BRKLIF0 and BRKLIF1 are at that moment.



nuvoton

Figure 6.7-25 Edge Detector Waveform for PWM\_CH0 and PWM\_CH1 Pair

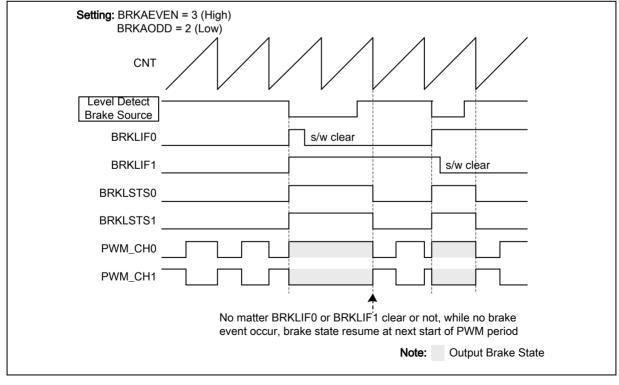



Figure 6.7-26 Level Detector Waveform for PWM\_CH0 and PWM\_CH1 Pair

The two kinds of detectors detect the same three brake sources: two from external input signals and one from system fail but with different brake sources enable. In addition to the three sources, these two detectors have one more brake condition triggered by software, as shown in Figure 6.7-27.

Among the above described brake sources, the brake source coming from system fail can still be specified to several different system fail conditions. These conditions include clock fail, Brown-out detect and Cortex®-M0 lockup. Figure 6.7-28 shows that by setting corresponding enable bits, the enabled system fail condition can be one of the sources to issue the Brake system fail to the PWM brake.

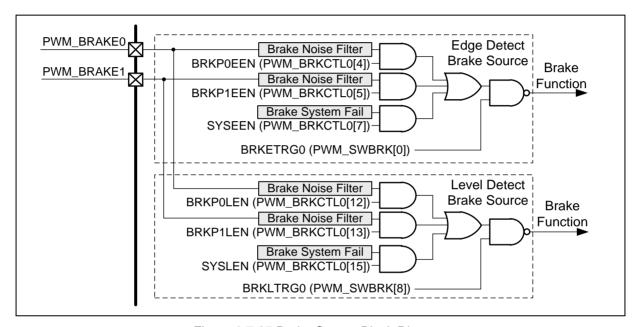



Figure 6.7-27 Brake Source Block Diagram

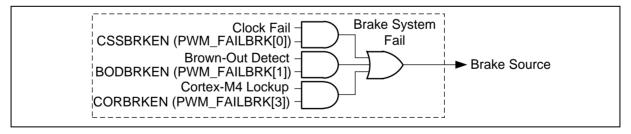



Figure 6.7-28 Brake System Fail Block Diagram

#### 6.7.5.19Polarity Control

Each PWM port, from PWM\_CH0 to PWM\_CH5, has an independent polarity control module to configure the polarity of the active state of PWM output. By default, the PWM output is active high. This implies the PWM OFF state is low and ON state is high. This definition is variable through setting the PWM Negative Polarity Control Register (PWM\_POLCTL), for each individual PWM channel. Figure 6.7-29 shows the initial state before PWM starting with different polarity settings.

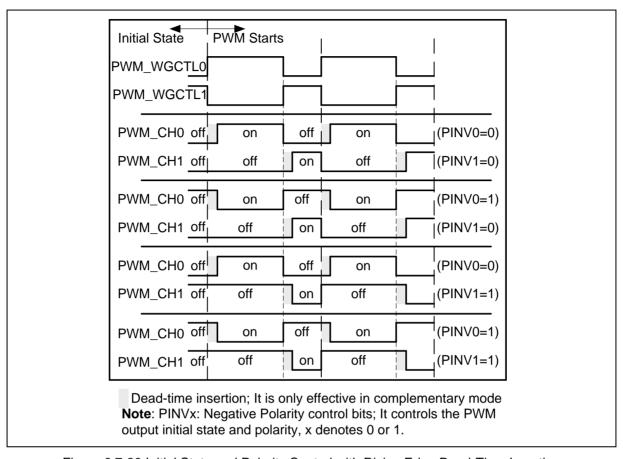



Figure 6.7-29 Initial State and Polarity Control with Rising Edge Dead-Time Insertion

#### 6.7.5.20PWM Interrupt Generator

nuvoton

There are three independent interrupts for each PWM as shown in Figure 6.7-30.

The 1<sup>st</sup> PWM interrupt (PWM INT) comes from PWM complementary pair events. The counter can generate the Zero point Interrupt Flag ZIFn (PWM INTSTS0[5:0]) and the Period point Interrupt Flag PIFn (PWM\_INTSTS0[13:8]). When PWM channel n's counter equals to the comparator value stored in PWM CMPDATn, the different interrupt flags will be triggered depending on the counting direction. If the matching occurs at up-count direction, the Up Interrupt Flag CMPUIFn (PWM\_INTSTS0[21:16]) is set and if matching at the opposite direction, the Down Interrupt Flag CMPDIFn (PWM INTSTS0[29:24]) is set. Channel n's complementary channel m's comparator also generates the CMPUIFm and CMPDIFm in the same way. If the correspond interrupt enable bits are set, the trigger events will generates interrupt signals.

The 2<sup>nd</sup> interrupt is the capture interrupt (CAP\_INT). It shares the PWM\_INT vector in NVIC. The CAP INT can be generated when the CRLIFn (PWM CAPIF[5:0]) is triggered and the Capture Rising Interrupt Enable bit CAPRIENn (PWM CAPIEN[5:01) is set to 1. Or in the falling edge condition, the CFLIFn (PWM\_CAPIF[13:8]) can be triggered when the Capture Falling Interrupt Enable bit CAPFIENn (PWM CAPIEN[13:8]) is set to 1.

The last one is the brake interrupt (BRK\_INT). The detail of the BRK\_INT is described in the PWM Brake section.

Figure 6.7-30 demonstrates the architecture of the PWM interrupts.

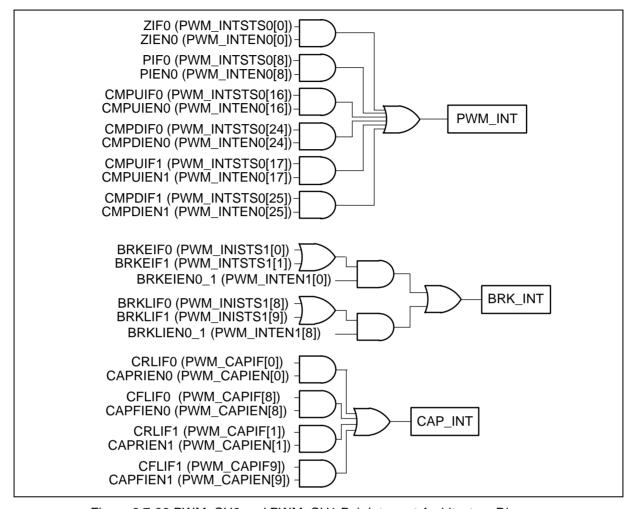



Figure 6.7-30 PWM\_CH0 and PWM\_CH1 Pair Interrupt Architecture Diagram

#### 6.7.5.21PWM Trigger ADC Generator

nuvoton

PWM can be one of the ADC conversion trigger source. Each PWM pair channels share the same trigger source. Setting TRGSELn is to select the trigger sources, where TRGSELn is TRGSEL0, TRGSEL1, ..., and TRGSEL5, which are located in PWM ADCTS0[3:0], PWM ADCTS0[11:8], PWM\_ADCTS0[19:16], PWM\_ADCTS0[27:24], PWM\_ADCTS1[3:0] and PWM\_EADTS1[11:8], respectively. Setting TRGENn is to enable the trigger output to ADC, where TRGENn is TRGEN0. TRGEN5, which are located in PWM ADCTS0[7], TRGEN1. .... PWM ADCTS0[15], PWM\_ADCTS0[23], PWM\_ADCTS0[31], PWM\_ADCTS1[7] and PWM\_ADCTS1[15], respectively. The number n (n = 0,1,...,5) denotes PWM channel number.

There are 7 PWM events can be selected as the trigger source for one pair of channels. Figure 6.7-31 is an example of PWM CH0 and PWM CH1. PWM can trigger ADC to start conversion in different timings by setting PERIOD and CMPDAT. Figure 6.7-32 is the trigger ADC timing waveform in the updown counter type.

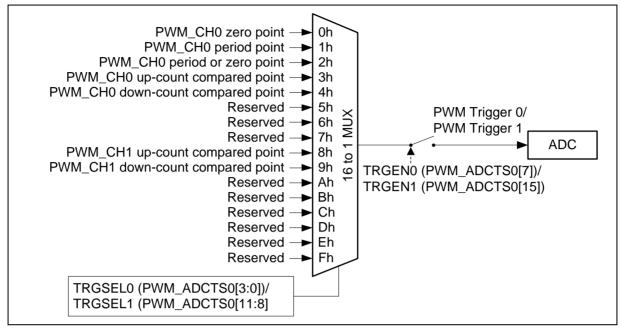



Figure 6.7-31 PWM\_CH0 and PWM\_CH1 Pair Trigger ADC Block Diagram

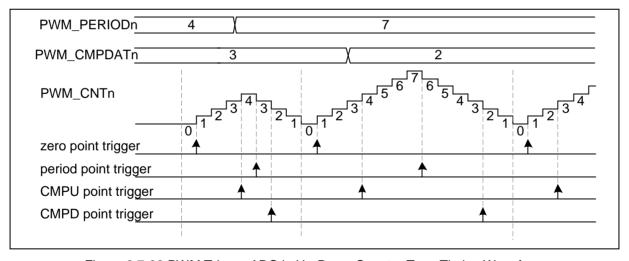



Figure 6.7-32 PWM Trigger ADC in Up-Down Counter Type Timing Waveform

#### 6.7.5.22 Capture Operation

nuvoton

The channels of the capture input and the PWM output share the same pin and counter. The counter can operate in up or down counter type. The capture function will always latch the PWM counter to the register RCAPDATn (PWM\_RCAPDATn[15:0]) or the register FCAPDATn (PWM\_FCAPDATn[15:0]) if the input channel has a rising transition or a falling transition, respectively. The capture function will also generate an interrupt CAP\_INT (using PWM\_INT vector) if the rising or falling latch occurs and the corresponding channel n's rising or falling interrupt enable bits are set, where the CAPRIENn (PWM\_CAPIEN[5:0]) is for the rising edge and the CAPFIENn (PWM\_CAPIEN[13:8]) is for the falling edge. When rising or falling latch occurs, the corresponding PWM counter may be reloaded with the value PWM\_PERIODn, depending on the setting of RCRLDENn or FCRLDENn (where RCRLDENn and FCRLDENn are located at PWM\_CAPCTL[21:16] and PWM\_CAPCTL[29:24], respectively). Note

that the corresponding GPIO pins must be configured as the capture function by enable the CAPINENn (PWM\_CAPINEN[5:0]) for the corresponding capture channel n. Figure 6.7-33 is the capture block diagram of channel 0.

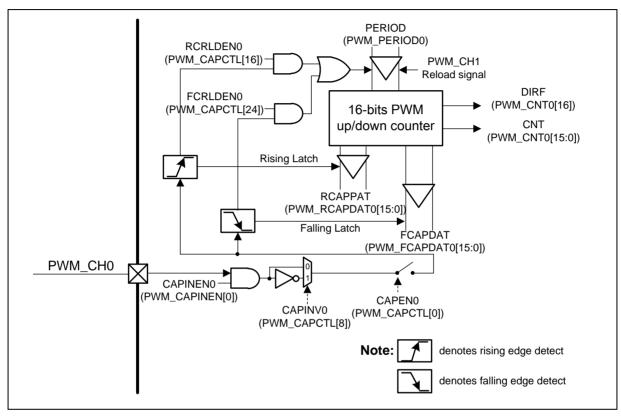



Figure 6.7-33 PWM CH0 Capture Block Diagram

Figure 6.7-34 illustrates the capture function timing. In this case, the capture counter is set as PWM down counter type and the PERIOD is set to 8 so that the counter counts in the down direction, from 8 to 0. When detecting a falling edge at the capture input pin, the capture function latches counter value to the PWM\_FCAPDATn. When detecting the rising edge, it latches the counter value to the PWM\_RCAPDATn. In this timing diagram, when the falling edge is detected at the first time, the capture function will reload the counter value from the PERIOD setting because the FCRLDENn is enabled. But at the second time, the falling edge does not result in a reload because of the disabled FCRLDENn. In this example, the counter also reloads at the rising edge of the capture input because the RCRLDENn is enabled, too.

Moreover, if the case is setup as the up counter type, the counter will reload the value zero and count up to the value PERIOD. It is important that the counter is shared by two complement channels, so the counter reloads time also controlled by another channel's reload signal.

Figure 6.7-34 also illustrates the timing example for the interrupt and interrupt flag generation. When the rising edge at channel n is detected, the corresponding bit CRLIFn (PWM\_CAPIF[5:0]) is set by hardware. Similarly, a falling edge detection at chnnel n causes the corresponding bit CFLIFn (PWM\_CAPIF[13:8]) set by hardware. CRLIFn and CFLIFn can be cleared by software by writing '1'. If the CRLIFn is set and the CRLIENn is enabled, the capture function generates an interrupt. If the CFLIFn is set and the CAPFIENn is enabled, the interrupt also happens.

A condition which is not shown in Figure 6.7-34 is: if the rising latch happens again when the CRLIF is

already set, the Over run status CRLIFOVn (PWM CAPSTS[5:0]) will be set to 1 by hardware to indicate the CRLIF overrunning. Also, if the falling latch happens again, the same hardware operation occurs for the interrupt flag CFLIF and the Over run status CFLIFOVn (PWM CAPSTS[13:8]).

nuvoton

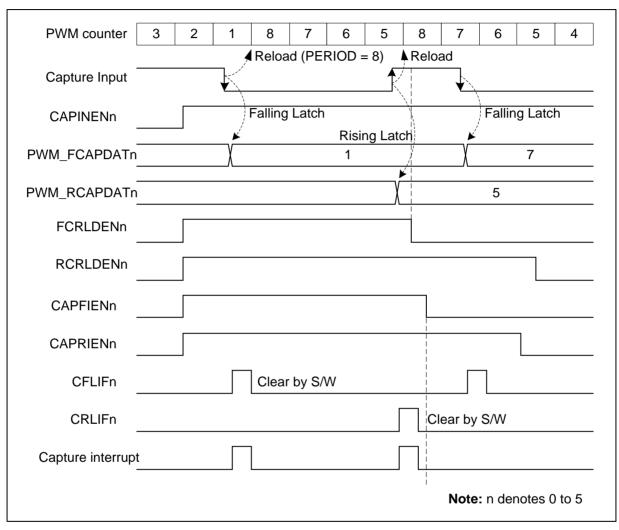



Figure 6.7-34 Capture Operation Waveform

The capture pulse width can be calculated according to the following formula:

For the negative pulse case, the channel low pulse width is calculated as (PWM\_PERIODn + 1 -PWM\_RCAPDATn). In Figure 6.7-34 case, the low pulse width is 8+1-5=4

For the positive pulse case, the channel high pulse width is calculated as (PWM PERIODn + 1 -PWM\_FCAPDATn). In Figure 6.7-34 case, high pulse width is 8+1-7 = 2

# 6.7.6 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

| Register                                                        | Offset       | R/W | Description                    | Reset Value |  |  |  |
|-----------------------------------------------------------------|--------------|-----|--------------------------------|-------------|--|--|--|
| PWM Base Address:  PWM0_BA = 0x4004_0000  PWM1_BA = 0x4014_0000 |              |     |                                |             |  |  |  |
| PWM_CTL0<br>x=0, 1                                              | PWMx_BA+0x00 | R/W | PWM Control Register 0         | 0x0000_0000 |  |  |  |
| PWM_CTL1<br>x=0, 1                                              | PWMx_BA+0x04 | R/W | PWM Control Register 1         | 0x0000_0000 |  |  |  |
| PWM_CLKSRC<br>x=0, 1                                            | PWMx_BA+0x10 | R/W | PWM Clock Source Register      | 0x0000_0000 |  |  |  |
| PWM_CLKPSC0<br>_1<br>x=0, 1                                     | PWMx_BA+0x14 | R/W | PWM Clock Pre-scale Register 0 | 0x0000_0000 |  |  |  |
| PWM_CLKPSC2<br>_3<br>x=0, 1                                     | PWMx_BA+0x18 | R/W | PWM Clock Pre-scale Register 2 | 0x0000_0000 |  |  |  |
| PWM_CLKPSC4<br>_5<br>x=0, 1                                     | PWMx_BA+0x1C | R/W | PWM Clock Pre-scale Register 4 | 0x0000_0000 |  |  |  |
| PWM_CNTEN<br>x=0, 1                                             | PWMx_BA+0x20 | R/W | PWM Counter Enable Register    | 0x0000_0000 |  |  |  |
| PWM_CNTCLR<br>x=0, 1                                            | PWMx_BA+0x24 | R/W | PWM Clear Counter Register     | 0x0000_0000 |  |  |  |
| PWM_PERIOD0<br>x=0, 1                                           | PWMx_BA+0x30 | R/W | PWM Period Register 0          | 0x0000_0000 |  |  |  |
| PWM_PERIOD2<br>x=0, 1                                           | PWMx_BA+0x38 | R/W | PWM Period Register 2          | 0x0000_0000 |  |  |  |
| PWM_PERIOD4<br>x=0, 1                                           | PWMx_BA+0x40 | R/W | PWM Period Register 4          | 0x0000_0000 |  |  |  |
| PWM_CMPDAT0<br>x=0, 1                                           | PWMx_BA+0x50 | R/W | PWM Comparator Register 0      | 0x0000_0000 |  |  |  |
| PWM_CMPDAT1<br>x=0, 1                                           | PWMx_BA+0x54 | R/W | PWM Comparator Register 1      | 0x0000_0000 |  |  |  |
| PWM_CMPDAT2<br>x=0, 1                                           | PWMx_BA+0x58 | R/W | PWM Comparator Register 2      | 0x0000_0000 |  |  |  |
| PWM_CMPDAT3<br>x=0, 1                                           | PWMx_BA+0x5C | R/W | PWM Comparator Register 3      | 0x0000_0000 |  |  |  |
| PWM_CMPDAT4                                                     | PWMx_BA+0x60 | R/W | PWM Comparator Register 4      | 0x0000_0000 |  |  |  |

| x=0, 1                      |              |     |                                            |             |
|-----------------------------|--------------|-----|--------------------------------------------|-------------|
| PWM_CMPDAT5<br>x=0, 1       | PWMx_BA+0x64 | R/W | PWM Comparator Register 5                  | 0x0000_0000 |
| PWM_DTCTL0_<br>1<br>x=0, 1  | PWMx_BA+0x70 | R/W | PWM Dead-Time Control Register 0_1         | 0x0000_0000 |
| PWM_DTCTL2_<br>3<br>x=0, 1  | PWMx_BA+0x74 | R/W | PWM Dead-Time Control Register 2_3         | 0x0000_0000 |
| PWM_DTCTL4_<br>5<br>x=0, 1  | PWMx_BA+0x78 | R/W | PWM Dead-Time Control Register 4_5         | 0x0000_0000 |
| PWM_CNT0<br>x=0, 1          | PWMx_BA+0x90 | R   | PWM Counter Register 0                     | 0x0000_0000 |
| PWM_CNT2<br>x=0, 1          | PWMx_BA+0x98 | R   | PWM Counter Register 2                     | 0x0000_0000 |
| PWM_CNT4<br>x=0, 1          | PWMx_BA+0xA0 | R   | PWM Counter Register 4                     | 0x0000_0000 |
| PWM_WGCTL0<br>x=0, 1        | PWMx_BA+0xB0 | R/W | PWM Generation Register 0                  | 0x0000_0000 |
| PWM_WGCTL1<br>x=0, 1        | PWMx_BA+0xB4 | R/W | PWM Generation Register 1                  | 0x0000_0000 |
| PWM_MSKEN<br>x=0, 1         | PWMx_BA+0xB8 | R/W | PWM Mask Enable Register                   | 0x0000_0000 |
| PWM_MSK<br>x=0, 1           | PWMx_BA+0xBC | R/W | PWM Mask Data Register                     | 0x0000_0000 |
| PWM_BNF<br>x=0, 1           | PWMx_BA+0xC0 | R/W | PWM Brake Noise Filter Register            | 0x0000_0000 |
| PWM_FAILBRK<br>x=0, 1       | PWMx_BA+0xC4 | R/W | PWM System Fail Brake Control Register     | 0x0000_0000 |
| PWM_BRKCTL0<br>_1<br>x=0, 1 | PWMx_BA+0xC8 | R/W | PWM Brake Edge Detect Control Register 0_1 | 0x0000_0000 |
| PWM_BRKCTL2<br>_3<br>x=0, 1 | PWMx_BA+0xCC | R/W | PWM Brake Edge Detect Control Register 2_3 | 0x0000_0000 |
| PWM_BRKCTL4<br>_5<br>x=0, 1 | PWMx_BA+0xD0 | R/W | PWM Brake Edge Detect Control Register 4_5 | 0x0000_0000 |
| PWM_POLCTL<br>x=0, 1        | PWMx_BA+0xD4 | R/W | PWM Pin Polar Inverse Register             | 0x0000_0000 |
| PWM_POEN                    | PWMx_BA+0xD8 | R/W | PWM Output Enable Register                 | 0x0000_0000 |

nuvoTon

nuvoTon

| x=0, 1                     |               |     |                                          |             |
|----------------------------|---------------|-----|------------------------------------------|-------------|
| PWM_SWBRK<br>x=0, 1        | PWMx_BA+0xDC  | W   | PWM Software Brake Control Register      | 0x0000_0000 |
| PWM_INTEN0<br>x=0, 1       | PWMx_BA+0xE0  | R/W | PWM Interrupt Enable Register 0          | 0x0000_0000 |
| PWM_INTEN1<br>x=0, 1       | PWMx_BA+0xE4  | R/W | PWM Interrupt Enable Register 1          | 0x0000_0000 |
| PWM_INTSTS0<br>x=0, 1      | PWMx_BA+0xE8  | R/W | PWM Interrupt Flag Register 0            | 0x0000_0000 |
| PWM_INTSTS1<br>x=0, 1      | PWMx_BA+0xEC  | R/W | PWM Interrupt Flag Register 1            | 0x0000_0000 |
| PWM_ADCTS0<br>x=0, 1       | PWMx_BA+0xF8  | R/W | PWM Trigger ADC Source Select Register 0 | 0x0000_0000 |
| PWM_ADCTS1<br>x=0, 1       | PWMx_BA+0xFC  | R/W | PWM Trigger ADC Source Select Register 1 | 0x0000_0000 |
| PWM_SSCTL<br>x=0, 1        | PWMx_BA+0x110 | R/W | PWM Synchronous Start Control Register   | 0x0000_0000 |
| PWM_SSTRG<br>x=0, 1        | PWMx_BA+0x114 | W   | PWM Synchronous Start Trigger Register   | 0x0000_0000 |
| PWM_STATUS<br>x=0, 1       | PWMx_BA+0x120 | R/W | PWM Status Register                      | 0x0000_0000 |
| PWM_CAPINEN<br>x=0, 1      | PWMx_BA+0x200 | R/W | PWM Capture Input Enable Register        | 0x0000_0000 |
| PWM_CAPCTL<br>x=0, 1       | PWMx_BA+0x204 | R/W | PWM Capture Control Register             | 0x0000_0000 |
| PWM_CAPSTS<br>x=0, 1       | PWMx_BA+0x208 | R   | PWM Capture Status Register              | 0x0000_0000 |
| PWM_RCAPDAT<br>0<br>x=0, 1 | PWMx_BA+0x20C | R   | PWM Rising Capture Data Register 0       | 0x0000_0000 |
| PWM_FCAPDAT<br>0<br>x=0, 1 | PWMx_BA+0x210 | R   | PWM Falling Capture Data Register 0      | 0x0000_0000 |
| PWM_RCAPDAT<br>1<br>x=0, 1 | PWMx_BA+0x214 | R   | PWM Rising Capture Data Register 1       | 0x0000_0000 |
| PWM_FCAPDAT<br>1<br>x=0, 1 | PWMx_BA+0x218 | R   | PWM Falling Capture Data Register 1      | 0x0000_0000 |
| PWM_RCAPDAT<br>2<br>x=0, 1 | PWMx_BA+0x21C | R   | PWM Rising Capture Data Register 2       | 0x0000_0000 |



| PWM_FCAPDAT<br>2<br>x=0, 1 | PWMx_BA+0x220 | R   | PWM Falling Capture Data Register 2   | 0x0000_0000 |
|----------------------------|---------------|-----|---------------------------------------|-------------|
| PWM_RCAPDAT<br>3<br>x=0, 1 | PWMx_BA+0x224 | R   | PWM Rising Capture Data Register 3    | 0x0000_0000 |
| PWM_FCAPDAT<br>3<br>x=0, 1 | PWMx_BA+0x228 | R   | PWM Falling Capture Data Register 3   | 0x0000_0000 |
| PWM_RCAPDAT<br>4<br>x=0, 1 | PWMx_BA+0x22C | R   | PWM Rising Capture Data Register 4    | 0x0000_0000 |
| PWM_FCAPDAT<br>4<br>x=0, 1 | PWMx_BA+0x230 | R   | PWM Falling Capture Data Register 4   | 0x0000_0000 |
| PWM_RCAPDAT<br>5<br>x=0, 1 | PWMx_BA+0x234 | R   | PWM Rising Capture Data Register 5    | 0x0000_0000 |
| PWM_FCAPDAT<br>5<br>x=0, 1 | PWMx_BA+0x238 | R   | PWM Falling Capture Data Register 5   | 0x0000_0000 |
| PWM_CAPIEN<br>x=0, 1       | PWMx_BA+0x250 | R/W | PWM Capture Interrupt Enable Register | 0x0000_0000 |
| PWM_CAPIF<br>x=0, 1        | PWMx_BA+0x254 | R/W | PWM Capture Interrupt Flag Register   | 0x0000_0000 |
| PWM_PBUF0<br>x=0, 1        | PWMx_BA+0x304 | R   | PWM PERIOD0 Buffer                    | 0x0000_0000 |
| PWM_PBUF2<br>x=0, 1        | PWMx_BA+0x30C | R   | PWM PERIOD2 Buffer                    | 0x0000_0000 |
| PWM_PBUF4<br>x=0, 1        | PWMx_BA+0x314 | R   | PWM PERIOD4 Buffer                    | 0x0000_0000 |
| PWM_CMPBUF0<br>x=0, 1      | PWMx_BA+0x31C | R   | PWM CMPDAT0 Buffer                    | 0x0000_0000 |
| PWM_CMPBUF1<br>x=0, 1      | PWMx_BA+0x320 | R   | PWM CMPDAT1 Buffer                    | 0x0000_0000 |
| PWM_CMPBUF2<br>x=0, 1      | PWMx_BA+0x324 | R   | PWM CMPDAT2 Buffer                    | 0x0000_0000 |
| PWM_CMPBUF3<br>x=0, 1      | PWMx_BA+0x328 | R   | PWM CMPDAT3 Buffer                    | 0x0000_0000 |
| PWM_CMPBUF4<br>x=0, 1      | PWMx_BA+0x32C | R   | PWM CMPDAT4 Buffer                    | 0x0000_0000 |
| PWM_CMPBUF5<br>x=0, 1      | PWMx_BA+0x330 | R   | PWM CMPDAT5 Buffer                    | 0x0000_0000 |

# 6.7.7 Register Description

# PWM Control Register 0 (PWM\_CTL0)

| Register | Offset       | R/W | Description            | Reset Value |
|----------|--------------|-----|------------------------|-------------|
| PWM_CTL0 | PWMx_BA+0x00 | R/W | PWM Control Register 0 | 0x0000_0000 |

| 31        | 30      | 29       | 28       | 27       | 26       | 25       | 24       |
|-----------|---------|----------|----------|----------|----------|----------|----------|
| DBGTRIOFF | DBGHALT | Reserved |          |          |          |          |          |
| 23        | 22      | 21       | 20       | 19       | 18       | 17       | 16       |
| Rese      | erved   | IMMLDEN5 | IMMLDEN4 | IMMLDEN3 | IMMLDEN2 | IMMLDEN1 | IMMLDEN0 |
| 15        | 14      | 13       | 12       | 11       | 10       | 9        | 8        |
|           |         |          | Rese     | erved    |          |          |          |
| 7         | 6       | 5        | 4        | 3        | 2        | 1        | 0        |
| Rese      | erved   | CTRLD5   | CTRLD4   | CTRLD3   | CTRLD2   | CTRLD1   | CTRLD0   |

| Bits    | Description |                                                                                                                                                                |
|---------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |             | ICE Debug Mode Acknowledge Disable (Write Protect)                                                                                                             |
|         |             | 0 = ICE debug mode acknowledgement effects PWM output.                                                                                                         |
| [04]    | DBGTRIOFF   | PWM pin will be forced as tri-state while ICE debug mode acknowledged.                                                                                         |
| [31]    | DEGIRIOFF   | 1 = ICE debug mode acknowledgement Disabled.                                                                                                                   |
|         |             | PWM pin will keep output no matter ICE debug mode acknowledged or not.                                                                                         |
|         |             | Note: This register is write protected. Refer to REGWRPROT register.                                                                                           |
|         |             | ICE Debug Mode Counter Halt (Write Protect)                                                                                                                    |
|         |             | If counter halt is enabled, PWM all counters will keep current value until exit ICE debug mode.                                                                |
| [30]    | DBGHALT     | 0 = ICE debug mode counter halt Disabled.                                                                                                                      |
|         |             | 1 = ICE debug mode counter halt Enabled.                                                                                                                       |
|         |             | Note: This register is write protected. Refer to REGWRPROT register.                                                                                           |
| [29:22] | Reserved    | Reserved.                                                                                                                                                      |
|         |             | Immediately Load Enable control                                                                                                                                |
|         |             | Each bit n controls the corresponding PWM channel n.                                                                                                           |
| [21:16] | IMMLDENn    | 0 = PERIOD will load to PBUF at the end point of each period. CMPDAT will load to CMPBUF at the end point or center point of each period by setting CTRLD bit. |
|         |             | 1 = PERIOD/CMPDAT will load to PBUF and CMPBUF immediately when software update PERIOD/CMPDAT.                                                                 |
|         |             | Note: If IMMLDENn is enabled, WINLDENn and CTRLDn will be invalid.                                                                                             |
| [15:6]  | Reserved    | Reserved.                                                                                                                                                      |
|         |             | Center Re-Load                                                                                                                                                 |
| [5:0]   | CTRLDn      | Each bit n controls the corresponding PWM channel n.                                                                                                           |
|         |             | In up-down counter type, PERIOD will load to PBUF at the end point of each period.                                                                             |



CMPDAT will load to CMPBUF at the center point of a period.



# PWM Control Register 1 (PWM\_CTL1)

| Register | Offset       | R/W | Description            | Reset Value |
|----------|--------------|-----|------------------------|-------------|
| PWM_CTL1 | PWMx_BA+0x04 | R/W | PWM Control Register 1 | 0x0000_0000 |

| 31   | 30             | 29       | 28       | 27       | 26       | 25   | 24   |
|------|----------------|----------|----------|----------|----------|------|------|
|      |                | Reserved | PWMMODE4 | PWMMODE2 | PWMMODE0 |      |      |
| 23   | 22             | 21       | 20       | 19       | 18       | 17   | 16   |
|      |                |          | Res      | erved    |          |      |      |
| 15   | 14             | 13       | 12       | 11       | 10       | 9    | 8    |
|      |                | Res      | erved    |          |          | CNTT | YPE4 |
| 7    | 6              | 5        | 4        | 3        | 2        | 1    | 0    |
| Rese | Reserved CNTTY |          |          | Rese     | erved    | CNTT | YPE0 |

| Bits    | Description |                                                                                                                                                                                                                               |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:27] | Reserved    | Reserved.                                                                                                                                                                                                                     |
| [26:24] | PWMMODEn    | PWM Mode  Each bit n controls the corresponding PWM channel n.  0 = PWM independent mode.  1 = PWM complementary mode.  Note: When operating in group function, these bits must all set to the same mode.                     |
| [23:10] | Reserved    | Reserved.                                                                                                                                                                                                                     |
| [9:8]   | CNTTYPE4    | PWM Counter Behavior Type 4  Each bit n controls corresponding PWM channel n.  00 = Up counter type (supports in capture mode).  01 = Down count type (supports in capture mode).  10 = Up-down counter type.  11 = Reserved. |
| [7:6]   | Reserved    | Reserved.                                                                                                                                                                                                                     |
| [5:4]   | CNTTYPE2    | PWM Counter Behavior Type 2  Each bit n controls corresponding PWM channel n.  00 = Up counter type (supports in capture mode).  01 = Down count type (supports in capture mode).  10 = Up-down counter type.  11 = Reserved. |
| [3:2]   | Reserved    | Reserved.                                                                                                                                                                                                                     |
| [1:0]   | CNTTYPE0    | PWM Counter Behavior Type 0  Each bit n controls corresponding PWM channel n.  00 = Up counter type (supports in capture mode).                                                                                               |



| 01 = Down count type (supports in capture mode). |
|--------------------------------------------------|
| 10 = Up-down counter type.                       |
| 11 = Reserved.                                   |



# PWM Clock Source Register (PWM\_CLKSRC)

| Register       | Offset       | R/W | Description               | Reset Value |
|----------------|--------------|-----|---------------------------|-------------|
| PWM_CLKSR<br>C | PWMx_BA+0x10 | R/W | PWM Clock Source Register | 0x0000_0000 |

| 31        | 30       | 29       | 28       | 27 | 26 | 25       | 24 |  |  |  |
|-----------|----------|----------|----------|----|----|----------|----|--|--|--|
|           | Reserved |          |          |    |    |          |    |  |  |  |
| 23        | 22       | 21       | 20       | 19 | 18 | 17       | 16 |  |  |  |
|           |          | Reserved | ECLKSRC4 |    |    |          |    |  |  |  |
| 15        | 14       | 13       | 12       | 11 | 10 | 9        | 8  |  |  |  |
|           |          | Reserved |          |    |    | ECLKSRC2 |    |  |  |  |
| 7 6 5 4 3 |          |          |          |    | 2  | 1        | 0  |  |  |  |
| Reserved  |          |          |          |    |    | ECLKSRC0 |    |  |  |  |

| Bits    | Description |                                       |
|---------|-------------|---------------------------------------|
| [31:19] | Reserved    | Reserved.                             |
|         |             | PWM_CH45 External Clock Source Select |
|         |             | 000 = PWMx_CLK, x denotes 0 or 1.     |
|         |             | 001 = TIMER0 overflow.                |
| [18:16] | ECLKSRC4    | 010 = TIMER1 overflow.                |
|         |             | 011 = TIMER2 overflow.                |
|         |             | 100 = TIMER3 overflow.                |
|         |             | Others = Reserved.                    |
| [15:11] | Reserved    | Reserved.                             |
|         |             | PWM_CH23 External Clock Source Select |
|         |             | 000 = PWMx_CLK, x denotes 0 or 1.     |
|         |             | 001 = TIMER0 overflow.                |
| [10:8]  | ECLKSRC2    | 010 = TIMER1 overflow.                |
|         |             | 011 = TIMER2 overflow.                |
|         |             | 100 = TIMER3 overflow.                |
|         |             | Others = Reserved.                    |
| [7:3]   | Reserved    | Reserved.                             |
|         |             | PWM_CH01 External Clock Source Select |
|         |             | 000 = PWMx_CLK, x denotes 0 or 1.     |
|         |             | 001 = TIMER0 overflow.                |
| [2:0]   | ECLKSRC0    | 010 = TIMER1 overflow.                |
|         |             | 011 = TIMER2 overflow.                |
|         |             | 100 = TIMER3 overflow.                |
|         |             | Others = Reserved.                    |



#### PWM Clock Pre-Scale Register 0\_1, 2\_3, 4\_5 (PWM\_CLKPSC0\_1, 2\_3, 4\_5)

| Register          | Offset       | R/W | Description                      | Reset Value |
|-------------------|--------------|-----|----------------------------------|-------------|
| PWM_CLKPS<br>C0_1 | PWMx_BA+0x14 | R/W | PWM Clock Pre-scale Register 0_1 | 0x0000_0000 |
| PWM_CLKPS<br>C2_3 | PWMx_BA+0x18 | R/W | PWM Clock Pre-scale Register 2_3 | 0x0000_0000 |
| PWM_CLKPS<br>C4_5 | PWMx_BA+0x1C | R/W | PWM Clock Pre-scale Register 4_5 | 0x0000_0000 |

| 31              | 30              | 29 | 28   | 27    | 26 | 25 | 24 |  |  |  |
|-----------------|-----------------|----|------|-------|----|----|----|--|--|--|
|                 | Reserved        |    |      |       |    |    |    |  |  |  |
| 23              | 22              | 21 | 20   | 19    | 18 | 17 | 16 |  |  |  |
|                 |                 |    | Rese | erved |    |    |    |  |  |  |
| 15              | 14              | 13 | 12   | 11    | 10 | 9  | 8  |  |  |  |
|                 | Reserved CLKPSC |    |      |       |    |    |    |  |  |  |
| 7 6 5 4 3 2 1 0 |                 |    |      |       |    |    | 0  |  |  |  |
|                 | CLKPSC[7:0]     |    |      |       |    |    |    |  |  |  |

| Bits    | Description        | escription                                                                                                                                                       |  |  |  |  |  |
|---------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:12] | Reserved Reserved. |                                                                                                                                                                  |  |  |  |  |  |
|         |                    | PWM Counter Clock Pre-Scale                                                                                                                                      |  |  |  |  |  |
|         |                    | The clock of PWM counter is decided by clock prescaler. Each PWM pair share one PWM counter clock prescaler. The clock of PWM counter is divided by (CLKPSC+ 1). |  |  |  |  |  |



# **PWM Counter Enable Register (PWM\_CNTEN)**

| Register  | Offset       | R/W | Description                 | Reset Value |
|-----------|--------------|-----|-----------------------------|-------------|
| PWM_CNTEN | PWMx_BA+0x20 | R/W | PWM Counter Enable Register | 0x0000_0000 |

| 31              | 30       | 29 | 28     | 27       | 26     | 25       | 24     |  |  |  |
|-----------------|----------|----|--------|----------|--------|----------|--------|--|--|--|
|                 | Reserved |    |        |          |        |          |        |  |  |  |
| 23              | 22       | 21 | 20     | 19       | 18     | 17       | 16     |  |  |  |
|                 | Reserved |    |        |          |        |          |        |  |  |  |
| 15              | 14       | 13 | 12     | 11       | 10     | 9        | 8      |  |  |  |
|                 | Reserved |    |        |          |        |          |        |  |  |  |
| 7 6 5 4 3 2 1 0 |          |    |        |          |        |          | 0      |  |  |  |
| Reserved        |          |    | CNTEN4 | Reserved | CNTEN2 | Reserved | CNTEN0 |  |  |  |

| Bits   | Description |                                                                                                                             |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------|
| [31:5] | Reserved    | Reserved.                                                                                                                   |
| [4]    | CNTEN4      | PWM Counter Enable 4  0 = PWM Counter and clock prescaler Stop Running.  1 = PWM Counter and clock prescaler Start Running. |
| [3]    | Reserved    | Reserved.                                                                                                                   |
| [2]    | CNTEN2      | PWM Counter Enable 2  0 = PWM Counter and clock prescaler Stop Running.  1 = PWM Counter and clock prescaler Start Running. |
| [1]    | Reserved    | Reserved.                                                                                                                   |
| [0]    | CNTEN0      | PWM Counter Enable 0 0 = PWM Counter and clock prescaler Stop Running. 1 = PWM Counter and clock prescaler Start Running.   |



# PWM Clear Counter Register (PWM\_CNTCLR)

| Register       | Offset       | R/W | Description                | Reset Value |
|----------------|--------------|-----|----------------------------|-------------|
| PWM_CNTCL<br>R | PWMx_BA+0x24 | R/W | PWM Clear Counter Register | 0x0000_0000 |

| 31 | 30       | 29 | 28 | 27       | 26      | 25       | 24      |  |  |
|----|----------|----|----|----------|---------|----------|---------|--|--|
|    | Reserved |    |    |          |         |          |         |  |  |
| 23 | 22       | 21 | 20 | 19       | 18      | 17       | 16      |  |  |
|    | Reserved |    |    |          |         |          |         |  |  |
| 15 | 14       | 13 | 12 | 11       | 10      | 9        | 8       |  |  |
|    | Reserved |    |    |          |         |          |         |  |  |
| 7  | 6        | 5  | 4  | 3        | 2       | 1        | 0       |  |  |
|    | Reserved |    |    | Reserved | CNTCLR2 | Reserved | CNTCLR0 |  |  |

| Bits   | Description | Reserved.                                                                                                                         |  |  |  |  |  |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:5] | Reserved    |                                                                                                                                   |  |  |  |  |  |
| [4]    | CNTCLR4     | Clear PWM Counter Control Bit 4  It is automatically cleared by hardware.  0 = No effect.  1 = Clear 16-bit PWM counter to 0000H. |  |  |  |  |  |
| [3]    | Reserved    | Reserved.                                                                                                                         |  |  |  |  |  |
| [2]    | CNTCLR2     | Clear PWM Counter Control Bit 2 It is automatically cleared by hardware.  0 = No effect.  1 = Clear 16-bit PWM counter to 0000H.  |  |  |  |  |  |
| [1]    | Reserved    | Reserved.                                                                                                                         |  |  |  |  |  |
| [0]    | CNTCLR0     | Clear PWM Counter Control Bit 0 It is automatically cleared by hardware.  0 = No effect.  1 = Clear 16-bit PWM counter to 0000H.  |  |  |  |  |  |



# PWM Period Register 0, 2, 4 (PWM\_PERIOD0, 2, 4)

| Register        | Offset       | R/W | Description           | Reset Value |
|-----------------|--------------|-----|-----------------------|-------------|
| PWM_PERIO<br>D0 | PWMx_BA+0x30 | R/W | PWM Period Register 0 | 0x0000_0000 |
| PWM_PERIO<br>D2 | PWMx_BA+0x38 | R/W | PWM Period Register 2 | 0x0000_0000 |
| PWM_PERIO<br>D4 | PWMx_BA+0x40 | R/W | PWM Period Register 4 | 0x0000_0000 |

| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|----|----------|----|----|----|----|----|----|--|--|--|
|    | Reserved |    |    |    |    |    |    |  |  |  |
| 23 | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|    | Reserved |    |    |    |    |    |    |  |  |  |
| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|    | PERIOD   |    |    |    |    |    |    |  |  |  |
| 7  | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|    | PERIOD   |    |    |    |    |    |    |  |  |  |

| Bits    | Description | Description                                                                                                    |  |  |  |  |  |  |
|---------|-------------|----------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:16] | Reserved    | Reserved.                                                                                                      |  |  |  |  |  |  |
|         |             | PWM Period Register                                                                                            |  |  |  |  |  |  |
|         | PERIOD      | Up-Count mode: In this mode, PWM counter counts from 0 to PERIOD, and restarts from 0.                         |  |  |  |  |  |  |
| [15:0]  |             | Down-Count mode: In this mode, PWM counter counts from PERIOD to 0, and restarts from PERIOD.                  |  |  |  |  |  |  |
|         |             | PWM period time = (PERIOD+1) * PWM_CLK period.                                                                 |  |  |  |  |  |  |
|         |             | Up-Down-Count mode: In this mode, PWM counter counts from 0 to PERIOD, then decrements to 0 and repeats again. |  |  |  |  |  |  |
|         |             | PWM period time = 2 * PERIOD * PWM_CLK period.                                                                 |  |  |  |  |  |  |



# PWM Comparator Register 0~5 (PWM\_CMPDAT0~5)

| Register        | Offset       | R/W | Description               | Reset Value |
|-----------------|--------------|-----|---------------------------|-------------|
| PWM_CMPDA<br>T0 | PWMx_BA+0x50 | R/W | PWM Comparator Register 0 | 0x0000_0000 |
| PWM_CMPDA<br>T1 | PWMx_BA+0x54 | R/W | PWM Comparator Register 1 | 0x0000_0000 |
| PWM_CMPDA<br>T2 | PWMx_BA+0x58 | R/W | PWM Comparator Register 2 | 0x0000_0000 |
| PWM_CMPDA<br>T3 | PWMx_BA+0x5C | R/W | PWM Comparator Register 3 | 0x0000_0000 |
| PWM_CMPDA<br>T4 | PWMx_BA+0x60 | R/W | PWM Comparator Register 4 | 0x0000_0000 |
| PWM_CMPDA<br>T5 | PWMx_BA+0x64 | R/W | PWM Comparator Register 5 | 0x0000_0000 |

| 31 | 30       | 29 | 28   | 27    | 26 | 25 | 24 |  |  |
|----|----------|----|------|-------|----|----|----|--|--|
|    | Reserved |    |      |       |    |    |    |  |  |
| 23 | 22       | 21 | 20   | 19    | 18 | 17 | 16 |  |  |
|    |          |    | Rese | erved |    |    |    |  |  |
| 15 | 14       | 13 | 12   | 11    | 10 | 9  | 8  |  |  |
|    | СМР      |    |      |       |    |    |    |  |  |
| 7  | 6        | 5  | 4    | 3     | 2  | 1  | 0  |  |  |
|    | СМР      |    |      |       |    |    |    |  |  |

| Bits    | Description |                                                                                                                                                                                                                                           |  |  |  |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:16] | Reserved    | Reserved.                                                                                                                                                                                                                                 |  |  |  |
|         |             | PWM Comparator Register                                                                                                                                                                                                                   |  |  |  |
|         | СМР         | CMP use to compare with CNT to generate PWM waveform, interrupt and trigger ADC                                                                                                                                                           |  |  |  |
| [15:0]  |             | In independent mode, PWM_CMPDAT0~5 denote as 6 independent PWM_CH0~5 compared point.                                                                                                                                                      |  |  |  |
| [13.0]  |             | In complementary mode, PWM_CMPDAT0, 2, 4 denote as first compared point, and PWM_CMPDAT1, 3, 5 denote as second compared point for the corresponding 3 complementary pairs PWM_CH0 and PWM_CH1, PWM_CH2 and PWM_CH3, PWM_CH4 and PWM_CH5. |  |  |  |



# PWM Dead-Time Control Register 0\_1, 2\_3, 4\_5 (PWM\_DTCTL0\_1, 2\_3, 4\_5)

| Register         | Offset       | R/W | Description                        | Reset Value |
|------------------|--------------|-----|------------------------------------|-------------|
| PWM_DTCTL<br>0_1 | PWMx_BA+0x70 | R/W | PWM Dead-Time Control Register 0_1 | 0x0000_0000 |
| PWM_DTCTL<br>2_3 | PWMx_BA+0x74 | R/W | PWM Dead-Time Control Register 2_3 | 0x0000_0000 |
| PWM_DTCTL<br>4_5 | PWMx_BA+0x78 | R/W | PWM Dead-Time Control Register 4_5 | 0x0000_0000 |

| 31       | 30             | 29 | 28 | 27 | 26 | 25 | 24 |  |
|----------|----------------|----|----|----|----|----|----|--|
| Reserved |                |    |    |    |    |    |    |  |
| 23       | 22             | 21 | 20 | 19 | 18 | 17 | 16 |  |
|          | Reserved       |    |    |    |    |    |    |  |
| 15       | 14             | 13 | 12 | 11 | 10 | 9  | 8  |  |
|          | Reserved DTCNT |    |    |    |    |    |    |  |
| 7        | 6              | 5  | 4  | 3  | 2  | 1  | 0  |  |
|          | DTCNT          |    |    |    |    |    |    |  |

| Bits    | Description |                                                                                                                                                                                                           |  |  |
|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:25] | Reserved    | Reserved.                                                                                                                                                                                                 |  |  |
| [24]    | DTCKSEL     | Dead-Time Clock Select (Write Protect)  0 = Dead-time clock source from PWM_CLK.  1 = Dead-time clock source from prescaler output.  Note: This register is write protected. Refer to REGWRPROT register. |  |  |
| [23:17] | Reserved    | Reserved.                                                                                                                                                                                                 |  |  |
|         |             | Enable Dead-Time Insertion For PWM Pair (PWM_CH0, PWM_CH1) (PWM_CH2, PWM_CH3) (PWM_CH4, PWM_CH5) (Write Protect)                                                                                          |  |  |
| [16]    | DTEN        | Dead-time insertion is only active when this pair of complementary PWM is enabled. If dead- time insertion is inactive, the outputs of pin pair are complementary without any delay.                      |  |  |
|         |             | 0 = Dead-time insertion Disabled on the pin pair.                                                                                                                                                         |  |  |
|         |             | 1 = Dead-time insertion Enabled on the pin pair.                                                                                                                                                          |  |  |
|         |             | Note: This register is write protected. Refer to REGWRPROT register.                                                                                                                                      |  |  |
| [15:12] | Reserved    | Reserved.                                                                                                                                                                                                 |  |  |
|         |             | Dead-Time Counter (Write Protect)  The dead-time can be calculated from the following formula:                                                                                                            |  |  |
| [11:0]  | DTCNT       | Dead-time = (DTCNT[11:0]+1) * PWM_CLK period.                                                                                                                                                             |  |  |
|         |             | Note: This register is write protected. Refer to REGWRPROT register.                                                                                                                                      |  |  |



# PWM Counter Register 0, 2, 4 (PWM\_CNT0, 2, 4)

| Register | Offset       | R/W | Description            | Reset Value |
|----------|--------------|-----|------------------------|-------------|
| PWM_CNT0 | PWMx_BA+0x90 | R   | PWM Counter Register 0 | 0x0000_0000 |
| PWM_CNT2 | PWMx_BA+0x98 | R   | PWM Counter Register 2 | 0x0000_0000 |
| PWM_CNT4 | PWMx_BA+0xA0 | R   | PWM Counter Register 4 | 0x0000_0000 |

| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |  |
|----|----------|----|----|----|----|----|----|--|--|
|    | Reserved |    |    |    |    |    |    |  |  |
| 23 | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |  |
|    | Reserved |    |    |    |    |    |    |  |  |
| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |  |
|    | CNT      |    |    |    |    |    |    |  |  |
| 7  | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |  |
|    | CNT      |    |    |    |    |    |    |  |  |

| Bits    | Description | escription                                                                                             |  |  |  |
|---------|-------------|--------------------------------------------------------------------------------------------------------|--|--|--|
| [31:17] | Reserved    | Reserved.                                                                                              |  |  |  |
| [16]    | DIRF        | PWM Direction Indicator Flag (Read Only)  0 = Counter is Down count.  1 = Counter is UP count.         |  |  |  |
| [15:0]  | CNT         | PWM Data Register (Read Only) User can monitor CNT to know the current value in 16-bit period counter. |  |  |  |

# PWM Generation Register 0 (PWM\_WGCTL0)

nuvoTon

| Register       | Offset       | R/W | Description               | Reset Value |
|----------------|--------------|-----|---------------------------|-------------|
| PWM_WGCTL<br>0 | PWMx_BA+0xB0 | R/W | PWM Generation Register 0 | 0x0000_0000 |

| 31            | 30                | 29 | 28  | 27       | 26     | 25       | 24       |  |
|---------------|-------------------|----|-----|----------|--------|----------|----------|--|
| Reserved      |                   |    |     | PRDF     | PCTL5  | PRDF     | PRDPCTL4 |  |
| 23            | 22                | 21 | 20  | 19       | 18     | 17       | 16       |  |
| PRDF          | PRDPCTL3 PRDPCTL2 |    |     | PRDPCTL1 |        | PRDPCTL0 |          |  |
| 15            | 14                | 13 | 12  | 11       | 10     | 9        | 8        |  |
|               | Reserved          |    |     |          | ZPCTL5 |          | ZPCTL4   |  |
| 7             | 6                 | 5  | 4   | 3        | 2      | 1        | 0        |  |
| ZPCTL3 ZPCTL2 |                   |    | ZPC | TL1      | ZPC    | TL0      |          |  |

| Bits    | Description | Description                                                                                       |  |  |  |  |  |
|---------|-------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:28] | Reserved    | Reserved.                                                                                         |  |  |  |  |  |
|         |             | PWM Period (Center) Point Control                                                                 |  |  |  |  |  |
|         |             | Each bit n controls the corresponding PWM channel n.                                              |  |  |  |  |  |
|         |             | 00 = Do nothing.                                                                                  |  |  |  |  |  |
|         |             | 01 = PWM period (center) point output Low.                                                        |  |  |  |  |  |
| [27:16] | PRDPCTLn    | 10 = PWM period (center) point output High.                                                       |  |  |  |  |  |
|         |             | 11 = PWM period (center) point output Toggle.                                                     |  |  |  |  |  |
|         |             | PWM can control output level when PWM counter count to (PERIODn+1).                               |  |  |  |  |  |
|         |             | <b>Note:</b> This bit is center point control when PWM counter operating in up-down counter type. |  |  |  |  |  |
| [15:12] | Reserved    | Reserved.                                                                                         |  |  |  |  |  |
|         |             | PWM Zero Point Control                                                                            |  |  |  |  |  |
|         |             | Each bit n controls the corresponding PWM channel n.                                              |  |  |  |  |  |
|         |             | 00 = Do nothing.                                                                                  |  |  |  |  |  |
| [11:0]  | ZPCTLn      | 01 = PWM zero point output Low.                                                                   |  |  |  |  |  |
|         |             | 10 = PWM zero point output High.                                                                  |  |  |  |  |  |
|         |             | 11 = PWM zero point output Toggle.                                                                |  |  |  |  |  |
|         |             | PWM can control output level when PWM counter count to zero.                                      |  |  |  |  |  |



# PWM Generation Register 1 (PWM\_WGCTL1)

| Register       | Offset       | R/W | Description               | Reset Value |
|----------------|--------------|-----|---------------------------|-------------|
| PWM_WGCTL<br>1 | PWMx_BA+0xB4 | R/W | PWM Generation Register 1 | 0x0000_0000 |

| 31                | 30                | 29              | 28 | 27       | 26                | 25       | 24 |
|-------------------|-------------------|-----------------|----|----------|-------------------|----------|----|
|                   | Reserved          |                 |    |          | CMPDCTL5 CMPDCTL4 |          |    |
| 23                | 22                | 21              | 20 | 19       | 18                | 17       | 16 |
| CMPE              | CMPDCTL3 CMPDCTL2 |                 |    | CMPDCTL1 |                   | CMPDCTL0 |    |
| 15                | 14                | 13              | 12 | 11       | 10                | 9        | 8  |
|                   | Reserved          |                 |    | CMPUCTL5 |                   | CMPUCTL4 |    |
| 7                 | 6                 | 5               | 4  | 3        | 2                 | 1        | 0  |
| CMPUCTL3 CMPUCTL2 |                   | CMPUCTL1 CMPUCT |    | JCTL0    |                   |          |    |

| Bits    | Description |                                                                                                |
|---------|-------------|------------------------------------------------------------------------------------------------|
| [31:28] | Reserved    | Reserved.                                                                                      |
|         |             | PWM Compare Down Point Control                                                                 |
|         |             | Each bit n controls the corresponding PWM channel n.                                           |
|         |             | 00 = Do nothing.                                                                               |
|         |             | 01 = PWM compare down point output Low.                                                        |
| [27:16] | CMPDCTLn    | 10 = PWM compare down point output High.                                                       |
|         |             | 11 = PWM compare down point output Toggle.                                                     |
|         |             | PWM can control output level when PWM counter down count to CMPDAT.                            |
|         |             | <b>Note:</b> In complementary mode, CMPDCTL1, 3, 5 use as another CMPDCTL for channel 0, 2, 4. |
| [15:12] | Reserved    | Reserved.                                                                                      |
|         |             | PWM Compare Up Point Control                                                                   |
|         |             | Each bit n controls the corresponding PWM channel n.                                           |
|         |             | 00 = Do nothing.                                                                               |
|         |             | 01 = PWM compare up point output Low.                                                          |
| [11:0]  | CMPUCTLn    | 10 = PWM compare up point output High.                                                         |
|         |             | 11 = PWM compare up point output Toggle.                                                       |
|         |             | PWM can control output level when PWM counter up count to CMPDAT.                              |
|         |             | <b>Note:</b> In complementary mode, CMPUCTL1, 3, 5 use as another CMPUCTL for channel 0, 2, 4. |



# **PWM Mask Enable Register (PWM\_MSKEN)**

| Register  | Offset       | R/W | Description              | Reset Value |
|-----------|--------------|-----|--------------------------|-------------|
| PWM_MSKEN | PWMx_BA+0xB8 | R/W | PWM Mask Enable Register | 0x0000_0000 |

| 31   | 30              | 29 | 28 | 27     | 26     | 25     | 24     |  |  |  |
|------|-----------------|----|----|--------|--------|--------|--------|--|--|--|
|      | Reserved        |    |    |        |        |        |        |  |  |  |
| 23   | 22              | 21 | 20 | 19     | 18     | 17     | 16     |  |  |  |
|      | Reserved        |    |    |        |        |        |        |  |  |  |
| 15   | 14              | 13 | 12 | 11     | 10     | 9      | 8      |  |  |  |
|      | Reserved        |    |    |        |        |        |        |  |  |  |
| 7    | 7 6 5 4 3 2 1 0 |    |    |        |        |        |        |  |  |  |
| Rese | Reserved MSKEN5 |    |    | MSKEN3 | MSKEN2 | MSKEN1 | MSKEN0 |  |  |  |

| Bits   | Description | Description                                                                                                                             |  |  |  |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:6] | Reserved    | Reserved.                                                                                                                               |  |  |  |
|        |             | PWM Mask Enable Control                                                                                                                 |  |  |  |
|        | MSKENn      | Each bit n controls the corresponding PWM channel n.                                                                                    |  |  |  |
| [5:0]  |             | The PWM output signal will be masked when this bit is enabled. The corresponding PWM channel n will output MSKDATn (PWM_MSK[5:0]) data. |  |  |  |
|        |             | 0 = PWM output signal is non-masked.                                                                                                    |  |  |  |
|        |             | 1 = PWM output signal is masked and output MSKDATn data.                                                                                |  |  |  |



# PWM Mask DATA Register (PWM\_MSK)

| Register | Offset       | R/W | Description            | Reset Value |
|----------|--------------|-----|------------------------|-------------|
| PWM_MSK  | PWMx_BA+0xBC | R/W | PWM Mask Data Register | 0x0000_0000 |

| 31               | 30 | 29      | 28      | 27      | 26      | 25      | 24 |
|------------------|----|---------|---------|---------|---------|---------|----|
| Reserved         |    |         |         |         |         |         |    |
| 23               | 22 | 21      | 20      | 19      | 18      | 17      | 16 |
| Reserved         |    |         |         |         |         |         |    |
| 15               | 14 | 13      | 12      | 11      | 10      | 9       | 8  |
| Reserved         |    |         |         |         |         |         |    |
| 7                | 6  | 5       | 4       | 3       | 2       | 1       | 0  |
| Reserved MSKDAT5 |    | MSKDAT4 | MSKDAT3 | MSKDAT2 | MSKDAT1 | MSKDAT0 |    |

| Bits   | Description |                                                                                                                                                                                                                                       |  |  |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:6] | Reserved.   |                                                                                                                                                                                                                                       |  |  |
| [5:0]  |             | PWM Mask Data Bit  This data bit control the state of PWMn output pin, if corresponding mask function is enabled. Each bit n controls the corresponding PWM channel n.  0 = Output logic low to PWMn.  1 = Output logic high to PWMn. |  |  |



# PWM Brake Noise Filter Register (PWM\_BNF)

| Register | Offset       | R/W | Description                     | Reset Value |
|----------|--------------|-----|---------------------------------|-------------|
| PWM_BNF  | PWMx_BA+0xC0 | R/W | PWM Brake Noise Filter Register | 0x0000_0000 |

| 31       | 30              | 29 | 28 | 27      | 26 | 25 | 24      |
|----------|-----------------|----|----|---------|----|----|---------|
| Reserved |                 |    |    |         |    |    | BK1SRC  |
| 23       | 22              | 21 | 20 | 19      | 18 | 17 | 16      |
|          | Reserved        |    |    |         |    |    | BK0SRC  |
| 15       | 14              | 13 | 12 | 11      | 10 | 9  | 8       |
| BRK1PINV | 1PINV BRK1FCNT  |    |    | BRK1FCS |    |    | BRK1FEN |
| 7        | 6               | 5  | 4  | 3       | 2  | 1  | 0       |
| BRK0PINV | KOPINV BRKOFCNT |    |    | BRK0FCS |    |    | BRK0FEN |

| Bits    | Description    | Description                                                                        |  |  |  |  |
|---------|----------------|------------------------------------------------------------------------------------|--|--|--|--|
| [31:25] | Reserved       | Reserved.                                                                          |  |  |  |  |
|         |                | Brake 1 Pin Source Select                                                          |  |  |  |  |
|         |                | For PWM0 setting:                                                                  |  |  |  |  |
|         |                | 0 = Brake 1 pin source come from PWM0_BRAKE1.                                      |  |  |  |  |
| [24]    | BK1SRC         | 1 = Brake 1 pin source come from PWM1_BRAKE1.                                      |  |  |  |  |
|         |                | For PWM1 setting:                                                                  |  |  |  |  |
|         |                | 0 = Brake 1 pin source come from PWM1_BRAKE1.                                      |  |  |  |  |
|         |                | 1 = Brake 1 pin source come from PWM0_BRAKE1.                                      |  |  |  |  |
| [23:17] | Reserved       | Reserved.                                                                          |  |  |  |  |
|         |                | Brake 0 Pin Source Select                                                          |  |  |  |  |
|         |                | For PWM0 setting:                                                                  |  |  |  |  |
|         |                | 0 = Brake 0 pin source come from PWM0_BRAKE0.                                      |  |  |  |  |
| [16]    | BK0SRC         | 1 = Brake 0 pin source come from PWM1_BRAKE0.                                      |  |  |  |  |
|         |                | For PWM1 setting:                                                                  |  |  |  |  |
|         |                | 0 = Brake 0 pin source come from PWM1_BRAKE0.                                      |  |  |  |  |
|         |                | 1 = Brake 0 pin source come from PWM0_BRAKE0.                                      |  |  |  |  |
|         |                | Brake 1 Pin Inverse                                                                |  |  |  |  |
| [15]    | BRK1PINV       | 0 = The state of pin PWMx_BRAKE1 is passed to the negative edge detector.          |  |  |  |  |
| [10]    | Diction in the | 1 = The inversed state of pin PWMx_BRAKE1 is passed to the negative edge detector. |  |  |  |  |
| [14:12] | BRK1FCNT       | Brake 1 Edge Detector Filter Count                                                 |  |  |  |  |
|         | DKKIFCNI       | The register bits control the Brake1 filter counter to count from 0 to BRK1FCNT.   |  |  |  |  |
|         |                | Brake 1 Edge Detector Filter Clock Selection                                       |  |  |  |  |
| [11:9]  | BRK1FCS        | 000 = Filter clock = HCLK.                                                         |  |  |  |  |
|         |                | 001 = Filter clock = HCLK/2.                                                       |  |  |  |  |



|                |              | 010 = Filter clock = HCLK/4.                                                     |
|----------------|--------------|----------------------------------------------------------------------------------|
|                |              | 011 = Filter clock = HCLK/8.                                                     |
|                |              | 100 = Filter clock = HCLK/16.                                                    |
|                |              | 101 = Filter clock = HCLK/32.                                                    |
|                |              | 110 = Filter clock = HCLK/64.                                                    |
|                |              | 111 = Filter clock = HCLK/128.                                                   |
|                |              | PWM Brake 1 Noise Filter Enable Control                                          |
| [8]            | BRK1FEN      | 0 = Noise filter of PWM Brake 1 Disabled.                                        |
|                |              | 1 = Noise filter of PWM Brake 1 Enabled.                                         |
|                |              | Brake 0 Pin Inverse                                                              |
| [7]            | BRK0PINV     | 0 = The state of pin PWMx_BRAKE0 is passed to the negative edge detector.        |
| [,]            |              | 1 = The inversed state of pin PWMx_BRAKE10 is passed to the negative edge        |
|                |              | detector.                                                                        |
| [6:4] <b>B</b> | BRK0FCNT     | Brake 0 Edge Detector Filter Count                                               |
| [0.4]          | BICITOT OILT | The register bits control the Brake0 filter counter to count from 0 to BRK1FCNT. |
|                |              | Brake 0 Edge Detector Filter Clock Selection                                     |
|                |              | 000 = Filter clock is HCLK.                                                      |
|                |              | 001 = Filter clock is HCLK/2.                                                    |
|                |              | 010 = Filter clock is HCLK/4.                                                    |
| [3:1]          | BRK0FCS      | 011 = Filter clock is HCLK/8.                                                    |
|                |              | 100 = Filter clock is HCLK/16.                                                   |
|                |              | 101 = Filter clock is HCLK/32.                                                   |
|                |              | 110 = Filter clock is HCLK/64.                                                   |
|                |              | 111 = Filter clock is HCLK/128.                                                  |
|                |              | PWM Brake 0 Noise Filter Enable Control                                          |
| [0]            | BRK0FEN      | 0 = Noise filter of PWM Brake 0 Disabled.                                        |
|                |              | 1 = Noise filter of PWM Brake 0 Enabled.                                         |
| I .            |              |                                                                                  |

## PWM System Fail Brake Control Register (PWM\_FAILBRK)

| Register        | Offset       | R/W | Description                            | Reset Value |
|-----------------|--------------|-----|----------------------------------------|-------------|
| PWM_FAILBR<br>K | PWMx_BA+0xC4 | R/W | PWM System Fail Brake Control Register | 0x0000_0000 |

| 31       | 30       | 29 | 28 | 27       | 26       | 25       | 24       |  |
|----------|----------|----|----|----------|----------|----------|----------|--|
|          | Reserved |    |    |          |          |          |          |  |
| 23       | 22       | 21 | 20 | 19       | 18       | 17       | 16       |  |
|          | Reserved |    |    |          |          |          |          |  |
| 15       | 14       | 13 | 12 | 11       | 10       | 9        | 8        |  |
|          | Reserved |    |    |          |          |          |          |  |
| 7        | 6        | 5  | 4  | 3        | 2        | 1        | 0        |  |
| Reserved |          |    |    | CORBRKEN | Reserved | BODBRKEN | CSSBRKEN |  |

| Bits   | Description | Description                                                                                                                                                                                        |  |  |  |  |  |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:4] | Reserved    | Reserved.                                                                                                                                                                                          |  |  |  |  |  |
| [3]    | CORBRKEN    | Core Lockup Detection Trigger PWM Brake Function 0 Enable Control  0 = Brake Function triggered by Core lockup detection Disabled.  1 = Brake Function triggered by Core lockup detection Enabled. |  |  |  |  |  |
| [2]    | Reserved    | Reserved.                                                                                                                                                                                          |  |  |  |  |  |
| [1]    | BODBRKEN    | Brown-Out Detection Trigger PWM Brake Function 0 Enable Control  0 = Brake Function triggered by BOD Disabled.  1 = Brake Function triggered by BOD Enabled.                                       |  |  |  |  |  |
| [0]    | CSSBRKEN    | Clock Security System Detection Trigger PWM Brake Function 0 Enable Control  0 = Brake Function triggered by CSS detection Disabled.  1 = Brake Function triggered by CSS detection Enabled.       |  |  |  |  |  |



### PWM Brake Edge Detect Control Register 0\_1, 2\_3, 4\_5(PWM\_BRKCTL0\_1, 2\_3, 4\_5)

| Register          | Offset       | R/W | Description                                | Reset Value |
|-------------------|--------------|-----|--------------------------------------------|-------------|
| PWM_BRKCTL0_<br>1 | PWMx_BA+0xC8 | R/W | PWM Brake Edge Detect Control Register 0_1 | 0x0000_0000 |
| PWM_BRKCTL2_<br>3 | PWMx_BA+0xCC | R/W | PWM Brake Edge Detect Control Register 2_3 | 0x0000_0000 |
| PWM_BRKCTL4_<br>5 | PWMx_BA+0xD0 | R/W | PWM Brake Edge Detect Control Register 4_5 | 0x0000_0000 |

| 31     | 30       | 29       | 28       | 27       | 26               | 25 | 24 |  |
|--------|----------|----------|----------|----------|------------------|----|----|--|
|        | Reserved |          |          |          |                  |    |    |  |
| 23     | 22       | 21       | 20       | 19       | 18               | 17 | 16 |  |
|        | Reserved |          |          |          | BRKAODD BRKAEVEN |    |    |  |
| 15     | 14       | 13       | 12       | 11       | 10               | 9  | 8  |  |
| SYSLEN | Reserved | BRKP1LEN | BRKP0LEN | Reserved |                  |    |    |  |
| 7      | 6        | 5        | 4        | 3        | 2                | 1  | 0  |  |
| SYSEEN | Reserved | BRKP1EEN | BRKP0EEN | Reserved |                  |    |    |  |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:20] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| [19:18] | BRKAODD     | PWM Brake Action Select For Odd Channel (Write Protect)  00 = PWM odd channel level-detect brake function not affect channel output.  01 = PWM odd channel output tri-state when level-detect brake happened.  10 = PWM odd channel output low level when level-detect brake happened.  11 = PWM odd channel output high level when level-detect brake happened.  Note: This register is write protected. Refer to REGWRPROT register.      |  |  |  |  |
| [17:16] | BRKAEVEN    | PWM Brake Action Select For Even Channel (Write Protect)  00 = PWM even channel level-detect brake function not affect channel output.  01 = PWM even channel output tri-state when level-detect brake happened.  10 = PWM even channel output low level when level-detect brake happened.  11 = PWM even channel output high level when level-detect brake happened.  Note: This register is write protected. Refer to REGWRPROT register. |  |  |  |  |
| [15]    | SYSLEN      | Enable System Fail As Level-Detect Brake Source (Write Protect)  0 = System Fail condition as level-detect brake source Disabled.  1 = System Fail condition as level-detect brake source Enabled.  Note: This register is write protected. Refer to REGWRPROT register.                                                                                                                                                                    |  |  |  |  |
| [14]    | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| [13]    | BRKP1LEN    | Enable BKP1 Pin As Level-Detect Brake Source (Write Protect)  0 = PWMx_BRAKE1 pin as level-detect brake source Disabled.                                                                                                                                                                                                                                                                                                                    |  |  |  |  |

|        |            | 1 = PWMx_BRAKE1 pin as level-detect brake source Enabled.                   |
|--------|------------|-----------------------------------------------------------------------------|
|        |            | <b>Note:</b> This register is write protected. Refer to REGWRPROT register. |
|        |            | Enable BKP0 Pin As Level-Detect Brake Source (Write Protect)                |
| [40]   | DDI/DOI EN | 0 = PWMx_BRAKE0 pin as level-detect brake source Disabled.                  |
| [12]   | BRKP0LEN   | 1 = PWMx_BRAKE0 pin as level-detect brake source Enabled.                   |
|        |            | Note: This register is write protected. Refer to REGWRPROT register.        |
| [11:8] | Reserved   | Reserved.                                                                   |
|        |            | Enable System Fail As Edge-Detect Brake Source (Write Protect)              |
| r1     | OVOEEN     | 0 = System Fail condition as edge-detect brake source Disabled.             |
| [7]    | SYSEEN     | 1 = System Fail condition as edge-detect brake source Enabled.              |
|        |            | Note: This register is write protected. Refer to REGWRPROT register.        |
| [6]    | Reserved   | Reserved.                                                                   |
|        |            | Enable PWMx_BRAKE1 Pin As Edge-Detect Brake Source (Write Protect)          |
| re1    | DDKB4EEN   | 0 = BKP1 pin as edge-detect brake source Disabled.                          |
| [5]    | BRKP1EEN   | 1 = BKP1 pin as edge-detect brake source Enabled.                           |
|        |            | Note: This register is write protected. Refer to REGWRPROT register.        |
|        |            | Enable PWMx_BRAKE0 Pin As Edge-Detect Brake Source (Write Protect)          |
| F 41   | DDKBOEEN   | 0 = BKP0 pin as edge-detect brake source Disabled.                          |
| [4]    | BRKP0EEN   | 1 = BKP0 pin as edge-detect brake source Enabled.                           |
|        |            | Note: This register is write protected. Refer to REGWRPROT register.        |
| [3:0]  | Reserved   | Reserved.                                                                   |



## PWM Pin Polar Inverse Control (PWM\_POLCTL)

| Register       | Offset       | R/W | Description                    | Reset Value |
|----------------|--------------|-----|--------------------------------|-------------|
| PWM_POLCT<br>L | PWMx_BA+0xD4 | R/W | PWM Pin Polar Inverse Register | 0x0000_0000 |

| 31   | 30       | 29    | 28    | 27    | 26    | 25    | 24    |
|------|----------|-------|-------|-------|-------|-------|-------|
|      |          |       | Rese  | erved |       |       |       |
| 23   | 22       | 21    | 20    | 19    | 18    | 17    | 16    |
|      | Reserved |       |       |       |       |       |       |
| 15   | 14       | 13    | 12    | 11    | 10    | 9     | 8     |
|      | Reserved |       |       |       |       |       |       |
| 7    | 6        | 5     | 4     | 3     | 2     | 1     | 0     |
| Rese | erved    | PINV5 | PINV4 | PINV3 | PINV2 | PINV1 | PINV0 |

| Bits   | Description        |                                                                                                          |  |  |  |
|--------|--------------------|----------------------------------------------------------------------------------------------------------|--|--|--|
| [31:6] | Reserved Reserved. |                                                                                                          |  |  |  |
|        | PINVn              | PWM PIN Polar Inverse Control                                                                            |  |  |  |
| [5:0]  |                    | The register controls polarity state of PWM output. Each bit n controls the corresponding PWM channel n. |  |  |  |
|        |                    | 0 = PWM output polar inverse Disabled.                                                                   |  |  |  |
|        |                    | 1 = PWM output polar inverse Enabled.                                                                    |  |  |  |

## **PWM Output Enable Register (PWM\_POEN)**

| Register | Offset       | R/W | Description                | Reset Value |
|----------|--------------|-----|----------------------------|-------------|
| PWM_POEN | PWMx_BA+0xD8 | R/W | PWM Output Enable Register | 0x0000_0000 |

| 31   | 30             | 29 | 28 | 27    | 26    | 25    | 24    |  |
|------|----------------|----|----|-------|-------|-------|-------|--|
|      | Reserved       |    |    |       |       |       |       |  |
| 23   | 22             | 21 | 20 | 19    | 18    | 17    | 16    |  |
|      | Reserved       |    |    |       |       |       |       |  |
| 15   | 14             | 13 | 12 | 11    | 10    | 9     | 8     |  |
|      | Reserved       |    |    |       |       |       |       |  |
| 7    | 6              | 5  | 4  | 3     | 2     | 1     | 0     |  |
| Rese | Reserved POEN5 |    |    | POEN3 | POEN2 | POEN1 | POEN0 |  |

| Bits   | Description        |                                                                                                                                             |  |
|--------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|
| [31:6] | Reserved Reserved. |                                                                                                                                             |  |
| [5:0]  | POENn              | PWM Pin Output Enable Control  Each bit n controls the corresponding PWM channel n.  0 = PWM pin at tri-state.  1 = PWM pin in output mode. |  |



## PWM Software Brake Control Register (PWM\_SWBRK)

| Register      | Offset       | R/W | Description                         | Reset Value |
|---------------|--------------|-----|-------------------------------------|-------------|
| PWM_SWBR<br>K | PWMx_BA+0xDC | W   | PWM Software Brake Control Register | 0x0000_0000 |

| 31 | 30       | 29       | 28 | 27 | 26       | 25       | 24       |  |
|----|----------|----------|----|----|----------|----------|----------|--|
|    | Reserved |          |    |    |          |          |          |  |
| 23 | 22       | 21       | 20 | 19 | 18       | 17       | 16       |  |
|    | Reserved |          |    |    |          |          |          |  |
| 15 | 14       | 13       | 12 | 11 | 10       | 9        | 8        |  |
|    |          | Reserved |    |    | BRKLTRG4 | BRKLTRG2 | BRKLTRG0 |  |
| 7  | 6        | 5        | 4  | 3  | 2        | 1        | 0        |  |
|    | Reserved |          |    |    |          | BRKETRG2 | BRKETRG0 |  |

| Bits    | Description | Description                                                                                                                                                                                                                                                                         |  |  |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:11] | Reserved    | Reserved.                                                                                                                                                                                                                                                                           |  |  |
| [10:8]  | BRKLTRGn    | PWM Level Brake Software Trigger (Write Only) (Write Protect)  Each bit n controls the corresponding PWM pair n.  Write 1 to this bit will trigger level brake, and set BRKLIFn to 1 in PWM_INTSTS1 register.  Note: This register is write protected. Refer to REGWRPROT register. |  |  |
| [7:3]   | Reserved    | Reserved.                                                                                                                                                                                                                                                                           |  |  |
| [2:0]   | BRKETRGn    | PWM Edge Brake Software Trigger (Write Only) (Write Protect) Each bit n controls the corresponding PWM pair n. Write 1 to this bit will trigger Edge brake, and set BRKEIFn to 1 in PWM_INTSTS1 register.  Note: This register is write protected. Refer to REGWRPROT register.     |  |  |

## PWM Interrupt Enable Register 0 (PWM\_INTEN0)

| Register   | Offset       | R/W | Description                     | Reset Value |
|------------|--------------|-----|---------------------------------|-------------|
| PWM_INTEN0 | PWMx_BA+0xE0 | R/W | PWM Interrupt Enable Register 0 | 0x0000_0000 |

| 31       | 30       | 29 | 28       | 27       | 26       | 25       | 24       |
|----------|----------|----|----------|----------|----------|----------|----------|
| Rese     | Reserved |    | CMPDIEN4 | CMPDIEN3 | CMPDIEN2 | CMPDIEN1 | CMPDIEN0 |
| 23       | 22       | 21 | 20       | 19       | 18       | 17       | 16       |
| Rese     | Reserved |    | CMPUIEN4 | CMPUIEN3 | CMPUIEN2 | CMPUIEN1 | CMPUIEN0 |
| 15       | 14       | 13 | 12       | 11       | 10       | 9        | 8        |
|          | Reserved |    | PIEN4    | Reserved | PIEN2    | Reserved | PIEN0    |
| 7        | 6        | 5  | 4        | 3        | 2        | 1        | 0        |
| Reserved |          |    | ZIEN4    | Reserved | ZIEN2    | Reserved | ZIEN0    |

| Bits    | Description | escription                                                                                                                                                                                                                                                                           |  |  |  |  |  |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:30] | Reserved    | Reserved.                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| [29:24] | CMPDIENn    | PWM Compare Down Count Interrupt Enable Control Each bit n controls the corresponding PWM channel n.  0 = Compare down count interrupt Disabled.  1 = Compare down count interrupt Enabled.  Note: In complementary mode, CMPDIEN1, 3, 5 use as another CMPDIEN for channel 0, 2, 4. |  |  |  |  |  |
| [23:22] | Reserved    | Reserved.                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| [21:16] | CMPUIENn    | PWM Compare Up Count Interrupt Enable Control Each bit n controls the corresponding PWM channel n. 0 = Compare up count interrupt Disabled. 1 = Compare up count interrupt Enabled. Note: In complementary mode, CMPUIEN1, 3, 5 use as another CMPUIEN for channel 0, 2, 4.          |  |  |  |  |  |
| [15:13] | Reserved    | Reserved.                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| [12]    | PIEN4       | PWM Period Point Interrupt Enable 4  0 = Period point interrupt Disabled.  1 = Period point interrupt Enabled.  Note: When up-down counter type period point means center point.                                                                                                     |  |  |  |  |  |
| [11]    | Reserved    | Reserved.                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| [10]    | PIEN2       | PWM Period Point Interrupt Enable 2  0 = Period point interrupt Disabled.  1 = Period point interrupt Enabled.  Note: When up-down counter type period point means center point.                                                                                                     |  |  |  |  |  |

| [9]   | Reserved | Reserved.                                                                                                                                                                        |  |  |  |  |
|-------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [8]   | PIEN0    | PWM Period Point Interrupt Enable 0  0 = Period point interrupt Disabled.  1 = Period point interrupt Enabled.  Note: When up-down counter type period point means center point. |  |  |  |  |
| [7:5] | Reserved | Reserved.                                                                                                                                                                        |  |  |  |  |
| [4]   | ZIEN4    | PWM Zero Point Interrupt Enable 4  0 = Zero point interrupt Disabled.  1 = Zero point interrupt Enabled.  Note: Odd channels will read always 0 at complementary mode.           |  |  |  |  |
| [3]   | Reserved | Reserved.                                                                                                                                                                        |  |  |  |  |
| [2]   | ZIEN2    | PWM Zero Point Interrupt Enable 2  0 = Zero point interrupt Disabled.  1 = Zero point interrupt Enabled.  Note: Odd channels will read always 0 at complementary mode.           |  |  |  |  |
| [1]   | Reserved | Reserved.                                                                                                                                                                        |  |  |  |  |
| [0]   | ZIENO    | PWM Zero Point Interrupt Enable 0  0 = Zero point interrupt Disabled.  1 = Zero point interrupt Enabled.  Note: Odd channels will read always 0 at complementary mode.           |  |  |  |  |



## **PWM Interrupt Enable Register 1 (PWM\_INTEN1)**

| Register   | Offset       | R/W | Description                     | Reset Value |
|------------|--------------|-----|---------------------------------|-------------|
| PWM_INTEN1 | PWMx_BA+0xE4 | R/W | PWM Interrupt Enable Register 1 | 0x0000_0000 |

| 31       | 30       | 29       | 28 | 27 | 26         | 25         | 24         |  |
|----------|----------|----------|----|----|------------|------------|------------|--|
|          | Reserved |          |    |    |            |            |            |  |
| 23       | 22       | 21       | 20 | 19 | 18         | 17         | 16         |  |
|          | Reserved |          |    |    |            |            |            |  |
| 15       | 14       | 13       | 12 | 11 | 10         | 9          | 8          |  |
|          |          | Reserved |    |    | BRKLIEN4_5 | BRKLIEN2_3 | BRKLIEN0_1 |  |
| 7        | 6        | 5        | 4  | 3  | 2          | 1          | 0          |  |
| Reserved |          |          |    |    | BRKEIEN4_5 | BRKEIEN2_3 | BRKEIEN0_1 |  |

| Bits    | Description |                                                                                                                                                                                                                                                                   |  |  |  |  |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:11] | Reserved    | Reserved.                                                                                                                                                                                                                                                         |  |  |  |  |
| [10]    | BRKLIEN4_5  | PWM Level-Detect Brake Interrupt Enable For Channel4/5 (Write Protect)  0 = Level-detect Brake interrupt for channel4/5 Disabled.  1 = Level-detect Brake interrupt for channel4/5 Enabled.  Note: This register is write protected. Refer to REGWRPROT register. |  |  |  |  |
| [9]     | BRKLIEN2_3  | PWM Level-Detect Brake Interrupt Enable For Channel2/3 (Write Protect)  0 = Level-detect Brake interrupt for channel2/3 Disabled.  1 = Level-detect Brake interrupt for channel2/3 Enabled.  Note: This register is write protected. Refer to REGWRPROT register. |  |  |  |  |
| [8]     | BRKLIEN0_1  | PWM Level-Detect Brake Interrupt Enable For Channel0/1 (Write Protect)  0 = Level-detect Brake interrupt for channel0/1 Disabled.  1 = Level-detect Brake interrupt for channel0/1 Enabled.  Note: This register is write protected. Refer to REGWRPROT register. |  |  |  |  |
| [7:3]   | Reserved    | Reserved.                                                                                                                                                                                                                                                         |  |  |  |  |
| [2]     | BRKEIEN4_5  | PWM Edge-Detect Brake Interrupt Enable For Channel4/5 (Write Protect)  0 = Edge-detect Brake interrupt for channel4/5 Disabled.  1 = Edge-detect Brake interrupt for channel4/5 Enabled.  Note: This register is write protected. Refer to REGWRPROT register.    |  |  |  |  |
| [1]     | BRKEIEN2_3  | PWM Edge-Detect Brake Interrupt Enable For Channel2/3 (Write Protect)  0 = Edge-detect Brake interrupt for channel2/3 Disabled.  1 = Edge-detect Brake interrupt for channel2/3 Enabled.  Note: This register is write protected. Refer to REGWRPROT register.    |  |  |  |  |
| [0]     | BRKEIEN0_1  | PWM Edge-Detect Brake Interrupt Enable For Channel0/1 (Write Protect)  0 = Edge-detect Brake interrupt for channel0/1 Disabled.                                                                                                                                   |  |  |  |  |



| 1 = Edge-detect Brake interrupt for channel0/1 Enabled.              |
|----------------------------------------------------------------------|
| Note: This register is write protected. Refer to REGWRPROT register. |

## **PWM Interrupt Flag Register 0 (PWM\_INTSTS0)**

| Register        | Offset       | R/W | Description                   | Reset Value |
|-----------------|--------------|-----|-------------------------------|-------------|
| PWM_INTSTS<br>0 | PWMx_BA+0xE8 | R/W | PWM Interrupt Flag Register 0 | 0x0000_0000 |

| 31    | 30       | 29 | 28      | 27       | 26      | 25       | 24      |
|-------|----------|----|---------|----------|---------|----------|---------|
| Rese  | Reserved |    | CMPDIF4 | CMPDIF3  | CMPDIF2 | CMPDIF1  | CMPDIF0 |
| 23    | 22       | 21 | 20      | 19       | 18      | 17       | 16      |
| Rese  | Reserved |    | CMPUIF4 | CMPUIF3  | CMPUIF2 | CMPUIF1  | CMPUIF0 |
| 15    | 14       | 13 | 12      | 11       | 10      | 9        | 8       |
|       | Reserved |    |         | Reserved | PIF2    | Reserved | PIF0    |
| 7 6 5 |          | 4  | 3       | 2        | 1       | 0        |         |
|       | Reserved |    |         | Reserved | ZIF2    | Reserved | ZIF0    |

| Bits    | Description    |                                                                                                                                                                                 |  |  |  |
|---------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:30] | Reserved       | Reserved.                                                                                                                                                                       |  |  |  |
|         |                | PWM Compare Down Count Interrupt Flag                                                                                                                                           |  |  |  |
|         |                | Each bit n controls the corresponding PWM channel n.                                                                                                                            |  |  |  |
| [29:24] | CMPDIFn        | Flag is set by hardware when PWM counter down count and reaches PWM_CMPDATn, software can clear this bit by writing 1 to it.                                                    |  |  |  |
| [20.24] |                | <b>Note1:</b> If CMPDAT equal to PERIOD, this flag is not working in down counter type selection.                                                                               |  |  |  |
|         |                | <b>Note2:</b> In complementary mode, CMPDIF1, 3, 5 use as another CMPDIF for channel 0, 2, 4.                                                                                   |  |  |  |
| [23:22] | Reserved       | Reserved.                                                                                                                                                                       |  |  |  |
|         |                | PWM Compare Up Count Interrupt Flag                                                                                                                                             |  |  |  |
| [21:16] | CMPUIFn        | Flag is set by hardware when PWM counter up count and reaches PWM_CMPDATn, software can clear this bit by writing 1 to it. Each bit n controls the corresponding PWM channel n. |  |  |  |
| [=]     | O.III. O.II II | Note1: If CMPDAT equal to PERIOD, this flag is not working in up counter type selection.                                                                                        |  |  |  |
|         |                | <b>Note2:</b> In complementary mode, CMPUIF1, 3, 5 use as another CMPUIF for channel 0, 2, 4.                                                                                   |  |  |  |
| [15:13] | Reserved       | Reserved.                                                                                                                                                                       |  |  |  |
|         |                | PWM Period Point Interrupt Flag 4                                                                                                                                               |  |  |  |
| [12]    | PIF4           | This bit is set by hardware when PWM_CH4 counter reaches PWM_PERIOD4, software can write 1 to clear this bit to zero.                                                           |  |  |  |
| [11]    | Reserved       | Reserved.                                                                                                                                                                       |  |  |  |
|         |                | PWM Period Point Interrupt Flag 2                                                                                                                                               |  |  |  |
| [10]    | PIF2           | This bit is set by hardware when PWM_CH2 counter reaches PWM_PERIOD2, software can write 1 to clear this bit to zero.                                                           |  |  |  |
| [9]     | Reserved       | Reserved.                                                                                                                                                                       |  |  |  |



|       |          | PWM Period Point Interrupt Flag 0                                                                                     |
|-------|----------|-----------------------------------------------------------------------------------------------------------------------|
| [8]   | PIF0     | This bit is set by hardware when PWM_CH0 counter reaches PWM_PERIOD0, software can write 1 to clear this bit to zero. |
| [7:5] | Reserved | Reserved.                                                                                                             |
|       |          | PWM Zero Point Interrupt Flag 4                                                                                       |
| [4]   | ZIF4     | This bit is set by hardware when PWM_CH4 counter reaches zero, software can write 1 to clear this bit to zero.        |
| [3]   | Reserved | Reserved.                                                                                                             |
|       |          | PWM Zero Point Interrupt Flag 2                                                                                       |
| [2]   | ZIF2     | This bit is set by hardware when PWM_CH2 counter reaches zero, software can write 1 to clear this bit to zero.        |
| [1]   | Reserved | Reserved.                                                                                                             |
|       |          | PWM Zero Point Interrupt Flag 0                                                                                       |
| [0]   | ZIF0     | This bit is set by hardware when PWM_CH0 counter reaches zero, software can write 1 to clear this bit to zero.        |

## PWM Interrupt Flag Register 1 (PWM\_INTSTS1)

| R       | egister   | Offset       | R/W | Description                   | Reset Value |
|---------|-----------|--------------|-----|-------------------------------|-------------|
| P\<br>1 | WM_INTSTS | PWMx_BA+0xEC | R/W | PWM Interrupt Flag Register 1 | 0x0000_0000 |

| 31   | 30       | 29      | 28       | 27       | 26       | 25       | 24       |
|------|----------|---------|----------|----------|----------|----------|----------|
| Rese | Reserved |         | BRKLSTS4 | BRKLSTS3 | BRKLSTS2 | BRKLSTS1 | BRKLSTS0 |
| 23   | 22       | 21      | 20       | 19       | 18       | 17       | 16       |
| Rese | Reserved |         | BRKESTS4 | BRKESTS3 | BRKESTS2 | BRKESTS1 | BRKESTS0 |
| 15   | 14       | 13      | 12       | 11       | 10       | 9        | 8        |
| Rese | erved    | BRKLIF5 | BRKLIF4  | BRKLIF3  | BRKLIF2  | BRKLIF1  | BRKLIF0  |
| 7    | 6        | 5       | 4        | 3        | 2        | 1        | 0        |
| Rese | erved    | BRKEIF5 | BRKEIF4  | BRKEIF3  | BRKEIF2  | BRKEIF1  | BRKEIF0  |

| Bits    | Description | Description                                                                                                                                                                                                                                    |  |  |  |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:30] | Reserved    | Reserved.                                                                                                                                                                                                                                      |  |  |  |
|         |             | PWM Channel5 Level-Detect Brake Status (Read Only)                                                                                                                                                                                             |  |  |  |
|         |             | 0 = PWM channel5 level-detect brake state is released.                                                                                                                                                                                         |  |  |  |
| [29]    | BRKLSTS5    | 1 = When PWM channel5 level-detect brake detects a falling edge of any enabled brake source; this flag will be set to indicate the PWM channel5 at brake state.                                                                                |  |  |  |
|         |             | <b>Note:</b> This bit is read only and auto cleared by hardware. When enabled brake source return to high level, PWM will release brake state until current PWM period finished. The PWM waveform will start output from next full PWM period. |  |  |  |
|         |             | PWM Channel4 Level-Detect Brake Status (Read Only)                                                                                                                                                                                             |  |  |  |
|         |             | 0 = PWM channel4 level-detect brake state is released.                                                                                                                                                                                         |  |  |  |
| [28]    | BRKLSTS4    | 1 = When PWM channel4 level-detect brake detects a falling edge of any enabled brake source; this flag will be set to indicate the PWM channel4 at brake state.                                                                                |  |  |  |
|         |             | <b>Note:</b> This bit is read only and auto cleared by hardware. When enabled brake source return to high level, PWM will release brake state until current PWM period finished. The PWM waveform will start output from next full PWM period. |  |  |  |
|         |             | PWM Channel3 Level-Detect Brake Status (Read Only)                                                                                                                                                                                             |  |  |  |
|         |             | 0 = PWM channel3 level-detect brake state is released.                                                                                                                                                                                         |  |  |  |
| [27]    | BRKLSTS3    | 1 = When PWM channel3 level-detect brake detects a falling edge of any enabled brake source; this flag will be set to indicate the PWM channel3 at brake state.                                                                                |  |  |  |
|         |             | <b>Note:</b> This bit is read only and auto cleared by hardware. When enabled brake source return to high level, PWM will release brake state until current PWM period finished. The PWM waveform will start output from next full PWM period. |  |  |  |
|         |             | PWM Channel2 Level-Detect Brake Status (Read Only)                                                                                                                                                                                             |  |  |  |
|         |             | 0 = PWM channel2 level-detect brake state is released.                                                                                                                                                                                         |  |  |  |
| [26]    | BRKLSTS2    | 1 = When PWM channel2 level-detect brake detects a falling edge of any enabled brake source; this flag will be set to indicate the PWM channel2 at brake state.                                                                                |  |  |  |
|         |             | <b>Note:</b> This bit is read only and auto cleared by hardware. When enabled brake source return to high level, PWM will release brake state until current PWM period finished. The PWM waveform will start output from next full PWM period. |  |  |  |

|         |          | PWM Channel1 Level-Detect Brake Status (Read Only)                                                                                                                                                                                             |
|---------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |          | 0 = PWM channel1 level-detect brake state is released.                                                                                                                                                                                         |
| [25]    | BRKLSTS1 | 1 = When PWM channel1 level-detect brake detects a falling edge of any enabled brake source; this flag will be set to indicate the PWM channel1 at brake state.                                                                                |
|         |          | <b>Note:</b> This bit is read only and auto cleared by hardware. When enabled brake source return to high level, PWM will release brake state until current PWM period finished. The PWM waveform will start output from next full PWM period. |
|         |          | PWM Channel0 Level-Detect Brake Status (Read Only)                                                                                                                                                                                             |
|         |          | 0 = PWM channel0 level-detect brake state is released.                                                                                                                                                                                         |
| [24]    | BRKLSTS0 | 1 = When PWM channel0 level-detect brake detects a falling edge of any enabled brake source; this flag will be set to indicate the PWM channel0 at brake state.                                                                                |
|         |          | <b>Note:</b> This bit is read only and auto cleared by hardware. When enabled brake source return to high level, PWM will release brake state until current PWM period finished. The PWM waveform will start output from next full PWM period. |
| [23:22] | Reserved | Reserved.                                                                                                                                                                                                                                      |
|         |          | PWM Channel5 Edge-Detect Brake Status                                                                                                                                                                                                          |
| [21]    | BRKESTS5 | 0 = PWM channel5 edge-detect brake state is released.                                                                                                                                                                                          |
| []      |          | 1 = When PWM channel5 edge-detect brake detects a falling edge of any enabled brake source; this flag will be set to indicate the PWM channel5 at brake state, writing 1 to clear.                                                             |
|         |          | PWM Channel4 Edge-Detect Brake Status                                                                                                                                                                                                          |
| [20]    | BRKESTS4 | 0 = PWM channel4 edge-detect brake state is released.                                                                                                                                                                                          |
|         |          | 1 = When PWM channel4 edge-detect brake detects a falling edge of any enabled brake source; this flag will be set to indicate the PWM channel4 at brake state, writing 1 to clear.                                                             |
|         |          | PWM Channel3 Edge-Detect Brake Status                                                                                                                                                                                                          |
| [19]    | BRKESTS3 | 0 = PWM channel3 edge-detect brake state is released.                                                                                                                                                                                          |
|         |          | 1 = When PWM channel3 edge-detect brake detects a falling edge of any enabled brake source; this flag will be set to indicate the PWM channel3 at brake state, writing 1 to clear.                                                             |
|         |          | PWM Channel2 Edge-Detect Brake Status                                                                                                                                                                                                          |
| [18]    | BRKESTS2 | 0 = PWM channel2 edge-detect brake state is released.                                                                                                                                                                                          |
|         |          | 1 = When PWM channel2 edge-detect brake detects a falling edge of any enabled brake source; this flag will be set to indicate the PWM channel2 at brake state, writing 1 to clear.                                                             |
|         |          | PWM Channel1 Edge-Detect Brake Status                                                                                                                                                                                                          |
| [17]    | BRKESTS1 | 0 = PWM channel1 edge-detect brake state is released.                                                                                                                                                                                          |
|         |          | 1 = When PWM channel1 edge-detect brake detects a falling edge of any enabled brake source; this flag will be set to indicate the PWM channel1 at brake state, writing 1 to clear.                                                             |
|         |          | PWM Channel0 Edge-Detect Brake Status                                                                                                                                                                                                          |
| [16]    | BRKESTS0 | 0 = PWM channel0 edge-detect brake state is released.                                                                                                                                                                                          |
|         |          | 1 = When PWM channel0 edge-detect brake detects a falling edge of any enabled brake source; this flag will be set to indicate the PWM channel0 at brake state, writing 1 to clear.                                                             |
| [15:14] | Reserved | Reserved.                                                                                                                                                                                                                                      |
|         |          | PWM Channel5 Level-Detect Brake Interrupt Flag (Write Protect)                                                                                                                                                                                 |
|         |          | 0 = PWM channel5 level-detect brake event do not happened.                                                                                                                                                                                     |
| [13]    | BRKLIF5  | 1 = When PWM channel5 level-detect brake event happened, this bit is set to 1, writing 1 to clear.                                                                                                                                             |
|         |          | Note: This register is write protected. Refer to REGWRPROT register.                                                                                                                                                                           |
| [12]    | BRKLIF4  | PWM Channel4 Level-Detect Brake Interrupt Flag (Write Protect)                                                                                                                                                                                 |
| L J     | Sitten 4 | 0 = PWM channel4 level-detect brake event do not happened.                                                                                                                                                                                     |

|       |          | 1 = When PWM channel4 level-detect brake event happened, this bit is set to 1, writing 1           |
|-------|----------|----------------------------------------------------------------------------------------------------|
|       |          | to clear.                                                                                          |
|       |          | Note: This register is write protected. Refer to REGWRPROT register.                               |
|       |          | PWM Channel3 Level-Detect Brake Interrupt Flag (Write Protect)                                     |
|       |          | 0 = PWM channel3 level-detect brake event do not happened.                                         |
| [11]  | BRKLIF3  | 1 = When PWM channel3 level-detect brake event happened, this bit is set to 1, writing 1 to clear. |
|       |          | Note: This register is write protected. Refer to REGWRPROT register.                               |
|       |          | PWM Channel2 Level-Detect Brake Interrupt Flag (Write Protect)                                     |
|       |          | 0 = PWM channel2 level-detect brake event do not happened.                                         |
| [10]  | BRKLIF2  | 1 = When PWM channel2 level-detect brake event happened, this bit is set to 1, writing 1 to clear. |
|       |          | Note: This register is write protected. Refer to REGWRPROT register.                               |
|       |          | PWM Channel1 Level-Detect Brake Interrupt Flag (Write Protect)                                     |
|       |          | 0 = PWM channel1 level-detect brake event do not happened.                                         |
| [9]   | BRKLIF1  | 1 = When PWM channel1 level-detect brake event happened, this bit is set to 1, writing 1 to clear. |
|       |          | Note: This register is write protected. Refer to REGWRPROT register.                               |
|       |          | PWM Channel0 Level-Detect Brake Interrupt Flag (Write Protect)                                     |
| [8]   | BRKLIF0  | 0 = PWM channel0 level-detect brake event do not happened.                                         |
|       |          | 1 = When PWM channel0 level-detect brake event happened, this bit is set to 1, writing 1 to clear. |
|       |          | Note: This register is write protected. Refer to REGWRPROT register.                               |
| [7:6] | Reserved | Reserved.                                                                                          |
|       |          | PWM Channel5 Edge-Detect Brake Interrupt Flag (Write Protect)                                      |
|       |          | 0 = PWM channel5 edge-detect brake event do not happened.                                          |
| [5]   | BRKEIF5  | 1 = When PWM channel5 edge-detect brake event happened, this bit is set to 1, writing to clear.    |
|       |          | Note: This register is write protected. Refer to REGWRPROT register.                               |
|       |          | PWM Channel4 Edge-Detect Brake Interrupt Flag (Write Protect)                                      |
|       |          | 0 = PWM channel4 edge-detect brake event do not happened.                                          |
| [4]   | BRKEIF4  | 1 = When PWM channel4 edge-detect brake event happened, this bit is set to 1, writing to clear.    |
|       |          | Note: This register is write protected. Refer to REGWRPROT register.                               |
|       |          | PWM Channel3 Edge-Detect Brake Interrupt Flag (Write Protect)                                      |
|       |          | 0 = PWM channel3 edge-detect brake event do not happened.                                          |
| [3]   | BRKEIF3  | 1 = When PWM channel3 edge-detect brake event happened, this bit is set to 1, writing to clear.    |
|       |          | Note: This register is write protected. Refer to REGWRPROT register.                               |
|       |          | PWM Channel2 Edge-Detect Brake Interrupt Flag (Write Protect)                                      |
|       |          | 0 = PWM channel2 edge-detect brake event do not happened.                                          |
| [2]   | BRKEIF2  | 1 = When PWM channel2 edge-detect brake event happened, this bit is set to 1, writing to clear.    |
|       |          | Note: This register is write protected. Refer to REGWRPROT register.                               |
|       |          | PWM Channel1 Edge-Detect Brake Interrupt Flag (Write Protect)                                      |
| [1]   | BRKEIF1  | 0 = PWM channel1 edge-detect brake event do not happened.                                          |
|       |          | 1 = When PWM channel1 edge-detect brake event happened, this bit is set to 1, writing              |

|     |         | to clear.  Note: This register is write protected. Refer to REGWRPROT register.                                                                                                                                             |
|-----|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [0] | BRKEIF0 | PWM Channel0 Edge-Detect Brake Interrupt Flag (Write Protect)  0 = PWM channel0 edge-detect brake event do not happened.  1 = When PWM channel0 edge-detect brake event happened, this bit is set to 1, writing 1 to clear. |
|     |         | Note: This register is write protected. Refer to REGWRPROT register.                                                                                                                                                        |



## PWM Trigger ADC Source Select Register 0 (PWM\_ADCTS0)

| Register       | Offset       | R/W | Description                              | Reset Value |
|----------------|--------------|-----|------------------------------------------|-------------|
| PWM_ADCTS<br>0 | PWMx_BA+0xF8 | R/W | PWM Trigger ADC Source Select Register 0 | 0x0000_0000 |

| 31     | 30    | 29       | 28 | 27      | 26  | 25   | 24 |
|--------|-------|----------|----|---------|-----|------|----|
| TRGEN3 |       | Reserved |    | TRGSEL3 |     |      |    |
| 23     | 22    | 21       | 20 | 19      | 18  | 17   | 16 |
| TRGEN2 |       | Reserved |    | TRGSEL2 |     |      |    |
| 15     | 14    | 13       | 12 | 11      | 10  | 9    | 8  |
| TRGEN1 |       | Reserved |    | TRGSEL1 |     |      |    |
| 7      | 6 5 4 |          |    | 3 2 1 0 |     |      | 0  |
| TRGEN0 |       | Reserved |    |         | TRG | SEL0 |    |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31]    | TRGEN3      | PWM_CH3 Trigger ADC Enable Control                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| [30:28] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| [27:24] | TRGSEL3     | PWM_CH3 Trigger ADC Source Select  0000 = PWM_CH2 zero point.  0001 = PWM_CH2 period point.  0010 = PWM_CH2 zero or period point.  0011 = PWM_CH2 up-count CMPDAT point.  0100 = PWM_CH2 down-count CMPDAT point.  0101 = Reserved.  0110 = Reserved.  0111 = Reserved.  1000 = PWM_CH3 up-count CMPDAT point.  1001 = PWM_CH3 down-count CMPDAT point.  Others = reserved. |  |  |  |  |  |
| [23]    | TRGEN2      | PWM_CH2 Trigger ADC Enable Control                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| [22:20] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| [19:16] | TRGSEL2     | PWM_CH2 Trigger ADC Source Select  0000 = PWM_CH2 zero point.  0001 = PWM_CH2 period point.  0010 = PWM_CH2 zero or period point.  0011 = PWM_CH2 up-count CMPDAT point.  0100 = PWM_CH2 down-count CMPDAT point.  0101 = Reserved.  0110 = Reserved.  0111 = Reserved.                                                                                                     |  |  |  |  |  |

|         |           | 1000 = PWM_CH3 up-count CMPDAT point.   |
|---------|-----------|-----------------------------------------|
|         |           | 1001 = PWM_CH3 down-count CMPDAT point. |
|         |           | Others = reserved.                      |
| [15]    | TRGEN1    | PWM_CH1 Trigger ADC Enable Control      |
| [14:12] | Reserved  | Reserved.                               |
|         |           | PWM_CH1 Trigger ADC Source Select       |
|         |           | 0000 = PWM_CH0 zero point.              |
|         |           | 0001 = PWM_CH0 period point.            |
|         |           | 0010 = PWM_CH0 zero or period point.    |
|         |           | 0011 = PWM_CH0 up-count CMPDAT point.   |
| [44.0]  | TD 0051 4 | 0100 = PWM_CH0 down-count CMPDAT point. |
| [11:8]  | TRGSEL1   | 0101 = Reserved.                        |
|         |           | 0110 = Reserved.                        |
|         |           | 0111 = Reserved.                        |
|         |           | 1000 = PWM_CH1 up-count CMPDAT point.   |
|         |           | 1001 = PWM_CH1 down-count CMPDAT point. |
|         |           | Others = reserved.                      |
| [7]     | TRGEN0    | PWM_CH0 Trigger ADC Enable Control      |
| [6:4]   | Reserved  | Reserved.                               |
|         |           | PWM_CH0 Trigger ADC Source Select       |
|         |           | 0000 = PWM_CH0 zero point.              |
|         |           | 0001 = PWM_CH0 period point.            |
|         |           | 0010 = PWM_CH0 zero or period point.    |
|         |           | 0011 = PWM_CH0 up-count CMPDAT point.   |
| [3:0]   | TRGSEL0   | 0100 = PWM_CH0 down-count CMPDAT point. |
| [3.0]   | INGSELU   | 0101 = Reserved.                        |
|         |           | 0110 = Reserved.                        |
|         |           | 0111 = Reserved.                        |
|         |           | 1000 = PWM_CH1 up-count CMPDAT point.   |
|         |           | 1001 = PWM_CH1 down-count CMPDAT point. |
|         |           | Others = reserved.                      |



# PWM Trigger ADC Source Select Register 1 (PWM\_ADCTS1)

| Register       | Offset       | R/W | Description                              | Reset Value |
|----------------|--------------|-----|------------------------------------------|-------------|
| PWM_ADCTS<br>1 | PWMx_BA+0xFC | R/W | PWM Trigger ADC Source Select Register 1 | 0x0000_0000 |

| 31     | 30              | 29       | 28 | 27      | 26 | 25 | 24 |  |  |  |
|--------|-----------------|----------|----|---------|----|----|----|--|--|--|
|        | Reserved        |          |    |         |    |    |    |  |  |  |
| 23     | 22              | 21       | 20 | 19      | 18 | 17 | 16 |  |  |  |
|        | Reserved        |          |    |         |    |    |    |  |  |  |
| 15     | 14              | 13       | 12 | 11      | 10 | 9  | 8  |  |  |  |
| TRGEN5 |                 | Reserved |    | TRGSEL5 |    |    |    |  |  |  |
| 7      | 6               | 5        | 4  | 3       | 2  | 1  | 0  |  |  |  |
| TRGEN4 | TRGEN4 Reserved |          |    | TRGSEL4 |    |    |    |  |  |  |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                             |
|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:16] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                   |
| [15]    | TRGEN5      | PWM_CH5 Trigger ADC Enable Control                                                                                                                                                                                                                                                                                                                                          |
| [14:12] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                   |
| [11:8]  | TRGSEL5     | PWM_CH5 Trigger ADC Source Select  0000 = PWM_CH4 zero point.  0001 = PWM_CH4 period point.  0010 = PWM_CH4 zero or period point.  0011 = PWM_CH4 up-count CMPDAT point.  0100 = PWM_CH4 down-count CMPDAT point.  0101 = Reserved.  0110 = Reserved.  0111 = Reserved.  1000 = PWM_CH5 up-count CMPDAT point.  1001 = PWM_CH5 down-count CMPDAT point.  Others = reserved. |
| [7]     | TRGEN4      | PWM_CH4 Trigger ADC Enable Control                                                                                                                                                                                                                                                                                                                                          |
| [6:4]   | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                   |
| [3:0]   | TRGSEL4     | PWM_CH4 Trigger ADC Source Select  0000 = PWM_CH4 zero point.  0001 = PWM_CH4 period point.  0010 = PWM_CH4 zero or period point.  0011 = PWM_CH4 up-count CMPDAT point.  0100 = PWM_CH4 down-count CMPDAT point.  0101 = Reserved.                                                                                                                                         |

| 0110 = Reserved.                        |
|-----------------------------------------|
| 0111 = Reserved.                        |
| 1000 = PWM_CH5 up-count CMPDAT point.   |
| 1001 = PWM_CH5 down-count CMPDAT point. |
| Others = reserved.                      |

## PWM Synchronous Start Control Register (PWM\_SSCTL)

| Register  | Offset            | R/W | Description                            | Reset Value |
|-----------|-------------------|-----|----------------------------------------|-------------|
| PWM_SSCTL | PWMx_BA+0x11<br>0 | R/W | PWM Synchronous Start Control Register | 0x0000_0000 |

| 31              | 30       | 29 | 28    | 27       | 26    | 25       | 24    |  |  |
|-----------------|----------|----|-------|----------|-------|----------|-------|--|--|
|                 | Reserved |    |       |          |       |          |       |  |  |
| 23              | 22       | 21 | 20    | 19       | 18    | 17       | 16    |  |  |
|                 |          |    | Rese  | erved    |       |          |       |  |  |
| 15              | 14       | 13 | 12    | 11       | 10    | 9        | 8     |  |  |
|                 | Reserved |    |       |          |       |          | RC    |  |  |
| 7 6 5 4 3 2 1 0 |          |    |       |          |       |          | 0     |  |  |
|                 | Reserved |    | SSEN4 | Reserved | SSEN2 | Reserved | SSEN0 |  |  |

| Bits    | Description | Description                                                                                                                                               |  |  |  |  |
|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:10] | Reserved    | Reserved.                                                                                                                                                 |  |  |  |  |
|         |             | PWM Synchronous Start Source Select                                                                                                                       |  |  |  |  |
|         |             | 00 = Synchronous start source come from PWM0.                                                                                                             |  |  |  |  |
| [9:8]   | SSRC        | 01 = Synchronous start source come from PWM1.                                                                                                             |  |  |  |  |
|         |             | 10 = Synchronous start source come from BPWM0.                                                                                                            |  |  |  |  |
|         |             | 11 = Synchronous start source come from BPWM1.                                                                                                            |  |  |  |  |
| [7:5]   | Reserved    | Reserved.                                                                                                                                                 |  |  |  |  |
|         |             | PWM Synchronous Start Function Enable 4                                                                                                                   |  |  |  |  |
| [4]     | SSEN4       | When synchronous start function is enabled, the PWM_CH4 counter enable bit (CNTEN4) can be enabled by writing PWM synchronous start trigger bit (CNTSEN). |  |  |  |  |
|         |             | 0 = PWM synchronous start function Disabled.                                                                                                              |  |  |  |  |
|         |             | 1 = PWM synchronous start function Enabled.                                                                                                               |  |  |  |  |
| [3]     | Reserved    | Reserved.                                                                                                                                                 |  |  |  |  |
|         |             | PWM Synchronous Start Function Enable 2                                                                                                                   |  |  |  |  |
| [2]     | SSEN2       | When synchronous start function is enabled, the PWM_CH2 counter enable bit (CNTEN2 can be enabled by writing PWM synchronous start trigger bit (CNTSEN).  |  |  |  |  |
|         |             | 0 = PWM synchronous start function Disabled.                                                                                                              |  |  |  |  |
|         |             | 1 = PWM synchronous start function Enabled.                                                                                                               |  |  |  |  |
| [1]     | Reserved    | Reserved.                                                                                                                                                 |  |  |  |  |
|         |             | PWM Synchronous Start Function Enable 0                                                                                                                   |  |  |  |  |
| [0]     | SSEN0       | When synchronous start function is enabled, the PWM_CH0 counter enable bit (CNTEN0) can be enabled by writing PWM synchronous start trigger bit (CNTSEN). |  |  |  |  |
|         |             | 0 = PWM synchronous start function Disabled.                                                                                                              |  |  |  |  |
|         |             | 1 = PWM synchronous start function Enabled.                                                                                                               |  |  |  |  |



## PWM Synchronous Start Trigger Register (PWM\_SSTRG)

| Register  | Offset            | R/W | Description                            | Reset Value |
|-----------|-------------------|-----|----------------------------------------|-------------|
| PWM_SSTRG | PWMx_BA+0x11<br>4 | W   | PWM Synchronous Start Trigger Register | 0x0000_0000 |

| 31       | 30            | 29 | 28   | 27    | 26 | 25 | 24     |  |  |
|----------|---------------|----|------|-------|----|----|--------|--|--|
|          | Reserved      |    |      |       |    |    |        |  |  |
| 23       | 22            | 21 | 20   | 19    | 18 | 17 | 16     |  |  |
|          | Reserved      |    |      |       |    |    |        |  |  |
| 15       | 14            | 13 | 12   | 11    | 10 | 9  | 8      |  |  |
|          |               |    | Rese | erved |    |    |        |  |  |
| 7        | 7 6 5 4 3 2 1 |    |      |       |    |    |        |  |  |
| Reserved |               |    |      |       |    |    | CNTSEN |  |  |

| Bits   | Description        |                                                                                                                                                                        |  |  |  |
|--------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:1] | Reserved Reserved. |                                                                                                                                                                        |  |  |  |
|        |                    | PWM Counter Synchronous Start Enable (Write Only)                                                                                                                      |  |  |  |
| [0]    |                    | PMW counter synchronous enable function is used to make selected PWM channels (include PWM0_CHx and PWM1_CHx) start counting at the same time.                         |  |  |  |
| [0]    |                    | Writing this bit to 1 will also set the counter enable bit (CNTENn, n denotes channel 0 to 5) if correlated PWM channel counter synchronous start function is enabled. |  |  |  |
|        |                    | Note: This bit only present in PWM0_BA.                                                                                                                                |  |  |  |

## PWM Status Register (PWM\_STATUS)

| Register       | Offset        | R/W | Description         | Reset Value |
|----------------|---------------|-----|---------------------|-------------|
| PWM_STATU<br>S | PWMx_BA+0x120 | R/W | PWM Status Register | 0x0000_0000 |

| 31   | 30       | 29      | 28      | 27       | 26      | 25       | 24      |  |  |  |
|------|----------|---------|---------|----------|---------|----------|---------|--|--|--|
|      | Reserved |         |         |          |         |          |         |  |  |  |
| 23   | 22       | 21      | 20      | 19       | 18      | 17       | 16      |  |  |  |
| Rese | erved    | ADCTRG5 | ADCTRG4 | ADCTRG3  | ADCTRG2 | ADCTRG1  | ADCTRG0 |  |  |  |
| 15   | 14       | 13      | 12      | 11       | 10      | 9        | 8       |  |  |  |
|      | Reserved |         |         |          |         |          |         |  |  |  |
| 7    | 6        | 5       | 4       | 3        | 2       | 1        | 0       |  |  |  |
|      | Reserved |         | CNTMAX4 | Reserved | CNTMAX2 | Reserved | CNTMAX0 |  |  |  |

| Bits    | Description | ption                                                                                                        |  |  |  |  |
|---------|-------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:22] | Reserved    | Reserved.                                                                                                    |  |  |  |  |
|         |             | ADC Start Of Conversion Status                                                                               |  |  |  |  |
|         |             | Each bit n controls the corresponding PWM channel n.                                                         |  |  |  |  |
| [21:16] | ADCTRGn     | 0 = Indicates no ADC start of conversion trigger event has occurred.                                         |  |  |  |  |
|         |             | 1 = Indicates an ADC start of conversion trigger event has occurred, software can write 1 to clear this bit. |  |  |  |  |
| [15:5]  | Reserved    | Reserved.                                                                                                    |  |  |  |  |
|         |             | Time-Base Counter 4 Equal To 0xFFFF Latched Status                                                           |  |  |  |  |
| [4]     | CNTMAX4     | 0 = indicates the time-base counter never reached its maximum value 0xFFFF.                                  |  |  |  |  |
| .,      | J           | 1 = indicates the time-base counter reached its maximum value, software can write 1 to clear this bit.       |  |  |  |  |
| [3]     | Reserved    | Reserved.                                                                                                    |  |  |  |  |
|         |             | Time-Base Counter 2 Equal To 0xFFFF Latched Status                                                           |  |  |  |  |
| [2]     | CNTMAX2     | 0 = indicates the time-base counter never reached its maximum value 0xFFFF.                                  |  |  |  |  |
| [-]     | 0.000       | 1 = indicates the time-base counter reached its maximum value, software can write 1 to clear this bit.       |  |  |  |  |
| [1]     | Reserved    | Reserved.                                                                                                    |  |  |  |  |
|         |             | Time-Base Counter 0 Equal To 0xFFFF Latched Status                                                           |  |  |  |  |
| [0]     | CNTMAXO     | 0 = indicates the time-base counter never reached its maximum value 0xFFFF.                                  |  |  |  |  |
| [0]     | OIT INFOCT  | 1 = indicates the time-base counter reached its maximum value, software can write 1 to clear this bit.       |  |  |  |  |



## PWM Capture Input Enable Register (PWM\_CAPINEN)

| Register        | Offset        | R/W | Description                       | Reset Value |
|-----------------|---------------|-----|-----------------------------------|-------------|
| PWM_CAPIN<br>EN | PWMx_BA+0x200 | R/W | PWM Capture Input Enable Register | 0x0000_0000 |

| 31                | 30       | 29 | 28       | 27       | 26       | 25       | 24       |  |  |  |
|-------------------|----------|----|----------|----------|----------|----------|----------|--|--|--|
|                   | Reserved |    |          |          |          |          |          |  |  |  |
| 23                | 22       | 21 | 20       | 19       | 18       | 17       | 16       |  |  |  |
|                   |          |    | Rese     | erved    |          |          |          |  |  |  |
| 15                | 14       | 13 | 12       | 11       | 10       | 9        | 8        |  |  |  |
|                   | Reserved |    |          |          |          |          |          |  |  |  |
| 7                 | 6        | 5  | 4        | 3        | 2        | 1        | 0        |  |  |  |
| Reserved CAPINEN5 |          |    | CAPINEN4 | CAPINEN3 | CAPINEN2 | CAPINEN1 | CAPINEN0 |  |  |  |

| Bits   | Description |                                                                                                                                 |  |  |  |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:6] | Reserved    | Reserved.                                                                                                                       |  |  |  |
|        |             | Capture Input Enable  Each bit n controls the corresponding PWM channel n.                                                      |  |  |  |
| [5:0]  | CAPINENn    | 0 = PWM Channel capture input path Disabled. The input of PWM channel capture function is always regarded as 0.                 |  |  |  |
|        |             | 1 = PWM Channel capture input path Enabled. The input of PWM channel capture function comes from correlative multifunction pin. |  |  |  |

## **PWM Capture Control Register (PWM\_CAPCTL)**

| Re      | gister   | Offset        | R/W | Description                  | Reset Value |
|---------|----------|---------------|-----|------------------------------|-------------|
| PW<br>L | VM_CAPCT | PWMx_BA+0x204 | R/W | PWM Capture Control Register | 0x0000_0000 |

| 31   | 30       | 29       | 28       | 27       | 26       | 25       | 24       |
|------|----------|----------|----------|----------|----------|----------|----------|
| Rese | Reserved |          | FCRLDEN4 | FCRLDEN3 | FCRLDEN2 | FCRLDEN1 | FCRLDEN0 |
| 23   | 22       | 21       | 20       | 19       | 18       | 17       | 16       |
| Rese | erved    | RCRLDEN5 | RCRLDEN4 | RCRLDEN3 | RCRLDEN2 | RCRLDEN1 | RCRLDEN0 |
| 15   | 14       | 13       | 12       | 11       | 10       | 9        | 8        |
| Rese | erved    | CAPINV5  | CAPINV4  | CAPINV3  | CAPINV2  | CAPINV1  | CAPINV0  |
| 7    | 6        | 5        | 4        | 3        | 2        | 1        | 0        |
| Rese | erved    | CAPEN5   | CAPEN4   | CAPEN3   | CAPEN2   | CAPEN1   | CAPEN0   |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                |
|---------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:30] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                      |
| [29:24] | FCRLDENn    | Falling Capture Reload Enable Control  Each bit n controls the corresponding PWM channel n.  0 = Falling capture reload counter Disabled.  1 = Falling capture reload counter Enabled.                                                                                                                                                                         |
| [23:22] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                      |
| [21:16] | RCRLDENn    | Rising Capture Reload Enable Control  Each bit n controls the corresponding PWM channel n.  0 = Rising capture reload counter Disabled.  1 = Rising capture reload counter Enabled.                                                                                                                                                                            |
| [15:14] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                      |
| [13:8]  | CAPINVn     | Capture Inverter Enable Control  Each bit n controls the corresponding PWM channel n.  0 = Capture source inverter Disabled.  1 = Capture source inverter Enabled. Reverse the input signal from GPIO.                                                                                                                                                         |
| [7:6]   | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                      |
| [5:0]   | CAPENn      | Capture Function Enable Control  Each bit n controls the corresponding PWM channel n.  0 = Capture function Disabled. RCAPDAT/FCAPDAT register will not be updated.  1 = Capture function Enabled. Capture latched the PWM counter value when detected rising or falling edge of input signal and saved to RCAPDAT (Rising latch) and FCAPDAT (Falling latch). |



## PWM Capture Status Register (PWM\_CAPSTS)

| Register       | Offset        | R/W | Description                 | Reset Value |
|----------------|---------------|-----|-----------------------------|-------------|
| PWM_CAPST<br>S | PWMx_BA+0x208 | R   | PWM Capture Status Register | 0x0000_0000 |

| 31   | 30       | 29       | 28       | 27       | 26       | 25       | 24       |  |  |  |
|------|----------|----------|----------|----------|----------|----------|----------|--|--|--|
|      | Reserved |          |          |          |          |          |          |  |  |  |
| 23   | 22       | 21       | 20       | 19       | 18       | 17       | 16       |  |  |  |
|      |          |          | Rese     | erved    |          |          |          |  |  |  |
| 15   | 14       | 13       | 12       | 11       | 10       | 9        | 8        |  |  |  |
| Rese | erved    | CFLIFOV5 | CFLIFOV4 | CFLIFOV3 | CFLIFOV2 | CFLIFOV1 | CFLIFOV0 |  |  |  |
| 7    | 6        | 5        | 4        | 3        | 2        | 1        | 0        |  |  |  |
| Rese | erved    | CRLIFOV5 | CRLIFOV4 | CRLIFOV3 | CRLIFOV2 | CRLIFOV1 | CRLIFOV0 |  |  |  |

| Bits            | Description | escription                                                                                                                            |  |  |  |  |
|-----------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:14]         | Reserved    | Reserved.                                                                                                                             |  |  |  |  |
|                 |             | Capture Falling Latch Interrupt Flag Overrun Status (Read Only)                                                                       |  |  |  |  |
| [13:8] CFLIFOVn |             | This flag indicates if falling latch happened when the corresponding CFLIF is 1. Each bit n controls the corresponding PWM channel n. |  |  |  |  |
|                 |             | Note: This bit will be cleared automatically when user clear corresponding CFLIF.                                                     |  |  |  |  |
| [7:6]           | Reserved    | Reserved.                                                                                                                             |  |  |  |  |
|                 |             | Capture Rising Latch Interrupt Flag Overrun Status (Read Only)                                                                        |  |  |  |  |
| [5:0]           | CRLIFOVn    | This flag indicates if rising latch happened when the corresponding CRLIF is 1. Each bit n controls the corresponding PWM channel n.  |  |  |  |  |
|                 |             | Note: This bit will be cleared automatically when user clear corresponding CRLIF.                                                     |  |  |  |  |



## PWM Rising Capture Data Register 0~5 (PWM\_RCAPDAT 0~5)

| Register         | Offset        | R/W | Description                        | Reset Value |
|------------------|---------------|-----|------------------------------------|-------------|
| PWM_RCAPD<br>AT0 | PWMx_BA+0x20C | R   | PWM Rising Capture Data Register 0 | 0x0000_0000 |
| PWM_RCAPD<br>AT1 | PWMx_BA+0x214 | R   | PWM Rising Capture Data Register 1 | 0x0000_0000 |
| PWM_RCAPD<br>AT2 | PWMx_BA+0x21C | R   | PWM Rising Capture Data Register 2 | 0x0000_0000 |
| PWM_RCAPD<br>AT3 | PWMx_BA+0x224 | R   | PWM Rising Capture Data Register 3 | 0x0000_0000 |
| PWM_RCAPD<br>AT4 | PWMx_BA+0x22C | R   | PWM Rising Capture Data Register 4 | 0x0000_0000 |
| PWM_RCAPD<br>AT5 | PWMx_BA+0x234 | R   | PWM Rising Capture Data Register 5 | 0x0000_0000 |

| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|----|----------|----|----|----|----|----|----|--|--|--|
|    | Reserved |    |    |    |    |    |    |  |  |  |
| 23 | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|    | Reserved |    |    |    |    |    |    |  |  |  |
| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|    | RCAPDAT  |    |    |    |    |    |    |  |  |  |
| 7  | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|    | RCAPDAT  |    |    |    |    |    |    |  |  |  |

| Bits    | Description | escription                                                                                                                                 |  |  |  |  |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:16] | Reserved    | Reserved.                                                                                                                                  |  |  |  |  |
| [15:0]  | RCAPDAT     | PWM Rising Capture Data Register (Read Only) When rising capture condition happened, the PWM counter value will be saved in this register. |  |  |  |  |



## PWM Falling Capture Data Register 0~5 (PWM\_FCAPDAT 0~5)

| Register         | Offset        | R/W | Description                         | Reset Value |
|------------------|---------------|-----|-------------------------------------|-------------|
| PWM_FCAPD<br>AT0 | PWMx_BA+0x210 | R   | PWM Falling Capture Data Register 0 | 0x0000_0000 |
| PWM_FCAPD<br>AT1 | PWMx_BA+0x218 | R   | PWM Falling Capture Data Register 1 | 0x0000_0000 |
| PWM_FCAPD<br>AT2 | PWMx_BA+0x220 | R   | PWM Falling Capture Data Register 2 | 0x0000_0000 |
| PWM_FCAPD<br>AT3 | PWMx_BA+0x228 | R   | PWM Falling Capture Data Register 3 | 0x0000_0000 |
| PWM_FCAPD<br>AT4 | PWMx_BA+0x230 | R   | PWM Falling Capture Data Register 4 | 0x0000_0000 |
| PWM_FCAPD<br>AT5 | PWMx_BA+0x238 | R   | PWM Falling Capture Data Register 5 | 0x0000_0000 |

| 31       | 30      | 29 | 28   | 27    | 26 | 25 | 24 |  |  |
|----------|---------|----|------|-------|----|----|----|--|--|
| Reserved |         |    |      |       |    |    |    |  |  |
| 23       | 22      | 21 | 20   | 19    | 18 | 17 | 16 |  |  |
|          |         |    | Rese | erved |    |    |    |  |  |
| 15       | 14      | 13 | 12   | 11    | 10 | 9  | 8  |  |  |
|          | FCAPDAT |    |      |       |    |    |    |  |  |
| 7        | 6       | 5  | 4    | 3     | 2  | 1  | 0  |  |  |
|          | FCAPDAT |    |      |       |    |    |    |  |  |

| Bits    | Description |                                                                                                                                              |  |  |  |
|---------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:16] | Reserved    | Reserved.                                                                                                                                    |  |  |  |
| [15:0]  | FCAPDAT     | PWM Falling Capture Data Register (Read Only) When falling capture condition happened, the PWM counter value will be saved in this register. |  |  |  |



## **PWM Capture Interrupt Enable Register (PWM\_CAPIEN)**

| Register       | Offset        | R/W | Description                           | Reset Value |
|----------------|---------------|-----|---------------------------------------|-------------|
| PWM_CAPIE<br>N | PWMx_BA+0x250 | R/W | PWM Capture Interrupt Enable Register | 0x0000_0000 |

| 31   | 30            | 29       | 28       | 27       | 26       | 25       | 24       |  |  |  |
|------|---------------|----------|----------|----------|----------|----------|----------|--|--|--|
|      | Reserved      |          |          |          |          |          |          |  |  |  |
| 23   | 22            | 21       | 20       | 19       | 18       | 17       | 16       |  |  |  |
|      | Reserved      |          |          |          |          |          |          |  |  |  |
| 15   | 14            | 13       | 12       | 11       | 10       | 9        | 8        |  |  |  |
| Rese | Reserved CAPF |          | CAPFIEN4 | CAPFIEN3 | CAPFIEN2 | CAPFIEN1 | CAPFIEN0 |  |  |  |
| 7    | 6             | 5        | 4        | 3        | 2        | 1        | 0        |  |  |  |
| Rese | erved         | CAPRIEN5 | CAPRIEN4 | CAPRIEN3 | CAPRIEN2 | CAPRIEN1 | CAPRIEN0 |  |  |  |

| Bits    | Description | escription                                                                                                                                                                                                      |  |  |  |  |
|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:14] | Reserved    | Reserved.                                                                                                                                                                                                       |  |  |  |  |
| [13:8]  | CAPFIENn    | PWM Capture Falling Latch Interrupt Enable Control  Each bit n controls the corresponding PWM channel n.  0 = Capture falling edge latch interrupt Disabled.  1 = Capture falling edge latch interrupt Enabled. |  |  |  |  |
| [7:6]   | Reserved    | Reserved.                                                                                                                                                                                                       |  |  |  |  |
| [5:0]   | CAPRIENn    | PWM Capture Rising Latch Interrupt Enable Control  Each bit n controls the corresponding PWM channel n.  0 = Capture rising edge latch interrupt Disabled.  1 = Capture rising edge latch interrupt Enabled.    |  |  |  |  |



## **PWM Capture Interrupt Flag Register (PWM\_CAPIF)**

| Register  | Offset        | R/W | Description                         | Reset Value |
|-----------|---------------|-----|-------------------------------------|-------------|
| PWM_CAPIF | PWMx_BA+0x254 | R/W | PWM Capture Interrupt Flag Register | 0x0000_0000 |

| 31   | 30          | 29     | 28     | 27     | 26     | 25     | 24     |  |  |
|------|-------------|--------|--------|--------|--------|--------|--------|--|--|
|      | Reserved    |        |        |        |        |        |        |  |  |
| 23   | 22          | 21     | 20     | 19     | 18     | 17     | 16     |  |  |
|      | Reserved    |        |        |        |        |        |        |  |  |
| 15   | 14          | 13     | 12     | 11     | 10     | 9      | 8      |  |  |
| Rese | Reserved CF |        | CFLIF4 | CFLIF3 | CFLIF2 | CFLIF1 | CFLIF0 |  |  |
| 7    | 6           | 5      | 4      | 3      | 2      | 1      | 0      |  |  |
| Rese | erved       | CRLIF5 | CRLIF4 | CRLIF3 | CRLIF2 | CRLIF1 | CRLIF0 |  |  |

| Bits                                                         | Description | Description                                                                                                                                                                                                                                                    |  |  |
|--------------------------------------------------------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:14]                                                      | Reserved    | Reserved.                                                                                                                                                                                                                                                      |  |  |
| [13:8]                                                       | CFLIFn      | PWM Capture Falling Latch Interrupt Flag  This bit is writing 1 to clear. Each bit n controls the corresponding PWM channel n.  0 = No capture falling latch condition happened.  1 = Capture falling latch condition happened, this flag will be set to high. |  |  |
| [7:6]                                                        | Reserved    | Reserved.                                                                                                                                                                                                                                                      |  |  |
| [5:0] CRLIFn 0 = No capture rising latch condition happened. |             | This bit is writing 1 to clear. Each bit n controls the corresponding PWM channel n.                                                                                                                                                                           |  |  |



## PWM Period Register Buffer 0, 2, 4 (PWM\_PBUF0, 2, 4)

| Register  | Offset        | R/W | Description        | Reset Value |
|-----------|---------------|-----|--------------------|-------------|
| PWM_PBUF0 | PWMx_BA+0x304 | R   | PWM PERIOD0 Buffer | 0x0000_0000 |
| PWM_PBUF2 | PWMx_BA+0x30C | R   | PWM PERIOD2 Buffer | 0x0000_0000 |
| PWM_PBUF4 | PWMx_BA+0x314 | R   | PWM PERIOD4 Buffer | 0x0000_0000 |

| 31   | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |
|------|----------|----|----|----|----|----|----|--|
|      | Reserved |    |    |    |    |    |    |  |
| 23   | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |
|      | Reserved |    |    |    |    |    |    |  |
| 15   | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |
|      | PBUF     |    |    |    |    |    |    |  |
| 7    | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |
| PBUF |          |    |    |    |    |    |    |  |

| Bits    | Description        |                                                                        |  |  |
|---------|--------------------|------------------------------------------------------------------------|--|--|
| [31:16] | Reserved Reserved. |                                                                        |  |  |
| [15:0]  | IPBUF              | PWM Period Register Buffer (Read Only) Used as PERIOD active register. |  |  |



## PWM Comparator Register Buffer 0~5 (PWM\_CMPBUF0~5)

| Register        | Offset        | R/W | Description     | Reset Value |
|-----------------|---------------|-----|-----------------|-------------|
| PWM_CMPBU<br>F0 | PWMx_BA+0x31C | R   | PWM CMP0 Buffer | 0x0000_0000 |
| PWM_CMPBU<br>F1 | PWMx_BA+0x320 | R   | PWM CMP1 Buffer | 0x0000_0000 |
| PWM_CMPBU<br>F2 | PWMx_BA+0x324 | R   | PWM CMP2 Buffer | 0x0000_0000 |
| PWM_CMPBU<br>F3 | PWMx_BA+0x328 | R   | PWM CMP3 Buffer | 0x0000_0000 |
| PWM_CMPBU<br>F4 | PWMx_BA+0x32C | R   | PWM CMP4 Buffer | 0x0000_0000 |
| PWM_CMPBU<br>F5 | PWMx_BA+0x330 | R   | PWM CMP5 Buffer | 0x0000_0000 |

| 31     | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |
|--------|----------|----|----|----|----|----|----|--|
|        | Reserved |    |    |    |    |    |    |  |
| 23     | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |
|        | Reserved |    |    |    |    |    |    |  |
| 15     | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |
| СМРВИГ |          |    |    |    |    |    |    |  |
| 7      | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |
| CMPBUF |          |    |    |    |    |    |    |  |

| Bits    | Description                                                                     |                   |  |  |  |
|---------|---------------------------------------------------------------------------------|-------------------|--|--|--|
| [31:16] | Reserved                                                                        | eserved Reserved. |  |  |  |
| [15:0]  | CMPBUF  PWM Comparator Register Buffer (Read Only) Used as CMP active register. |                   |  |  |  |

### 6.8 Basic PWM Generator and Capture Timer (BPWM)

#### 6.8.1 Overview

nuvoton

The NUC131 series provides two BPWM generators — BPWM0 and BPWM1 as shown in Figure 6.8-1. Each BPWM supports 6 channels of BPWM output or input capture. There is a 12-bit prescaler to support flexible clock to the 16-bit BPWM counter with 16-bit comparator. The BPWM counter supports up, down and up-down counter types, all 6 channels share one counter. BPWM uses the comparator compared with counter to generate events. These events are used to generate BPWM pulse, interrupt and trigger signal for ADC to start conversion. For BPWM output control unit, it supports polarity output, independent pin mask and tri-state output enable.

The BPWM generator also supports input capture function to latch BPWM counter value to corresponding register when input channel has a rising transition, falling transition or both transition is happened.

#### 6.8.2 Features

#### 6.8.2.1 BPWM function features

- Supports maximum clock frequency up to 100 MHz
- Supports up to two BPWM modules, each module provides 6 output channels
- Supports independent mode for BPWM output/Capture input channel
- Supports 12-bit pre-scalar from 1 to 4096
- Supports 16-bit resolution BPWM counter, each module provides 1 BPWM counter
  - Up, down and up/down counter operation type
- Supports mask function and tri-state enable for each BPWM pin
- Supports interrupt on the following events:
  - BPWM counter match zero, period value or compared value
- Supports trigger ADC on the following events:
  - BPWM counter match zero, period value or compared value

### 6.8.2.2 Capture Function Features

- Supports up to 12 capture input channels with 16-bit resolution
- Supports rising or falling capture condition
- Supports input rising/falling capture interrupt
- Supports rising/falling capture with counter reload option



### 6.8.2.3 Compare table

| Feature            | PWM                                      | BPWM                                    |  |
|--------------------|------------------------------------------|-----------------------------------------|--|
| Counter number     | 2 channels share 1 timer, total 6 timers | 6 channels share 1 timer, total 1 timer |  |
| Complementary mode | V                                        | Х                                       |  |
| Dead-time function | V                                        | Х                                       |  |
| Brake function     | V                                        | Х                                       |  |
| Capture reload     | 2 channels reload 1 timer                | 6 channels reload 1 timer               |  |

Table 6.8-1 PWM and BPWM Features Different Table

#### 6.8.3 Block Diagram

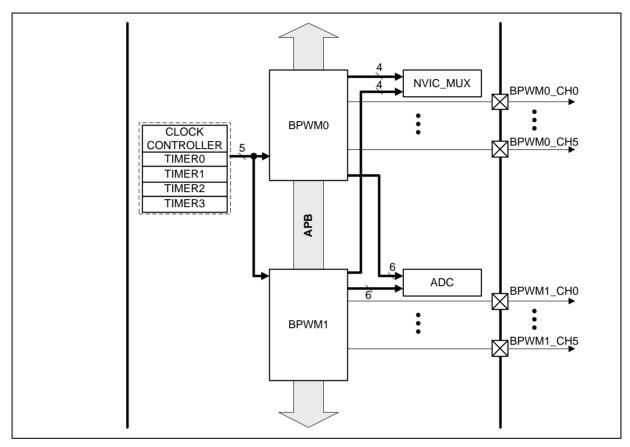
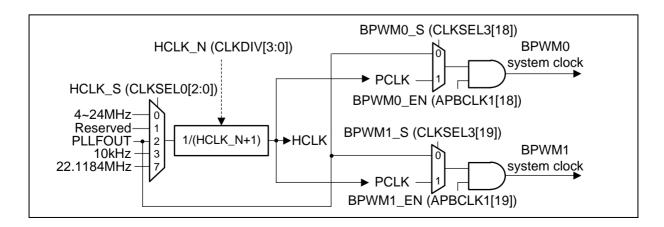




Figure 6.8-1 BPWM Generator Overview Block Diagram

PWM system clock frequency can be set equal or double to HCLK frequency as Figure 6.8-2, the detail register setting, please refer to Table 6.8-2.

Each PWM generator has only one clock source input and can be selected from system clock or four TIMER trigger PWM outputs as Figure 6.8-3 by ECLKSRC0 (BPWM\_CLKSRC[2:0]) for BPWM\_CLKO.





| Figure 6.8-2 BPWM Syste | m Clock Source Control |
|-------------------------|------------------------|
|-------------------------|------------------------|

| BPWM System Clock/HCLK<br>Frequency Ratio | _          |            | BPWMn_S (CLKSEL3[X]),<br>(N, X) Denotes (0, 18) Or (1, 19) |  |
|-------------------------------------------|------------|------------|------------------------------------------------------------|--|
| 1/1                                       | Don't care | Don't care | 1                                                          |  |
| 2/1                                       | 2          | 1          | 0                                                          |  |

Table 6.8-2 BPWM System Clock Source Control Registers Setting Table

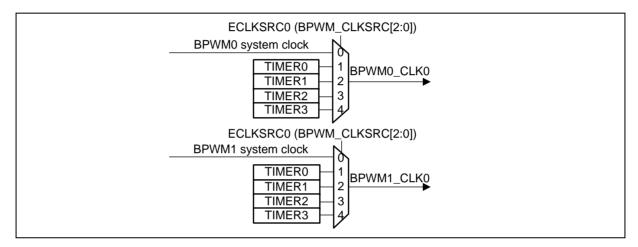



Figure 6.8-3 BPWM Clock Source Control

Figure 6.8-4 illustrates the architecture of BPWM Independent mode. All six channels share the same counter. When the counter counts to 0, PERIOD (BPWM\_PERIODn[15:0]) or equal to comparator, events will be generated. These events are passed to the corresponding generators to generate BPWM pulse, interrupt signal and trigger signal for ADC to start conversion. Output control is used to changing BPWM pulse output state.

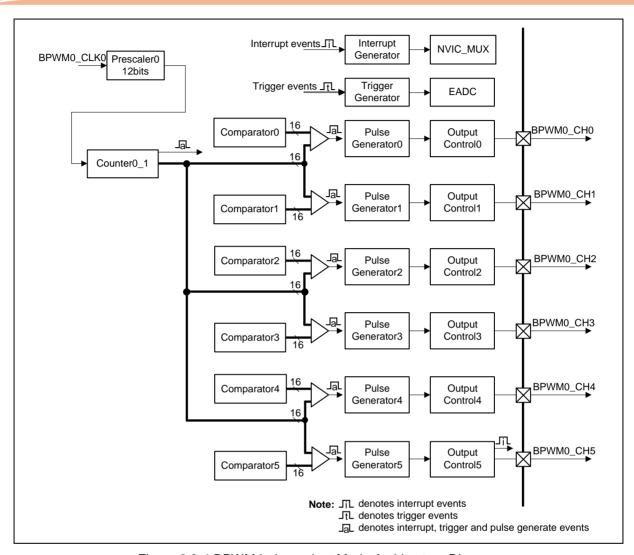



Figure 6.8-4 BPWM Independent Mode Architecture Diagram

### 6.8.4 Basic Configuration

The BPWM pin function is configured in GPB\_MFP, GPC\_MFP and GPD\_MFP registers.

The BPWM clock can be enabled in APBCLK1[19:18]. The BPWM clock source is selected by CLKSEL3[19:18].

### 6.8.5 Functional Description

#### 6.8.5.1 BPWM Prescaler

The BPWM prescaler is used to divide clock source, prescaler counting CLKPSC +1 times, and BPWM counter only count once. CLKPSC (Clock Pre-scale Register) is set by CLKPSC (BPWM\_CLKPSCn[11:0], n denotes 0, 2, 4). Figure 6.8-5 shows an example of BPWM channel 0 CLKPSC waveform.

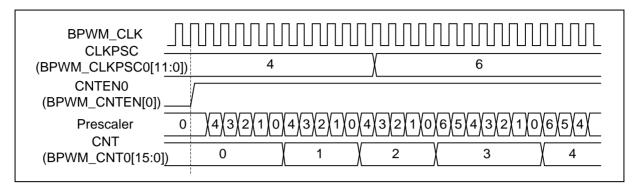



Figure 6.8-5 BPWM CH0 CLKPSC waveform

#### 6.8.5.2 BPWM Counter

nuvoton

BPWM supports 3 counter types operation: Up Counter, Down Counter and Up-Down Counter types.

#### 6.8.5.3 Up Counter Type

In the up counter operation, the 16 bits BPWM counter is an up counter and starts up-counting from zero to PERIOD (BPWM\_PERIODn[15:0], where n denotes channel number) to finish a B BPWM period. The current counter value can be found by reading the CNT (BPWM\_CNTn[15:0]). BPWM generates zero point event when counter counts to 0 and generates period point event when counting to PERIOD. The Figure 6.8-6 shows an example of up counter, wherein BPWM period time = (PERIOD+1) \* BPWM clock time.



Figure 6.8-6 BPWM Up Counter Type

### 6.8.5.4 Down Counter Type

In the down counter operation, the 16 bits BPWM counter is a down counter and starts down-counting from PERIOD to zero to finish a BPWM period. The current counter value can be found by reading the CNT. BPWM generates zero point event when counter counts to 0 and generates period point event when counting to PERIOD. The Figure 6.8-7 shows an example of down counter, wherein BPWM period time = (PERIOD+1) \* BPWM clock time.

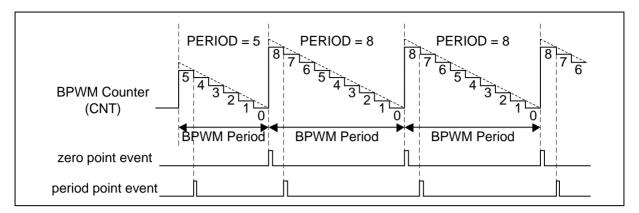



Figure 6.8-7 BPWM Down Counter Type

### 6.8.5.5 Up-Down Counter Type

In the up-down counter operation, the 16 bits BPWM counter is an up-down counter and starts counting-up from zero to PERIOD and then starts counting down to zero to finish a BPWM period. The current counter value can be found by reading the CNT. BPWM generates zero point event when counter counts to 0 and generates center point event when counting to PERIOD. The Figure 6.8-8 shows an example of up-down counter, wherein BPWM period time = (2xPERIOD) \* BPWM clock time. The DIRF (BPWM\_CNTn[16]) is counter direction indicator flag, where high is up counting, and low is down counting.

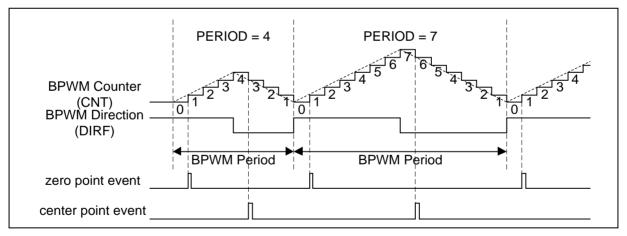



Figure 6.8-8 BPWM Up-Down Counter Type

### 6.8.5.6 BPWM Comparator

The CMPDAT (BPWM\_CMPDATn[15:0]) is a basic comparator register of BPWM channel n; each channel only has one CMPDAT. The CMPDAT's value is continuously compared to the counter value. When the counter is equal to compared register, BPWM generates an event and uses the event to generate BPWM pulse, interrupt or use to trigger ADC. In up-down counter type, two events will be generated in a BPWM period as shown in Figure 6.8-9.

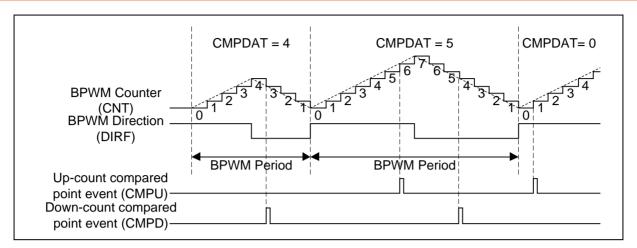



Figure 6.8-9 BPWM CMPDAT Events in Up-Down Counter Type

### 6.8.5.7 BPWM Double Buffering

nuvoton

The double buffering uses double buffers to separate software writing and hardware action operation timing. After registers are modified through software, hardware will load register value to the buffer register according to the loading mode timing. The hardware action is based on the buffer value. This can prevent asynchronously operation problem due to software and hardware asynchronism.

The BPWM has double buffering function for PERIOD and CMPDAT. The concept of double buffering is used in loading modes, which are described in the following sections. For example, as shown in Figure 6.8-10, in period loading mode, writing PERIOD and CMPDAT through software, BPWM will load new values to their buffer PBUF (BPWM PBUFn[15:0]) and CMPBUF (BPWM CMPBUFn[15:0]) at start of the next period without affecting the current period counter operation. There are 3 loading modes for loading value to buffer: period loading mode, immediately loading mode and center loading mode.

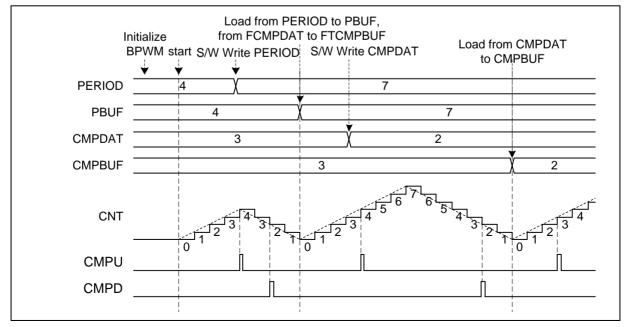



Figure 6.8-10 BPWM Double Buffering Illustration

#### 6.8.5.8 Period Loading Mode

Period Loading mode is the default loading mode. It has lowest priority in loading modes. PERIOD and CMPDAT both will both load to their buffer while a periodis completed. For example, after BPWM counter up counts from zero to PERIOD in up-counter operation or down counts from PERIOD to zero in the down-counter operation or up counts from zero to PERIOD and then down counts to zero in up-down counter operation.

Figure 6.8-11 shows period loading timing of up-count operation, where PERIOD DATA0 denotes the initial data of PERIOD, PERIOD DATA1 denotes the first updated PERIOD data by software and so on, CMPDAT also follows this rule. The following describes steps sequence of Figure 6.8-11. User can know the PERIOD and CMPDAT update condition, by watching PWM period and CMPU event.

- 1. Software writes CMPDAT DATA1 to CMPDAT at point 1.
- 2. Hardware loads CMPDAT DATA1 to CMPBUF at the end of PWM period at point 2.
- 3. Software writes PERIOD DATA1 to PERIOD at point 3.
- 4. Hardware loads PERIOD DATA1 to PBUF at the end of PWM period at point 4.
- 5. Software writes PERIOD DATA2 to PERIOD at point 5.
- 6. Hardware loads PERIOD DATA2 to PBUF at the end of PWM period at point 6.

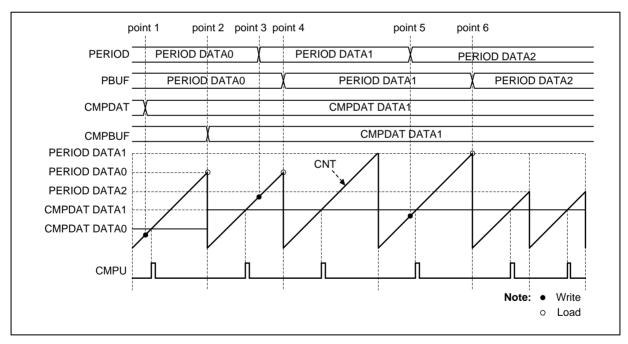



Figure 6.8-11 Period Loading Mode with Up-Counter Type

### 6.8.5.9 Immediately Loading Mode

If the IMMLDENn (BPWM\_CTL0[21:16]) bit which corresponds to BPWM channel n is set to 1, software will load a value to buffer from PERIOD and CMPDAT immediately while software updates PERIOD or CMPDAT. If the update PERIOD value is less than current counter value, counter will count wraparound. Immediately loading mode has the highest priority. If IMMLDENn has been set, other loading mode for channel n will become invalid. Figure 6.8-12 shows an example and its steps sequence is described below.

- 1. Software writes CMPDAT DATA1 and hardware immediately loading CMPDAT DATA1 to CMPBUF at point 1.
- 2. Software writes PERIOD DATA1 which is greater than current counter value at point 2; counter will continue counting until equal to PERIOD DATA1 to finish a period loading.
- 3. Software writes PERIOD DATA2 which is less than the current counter value at point 3; counter will continue counting to its maximum value 0xFFFF and count wraparound from 0 to PERIOD DATA2 to finish this period loading.

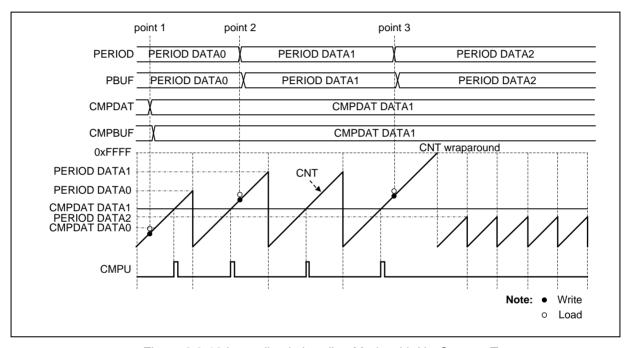
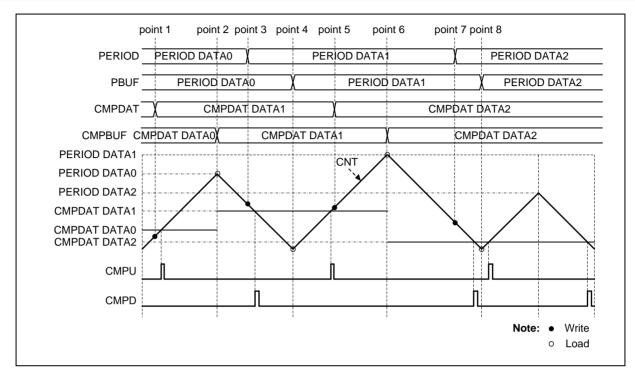


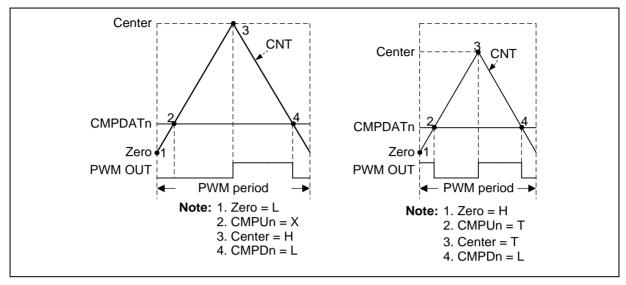

Figure 6.8-12 Immediately Loading Mode with Up-Counter Type

#### 6.8.5.10 Center Loading Mode

If the CTRLDn (BPWM\_CTL0[5:0]) bit which corresponds to BPWM channel n is set to 1 and in updown counter type, CMPDAT will load to CMPBUFn in center of a period, that is, counter counts to PERIOD. PERIOD loading timing is the same as period loading mode. Figure 6.8-13 shows an example and its steps sequence is described below.

- 1. Software writes CMPDAT DATA1 at point 1.
- 2. Hardware loads CMPDAT DATA1 to CMPBUF at center of PWM period at point 2.
- 3. Software writes PERIOD DATA1 at point 3.
- 4. Hardware loads PERIOD DATA1 to PBUF at the end of PWM period at point 4.
- 5. Software writes CMPDAT DATA2 at point 5.
- 6. Hardware loads CMPDAT DATA2 to CMPBUF at center of PWM period at point 6.
- 7. Software writes PERIOD DATA2 at point 7.
- 8. Hardware loads PERIOD DATA2 to PBUF at the end of PWM period at point 8.





Figure 6.8-13 Center Loading Mode with Up-Down-Counter Type

#### 6.8.5.11BPWM Pulse Generator

nuvoton

BPWM pulse generator uses counter and comparator events to generate BPWM pulse. The events are: zero point, period point in up counter type and down counter type, center point in up-down counter type and counter equal to comparator point in three types. As to up-down counter type, there are two counter equal comparator points, one at up count another at down count.

Each event point can decide BPWM waveform to do nothing (X), set Low (L), set High (H) or toggle (T) by setting BPWM WGCTL0 and BPWM WGCTL1 registers. Using these points can easily generate asymmetric BPWM pulse or variant waveform as shown in Figure 6.8-14. In the figure, there is a comparator n to generate BPWM pulse, n denotes channel number 0 to 5, CMPU denotes CNT is equal to CMPDAT when counting up, CMPD denotes CNT is equal to CMPDAT when counting down.



nuvoton

Figure 6.8-14 BPWM Pulse Generation

The generation events may be sometimes set to the same value, as the reason, events priority between different counter types are list below, up counter type (Table 6.8-3), down counter type (Table 6.8-4) and up-down counter tupe (Table 6.8-5). By using event priority, user can easily generate 0% to 100% duty pulse as shown in Figure 6.8-15.

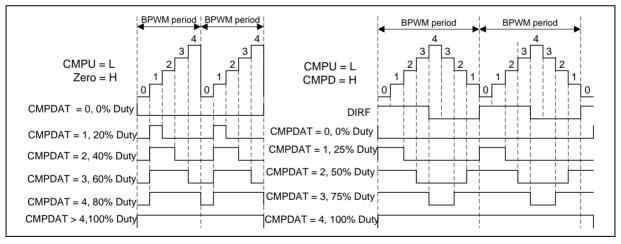



Figure 6.8-15 BPWM 0% to 100% Pulse Generation

| Priority    | Up Event              |
|-------------|-----------------------|
| 1 (Highest) | CNT = period (PERIOD) |
| 2           | CNT = CMPUm           |
| 3           | CNT = CMPUn           |
| 4 (Lowest)  | CNT = zero            |

Table 6.8-3 BPWM Pulse Generation Event Priority for Up-Counter

| Priority    | Down Event            |
|-------------|-----------------------|
| 1 (Highest) | CNT = zero            |
| 2           | CNT = CMPDm           |
| 3           | CNT = CMPDn           |
| 4 (Lowest)  | CNT = period (PERIOD) |

Table 6.8-4 BPWM Pulse Generation Event Priority for Down-Counter

| Priority    | Up Event       | Down Event            |
|-------------|----------------|-----------------------|
| 1 (Highest) | CNT = CMPUm    | CNT = CMPDm           |
| 2           | CNT= CMPUn     | CNT = CMPDn           |
| 3           | CNT = zero     | CNT = center (PERIOD) |
| 4           | CNT = CMPDm    | CNT = CMPUm           |
| 5 (Lowest)  | PERIOD = CMPDn | CNT = CMPUn           |

Table 6.8-5 BPWM Pulse Generation Event Priority for Up-Down-Counter

#### 6.8.5.12 BPWM Output Control

After BPWM pulse generation, there are three steps to control the output of BPWM channels. There are Mask, Pin Polarity and Output Enable three steps as shown in Figure 6.8-16.

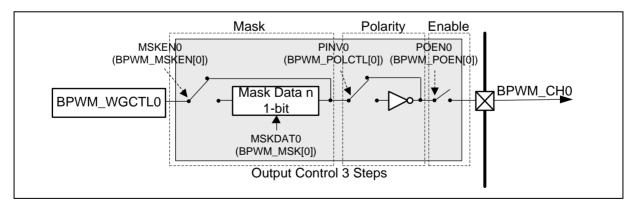



Figure 6.8-16 BPWM CH0 Output Control 3 Steps

#### 6.8.5.13BPWM Mask Output Function

Each of the BPWM output channels can be manually overridden by using the appropriate bits in the BPWM Mask Enable Control Register (BPWM\_MSKEN) and BPWM Masked Data Register (BPWM\_MSK) to drive the BPWM channel outputs to specified logic states independent of the duty cycle comparison units. The BPWM mask bits are useful when controlling various types of Electrically Commutated Motor (ECM) like a BLDC motor. The BPWM\_MSKEN register contains six bits, MSKENn(BPWM\_MSKEN[5:0]) determine which BPWM channel output will be overridden,

MSKENn(BPWM MSKEN[5:0]) bits are active-high. The BPWM MSK register contains six bits, MSKDATn(BPWM MSK[5:0]) determine the state of the BPWM channel output when the channel is masked via the MSKDAT bits. Figure 6.8-17 shows an example of how BPWM mask control can be used for the override feature.

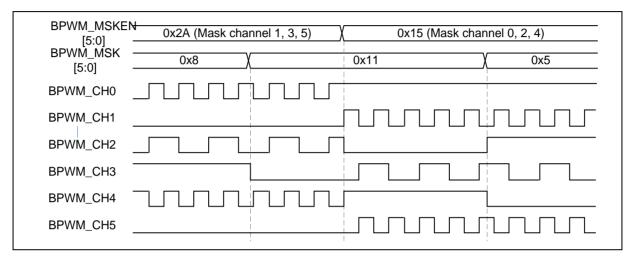



Figure 6.8-17 Illustration of Mask Control Waveform

#### 6.8.5.14Polarity Control

nuvoton

Each BPWM port from BPWM\_CH0 to BPWM\_CH5 has an independent polarity control module to configure the polarity of the active state of BPWM output. By default, the BPWM output is active high. This implies the BPWM OFF state is low and ON state is high. This definition is variable through setting BPWM Negative Polarity Control Register (BPWM\_POLCTL), for each individual BPWM channel. Figure 6.8-18 shows the initial state before BPWM starts with different polarity settings.

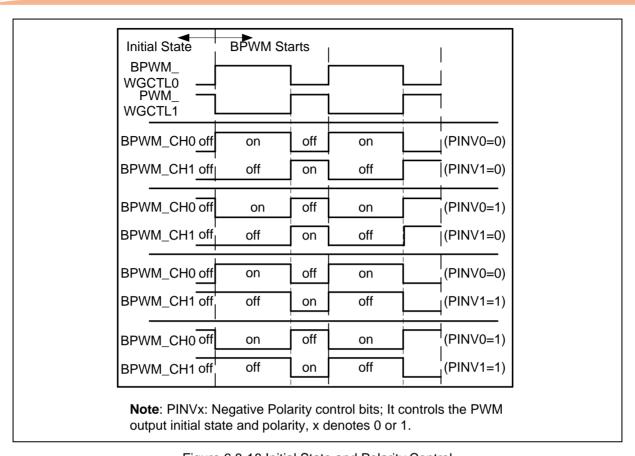



Figure 6.8-18 Initial State and Polarity Control

### 6.8.5.15BPWM Interrupt Generator

nuvoton

There are two independent interrupts for each BPWM as shown in Figure 6.8-19.

BPWM interrupt (BPWM INT) comes from BPWM complementary pair events. The counter can generate the Zero point Interrupt Flag ZIFn (BPWM\_INTSTS0[5:0]) and the Period point Interrupt Flag PIFn (BPWM INTSTS0[13:8]). When BPWM channel n's counter equals to the comparator value stored in BPWM CMPDATn, the different interrupt flags will be triggered depending on the counting direction. If the matching occurs at up-count direction, the Up Interrupt Flag CMPUIFn (BPWM INTSTS0[21:16]) is set and if matching at the opposite direction, the Down Interrupt Flag CMPDIFn (BPWM INTSTS0[29:24]) is set. If the correspond interrupt enable bits are set, the trigger events will generates interrupt signals.

Another interrupt is the capture interrupt (CAP INT). It shares the BPWM INT vector in NVIC, CAP INT can be generated when the CRLIFn (BPWM CAPIF[5:0]) is triggered and the Capture Rising Interrupt Enable bit CAPRIENn (BPWM CAPIEN[5:0]) is set to 1. Or in the falling edge condition, the CFLIFn (BPWM CAPIF[13:8]) can be triggered when the Capture Falling Interrupt Enable bit CAPFIENn (BPWM CAPIEN[13:8]) is set to 1.

The Figure 6.8-19 demonstrates the architecture of the BPWM interrupts.

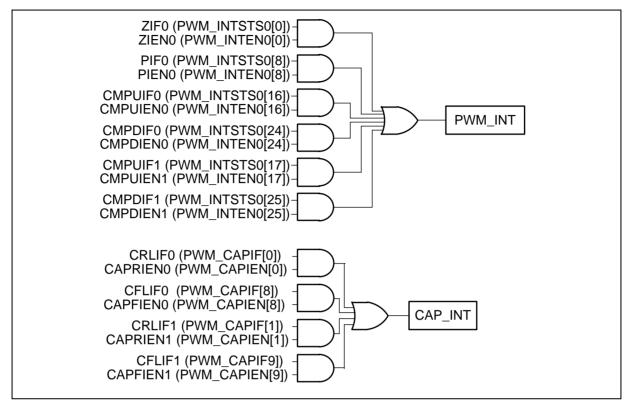



Figure 6.8-19 BPWM\_CH0 and BPWM\_CH1 Pair Interrupt Architecture Diagram

#### 6.8.5.16BPWM Trigger ADC Generator

nuvoton

BPWM can be one of the ADC conversion trigger source. Each BPWM pair channels share the same trigger source. Setting TRGSELn is to select the trigger sources, where TRGSELn is TRGSEL0, TRGSEL1, ..., and TRGSEL5, which are located in BPWM\_ADCTS0[3:0], BPWM\_ADCTS0[11:8], BPWM\_ADCTS0[19:16], BPWM\_ADCTS0[27:24], BPWM\_ADCTS1[3:0] and BPWM\_EADTS1[11:8], respectively. Setting TRGENn is to enable the trigger output to ADC, where TRGENn is TRGEN0, TRGEN1, ..., TRGEN5, which are located in BPWM\_ADCTS0[7], BPWM\_ADCTS0[15], BPWM\_ADCTS0[23], BPWM\_ADCTS0[31], BPWM\_ADCTS1[7] and BPWM\_ADCTS1[15], respectively. The number n (n = 0, 1, ..., 5) denotes BPWM channel number.

There are 7 BPWM events can be selected as the trigger source for one pair of channels. Figure 6.8-20 is an example of BPWM\_CH0 and BPWM\_CH1. BPWM can trigger ADC to start conversion in different timings by setting PERIOD and CMPDAT. Figure 6.8-21 is the trigger ADC timing waveform in the up-down counter type.

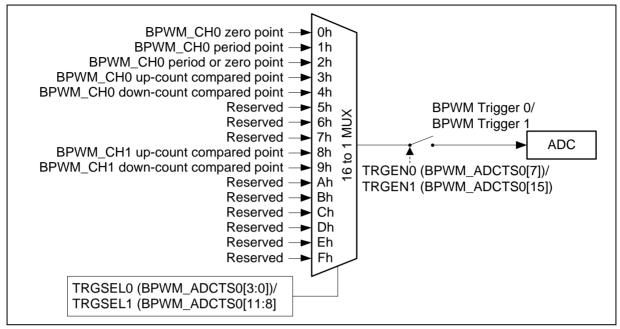



Figure 6.8-20 BPWM\_CH0 and BPWM\_CH1 Pair Trigger ADC Block Diagram

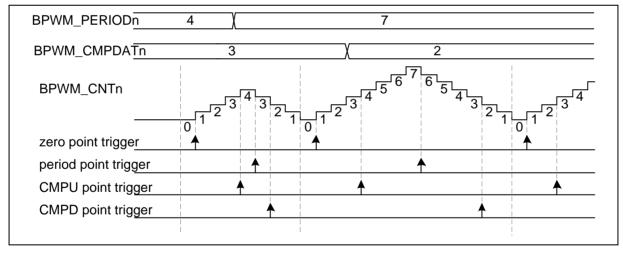



Figure 6.8-21 BPWM Trigger ADC in Up-Down Counter Type Timing Waveform

#### 6.8.5.17 Capture Operation

The channels of the capture input and the BPWM output share the same pin and counter. The counter can operate in up or down counter type. The capture function will always latch the BPWM counter to **RCAPDATn** (BPWM RCAPDATn[15:0]) or the register **FCAPDATn** (BPWM\_FCAPDATn[15:0]) if the input channel has a rising transition or a falling transition, respectively. The capture function will also generate an interrupt CAP INT (using BPWM INT vector) if the rising or falling latch occurs and the corresponding channel n's rising or falling interrupt enable bits are set, where the CAPRIENn (BPWM\_CAPIEN[5:0]) is for the rising edge and the CAPFIENn (BPWM CAPIEN[13:8]) is for the falling edge. When rising or falling latch occurs, the corresponding BPWM counter may be reloaded with the value BPWM PERIODn, depending on the setting of or FCRLDENn **RCRLDENn** (where RCRLDENn and FCRLDENn located are

BPWM CAPCTL[21:16] and BPWM CAPCTL[29:24], respectively). Note that the corresponding GPIO pins must be configured as the capture function by enable the CAPINENn (BPWM CAPINEN[5:0]) for the corresponding capture channel n. Figure 6.8-22 is the capture block diagram of channel 0.

nuvoton

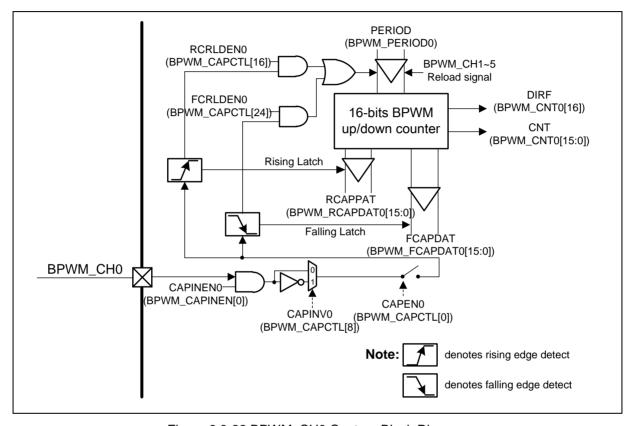



Figure 6.8-22 BPWM CH0 Capture Block Diagram

Figure 6.8-23 illustrates the capture function timing. In this case, the capture counter is set as BPWM down counter type and the PERIOD is set to 8 so that the counter counts in the down direction, from 8 to 0. When detecting a falling edge at the capture input pin, the capture function latches counter value to the BPWM FCAPDATn. When detecting the rising edge, it latches the counter value to the BPWM\_RCAPDATn. In this timing diagram, when the falling edge is detected at the first time, the capture function will reload the counter value from the PERIOD setting because the FCRLDENn is enabled. But at the second time, the falling edge does not result in a reload because of the disabled FCRLDENn. In this example, the counter also reloads at the rising edge of the capture input because the RCRLDENn is enabled, too.

Moreover, if the case is setup as the up counter type, the counter will reload the value zero and count up to the value PERIOD. It is important that the counter is shared by all channels, so the counter reloads time also controlled by all channels' reload signals.

Figure 6.8-23 also illustrates the timing example for the interrupt and interrupt flag generation. When the rising edge at channel n is detected, the corresponding bit CRLIFn (BPWM\_CAPIF[5:0]) is set by hardware. Similarly, a falling edge detection at chnnel n causes the corresponding bit CFLIFn (BPWM CAPIF[13:8]) set by hardware. CRLIFn and CFLIFn can be cleared by software by writing '1'. If the CRLIFn is set and the CAPRIENn is enabled, the capture function generates an interrupt. If the CFLIFn is set and the CAPFIENn is enabled, the interrupt also happens.

nuvoton

A condition which is not shown in this figure is: if the rising latch happens again when the CRLIF is already set, the Over run status CRIFOVn (BPWM CAPSTS[5:0]) will be set to 1 by hardware to indicate the CRLIF overrunning. Also, if the falling latch happens again, the same hardware operation occurs for the interrupt flag CFLIF and the Over run status CFIFOVn (BPWM CAPSTS[13:8]).

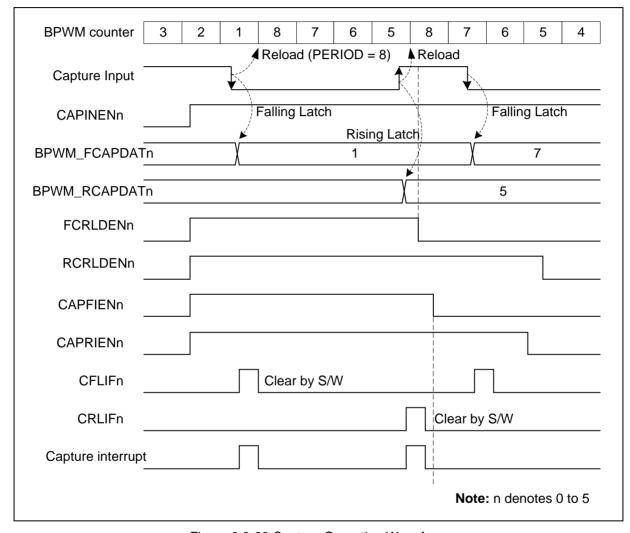



Figure 6.8-23 Capture Operation Waveform

The capture pulse width can be calculated according to the following formula:

For the negative pulse case, the channel low pulse width is calculated as (BPWM\_PERIODn + 1 -BPWM RCAPDATn). In Figure 6.8-22 case, low pulse width is 8+1-5=4.

For the positive pulse case, the channel high pulse width is calculated as (BPWM PERIODn + 1 -BPWM\_FCAPDATn). In Figure 6.8-23 case, high pulse width is 8+1-7 = 2.



### 6.8.5.18PWM and BPWM Features Different Table

| Feature            | PWM                                      | BPWM                                    |  |  |
|--------------------|------------------------------------------|-----------------------------------------|--|--|
| Counter number     | 2 channels share 1 timer, total 6 timers | 6 channels share 1 timer, total 1 timer |  |  |
| Complementary mode | V                                        | X                                       |  |  |
| Dead-time function | V                                        | Х                                       |  |  |
| Brake function     | V                                        | X                                       |  |  |
| Capture reload     | 2 channels reload 1 timer                | 6 channels reload 1 timer               |  |  |

Table 6.8-6 PWM and BPWM Features Different Table

# 6.8.6 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

| Register                                                               | Offset        | R/W | Description                   | Reset Value |  |  |
|------------------------------------------------------------------------|---------------|-----|-------------------------------|-------------|--|--|
| BPWM Base Address:<br>BPWM0_BA = 0x4004_4000<br>BPWM1_BA = 0x4014_4000 |               |     |                               |             |  |  |
| BPWM_CTL0<br>x=0, 1                                                    | BPWMx_BA+0x00 | R/W | BPWM Control Register 0       | 0x0000_0000 |  |  |
| BPWM_CTL1<br>x=0, 1                                                    | BPWMx_BA+0x04 | R/W | BPWM Control Register 1       | 0x0000_0000 |  |  |
| BPWM_CLKSRC<br>x=0, 1                                                  | BPWMx_BA+0x10 | R/W | BPWM Clock Source Register    | 0x0000_0000 |  |  |
| BPWM_CLKPSC<br>x=0, 1                                                  | BPWMx_BA+0x14 | R/W | BPWM Clock Pre-scale Register | 0x0000_0000 |  |  |
| BPWM_CNTEN<br>x=0, 1                                                   | BPWMx_BA+0x20 | R/W | BPWM Counter Enable Register  | 0x0000_0000 |  |  |
| BPWM_CNTCLR<br>x=0, 1                                                  | BPWMx_BA+0x24 | R/W | BPWM Clear Counter Register   | 0x0000_0000 |  |  |
| BPWM_PERIOD<br>x=0, 1                                                  | BPWMx_BA+0x30 | R/W | BPWM Period Register          | 0x0000_0000 |  |  |
| BPWM_CMPDA<br>T0<br>x=0, 1                                             | BPWMx_BA+0x50 | R/W | BPWM Comparator Register 0    | 0x0000_0000 |  |  |
| BPWM_CMPDA<br>T1<br>x=0, 1                                             | BPWMx_BA+0x54 | R/W | BPWM Comparator Register 1    | 0x0000_0000 |  |  |
| BPWM_CMPDA<br>T2<br>x=0, 1                                             | BPWMx_BA+0x58 | R/W | BPWM Comparator Register 2    | 0x0000_0000 |  |  |
| BPWM_CMPDA<br>T3<br>x=0, 1                                             | BPWMx_BA+0x5C | R/W | BPWM Comparator Register 3    | 0x0000_0000 |  |  |
| BPWM_CMPDA<br>T4<br>x=0, 1                                             | BPWMx_BA+0x60 | R/W | BPWM Comparator Register 4    | 0x0000_0000 |  |  |
| BPWM_CMPDA<br>T5<br>x=0, 1                                             | BPWMx_BA+0x64 | R/W | BPWM Comparator Register 5    | 0x0000_0000 |  |  |
| BPWM_CNT0<br>x=0, 1                                                    | BPWMx_BA+0x90 | R   | BPWM Counter Register 0       | 0x0000_0000 |  |  |
| BPWM_WGCTL                                                             | BPWMx_BA+0xB0 | R/W | BPWM Generation Register 0    | 0x0000_0000 |  |  |

| 0<br>x=0, 1                 |                    |     |                                           |             |
|-----------------------------|--------------------|-----|-------------------------------------------|-------------|
| BPWM_WGCTL<br>1<br>x=0, 1   | BPWMx_BA+0xB4      | R/W | BPWM Generation Register 1                | 0x0000_0000 |
| BPWM_MSKEN<br>x=0, 1        | BPWMx_BA+0xB8      | R/W | BPWM Mask Enable Register                 | 0x0000_0000 |
| BPWM_MSK<br>x=0, 1          | BPWMx_BA+0xBC      | R/W | BPWM Mask Data Register                   | 0x0000_0000 |
| BPWM_POLCTL<br>x=0, 1       | BPWMx_BA+0xD4      | R/W | BPWM Pin Polar Inverse Register           | 0x0000_0000 |
| BPWM_POEN<br>x=0, 1         | BPWMx_BA+0xD8      | R/W | BPWM Output Enable Register               | 0x0000_0000 |
| BPWM_INTEN<br>x=0, 1        | BPWMx_BA+0xE0      | R/W | BPWM Interrupt Enable Register            | 0x0000_0000 |
| BPWM_INTSTS<br>x=0, 1       | BPWMx_BA+0xE8      | R/W | BPWM Interrupt Flag Register              | 0x0000_0000 |
| BPWM_ADCTS0<br>x=0, 1       | BPWMx_BA+0xF8      | R/W | BPWM Trigger ADC Source Select Register 0 | 0x0000_0000 |
| BPWM_ADCTS1<br>x=0, 1       | BPWMx_BA+0xFC      | R/W | BPWM Trigger ADC Source Select Register 1 | 0x0000_0000 |
| BPWM_SSCTL<br>x=0, 1        | BPWMx_BA+0x11<br>0 | R/W | BPWM Synchronous Start Control Register   | 0x0000_0000 |
| BPWM_SSTRG<br>x=0, 1        | BPWMx_BA+0x11<br>4 | W   | BPWM Synchronous Start Trigger Register   | 0x0000_0000 |
| BPWM_STATUS<br>x=0, 1       | BPWMx_BA+0x12<br>0 | R/W | BPWM Status Register                      | 0x0000_0000 |
| BPWM_CAPINE<br>N<br>x=0, 1  | BPWMx_BA+0x20<br>0 | R/W | BPWM Capture Input Enable Register        | 0x0000_0000 |
| BPWM_CAPCTL<br>x=0, 1       | BPWMx_BA+0x20<br>4 | R/W | BPWM Capture Control Register             | 0x0000_0000 |
| BPWM_CAPSTS<br>x=0, 1       | BPWMx_BA+0x20<br>8 | R   | BPWM Capture Status Register              | 0x0000_0000 |
| BPWM_RCAPD<br>AT0<br>x=0, 1 | BPWMx_BA+0x20<br>C | R   | BPWM Rising Capture Data Register 0       | 0x0000_0000 |
| BPWM_FCAPDA<br>T0<br>x=0, 1 | BPWMx_BA+0x21<br>0 | R   | BPWM Falling Capture Data Register 0      | 0x0000_0000 |
| BPWM_RCAPD<br>AT1           | BPWMx_BA+0x21<br>4 | R   | BPWM Rising Capture Data Register 1       | 0x0000_0000 |

nuvoTon

nuvoTon

| x=0, 1                      |                    |     |                                        |             |
|-----------------------------|--------------------|-----|----------------------------------------|-------------|
| BPWM_FCAPDA<br>T1<br>x=0, 1 | BPWMx_BA+0x21<br>8 | R   | BPWM Falling Capture Data Register 1   | 0x0000_0000 |
| BPWM_RCAPD<br>AT2<br>x=0, 1 | BPWMx_BA+0x21<br>C | R   | BPWM Rising Capture Data Register 2    | 0x0000_0000 |
| BPWM_FCAPDA<br>T2<br>x=0, 1 | BPWMx_BA+0x22<br>0 | R   | BPWM Falling Capture Data Register 2   | 0x0000_0000 |
| BPWM_RCAPD<br>AT3<br>x=0, 1 | BPWMx_BA+0x22<br>4 | R   | BPWM Rising Capture Data Register 3    | 0x0000_0000 |
| BPWM_FCAPDA<br>T3<br>x=0, 1 | BPWMx_BA+0x22<br>8 | R   | BPWM Falling Capture Data Register 3   | 0x0000_0000 |
| BPWM_RCAPD<br>AT4<br>x=0, 1 | BPWMx_BA+0x22<br>C | R   | BPWM Rising Capture Data Register 4    | 0x0000_0000 |
| BPWM_FCAPDA<br>T4<br>x=0, 1 | BPWMx_BA+0x23<br>0 | R   | BPWM Falling Capture Data Register 4   | 0x0000_0000 |
| BPWM_RCAPD<br>AT5<br>x=0, 1 | BPWMx_BA+0x23      | R   | BPWM Rising Capture Data Register 5    | 0x0000_0000 |
| BPWM_FCAPDA<br>T5<br>x=0, 1 | BPWMx_BA+0x23<br>8 | R   | BPWM Falling Capture Data Register 5   | 0x0000_0000 |
| BPWM_CAPIEN<br>x=0, 1       | BPWMx_BA+0x25<br>0 | R/W | BPWM Capture Interrupt Enable Register | 0x0000_0000 |
| BPWM_CAPIF<br>x=0, 1        | BPWMx_BA+0x25<br>4 | R/W | BPWM Capture Interrupt Flag Register   | 0x0000_0000 |
| BPWM_PBUF<br>x=0, 1         | BPWMx_BA+0x30<br>4 | R   | BPWM PERIOD Buffer                     | 0x0000_0000 |
| BPWM_CMPBU<br>F0<br>x=0, 1  | BPWMx_BA+0x31<br>C | R   | BPWM CMPDAT0 Buffer                    | 0x0000_0000 |
| BPWM_CMPBU<br>F1<br>x=0, 1  | BPWMx_BA+0x32<br>0 | R   | BPWM CMPDAT1 Buffer                    | 0x0000_0000 |
| BPWM_CMPBU<br>F2<br>x=0, 1  | BPWMx_BA+0x32<br>4 | R   | BPWM CMPDAT 2 Buffer                   | 0x0000_0000 |
| BPWM_CMPBU<br>F3            | BPWMx_BA+0x32<br>8 | R   | BPWM CMPDAT 3 Buffer                   | 0x0000_0000 |



| x=0, 1                     |                    |   |                      |             |
|----------------------------|--------------------|---|----------------------|-------------|
| BPWM_CMPBU<br>F4<br>x=0, 1 | BPWMx_BA+0x32<br>C | R | BPWM CMPDAT 4 Buffer | 0x0000_0000 |
| BPWM_CMPBU<br>F5<br>x=0, 1 | BPWMx_BA+0x33      | R | BPWM CMPDAT 5 Buffer | 0x0000_0000 |

# 6.8.7 Register Description

nuvoTon

# BPWM Control Register 0 (BPWM\_CTL0)

| Register  | Offset        | R/W | Description             | Reset Value |
|-----------|---------------|-----|-------------------------|-------------|
| BPWM_CTL0 | BPWMx_BA+0x00 | R/W | BPWM Control Register 0 | 0x0000_0000 |

| 31        | 30      | 29       | 28       | 27       | 26       | 25       | 24       |
|-----------|---------|----------|----------|----------|----------|----------|----------|
| DBGTRIOFF | DBGHALT |          |          | Rese     | erved    |          |          |
| 23        | 22      | 21       | 20       | 19       | 18       | 17       | 16       |
| Rese      | erved   | IMMLDEN5 | IMMLDEN4 | IMMLDEN3 | IMMLDEN2 | IMMLDEN1 | IMMLDEN0 |
| 15        | 14      | 13       | 12       | 11       | 10       | 9        | 8        |
|           |         |          | Rese     | erved    |          |          |          |
| 7         | 6       | 5        | 4        | 3        | 2        | 1        | 0        |
| Rese      | erved   | CTRLD5   | CTRLD4   | CTRLD3   | CTRLD2   | CTRLD1   | CTRLD0   |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31]    | DBGTRIOFF   | ICE Debug Mode Acknowledge Disable (Write Protect)  0 = ICE debug mode acknowledgement effects BPWM output.  BPWM pin will be forced as tri-state while ICE debug mode acknowledged.  1 = ICE debug mode acknowledgement disabled.  BPWM pin will keep output no matter ICE debug mode acknowledged or not.  Note: This register is write protected. Refer to SYS_REGLCTL register.                                |
| [30]    | DBGHALT     | ICE Debug Mode Counter Halt (Write Protect)  If counter halt is enabled, BPWM all counters will keep current value until exit ICE debug mode.  0 = ICE debug mode counter halt disable.  1 = ICE debug mode counter halt enable.  Note: This register is write protected. Refer to SYS_REGLCTL register.                                                                                                           |
| [29:22] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                          |
| [21:16] | IMMLDENn    | Immediately Load Enable  Each bit n controls the corresponding BPWM channel n.  0 = PERIOD will load to PBUF at the end point of each period. CMPDAT will load to CMPBUF at the end point or center point of each period by setting CTRLD bit.  1 = PERIOD/CMPDAT will load to PBUF and CMPBUF immediately when software update PERIOD/CMPDAT.  Note: If IMMLDENn is enabled, WINLDENn and CTRLDn will be invalid. |
| [15:6]  | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                          |
| [5:0]   | CTRLDn      | Center Re-Load  Each bit n controls the corresponding BPWM channel n.  In up-down counter type, PERIOD will load to PBUF at the end point of each period.                                                                                                                                                                                                                                                          |



CMPDAT will load to CMPBUF at the center point of a period.



# **BPWM Control Register 1 (BPWM\_CTL1)**

| Register  | Offset        | R/W | Description             | Reset Value |
|-----------|---------------|-----|-------------------------|-------------|
| BPWM_CTL1 | BPWMx_BA+0x04 | R/W | BPWM Control Register 1 | 0x0000_0000 |

| 31       | 30       | 29 | 28   | 27    | 26 | 25   | 24   |  |  |
|----------|----------|----|------|-------|----|------|------|--|--|
| Reserved |          |    |      |       |    |      |      |  |  |
| 23       | 22       | 21 | 20   | 19    | 18 | 17   | 16   |  |  |
|          |          |    | Rese | erved |    |      |      |  |  |
| 15       | 14       | 13 | 12   | 11    | 10 | 9    | 8    |  |  |
|          | Reserved |    |      |       |    |      |      |  |  |
| 7        | 6        | 5  | 4    | 3     | 2  | 1    | 0    |  |  |
| Reserved |          |    |      |       |    | CNTT | YPE0 |  |  |

| Bits   | Description | Description                                                                                                                                                                                                     |  |  |  |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:2] | Reserved    | Reserved.                                                                                                                                                                                                       |  |  |  |
| [1:0]  | CNTTYPE0    | BPWM Counter Behavior Type 0  Each bit n controls corresponding BPWM channel n.  00 = Up counter type (supports in capture mode).  01 = Down count type (supports in capture mode).  10 = Up-down counter type. |  |  |  |
|        |             | 10 = Up-down counter type.<br>11 = Reserved.                                                                                                                                                                    |  |  |  |



# **BPWM Clock Source Register (BPWM\_CLKSRC)**

| Register        | Offset        | R/W | Description                | Reset Value |
|-----------------|---------------|-----|----------------------------|-------------|
| BPWM_CLKS<br>RC | BPWMx_BA+0x10 | R/W | BPWM Clock Source Register | 0x0000_0000 |

| 31       | 30       | 29 | 28   | 27    | 26       | 25 | 24 |  |  |  |
|----------|----------|----|------|-------|----------|----|----|--|--|--|
|          | Reserved |    |      |       |          |    |    |  |  |  |
| 23       | 22       | 21 | 20   | 19    | 18       | 17 | 16 |  |  |  |
|          |          |    | Rese | erved |          |    |    |  |  |  |
| 15       | 14       | 13 | 12   | 11    | 10       | 9  | 8  |  |  |  |
|          | Reserved |    |      |       |          |    |    |  |  |  |
| 7        | 6        | 5  | 4    | 3     | 2        | 1  | 0  |  |  |  |
| Reserved |          |    |      |       | ECLKSRC0 |    |    |  |  |  |

| Bits   | Description | escription                             |  |  |  |  |
|--------|-------------|----------------------------------------|--|--|--|--|
| [31:3] | Reserved    | Reserved.                              |  |  |  |  |
|        |             | BPWM_CH01 External Clock Source Select |  |  |  |  |
|        |             | 000 = BPWMx_CLK, x denotes 0 or 1.     |  |  |  |  |
|        |             | 001 = TIMER0 overflow.                 |  |  |  |  |
| [2:0]  | ECLKSRC0    | 010 = TIMER1 overflow.                 |  |  |  |  |
|        |             | 011 = TIMER2 overflow.                 |  |  |  |  |
|        |             | 100 = TIMER3 overflow.                 |  |  |  |  |
|        |             | Others = Reserved.                     |  |  |  |  |

# **BPWM Clock Pre-Scale Register (BPWM\_CLKPSC)**

nuvoTon

| Register        | Offset        | R/W | Description                   | Reset Value |
|-----------------|---------------|-----|-------------------------------|-------------|
| BPWM_CLKP<br>SC | BPWMx_BA+0x14 | R/W | BPWM Clock Pre-scale Register | 0x0000_0000 |

| 31            | 30              | 29 | 28   | 27    | 26 | 25 | 24 |  |  |  |
|---------------|-----------------|----|------|-------|----|----|----|--|--|--|
|               | Reserved        |    |      |       |    |    |    |  |  |  |
| 23            | 22              | 21 | 20   | 19    | 18 | 17 | 16 |  |  |  |
|               |                 |    | Rese | erved |    |    |    |  |  |  |
| 15            | 14              | 13 | 12   | 11    | 10 | 9  | 8  |  |  |  |
|               | Reserved CLKPSC |    |      |       |    |    |    |  |  |  |
| 7 6 5 4 3 2 1 |                 |    |      |       |    |    | 0  |  |  |  |
|               | CLKPSC          |    |      |       |    |    |    |  |  |  |

| Bits    | Description |                                                                                                                                                                      |  |  |  |
|---------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:12] | Reserved    | Reserved.                                                                                                                                                            |  |  |  |
|         | CLKPSC      | BPWM Counter Clock Pre-Scale                                                                                                                                         |  |  |  |
| [11:0]  |             | The clock of BPWM counter is decided by clock prescaler. Each BPWM pair share one BPWM counter clock prescaler. The clock of BPWM counter is divided by (CLKPSC+ 1). |  |  |  |



# **BPWM Counter Enable Register (BPWM\_CNTEN)**

| Register       | Offset        | R/W | Description                  | Reset Value |
|----------------|---------------|-----|------------------------------|-------------|
| BPWM_CNTE<br>N | BPWMx_BA+0x20 | R/W | BPWM Counter Enable Register | 0x0000_0000 |

| 31            | 30 | 29 | 28 | 27 | 26 | 25 | 24     |  |  |
|---------------|----|----|----|----|----|----|--------|--|--|
| Reserved      |    |    |    |    |    |    |        |  |  |
| 23            | 22 | 21 | 20 | 19 | 18 | 17 | 16     |  |  |
| Reserved      |    |    |    |    |    |    |        |  |  |
| 15            | 14 | 13 | 12 | 11 | 10 | 9  | 8      |  |  |
| Reserved      |    |    |    |    |    |    |        |  |  |
| 7 6 5 4 3 2 1 |    |    |    |    |    |    |        |  |  |
| Reserved      |    |    |    |    |    |    | CNTEN0 |  |  |

| Bits   | Description        |                                                     |  |  |  |
|--------|--------------------|-----------------------------------------------------|--|--|--|
| [31:1] | Reserved Reserved. |                                                     |  |  |  |
|        |                    | BPWM Counter Enable 0                               |  |  |  |
| [0]    | CNTEN0             | 0 = BPWM Counter and clock prescaler Stop Running.  |  |  |  |
|        |                    | 1 = BPWM Counter and clock prescaler Start Running. |  |  |  |

# **BPWM Clear Counter Register (BPWM\_CNTCLR)**

nuvoTon

| Register | Offset            | R/W | Description                 | Reset Value |
|----------|-------------------|-----|-----------------------------|-------------|
| BPWM_C   | NTC BPWMx_BA+0x24 | R/W | BPWM Clear Counter Register | 0x0000_0000 |

| 31       | 30       | 29 | 28   | 27    | 26 | 25 | 24 |  |  |  |
|----------|----------|----|------|-------|----|----|----|--|--|--|
|          | Reserved |    |      |       |    |    |    |  |  |  |
| 23       | 22       | 21 | 20   | 19    | 18 | 17 | 16 |  |  |  |
|          |          |    | Rese | erved |    |    |    |  |  |  |
| 15       | 14       | 13 | 12   | 11    | 10 | 9  | 8  |  |  |  |
|          | Reserved |    |      |       |    |    |    |  |  |  |
| 7        | 6        | 5  | 4    | 3     | 2  | 1  | 0  |  |  |  |
| Reserved |          |    |      |       |    |    |    |  |  |  |

| Bits   | Description |                                                                                                                                  |  |  |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:1] | Reserved    | Reserved.                                                                                                                        |  |  |
| [0]    | CNTCLR0     | Clear BPWM Counter Control Bit 0 It is automatically cleared by hardware. 0 = No effect. 1 = Clear 16-bit BPWM counter to 0000H. |  |  |



# **BPWM Period Register (BPWM\_PERIOD)**

| Register        | Offset        | R/W | Description          | Reset Value |
|-----------------|---------------|-----|----------------------|-------------|
| BPWM_PERI<br>OD | BPWMx_BA+0x30 | R/W | BPWM Period Register | 0x0000_0000 |

| 31 | 30           | 29 | 28   | 27    | 26 | 25 | 24 |  |  |  |
|----|--------------|----|------|-------|----|----|----|--|--|--|
|    | Reserved     |    |      |       |    |    |    |  |  |  |
| 23 | 22           | 21 | 20   | 19    | 18 | 17 | 16 |  |  |  |
|    |              |    | Rese | erved |    |    |    |  |  |  |
| 15 | 14           | 13 | 12   | 11    | 10 | 9  | 8  |  |  |  |
|    | PERIOD[15:8] |    |      |       |    |    |    |  |  |  |
| 7  | 6            | 5  | 4    | 3     | 2  | 1  | 0  |  |  |  |
|    | PERIOD[7:0]  |    |      |       |    |    |    |  |  |  |

| Bits    | Description | Description                                                                                                     |  |  |  |  |
|---------|-------------|-----------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:16] | Reserved    | Reserved.                                                                                                       |  |  |  |  |
|         |             | BPWM Period Register                                                                                            |  |  |  |  |
|         |             | Up-Count mode: In this mode, BPWM counter counts from 0 to PERIOD, and restarts from 0.                         |  |  |  |  |
| [15:0]  | PERIOD      | Down-Count mode: In this mode, BPWM counter counts from PERIOD to 0, and restarts from PERIOD.                  |  |  |  |  |
|         |             | BPWM period time = (PERIOD+1) * BPWM_CLK period.                                                                |  |  |  |  |
|         |             | Up-Down-Count mode: In this mode, BPWM counter counts from 0 to PERIOD, then decrements to 0 and repeats again. |  |  |  |  |
|         |             | BPWM period time = 2 * PERIOD * BPWM_CLK period.                                                                |  |  |  |  |



# **BPWM Comparator Register 0~5 (BPWM\_CMPDAT0~5)**

| Register         | Offset        | R/W | Description                | Reset Value |
|------------------|---------------|-----|----------------------------|-------------|
| BPWM_CMPD<br>AT0 | BPWMx_BA+0x50 | R/W | BPWM Comparator Register 0 | 0x0000_0000 |
| BPWM_CMPD<br>AT1 | BPWMx_BA+0x54 | R/W | BPWM Comparator Register 1 | 0x0000_0000 |
| BPWM_CMPD<br>AT2 | BPWMx_BA+0x58 | R/W | BPWM Comparator Register 2 | 0x0000_0000 |
| BPWM_CMPD<br>AT3 | BPWMx_BA+0x5C | R/W | BPWM Comparator Register 3 | 0x0000_0000 |
| BPWM_CMPD<br>AT4 | BPWMx_BA+0x60 | R/W | BPWM Comparator Register 4 | 0x0000_0000 |
| BPWM_CMPD<br>AT5 | BPWMx_BA+0x64 | R/W | BPWM Comparator Register 5 | 0x0000_0000 |

| 31 | 30       | 29 | 28   | 27    | 26 | 25 | 24 |  |  |  |
|----|----------|----|------|-------|----|----|----|--|--|--|
|    | Reserved |    |      |       |    |    |    |  |  |  |
| 23 | 22       | 21 | 20   | 19    | 18 | 17 | 16 |  |  |  |
|    |          |    | Rese | erved |    |    |    |  |  |  |
| 15 | 14       | 13 | 12   | 11    | 10 | 9  | 8  |  |  |  |
|    | СМР      |    |      |       |    |    |    |  |  |  |
| 7  | 6        | 5  | 4    | 3     | 2  | 1  | 0  |  |  |  |
|    | СМР      |    |      |       |    |    |    |  |  |  |

| Bits    | Description | Description                                                                                                                                                                                                                                       |  |  |  |  |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:16] | Reserved    | Reserved.                                                                                                                                                                                                                                         |  |  |  |  |
|         |             | BPWM Comparator Register                                                                                                                                                                                                                          |  |  |  |  |
|         |             | CMP use to compare with CNT to generate BPWM waveform, interrupt and trigger ADC.                                                                                                                                                                 |  |  |  |  |
| [15:0]  | CMP         | In independent mode, BPWM_CMPDAT0~5 denote as 6 independent BPWM_CH0~5 compared point.                                                                                                                                                            |  |  |  |  |
| [13.0]  |             | In complementary mode, BPWM_CMPDAT0, 2, 4 denote as first compared point, and BPWM_CMPDAT1, 3, 5 denote as second compared point for the corresponding 3 complementary pairs BPWM_CH0 and BPWM_CH1, BPWM_CH2 and BPWM_CH3, BPWM_CH4 and BPWM_CH5. |  |  |  |  |



# **BPWM Counter Register (BPWM\_CNT)**

| Register | Offset        | R/W | Description           | Reset Value |
|----------|---------------|-----|-----------------------|-------------|
| BPWM_CNT | BPWMx_BA+0x90 | R   | BPWM Counter Register | 0x0000_0000 |

| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|----|----------|----|----|----|----|----|----|--|--|--|
|    | Reserved |    |    |    |    |    |    |  |  |  |
| 23 | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|    | Reserved |    |    |    |    |    |    |  |  |  |
| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|    | CNT      |    |    |    |    |    |    |  |  |  |
| 7  | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|    | CNT      |    |    |    |    |    |    |  |  |  |

| Bits    | Description        |                                                                                                         |  |  |
|---------|--------------------|---------------------------------------------------------------------------------------------------------|--|--|
| [31:17] | Reserved Reserved. |                                                                                                         |  |  |
| [16]    | DIRF               | BPWM Direction Indicator Flag (Read Only)  0 = Counter is Down count.  1 = Counter is UP count.         |  |  |
| [15:0]  | CNT                | BPWM Data Register (Read Only) User can monitor CNT to know the current value in 16-bit period counter. |  |  |

# **BPWM Generation Register 0 (BPWM\_WGCTL0)**

nuvoTon

| Register        | Offset        | R/W | Description                | Reset Value |
|-----------------|---------------|-----|----------------------------|-------------|
| BPWM_WGC<br>TL0 | BPWMx_BA+0xB0 | R/W | BPWM Generation Register 0 | 0x0000_0000 |

| 31            | 30       | 29            | 28   | 27                | 26            | 25       | 24   |
|---------------|----------|---------------|------|-------------------|---------------|----------|------|
| Reserved      |          |               |      | PRDPCTL5 PRDPCTL4 |               |          | CTL4 |
| 23            | 22       | 21            | 20   | 19                | 18            | 17       | 16   |
| PRDF          | PCTL3    | PRDF          | CTL2 | PRDPCTL1          |               | PRDPCTL0 |      |
| 15            | 14       | 13            | 12   | 11                | 10            | 9        | 8    |
|               | Reserved |               |      |                   | ZPCTL5 ZPCTL4 |          |      |
| 7             | 6        | 5             | 4    | 3                 | 2             | 1        | 0    |
| ZPCTL3 ZPCTL2 |          | ZPCTL1 ZPCTL0 |      | TL0               |               |          |      |

| Bits    | Description |                                                                                                    |
|---------|-------------|----------------------------------------------------------------------------------------------------|
| [31:28] | Reserved    | Reserved.                                                                                          |
|         |             | BPWM Period (Center) Point Control                                                                 |
|         |             | Each bit n controls the corresponding BPWM channel n.                                              |
|         |             | 00 = Do nothing.                                                                                   |
|         |             | 01 = BPWM period (center) point output Low.                                                        |
| [27:16] | PRDPCTLn    | 10 = BPWM period (center) point output High.                                                       |
|         |             | 11 = BPWM period (center) point output Toggle.                                                     |
|         |             | BPWM can control output level when BPWM counter count to (PERIODn+1).                              |
|         |             | <b>Note:</b> This bit is center point control when BPWM counter operating in up-down counter type. |
| [15:12] | Reserved    | Reserved.                                                                                          |
|         |             | BPWM Zero Point Control                                                                            |
|         |             | Each bit n controls the corresponding BPWM channel n.                                              |
|         |             | 00 = Do nothing.                                                                                   |
| [11:0]  | ZPCTLn      | 01 = BPWM zero point output Low.                                                                   |
|         |             | 10 = BPWM zero point output High.                                                                  |
|         |             | 11 = BPWM zero point output Toggle.                                                                |
|         |             | BPWM can control output level when BPWM counter count to zero.                                     |



# **BPWM Generation Register 1 (BPWM\_WGCTL1)**

| Register        | Offset        | R/W | Description                | Reset Value |
|-----------------|---------------|-----|----------------------------|-------------|
| BPWM_WGC<br>TL1 | BPWMx_BA+0xB4 | R/W | BPWM Generation Register 1 | 0x0000_0000 |

| 31                | 30       | 29    | 28    | 27                | 26       | 25       | 24       |  |
|-------------------|----------|-------|-------|-------------------|----------|----------|----------|--|
| Reserved          |          |       |       | CMPDCTL5 CMPDCTL4 |          |          | OCTL4    |  |
| 23                | 22       | 21    | 20    | 19                | 18       | 17       | 16       |  |
| CMPI              | OCTL3    | СМР   | OCTL2 | CMPDCTL1          |          | CMPDCTL0 |          |  |
| 15                | 14       | 13    | 12    | 11                | 10       | 9        | 8        |  |
|                   | Reserved |       |       |                   | JCTL5    | CMPU     | CMPUCTL4 |  |
| 7                 | 6        | 5     | 4     | 3                 | 2        | 1        | 0        |  |
| CMPUCTL3 CMPUCTL2 |          | JCTL2 | СМР   | JCTL1             | CMPUCTL0 |          |          |  |

| Bits    | Description |                                                                                                |
|---------|-------------|------------------------------------------------------------------------------------------------|
| [31:28] | Reserved    | Reserved.                                                                                      |
|         |             | BPWM Compare Down Point Control                                                                |
|         |             | Each bit n controls the corresponding BPWM channel n.                                          |
|         |             | 00 = Do nothing.                                                                               |
|         |             | 01 = BPWM compare down point output Low.                                                       |
| [27:16] | CMPDCTLn    | 10 = BPWM compare down point output High.                                                      |
|         |             | 11 = BPWM compare down point output Toggle.                                                    |
|         |             | BPWM can control output level when BPWM counter down count to CMPDAT.                          |
|         |             | <b>Note:</b> In complementary mode, CMPDCTL1, 3, 5 use as another CMPDCTL for channel 0, 2, 4. |
| [15:12] | Reserved    | Reserved.                                                                                      |
|         |             | BPWM Compare Up Point Control                                                                  |
|         |             | Each bit n controls the corresponding BPWM channel n.                                          |
|         |             | 00 = Do nothing.                                                                               |
|         |             | 01 = BPWM compare up point output Low.                                                         |
| [11:0]  | CMPUCTLn    | 10 = BPWM compare up point output High.                                                        |
|         |             | 11 = BPWM compare up point output Toggle.                                                      |
|         |             | BPWM can control output level when BPWM counter up count to CMPDAT.                            |
|         |             | <b>Note:</b> In complementary mode, CMPUCTL1, 3, 5 use as another CMPUCTL for channel 0, 2, 4. |



# **BPWM Mask Enable Register (BPWM\_MSKEN)**

| Register       | Offset        | R/W | Description               | Reset Value |
|----------------|---------------|-----|---------------------------|-------------|
| BPWM_MSKE<br>N | BPWMx_BA+0xB8 | R/W | BPWM Mask Enable Register | 0x0000_0000 |

| 31   | 30       | 29     | 28     | 27     | 26     | 25     | 24     |  |  |  |
|------|----------|--------|--------|--------|--------|--------|--------|--|--|--|
|      | Reserved |        |        |        |        |        |        |  |  |  |
| 23   | 22       | 21     | 20     | 19     | 18     | 17     | 16     |  |  |  |
|      |          |        | Rese   | erved  |        |        |        |  |  |  |
| 15   | 14       | 13     | 12     | 11     | 10     | 9      | 8      |  |  |  |
|      | Reserved |        |        |        |        |        |        |  |  |  |
| 7    | 6        | 5      | 4      | 3      | 2      | 1      | 0      |  |  |  |
| Rese | erved    | MSKEN5 | MSKEN4 | MSKEN3 | MSKEN2 | MSKEN1 | MSKEN0 |  |  |  |

| Bits   | Description |                                                                                                                                            |  |  |  |
|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:6] | Reserved    | Reserved.                                                                                                                                  |  |  |  |
|        | MSKENn      | BPWM Mask Enable Control                                                                                                                   |  |  |  |
|        |             | Each bit n controls the corresponding BPWM channel n.                                                                                      |  |  |  |
| [5:0]  |             | The BPWM output signal will be masked when this bit is enabled. The corresponding BPWM channel n will output MSKDATn (BPWM_MSK[5:0]) data. |  |  |  |
|        |             | 0 = BPWM output signal is non-masked.                                                                                                      |  |  |  |
|        |             | 1 = BPWM output signal is masked and output MSKDATn data.                                                                                  |  |  |  |



# BPWM Mask DATA Register (BPWM\_MSK)

| Register | Offset        | R/W | Description             | Reset Value |
|----------|---------------|-----|-------------------------|-------------|
| BPWM_MSK | BPWMx_BA+0xBC | R/W | BPWM Mask Data Register | 0x0000_0000 |

| 31               | 30       | 29 | 28      | 27      | 26      | 25      | 24      |  |  |  |
|------------------|----------|----|---------|---------|---------|---------|---------|--|--|--|
|                  | Reserved |    |         |         |         |         |         |  |  |  |
| 23               | 22       | 21 | 20      | 19      | 18      | 17      | 16      |  |  |  |
|                  | Reserved |    |         |         |         |         |         |  |  |  |
| 15               | 14       | 13 | 12      | 11      | 10      | 9       | 8       |  |  |  |
| Reserved         |          |    |         |         |         |         |         |  |  |  |
| 7                | 6        | 5  | 4       | 3       | 2       | 1       | 0       |  |  |  |
| Reserved MSKDAT5 |          |    | MSKDAT4 | MSKDAT3 | MSKDAT2 | MSKDAT1 | MSKDAT0 |  |  |  |

| Bits   | Description        |                                                                                                                                                       |  |
|--------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [31:6] | Reserved Reserved. |                                                                                                                                                       |  |
| [5:0]  | MSKDATn            | BPWM Mask Data Bit                                                                                                                                    |  |
|        |                    | This data bit control the state of BPWMn output pin, if corresponding mask function is enabled. Each bit n controls the corresponding BPWM channel n. |  |
|        |                    | 0 = Output logic low to BPWMn.                                                                                                                        |  |
|        |                    | 1 = Output logic high to BPWMn.                                                                                                                       |  |

# **BPWM Pin Polar Inverse Control (BPWM\_POLCTL)**

nuvoTon

| Register        | Offset        | R/W | Description                     | Reset Value |
|-----------------|---------------|-----|---------------------------------|-------------|
| BPWM_POLC<br>TL | BPWMx_BA+0xD4 | R/W | BPWM Pin Polar Inverse Register | 0x0000_0000 |

| 31             | 30       | 29    | 28    | 27    | 26    | 25    | 24 |
|----------------|----------|-------|-------|-------|-------|-------|----|
|                | Reserved |       |       |       |       |       |    |
| 23             | 22       | 21    | 20    | 19    | 18    | 17    | 16 |
|                | Reserved |       |       |       |       |       |    |
| 15             | 14       | 13    | 12    | 11    | 10    | 9     | 8  |
| Reserved       |          |       |       |       |       |       |    |
| 7              | 6        | 5     | 4     | 3     | 2     | 1     | 0  |
| Reserved PINV5 |          | PINV4 | PINV3 | PINV2 | PINV1 | PINV0 |    |

| Bits   | Description        |                                                                                                            |  |
|--------|--------------------|------------------------------------------------------------------------------------------------------------|--|
| [31:6] | Reserved Reserved. |                                                                                                            |  |
|        |                    | BPWM PIN Polar Inverse Control                                                                             |  |
| [5:0]  | PINVn              | The register controls polarity state of BPWM output. Each bit n controls the corresponding BPWM channel n. |  |
|        |                    | 0 = BPWM output polar inverse Disabled.                                                                    |  |
|        |                    | 1 = BPWM output polar inverse Enabled.                                                                     |  |



## **BPWM Output Enable Register (BPWM\_POEN)**

| Register  | Offset        | R/W | Description                 | Reset Value |
|-----------|---------------|-----|-----------------------------|-------------|
| BPWM_POEN | BPWMx_BA+0xD8 | R/W | BPWM Output Enable Register | 0x0000_0000 |

| 31             | 30       | 29    | 28    | 27    | 26    | 25    | 24 |
|----------------|----------|-------|-------|-------|-------|-------|----|
|                | Reserved |       |       |       |       |       |    |
| 23             | 22       | 21    | 20    | 19    | 18    | 17    | 16 |
|                | Reserved |       |       |       |       |       |    |
| 15             | 14       | 13    | 12    | 11    | 10    | 9     | 8  |
|                | Reserved |       |       |       |       |       |    |
| 7              | 6        | 5     | 4     | 3     | 2     | 1     | 0  |
| Reserved POEN5 |          | POEN4 | POEN3 | POEN2 | POEN1 | POEN0 |    |

| Bits   | Description        |                                                                                                                                                 |  |
|--------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [31:6] | Reserved Reserved. |                                                                                                                                                 |  |
| [5:0]  | POENn              | BPWM Pin Output Enable Control  Each bit n controls the corresponding BPWM channel n.  0 = BPWM pin at tri-state.  1 = BPWM pin in output mode. |  |

## **BPWM Interrupt Enable Register (BPWM\_INTEN)**

| Register   | Offset        | R/W | Description                    | Reset Value |
|------------|---------------|-----|--------------------------------|-------------|
| BPWM_INTEN | BPWMx_BA+0xE0 | R/W | BPWM Interrupt Enable Register | 0x0000_0000 |

| 31   | 30       | 29       | 28        | 27       | 26       | 25       | 24       |
|------|----------|----------|-----------|----------|----------|----------|----------|
| Rese | Reserved |          | CMPDIEN4  | CMPDIEN3 | CMPDIEN2 | CMPDIEN1 | CMPDIEN0 |
| 23   | 22       | 21       | 20        | 19       | 18       | 17       | 16       |
| Rese | erved    | CMPUIEN5 | CMPUIEN4  | CMPUIEN3 | CMPUIEN2 | CMPUIEN1 | CMPUIEN0 |
| 15   | 14       | 13       | 12        | 11       | 10       | 9        | 8        |
|      | Reserved |          |           | PIEN0    |          |          |          |
| 7    | 6        | 5        | 5 4 3 2 1 |          |          |          | 0        |
|      | Reserved |          |           |          |          | ZIEN0    |          |

| Bits    | Description                                                                                                                                                                    |                                                                                                                                                                                                                                                                                         |  |  |  |  |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:30] | Reserved                                                                                                                                                                       | Reserved.                                                                                                                                                                                                                                                                               |  |  |  |  |
| [29:24] | CMPDIENn                                                                                                                                                                       | BPWM Compare Down Count Interrupt Enable Control  Each bit n controls the corresponding BPWM channel n.  0 = Compare down count interrupt Disabled.  1 = Compare down count interrupt Enabled.  Note: In complementary mode, CMPDIEN1, 3, 5 use as another CMPDIEN for channel 0, 2, 4. |  |  |  |  |
| [23:22] | Reserved                                                                                                                                                                       | Reserved.                                                                                                                                                                                                                                                                               |  |  |  |  |
| [21:16] | CMPUIENn                                                                                                                                                                       | BPWM Compare Up Count Interrupt Enable Control  Each bit n controls the corresponding BPWM channel n.  0 = Compare up count interrupt Disabled.  1 = Compare up count interrupt Enabled.  Note: In complementary mode, CMPUIEN1, 3, 5 use as another CMPUIEN for channel 0, 2, 4.       |  |  |  |  |
| [15:9]  | Reserved                                                                                                                                                                       | Reserved.                                                                                                                                                                                                                                                                               |  |  |  |  |
| [8]     | PIEN0                                                                                                                                                                          | BPWM Period Point Interrupt Enable 0  0 = Period point interrupt Disabled.  1 = Period point interrupt Enabled.  Note: When up-down counter type period point means center point.                                                                                                       |  |  |  |  |
| [7:1]   | Reserved                                                                                                                                                                       | Reserved.                                                                                                                                                                                                                                                                               |  |  |  |  |
| [0]     | ZIEN0  BPWM Zero Point Interrupt Enable 0  0 = Zero point interrupt Disabled.  1 = Zero point interrupt Enabled.  Note: Odd channels will read always 0 at complementary mode. |                                                                                                                                                                                                                                                                                         |  |  |  |  |



## **BPWM Interrupt Flag Register (BPWM\_INTSTS)**

| Register         | Offset        | R/W | Description                    | Reset Value |
|------------------|---------------|-----|--------------------------------|-------------|
| BPWM_INTST<br>S0 | BPWMx_BA+0xE8 | R/W | BPWM Interrupt Flag Register 0 | 0x0000_0000 |

| 31       | 30       | 29      | 28      | 27      | 26      | 25      | 24      |
|----------|----------|---------|---------|---------|---------|---------|---------|
| Rese     | Reserved |         | CMPDIF4 | CMPDIF3 | CMPDIF2 | CMPDIF1 | CMPDIF0 |
| 23       | 22       | 21      | 20      | 19      | 18      | 17      | 16      |
| Rese     | erved    | CMPUIF5 | CMPUIF4 | CMPUIF3 | CMPUIF2 | CMPUIF1 | CMPUIF0 |
| 15       | 14       | 13      | 12      | 11      | 10      | 9       | 8       |
|          | Reserved |         |         |         | PIF0    |         |         |
| 7        | 6        | 5       | 4       | 3       | 2       | 1       | 0       |
| Reserved |          |         |         |         | ZIF0    |         |         |

| Bits            | Description |                                                                                                                                                                                    |  |  |  |  |
|-----------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:30]         | Reserved    | Reserved.                                                                                                                                                                          |  |  |  |  |
|                 |             | BPWM Compare Down Count Interrupt Flag                                                                                                                                             |  |  |  |  |
|                 |             | Each bit n controls the corresponding BPWM channel n.                                                                                                                              |  |  |  |  |
| [29:24]         | CMPDIFn     | Flag is set by hardware when BPWM counter down count and reaches BPWM_CMPDATn, software can clear this bit by writing 1 to it.                                                     |  |  |  |  |
| [20.24]         |             | <b>Note1:</b> If CMPDAT equal to PERIOD, this flag is not working in down counter type selection.                                                                                  |  |  |  |  |
|                 |             | <b>Note2:</b> In complementary mode, CMPDIF1, 3, 5 use as another CMPDIF for channel 0, 2, 4.                                                                                      |  |  |  |  |
| [23:22]         | Reserved    | Reserved.                                                                                                                                                                          |  |  |  |  |
|                 |             | BPWM Compare Up Count Interrupt Flag                                                                                                                                               |  |  |  |  |
| [21:16]         | CMPUIFn     | Flag is set by hardware when BPWM counter up count and reaches BPWM_CMPDATn, software can clear this bit by writing 1 to it. Each bit n controls the corresponding BPWM channel n. |  |  |  |  |
| [=0]            | J           | Note1: If CMPDAT equal to PERIOD, this flag is not working in up counter type selection.                                                                                           |  |  |  |  |
|                 |             | <b>Note2:</b> In complementary mode, CMPUIF1, 3, 5 use as another CMPUIF for channel 0, 2, 4.                                                                                      |  |  |  |  |
| [15:9]          | Reserved    | Reserved.                                                                                                                                                                          |  |  |  |  |
|                 |             | BPWM Period Point Interrupt Flag 0                                                                                                                                                 |  |  |  |  |
| [8] <b>PIF0</b> | PIF0        | This bit is set by hardware when BPWM_CH0 counter reaches BPWM_PERIOD0, software can write 1 to clear this bit to zero.                                                            |  |  |  |  |
| [7:1]           | Reserved    | Reserved.                                                                                                                                                                          |  |  |  |  |
|                 |             | BPWM Zero Point Interrupt Flag 0                                                                                                                                                   |  |  |  |  |
| [0]             | ZIF0        | This bit is set by hardware when BPWM_CH0 counter reaches zero, software can write 1 to clear this bit to zero.                                                                    |  |  |  |  |



## **BPWM Trigger ADC Source Select Register 0 (BPWM\_ADCTS0)**

| Register        | Offset        | R/W | Description                               | Reset Value |
|-----------------|---------------|-----|-------------------------------------------|-------------|
| BPWM_ADCT<br>S0 | BPWMx_BA+0xF8 | R/W | BPWM Trigger ADC Source Select Register 0 | 0x0000_0000 |

| 31     | 30       | 29       | 28 | 27      | 26  | 25   | 24 |
|--------|----------|----------|----|---------|-----|------|----|
| TRGEN3 |          | Reserved |    | TRGSEL3 |     |      |    |
| 23     | 22       | 21       | 20 | 19      | 18  | 17   | 16 |
| TRGEN2 | Reserved |          |    | TRGSEL2 |     |      |    |
| 15     | 14       | 13       | 12 | 11      | 10  | 9    | 8  |
| TRGEN1 | Reserved |          |    |         | TRG | SEL1 |    |
| 7      | 6 5 4    |          |    | 3       | 2   | 1    | 0  |
| TRGEN0 | Reserved |          |    |         | TRG | SEL0 |    |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31]    | TRGEN3      | BPWM_CH3 Trigger ADC Enable Control                                                                                                                                                                                                                                                                                                                                                 |
| [30:28] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                           |
| [27:24] | TRGSEL3     | BPWM_CH3 Trigger ADC Source Select  0000 = BPWM_CH2 zero point.  0001 = BPWM_CH2 period point.  0010 = BPWM_CH2 zero or period point.  0011 = BPWM_CH2 up-count CMPDAT point.  0100 = BPWM_CH2 down-count CMPDAT point.  0101 = Reserved.  0110 = Reserved.  0111 = Reserved.  1000 = BPWM_CH3 up-count CMPDAT point.  1001 = BPWM_CH3 down-count CMPDAT point.  Others = reserved. |
| [23]    | TRGEN2      | BPWM_CH2 Trigger ADC Enable Control                                                                                                                                                                                                                                                                                                                                                 |
| [22:20] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                           |
| [19:16] | TRGSEL2     | BPWM_CH2 Trigger ADC Source Select  0000 = BPWM_CH2 zero point.  0001 = BPWM_CH2 period point.  0010 = BPWM_CH2 zero or period point.  0011 = BPWM_CH2 up-count CMPDAT point.  0100 = BPWM_CH2 down-count CMPDAT point.  0101 = Reserved.  0110 = Reserved.  0111 = Reserved.                                                                                                       |

|         |          | 1000 DDWM CH2 up count CMDDAT point      |
|---------|----------|------------------------------------------|
|         |          | 1000 = BPWM_CH3 up-count CMPDAT point.   |
|         |          | 1001 = BPWM_CH3 down-count CMPDAT point. |
|         |          | Others reserved.                         |
| [15]    | TRGEN1   | BPWM_CH1 Trigger ADC Enable Control      |
| [14:12] | Reserved | Reserved.                                |
|         |          | BPWM_CH1 Trigger ADC Source Select       |
|         |          | 0000 = BPWM_CH0 zero point.              |
|         |          | 0001 = BPWM_CH0 period point.            |
|         |          | 0010 = BPWM_CH0 zero or period point.    |
|         |          | 0011 = BPWM_CH0 up-count CMPDAT point.   |
| [44.0]  | TD00514  | 0100 = BPWM_CH0 down-count CMPDAT point. |
| [11:8]  | TRGSEL1  | 0101 = Reserved.                         |
|         |          | 0110 = Reserved.                         |
|         |          | 0111 = Reserved.                         |
|         |          | 1000 = BPWM_CH1 up-count CMPDAT point.   |
|         |          | 1001 = BPWM_CH1 down-count CMPDAT point. |
|         |          | Others = reserved.                       |
| [7]     | TRGEN0   | BPWM_CH0 Trigger ADC Enable Control      |
| [6:4]   | Reserved | Reserved.                                |
|         |          | BPWM_CH0 Trigger ADC Source Select       |
|         |          | 0000 = BPWM_CH0 zero point.              |
|         |          | 0001 = BPWM_CH0 period point.            |
|         |          | 0010 = BPWM_CH0 zero or period point.    |
|         |          | 0011 = BPWM_CH0 up-count CMPDAT point.   |
| [2.0]   | TRGSEL0  | 0100 = BPWM_CH0 down-count CMPDAT point. |
| [3:0]   | IRGSELU  | 0101 = Reserved.                         |
|         |          | 0110 = Reserved.                         |
|         |          | 0111 = Reserved.                         |
|         |          | 1000 = BPWM_CH1 up-count CMPDAT point.   |
|         |          | 1001 = BPWM_CH1 down-count CMPDAT point. |
|         |          | Others = reserved.                       |
|         |          | I.                                       |



# BPWM Trigger ADC Source Select Register 1 (BPWM\_ADCTS1)

| Register        | Offset        | R/W | Description                               | Reset Value |
|-----------------|---------------|-----|-------------------------------------------|-------------|
| BPWM_ADCT<br>S1 | BPWMx_BA+0xFC | R/W | BPWM Trigger ADC Source Select Register 1 | 0x0000_0000 |

| 31     | 30              | 29       | 28 | 27 | 26  | 25   | 24 |  |  |  |
|--------|-----------------|----------|----|----|-----|------|----|--|--|--|
|        | Reserved        |          |    |    |     |      |    |  |  |  |
| 23     | 22              | 21       | 20 | 19 | 18  | 17   | 16 |  |  |  |
|        | Reserved        |          |    |    |     |      |    |  |  |  |
| 15     | 14              | 13       | 12 | 11 | 10  | 9    | 8  |  |  |  |
| TRGEN5 |                 | Reserved |    |    | TRG | SEL5 |    |  |  |  |
| 7      | 6               | 5        | 4  | 3  | 2   | 1    | 0  |  |  |  |
| TRGEN4 | TRGEN4 Reserved |          |    |    | TRG | SEL4 |    |  |  |  |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                     |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:16] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                           |
| [15]    | TRGEN5      | BPWM_CH5 Trigger ADC Enable Control                                                                                                                                                                                                                                                                                                                                                 |
| [14:12] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                           |
| [11:8]  | TRGSEL5     | BPWM_CH5 Trigger ADC Source Select  0000 = BPWM_CH4 zero point.  0001 = BPWM_CH4 period point.  0010 = BPWM_CH4 zero or period point.  0011 = BPWM_CH4 up-count CMPDAT point.  0100 = BPWM_CH4 down-count CMPDAT point.  0101 = Reserved.  0110 = Reserved.  0111 = Reserved.  1000 = BPWM_CH5 up-count CMPDAT point.  1001 = BPWM_CH5 down-count CMPDAT point.  Others = reserved. |
| [7]     | TRGEN4      | BPWM_CH4 Trigger ADC Enable Control                                                                                                                                                                                                                                                                                                                                                 |
| [6:4]   | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                           |
| [3:0]   | TRGSEL4     | BPWM_CH4 Trigger ADC Source Select  0000 = BPWM_CH4 zero point.  0001 = BPWM_CH4 period point.  0010 = BPWM_CH4 zero or period point.  0011 = BPWM_CH4 up-count CMPDAT point.  0100 = BPWM_CH4 down-count CMPDAT point.  0101 = Reserved.                                                                                                                                           |



| 0110 = Reserved.                         |
|------------------------------------------|
| 0111 = Reserved.                         |
| 1000 = BPWM_CH5 up-count CMPDAT point.   |
| 1001 = BPWM_CH5 down-count CMPDAT point. |
| Others = reserved.                       |



# **BPWM Synchronous Start Control Register (BPWM\_SSCTL)**

| Register   | Offset             | R/W | Description                             | Reset Value |
|------------|--------------------|-----|-----------------------------------------|-------------|
| BPWM_SSCTL | BPWMx_BA+0x1<br>10 | R/W | BPWM Synchronous Start Control Register | 0x0000_0000 |

| 31       | 30            | 29 | 28 | 27 | 26 | 25 | 24    |  |  |  |
|----------|---------------|----|----|----|----|----|-------|--|--|--|
|          | Reserved      |    |    |    |    |    |       |  |  |  |
| 23       | 22            | 21 | 20 | 19 | 18 | 17 | 16    |  |  |  |
|          | Reserved      |    |    |    |    |    |       |  |  |  |
| 15       | 14            | 13 | 12 | 11 | 10 | 9  | 8     |  |  |  |
|          | Reserved SSF  |    |    |    |    |    |       |  |  |  |
| 7        | 7 6 5 4 3 2 1 |    |    |    |    |    |       |  |  |  |
| Reserved |               |    |    |    |    |    | SSEN0 |  |  |  |

| Bits    | Description | escription                                                                                                                                                  |  |  |  |  |  |  |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:10] | Reserved    | Reserved.                                                                                                                                                   |  |  |  |  |  |  |
|         |             | BPWM Synchronous Start Source Select                                                                                                                        |  |  |  |  |  |  |
| [9:8]   | SSRC        | 00 = Synchronous start source come from BPWM0. 01 = Synchronous start source come from BPWM1.                                                               |  |  |  |  |  |  |
|         |             | 10 = Synchronous start source come from BPWM0.                                                                                                              |  |  |  |  |  |  |
|         |             | 11 = Synchronous start source come from BPWM1.                                                                                                              |  |  |  |  |  |  |
| [7:1]   | Reserved    | Reserved.                                                                                                                                                   |  |  |  |  |  |  |
|         |             | BPWM Synchronous Start Function Enable 0                                                                                                                    |  |  |  |  |  |  |
| [0]     | SSEN0       | When synchronous start function is enabled, the BPWM_CH0 counter enable bit (CNTEN0) can be enabled by writing BPWM synchronous start trigger bit (CNTSEN). |  |  |  |  |  |  |
|         |             | 0 = BPWM synchronous start function Disabled.                                                                                                               |  |  |  |  |  |  |
|         |             | 1 = BPWM synchronous start function Enabled.                                                                                                                |  |  |  |  |  |  |



# BPWM Synchronous Start Trigger Register (BPWM\_SSTRG)

| Register   | Offset             | R/W | Description                             | Reset Value |
|------------|--------------------|-----|-----------------------------------------|-------------|
| BPWM_SSTRG | BPWMx_BA+0x1<br>14 | W   | BPWM Synchronous Start Trigger Register | 0x0000_0000 |

| 31       | 30            | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|----------|---------------|----|----|----|----|----|----|--|--|--|
|          | Reserved      |    |    |    |    |    |    |  |  |  |
| 23       | 22            | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
| Reserved |               |    |    |    |    |    |    |  |  |  |
| 15       | 14            | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|          | Reserved      |    |    |    |    |    |    |  |  |  |
| 7        | 7 6 5 4 3 2 1 |    |    |    |    |    |    |  |  |  |
|          | Reserved      |    |    |    |    |    |    |  |  |  |

| Bits   | Description        |                                                                                                                                                                         |  |  |  |
|--------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:1] | Reserved Reserved. |                                                                                                                                                                         |  |  |  |
|        | CNTSEN             | BPWM Counter Synchronous Start Enable (Write Only)                                                                                                                      |  |  |  |
| [0]    |                    | PMW counter synchronous enable function is used to make selected BPWM channels (include BPWM0_CHx and BPWM1_CHx) start counting at the same time.                       |  |  |  |
| [0]    |                    | Writing this bit to 1 will also set the counter enable bit (CNTENn, n denotes channel 0 to 5) if correlated BPWM channel counter synchronous start function is enabled. |  |  |  |
|        |                    | Note: This bit only present in BPWM0_BA.                                                                                                                                |  |  |  |

## **BPWM Status Register (BPWM\_STATUS)**

| Register        | Offset             | R/W | Description          | Reset Value |
|-----------------|--------------------|-----|----------------------|-------------|
| BPWM_STAT<br>US | BPWMx_BA+0x12<br>0 | R/W | BPWM Status Register | 0x0000_0000 |

| 31   | 30               | 29 | 28   | 27      | 26      | 25      | 24      |  |  |  |
|------|------------------|----|------|---------|---------|---------|---------|--|--|--|
|      | Reserved         |    |      |         |         |         |         |  |  |  |
| 23   | 22               | 21 | 20   | 19      | 18      | 17      | 16      |  |  |  |
| Rese | Reserved ADCTRG5 |    |      | ADCTRG3 | ADCTRG2 | ADCTRG1 | ADCTRG0 |  |  |  |
| 15   | 14               | 13 | 12   | 11      | 10      | 9       | 8       |  |  |  |
|      |                  |    | Rese | erved   |         |         |         |  |  |  |
| 7    | 6                | 5  | 4    | 3       | 2       | 1       | 0       |  |  |  |
|      | Reserved         |    |      |         |         |         |         |  |  |  |

| Bits    | Description |                                                                                                                                                                                                                                                                           |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:22] | Reserved    | Reserved.                                                                                                                                                                                                                                                                 |
| [21:16] | ADCTRGn     | ADC Start Of Conversion Status  Each bit n controls the corresponding BPWM channel n.  0 = Indicates no ADC start of conversion trigger event has occurred.  1 = Indicates an ADC start of conversion trigger event has occurred, software can write 1 to clear this bit. |
| [15:1]  | Reserved    | Reserved.                                                                                                                                                                                                                                                                 |
| [0]     | CNTMAXO     | Time-Base Counter 0 Equal To 0xFFFF Latched Status  0 = Indicates the time-base counter never reached its maximum value 0xFFFF.  1 = Indicates the time-base counter reached its maximum value, software can write 1 to clear this bit.                                   |



## **BPWM Capture Input Enable Register (BPWM\_CAPINEN)**

| Register         | Offset             | R/W | Description                        | Reset Value |
|------------------|--------------------|-----|------------------------------------|-------------|
| BPWM_CAPI<br>NEN | BPWMx_BA+0x20<br>0 | R/W | BPWM Capture Input Enable Register | 0x0000_0000 |

| 31       | 30       | 29       | 28       | 27       | 26       | 25       | 24       |  |  |  |
|----------|----------|----------|----------|----------|----------|----------|----------|--|--|--|
|          | Reserved |          |          |          |          |          |          |  |  |  |
| 23       | 22       | 21       | 20       | 19       | 18       | 17       | 16       |  |  |  |
|          | Reserved |          |          |          |          |          |          |  |  |  |
| 15       | 14       | 13       | 12       | 11       | 10       | 9        | 8        |  |  |  |
| Reserved |          |          |          |          |          |          |          |  |  |  |
| 7        | 6        | 5        | 4        | 3        | 2        | 1        | 0        |  |  |  |
| Rese     | erved    | CAPINEN5 | CAPINEN4 | CAPINEN3 | CAPINEN2 | CAPINEN1 | CAPINEN0 |  |  |  |

| Bits   | Description        |                                                                                                                                   |  |  |
|--------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:6] | Reserved Reserved. |                                                                                                                                   |  |  |
|        | CAPINENn           | Capture Input Enable Control                                                                                                      |  |  |
|        |                    | Each bit n controls the corresponding BPWM channel n.                                                                             |  |  |
| [5:0]  |                    | 0 = BPWM Channel capture input path Disabled. The input of BPWM channel capture function is always regarded as 0.                 |  |  |
|        |                    | 1 = BPWM Channel capture input path Enabled. The input of BPWM channel capture function comes from correlative multifunction pin. |  |  |

# **BPWM Capture Control Register (BPWM\_CAPCTL)**

| Register  | Offset        | R/W | Description                   | Reset Value |
|-----------|---------------|-----|-------------------------------|-------------|
| BPWM_CAPO | BPWMx_BA+0x20 | R/W | BPWM Capture Control Register | 0x0000_0000 |

| 31   | 30       | 29       | 28       | 27       | 26       | 25       | 24       |
|------|----------|----------|----------|----------|----------|----------|----------|
| Rese | Reserved |          | FCRLDEN4 | FCRLDEN3 | FCRLDEN2 | FCRLDEN1 | FCRLDEN0 |
| 23   | 22       | 21       | 20       | 19       | 18       | 17       | 16       |
| Rese | erved    | RCRLDEN5 | RCRLDEN4 | RCRLDEN3 | RCRLDEN2 | RCRLDEN1 | RCRLDEN0 |
| 15   | 14       | 13       | 12       | 11       | 10       | 9        | 8        |
| Rese | erved    | CAPINV5  | CAPINV4  | CAPINV3  | CAPINV2  | CAPINV1  | CAPINV0  |
| 7    | 6        | 5        | 4        | 3        | 2        | 1        | 0        |
| Rese | erved    | CAPEN5   | CAPEN4   | CAPEN3   | CAPEN2   | CAPEN1   | CAPEN0   |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                  |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:30] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                        |
| [29:24] | FCRLDENn    | Falling Capture Reload Enable Control  Each bit n controls the corresponding BPWM channel n.  0 = Falling capture reload counter Disabled.  1 = Falling capture reload counter Enabled.                                                                                                                                                                          |
| [23:22] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                        |
| [21:16] | RCRLDENn    | Rising Capture Reload Enable Control  Each bit n controls the corresponding BPWM channel n.  0 = Rising capture reload counter Disabled.  1 = Rising capture reload counter Enabled.                                                                                                                                                                             |
| [15:14] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                        |
| [13:8]  | CAPINVn     | Capture Inverter Enable Control  Each bit n controls the corresponding BPWM channel n.  0 = Capture source inverter Disabled.  1 = Capture source inverter Enabled. Reverse the input signal from GPIO.                                                                                                                                                          |
| [7:6]   | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                        |
| [5:0]   | CAPENn      | Capture Function Enable Control  Each bit n controls the corresponding BPWM channel n.  0 = Capture function Disabled. RCAPDAT/FCAPDAT register will not be updated.  1 = Capture function Enabled. Capture latched the BPWM counter value when detected rising or falling edge of input signal and saved to RCAPDAT (Rising latch) and FCAPDAT (Falling latch). |



## **BPWM Capture Status Register (BPWM\_CAPSTS)**

| Register        | Offset             | R/W | Description                  | Reset Value |
|-----------------|--------------------|-----|------------------------------|-------------|
| BPWM_CAPS<br>TS | BPWMx_BA+0x20<br>8 | R   | BPWM Capture Status Register | 0x0000_0000 |

| 31   | 30                | 29       | 28       | 27       | 26       | 25       | 24       |  |  |  |
|------|-------------------|----------|----------|----------|----------|----------|----------|--|--|--|
|      | Reserved          |          |          |          |          |          |          |  |  |  |
| 23   | 22                | 21       | 20       | 19       | 18       | 17       | 16       |  |  |  |
|      | Reserved          |          |          |          |          |          |          |  |  |  |
| 15   | 14                | 13       | 12       | 11       | 10       | 9        | 8        |  |  |  |
| Rese | Reserved CFLIFOVS |          | CFLIFOV4 | CFLIFOV3 | CFLIFOV2 | CFLIFOV1 | CFLIFOV0 |  |  |  |
| 7    | 6                 | 5        | 4        | 3        | 2        | 1        | 0        |  |  |  |
| Rese | erved             | CRLIFOV5 | CRLIFOV4 | CRLIFOV3 | CRLIFOV2 | CRLIFOV1 | CRLIFOV0 |  |  |  |

| Bits    | Description | escription                                                                                                                             |  |  |  |  |
|---------|-------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:14] | Reserved    | Reserved.                                                                                                                              |  |  |  |  |
|         |             | Capture Falling Latch Interrupt Flag Overrun Status (Read Only)                                                                        |  |  |  |  |
| [13:8]  | CFLIFOVn    | This flag indicates if falling latch happened when the corresponding CFLIF is 1. Each bit n controls the corresponding BPWM channel n. |  |  |  |  |
|         |             | Note: This bit will be cleared automatically when user clear corresponding CFLIF.                                                      |  |  |  |  |
| [7:6]   | Reserved    | Reserved.                                                                                                                              |  |  |  |  |
|         |             | Capture Rising Latch Interrupt Flag Overrun Status (Read Only)                                                                         |  |  |  |  |
| [5:0]   | CRLIFOVn    | This flag indicates if rising latch happened when the corresponding CRLIF is 1. Each bit n controls the corresponding BPWM channel n.  |  |  |  |  |
|         |             | Note: This bit will be cleared automatically when user clear corresponding CRLIF.                                                      |  |  |  |  |



## BPWM Rising Capture Data Register 0~5 (BPWM\_RCAPDAT 0~5)

| Register          | Offset             | R/W | Description                         | Reset Value |
|-------------------|--------------------|-----|-------------------------------------|-------------|
| BPWM_RCAP<br>DAT0 | BPWMx_BA+0x20<br>C | R   | BPWM Rising Capture Data Register 0 | 0x0000_0000 |
| BPWM_RCAP<br>DAT1 | BPWMx_BA+0x21<br>4 | R   | BPWM Rising Capture Data Register 1 | 0x0000_0000 |
| BPWM_RCAP<br>DAT2 | BPWMx_BA+0x21<br>C | R   | BPWM Rising Capture Data Register 2 | 0x0000_0000 |
| BPWM_RCAP<br>DAT3 | BPWMx_BA+0x22<br>4 | R   | BPWM Rising Capture Data Register 3 | 0x0000_0000 |
| BPWM_RCAP<br>DAT4 | BPWMx_BA+0x22<br>C | R   | BPWM Rising Capture Data Register 4 | 0x0000_0000 |
| BPWM_RCAP<br>DAT5 | BPWMx_BA+0x23<br>4 | R   | BPWM Rising Capture Data Register 5 | 0x0000_0000 |

| 31              | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|-----------------|----------|----|----|----|----|----|----|--|--|--|
|                 | Reserved |    |    |    |    |    |    |  |  |  |
| 23              | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|                 | Reserved |    |    |    |    |    |    |  |  |  |
| 15              | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|                 | RCAPDAT  |    |    |    |    |    |    |  |  |  |
| 7 6 5 4 3 2 1 0 |          |    |    |    |    |    | 0  |  |  |  |
|                 | RCAPDAT  |    |    |    |    |    |    |  |  |  |

| Bits    | Description |                                                                                                                                              |  |  |  |
|---------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:16] | Reserved    | Reserved.                                                                                                                                    |  |  |  |
| [15:0]  | RCAPDAT     | BPWM Rising Capture Data Register (Read Only) When rising capture condition happened, the BPWM counter value will be saved in this register. |  |  |  |



## BPWM Falling Capture Data Register 0~5 (BPWM\_FCAPDAT 0~5)

| Register          | Offset             | R/W | Description                          | Reset Value |
|-------------------|--------------------|-----|--------------------------------------|-------------|
| BPWM_FCAP<br>DAT0 | BPWMx_BA+0x21<br>0 | R   | BPWM Falling Capture Data Register 0 | 0x0000_0000 |
| BPWM_FCAP<br>DAT1 | BPWMx_BA+0x21<br>8 | R   | BPWM Falling Capture Data Register 1 | 0x0000_0000 |
| BPWM_FCAP<br>DAT2 | BPWMx_BA+0x22<br>0 | R   | BPWM Falling Capture Data Register 2 | 0x0000_0000 |
| BPWM_FCAP<br>DAT3 | BPWMx_BA+0x22<br>8 | R   | BPWM Falling Capture Data Register 3 | 0x0000_0000 |
| BPWM_FCAP<br>DAT4 | BPWMx_BA+0x23<br>0 | R   | BPWM Falling Capture Data Register 4 | 0x0000_0000 |
| BPWM_FCAP<br>DAT5 | BPWMx_BA+0x23<br>8 | R   | BPWM Falling Capture Data Register 5 | 0x0000_0000 |

| 31      | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|---------|----------|----|----|----|----|----|----|--|--|--|
|         | Reserved |    |    |    |    |    |    |  |  |  |
| 23      | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|         | Reserved |    |    |    |    |    |    |  |  |  |
| 15      | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
| FCAPDAT |          |    |    |    |    |    |    |  |  |  |
| 7       | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|         | FCAPDAT  |    |    |    |    |    |    |  |  |  |

| Bits    | Description |                                                                                                                                                |  |  |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:16] | Reserved    | Reserved.                                                                                                                                      |  |  |
| [15:0]  | FCAPDAT     | BPWM Falling Capture Data Register (Read Only) When falling capture condition happened, the BPWM counter value will be saved in this register. |  |  |



## **BPWM Capture Interrupt Enable Register (BPWM\_CAPIEN)**

| Register        | Offset             | R/W | Description                            | Reset Value |
|-----------------|--------------------|-----|----------------------------------------|-------------|
| BPWM_CAPI<br>EN | BPWMx_BA+0x25<br>0 | R/W | BPWM Capture Interrupt Enable Register | 0x0000_0000 |

| 31   | 30            | 29       | 28       | 27       | 26       | 25       | 24       |  |  |  |
|------|---------------|----------|----------|----------|----------|----------|----------|--|--|--|
|      | Reserved      |          |          |          |          |          |          |  |  |  |
| 23   | 22            | 21       | 20       | 19       | 18       | 17       | 16       |  |  |  |
|      | Reserved      |          |          |          |          |          |          |  |  |  |
| 15   | 14            | 13       | 12       | 11       | 10       | 9        | 8        |  |  |  |
| Rese | Reserved CAPF |          | CAPFIEN4 | CAPFIEN3 | CAPFIEN2 | CAPFIEN1 | CAPFIEN0 |  |  |  |
| 7    | 6             | 5        | 4        | 3        | 2        | 1        | 0        |  |  |  |
| Rese | erved         | CAPRIEN5 | CAPRIEN4 | CAPRIEN3 | CAPRIEN2 | CAPRIEN1 | CAPRIEN0 |  |  |  |

| Bits    | Description | escription                                                                                                                                                                                                        |  |  |  |  |  |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:14] | Reserved    | Reserved.                                                                                                                                                                                                         |  |  |  |  |  |
| [13:8]  | CAPFIENn    | BPWM Capture Falling Latch Interrupt Enable Control  Each bit n controls the corresponding BPWM channel n.  0 = Capture falling edge latch interrupt Disabled.  1 = Capture falling edge latch interrupt Enabled. |  |  |  |  |  |
| [7:6]   | Reserved    | Reserved.                                                                                                                                                                                                         |  |  |  |  |  |
| [5:0]   | CAPRIENn    | BPWM Capture Rising Latch Interrupt Enable Control  Each bit n controls the corresponding BPWM channel n.  0 = Capture rising edge latch interrupt Disabled.  1 = Capture rising edge latch interrupt Enabled.    |  |  |  |  |  |



## **BPWM Capture Interrupt Flag Register (BPWM\_CAPIF)**

| Register   | Offset             | R/W | Description                          | Reset Value |
|------------|--------------------|-----|--------------------------------------|-------------|
| BPWM_CAPIF | BPWMx_BA+0x25<br>4 | R/W | BPWM Capture Interrupt Flag Register | 0x0000_0000 |

| 31   | 30              | 29     | 28     | 27     | 26     | 25     | 24     |  |  |  |
|------|-----------------|--------|--------|--------|--------|--------|--------|--|--|--|
|      | Reserved        |        |        |        |        |        |        |  |  |  |
| 23   | 22              | 21     | 20     | 19     | 18     | 17     | 16     |  |  |  |
|      | Reserved        |        |        |        |        |        |        |  |  |  |
| 15   | 14              | 13     | 12     | 11     | 10     | 9      | 8      |  |  |  |
| Rese | Reserved CFLIF5 |        |        | CFLIF3 | CFLIF2 | CFLIF1 | CFLIF0 |  |  |  |
| 7    | 6               | 5      | 4      | 3      | 2      | 1      | 0      |  |  |  |
| Rese | erved           | CRLIF5 | CRLIF4 | CRLIF3 | CRLIF2 | CRLIF1 | CRLIF0 |  |  |  |

| Bits    | Description | escription                                                                                                                                                                                                                                                       |  |  |  |  |  |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:14] | Reserved    | Reserved.                                                                                                                                                                                                                                                        |  |  |  |  |  |
| [13:8]  | CFLIFn      | BPWM Capture Falling Latch Interrupt Flag  This bit is writing 1 to clear. Each bit n controls the corresponding BPWM channel n.  0 = No capture falling latch condition happened.  1 = Capture falling latch condition happened, this flag will be set to high. |  |  |  |  |  |
| [7:6]   | Reserved    | Reserved.                                                                                                                                                                                                                                                        |  |  |  |  |  |
| [5:0]   | CRLIFn      | BPWM Capture Rising Latch Interrupt Flag  This bit is writing 1 to clear. Each bit n controls the corresponding BPWM channel n.  0 = No capture rising latch condition happened.  1 = Capture rising latch condition happened, this flag will be set to high.    |  |  |  |  |  |

# **BPWM Period Register Buffer (BPWM\_PBUF)**

| Register  | Offset             | R/W | Description        | Reset Value |
|-----------|--------------------|-----|--------------------|-------------|
| BPWM_PBUF | BPWMx_BA+0x30<br>4 | R   | BPWM PERIOD Buffer | 0x0000_0000 |

| 31 | 30   | 29 | 28   | 27    | 26 | 25 | 24 |  |
|----|------|----|------|-------|----|----|----|--|
|    |      |    | Rese | erved |    |    |    |  |
| 23 | 22   | 21 | 20   | 19    | 18 | 17 | 16 |  |
|    |      |    | Rese | erved |    |    |    |  |
| 15 | 14   | 13 | 12   | 11    | 10 | 9  | 8  |  |
|    | PBUF |    |      |       |    |    |    |  |
| 7  | 6    | 5  | 4    | 3     | 2  | 1  | 0  |  |
|    | PBUF |    |      |       |    |    |    |  |

| Bits    | Description |                                                                         |  |
|---------|-------------|-------------------------------------------------------------------------|--|
| [31:16] | Reserved    | Reserved.                                                               |  |
| [15:0]  | PBUF        | BPWM Period Register Buffer (Read Only) Used as PERIOD active register. |  |



## BPWM Comparator Register Buffer 0~5 (BPWM\_CMPBUF0~5)

| Register         | Offset             | R/W | Description      | Reset Value |
|------------------|--------------------|-----|------------------|-------------|
| BPWM_CMPB<br>UF0 | BPWMx_BA+0x31<br>C | R   | BPWM CMP0 Buffer | 0x0000_0000 |
| BPWM_CMPB<br>UF1 | BPWMx_BA+0x32<br>0 | R   | BPWM CMP1 Buffer | 0x0000_0000 |
| BPWM_CMPB<br>UF2 | BPWMx_BA+0x32<br>4 | R   | BPWM CMP2 Buffer | 0x0000_0000 |
| BPWM_CMPB<br>UF3 | BPWMx_BA+0x32<br>8 | R   | BPWM CMP3 Buffer | 0x0000_0000 |
| BPWM_CMPB<br>UF4 | BPWMx_BA+0x32<br>C | R   | BPWM CMP4 Buffer | 0x0000_0000 |
| BPWM_CMPB<br>UF5 | BPWMx_BA+0x33<br>0 | R   | BPWM CMP5 Buffer | 0x0000_0000 |

| 31 | 30     | 29 | 28   | 27    | 26 | 25 | 24 |  |
|----|--------|----|------|-------|----|----|----|--|
|    |        |    | Rese | erved |    |    |    |  |
| 23 | 22     | 21 | 20   | 19    | 18 | 17 | 16 |  |
|    |        |    | Rese | erved |    |    |    |  |
| 15 | 14     | 13 | 12   | 11    | 10 | 9  | 8  |  |
|    | СМРВИГ |    |      |       |    |    |    |  |
| 7  | 6      | 5  | 4    | 3     | 2  | 1  | 0  |  |
|    | CMPBUF |    |      |       |    |    |    |  |

| Bits    | Description | escription                                                               |  |  |  |
|---------|-------------|--------------------------------------------------------------------------|--|--|--|
| [31:16] | Reserved    | served Reserved.                                                         |  |  |  |
| [15:0]  | ICMPBUF     | BPWM Comparator Register Buffer (Read Only) Used as CMP active register. |  |  |  |

### 6.9 Watchdog Timer (WDT)

#### 6.9.1 Overview

nuvoTon

The purpose of Watchdog Timer is to perform a system reset when system runs into an unknown state. This prevents system from hanging for an infinite period of time. Besides, this Watchdog Timer supports the function to wake-up system from Idle/Power-down mode.

#### 6.9.2 Features

- 18-bit free running up counter for Watchdog Timer time-out interval.
- Selectable time-out interval  $(2^4 \sim 2^{18})$  WDT CLK cycle and the time-out interval period is 104 ms  $\sim 26.3168 \text{ s if WDT\_CLK} = 10 \text{ kHz}.$
- System kept in reset state for a period of (1 / WDT\_CLK) \* 63
- Supports Watchdog Timer reset delay period
  - Selectable reset delay period includes (1026, 130, 18 or 3) \* WDT CLK reset delay period
- Supports to force Watchdog Timer enabled after chip powered on or reset while CWDTEN (CONFIG0[31] Watchdog Enable) bit is set to 0.
- Supports Watchdog Timer time-out wake-up function only if WDT clock source is selected as 10 kHz



### 6.9.3 Block Diagram

The Watchdog Timer clock control and block diagram are shown as Figure 6.9-1 and Figure 6.9-2.

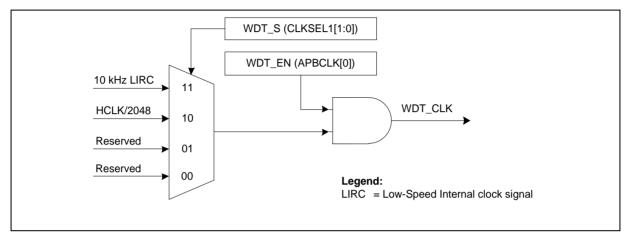



Figure 6.9-1 Watchdog Timer Clock Control

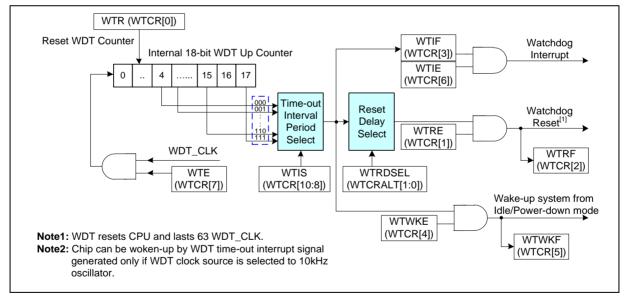



Figure 6.9-2 Watchdog Timer Block Diagram

### 6.9.4 Basic Configuration

The WDT peripheral clock is enabled in APBCLK[0] and clock source can be selected in CLKSEL1[1:0].

Or user can set CONFIG0[31] for 0 to force Watchdog Timer enabled and active in 10 kHz after chip powered on or reset.

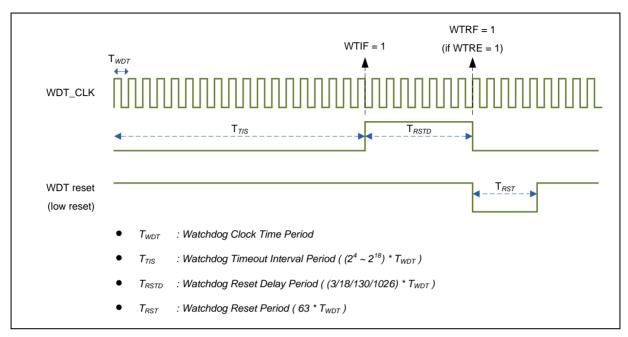
### 6.9.5 Functional Description

The Watchdog Timer (WDT) includes an 18-bit free running up counter with programmable time-out intervals. Table 6.9-1 shows the WDT time-out interval period selection and Figure 6.9-3 shows the WDT time-out interval and reset period timing.

#### WDT Time-out Interrupt

Setting WTE bit to 1 will enable the WDT function and the WDT counter to start counting up. There are eight time-out interval period can be selected by setting WTIS. When the WDT up counter reaches the WTIS settings, WDT time-out interrupt will occur then WTIF flag will be set to 1 immediately.

#### WDT Reset Delay Period and Reset System


There is a specified  $T_{RSTD}$  delay period follows the WTIF flag which setted to 1. User should set WTR bit to reset the 18-bit WDT up counter value to avoid generating WDT time-out reset signal before the  $T_{RSTD}$  delay period expires. If the WDT up counter value has not been cleared after the specific  $T_{RSTD}$  delay period expires, the WDT control will set WTRF flag to 1 if WTRE bit is enabled, then chip enters to reset state immediately. Refer to Figure 6.9-3, the  $T_{RST}$  reset period will keep last 63 WDT clocks then chip restart executing program from reset vector (0x0000\_0000). The WTRF flag will keep 1 after WDT time-out reset the chip, user can check WTRF flag by software to recognize the system has been reset by WDT time-out reset or not.

#### WDT Wake-up

If WDT clock source is selected to 10 kHz, system can be waken-up from Power-down mode while WDT time-out interrupt signal is generated and WTWKE bit enabled. In the meanwhile, the WTWKF flag will set to 1 automatically, user can check WTWKF flag by software to recognize the system has been waken-up by WDT time-out interrupt or not.

| WTIS | Time-Out Interval Period<br>T <sub>TIS</sub> | Reset Delay Period<br>T <sub>RSTD</sub> |
|------|----------------------------------------------|-----------------------------------------|
| 000  | 2 <sup>4</sup> * T <sub>WDT</sub>            | (3/18/130/1026) * T <sub>WDT</sub>      |
| 001  | 2 <sup>6</sup> * T <sub>WDT</sub>            | (3/18/130/1026) * T <sub>WDT</sub>      |
| 010  | 2 <sup>8</sup> * T <sub>WDT</sub>            | (3/18/130/1026) * T <sub>WDT</sub>      |
| 011  | 2 <sup>10</sup> * T <sub>WDT</sub>           | (3/18/130/1026) * T <sub>WDT</sub>      |
| 100  | 2 <sup>12</sup> * T <sub>WDT</sub>           | (3/18/130/1026) * T <sub>WDT</sub>      |
| 101  | 2 <sup>14</sup> * T <sub>WDT</sub>           | (3/18/130/1026) * T <sub>WDT</sub>      |
| 110  | 2 <sup>16</sup> * T <sub>WDT</sub>           | (3/18/130/1026) * T <sub>WDT</sub>      |
| 111  | 2 <sup>18</sup> * T <sub>WDT</sub>           | (3/18/130/1026) * T <sub>WDT</sub>      |

Table 6.9-1 Watchdog Timer Time-out Interval Period Selection



nuvoton

Figure 6.9-3 Watchdog Timer Time-out Interval and Reset Period Timing



# 6.9.6 Register Map

R: read only, W: write only, R/W: both read and write

| Register                                  | Offset      | R/W | Description                                 | Reset Value |  |
|-------------------------------------------|-------------|-----|---------------------------------------------|-------------|--|
| WDT Base Address:<br>WDT_BA = 0x4000_4000 |             |     |                                             |             |  |
| WTCR                                      | WDT_BA+0x00 | R/W | Watchdog Timer Control Register             | 0x0000_0700 |  |
| WTCRALT                                   | WDT_BA+0x04 | R/W | Watchdog Timer Alternative Control Register | 0x0000_0000 |  |



# 6.9.7 Register Description

# Watchdog Timer Control Register (WTCR)

| Register | Offset      | R/W | Description                     | Reset Value |
|----------|-------------|-----|---------------------------------|-------------|
| WTCR     | WDT_BA+0x00 | R/W | Watchdog Timer Control Register | 0x0000_0700 |

| 31              | 30       | 29       | 28    | 27   | 26   | 25   | 24  |  |
|-----------------|----------|----------|-------|------|------|------|-----|--|
| DBGACK_WD<br>T  |          | Reserved |       |      |      |      |     |  |
| 23              | 22       | 21       | 20    | 19   | 18   | 17   | 16  |  |
|                 | Reserved |          |       |      |      |      |     |  |
| 15              | 14       | 13       | 12    | 11   | 10   | 9    | 8   |  |
|                 |          | Reserved |       |      |      | WTIS |     |  |
| 7 6 5 4 3 2 1 0 |          |          |       |      |      |      | 0   |  |
| WTE             | WTIE     | WTWKF    | WTWKE | WTIF | WTRF | WTRE | WTR |  |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                             |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31]    | DBGACK_WDT  | ICE Debug Mode Acknowledge Disable Control (Write Protect)  0 = ICE debug mode acknowledgement effects WDT counting.  WDT up counter will be held while CPU is held by ICE.  1 = ICE debug mode acknowledgement Disabled.  WDT up counter will keep going no matter CPU is held by ICE or not.                                              |
| [30:11] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                   |
| [10:8]  | wπs         | Watchdog Timer Time-Out Interval Selection (Write Protect) These three bits select the time-out interval period for the WDT. $000 = 2^4 * T_{WDT}$ . $001 = 2^6 * T_{WDT}$ . $010 = 2^8 * T_{WDT}$ . $011 = 2^{10} * T_{WDT}$ . $100 = 2^{12} * T_{WDT}$ . $101 = 2^{14} * T_{WDT}$ . $111 = 2^{16} * T_{WDT}$ . $111 = 2^{18} * T_{WDT}$ . |
| [7]     | WTE         | Watchdog Timer Enable Control (Write Protect)  0 = WDT Disabled. (This action will reset the internal up counter value.)  1 = WDT Enabled.  Note: If CWDTEN (CONFIG0[31] Watchdog Enable) bit is set to 0, this bit is forced as 1 and user cannot change this bit to 0.                                                                    |
| [6]     | WTIE        | Watchdog Timer Time-Out Interrupt Enable Control (Write Protect)                                                                                                                                                                                                                                                                            |

|     |       | If this bit is enabled, the WDT time-out interrupt signal is generated and inform to CPU.  0 = WDT time-out interrupt Disabled.  1 = WDT time-out interrupt Enabled.                                                                                                                                                                                                                                                                                                                                                        |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [5] | WTWKF | Watchdog Timer Time-Out Wake-Up Flag This bit indicates the interrupt wake-up flag status of WDT.  0 = WDT does not cause chip wake-up.  1 = Chip wake-up from Idle or Power-down mode if WDT time-out interrupt signal generated.  Note: This bit is cleared by writing 1 to it.                                                                                                                                                                                                                                           |
| [4] | WTWKE | Watchdog Timer Time-Out Wake-Up Function Control (Write Protect)  If this bit is set to 1, while WTIF is generated to 1 and WTIE enabled, the WDT time-out interrupt signal will generate a wake-up trigger event to chip.  0 = Wake-up trigger event Disabled if WDT time-out interrupt signal generated.  1 = Wake-up trigger event Enabled if WDT time-out interrupt signal generated.  Note: Chip can be woken-up by WDT time-out interrupt signal generated only if WDT clock source is selected to 10 kHz oscillator. |
| [3] | WTIF  | Watchdog Timer Time-Out Interrupt Flag This bit will set to 1 while WDT up counter value reaches the selected WDT time-out interval.  0 = WDT time-out interrupt did not occur.  1 = WDT time-out interrupt occurred.  Note: This bit is cleared by writing 1 to it.                                                                                                                                                                                                                                                        |
| [2] | WTRF  | Watchdog Timer Time-Out Reset Flag This bit indicates the system has been reset by WDT time-out reset or not.  0 = WDT time-out reset did not occur.  1 = WDT time-out reset occurred.  Note: This bit is cleared by writing 1 to it.                                                                                                                                                                                                                                                                                       |
| [1] | WTRE  | Watchdog Timer Reset Enable Control (Write Protect)  Setting this bit will enable the WDT time-out reset function if the WDT up counter value has not been cleared after the specific WDT reset delay period expires.  0 = WDT time-out reset function Disabled.  1 = WDT time-out reset function Enabled.                                                                                                                                                                                                                  |
| [0] | WTR   | Reset Watchdog Timer Up Counter (Write Protect)  0 = No effect.  1 = Reset the internal 18-bit WDT up counter value.  Note: This bit will be automatically cleared by hardware.                                                                                                                                                                                                                                                                                                                                             |



# **Watchdog Timer Alternative Control Register (WTCRALT)**

| Register | Offset      | R/W | Description                                 | Reset Value |
|----------|-------------|-----|---------------------------------------------|-------------|
| WTCRALT  | WDT_BA+0x04 | R/W | Watchdog Timer Alternative Control Register | 0x0000_0000 |

| 31       | 30 | 29 | 28   | 27    | 26  | 25   | 24 |
|----------|----|----|------|-------|-----|------|----|
|          |    |    | Rese | erved |     |      |    |
| 23       | 22 | 21 | 20   | 19    | 18  | 17   | 16 |
|          |    |    | Rese | erved |     |      |    |
| 15       | 14 | 13 | 12   | 11    | 10  | 9    | 8  |
|          |    |    | Rese | erved |     |      |    |
| 7        | 6  | 5  | 4    | 3     | 2   | 1    | 0  |
| Reserved |    |    |      |       | WTR | DSEL |    |

| Bits   | Description | Description                                                                                                                                                                                                                         |  |  |
|--------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:2] | Reserved    | Reserved.                                                                                                                                                                                                                           |  |  |
|        |             | Watchdog Timer Reset Delay Selection (Write Protect)                                                                                                                                                                                |  |  |
|        |             | When WDT time-out happened, user has a time named WDT Reset Delay Period to clear WDT counter to prevent WDT time-out reset happened. User can select a suitable value of WDT Reset Delay Period for different WDT time-out period. |  |  |
| [1:0]  | WTRDSEL     | These bits are protected bit. It means programming this bit needs to write "59h", "16h", "88h" to address 0x5000_0100 to disable register protection. Reference the register REGWRPROT at address GCR_BA+0x100.                     |  |  |
|        |             | 00 = Watchdog Timer Reset Delay Period is 1026 * WDT_CLK.                                                                                                                                                                           |  |  |
|        |             | 01 = Watchdog Timer Reset Delay Period is 130 * WDT_CLK.                                                                                                                                                                            |  |  |
|        |             | 10 = Watchdog Timer Reset Delay Period is 18 * WDT_CLK.                                                                                                                                                                             |  |  |
|        |             | 11 = Watchdog Timer Reset Delay Period is 3 * WDT_CLK.                                                                                                                                                                              |  |  |
|        |             | Note: This register will be reset to 0 if WDT time-out reset happened.                                                                                                                                                              |  |  |

# 6.10 Window Watchdog Timer (WWDT)

#### 6.10.1 Overview

nuvoton

The Window Watchdog Timer is used to perform a system reset within a specified window period to prevent software run to uncontrollable status by any unpredictable condition.

### 6.10.2 Features

- 6-bit down counter value (WWDTVAL[5:0]) and 6-bit compare window value (WWDTCR[21:16]) to make the WWDT time-out window period flexible
- Supports 4-bit value to programmable maximum 11-bit prescale counter period of WWDT counter



### 6.10.3 Block Diagram

The Window Watchdog Timer clock control and block diagram are shown as Figure 6.10-1 and Figure 6.10-2.

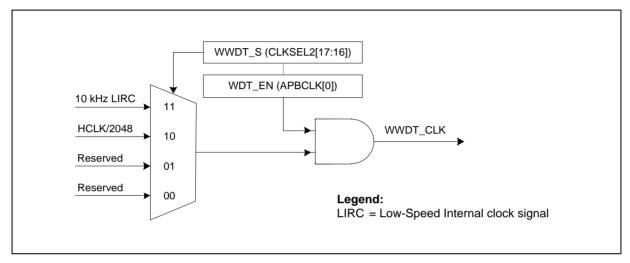



Figure 6.10-1 Window Watchdog Timer Clock Control

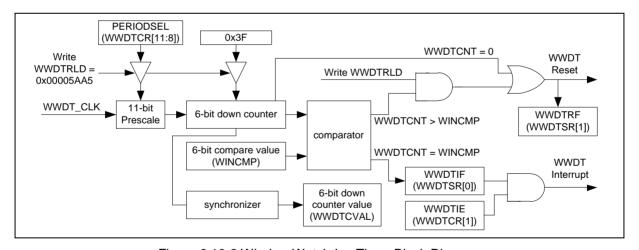



Figure 6.10-2 Window Watchdog Timer Block Diagram

### 6.10.4 Basic Configuration

The WWDT peripheral clock is enabled in APBCLK[0] and clock source can be selected in CLKSEL2[17:16].

#### 6.10.5 Functional Description

nuvoTon

The Window Watchdog Timer (WWDT) includes a 6-bit down counter with programmable prescale different **WWDT** time-out value to define intervals. The clock source of 6-bit WWDT is based on system clock divided by 2048 (HCLK/2048) or internal 10 kHz oscillator with a programmable 11-bit prescale counter value which controlled by PERIODSEL (WWDTCRL[11:8]) setting. Also, the correlate of PERIODSEL and prescale value are listed in the Table 6.10-1.

| PERIODSEL | Prescaler Value | Max. Time-Out Period          | Max. Time-Out Interval<br>(WWDT_CLK=10 KHz) |
|-----------|-----------------|-------------------------------|---------------------------------------------|
| 0000      | 1               | 1 * 64 * T <sub>WWDT</sub>    | 6.4 ms                                      |
| 0001      | 2               | 2 * 64 * T <sub>WWDT</sub>    | 12.8 ms                                     |
| 0010      | 4               | 4 * 64 * T <sub>WWDT</sub>    | 25.6 ms                                     |
| 0011      | 8               | 8 * 64 * T <sub>WWDT</sub>    | 51.2 ms                                     |
| 0100      | 16              | 16 * 64 * T <sub>WWDT</sub>   | 102.4 ms                                    |
| 0101      | 32              | 32 * 64 * T <sub>WWDT</sub>   | 204.8 ms                                    |
| 0110      | 64              | 64 * 64 * T <sub>WWDT</sub>   | 409.6 ms                                    |
| 0111      | 128             | 128 * 64 * T <sub>WWDT</sub>  | 819.2 ms                                    |
| 1000      | 192             | 192 * 64 * T <sub>WWDT</sub>  | 1.2288 s                                    |
| 1001      | 256             | 256 * 64 * T <sub>WWDT</sub>  | 1.6384 s                                    |
| 1010      | 384             | 384 * 64 * T <sub>WWDT</sub>  | 2.4576 s                                    |
| 1011      | 512             | 512 * 64 * T <sub>WWDT</sub>  | 3.2768 s                                    |
| 1100      | 768             | 768 * 64 * T <sub>WWDT</sub>  | 4.9152 s                                    |
| 1101      | 1024            | 1024 * 64 * T <sub>WWDT</sub> | 6.5536 s                                    |
| 1110      | 1536            | 1536 * 64 * T <sub>WWDT</sub> | 9.8304 s                                    |
| 1111      | 2048            | 2048 * 64 * T <sub>WWDT</sub> | 13.1072 s                                   |

Table 6.10-1 Window Watchdog Timer Prescale Value Selection

### **WWDT Counting**

When the WWDTEN bit is set, WWDT down counter will start counting from 0x3F to 0. To prevent program runs to disable WWDT counter counting unexpected, the WWDT control register WWDTCR can only be written once after chip is powered on or reset. User cannot disable WWDT counter counting (WWDTEN), change counter prescale period (PERIODSEL) or change window compare value (WINCMP) while WWDTEN (WWDTCR[0]) bit has been enabled by software unless chip is reset.

### WWDT Compare Match Interrupt

During down counting by the WWDT counter, the WWDTIF is set to 1 while the WWDT counter value



(WWDTCVAL) is equal to WINCMP value and WWDTIF can be cleared by software; if WWDTIE is also set to 1 by software, the WWDT compare match interrupt signal is generated also while WWDTIF is set to 1 by hardware.

#### WWDT Reset System

When WWDTIF is generated, user must reload WWDT internal counter value to 0x3F by writing 0x00005AA5 to WWDTRLD. Otherwise, WWDT counter value will count down to 0 and generate WWDT reset system signal to info system reset.

If current WWDTCVAL value is larger than WINCMP value and user writes 0x00005AA5 to the WWDTRLD register, the WWDT reset system signal will be generated immediately to cause chip reset also.

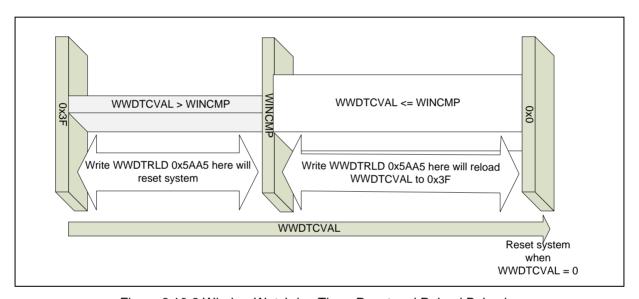



Figure 6.10-3 Window Watchdog Timer Reset and Reload Behavior

#### WWDT Window Setting Limitation

When user writes 0x00005AA5 to WWDTRLD register to reload WWDT counter value to 0x3F, it needs 3 WWDT clocks to sync the reload command to actually perform reload action.

This means if user set PERIODSEL to 0000, the counter prescale value should be as 1, and the WINCMP value must be larger than 2; otherwise, writing WWDTRLD to reload WWDT counter value to 0x3F is unavailable while WWDTIF is generated and WWDT reset system event always happened.

| PERIODSEL | Prescale Value | Valid WINCMP Value |
|-----------|----------------|--------------------|
| 0000      | 1              | 0x3 ~ 0x3F         |
| 0001      | 2              | 0x2 ~ 0x3F         |
| Others    | Others         | 0x0 ~ 0x3F         |

Table 6.10-2 WINCMP Setting Limitation



# 6.10.6 Register Map

R: read only, W: write only, R/W: both read and write

| Register | Offset                                      | R/W | Description                                   | Reset Value |  |  |
|----------|---------------------------------------------|-----|-----------------------------------------------|-------------|--|--|
|          | WWDT Base Address:<br>WWDT_BA = 0x4000_4100 |     |                                               |             |  |  |
| WWDTRLD  | WWDT_BA+0x00                                | W   | Window Watchdog Timer Reload Counter Register | 0x0000_0000 |  |  |
| WWDTCR   | WWDT_BA+0x04                                | R/W | Window Watchdog Timer Control Register        | 0x003F_0800 |  |  |
| WWDTSR   | WWDT_BA+0x08                                | R/W | Window Watchdog Timer Status Register         | 0x0000_0000 |  |  |
| WWDTCVR  | WWDT_BA+0x0C                                | R   | Window Watchdog Timer Counter Value Register  | 0x0000_003F |  |  |



# 6.10.7 Register Description

# Window Watchdog Timer Reload Counter Register (WWDTRLD)

| Register | Offset       | R/W | Description                                   | Reset Value |
|----------|--------------|-----|-----------------------------------------------|-------------|
| WWDTRLD  | WWDT_BA+0x00 | W   | Window Watchdog Timer Reload Counter Register | 0x0000_0000 |

| 31 | 30      | 29 | 28  | 27   | 26 | 25 | 24 |
|----|---------|----|-----|------|----|----|----|
|    |         |    | WWD | TRLD |    |    |    |
| 23 | 22      | 21 | 20  | 19   | 18 | 17 | 16 |
|    |         |    | WWD | TRLD |    |    |    |
| 15 | 14      | 13 | 12  | 11   | 10 | 9  | 8  |
|    | WWDTRLD |    |     |      |    |    |    |
| 7  | 6       | 5  | 4   | 3    | 2  | 1  | 0  |
|    | WWDTRLD |    |     |      |    |    |    |

| Bits   | Description |                                                                                                                                                                                                                                                 |
|--------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |             | WWDT Reload Counter Register Writing 0x00005AA5 to this register will reload the WWDT counter value to 0x3F.                                                                                                                                    |
| [31:0] | WWDTRLD     | Note: User can only write WWDTRLD to reload WWDT counter value when current WWDT counter value between 0 and WINCMP. If user writes WWDTRLD when current WWDT counter value is larger than WINCMP, WWDT reset signal will generate immediately. |



# **Window Watchdog Timer Control Register (WWDTCR)**

| Register | Offset       | R/W | Description                            | Reset Value |
|----------|--------------|-----|----------------------------------------|-------------|
| WWDTCR   | WWDT_BA+0x04 | R/W | Window Watchdog Timer Control Register | 0x003F_0800 |

**Note:** This register can be written only one time after chip is powered on or reset.

| 31              | 30       | 29 28 27 26 25 |    | 29 28 27 26 25 |       |        |        |  |  |
|-----------------|----------|----------------|----|----------------|-------|--------|--------|--|--|
| DBGACK_<br>WWDT |          | Reserved       |    |                |       |        |        |  |  |
| 23              | 22       | 21             | 20 | 19             | 18    | 17     | 16     |  |  |
| Rese            | erved    |                |    | WINCMP         |       |        |        |  |  |
| 15              | 14       | 13             | 12 | 11             | 10    | 9      | 8      |  |  |
|                 | Reserved |                |    |                | PERIC | DSEL   |        |  |  |
| 7               | 6        | 5              | 4  | 3              | 2     | 1      | 0      |  |  |
| Reserved        |          |                |    |                |       | WWDTIE | WWDTEN |  |  |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31]    | DBGACK_WWDT | ICE Debug Mode Acknowledge Disable Control  0 = ICE debug mode acknowledgement effects WWDT counting.  WWDT down counter will be held while CPU is held by ICE.  1 = ICE debug mode acknowledgement Disabled.  WWDT down counter will keep going no matter CPU is held by ICE or not.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| [30:22] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [21:16] | WINCMP      | WWDT Window Compare Register Set this register to adjust the valid reload window.  Note: User can only write WWDTRLD to reload WWDT counter value when current WWDT counter value between 0 and WINCMP. If user writes WWDTRLD when current WWDT counter value larger than WINCMP, WWDT reset signal will generate immediately.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| [15:12] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| [11:8]  | PERIODSEL   | WWDT Counter Prescale Period Selection  0000 = Pre-scale is 1; Max time-out period is 1 * 64 * TWWDT.  0001 = Pre-scale is 2; Max time-out period is 2 * 64 * TWWDT.  0010 = Pre-scale is 4; Max time-out period is 4 * 64 * TWWDT.  0011 = Pre-scale is 8; Max time-out period is 8 * 64 * TWWDT.  0100 = Pre-scale is 16; Max time-out period is 16 * 64 * TWWDT.  0101 = Pre-scale is 32; Max time-out period is 32 * 64 * TWWDT.  0110 = Pre-scale is 64; Max time-out period is 64 * 64 * TWWDT.  0111 = Pre-scale is 128; Max time-out period is 128 * 64 * TWWDT.  1000 = Pre-scale is 192; Max time-out period is 192 * 64 * TWWDT.  1001 = Pre-scale is 256; Max time-out period is 256 * 64 * TWWDT.  1010 = Pre-scale is 384; Max time-out period is 384 * 64 * TWWDT.  1011 = Pre-scale is 512; Max time-out period is 512 * 64 * TWWDT. |



|       |          | 1100 = Pre-scale is 768; Max time-out period is 768 * 64 * TWWDT.  1101 = Pre-scale is 1024; Max time-out period is 1024 * 64 * TWWDT.  1110 = Pre-scale is 1536; Max time-out period is 1536 * 64 * TWWDT.  1111 = Pre-scale is 2048; Max time-out period is 2048 * 64 * TWWDT. |
|-------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [7:2] | Reserved | Reserved.                                                                                                                                                                                                                                                                        |
| [1]   | WWDTIE   | WWDT Interrupt Enable Control  If this bit is enabled, the WWDT counter compare match interrupt signal is generated and inform to CPU.  0 = WWDT counter compare match interrupt Disabled.  1 = WWDT counter compare match interrupt Enabled.                                    |
| [0]   | WWDTEN   | WWDT Enable Control  Set this bit to enable WWDT counter counting.  0 = WWDT counter is stopped.  1 = WWDT counter is starting counting.                                                                                                                                         |

# Window Watchdog Timer Status Register (WWDTSR)

| Register | Offset       | R/W | Description                           | Reset Value |
|----------|--------------|-----|---------------------------------------|-------------|
| WWDTSR   | WWDT_BA+0x08 | R/W | Window Watchdog Timer Status Register | 0x0000_0000 |

| 31       | 30 | 29 | 28 | 27 | 26 | 25     | 24     |  |
|----------|----|----|----|----|----|--------|--------|--|
| Reserved |    |    |    |    |    |        |        |  |
| 23       | 22 | 21 | 20 | 19 | 18 | 17     | 16     |  |
| Reserved |    |    |    |    |    |        |        |  |
| 15       | 14 | 13 | 12 | 11 | 10 | 9      | 8      |  |
| Reserved |    |    |    |    |    |        |        |  |
| 7        | 6  | 5  | 4  | 3  | 2  | 1      | 0      |  |
| Reserved |    |    |    |    |    | WWDTRF | WWDTIF |  |

| Bits   | Description |                                                                                                                                                                                                                                                     |  |  |  |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:2] | Reserved    | Reserved.                                                                                                                                                                                                                                           |  |  |  |
| [1]    | WWDTRF      | WWDT Time-Out Reset Flag This bit indicates the system has been reset by WWDT time-out reset or not.  0 = WWDT time-out reset did not occur.  1 = WWDT time-out reset occurred.  Note: This bit is cleared by writing 1 to it.                      |  |  |  |
| [0]    | WWDTIF      | WWDT Compare Match Interrupt Flag  This bit indicates the interrupt flag status of WWDT while WWDT counter value matches WINCMP value.  0 = No effect.  1 = WWDT counter value matches WINCMP value.  Note: This bit is cleared by writing 1 to it. |  |  |  |



# Window Watchdog Timer Counter Value Register (WWDTCVR)

| Register | Offset       | R/W | Description                                  | Reset Value |
|----------|--------------|-----|----------------------------------------------|-------------|
| WWDTCVR  | WWDT_BA+0x0C | R   | Window Watchdog Timer Counter Value Register | 0x0000_003F |

| 31   | 30       | 29       | 28 | 27 | 26 | 25 | 24 |  |
|------|----------|----------|----|----|----|----|----|--|
|      | Reserved |          |    |    |    |    |    |  |
| 23   | 22       | 21       | 20 | 19 | 18 | 17 | 16 |  |
|      | Reserved |          |    |    |    |    |    |  |
| 15   | 14       | 13       | 12 | 11 | 10 | 9  | 8  |  |
|      | Reserved |          |    |    |    |    |    |  |
| 7    | 6        | 5        | 4  | 3  | 2  | 1  | 0  |  |
| Rese | erved    | WWDTCVAL |    |    |    |    |    |  |

| Bits   | Description |                                                                                               |  |  |
|--------|-------------|-----------------------------------------------------------------------------------------------|--|--|
| [31:6] | Reserved.   |                                                                                               |  |  |
| [5:0]  | WWDTCVAL    | WWDT Counter Value WWDTCVAL will be updated continuously to monitor 6-bit down counter value. |  |  |

# 6.11 UART Interface Controller (UART)

#### 6.11.1 Overview

The NuMicro® NUC131 series provides up to six channels of Universal Asynchronous Receiver/Transmitters (UART). UART0/UART1/UART2 supports 16 bytes entry FIFO and UART3/UART4/UART5 support 1 byte buffer for data payload. Besides, only UART0 and UART1 support the flow control function. The UART Controller performs a serial-to-parallel conversion on data received from the peripheral, and a parallel-to-serial conversion on data transmitted from the CPU. The UART controller also supports IrDA SIR Function. UART0/UART1 provides RS-485 function mode. UART0/UART1/UART2 provides LIN master/slave function.

#### **6.11.2 Features**

- Full duplex, asynchronous communications
- Separates receive / transmit 16/16 bytes (UART0/UART1/UART2 support) entry FIFO and 1/1 bytes buffer for data payloads (UART3/UART4/UART5 support)
- Supports hardware auto-flow control function (CTS, RTS) and programmable RTS flow control trigger level (UART0/UART1 support).
- Programmable receiver buffer trigger level
- Supports programmable baud-rate generator for each channel individually
- Supports CTS wake-up function (UART0/UART1 support)
- Supports 7-bit receiver buffer time-out detection function
- Programmable transmitting data delay time between the last stop and the next start bit by setting DLY (UA\_TOR[15:8]) register
- Supports break error, frame error, parity error and receive / transmit buffer overflow detect function
- Fully programmable serial-interface characteristics
  - Programmable data bit length, 5-, 6-, 7-, 8-bit character
  - Programmable parity bit, even, odd, no parity or stick parity bit generation and detection
  - Programmable stop bit length, 1, 1.5, or 2 stop bit generation
- IrDA SIR function mode
  - Supports 3/16-bit duration for normal mode
- LIN function mode (UART0/UART1/UART2 support)
  - Supports LIN master/slave mode
  - Supports programmable break generation function for transmitter
  - Supports break detect function for receiver
- RS-485 function mode. (UART0/UART1 support)
  - Supports RS-485 9-bit mode
  - Supports hardware or software direct enable control provided by RTS pin.



# 6.11.3 Block Diagram

The UART clock control and block diagram are shown in Figure 6.11-1 and Figure 6.11-2 respectively.

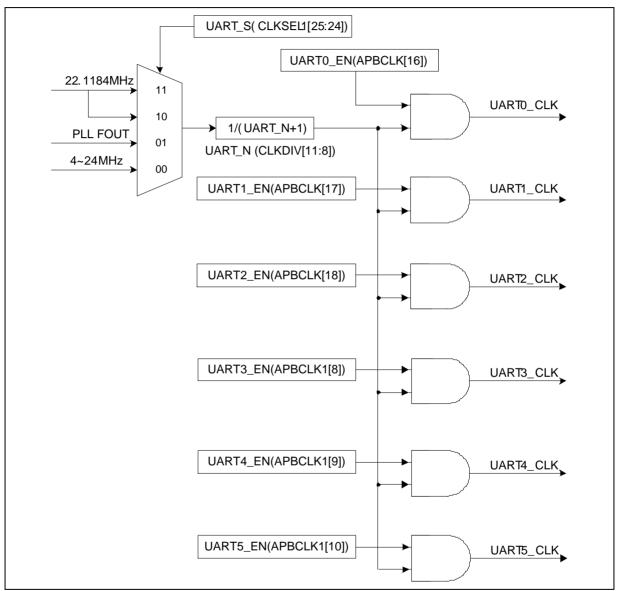



Figure 6.11-1 UART Clock Control Diagram

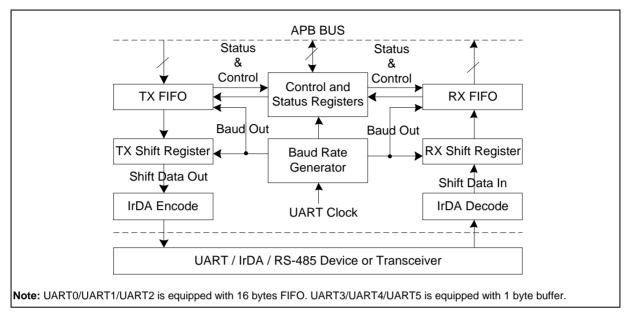



Figure 6.11-2 UART Block Diagram

Each block is described in detail as follows:

## TX\_FIFO

nuvoton

The transmitter is buffered with a 16 byte FIFO (only UART0/UART1/UART2 support) or 1 byte buffer (UART3/UART4/UART5 support) to reduce the number of interrupts presented to the CPU.

#### **RX FIFO**

The receiver is buffered with a 16 byte FIFO (only UART0/UART1/UART2 support) or 1 byte buffer (UART3/UART4/UART5 support) (plus three error bits per byte) to reduce the number of interrupts presented to the CPU.

#### TX shift Register

This block is the shifting the transmitting data out of serially control.

## **RX shift Register**

This block is the shifting the receiving data in of serially control.

### **Modem Control Register**

This register controls the interface to the MODEM or data set (or a peripheral device emulating a MODEM).

#### **Baud Rate Generator**

Divide the external clock by the divisor to get the desired baud rate. Refer to baud rate equation.



#### IrDA Encode

This block is IrDA encode control block.

#### IrDA Decode

This block is IrDA decode control block.

#### **Control and Status Register**

This field is register set that including the FIFO control registers (UA\_FCR), FIFO status registers (UA\_FSR), and line control register (UA\_LCR) for transmitter and receiver. The time-out control register (UA\_TOR) identifies the condition of time-out interrupt. This register set also includes the interrupt enable register (UA\_IER) and interrupt status register (UA\_ISR) to enable or disable the responding interrupt and to identify the occurrence of the responding interrupt. There are ten types of interrupts, transmitter FIFO empty interrupt(THRE\_INT), receiver threshold level reaching interrupt (RDA\_INT), line status interrupt (parity error or framing error or break interrupt) (RLS\_INT), time-out interrupt (TOUT\_INT), MODEM status interrupt (MODEM\_INT), Buffer error interrupt (BUF\_ERR\_INT), LIN receiver break field detected interrupt (LIN \_INT), CTS Wake-up interrupt (CTSWKIF), Data Wake-up interrupt (DATAWKIF) and Auto-baud rate interrupt (ABRIF).

### 6.11.4 Basic Configuration

The UART Controller function pins are configured in GPB\_MFP, GPD\_MFP, ALT\_MFP4 and ALT\_MFP5 registers.

The UART Controller clock are enabled in UART0\_EN (APBCLK[16]), UART1\_EN (APBCLK[17]), UART2\_EN (APBCLK[18]), UART3\_EN (APBCLK1[8]), UART4\_EN (APBCLK1[9]) and UART5\_EN (APBCLK1[10]).

The UART Controller clock source is selected by UART S (CLKSEL[25:24]).

The UART Controller clock prescaler is determined by UART N (CLKDIV[11:8]).

UART Interface Controller Pin description is shown as Table 6.11-1:

| Pin       | Туре   | Description                |  |
|-----------|--------|----------------------------|--|
| UART_TXD  | Output | UART transmit              |  |
| UART_RXD  | Input  | UART receive               |  |
| UART_nCTS | Input  | UART modem clear to send   |  |
| UART_nRTS | Output | UART modem request to send |  |

Table 6.11-1 UART Interface Controller Pin

#### 6.11.5 Functional Description

The UART Controller supports four function modes including UART, IrDA, LIN and RS-485 mode. User can select a function by setting the UA\_FUN\_SEL register. The four function modes will be described in following section.

#### 6.11.5.1UART Controller Baud Rate Generator

nuvoton

The UART Controller includes a programmable baud rate generator capable of dividing clock input by divisors to produce the serial clock that transmitter and receiver need. The baud rate equation is Baud Rate = UART\_CLK / (M \* [BRD + 2]), where M and BRD are defined in Baud Rate Divider Register (UA BAUD). The Table 6.11-2, Table 6.11-3, and Table 6.11-4 list the UART baud rate equations in the various conditions and UART baud rate parameter settings. There is no error for the baud rate results calculated through the baud rate parameter and register setting below. In IrDA function mode, the baud rate generator must be set in Mode 0.

| Mode | DIV_X_EN | DIV_X_ONE | Divider X  | BRD | Baud Rate Equation                                                                                                                                                                                                                                                                          |
|------|----------|-----------|------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0    | 0        | 0         | Don't care | Α   | UART_CLK / [16 * (A+2)].                                                                                                                                                                                                                                                                    |
| 1    | 1        | 0         | В          | Α   | UART_CLK / [(B+1) * (A+2)], B must >= 8.                                                                                                                                                                                                                                                    |
| 2    | 1        | 1         | Don't care | А   | UART_CLK / (BRD+2)  If UART_CLK <= 3*HCLK, A must >= 9.  If UART_CLK > 3*HCLK, A must >= 3*N - 1.  N is the smallest integer larger than or equal to the ratio of UART_CLK /HCLK.  For example,  if 3*HCLK < UART_CLK =< 4*HCLK, A must >=11.  if 4*HCLK < UART_CLK =< 5*HCLK, A must >=14. |

Table 6.11-2 UART Baud Rate Equation

|           | UART Peripheral Clock = 22.1184 MHz |                                          |        |  |  |  |  |
|-----------|-------------------------------------|------------------------------------------|--------|--|--|--|--|
| Baud Rate | Mode 0                              | Mode 1                                   | Mode 2 |  |  |  |  |
| 921600    | Not support                         | A=0, B=11                                | A=22   |  |  |  |  |
| 460800    | A=1                                 | A=1, B=15<br>A=2, B=11                   | A=46   |  |  |  |  |
| 230400    | A=4                                 | A=4, B=15<br>A=6, B=11                   | A=94   |  |  |  |  |
| 115200    | A=10                                | A=10, B=15<br>A=14, B=11                 | A=190  |  |  |  |  |
| 57600     | A=22                                | A=22, B=15<br>A=30, B=11                 | A=382  |  |  |  |  |
| 38400     | A=34                                | A=62, B=8<br>A=46, B=11<br>A=34, B=15    | A=574  |  |  |  |  |
| 19200     | A=70                                | A=126, B=8<br>A=94, B=11<br>A=70, B=15   | A=1150 |  |  |  |  |
| 9600      | A=142                               | A=254, B=8<br>A=190, B=11<br>A=142, B=15 | A=2302 |  |  |  |  |
| 4800      | A=286                               | A=510, B=8<br>A=382, B=11<br>A=286, B=15 | A=4606 |  |  |  |  |

Table 6.11-3 UART Controller Baud Rate Parameter Setting Table



|           | UART Peripheral Clock = 22.1184 MHz |                                           |             |  |  |  |
|-----------|-------------------------------------|-------------------------------------------|-------------|--|--|--|
| Baud Rate | Mode 0                              | Mode 1                                    | Mode 2      |  |  |  |
| 921600    | Not support                         | 0x2B00_0000                               | 0x3000_0016 |  |  |  |
| 460800    | 0x0000_0001                         | 0x2F00_0001<br>0x2B00_0002                | 0x3000_002E |  |  |  |
| 230400    | 0x0000_0004                         | 0x2F00_0004<br>0x2B00_0006                | 0x3000_005E |  |  |  |
| 115200    | 0x0000_000A                         | 0x2F00_000A<br>0x2B00_000E                | 0x3000_00BE |  |  |  |
| 57600     | 0x0000_0016                         | 0x2F00_0016<br>0x2B00_001E                | 0x3000_017E |  |  |  |
| 38400     | 0x0000_0022                         | 0x2800_003E<br>0x2B00_002E<br>0x2F00_0022 | 0x3000_023E |  |  |  |
| 19200     | 0x0000_0046                         | 0x2800_007E<br>0x2B00_005E<br>0x2F00_0046 | 0x3000_047E |  |  |  |
| 9600      | 0x0000_008E                         | 0x2800_00FE<br>0x2B00_00BE<br>0x2F00_008E | 0x3000_08FE |  |  |  |
| 4800      | 0x0000_011E                         | 0x2800_01FE<br>0x2B00_017E<br>0x2F00_011E | 0x3000_11FE |  |  |  |

Table 6.11-4 UART Controller Baud Rate Register (UA BAUD) Setting Table

Auto-Baud Rate function can measure baud rate of receiving data from UART RX pin automatically. When the Auto-Baud Rate measurement is finished, the measuring baud rate is loaded to BRD (UA\_BAUD[15:0]). Both of the DIV\_X\_EN (UA\_BAUD[29]) and DIV\_X\_ONE (UA\_BAUD[28]) are set to 1 automatically. UART RX data from Start bit to 1st rising edge time is set by 2 ABRDBITS bit time in Auto-Baud Rate function detection frame.

2 ABRDBITS bit time from Start bit to the 1st rising edge is calculated by setting ABRDBITS (UA\_ALT\_CSR[20:19]) . Setting ABRDEN (UA\_ALT\_CSR[18]) is to enable auto-baud rate function. In beginning stage, the UART RX is kept at 1. Once falling edge is detected, START bit is received. The auto-baud rate counter is reset and starts counting. The auto-baud rate counter will be stop when the 1st rising edge is detected. Then, auto-baud rate counter value divided by ABRDBITS (UA\_ALT\_CSR[20:19]) is loaded to BRD(UA\_BAUD[15:0]) automatically. ABRDEN (UA\_ALT\_CSR[18]) is cleared. Once the auto-baud rate measurement is finished, the ABRDIF (UA\_FSR[1]) is set. When auto-baud rate counter is overflow, ABRTOIF (UA\_FSR[2]) is set. If the ABRIEN (UART\_IER[18]) is enabled, ABRDIF(UA\_FSR[1]) or (UA\_FSR[2]) cause the auto-baud rate interrupt ABRIF(UA\_ALT\_CSR[17]) is generated.

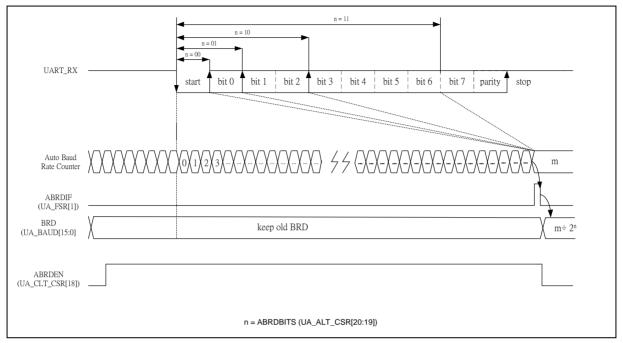



Figure 6.11-3 Auto-Baud Rate Measurement

#### **Programming Sequence Example:**

- Program ABRDBITS (UA\_ALT\_CSR[20:19]) to determines UART RX data 1st rising edge time from Start by 2 ABRDBITS bit time.
- 2. Set ABRIEN (UA\_IER[18]) to enable auto-baud rate function interrupt.
- Set ABRDEN (UA\_ALT\_CSR[18]) to enable auto-baud rate function. 3.
- 4. ABRDIF (UA\_FSR[1]) is set, the auto-baud rate measurement is finished.
- Operate UART transmit and receive action. 5.
- 6. ABRDTOIF (UA FSR[2]) is set, if auto-baud rate counter is overflow.
- 7. Go to Step 2.

nuvotor

## 6.11.5.2 UART Controller Transmit Delay Time Value

The UART Controller programs DLY (UA\_TOR[15:8]) to control the transfer delay time between the last stop bit and next start bit in transmission. The unit is baud. The operation is shown in Figure 6.11-4.

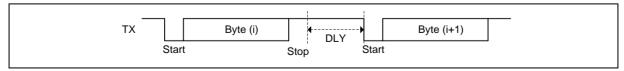



Figure 6.11-4 Transmit Delay Time Operation



#### 6.11.5.3UART Controller FIFO Control and Status

The UART0/UART1/UART2 are built-in with a 16-byte transmitter FIFO (TX\_FIFO) and a 16-byte receiver FIFO (RX\_FIFO) that reduces the number of interrupts presented to the CPU. The UART3/UART4/UART5 are equipped with 1-byte transmitter buffer and 1-byte receiver buffer. The CPU can read the status of the UART at any time during operation. The reported status information includes the type and condition of the transfer operations being performed by the UART, as well as 3 error conditions (parity error, framing error, break interrupt) probably occur while receiving data. This FIFO control and status also support all of UART, IrDA, LIN and RS-485 function mode.

## 6.11.5.4UART Controller Wake-up Function

When the chip is in Power-down mode, an external CTS change will wake up chip from Power-down mode. This wake-up function is available in every function mode and it is supported for UART0 and UART1. User must enable the MODEN\_INT interrupt to use the wake-up function.

#### 6.11.5.5UART Controller Interrupt and Status

UART Controller supports ten types of interrupts including:

- Receiver threshold level reached interrupt (RDA\_INT)
- Transmitter FIFO empty interrupt (THRE\_INT)
- Line status interrupt (parity error, frame error or break interrupt) (RLS\_INT)
- MODEM status interrupt (MODEM\_INT) (Only UART0/UART1 available)
- Receiver buffer time-out interrupt (TOUT\_INT)
- Buffer error interrupt (BUF ERR INT)
- LIN bus interrupt (LIN INT) (Only UART0/UART1/UART2 available)
- CTS Wake-up interrupt (CTSWKIF) (Only UART0/UART1 available)
- Data Wake-up interrupt (DATAWKIF)
- Auto-baud rate interrupt (ABRIF)

The Table 6.11-5 describes the interrupt sources and flags. The interrupt is generated when the interrupt flag is generated and the interrupt enable bit is set. User must clear the interrupt flag after the interrupt is generated.

| Interrupt Source                                | Interrupt Indicator | Interrupt Enable<br>Bit | Interrupt Flag | Flag Cleared By    |
|-------------------------------------------------|---------------------|-------------------------|----------------|--------------------|
| Receive Data<br>Available Interrupt             | RDA_INT             | RDA_IEN                 | RDA_IF         | Read UA_RBR        |
| Transmit Holding<br>Register Empty<br>Interrupt | THRE_INT            | THRE_IEN                | THRE_IF        | Write UA_THR       |
| Receive Line Status                             | RLS_INT             | RLS_IEN                 | RLS_IF = BIF   | Writing "1" to BIF |

| Interrupt                 |             |             | RLS_IF = FEF               | Writing "1" to FEF                               |
|---------------------------|-------------|-------------|----------------------------|--------------------------------------------------|
|                           |             |             | RLS_IF = PEF               | Writing "1" to PEF                               |
|                           |             |             | RLS_IF =<br>RS485_ADD_DETF | Writing '1' to<br>RS485_ADD_DETF                 |
| Modem Status<br>Interrupt | MODEM_INT   | MODEM_IEN   | MODEM_IF = DCTSF           | Write "1" to DCTSF                               |
| RX Time-out Interrupt     | TOUT_INT    | TOUT_IEN    | TOUT_IF                    | Read UA_RBR                                      |
| Deffee Free leterment     |             | DUE EDD IEN | BUF_ERR_IF<br>=TX_OVER_IF  | Write "1" to TX_OVER_IF                          |
| Buffer Error Interrupt    | BUF_ERR_INT | BUF_ERR_IEN | BUF_ERR_IF =<br>RX_OVER_IF | Write "1" to RX_OVER_IF                          |
|                           | LININT      | LIN _IEN    | LIN_IF = LIN_BKDET_F       | Write "1" to LIN_IF and Write "1" to LIN_BKDET_F |
|                           |             |             | LIN_IF = BIT_ERR_F         | Write "1" to BIT_ERR_F                           |
| LIN Bus Interrupt         |             |             | LIN_IF = LIN_IDPERR_F      | Write "1" to o LIN_IDPERR_F                      |
|                           |             |             | LIN_IF = LINS_HERR_F       | Write "1" to LINS_HERR_F                         |
|                           |             |             | LIN_IF = LINS_HDET_F       | Write "1" to LINS_HDET_F                         |
| nCTS wakeup interrupt     | N/A         | WKCTSIEN    | CTSWKIF                    | Write '1' to CTSWKIF                             |
| Data wakeup interrupt     | N/A         | WKDATIEN    | DATWKIF                    | Write '1' to DATWKIF                             |
| Auto-baud rate            | N/A         | ABRIEN      | ABRIF = ABRDIF             | Write '1' to ABRDIF                              |
| interrupt                 | N/A         | MONIEN      | ABRIF = ABRDTOIF           | Write '1' to ABRDTOIF.                           |

Table 6.11-5 UART Controller Interrupt Source and Flag List

## 6.11.5.6UART Function Mode

nuvoTon

The UART Controller provides UART function (user must set UA FUN SEL[1:0] to "00" to enable UART function mode). The UART baud rate is up to 1 Mbps.

The UART provides full-duplex and asynchronous communications. The transmitter and receiver contain 16 bytes FIFO for payloads. User can program receiver buffer trigger level and receiver buffer time-out detection for receiver. The transmitting data delay time between the last stop and the next start bit can be programed by setting DLY (UA\_TOR[15:8]) register. The UART supports hardware auto-flow control and flow control function (CTS, RTS), programmable RTS flow control trigger level and fully programmable serial-interface characteristics.

#### **UART Line Control Function**

The UART Controller supports fully programmable serial-interface characteristics by setting the UA LCR register. Software can use the UA LCR register to program the word length, stop bit and parity bit. The Table 6.11-6 and Table 6.11-7 list the UART word and stop bit length settings and the UART parity bit settings.

| NSB<br>(UA_LCR[2]) | WLS<br>(UA_LCR[1:0]) | Word Length (Bit) | Stop Length (Bit) |
|--------------------|----------------------|-------------------|-------------------|
| 0                  | 00                   | 5                 | 1                 |
| 0                  | 01                   | 6                 | 1                 |
| 0                  | 10                   | 7                 | 1                 |
| 0                  | 11                   | 8                 | 1                 |
| 1                  | 00                   | 5                 | 1.5               |
| 1                  | 01                   | 6                 | 2                 |
| 1                  | 10                   | 7                 | 2                 |
| 1                  | 11                   | 8                 | 2                 |

Table 6.11-6 UART Line Control of Word and Stop Length Setting

| Parity Type            | SPE<br>(UA_LCR[5]) | EPE<br>(UA_LCR[4]) | PBE<br>(UA_LCR[3]) | Description                                                                                                                                         |
|------------------------|--------------------|--------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| No Parity              | х                  | х                  | 0                  | No parity bit output.                                                                                                                               |
| Odd Parity             | 0                  | 0                  | 1                  | Odd Parity is calculated by adding all the "1's" in a data stream and adding a parity bit to the total bits, to make the total count an odd number. |
| Even Parity            | 0                  | 1                  | 1                  | Even Parity is calculated by adding all the "1's" in a data stream and adding a parity bit to the total bits, to make the count an even number.     |
| Forced Mask<br>Parity  | 1                  | 0                  |                    | Parity bit always logic 1. Parity bit on the serial byte is set to "1" regardless of total number of "1's" (even or odd counts).                    |
| Forced<br>Space Parity | 1                  | 1                  |                    | Parity bit always logic 0. Parity bit on the serial byte is set to "0" regardless of total number of "1's" (even or odd counts).                    |

Table 6.11-7 UART Line Control of Parity Bit Setting

#### **UART Auto-Flow Control Function**

nuvoTon

The UART supports auto-flow control function that uses two signals, CTS (clear-to-send) and RTS (request-to-send), to control the flow of data transfer between the UART and external devices (e.g. Modem). When auto flow is enabled, the UART is not allowed to receive data until the UART asserts RTS to external device. When the number of bytes in the RX FIFO equals the value of RTS\_TRI\_LEV (UA FCR[19:16]), the RTS is de-asserted. The UART sends data out when UART detects CTS is asserted from external device. If the valid asserted CTS is not detected, the UART will not send data out.

The Figure 6.11-5 demonstrates the auto-flow control block.

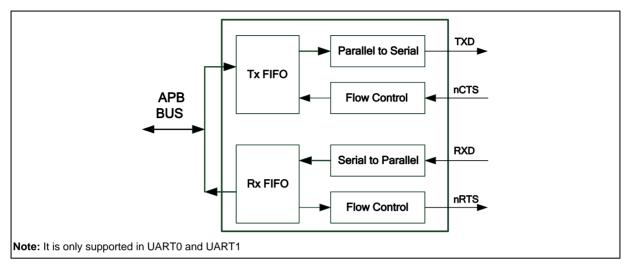



Figure 6.11-5 Auto Flow Control Block Diagram

The Figure 6.11-6 demonstrates the CTS auto flow control of UART function mode. User must set AUTO\_CTS\_EN (UA\_IER[13]) to enable CTS auto flow control function. The LEV\_CTS (UA\_MCR[8]) can set CTS pin input active state. The DCTSF (UA\_MSR[0]) is set when any state change of CTS pin input has occurred, and then TX data will be automatically transmitted from TX FIFO.

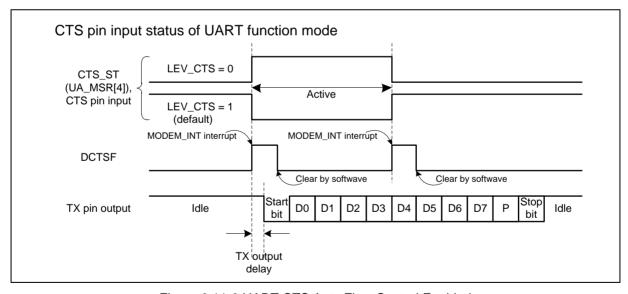



Figure 6.11-6 UART CTS Auto Flow Control Enabled

As shown in the Figure 6.11-7, in UART RTS Auto Flow control mode (AUTO\_RTS\_EN (UA\_IER[12])=1), the RTS internal signal is controlled by UART FIFO controller with RTS\_RTI\_LEV(UA\_FCR[19:16]) trigger level.

Setting LEV\_RTS(UA\_MCR[9]) can control the RTS pin output is inverse or non-inverse from RTS signal. User can read the RTS\_ST(UA\_MCR[13]) bit to get real RTS pin output voltage logic status.

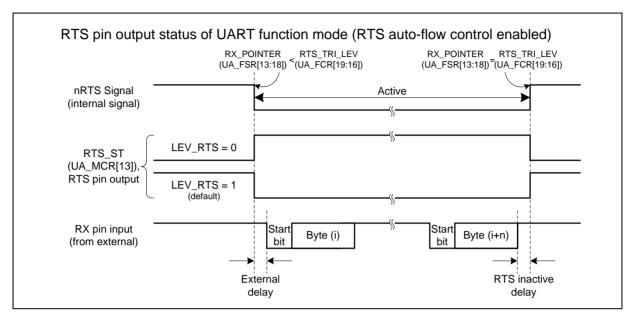



Figure 6.11-7 UART RTS Auto Flow Control Enabled

As shown in the Figure 6.11-8, in software mode (AUTO\_RTS\_EN(UA\_IER[12])=0) the RTS flow is directly controlled by software programming of RTS(UA MCR[1]) control bit.

Setting LEV RTS(UA MCR[9]) can control the RTS pin output is inverse or non-inverse from RTS(UA MCR[1]) control bit. User can read the RTS ST(UA MCR[13]) bit to get real RTS pin output voltage logic status.

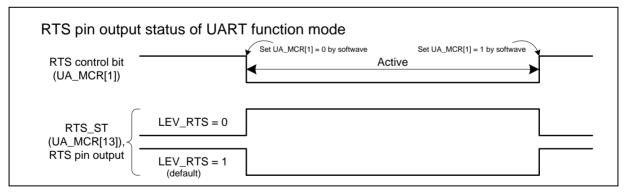



Figure 6.11-8 UART RTS Flow with Software Control

#### 6.11.5.7IrDA Function Mode

nuvoton

The UART Controller also provides Serial IrDA (SIR, Serial Infrared) function (user must set UA FUN SEL[1:0] to '10' to enable the IrDA function). The SIR specification defines a short-range infrared asynchronous serial transmission mode with one start bit, 8 data bits, and 1 stop bit. The maximum data rate is 115.2 kbps. The IrDA SIR block contains an IrDA SIR protocol encoder/decoder. The IrDA SIR protocol is half-duplex only. So it cannot transmit and receive data at the same time. The IrDA SIR physical layer specifies a minimum 10 ms transfer delay between transmission and reception, and this delay feature must be implemented by software.

NUC131 SERIES TECHNICAL REFERENCE MANUAL

In IrDA mode, the DIV\_X\_EN (UA\_BAUD[29]) register must be disabled.

Baud Rate = Clock / (16 \* BRD), where BRD is Baud Rate Divider in UA BAUD register.

The Figure 6.11-9 demonstrates the IrDA control block diagram.

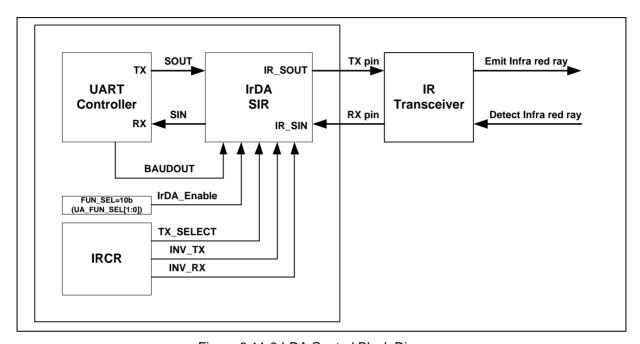



Figure 6.11-9 IrDA Control Block Diagram

#### IrDA SIR Transmit Encoder

The IrDA SIR Transmit Encoder modulates Non-Return-to Zero (NRZ) transmit bit stream output from UART. The IrDA SIR physical layer specifies the use of Return-to-Zero, Inverted (RZI) modulation scheme which represents logic 0 as an infra light pulse. The modulated output pulse stream is transmitted to an external output driver and infrared light emitting diode.

In Normal mode, the transmitted pulse width is specified as 3/16 period of baud rate.

#### IrDA SIR Receive Decoder

The IrDA SIR Receive Decoder demodulates the Return-to-Zero bit stream from the input detector and outputs the NRZ serial bits stream to the UART received data input. The decoder input is normally high in idle state. (Because of this, IRCR (INV\_RX[6]) should be set as 1 by default).

A start bit is detected when the decoder input is LOW.

### IrDA SIR Operation

The IrDA SIR encoder/decoder provides functionality which converts between UART data stream and half-duplex serial SIR interface. The Figure 6.11-10 is IrDA encoder/decoder waveform.



Figure 6.11-10 IrDA TX/RX Timing Diagram

# 6.11.5.8LIN (Local Interconnection Network) Mode

The UART0/UART1/UART2 supports LIN function. Setting FUN SEL (UA FUN SEL[1:0]) to '01' to select LIN mode operation. The UART0/UART1/UART2 supports LIN break/delimiter generation and break/delimiter detection in LIN master mode, and supports header detection and automatic resynchronization in LIN Slave mode.

## 6.11.5.8.1 Structure of LIN Frame

nuvoton

According to the LIN protocol, all information transmitted is packed as frames; a frame consists of a header (provided by the master task) and a response (provided by a slave task), followed by a response (provided by a slave task). The header (provided by the master task) consists of a break field and a sync field followed by a frame identifier (frame ID). The frame identifier uniquely defines the purpose of the frame. The slave task is appointed for providing the response associated with the frame ID. The response consists of a data field and a checksum field. The Figure 6.11-11 is the structure of LIN Frame.

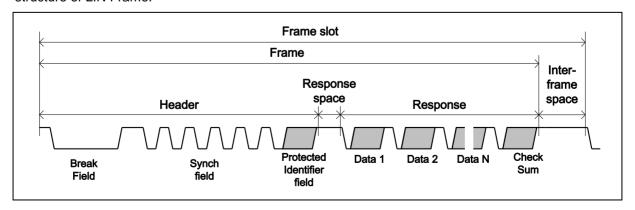



Figure 6.11-11 Structure of LIN Frame

## 6.11.5.8.2 Structure of LIN Byte

In LIN mode, each byte field is initiated by a START bit with value 0 (dominant), followed by 8 data bits and no parity bit, LSB is first and ended by 1 stop bit with value 1 (recessive) in accordance with the LIN standard. The structure of Byte is shown as Figure 6.11-12.

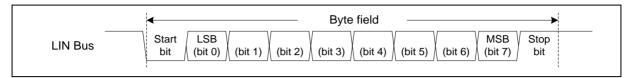



Figure 6.11-12 Structure of LIN Byte

## 6.11.5.8.3 LIN Master Mode

The UART0/UART1/UART2 controllers support LIN Master mode. To enable and initialize the LIN Master mode, the following steps are necessary:

- 1. Setting the UA\_BAUD register to select the desired baud rate.
- 2. Setting WLS (UA\_LCR[1:0]) to "11" to configure the data length with 8 bits, clearing PBE (UA\_LCR[3]) bit to disable parity check and clearing NSB (UA\_LCR[2]) bit to configure with one stop bit.
- 3. Setting FUN\_SEL (UA\_FUN\_SEL[1:0]) to "01" to select LIN function mode operation.

A complete header consists of a break field and sync field followed by a frame identifier (frame ID). The UART0/UART1/UART2 controller can be selected header sending by three header selected modes. The header selected mode can be "break field" or "break field and sync field" or "break field, sync field and frame ID field" by setting LIN\_HEAD\_SEL (UA\_LIN\_CTL[23:22]). If the selected header is "break field", software must handle the following sequence to send a complete header to bus by filling sync data (0x55) and frame ID data to the UA\_THR register. If the selected header is "break field and sync field", software must handle the sequence to send a complete header to bus by filling the frame ID data to UA\_THR register, and if the selected header is "break field, sync field and frame ID field", hardware will control the header sending sequence automatically but software must filled frame ID data to LIN\_PID (UA\_LIN\_CTL[31:24]). When operating in header selected mode in which the selected header is "break field, sync field and frame ID field", the frame ID parity bit can be calculated by software or hardware depending whether the LIN\_IDPEN (UA\_LIN\_CTL[9]) bit is set or not.

| LIN_HEAD_SEL | Break Field           | Sync Field            | ID Field                                                                                        |
|--------------|-----------------------|-----------------------|-------------------------------------------------------------------------------------------------|
| 0            | Generated by Hardware | Handled by Software   | Handled by Software                                                                             |
| 1            | Generated by Hardware | Generated by Hardware | Handled by Software                                                                             |
| 2            | Generated by Hardware | Generated by Hardware | Generated by Hardware<br>(But Software needs to fill ID to LIN_PID<br>(UA_LIN_CTL[31:24]) first |

Table 6.11-8 LIN Header Selection in Master Mode

When UART0/UART1/UART2 is operated in LIN data transmission, LIN bus transfer state can be monitored by hardware or software. User can enable hardware monitoring by setting BIT\_ERR\_EN (UA\_LIN\_CTL[12]) to "1", if the input pin (UART\_RX) state is not equal to the output pin (UART\_TX) state in LIN transmitter state that hardware will generate an interrupt to CPU. Software can also



monitor the LIN bus transfer state by checking the read back data in UA\_RBR register. The following sequence is a program sequence example.

The procedure without software error monitoring in Master mode:

- Fill Protected Identifier to LIN PID (UA LIN CTL[31:24]).
- 2. Select the hardware transmission header field including "break field + sync field + protected identifier field" by setting LIN\_HEAD\_SEL (UA\_LIN\_CTL[23:22]) to 10
- 3. Setting LIN\_SHD (UA\_LIN\_CTL[8]) bit to 1 for requesting header transmission.
- 4. Wait until LIN\_SHD (UA\_LIN\_CTL[8]) bit cleared by hardware.
- 5. Wait until TE\_FLAG (UA\_FSR[28]) set to 1 by hardware.

**Note1:** The default setting of break field is 12 dominant bits (break field) and 1 recessive bit break/sync delimiter. Setting LIN\_BKFL (UA\_LIN\_CTL[19:16]) and LIN\_BS\_LEN (UA\_LIN\_CTL[21:20]) to change the LIN break field length and break/sync delimiter length.

**Note2:** The default setting of break/sync delimiter length is 1-bit time and the inter-byte spaces default setting is also 1-bit time. Setting LIN\_BS\_LEN (UA\_LIN\_CTL[21:20]) and DLY(UA\_TOR[7:0]) can change break/sync delimiter length and inter-byte spaces.

**Note3:** If the header includes the "break field, sync field and frame ID field", software must fill frame ID to LIN\_PID (UA\_LIN\_CTL[31:24]) before trigger header transmission (setting the LIN\_SHD (UA\_LIN\_CTL[8]). The frame ID parity can be generated by software or hardware depending on LIN\_IDPEN (UA\_LIN\_CTL[9]) setting. If the parity generated by software with LIN\_IDPEN (UA\_LIN\_CTL[9]) is set to '0', software must fill 8 bit data (include 2 bit parity) in this field. If the parity generated by hardware with LIN\_IDPEN (UA\_LIN\_CTL[9]) is set to '1', software fill ID0~ID5 and hardware calculates P0 and P1.

Procedure with software error monitoring in Master mode:

- 1. Choose the hardware transmission header field only including "break field" by setting LIN\_HEAD\_SEL (UA\_LIN\_CTL[23:22])] to '00'.
- Enable break detection function by setting LIN\_BKDET\_EN (UA\_LIN\_CTL[10]).
- 3. Request break + break/sync delimiter transmission by setting the LIN\_SHD (UA\_LIN\_CTL[8]).
- 4. Wait until the LIN BKDET F (UA LIN SR[8]) flag is set to "1" by hardware.
- 5. Request sync field transmission by writing 0x55 into UA\_THR register.
- 6. Wait until the RDA\_IF (UA\_ISR[0]) is set to "1" by hardware and then read back the UA\_RBR register.
- 7. Request header frame ID transmission by writing the protected identifier value to UA\_THR register.
- 8. Wait until the RDA\_IF (UA\_ISR[0]) is set to "1" by hardware and then read back the UA\_RBR register.

### LIN break and delimiter detection

When software enables the break detection function by setting LIN\_BKDET\_EN (UA\_LIN\_CTL[10]), the break detection circuit is activated. The break detection circuit is totally independent from the UART0/UART1/UART2 receiver.

When the break detection function is enabled, the circuit looks at the input UART\_RX pin for a start signal. If UART LIN controller detects consecutive dominant is greater than 11 bits dominant followed by a recessive bit (delimiter), the LIN\_BKDET\_F (UA\_LIN\_SR[8]) flag is set at the end of break field. If the LIN\_IEN (UA\_IER[8]) bit is set to 1, an interrupt LIN\_INT (UA\_ISR[15]) will be generated. The behavior of the break detection and break flag are shown in the Figure 6.11-13.

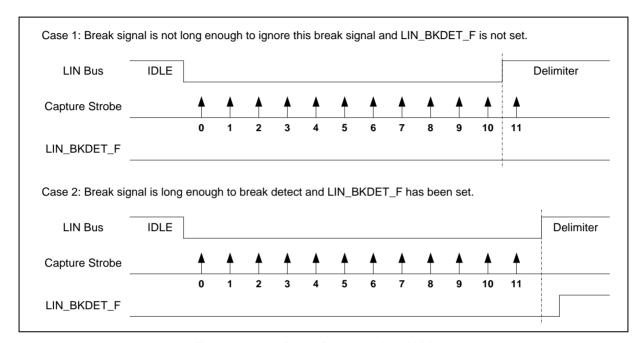



Figure 6.11-13 Break Detection in LIN Mode

#### LIN break and delimiter detection

The LIN master can transmit response (master is the publisher of the response) and receive response (master is the subscriber of the response). When the master is the publisher of the response, the master sends response by writing the UA\_THR register. If the master is the subscriber of the response, the master will receive response from other slave node.

## **LIN Frame ID and Parity Format**

The LIN frame ID value in LIN function mode is shown, the frame ID parity can be generated by software or hardware depends on IDPEN (UART\_LINCTL[9]) = 1.

If the parity generated by hardware, user fill ID0~ID5, (UART\_LINCTL[29:24] )hardware will calculate P0 (UART\_LINCTL[30]) and P1 (UART\_LINCTL[31]), otherwise user must filled frame ID and parity in this field.

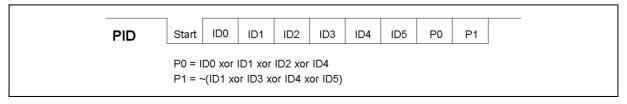



Figure 6.11-14 LIN Frame ID and Parity Format



#### 6.11.5.8.4 LIN Slave Mode

The UART0/UART1/UART2 controller supports LIN Slave mode. To enable and initialize the LIN Slave mode, the following steps are necessary:

- 1. Setting the UA BAUD register to select the desired baud rate.
- 2. Configure the data length to 8 bits by setting WLS (UA\_LCR[1:0]) to '11' and disable parity check by clearing PBE (UA\_LCR[3]) bit and configure with one stop bit by clearing NSB (UA\_LCR[2]) bit.
- 3. Select LIN function mode by setting FUN SEL (UA FUN SEL[1:0]) to "01".
- 4. Enable LIN slave mode by setting the LINS EN (UA LIN CTL[0]) to 1.

## LIN header reception

According to the LIN protocol, a slave node must wait for a valid header which cames from the master node. Next the slave task will take one of following actions (depend on the master header frame ID value).

- Receive the response.
- Transmit the response.
- Ignore the response and wait for next header.

In LIN Slave mode, user can enable the slave header detection function by setting the LINS\_HDET\_EN (UA\_LIN\_CTL[10]) to detect complete frame header (receive "break field", "sync field" and "frame ID field"). When a LIN header is received, the LINS\_HDET\_F (UA\_LIN\_SR[0]) flag will be set. If the LIN\_IEN (UA\_IER[8]) bit is set to 1, an interrupt will be generated. User can enable the frame ID parity check function by setting LIN\_IDPEN (UA\_LIN\_CTL[9]). If only received frame ID parity is not correct (break and sync filed are correct), the LIN\_IDPERR\_F (UA\_LIN\_SR[2]) flag is set to '1'. If the LIN\_IEN(UA\_IER[8]) is set to 1, an interrupt will be generated and LINS\_HDET\_F (UA\_LIN\_SR[0]) is set to '1'. User can also put LIN in mute mode by setting LIN\_MUTE\_EN (UA\_LIN\_CTL[4]) to '1'. This mode allows detection of headers only (break + sync + frame ID) and prevents the reception of any other characters. In order to avoid bit rate tolerance, the controller supports automatic resynchronization function to avoid clock deviation error, user can enable this feature by setting LINS\_ARS\_EN (UA\_LIN\_CTL[2]).

#### LIN response transmission

The LIN slave node can transmit response and receive response. When slave node is the publisher of the response, the slave node sends response by filling data to the UA\_THR register. If the slave node is the subscriber of the response, the slave node receives data from LIN bus.

#### LIN header time-out error

The LIN slave controller contains a header time-out counter. If the entire header is not received within the maximum time limit of 57 bit times, the header error flag LINS\_HERR\_F (UA\_LIN\_SR[1]) will be set. The time-out counter is enabled at each break detect edge and stopped in the following conditions.

- A LIN frame ID field has been received.
- The header error flag asserts.
- Writing 1 to the LINS SYNC F (UA LIN SR[3]) to re-search a new frame header.

#### Mute mode and LIN exit from mute mode condition

In Mute mode, a LIN slave node will not receive any data until specified condition occurred. It allows header detection only and prevents the reception of any other characters. User can enable Mute mode by setting the LIN\_MUTE\_EN (UA\_LIN\_CTL[4]) and exiting from Mute mode condition can be selected by LIN\_HEAD\_SEL (UA\_LIN\_CTL[23:22]).

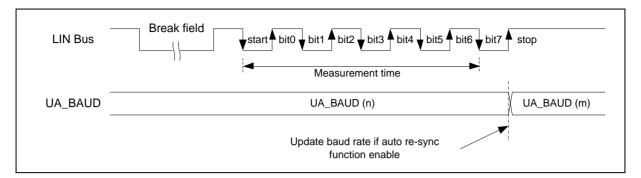
Note: It is recommended to set LIN slave node to Mute mode after checksum transmission.

The LIN slave controller exiting from Mute mode is described as follows: If LIN\_HEAD\_SEL (UA\_LIN\_CTL[23:22]) is set to "break field", when LIN slave controller detects a valid LIN break + delimiter, the controller will enable the receiver (exit from Mute mode) and subsequent data (sync data, frame ID data, response data) are received in RX-FIFO.

If LIN\_HEAD\_SEL (UA\_LIN\_CTL[23:22]) is set to "break field and sync field", when the LIN slave controller detects a valid LIN break + delimiter followed by a valid sync field without frame error, the controller will enable the receiver (exit from mute mode) and subsequent data(ID data, response data) are received in RX-FIFO. If LIN\_HEAD\_SEL (UA\_LIN\_CTL[23:22]) is set to "break field, sync field and ID field", when the LIN slave controller detects a valid LIN break + delimiter and valid sync field without frame error followed by ID data without frame error and received ID data matched LIN\_PID (UA\_LIN\_CTL[31:24]) value. The controller will enable the receiver (exit from mute mode) and subsequent data (response data) are received in RX-FIFO.

### Slave mode non-automatic resynchronization

User can disable the automatic resynchronization function to fix the communication baud rate. When operating in Non-Automatic Resynchronization mode, software needs some initial process, and the initialization process flow of Non-Automatic Resynchronization mode is shown as follows:


- 1. Select the desired baud rate by setting the UA BAUD register.
- 2. Select LIN function mode by setting UA FUN SEL (UA FUN SEL[1:0]) to '01'.
- 3. Disable automatic resynchronization function by setting LINS\_ARS\_EN (UA\_LIN\_CTL[2]) is set to 0.
- 4. Enable LIN slave mode by setting the LINS EN (UA LIN CTL[0]) is set to 1.

#### Slave mode with automatic resynchronization

In Automatic Resynchronization mode, the controller will adjust the baud rate generator after each sync field reception. The initialization process flow of Automatic Resynchronization mode is shown as follows:

- 1. Select the desired baud rate by setting the UA\_BAUD register.
- 2. Select LIN function mode by setting UA\_FUN\_SEL (UA\_FUN\_SEL[1:0]) to "01".
- 3. Enable automatic resynchronization function by setting LINS\_ARS\_EN (UA\_LIN\_CTL[2]) to 1.
- Enable LIN slave mode by setting the LINS EN (UA LIN CTL[0]) is set to 1.

When the automatic resynchronization function is enabled, after each LIN break field, the time duration between five falling edges is sampled on UART peripheral clock and the result of this measurement is stored in an internal 13-bit register and the UA\_BAUD register value will be automatically updated at the end of the fifth falling edge. If the measure timer (13-bit) overflows before five falling edges, then the header error flag LIN\_HERR\_F (UA\_LIN\_SR[1]) will be set.



nuvoton

Figure 6.11-15 LIN Sync Field Measurement

When operating in Automatic Resynchronization mode, software must select the desired baud rate by setting the UA BAUD register and hardware will store it at internal TEMP REG register, after each LIN break field, the time duration between five falling edges is sampled on UART peripheral clock and the result of this measurement is stored in an internal 13-bit register BAUD LIN and the result will be updated to UA BAUD register automatically.

In order to guarantee the transmission baud rate, the baud rate generator must reload the initial value before each new break reception. The initial value is programmed by the application during initialization (TEMP REG). User can set LINS DUM EN (UA LIN CTL[3]) to enable auto reload initial baud rate value function. If the LINS\_DUM\_EN (UA\_LIN\_CTL[3]) is set, when received the next character, hardware will auto reload the initial value to UA\_BAUD, and when the UA\_BAUD be updated, the LINS DUM EN (UA LIN CTL[3]) will be cleared automatically. The behavior of LIN updated method as shown in the Figure 6.11-16 and Figure 6.11-17.

Note1: It is recommended to set the LINS DUM EN bit before every checksum reception.

Note2: When a header error is detected, user must write 1 to LINS SYNC F (UA LIN SR[3]) to research new frame header. When writing 1 to it, hardware will reload the initial baud rate TEMP REG and re-search new frame header.

Note3: When operating in Automatic Resynchronization mode, the baud rate setting must be operated at mode2 (DIV\_X\_EN (UA\_BAUD[29]) and DIV\_X\_ONE (UA\_BAUD[28]) must be 1).

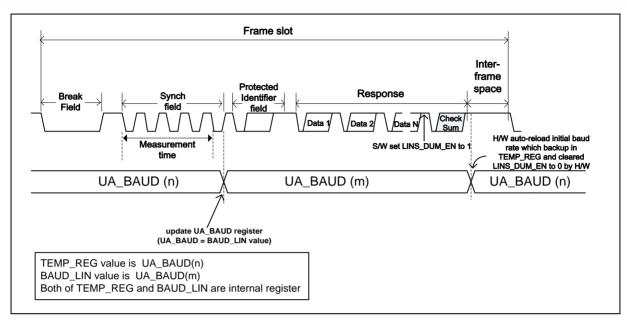



Figure 6.11-16 UA\_BAUD Update Sequence in Automatic Resynchronization Mode when LINS DUM EN (UA LIN CTL[3]) = 1

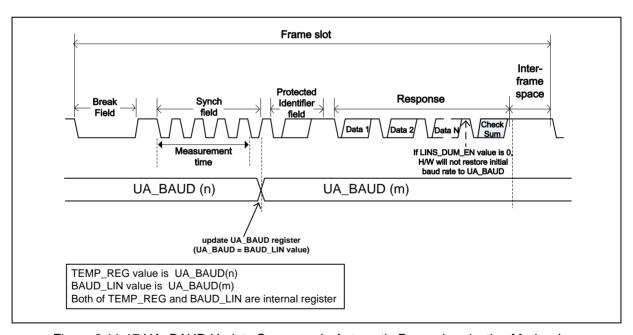



Figure 6.11-17 UA\_BAUD Update Sequence in Automatic Resynchronization Mode when LINS\_DUM\_EN (UA\_LIN\_CTL[3])= 0

## Deviation error on the sync field

When operating in Automatic Resynchronization mode, the controller will check the deviation error on the sync field. The deviation error is checked by comparing the current baud rate with the received sync field. Two checks are performed in parallel.



Check1: Based on measurement between the first falling edge and the last falling edge of the sync field.

- If the difference is more than 14.84%, the header error flag LINS\_HERR\_F (UA\_LIN\_SR[1]) will be set.
- If the difference is less than 14.06%, the header error flag LINS\_HERR\_F (UA\_LIN\_SR[1]) will
  not be set.
- If the difference is between 14.84% and 14.06%, the header error flag LINS\_HERR\_F (UA LIN SR[1]) may either set or not.

Check2: Based on measurement of time between each falling edge of the sync field.

- If the difference is more than 18.75%, the header error flag LINS\_HERR\_F (UA\_LIN\_SR[1]) will be set.
- If the difference is less than 15.62%, the header error flag LINS\_HERR\_F (UA\_LIN\_SR[1]) will
  not be set.
- If the difference is between 18.75% and 15.62%, the header error flag LINS\_HERR\_F (UA\_LIN\_SR[1]) may either set or not.

**Note:** The deviation check is based on the current baud rate clock. Therefore, in order to guarantee correct deviation checking, the baud rate must reload the nominal value before each new break reception by setting LINS\_DUM\_EN (UA\_LIN\_CTL[3]) register (It is recommend setting the LINS\_DUM\_EN (UA\_LIN\_CTL[3]) bit before every checksum reception).

## LIN header error detection

In LIN Slave function mode, when user enables the header detection function by setting the LINS\_HDET\_EN (UA\_LIN\_CTL[1]), hardware will handle the header detect flow. If the header has an error, the LIN header error flag LIN\_HERR\_F (UA\_LIN\_SR[1]) will be set and an interrupt is generated if the LIN\_IEN (UA\_IER[8]) bit is set. When header error is detected, user must reset the detect circuit to re-search a new frame header by writing 1 to LINS\_SYNC\_F (UA\_LIN\_SR[3]) to re-search a new frame header.

The LIN header error flag LIN\_HERR\_F (UA\_LIN\_SR[1]) is set if one of the following conditions occurs:

- Break Delimiter is too short (less than 0.5-bit time).
- Frame error in sync field or Identifier field.
- The sync field data is not 0x55 (Non-Automatic Resynchronization mode).
- The sync field deviation error (With Automatic Resynchronization mode).
- The sync field measure time-out (With Automatic Resynchronization mode).
- LIN header reception time-out.

### 6.11.5.9RS-485 Function Mode

Another alternate function of UART Controller is RS-485 function (user must set UA\_FUN\_SEL[1:0] to "11" to enable RS-485 function), and direction control provided by RTS pin from an asynchronous serial port. The RS-485 transceiver control is implemented by using the RTS control signal to enable the RS-485 driver. Many characteristics of the RX and TX are same as UART in RS-485 mode.

The UART controller can be configured as an RS-485 addressable slave and the RS-485 master transmitter will identify an address character by setting the parity (9-th bit) to 1. For data characters, the parity is set to 0. Software can use UA\_LCR register to control the 9-th bit (When the PBE(UA\_LCR[3]), EPE(UA\_LCR[4]) and SPE(UA\_LCR[5]) are set, the 9-th bit is transmitted 0 and when PBE and SPE are set and EPE is cleared, the 9-th bit is transmitted 1).

The controller supports three operation modes: RS-485 Normal Multidrop Operation Mode (NMM), RS-485 Auto Address Detection Operation Mode (AAD) and RS-485 Auto Direction Control Operation Mode (AUD). Software can choose any operation mode by programming the UA\_ALT\_CSR register, and drive the transfer delay time between the last stop bit leaving the TX FIFO and the de-assertion of by setting DLY (UA\_TOR[15:8]) register.

## 6.11.5.9.1 RS-485 Normal Multidrop Operation Mode (NMM)

In RS-485 Normal Multidrop Operation Mode (RS485\_NMM(UA\_ALT\_CSR[8]) = 1), in first, software must decide the data which before the address byte be detected will be stored in RX FIFO or not. If software wants to ignore any data before address byte detected, the flow is set RX\_DIS (UA\_FCR[8]) then enable RS485\_NMM (UA\_ALT\_CSR[8]) and the receiver will ignore any data until an address byte is detected (bit 9 = 1) and the address byte data will be stored in the RX FIFO. If software wants to receive any data before address byte detected, the flow is disables RX\_DIS (UA\_FCR[8]) then enable RS485\_NMM (UA\_ALT\_CSR[8]) and the receiver will received any data.

If an address byte is detected (bit 9 = 1), it will generate an interrupt to CPU and RX\_DIS (UA\_FCR[8]) can decide whether accepting the following data bytes are stored in the RX FIFO. If software disables receiver by setting RX\_DIS (UA\_FCR[8]) register, when a next address byte is detected, the controller will clear the RX\_DIS (UA\_FCR[8]) bit and the address byte data will be stored in the RX FIFO.

## 6.11.5.9.2 RS-485 Auto Address Detection Operation Mode (AAD)

In RS-485 Auto Address Detection Operation Mode (RS485\_AAD(UA\_ALT\_CSR[9]) = 1), the receiver will ignore any data until an address byte is detected (bit 9 = 1) and the address byte data matches the ADDR\_MATCH (UA\_ALT\_CSR[31:24]) value. The address byte data will be stored in the RX FIFO. The all received byte data will be accepted and stored in the RX FIFO until an address byte data not match the ADDR\_MATCH (UA\_ALT\_CSR[31:24]) value.

## 6.11.5.9.3 RS-485 Auto Direction Mode (AUD)

Another option function of RS-485 controllers is RS-485 auto direction control function (RS485\_AUD(UA\_ALT\_CSR[10) = 1). The RS-485 transceiver control is implemented by using the RTS control signal from an asynchronous serial port. The RTS line is connected to the RS-485 transceiver enable pin such that setting the RTS line to high (logic 1) enables the RS-485 transceiver. Setting the RTS line to low (logic 0) puts the transceiver into the tri-state condition to disabled. User can set LEV\_RTS in UA\_MCR register to change the RTS driving level.

The Figure 6.11-18 demonstrates the RS-485 RTS driving level in AUD mode. The RTS pin will be automatically driven during TX data transmission.

Setting LEV\_RTS(UA\_MCR[9]) can control RTS pin output driving level. User can read the RTS\_ST(UA\_MCR[13]) bit to get real RTS pin output voltage logic status.

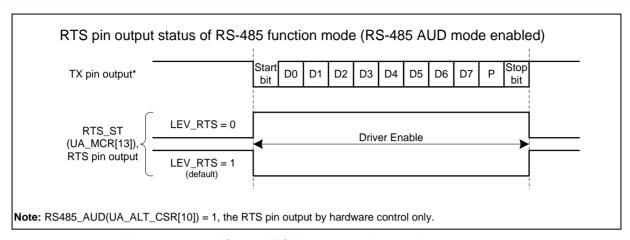



Figure 6.11-18 RS-485 RTS Driving Level in Auto Direction Mode

The Figure 6.11-19 demonstrates the RS-485 RTS driving level in software control (RS485\_AUD(UA\_ALT\_CSR[10])=0). The RTS driving level is controlled by programing the RTS(UA MCR[1]) control bit.

Setting LEV\_RTS(UA\_MCR[9]) can control the RTS pin output is inverse or non-inverse from RTS(UA MCR[1]) control bit. User can read the RTS ST(UA MCR[13]) bit to get real RTS pin output voltage logic status.

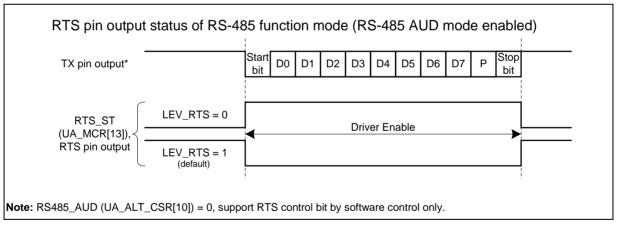



Figure 6.11-19 RS-485 RTS Driving Level with Software Control

## **Program Sequence Example:**

nuvoton

- Program FUN SEL in UA FUN SEL to select RS-485 function. 1.
- Program the RX\_DIS (UA\_FCR[8]) to determine enable or disable the receiver RS-485 receiver 2.
- 3. Program the RS485\_NMM (UA\_ALT\_CSR[8]) or RS485\_AAD (UA\_ALT\_CSR[9]) mode.
- 4. RS485 AAD (UA ALT CSR[9]) mode ADDR MATCH is selected, the (UA ALT CSR[31:24]) is programmed for auto address match value.
- Determine auto direction control by programming RS485 AUD (UA ALT CSR[10]). 5.

nuvoton

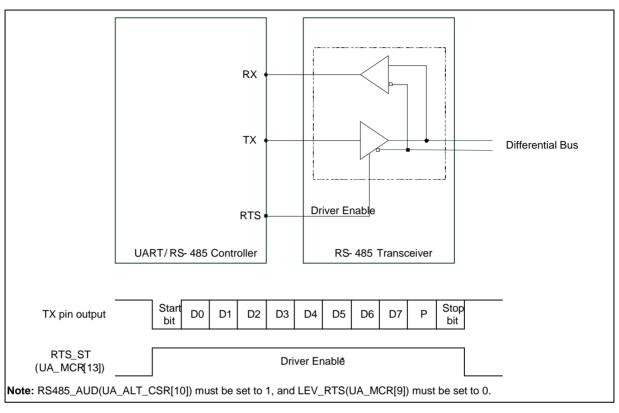



Figure 6.11-20 Structure of RS-485 Frame



# 6.11.6 Register Map

R: read only, W: write only, R/W: both read and write

| Register (                                                                                                                                                         | Offset        | R/W | Description                            | Reset Value |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----|----------------------------------------|-------------|--|
| UART Base Address:  UART0_BA = 0x4005_0000  UART1_BA = 0x4015_0000  UART2_BA = 0x4015_4000  UART3_BA = 0x4005_4000  UART4_BA = 0x4005_8000  UART5_BA = 0x4015_8000 |               |     |                                        |             |  |
| UA_RBR<br>x=0,1,2,3,4,5                                                                                                                                            | UARTx_BA+0x00 | R   | UART Receive Buffer Register           | Undefined   |  |
| UA_THR<br>x=0,1,2,3,4,5                                                                                                                                            | UARTx_BA+0x00 | W   | UART Transmit Holding Register         | Undefined   |  |
| UA_IER<br>x=0,1,2,3,4,5                                                                                                                                            | UARTx_BA+0x04 | R/W | UART Interrupt Enable Register         | 0x0000_0000 |  |
| UA_FCR<br>x=0,1,2,3,4,5                                                                                                                                            | UARTx_BA+0x08 | R/W | UART FIFO Control Register             | 0x0000_0101 |  |
| UA_LCR<br>x=0,1,2,3,4,5                                                                                                                                            | UARTx_BA+0x0C | R/W | UART Line Control Register             | 0x0000_0000 |  |
| UA_MCR<br>x=0,1                                                                                                                                                    | UARTx_BA+0x10 | R/W | UART Modem Control Register            | 0x0000_0200 |  |
| UA_MSR<br>x=0,1                                                                                                                                                    | UARTx_BA+0x14 | R/W | UART Modem Status Register             | 0x0000_0110 |  |
| UA_FSR<br>x=0,1,2,3,4,5                                                                                                                                            | UARTx_BA+0x18 | R/W | UART FIFO Status Register              | 0x1040_4000 |  |
| UA_ISR<br>x=0,1,2,3,4,5                                                                                                                                            | UARTx_BA+0x1C | R/W | UART Interrupt Status Register         | 0x0000_0002 |  |
| UA_TOR<br>x=0,1,2,3,4,5                                                                                                                                            | UARTx_BA+0x20 | R/W | UART Time-out Register                 | 0x0000_0000 |  |
| UA_BAUD<br>x=0,1,2,3,4,5                                                                                                                                           | UARTx_BA+0x24 | R/W | UART Baud Rate Divisor Register        | 0x0F00_0000 |  |
| UA_IRCR<br>x=0,1,2,3,4,5                                                                                                                                           | UARTx_BA+0x28 | R/W | UART IrDA Control Register             | 0x0000_0040 |  |
| UA_ALT_CSR<br>x=0,1,2,3,4,5                                                                                                                                        | UARTx_BA+0x2C | R/W | UART Alternate Control/Status Register | 0x0000_000C |  |



| UA_FUN_SEL<br>x=0,1,2,3,4,5 | UARTx_BA+0x30 | R/W | UART Function Select Register | 0x0000_0000 |
|-----------------------------|---------------|-----|-------------------------------|-------------|
| UA_LIN_CTL<br>x=0,1,2       | UARTx_BA+0x34 | R/W | UART LIN Control Register     | 0x000C_0000 |
| UA_LIN_SR<br>x=0,1,2        | UARTx_BA+0x38 | R/W | UART LIN Status Register      | 0x0000_0000 |



# 6.11.7 Register Description

# UART Receive Buffer Register (UA\_RBR)

| Register                | Offset        | R/W | Description                  | Reset Value |
|-------------------------|---------------|-----|------------------------------|-------------|
| UA_RBR<br>x=0,1,2,3,4,5 | UARTx_BA+0x00 | R   | UART Receive Buffer Register | Undefined   |

| 31 | 30       | 29 | 28   | 27    | 26 | 25 | 24 |
|----|----------|----|------|-------|----|----|----|
|    |          |    | Rese | erved |    |    |    |
| 23 | 22       | 21 | 20   | 19    | 18 | 17 | 16 |
|    |          |    | Rese | erved |    |    |    |
| 15 | 14       | 13 | 12   | 11    | 10 | 9  | 8  |
|    | Reserved |    |      |       |    |    |    |
| 7  | 6        | 5  | 4    | 3     | 2  | 1  | 0  |
|    | RBR      |    |      |       |    |    |    |

| Bits   | Description |                                                                                                                                      |  |  |
|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:8] | Reserved    | Reserved.                                                                                                                            |  |  |
| [7:0]  | RBR         | Receive Buffer Register (Read Only)  By reading this register, the UART will return the 8-bit data received from RX pin (LSB first). |  |  |

# **UART Transmit Holding Register (UA\_THR)**

| Register                | Offset        | R/W | Description                    | Reset Value |
|-------------------------|---------------|-----|--------------------------------|-------------|
| UA_THR<br>x=0,1,2,3,4,5 | UARTx_BA+0x00 | W   | UART Transmit Holding Register | Undefined   |

| 31 | 30       | 29 | 28   | 27    | 26 | 25 | 24 |
|----|----------|----|------|-------|----|----|----|
|    |          |    | Rese | erved |    |    |    |
| 23 | 22       | 21 | 20   | 19    | 18 | 17 | 16 |
|    |          |    | Rese | erved |    |    |    |
| 15 | 14       | 13 | 12   | 11    | 10 | 9  | 8  |
|    | Reserved |    |      |       |    |    |    |
| 7  | 6        | 5  | 4    | 3     | 2  | 1  | 0  |
|    | THR      |    |      |       |    |    |    |

| Bits   | Description        | Description                                                                                                                                                                                    |  |  |  |
|--------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:8] | Reserved Reserved. |                                                                                                                                                                                                |  |  |  |
|        |                    | Transmit Holding Register                                                                                                                                                                      |  |  |  |
| [7:0]  |                    | By writing one byte to this register, the data byte will be stored in transmitter FIFO. The UART Controller will send out the data stored in transmitter FIFO top location through the TX pin. |  |  |  |



# UART Interrupt Enable Register (UA\_IER)

| Register                | Offset        | R/W | Description                    | Reset Value |
|-------------------------|---------------|-----|--------------------------------|-------------|
| UA_IER<br>x=0,1,2,3,4,5 | UARTx_BA+0x04 | R/W | UART Interrupt Enable Register | 0x0000_0000 |

| 31              | 30       | 29              | 28              | 27              | 26       | 25       | 24      |
|-----------------|----------|-----------------|-----------------|-----------------|----------|----------|---------|
|                 |          |                 | Rese            | erved           |          |          |         |
| 23              | 22       | 21              | 20              | 19              | 18       | 17       | 16      |
|                 |          | Reserved        |                 |                 | ABRIEN   | Rese     | erved   |
| 15              | 14       | 13              | 12              | 11              | 10       | 9        | 8       |
| Reserved AUTO_C |          |                 | AUTO_RTS_E<br>N | TIME_OUT_E<br>N | WKDATIEN | Reserved | LIN_IEN |
| 7               | 6        | 5               | 4               | 3               | 2        | 1        | 0       |
| Reserved        | WKCTSIEN | BUF_ERR_IE<br>N | TOUT_IEN        | MODEM_IEN       | RLS_IEN  | THRE_IEN | RDA_IEN |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:19] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| [18]    | ABRIEN      | Auto-Baud Rate Interrupt Enable Control  0 = Auto-baud rate interrupt Disabled.  1 = Auto-baud rate interrupt Enabled.                                                                                                                                                                                                                                                       |  |  |  |
| [17:14] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |
| [13]    | AUTO_CTS_EN | CTS Auto Flow Control Enable Control (Available In UART0/UART1 Channel)  0 = CTS auto flow control Disabled.  1 = CTS auto flow control Enabled.  When CTS auto-flow is enabled, the UART will send data to external device when CTS input assert (UART will not send data to device until CTS is asserted).                                                                 |  |  |  |
| [12]    | AUTO_RTS_EN | RTS Auto Flow Control Enable Control ( Available In UART0/UART1 Channel)  0 = RTS auto flow control Disabled.  1 = RTS auto flow control Enabled.  When RTS auto-flow is enabled, if the number of bytes in the RX FIFO equals the RTS_TRI_LEV (UA_FCR[19:16]), the UART will de-assert RTS signal.                                                                          |  |  |  |
| [11]    | TIME_OUT_EN | Time-Out Counter Enable Control 0 = Time-out counter Disabled. 1 = Time-out counter Enabled.                                                                                                                                                                                                                                                                                 |  |  |  |
| [10]    | WKDATIEN    | Incoming Data Wake-Up Interrupt Enable Control  0 = Incoming data wake-up system function Disabled.  1 = Incoming data wake-up system function Enabled, when the system is in Power-down mode, incoming data will wake-up system from Power-down mode.  Note: Hardware will clear this bit when the incoming data wake-up operation finishes and "system clock" work stable. |  |  |  |

nuvoTon

| [9] | Reserved    | Reserved.                                                                                                                                                                                                                        |
|-----|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [8] | LIN_IEN     | LIN Bus Interrupt Enable Control  0 = Lin bus interrupt Disabled.  1 = Lin bus interrupt Enabled.  Note: This field is used for LIN function mode.                                                                               |
| [7] | Reserved    | Reserved.                                                                                                                                                                                                                        |
| [6] | WKCTSIEN    | NCTS Wake-Up Interrupt Enable Control  0 = nCTS wake-up system function Disabled.  1 = Wake-up system function Enabled, when the system is in Power-down mode, an external nCTS change will wake-up system from Power-down mode. |
| [5] | BUF_ERR_IEN | Buffer Error Interrupt Enable Control  0 = BUF_ERR_INT Masked off.  1 = BUF_ERR_INT Enabled.                                                                                                                                     |
| [4] | TOUT_IEN    | RX Time-Out Interrupt Enable Control  0 = TOUT_INT Masked off.  1 = TOUT_INT Enabled.                                                                                                                                            |
| [3] | MODEM_IEN   | Modem Status Interrupt Enable Control (Available In UART0/UART1 Channel)  0 = MODEM_INT Masked off.  1 = MODEM_INT Enabled.                                                                                                      |
| [2] | RLS_IEN     | Receive Line Status Interrupt Enable Control  0 = RLS_INT Masked off.  1 = RLS_INT Enabled.                                                                                                                                      |
| [1] | THRE_IEN    | Transmit Holding Register Empty Interrupt Enable Control  0 = THRE_INT Masked off.  1 = THRE_INT Enabled.                                                                                                                        |
| [0] | RDA_IEN     | Receive Data Available Interrupt Enable Control  0 = RDA_INT Masked off.  1 = RDA_INT Enabled.                                                                                                                                   |



# UART FIFO Control Register (UA\_FCR)

| Register                | Offset        | R/W | Description                | Reset Value |
|-------------------------|---------------|-----|----------------------------|-------------|
| UA_FCR<br>x=0,1,2,3,4,5 | UARTx_BA+0x08 | R/W | UART FIFO Control Register | 0x0000_0101 |

| 31 | 30       | 29 | 28   | 27    | 26          | 25  | 24       |  |
|----|----------|----|------|-------|-------------|-----|----------|--|
|    |          |    | Rese | erved |             |     |          |  |
| 23 | 22       | 21 | 20   | 19    | 18          | 17  | 16       |  |
|    | Reserved |    |      |       | RTS_TRI_LEV |     |          |  |
| 15 | 14       | 13 | 12   | 11    | 10          | 9   | 8        |  |
|    | Reserved |    |      |       |             |     | RX_DIS   |  |
| 7  | 6        | 5  | 4    | 3     | 2           | 1   | 0        |  |
|    | RFITL    |    |      |       | TFR         | RFR | Reserved |  |

| Bits    | Description |                                                                                                                                                         |  |  |  |  |  |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:20] | Reserved    | Reserved.                                                                                                                                               |  |  |  |  |  |
|         |             | RTS Trigger Level For Auto-Flow Control Use (Available In UART0/UART1 Channel)                                                                          |  |  |  |  |  |
|         |             | 0000 = RTS Trigger Level is 1 byte.                                                                                                                     |  |  |  |  |  |
|         |             | 0001 = RTS Trigger Level is 4 bytes.                                                                                                                    |  |  |  |  |  |
| [19:16] | RTS_TRI_LEV | 0010 = RTS Trigger Level is 8 bytes.                                                                                                                    |  |  |  |  |  |
|         |             | 0011 = RTS Trigger Level is 14 bytes.                                                                                                                   |  |  |  |  |  |
|         |             | Others = Reserved.                                                                                                                                      |  |  |  |  |  |
|         |             | Note: This field is used for RTS auto-flow control.                                                                                                     |  |  |  |  |  |
| [15:9]  | Reserved    | Reserved.                                                                                                                                               |  |  |  |  |  |
|         |             | Receiver Disable Control                                                                                                                                |  |  |  |  |  |
|         |             | The receiver is disabled or not (set 1 to disable receiver).                                                                                            |  |  |  |  |  |
| [8]     | RX DIS      | 0 = Receiver Enabled.                                                                                                                                   |  |  |  |  |  |
| [0]     | 10510       | 1 = Receiver Disabled.                                                                                                                                  |  |  |  |  |  |
|         |             | <b>Note:</b> This field is used for RS-485 Normal Multi-drop mode. It should be programmed before RS-485_NMM (UA_ALT_CSR[8]) is programmed.             |  |  |  |  |  |
|         |             | RX FIFO Interrupt (INT_RDA) Trigger Level (Available In UART0/UART1/UART2 Channel)                                                                      |  |  |  |  |  |
|         |             | When the number of bytes in the receive FIFO equals the RFITL, the RDA_IF will be set (if UA_IER[RDA_IEN] enabled, and an interrupt will be generated). |  |  |  |  |  |
|         |             | 0000 = RX FIFO Interrupt Trigger Level is 1 byte.                                                                                                       |  |  |  |  |  |
| [7, 4]  | RFITL       | 0001 = RX FIFO Interrupt Trigger Level is 4 bytes.                                                                                                      |  |  |  |  |  |
| [7:4]   | Kriil       | 0010 = RX FIFO Interrupt Trigger Level is 8 bytes.                                                                                                      |  |  |  |  |  |
|         |             | 0011 = RX FIFO Interrupt Trigger Level is 14 bytes.                                                                                                     |  |  |  |  |  |
|         |             | Others = Reserved.                                                                                                                                      |  |  |  |  |  |
|         |             | RX FIFO Interrupt (INT_RDA) Trigger Level (Available in UART3/UART4/UART5 Channel)                                                                      |  |  |  |  |  |
|         |             | When the number of bytes in the receive buffer equals the RFITL, the RDA_IF will be set                                                                 |  |  |  |  |  |



|     |          | (if RDA_IEN (UA_IER[0]) enabled, and an interrupt will be generated). There is only one receive buffer in UART3/UART4/UART5.  0000 = RX Buffer Interrupt Trigger Level is 1 byte.  Others = Reserved.                                                                                             |
|-----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [3] | Reserved | Reserved.                                                                                                                                                                                                                                                                                         |
| [2] | TFR      | TX Field Software Reset  When TFR is set, all the byte in the transmit FIFO/ transmit buffer and TX internal state machine are cleared.  0 = No effect.  1 = Reset the TX internal state machine and pointers.  Note: This bit will automatically clear at least 3 UART peripherial clock cycles. |
| [1] | RFR      | RX Field Software Reset  When RFR is set, all the byte in the receiver FIFO /receive buffer and RX internal state machine are cleared.  0 = No effect.  1 = Reset the RX internal state machine and pointers.  Note: This bit will automatically clear at least 3 UART peripherial clock cycles.  |
| [0] | Reserved | Reserved.                                                                                                                                                                                                                                                                                         |



# UART Line Control Register (UA\_LCR)

| Register                | Offset        | R/W | Description                | Reset Value |
|-------------------------|---------------|-----|----------------------------|-------------|
| UA_LCR<br>x=0,1,2,3,4,5 | UARTx_BA+0x0C | R/W | UART Line Control Register | 0x0000_0000 |

| 31       | 30       | 29  | 28   | 27    | 26  | 25 | 24 |
|----------|----------|-----|------|-------|-----|----|----|
|          |          |     | Rese | erved |     |    |    |
| 23       | 22       | 21  | 20   | 19    | 18  | 17 | 16 |
|          |          |     | Rese | erved |     |    |    |
| 15       | 14       | 13  | 12   | 11    | 10  | 9  | 8  |
|          | Reserved |     |      |       |     |    |    |
| 7        | 6        | 5   | 4    | 3     | 2   | 1  | 0  |
| Reserved | ВСВ      | SPE | EPE  | PBE   | NSB | W  | LS |

| Bits   | Description |                                                                                                                                                                                                                                                                              |
|--------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:7] | Reserved    | Reserved.                                                                                                                                                                                                                                                                    |
| [6]    | всв         | Break Control Bit  When this bit is set to logic 1, the serial data output (TX) is forced to the Spacing State (logic 0). This bit acts only on TX and has no effect on the transmitter logic.                                                                               |
| [5]    | SPE         | Stick Parity Enable Control  0 = Stick parity Disabled.  1 = If PBE (UA_LCR[3]) and EBE (UA_LCR[4]) are logic 1, the parity bit is transmitted and checked as logic 0. If PBE (UA_LCR[3]) is 1 and EBE (UA_LCR[4]) is 0 then the parity bit is transmitted and checked as 1. |
| [4]    | EPE         | Even Parity Enable Control  0 = Odd number of logic 1's is transmitted and checked in each word.  1 = Even number of logic 1's is transmitted and checked in each word.  This bit has effect only when PBE (UA_LCR[3]) is set.                                               |
| [3]    | PBE         | Parity Bit Enable Control  0 = No parity bit.  1 = Parity bit is generated on each outgoing character and is checked on each incoming data.                                                                                                                                  |
| [2]    | NSB         | Number Of "STOP Bit"  0 = One "STOP bit" is generated in the transmitted data.  1 = When select 5-bit word length, 1.5 "STOP bit" is generated in the transmitted data.  When select 6-,7- and 8-bti word length, 2 "STOP bit" is generated in the transmitted data.         |
| [1:0]  | WLS         | Word Length Selection  00 = Word length is 5-bit.  01 = Word length is 6-bit.  10 = Word length is 7-bit.  11 = Word length is 8-bit.                                                                                                                                        |

nuvoTon

# **UART MODEM Control Register (UA\_MCR) ( Available in UART0/UART1 Channel)**

| Register        | Offset        | R/W | Description                 | Reset Value |
|-----------------|---------------|-----|-----------------------------|-------------|
| UA_MCR<br>x=0,1 | UARTx_BA+0x10 | R/W | UART Modem Control Register | 0x0000_0200 |

| 31   | 30       | 29     | 28   | 27       | 26 | 25      | 24       |
|------|----------|--------|------|----------|----|---------|----------|
|      |          |        | Rese | erved    |    |         |          |
| 23   | 22       | 21     | 20   | 19       | 18 | 17      | 16       |
|      |          |        | Rese | erved    |    |         |          |
| 15   | 14       | 13     | 12   | 11       | 10 | 9       | 8        |
| Rese | erved    | RTS_ST |      | Reserved |    | LEV_RTS | Reserved |
| 7    | 6        | 5      | 4    | 3        | 2  | 1       | 0        |
|      | Reserved |        |      |          |    |         | Reserved |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:14] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| [13]    | RTS_ST      | RTS Pin State (Read Only) ( Available In UART0/UART1 Channel)  This bit mirror from RTS pin output of voltage logic status.  0 = RTS pin output is low level voltage logic state.  1 = RTS pin output is high level voltage logic state.                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| [12:10] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| [9]     | LEV_RTS     | RTS Pin Active Level (Available In UART0/UART1 Channel)  This bit defines the active level state of RTS pin output.  0 = RTS pin output is high level active.  1 = RTS pin output is low level active.  Note1: Refer to Figure 6.11-7 and Figure 6.11-8 for UART function mode.  Note2: Refer to Figure 6.11-18 and Figure 6.11-19 for RS-485 function mode.                                                                                                                                                      |  |  |  |  |  |
| [8:2]   | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| [1]     | RTS         | RTS (Request-To-Send) Signal Control (Available In UART0/UART1 Channel)  This bit is direct control internal RTS signal active or not, and then drive the RTS pin output with LEV_RTS bit configuration.  0 = RTS signal is active.  1 = RTS signal is inactive.  Note1: This RTS signal control bit is not effective when RTS auto-flow control is enabled in UART function mode.  Note2: This RTS signal control bit is not effective when RS-485 auto direction mode (AUD) is enabled in RS-485 function mode. |  |  |  |  |  |
| [0]     | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |



## **UART Modem Status Register (UA\_MSR) ( Available in UART0/UART1 Channel)**

| Register        | Offset        | R/W | Description                | Reset Value |
|-----------------|---------------|-----|----------------------------|-------------|
| UA_MSR<br>x=0,1 | UARTx_BA+0x14 | R/W | UART Modem Status Register | 0x0000_0110 |

| 31 | 30       | 29 | 28       | 27    | 26       | 25 | 24      |
|----|----------|----|----------|-------|----------|----|---------|
|    |          |    | Rese     | erved |          |    |         |
| 23 | 22       | 21 | 20       | 19    | 18       | 17 | 16      |
|    |          |    | Rese     | erved |          |    |         |
| 15 | 14       | 13 | 12       | 11    | 10       | 9  | 8       |
|    |          |    | Reserved |       |          |    | LEV_CTS |
| 7  | 6        | 5  | 4        | 3     | 2        | 1  | 0       |
|    | Reserved |    | CTS_ST   |       | Reserved |    | DCTSF   |

| Bits   | Description |                                                                                                                                          |  |  |  |  |
|--------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:9] | Reserved    | Reserved.                                                                                                                                |  |  |  |  |
|        |             | CTS Pin Active Level                                                                                                                     |  |  |  |  |
|        |             | This bit defines the active level state of CTS pin input.                                                                                |  |  |  |  |
| [8]    | LEV_CTS     | 0 = CTS pin input is high level active.                                                                                                  |  |  |  |  |
|        |             | 1 = CTS pin input is low level active.                                                                                                   |  |  |  |  |
|        |             | Note: Refer to Figure 6.11-6 for more information.                                                                                       |  |  |  |  |
| [7:5]  | Reserved    | Reserved.                                                                                                                                |  |  |  |  |
|        |             | CTS Pin Status (Read Only)                                                                                                               |  |  |  |  |
|        |             | This bit mirror from CTS pin input of voltage logic status.                                                                              |  |  |  |  |
| [4]    | CTS_ST      | 0 = CTS pin input is low level voltage logic state.                                                                                      |  |  |  |  |
| ]      | 0.0_0.      | 1 = CTS pin input is high level voltage logic state.                                                                                     |  |  |  |  |
|        |             | <b>Note:</b> This bit echoes when UART Controller peripheral clock is enabled, and CTS multifunction port is selected.                   |  |  |  |  |
| [3:1]  | Reserved    | Reserved.                                                                                                                                |  |  |  |  |
|        |             | Detect CTS State Change Flag (Read Only)                                                                                                 |  |  |  |  |
|        |             | This bit is set whenever CTS input has change state, and it will generate Modem interrupt to CPU when MODEM_IEN (UA_IER[3]) is set to 1. |  |  |  |  |
| [0]    | DCTSF       | 0 = CTS input has not change state.                                                                                                      |  |  |  |  |
|        |             | 1 = CTS input has change state.                                                                                                          |  |  |  |  |
|        |             | Note: This bit is read only, but can be cleared by writing "1" to it.                                                                    |  |  |  |  |

## **UART FIFO Status Register (UA\_FSR)**

| Register                | Offset        | R/W | Description               | Reset Value |
|-------------------------|---------------|-----|---------------------------|-------------|
| UA_FSR<br>x=0,1,2,3,4,5 | UARTx_BA+0x18 | R/W | UART FIFO Status Register | 0x1040_4000 |

| 31       | 30       | 29  | 28  | 27                 | 26       | 25     | 24         |
|----------|----------|-----|-----|--------------------|----------|--------|------------|
|          | Reserved |     |     | TE_FLAG Reserved   |          |        | TX_OVER_IF |
| 23       | 22       | 21  | 20  | 19                 | 18       | 17     | 16         |
| TX_FULL  | TX_EMPTY |     |     | TX_PO              | INTER    |        |            |
| 15       | 14       | 13  | 12  | 11                 | 10       | 9      | 8          |
| RX_FULL  | RX_EMPTY |     |     | RX_PC              | INTER    |        |            |
| 7        | 6        | 5   | 4   | 3                  | 2        | 1      | 0          |
| Reserved | BIF      | FEF | PEF | RS485_ADD_<br>DETF | ABRDTOIF | ABRDIF | RX_OVER_IF |

| Bits    | Description |                                                                                                                                          |  |  |  |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:29] | Reserved    | Reserved.                                                                                                                                |  |  |  |
|         |             | Transmitter Empty Flag (Read Only)                                                                                                       |  |  |  |
|         |             | This bit is set by hardware when TX FIFO (UA_THR) is empty and the STOP bit of the last byte has been transmitted. (UART0/UART1/UART2)   |  |  |  |
|         |             | 0 = TX FIFO is not empty.                                                                                                                |  |  |  |
|         |             | 1 = TX FIFO is empty.                                                                                                                    |  |  |  |
| [28]    | TE_FLAG     | This bit is set by hardware when TX Buffer (UA_THR) is empty and the STOP bit of the last byte has been transmitted. (UART3/UART4/UART5) |  |  |  |
|         |             | 0 = TX Buffer is not empty.                                                                                                              |  |  |  |
|         |             | 1 = TX Buffer is empty.                                                                                                                  |  |  |  |
|         |             | <b>Note:</b> This bit is cleared automatically when TX FIFO/TX Buffer is not empty or the last byte transmission has not completed.      |  |  |  |
| [27:25] | Reserved    | Reserved.                                                                                                                                |  |  |  |
|         |             | TX Overflow Error Interrupt Flag (Read Only)                                                                                             |  |  |  |
|         |             | If TX FIFO (UA_THR) is full, an additional write to UA_THR will cause this bit to logic 1. (UART0/UART1/UART2)                           |  |  |  |
|         |             | 0 = TX FIFO is not overflow.                                                                                                             |  |  |  |
| [24]    | TX OVER IF  | 1 = TX FIFO is overflow.                                                                                                                 |  |  |  |
| [24]    | IX_OVER_IF  | If TX Buffer is filled, an additional write to UA_THR will cause this bit to logic 1. (UART3/UART4/UART5)                                |  |  |  |
|         |             | 0 = TX Buffer is not overflow.                                                                                                           |  |  |  |
|         |             | 1 = TX Buffer is overflow.                                                                                                               |  |  |  |
|         |             | Note: This bit is read only, but can be cleared by writing "1" to it.                                                                    |  |  |  |
|         |             | Transmitter FIFO Full (Read Only)                                                                                                        |  |  |  |
| [23]    | TX_FULL     | This bit indicates TX FIFO is full or not. (UART0/UART1/UART2)                                                                           |  |  |  |
|         |             | 0 = TX FIFO is not full.                                                                                                                 |  |  |  |

|         |            | Le Trestant du                                                                                                                                                                                                                                                                                                                        |
|---------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |            | 1 = TX FIFO is full.                                                                                                                                                                                                                                                                                                                  |
|         |            | This bit is set when the number of usage in TX FIFO is equal to 16 (UART0/UART1/UART2), otherwise is cleared by hardware.                                                                                                                                                                                                             |
|         |            | This bit indicates TX Buffer is full or not.(UART3/UART4/UART5)                                                                                                                                                                                                                                                                       |
|         |            | 0 = TX Buffer is not full.                                                                                                                                                                                                                                                                                                            |
|         |            | 1 = TX Buffer is full.                                                                                                                                                                                                                                                                                                                |
|         |            | This bit is set when the number of usage in TX Buffer is equal to 1 (UART3/UART4/UART5), otherwise is cleared by hardware.                                                                                                                                                                                                            |
|         |            | Transmitter FIFO Empty (Read Only)                                                                                                                                                                                                                                                                                                    |
|         |            | This bit indicates TX FIFO empty or not. (UART0/UART1/UART2)                                                                                                                                                                                                                                                                          |
|         |            | 0 = TX FIFO is not empty.                                                                                                                                                                                                                                                                                                             |
|         |            | 1 = TX FIFO is empty.                                                                                                                                                                                                                                                                                                                 |
| [22]    | TX_EMPTY   | <b>Note:</b> When the last byte of TX FIFO has been transferred to Transmitter Shift Register, hardware sets this bit high. It will be cleared when writing data into THR (TX FIFO not empty).                                                                                                                                        |
|         |            | This bit indicates TX Buffer filled or not. (UART3/UART4/UART5)                                                                                                                                                                                                                                                                       |
|         |            | 0 = TX Buffer is not empty.                                                                                                                                                                                                                                                                                                           |
|         |            | 1 = TX Buffer is empty.                                                                                                                                                                                                                                                                                                               |
|         |            | <b>Note:</b> When the last byte of TX Buffer has been transferred to Transmitter Shift Register, hardware sets this bit high. It will be cleared when writing data into THR (TX FIFO not empty).                                                                                                                                      |
|         |            | TX FIFO Pointer (Read Only)                                                                                                                                                                                                                                                                                                           |
|         |            | This field indicates the TX FIFO Buffer Pointer. When CPU writes one byte into UA_THR, then TX_POINTER increases one. When one byte of TX FIFO is transferred to Transmitter Shift Register, then TX_POINTER decreases one.                                                                                                           |
| [21:16] | TX_POINTER | The Maximum value shown in TX_POINTER is 15 (UART0/UART1/UART2). When the using level of TX FIFO Buffer is equal to 16, the TX_FULL bit is set to 1 and TX_POINTER will show 0. As one byte of TX FIFO is transferred to Transmitter Shift Register, the TX_FULL bit is cleared to 0 and TX_POINTER will show 15 (UART0/UART1/UART2). |
|         |            | TX_POINTER is 0 (UART3/URT4/UART5).                                                                                                                                                                                                                                                                                                   |
|         |            | When TX Buffer is equal to 1, if one byte data is received, the TX_FULL bit is set to 1 and TX_POINTER will show 1. Once the TX Buffer is read, the TX_POINTER is 0.                                                                                                                                                                  |
|         |            | Receiver FIFO Full (Read Only)                                                                                                                                                                                                                                                                                                        |
|         |            | This bit initiates RX FIFO is full or not (UART0/UART1/UART2).                                                                                                                                                                                                                                                                        |
|         |            | 0 = RX FIFO is not full.                                                                                                                                                                                                                                                                                                              |
|         |            | 1 = RX FIFO is full.                                                                                                                                                                                                                                                                                                                  |
| [15]    | RX_FULL    | <b>Note:</b> This bit is set when the number of usage in RX FIFO Buffer is equal to 16 (UART0/UART1/UART2), otherwise is cleared by hardware.                                                                                                                                                                                         |
|         |            | This bit initiates RX Buffer is full or not (UART3/UART4/UART5).                                                                                                                                                                                                                                                                      |
|         |            | 0 = RX buffer is not full.                                                                                                                                                                                                                                                                                                            |
|         |            | 1 = RX bufferis full.                                                                                                                                                                                                                                                                                                                 |
|         |            | <b>Note:</b> This bit is set when the number of usage in RX Buffer is equal to 1 (UART3/UART4/UART5), otherwise is cleared by hardware.                                                                                                                                                                                               |
|         |            | Receiver FIFO Empty (Read Only)                                                                                                                                                                                                                                                                                                       |
|         |            | This bit initiate RX FIFO empty or not. (UART0/UART1/UART2)                                                                                                                                                                                                                                                                           |
|         |            | 0 = RX FIFO is not empty.                                                                                                                                                                                                                                                                                                             |
| [14]    | RX_EMPTY   | 1 = RX FIFO is empty.                                                                                                                                                                                                                                                                                                                 |
|         |            | Note: When the last byte of RX FIFO has been read by CPU, hardware sets this bit high. It will be cleared when UART receives any new data.                                                                                                                                                                                            |
|         |            | This bit initiate RX Buffer empty or not. (UART3/UART4/UART5)                                                                                                                                                                                                                                                                         |
| Ĺ       |            | <u> </u>                                                                                                                                                                                                                                                                                                                              |

|        |                    | 0 = RX Buffer is not empty.                                                                                                                                                                                                                                                                          |
|--------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                    | 1 = RX Buffer is empty.                                                                                                                                                                                                                                                                              |
|        |                    | <b>Note:</b> When the last byte of RX Buffer has been read by CPU, hardware sets this bit high. It will be cleared when UART receives any new data.                                                                                                                                                  |
|        |                    | RX FIFO Pointer (Read Only)                                                                                                                                                                                                                                                                          |
|        |                    | This field indicates the RX FIFO Buffer Pointer. When UART receives one byte from external device, then RX_POINTER increases one. When one byte of RX FIFO is read by CPU, then RX_POINTER decreases one.                                                                                            |
| [13:8] | RX_POINTER         | The Maximum value shown in RX_POINTER is 15 (UART0/UART1/UART2). When the using level of RX FIFO Buffer equal to 16, the RX_FULL bit is set to 1 and RX_POINTER will show 0. As one byte of RX FIFO is read by CPU, the RX_FULL bit is cleared to 0 and RX_POINTER will show 15 (UART0/UART1/UART2). |
|        |                    | When RX Buffer is equal to 1, if one byte data is received, the RX_FULL bit is set to 1 and RX_POINTER will show 1. Once the RX Buffer is read, the RX_POINTER is 0.                                                                                                                                 |
| [7]    | Reserved           | Reserved.                                                                                                                                                                                                                                                                                            |
|        |                    | Break Interrupt Flag (Read Only)                                                                                                                                                                                                                                                                     |
| [6]    | l BIF              | This bit is set to logic 1 whenever the received data input(RX) is held in the "spacing state" (logic 0) for longer than a full word transmission time (that is, the total time of "start bit" + data bits + parity + stop bits) and is reset whenever the CPU writes 1 to this bit.                 |
| [0]    | 5                  | 0 = No Break interrupt is generated.                                                                                                                                                                                                                                                                 |
|        |                    | 1 = Break interrupt is generated.                                                                                                                                                                                                                                                                    |
|        |                    | Note: This bit is read only, but can be cleared by writing "1" to it.                                                                                                                                                                                                                                |
|        |                    | Framing Error Flag (Read Only)                                                                                                                                                                                                                                                                       |
| [5]    | FEF                | This bit is set to logic 1 whenever the received character does not have a valid "stop bit" (that is, the stop bit following the last data bit or parity bit is detected as logic 0), and is reset whenever the CPU writes 1 to this bit.                                                            |
| [-]    |                    | 0 = No framing error is generated.                                                                                                                                                                                                                                                                   |
|        |                    | 1 = Framing error is generated.                                                                                                                                                                                                                                                                      |
|        |                    | Note: This bit is read only, but can be cleared by writing "1" to it.                                                                                                                                                                                                                                |
|        |                    | Parity Error Flag (Read Only)                                                                                                                                                                                                                                                                        |
| F 41   | DEE.               | This bit is set to logic 1 whenever the received character does not have a valid "parity bit", and is reset whenever the CPU writes 1 to this bit.                                                                                                                                                   |
| [4]    | PEF                | 0 = No parity error is generated.                                                                                                                                                                                                                                                                    |
|        |                    | 1 = Parity error is generated.                                                                                                                                                                                                                                                                       |
|        |                    | Note: This bit is read only, but can be cleared by writing "1" to it.                                                                                                                                                                                                                                |
|        |                    | RS-485 Address Byte Detection Flag (Read Only) (Available In UART0/UART1)                                                                                                                                                                                                                            |
|        |                    | 0 = Receiver detects a data that is not an address bit (bit 9 ='1').                                                                                                                                                                                                                                 |
| [3]    | RS485_ADD_DETF     | 1 = Receiver detects a data that is an address bit (bit 9 ='1').                                                                                                                                                                                                                                     |
| [0]    | 1.0 100_7.55_52.11 | <b>Note1:</b> This field is used for RS-485 function mode and RS485_ADD_EN (UA_ALT_CSR[15]) is set to 1 to enable Address detection mode.                                                                                                                                                            |
|        |                    | Note2: This bit is read only, but can be cleared by writing '1' to it.                                                                                                                                                                                                                               |
|        |                    | Auto-Baud Rate Time-Out Interrupt (Read Only)                                                                                                                                                                                                                                                        |
|        |                    | 0 = Auto-baud rate counter is underflow.                                                                                                                                                                                                                                                             |
| [2]    | ABRDTOIF           | 1 = Auto-baud rate counter is overflow.                                                                                                                                                                                                                                                              |
|        |                    | <b>Note1:</b> This bit is set to logic "1" in Auto-baud Rate Detect mode and the baud rate counter is overflow.                                                                                                                                                                                      |
| ļ      |                    |                                                                                                                                                                                                                                                                                                      |
|        |                    | Note2: This bit is read only, but can be cleared by writing "1" to it.                                                                                                                                                                                                                               |
| [1]    | ABRDIF             | Note2: This bit is read only, but can be cleared by writing "1" to it.  Auto-Baud Rate Detect Interrupt (Read Only)                                                                                                                                                                                  |



|     |            | <ul> <li>1 = Auto-baud rate detect function is finished.</li> <li>This bit is set to logic "1" when auto-baud rate detect function is finished.</li> <li>Note: This bit is read only, but can be cleared by writing "1" to it.</li> </ul>              |
|-----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |            | RX Overflow Error IF (Read Only) This bit is set when RX FIFO overflow.  If the number of bytes of received data is greater than RX_FIFO (UA_RBR) size, 16 bytes of UARTO/UART1/UART2, this bit will be set.                                           |
| [0] | RX_OVER_IF | 0 = RX FIFO is not overflow. 1 = RX FIFO is overflow.                                                                                                                                                                                                  |
|     |            | If the number of bytes of received data is greater than 1 byte, 1 bytes of UART3/UART4/UART5, this bit will be set.  0 = RX Buffer is not overflow.  1 = RX Buffer is overflow.  Note: This bit is read only, but can be cleared by writing "1" to it. |

## **UART Interrupt Status Control Register (UA\_ISR)**

| Register                | Offset        | R/W | Description                    | Reset Value |
|-------------------------|---------------|-----|--------------------------------|-------------|
| UA_ISR<br>x=0,1,2,3,4,5 | UARTx_BA+0x1C | R/W | UART Interrupt Status Register | 0x0000_0002 |

| 31      | 30       | 29              | 28       | 27        | 26      | 25       | 24      |
|---------|----------|-----------------|----------|-----------|---------|----------|---------|
|         |          |                 | Rese     | erved     |         |          |         |
| 23      | 22       | 21              | 20       | 19        | 18      | 17       | 16      |
|         |          | Rese            | erved    |           |         | DATWKIF  | CTSWKIF |
| 15      | 14       | 13              | 12       | 11        | 10      | 9        | 8       |
| LIN_INT | Reserved | BUF_ERR_IN<br>T | TOUT_INT | MODEM_INT | RLS_INT | THRE_INT | RDA_INT |
| 7       | 6        | 5               | 4        | 3         | 2       | 1        | 0       |
| LIN_IF  | WKIF     | BUF_ERR_IF      | TOUT_IF  | MODEM_IF  | RLS_IF  | THRE_IF  | RDA_IF  |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                        |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:18] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                              |
| [17]    | DATWKIF     | Data Wake-Up Interrupt Flag (Read Only)  This bit is set if chip wake-up from power-down state by data wake-up.  0 = Chip stays in power-down state.  1 = Chip wake-up from power-down state by data wake-up.  Note1: If WKDATIEN (UA_IER[10]) is enabled, the wake-up interrupt is generated.  Note2: This bit is read only, but can be cleared by writing '1' to it. |
| [16]    | CTSWKIF     | NCTS Wake-Up Interrupt Flag (Read Only)  0 = Chip stays in power-down state.  1 = Chip wake-up from power-down state by nCTS wake-up.  Note1: If WKCTSIEN (UA_IER[6])is enabled, the wake-up interrupt is generated.  Note2: This bit is read only, but can be cleared by writing '1' to it.                                                                           |
| [15]    | LIN_INT     | LIN Bus Interrupt Indicator (Read Only)  This bit is set if LIN_IEN (UA_IER[8]) and LIN _IF(UA_ISR[7]) are both set to 1.  0 = No LIN Bus interrupt is generated.  1 = The LIN Bus interrupt is generated.                                                                                                                                                             |
| [14]    | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                              |
| [13]    | BUF_ERR_INT | Buffer Error Interrupt Indicator (Read Only)  This bit is set if BUF_ERR_IEN(UA_IER[5] and BUF_ERR_IF(UA_ISR[5]) are both set to 1.  0 = No buffer error interrupt is generated.  1 = Buffer error interrupt is generated.                                                                                                                                             |
| [12]    | TOUT_INT    | Time-Out Interrupt Indicator (Read Only)                                                                                                                                                                                                                                                                                                                               |

|      |            | This bit is set if TOUT_IEN(UA_IER[4]) and TOUT_IF(UA_ISR[4]) are both set to 1.                                                                                                                                                                                                                                                                                               |
|------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |            | 0 = No Tout interrupt is generated. 1 = Tout interrupt is generated.                                                                                                                                                                                                                                                                                                           |
|      |            | 1 0                                                                                                                                                                                                                                                                                                                                                                            |
|      |            | MODEM Status Interrupt Indicator (Read Only) (Available In UART0/UART1 Channel)                                                                                                                                                                                                                                                                                                |
| [11] | MODEM_INT  | This bit is set if MODEM_IEN(UA_IER[3] and MODEM_IF(UA_ISR[4]) are both set to 1                                                                                                                                                                                                                                                                                               |
|      |            | 0 = No Modem interrupt is generated.                                                                                                                                                                                                                                                                                                                                           |
|      |            | 1 = Modem interrupt is generated.                                                                                                                                                                                                                                                                                                                                              |
|      |            | Receive Line Status Interrupt Indicator (Read Only)                                                                                                                                                                                                                                                                                                                            |
| [10] | RLS_INT    | This bit is set if RLS_IEN (UA_IER[2]) and RLS_IF(UA_ISR[2]) are both set to 1.                                                                                                                                                                                                                                                                                                |
| [10] | KEO_IIVI   | 0 = No RLS interrupt is generated.                                                                                                                                                                                                                                                                                                                                             |
|      |            | 1 = RLS interrupt is generated.                                                                                                                                                                                                                                                                                                                                                |
|      |            | Transmit Holding Register Empty Interrupt Indicator (Read Only)                                                                                                                                                                                                                                                                                                                |
| [9]  | THRE_INT   | This bit is set if THRE_IEN (UA_IER[1])and THRE_IF(UA_SR[1]) are both set to 1.                                                                                                                                                                                                                                                                                                |
| [9]  |            | 0 = No THRE interrupt is generated.                                                                                                                                                                                                                                                                                                                                            |
|      |            | 1 = THRE interrupt is generated.                                                                                                                                                                                                                                                                                                                                               |
|      |            | Receive Data Available Interrupt Indicator (Read Only)                                                                                                                                                                                                                                                                                                                         |
| [8]  | RDA_INT    | This bit is set if RDA_IEN (UA_IER[0]) and RDA_IF (UA_ISR[0]) are both set to 1.                                                                                                                                                                                                                                                                                               |
| ات   | NDA_III    | 0 = No RDA interrupt is generated.                                                                                                                                                                                                                                                                                                                                             |
|      |            | 1 = RDA interrupt is generated.                                                                                                                                                                                                                                                                                                                                                |
|      |            | LIN Bus Flag (Read Only)(UART0/UARt1/UART2)                                                                                                                                                                                                                                                                                                                                    |
|      |            | This bit is set when LIN slave header detect (LINS_HDET_F (UA_LIN_SR[0] =1)), LIN break detect (LIN_BKDET_F(UA_LIN_SR[9]=1)), bit error detect (BIT_ERR_F (UA_LIN_SR[9]=1), LIN slave ID parity error (LINS_IDPERR_F(UA_LIN_SR[2] = 1) or LIN slave header error detect (LINS_HERR_F (UA_LIN_SR[1])). If LIN_IEN (UA_IER[8]) is enabled the LIN interrupt will be generated.   |
| [7]  | LIN_ IF    | 0 = None of LINS_HDET_F, LIN_BKDET_F, BIT_ERR_F, LINS_IDPERR_F and LINS_HERR_F is generated.                                                                                                                                                                                                                                                                                   |
|      |            | 1 = At least one of LINS_HDET_F, LIN_BKDET_F, BIT_ERR_F, LINS_IDPERR_F and LINS_HERR_F is generated.                                                                                                                                                                                                                                                                           |
|      |            | Note: This bit is read only. This bit is cleared when LINS_HDET_F (UA_LIN_SR[0]), LIN_BKDET_F (UA_LIN_SR[9]), BIT_ERR_F (UA_LIN_SR[9]), LINS_IDPENR_F (UA_LIN_SR[2]) and LINS_HERR_F (UA_LIN_SR[1]) all are cleared.                                                                                                                                                           |
|      |            | UART Wake-Up Flag (Read Only)                                                                                                                                                                                                                                                                                                                                                  |
|      |            | This bit is set when DATWKIF (UART_INTSTS[17]) or CTSWKIF(UART_INTSTS[16]) is set to 1.                                                                                                                                                                                                                                                                                        |
| [6]  | WKIF       | 0 = No DATWKIF and CTSWKIF are generated.                                                                                                                                                                                                                                                                                                                                      |
|      |            | 1 = DATWKIF or CTSWKIF.                                                                                                                                                                                                                                                                                                                                                        |
|      |            | <b>Note:</b> This bit is read only. This bit is cleared if both of DATWKIF (UART_INTSTS[17]) and CTSWKIF (UART_INTSTS[16]) are cleared to 0 by writing 1 to DATWKIF (UART_INTSTS[17]) and CTSWKIF (UART_INTSTS[17]).                                                                                                                                                           |
|      |            | Buffer Error Interrupt Flag (Read Only)                                                                                                                                                                                                                                                                                                                                        |
| [5]  | BUF_ERR_IF | This bit is set when the TX FIFO (UART0/UART1/UART2) / TX Buffer (UART3/UART4/UART5) or RX FIFO (UART0/UART1/UART2)/ RX Buffer (UART3/UART4/UART5) overflows (TX_OVER_IF (UA_FSR[24]) or RX_OVER_IF (UA_FSR[0]) is set). When BUF_ERR_IF (UA_ISR[5]) is set, the transfer is not correct. If BUF_ERR_IEN (UA_IER[8]) is enabled, the buffer error interrupt will be generated. |
|      |            | 0 = No buffer error interrupt flag is generated.                                                                                                                                                                                                                                                                                                                               |
|      |            | 1 = Buffer error interrupt flag is generated.                                                                                                                                                                                                                                                                                                                                  |
|      |            | Note: This bit is read only and reset to 0 when all bits of TX_OVER_IF(UA_FSR[24]) and                                                                                                                                                                                                                                                                                         |

|     |          | RX_OVER_IF(UA_FSR[0]) are cleared.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [4] | TOUT_IF  | Time-Out Interrupt Flag (Read Only)  This bit is set when the RX FIFO (UART0/UART1/UART2) / RX Buffer (UART3/UART4/UART5) is not empty and no activities occurred in the RX FIFO and the time-out counter equal to TOIC. If TOUT_IEN (UA_IER[4]) is enabled, the Tout interrupt will be generated.  0 = No Time-out interrupt flag is generated.  1 = Time-out interrupt flag is generated.  Note: This bit is read only and user can read UA_RBR (RX is in active) to clear it.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| [3] | MODEM_IF | MODEM Interrupt Flag (Read Only) (Not Available In UART2 Channel)  This bit is set when the CTS pin has state change (DCTSF (UA_MSR[0]) = 1). If MODEM_IEN (UA_IER[3]) is enabled, the Modem interrupt will be generated.  0 = No Modem interrupt flag is generated.  1 = Modem interrupt flag is generated.  Note: This bit is read only and reset to 0 when bit DCTSF is cleared by a write 1 on DCTSF(UA_MSR[0]).                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| [2] | RLS_IF   | Receive Line Interrupt Flag (Read Only)  This bit is set when the RX receive data have parity error, frame error or break error (at least one of 3 bits, BIF(UA_FSR[6]), FEF(UA_FSR[5]) and PEF(UA_FSR[4]), is set). If RLS_IEN (UA_IER[2]) is enabled, the RLS interrupt will be generated.  0 = No RLS interrupt flag is generated.  1 = RLS interrupt flag is generated.  Note1: In RS-485 function mode, this field is set include "receiver detect and received address byte character (bit9 = '1') bit". At the same time, the bit of UA_FSR[RS485_ADD_DETF] is also set.  Note2: This bit is read only and reset to 0 when all bits of BIF(UA_FSR[6]), FEF(UA_FSR[5]) and PEF(UA_FSR[4]) are cleared.  Note3: In RS-485 function mode, this bit is read only and reset to 0 when all bits of BIF(UA_FSR[6]), FEF(UA_FSR[5]) and PEF(UA_FSR[4]) and RS485_ADD_DETF (UA_FSR[3]) are cleared. |
| [1] | THRE_IF  | Transmit Holding Register Empty Interrupt Flag (Read Only)  This bit is set when the last data of TX FIFO (UART0/UART1/UART2) / TX Buffer (UART3/UART4/UART5) is transferred to Transmitter Shift Register. If THRE_IEN (UA_IER[1]) is enabled, the THRE interrupt will be generated.  0 = No THRE interrupt flag is generated.  1 = THRE interrupt flag is generated.  Note: This bit is read only and it will be cleared when writing data into THR (TX FIFO not empty).                                                                                                                                                                                                                                                                                                                                                                                                                        |
| [0] | RDA_IF   | Receive Data Available Interrupt Flag (Read Only)  When the number of bytes in the RX FIFO (UART0/UART1/UART2) / RX Buffer (UART3/UART4/UART5) equals the RFITL then the RDA_IF(UA_ISR[0]) will be set. If RDA_IEN (UA_IER[0]) is enabled, the RDA interrupt will be generated.  0 = No RDA interrupt flag is generated.  1 = RDA interrupt flag is generated.  Note: This bit is read only and it will be cleared when the number of unread bytes of RX FIFO drops below the threshold level (RFITL(UA_FCR[7:4]).                                                                                                                                                                                                                                                                                                                                                                                |



## UART Time-out Register (UA\_TOR)

| Register                | Offset        | R/W | Description            | Reset Value |
|-------------------------|---------------|-----|------------------------|-------------|
| UA_TOR<br>x=0,1,2,3,4,5 | UARTx_BA+0x20 | R/W | UART Time-out Register | 0x0000_0000 |

| 31 | 30       | 29 | 28   | 27    | 26 | 25 | 24 |  |  |  |
|----|----------|----|------|-------|----|----|----|--|--|--|
|    | Reserved |    |      |       |    |    |    |  |  |  |
| 23 | 22       | 21 | 20   | 19    | 18 | 17 | 16 |  |  |  |
|    |          |    | Rese | erved |    |    |    |  |  |  |
| 15 | 14       | 13 | 12   | 11    | 10 | 9  | 8  |  |  |  |
|    |          |    | DI   | LY    |    |    |    |  |  |  |
| 7  | 6        | 5  | 4    | 3     | 2  | 1  | 0  |  |  |  |
|    |          |    | TC   | DIC   |    |    |    |  |  |  |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:16] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| [15:8]  | DLY         | TX Delay Time Value  This field is used to programming the transfer delay time between the last stop bit and next start bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| [7:0]   | TOIC        | Time-Out Interrupt Comparator  The time-out counter resets and starts counting (the counting clock = baud rate) whenever the RX FIFO (UART0/UART1/UART2) / RX Buffer (UART3/UART4/UART5) receives a new data word. Once the content of time-out counter is equal to that of time-out interrupt comparator (TOIC (UA_TOR[7:0])), a receiver time-out interrupt (INT_TOUT) is generated if TOUT_IEN (UA_IER[4]) enabled. A new incoming data word or RX FIFO (UART0/UART1/UART2) / RX Buffer (UART3/UART4/UART5) empty will clear TOUT_INT (UA_IER[9]). In order to avoid receiver time-out interrupt generation immediately during one character is being received, TOIC (UA_TOR[7:0]) value should be set between 40 and 255. So, for example, if TOIC (UA_TOR[7:0]) is set with 40, the time-out interrupt is generated after four characters are not received when 1 stop bit and no parity check is set for UART transfer. |

## **UART Baud Rate Divider Register (UA\_BAUD)**

| Register                 | Offset        | R/W | Description                     | Reset Value |
|--------------------------|---------------|-----|---------------------------------|-------------|
| UA_BAUD<br>x=0,1,2,3,4,5 | UARTx_BA+0x24 | R/W | UART Baud Rate Divisor Register | 0x0F00_0000 |

| 31   | 30              | 29 | 28   | 27        | 26 | 25 | 24 |  |
|------|-----------------|----|------|-----------|----|----|----|--|
| Rese | Reserved DIV_X  |    |      | DIVIDER_X |    |    |    |  |
| 23   | 22              | 21 | 20   | 19        | 18 | 17 | 16 |  |
|      |                 |    | Rese | erved     |    |    |    |  |
| 15   | 14              | 13 | 12   | 11        | 10 | 9  | 8  |  |
|      |                 |    | BI   | RD        |    |    |    |  |
| 7    | 7 6 5 4 3 2 1 0 |    |      |           |    |    |    |  |
|      | BRD             |    |      |           |    |    |    |  |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:30] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                    |
| [29]    | DIV_X_EN    | Divider X Enable Control  The BRD = Baud Rate Divider, and the baud rate equation is Baud Rate = Clock / [M * (BRD + 2)]; The default value of M is 16.  0 = Divider X Disabled (the equation of M = 16).  1 = Divider X Enabled (the equation of M = X+1, but DIVIDER_X[27:24] must >= 8).  Refer to Table 6.11-2 UART Baud Rate Equation for more information.  Note: In IrDA mode, this bit must disable. |
| [28]    | DIV_X_ONE   | Divider X Equal To 1  0 = Divider M = X (the equation of M = X+1, but DIVIDER_X[27:24] must >= 8).  1 = Divider M = 1 (the equation of M = 1, but BRD[15:0] must >= 3).  Refer to Table 6.11-2 UART Baud Rate Equation for more information.                                                                                                                                                                 |
| [27:24] | DIVIDER_X   | Divider X The baud rate divider M = X+1.                                                                                                                                                                                                                                                                                                                                                                     |
| [23:16] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                    |
| [15:0]  | BRD         | Baud Rate Divider The field indicates the baud rate divider.                                                                                                                                                                                                                                                                                                                                                 |



## **UART IrDA Control Register (IRCR) (Available in UART0/UART1/UART2 channel)**

| Register           | Offset        | R/W | Description                | Reset Value |
|--------------------|---------------|-----|----------------------------|-------------|
| UA_IRCR<br>x=0,1,2 | UARTx_BA+0x28 | R/W | UART IrDA Control Register | 0x0000_0040 |

| 31              | 30       | 29     | 28   | 27       | 26        | 25       | 24 |  |  |
|-----------------|----------|--------|------|----------|-----------|----------|----|--|--|
|                 | Reserved |        |      |          |           |          |    |  |  |
| 23              | 22       | 21     | 20   | 19       | 18        | 17       | 16 |  |  |
|                 | Reserved |        |      |          |           |          |    |  |  |
| 15              | 14       | 13     | 12   | 11       | 10        | 9        | 8  |  |  |
|                 |          |        | Rese | erved    |           |          |    |  |  |
| 7 6 5 4 3 2 1 0 |          |        |      |          |           |          |    |  |  |
| Reserved        | INV_RX   | INV_TX |      | Reserved | TX_SELECT | Reserved |    |  |  |

| Bits   | Description | escription                                                                                                                                                   |  |  |  |  |  |
|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:7] | Reserved    | Reserved.                                                                                                                                                    |  |  |  |  |  |
| [6]    | INV_RX      | IrDA Inverse Receive Input Signal Control  0 = None inverse receiving input signal.  1 = Inverse receiving input signal.                                     |  |  |  |  |  |
| [5]    | INV_TX      | IrDA Inverse Transmitting Output Signal Control  0 = None inverse transmitting signal.  1 = Inverse transmitting output signal.                              |  |  |  |  |  |
| [4:2]  | Reserved    | Reserved.                                                                                                                                                    |  |  |  |  |  |
| [1]    | TX_SELECT   | IrDA Receiver/Transmitter Selection Enable Control  0 = IrDA Transmitter Disabled and Receiver Enabled.  1 = IrDA Transmitter Enabled and Receiver Disabled. |  |  |  |  |  |
| [0]    | Reserved    | Reserved.                                                                                                                                                    |  |  |  |  |  |

Note: In IrDA mode, the UA\_BAUD (UA\_BAUD[29]) register must be disabled (the baud equation must be Clock / 16 \* (BRD)

# UART Alternate Control/Status Register (UA\_ALT\_CSR)

| Register                    | Offset        | R/W | Description                            | Reset Value |
|-----------------------------|---------------|-----|----------------------------------------|-------------|
| UA_ALT_CSR<br>x=0,1,2,3,4,5 | UARTx_BA+0x2C | R/W | UART Alternate Control/Status Register | 0x0000_000C |

| 31               | 30         | 29   | 28    | 27       | 26        | 25        | 24        |  |  |  |  |
|------------------|------------|------|-------|----------|-----------|-----------|-----------|--|--|--|--|
|                  | ADDR_MATCH |      |       |          |           |           |           |  |  |  |  |
| 23               | 22         | 21   | 20    | 19       | 18        | 17        | 16        |  |  |  |  |
|                  | Reserved   |      | ABRI  | DBITS    | ABRDEN    | ABRIF     | Reserved  |  |  |  |  |
| 15               | 14         | 13   | 12    | 11       | 10        | 9         | 8         |  |  |  |  |
| RS485_ADD_<br>EN |            | Rese | erved |          | RS485_AUD | RS485_AAD | RS485_NMM |  |  |  |  |
| 7                | 6          | 5    | 4     | 3        | 2         | 1         | 0         |  |  |  |  |
| LIN_TX_EN        | LIN_RX_EN  | Rese | erved | LIN_BKFL |           |           |           |  |  |  |  |

| Bits    | Description  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
|---------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:24] | ADDR_MATCH   | Address Match Value Register (Available In UART0/UART1) This field contains the RS-485 address match values.  Note: This field is used for RS-485 auto address detection mode.                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| [23:21] | Reserved     | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| [20:19] | ABRDBITS     | Auto-Baud Rate Detect Bit Length  00 = 1-bit time from Start bit to the 1st rising edge. The input pattern shall be 0x01.  01 = 2-bit time from Start bit to the 1st rising edge. The input pattern shall be 0x02.  10 = 4-bit time from Start bit to the 1st rising edge. The input pattern shall be 0x08.  11 = 8-bit time from Start bit to the 1st rising edge. The input pattern shall be 0x80.  Note: The calculation of bit number includes the START bit. |  |  |  |  |  |  |
| [18]    | ABRDEN       | Auto-Baud Rate Detect Enable Control  0 = Auto-baud rate detect function Disabled.  1 = Auto-baud rate detect function Enabled.  This bit is cleared automatically after auto-baud detection is finished.                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| [17]    | ABRIF        | Auto-Baud Rate Interrupt Flag (Read Only)  This bit is set when auto-baud rate detection function finished or the auto-baud rate counter was overflow and if ABRIEN(UART_IEN[18]) is set then the auto-baud rate interrupt will be generated.  Note: This bit is read only, but it can be cleared by writing "1" to ABRDTOIF (UA_FSR[2]) and ABRDIF(UA_FSR[1]).                                                                                                   |  |  |  |  |  |  |
| [16]    | Reserved     | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| [15]    | RS485_ADD_EN | RS-485 Address Detection Enable Control (Available In UART0/UART1)  This bit is used to enable RS-485 Address Detection mode.  0 = Address detection mode Disabled.  1 = Address detection mode Enabled.                                                                                                                                                                                                                                                          |  |  |  |  |  |  |



|         |           | Note: This bit is used for RS-485 any operation mode.                                                                                                                                                                                                                       |
|---------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [14:11] | Reserved  | Reserved.                                                                                                                                                                                                                                                                   |
| [10]    | RS485_AUD | RS-485 Auto Direction Mode (AUD) (Available In UART0/UART1)  0 = RS-485 Auto Direction Operation mode (AUO) Disabled.  1 = RS-485 Auto Direction Operation mode (AUO) Enabled.  Note: It can be active with RS-485_AAD or RS-485_NMM operation mode.                        |
| [9]     | RS485_AAD | RS-485 Auto Address Detection Operation Mode (AAD) (Available In UART0/UART1)  0 = RS-485 Auto Address Detection Operation mode (AAD) Disabled.  1 = RS-485 Auto Address Detection Operation mode (AAD) Enabled.  Note: It cannot be active with RS-485_NMM operation mode. |
| [8]     | RS485_NMM | RS-485 Normal Multi-Drop Operation Mode (NMM) (Available In UART0/UART1)  0 = RS-485 Normal Multi-drop Operation mode (NMM) Disabled.  1 = RS-485 Normal Multi-drop Operation mode (NMM) Enabled.  Note: It cannot be active with RS-485_AAD operation mode.                |
| [7]     | LIN_TX_EN | LIN TX Break Mode Enable Control (Available In UART0/UART1/UART2)  0 = LIN TX Break mode Disabled.  1 = LIN TX Break mode Enabled.  Note: When TX break field transfer operation finished, this bit will be cleared automatically.                                          |
| [6]     | LIN_RX_EN | LIN RX Enable Control (Available In UART0/UART1/UART2)  0 = LIN RX mode Disabled.  1 = LIN RX mode Enabled.                                                                                                                                                                 |
| [5:4]   | Reserved  | Reserved.                                                                                                                                                                                                                                                                   |
| [3:0]   | LIN_BKFL  | UART LIN Break Field Length (Available In UART0/UART1/UART2) This field indicates a 4-bit LIN TX break field count.  Note1: This break field length is LIN_BKFL + 1.  Note2: According to LIN spec, the reset value is 0xC (break field length = 13).                       |

## UART Function Select Register (UA\_FUN\_SEL)

| Register                    | Offset        | R/W | Description                   | Reset Value |  |
|-----------------------------|---------------|-----|-------------------------------|-------------|--|
| UA_FUN_SEL<br>x=0,1,2,3,4,5 | UARTx_BA+0x30 | R/W | UART Function Select Register | 0x0000_0000 |  |

| 31 | 30       | 29   | 28 | 27 26 |    | 25 | 24 |  |  |  |  |
|----|----------|------|----|-------|----|----|----|--|--|--|--|
|    | Reserved |      |    |       |    |    |    |  |  |  |  |
| 23 | 22       | 21   | 20 | 19    | 18 | 17 | 16 |  |  |  |  |
|    | Reserved |      |    |       |    |    |    |  |  |  |  |
| 15 | 14       | 13   | 12 | 11    | 10 | 9  | 8  |  |  |  |  |
|    | Reserved |      |    |       |    |    |    |  |  |  |  |
| 7  | 6 5 4    |      | 4  | 3 2   |    | 1  | 0  |  |  |  |  |
|    | FUN      | _SEL |    |       |    |    |    |  |  |  |  |

| Bits   | Description | Description                                                                                                                                                                                                     |  |  |  |  |  |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:2] | Reserved    | Reserved.                                                                                                                                                                                                       |  |  |  |  |  |
| [1:0]  | FUN_SEL     | Function Select Enable Control  00 = UART function Enabled.  01 = LIN function Enabled. (Available in UART0/UART1/UART2)  10 = IrDA function Enabled.  11 = RS-485 function Enabled. (Available in UART0/UART1) |  |  |  |  |  |



## **UART LIN Control Register (UA\_LIN\_CTL) (Available in UART0/UART1/UART2)**

| Register              | Offset        | R/W | Description               | Reset Value |
|-----------------------|---------------|-----|---------------------------|-------------|
| UA_LIN_CTL<br>x=0,1,2 | UARTx_BA+0x34 | R/W | UART LIN Control Register | 0x000C_0000 |

| 31       | 30       | 29    | 28              | 27 26           |                  | 25               | 24      |  |  |  |  |
|----------|----------|-------|-----------------|-----------------|------------------|------------------|---------|--|--|--|--|
|          | LIN_PID  |       |                 |                 |                  |                  |         |  |  |  |  |
| 23       | 22       | 21    | 20              | 20 19 18        |                  | 17               | 16      |  |  |  |  |
| LIN_HE   | AD_SEL   | LIN_B | S_LEN           | LIN_BKFL        |                  |                  |         |  |  |  |  |
| 15       | 14       | 13    | 12              | 11              | 11 10            |                  | 8       |  |  |  |  |
|          | Reserved |       |                 | LIN_RX_DIS      | LIN_BKDET_<br>EN | LIN_IDPEN        | LIN_SHD |  |  |  |  |
| 7        | 6        | 5     | 4               | 3               | 2                | 1                | 0       |  |  |  |  |
| Reserved |          |       | LIN_MUTE_E<br>N | LINS_DUM_E<br>N | LINS_ARS_E<br>N  | LINS_HDET_<br>EN | LINS_EN |  |  |  |  |

| Bits    | Description  |                                                                                                                                                                                                                                                                                        |           |                      |            |           |           |          |          |          |     |  |
|---------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|------------|-----------|-----------|----------|----------|----------|-----|--|
|         |              | LIN PID Register  This field contains the LIN frame ID value when in LIN function mode, the frame ID parity can be generated by software or hardware depends on LIN_IDPEN (UA_LIN_CTL[9]) = 1.  If the parity generated by hardware, user fill ID0~ID5, (LIN_PID[29:24]) hardware will |           |                      |            |           |           |          |          |          |     |  |
| [04.04] | I IN DID     | calculate P0 parity in this                                                                                                                                                                                                                                                            | (LIN_PI   |                      |            |           |           |          |          |          |     |  |
| [31:24] | LIN_PID      | PID                                                                                                                                                                                                                                                                                    | Start     | ID0                  | ID1        | ID2       | ID3       | ID4      | ID5      | P0       | P1  |  |
|         |              |                                                                                                                                                                                                                                                                                        |           | D0 xor l<br>·(ID1 xo |            |           |           |          |          |          |     |  |
|         |              | Note1: User can fill any 8-bit value to this field and the bit 24 indicates ID0 (LSB first).                                                                                                                                                                                           |           |                      |            |           |           |          |          |          |     |  |
|         |              | Note2: This t                                                                                                                                                                                                                                                                          | field car | be use               | d for LI   | N maste   | er mode   | or slav  | e mode.  | -        |     |  |
|         |              | LIN Header Select                                                                                                                                                                                                                                                                      |           |                      |            |           |           |          |          |          |     |  |
|         |              | 00 = The LIN header includes "break field".                                                                                                                                                                                                                                            |           |                      |            |           |           |          |          |          |     |  |
|         |              | 01 = The LIN header includes "break field" and "sync field".                                                                                                                                                                                                                           |           |                      |            |           |           |          |          |          |     |  |
| [23:22] | LIN_HEAD_SEL | 10 = The LIN                                                                                                                                                                                                                                                                           |           | · include            | es "brea   | k field", | "sync fi  | eld" and | d "frame | ID field | i". |  |
|         |              | 11 = Reserve                                                                                                                                                                                                                                                                           |           |                      |            |           |           |          |          |          |     |  |
|         |              | <b>Note:</b> This bit is used to master mode for LIN to send header field (LIN_SHD (UA_LIN_CTL[8]) = 1) or used to slave to indicates exit from mute mode condition (LIN_MUTE_EN (UA_LIN_CTL[4] = 1).                                                                                  |           |                      |            |           |           |          |          | n        |     |  |
|         |              | LIN Break/S                                                                                                                                                                                                                                                                            | ync Del   | imiter I             | ength      |           |           |          |          |          |     |  |
|         |              | 00 = The LIN                                                                                                                                                                                                                                                                           | l break/s | sync de              | limiter le | ength is  | 1 bit tin | ne.      |          |          |     |  |
| [21:20] | LIN_BS_LEN   | 10 = The LIN                                                                                                                                                                                                                                                                           | l break/s | sync de              | limiter le | ength is  | 2 bit tin | ne.      |          |          |     |  |
|         |              | 10 = The LIN                                                                                                                                                                                                                                                                           | l break/s | sync de              | limiter le | ength is  | 3 bit tin | ne.      |          |          |     |  |
|         |              | 11 = The LIN                                                                                                                                                                                                                                                                           | l break/s | sync de              | limiter le | ength is  | 4 bit tin | ne.      |          |          |     |  |

|         |              | Header                                                                                                                                                                                                                                                      |  |  |  |  |
|---------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|         |              |                                                                                                                                                                                                                                                             |  |  |  |  |
|         |              | Break/Sync Inter-byte spaces                                                                                                                                                                                                                                |  |  |  |  |
|         |              | Note: This bit used for LIN master to sending header field.                                                                                                                                                                                                 |  |  |  |  |
|         |              | LIN Break Field Length                                                                                                                                                                                                                                      |  |  |  |  |
|         |              | This field indicates a 4-bit LIN TX break field count.                                                                                                                                                                                                      |  |  |  |  |
| [19:16] | LIN_BKFL     | <b>Note1:</b> These registers are shadow registers of LIN_BKFL, User can read/write it by setting LIN_BKFL (UA_ALT_CSR[3:0]) or LIN_BKFL (UA_LIN_CTL[19:16].                                                                                                |  |  |  |  |
|         |              | Note2: This break field length is LIN_BKFL + 1.                                                                                                                                                                                                             |  |  |  |  |
|         |              | Note3: According to LIN spec, the reset value is 12 (break field length = 13).                                                                                                                                                                              |  |  |  |  |
| [15:13] | Reserved     | Reserved.                                                                                                                                                                                                                                                   |  |  |  |  |
|         |              | Bit Error Detect Enable Control                                                                                                                                                                                                                             |  |  |  |  |
|         |              | 0 = Bit error detection function Disabled.                                                                                                                                                                                                                  |  |  |  |  |
| [12]    | BIT_ERR_EN   | 1 = Bit error detection Enabled.                                                                                                                                                                                                                            |  |  |  |  |
|         |              | <b>Note:</b> In LIN function mode, when occur bit error, the BIT_ERR_F (UA_LIN_SR[9]) flag will be asserted. If the LIN_IEN (UA_IER[8]) = 1, an interrupt will be generated.                                                                                |  |  |  |  |
|         |              | LIN Receiver Disable Control                                                                                                                                                                                                                                |  |  |  |  |
|         |              | If the receiver is enabled (LIN_RX_DIS (UA_LIN_CTL[11]) = 0), all received byte data will be accepted and stored in the RX-FIFO, and if the receiver is disabled (LIN_RX_DIS (UA_LIN_CTL[11] = 1), all received byte data will be ignore.                   |  |  |  |  |
| [11]    | LIN_RX_DIS   | 0 = LIN receiver Enabled.                                                                                                                                                                                                                                   |  |  |  |  |
|         |              | 1 = LIN receiver Disabled.                                                                                                                                                                                                                                  |  |  |  |  |
|         |              | <b>Note:</b> This bit is only valid when operating in LIN function mode (FUN_SEL (UA_FUN_SEL[1:0]) = 01).                                                                                                                                                   |  |  |  |  |
|         |              | LIN Break Detection Enable Control                                                                                                                                                                                                                          |  |  |  |  |
| [10]    | LIN_BKDET_EN | When detect consecutive dominant greater than 11 bits, and are followed by a delimiter character, the LIN_BKDET_F (UA_LIN_SR[8]) flag is set in UA_LIN_SR register at the end of break field. If the LIN_IEN (UA_IER[8])=1, an interrupt will be generated. |  |  |  |  |
|         |              | 0 = LIN break detection Disabled.                                                                                                                                                                                                                           |  |  |  |  |
|         |              | 1 = LIN break detection Enabled.                                                                                                                                                                                                                            |  |  |  |  |
|         |              | LIN ID Parity Enable Control                                                                                                                                                                                                                                |  |  |  |  |
|         |              | 0 = LIN frame ID parity Disabled.                                                                                                                                                                                                                           |  |  |  |  |
|         |              | 1 = LIN frame ID parity Enabled.                                                                                                                                                                                                                            |  |  |  |  |
| [9]     | LIN_IDPEN    | Note1: This bit can be used for LIN master to sending header field (LIN_SHD (UA_LIN_CTL[8])) = 1 and LIN_HEAD_SEL (UA_LIN_CTL[23:22]) = 10) or be used for enable LIN slave received frame ID parity checked.                                               |  |  |  |  |
|         |              | <b>Note2:</b> This bit is only use when the operation header transmitter is in LIN_HEAD_SEL (UA_LIN_CTL[23:22]) = 10.                                                                                                                                       |  |  |  |  |
|         |              | LIN TX Send Header Enable Control                                                                                                                                                                                                                           |  |  |  |  |
| [8]     | LIN_SHD      | The LIN TX header can be "break field" or "break and sync field" or "break, sync and frame ID field", it is depend on setting LIN_HEAD_SEL (UA_LIN_CTL[23:22]).                                                                                             |  |  |  |  |
| رما     | LIN_SIID     | 0 = Send LIN TX header Disabled.                                                                                                                                                                                                                            |  |  |  |  |
|         |              | 1 = Send LIN TX header Enabled.                                                                                                                                                                                                                             |  |  |  |  |
|         |              | Note1: These registers are shadow registers of LIN_SHD (UA_ALT_CSR[7]); user can                                                                                                                                                                            |  |  |  |  |

|       |              | read/write it by setting LIN_SHD (UA_ALT_CSR[7]) or LIN_SHD (UA_LIN_CTL[8]).                                                                                                                                                           |
|-------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |              | <b>Note2:</b> When transmitter header field (it may be "break" or "break + sync" or "break + sync + frame ID" selected by LIN_HEAD_SEL (UA_LIN_CTL[23:22]) field) transfer operation finished, this bit will be cleared automatically. |
| [7:5] | Reserved     | Reserved.                                                                                                                                                                                                                              |
|       |              | LIN Mute Mode Enable Control                                                                                                                                                                                                           |
|       |              | 0 = LIN mute mode Disabled.                                                                                                                                                                                                            |
| [4]   | LIN_MUTE_EN  | 1 = LIN mute mode Enabled.                                                                                                                                                                                                             |
|       |              | <b>Note:</b> The exit from mute mode condition and each control and interactions of this field are explained in (LIN slave mode).                                                                                                      |
|       |              | LIN Slave Divider Update Method Enable Control                                                                                                                                                                                         |
|       |              | 0 = UA_BAUD updated is written by software (if no automatic resynchronization update occurs at the same time).                                                                                                                         |
| [3]   | LINS_DUM_EN  | 1 = UA_BAUD is updated at the next received character. User must set the bit before checksum reception.                                                                                                                                |
| [၁]   | LIN3_DOW_EN  | Note1: This bit only valid when in LIN slave mode (LINS_EN (UA_LIN_CTL[0]) = 1).                                                                                                                                                       |
|       |              | <b>Note2:</b> This bit used for LIN Slave Automatic Resynchronization mode. (for Non-Automatic Resynchronization mode, this bit should be kept cleared)                                                                                |
|       |              | <b>Note3:</b> The control and interactions of this field are explained in section 6.11.5.8.4. (Slave mode with automatic resynchronization).                                                                                           |
|       |              | LIN Slave Automatic Resynchronization Mode Enable Control                                                                                                                                                                              |
|       |              | 0 = LIN automatic resynchronization Disabled.                                                                                                                                                                                          |
|       |              | 1 = LIN automatic resynchronization Enabled.                                                                                                                                                                                           |
| [2]   | LINS_ARS_EN  | Note1: This bit only valid when in LIN slave mode (LINS_EN (UA_LIN_CTL[0]) = 1).                                                                                                                                                       |
|       |              | <b>Note2:</b> When operation in Automatic Resynchronization mode, the baud rate setting must be mode2 (BAUD_M1 (UA_BAUD[29]) and BAUD_M0 (UA_BAUD[28]) must be 1).                                                                     |
|       |              | <b>Note3:</b> The control and interactions of this field are explained in section 6.11.5.8.4. (Slave mode with automatic resynchronization).                                                                                           |
|       |              | LIN Slave Header Detection Enable Control                                                                                                                                                                                              |
|       |              | 0 = LIN slave header detection Disabled.                                                                                                                                                                                               |
|       |              | 1 = LIN slave header detection Enabled.                                                                                                                                                                                                |
| [1]   | LINS_HDET_EN | Note1: This bit only valid when in LIN slave mode (LINS_EN (UA_LIN_CTL[0]) = 1).                                                                                                                                                       |
|       |              | Note2: In LIN function mode, when detect header field (break + sync + frame ID), LINS_HDET_F (UA_LIN_SR[0]) flag will be asserted. If the LIN_IEN (UA_IER[8]) = 1, an interrupt will be generated.                                     |
|       |              |                                                                                                                                                                                                                                        |
|       |              | LIN Slave Mode Enable Control                                                                                                                                                                                                          |
| [0]   | LINS_EN      | LIN Slave Mode Enable Control 0 = LIN slave mode Disabled.                                                                                                                                                                             |

## UART LIN Status Register (UA\_LIN\_SR) (Available in UART0/UART1/UART2)

| Register             | Offset        | R/W | Description              | Reset Value |  |
|----------------------|---------------|-----|--------------------------|-------------|--|
| UA_LIN_SR<br>x=0,1,2 | UARTx_BA+0x38 | R/W | UART LIN Status Register | 0x0000_0000 |  |

| 31       | 30       | 29 | 28              | 27                | 26              | 25              | 24 |
|----------|----------|----|-----------------|-------------------|-----------------|-----------------|----|
|          | Reserved |    |                 |                   |                 |                 |    |
| 23       | 22       | 21 | 20              | 19                | 18              | 17              | 16 |
|          | Reserved |    |                 |                   |                 |                 |    |
| 15       | 14       | 13 | 12              | 11                | 10              | 9               | 8  |
| Reserved |          |    |                 |                   | BIT_ERR_F       | LIN_BKDET_<br>F |    |
| 7        | 6        | 5  | 4               | 3                 | 2               | 1               | 0  |
| Reserved |          |    | LINS_SYNC_<br>F | LINS_IDPERR<br>_F | LINS_HERR_<br>F | LINS_HDET_F     |    |

| Bits    | Description  | Description                                                                                                                                                                                                                                       |  |  |
|---------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:10] | Reserved     | Reserved.                                                                                                                                                                                                                                         |  |  |
|         |              | Bit Error Detect Status Flag (Read Only)                                                                                                                                                                                                          |  |  |
|         |              | At TX transfer state, hardware will monitoring the bus state, if the input pin (SIN) state no equals to the output pin (SOUT) state, BIT_ERR_F (UA_LIN_SR[9]) will be set.                                                                        |  |  |
| [9]     | BIT_ERR_F    | When occur bit error, if the LIN_IEN (UA_IER[8]) = 1, an interrupt will be generated.                                                                                                                                                             |  |  |
|         |              | Note1: This bit is read only, but it can be cleared by writing 1 to it.                                                                                                                                                                           |  |  |
|         |              | <b>Note2:</b> This bit is only valid when enable bit error detection function (BIT_ERR_EN (UA_LIN_CTL[12]) = 1).                                                                                                                                  |  |  |
|         |              | LIN Break Detection Flag (Read Only)                                                                                                                                                                                                              |  |  |
|         |              | This bit is set by hardware when a break is detected and be cleared by writing 1 to it through software.                                                                                                                                          |  |  |
| [0]     | LIN_BKDET_F  | 0 = LIN break not detected.                                                                                                                                                                                                                       |  |  |
| [8]     | LIN_BNUE I_F | 1 = LIN break detected.                                                                                                                                                                                                                           |  |  |
|         |              | Note1: This bit is read only, but it can be cleared by writing 1 to it.                                                                                                                                                                           |  |  |
|         |              | <b>Note2:</b> This bit is only valid when LIN break detection function is enabled (LIN_BKDET_EN (UA_LIN_CTL[10]) =1).                                                                                                                             |  |  |
| [7:4]   | Reserved     | Reserved.                                                                                                                                                                                                                                         |  |  |
|         |              | LIN Slave Sync Field                                                                                                                                                                                                                              |  |  |
| [3]     |              | This bit indicates that the LIN sync field is being analyzed in Automatic Resynchronizat mode. When the receiver header have some error been detect, user must reset the internal circuit to re-search new frame header by writing 1 to this bit. |  |  |
|         | LINS_SYNC_F  | 0 = The current character is not at LIN sync state.                                                                                                                                                                                               |  |  |
|         |              | 1 = The current character is at LIN sync state.                                                                                                                                                                                                   |  |  |
|         |              | Note1: This bit is only valid when in LIN Slave mode (LINS_EN(UA_LIN_CTL[0]) = 1).                                                                                                                                                                |  |  |
|         |              | Note2: This bit is read only, but it can be cleared by writing 1 to it.                                                                                                                                                                           |  |  |
|         |              | Note3: When writing 1 to it, hardware will reload the initial baud rate and re-search a new                                                                                                                                                       |  |  |

|                   |             | frame header.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [2] LINS_IDPERR_F |             | LIN Slave ID Parity Error Flag (Read Only)  This bit is set by hardware when receipted frame ID parity is not correct.  0 = No active.  1 = Receipted frame ID parity is not correct.  Note1: This bit is read only, but it can be cleared by writing "1" to it.  Note2: This bit is only valid when in LIN slave mode (LINS_EN (UA_LIN_CTL[0])= 1) and enable LIN frame ID parity check function LIN_IDPEN (UA_LIN_CTL[9]).                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| [1]               | LINS_HERR_F | LIN Slave Header Error Flag (Read Only)  This bit is set by hardware when a LIN header error is detected in LIN slave mode and be cleared by writing 1 to it. The header errors include "break delimiter is too short (less than 0.5 bit time)", "frame error in sync field or Identifier field", "sync field data is not 0x55 in Non-Automatic Resynchronization mode", "sync field deviation error with Automatic Resynchronization mode", "sync field measure time-out with Automatic Resynchronization mode" and "LIN header reception time-out".  0 = LIN header error not detected.  1 = LIN header error detected.  Note1: This bit is read only, but it can be cleared by writing 1 to it.  Note2: This bit is only valid when UART is operated in LIN slave mode (LINS_EN (UA_LIN_CTL[0]) = 1) and enables LIN slave header detection function (LINS_HDET_EN (UA_LIN_CTL[1])). |  |  |
| [0] LINS_HDET_F   |             | LIN Slave Header Detection Flag (Read Only)  This bit is set by hardware when a LIN header is detected in LIN slave mode and be cleared by writing 1 to it.  0 = LIN header not detected.  1 = LIN header detected (break + sync + frame ID).  Note1: This bit is read only, but it can be cleared by writing 1 to it.  Note2: This bit is only valid when in LIN slave mode (LINS_EN (UA_LIN_CTL[0]) = 1) and enable LIN slave header detection function (LINS_HDET_EN (UA_LIN_CTL[1])).  Note3: When enable ID parity check LIN_IDPEN (UA_LIN_CTL[9]), if hardware detect complete header ("break + sync + frame ID"), the LINS_HEDT_F will be set whether the frame ID correct or not.                                                                                                                                                                                               |  |  |

# 6.12 I<sup>2</sup>C Serial Interface Controller (I<sup>2</sup>C)

#### 6.12.1 Overview

I<sup>2</sup>C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange between devices. The I<sup>2</sup>C standard is a true multi-master bus including collision detection and arbitration that prevents data corruption if two or more masters attempt to control the bus simultaneously.

#### **6.12.2 Features**

The  $I^2C$  bus uses two wires (I2Cn\_SDA and I2Cn\_SCL) to transfer information between devices connected to the bus. The main features of the  $I^2C$  bus include:

- Supports up to two I<sup>2</sup>C serial interface controller
- Master/Slave mode
- Bidirectional data transfer between masters and slaves
- Multi-master bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allow devices with different bit rates to communicate via one serial bus
- Built-in a 14-bit time-out counter requesting the I<sup>2</sup>C interrupt if the I<sup>2</sup>C bus hangs up and timer-out counter overflows.
- Programmable clocks allow for versatile rate control
- Supports 7-bit addressing mode
- Supports multiple address recognition (four slave address with mask option)
- Supports Power-down wake-up function



### 6.12.3 Basic Configuration

The basic configurations of I2C0 are as follows:

- I2C0 pins are configured on GPA\_MFP[9:8] register
- Enable I2C0 clock by setting I2C0\_EN (APBCLK[8])
- Reset I2C0 controller by setting I2C0\_RST(IPRSTC2[8])

The basic configurations of I2C1 are as follows:

- I2C1 pins are configured on GPE\_MFP[11:10] register
- Enable I2C1 clock by setting I2C1 EN( APBCLK[9])
- Reset I2C1 controller by setting I2C1\_RST (IPRSTC2[9])

### 6.12.4 Block Diagram

The basic configurations of I<sup>2</sup>C are as Figure 6.12-1:

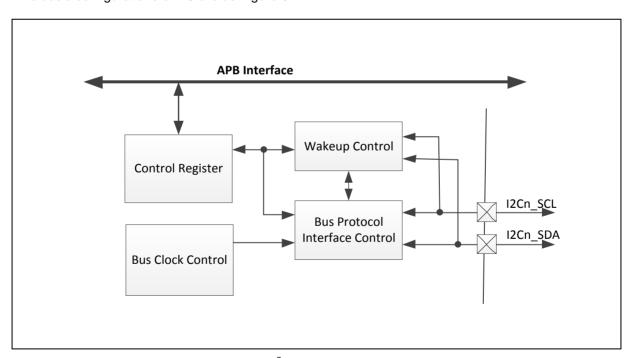



Figure 6.12-1 I<sup>2</sup>C Controller Block Diagram

## 6.12.5 Functional Description

On I<sup>2</sup>C bus, data is transferred between a Master and a Slave. Data bits transfer on the I2Cn\_SCL and I2Cn\_SDA lines are synchronously on a byte-by-byte basis. Each data byte is 8-bit long. There is one I2Cn\_SCL clock pulse for each data bit with the MSB being transmitted first, and an acknowledge

bit follows each transferred byte. Each bit is sampled during the high period of I2Cn\_SCL; therefore, the I2Cn\_SDA line may be changed only during the low period of I2Cn\_SCL and must be held stable during the high period of I2Cn\_SCL. A transition on the I2Cn\_SDA line while I2Cn\_SCL is high is interpreted as a command (START or STOP). Please refer to the Figure 6.12-2 for more detailed I<sup>2</sup>C bus timing.

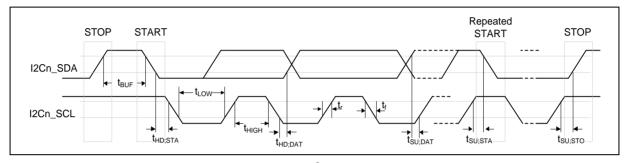



Figure 6.12-2 I<sup>2</sup>C Bus Timing

The device's on-chip  $I^2C$  provides the serial interface that meets the  $I^2C$  bus standard mode specification. The  $I^2C$  port handles byte transfers autonomously. To enable this port, ENS1 (I2CON[6]) should be set to '1'. The  $I^2C$  hardware interfaces to the  $I^2C$  bus via two pins: I2Cn\_SDA and I2Cn\_SCL. When I/O pins are used as  $I^2C$  ports, user must set the pins function to  $I^2C$  in advance.

**Note:** Pull-up resistor is needed for  $I^2C$  operation as the I2Cn\_SDA and I2Cn\_SCL are open-drain pins.

#### 6.12.5.1 Protocol

The Figure 6.12-3 shows the typical I<sup>2</sup>C protocol. Normally, a standard communication consists of four parts:

- START or Repeated START signal generation
- Slave address and R/W bit transfer
- Data transfer
- STOP signal generation

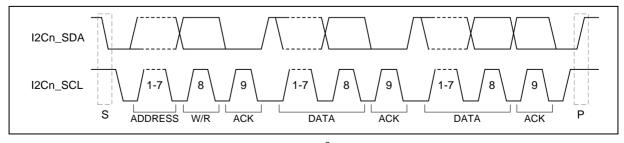



Figure 6.12-3 I<sup>2</sup>C Protocol



## 6.12.5.1.1 START or Repeated START signal

When the bus is free or idle, meaning no master device is engaging the bus (both I2Cn\_SCL and I2Cn\_SDA lines are high), a master can initiate a transfer by sending a START signal. A START signal, usually referred to as the "S" bit, is defined as a HIGH to LOW transition on the I2Cn\_SDA line while I2Cn\_SCL is HIGH. The START signal denotes the beginning of a new data transmission.

After having sent the address byte (address and read/write bit) the master may send any number of bytes followed by a stop condition. Instead of sending the stop condition it is also allowed to send another start condition again followed by an address (and of course including a read/write bit) and more data. The start condition is called as Repeat START (Sr). This is defined recursively allowing any number of start conditions to be sent. The purpose of this is to allow combined write/read operations to one or more devices without releasing the bus and thus with the guarantee that the operation is not interrupted. The controller uses this method to communicate with another slave or the same slave in a different transfer direction (e.g. from writing to a device to reading from a device) without releasing the bus.

## 6.12.5.1.2 STOP signal

The master can terminate the communication by generating a STOP signal. A STOP signal, usually referred to as the "P" bit, is defined as a LOW to HIGH transition on the I2Cn\_SDA line while I2Cn\_SCL is HIGH.

The Figure 6.12-4 shows the waveform of START, Repeat START and STOP.

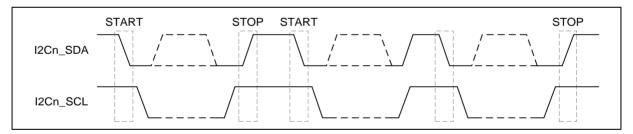



Figure 6.12-4 START and STOP Conditions

#### 6.12.5.1.3 Slave Address Transfer

The first byte of data transferred by the master immediately after the START signal is the Slave address (SLA). This is a 7-bit calling address followed by a Read/Write (R/W) bit. The R/W bit signals of the slave indicate the data transfer direction. No two slaves in the system can have the same address. Only the slave with an address that matches the one transmitted by the master will respond by returning an acknowledge bit by pulling the I2Cn\_SDA low at the 9th I2Cn\_SCL clock cycle.

#### 6.12.5.1.4 Data Transfer

When a slave receives a correct address with an R/W bit, the data will follow R/W bit specified to transfer. Each transferred byte is followed by an acknowledge bit on the 9th I2Cn\_SCL clock cycle. If the slave signals a Not Acknowledge (NACK), the master can generate a STOP signal to abort the data transfer or generate a Repeated START signal and start a new transfer cycle.

If the master, as a receiving device, does Not Acknowledge (NACK) the slave, the slave releases the I2Cn SDA line for the master to generate a STOP or Repeated START signal.

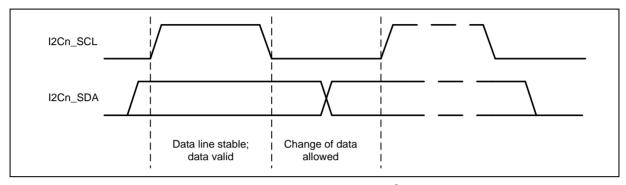



Figure 6.12-5 Bit Transfer on the I<sup>2</sup>C Bus

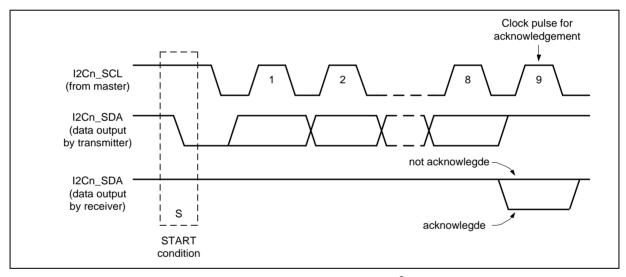



Figure 6.12-6 Acknowledge on the I<sup>2</sup>C Bus

## 6.12.5.1.5 Data transfer on the $l^2C$ bus

nuvoton

The Figure 6.12-7 shows a master transmits data to slave. A master addresses a slave with a 7-bit address and 1-bit write index to denote that the master wants to transmit data to the slave. The master keeps transmitting data after the slave returns acknowledge to the master.

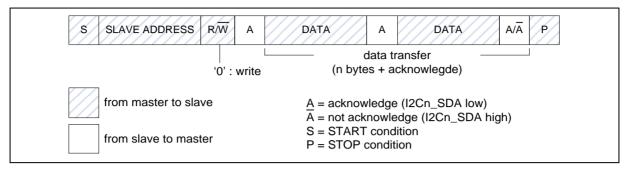



Figure 6.12-7 Master Transmits Data to Slave

The Figure 6.12-8 shows a master read data from slave. A master addresses a slave with a 7-bit address and 1-bit read index to denote that the master wants to read data from the slave. The slave will start transmitting data after the slave returns acknowledge to the master.

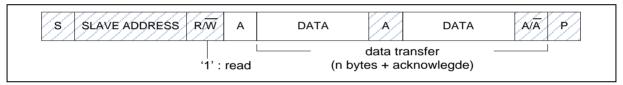



Figure 6.12-8 Master Reads Data from Slave

#### 6.12.5.2 Operation Modes

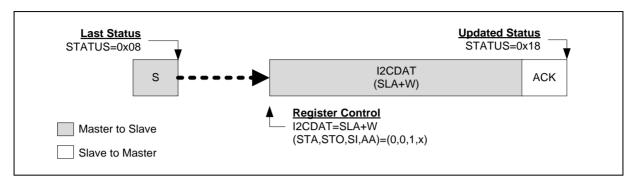
The on-chip I<sup>2</sup>C ports support three operation modes, Master, Slave, and General Call Mode.

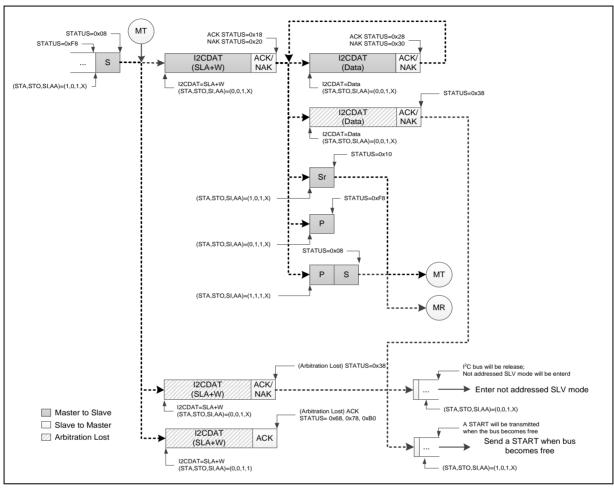
In a given application, I<sup>2</sup>C port may operate as a master or as a slave. In Slave mode, the I<sup>2</sup>C port hardware looks for its own slave address and the general call address. If one of these addresses is detected, and if the slave is willing to receive or transmit data from/to master(by setting the AA bit), acknowledge pulse will be transmitted out on the 9th clock, hence an interrupt is requested on both master and slave devices if interrupt is enabled. When the microcontroller wishes to become the bus master, hardware waits until the bus is free before entering Master mode so that a possible slave action is not be interrupted. If bus arbitration is lost in Master mode, I<sup>2</sup>C port switches to Slave mode immediately and can detect its own slave address in the same serial transfer.

To control the I<sup>2</sup>C bus transfer in each mode, user needs to set I2CON, I2CDAT registers according to current status code of I2CSTATUS register. In other words, for each I<sup>2</sup>C bus action, user needs to check current status by I2CSTATUS register, and then set I2CON, I2CDAT registers to take bus action. Finally, check the response status by I2CSTATUS.

The bits, STA(I2CON[5]), STO(I2CON[4]) and AA(I2CON[2]) are used to control the next state of the  $I^2C$  hardware after SI (I2CON[3]) flag is cleared. Upon completion of the new action, a new status code will be updated in I2CSTATUS register and the SI flag will be set. If the  $I^2C$  interrupt control bit EI (I2CON[7]) is set, appropriate action or software branch of the new status code can be performed in the Interrupt service routine.

The Figure 6.12-9 shows the current  $I^2C$  status code is 0x08, and then set I2CDATA=SLA+W and (STA,STO,SI,AA) = (0,0,1,x) to send the address to  $I^2C$  bus. If a slave on the bus matches the address and response ACK, the I2CSTATUS will be updated by status code 0x18.





Figure 6.12-9 Control I<sup>2</sup>C Bus according to Current I<sup>2</sup>C Status

### 6.12.5.2.1 Master Mode

nuvoTon

In Figure 6.12-10, all possible protocols for I<sup>2</sup>C master are shown. User needs to follow proper path of the flow to implement required I<sup>2</sup>C protocol.

In other words, user can send a START signal to bus and I<sup>2</sup>C will be in Master Transmitter mode (Figure 6.12-10 ) or Master receiver mode (Figure 6.12-12 ) after START signal has been sent successfully and new status code would be 0x08. Followed by START signal, user can send slave address, read/write bit, data and Repeat START, STOP to perform I<sup>2</sup>C protocol.



nuvoton

Figure 6.12-10 Master Transmitter Mode Control Flow

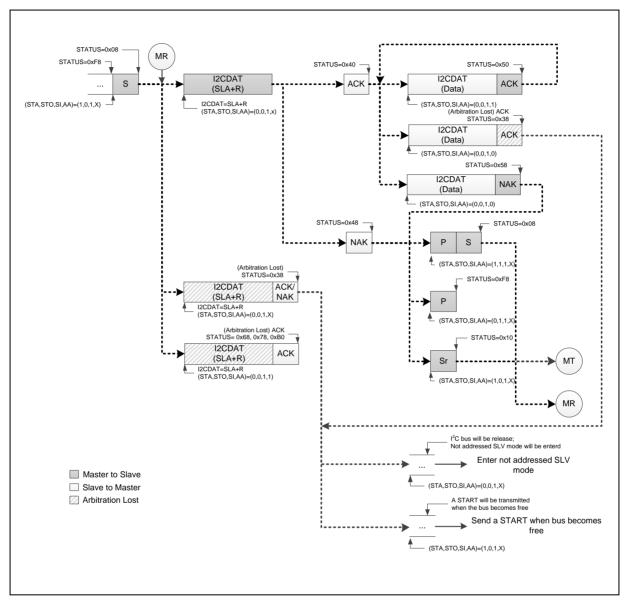



Figure 6.12-11 Master Receiver Mode Control Flow

If the I<sup>2</sup>C is in Master mode and gets arbitration lost, the status code will be 0x38. In status 0x38, user may set (STA, STO, SI, AA) = (1, 0, 1, X) to send START to re-start Master operation when bus become free. Otherwise, user may set (STA, STO, SI, AA) = (0, 0, 1, X) to release I<sup>2</sup>C bus and enter not addressed Slave mode.

### 6.12.5.2.2 Slave Mode

nuvoton

When reset default, I<sup>2</sup>C is not addressed and will not recognize the address on I<sup>2</sup>C bus. User can set slave address by I2CADDRx and set (STA, STO, SI, AA) = (0, 0, 1, 1) to let I<sup>2</sup>C recognize the address sent by master. Figure 6.12-12 shows all the possible flow for I2C in Slave mode. Users need to follow a proper flow (as shown in Figure 6.12-12 to implement their own I<sup>2</sup>C protocol.

If bus arbitration is lost in Master mode, I<sup>2</sup>C port switches to Slave mode immediately and can detect its own slave address in the same serial transfer. If the detected address is SLA+W (Master want to write data to Slave) after arbitration lost, the status code is 0x68. If the detected address is SLA+R (Master want to read data from Slave) after arbitration lost, the status code is 0xB0.

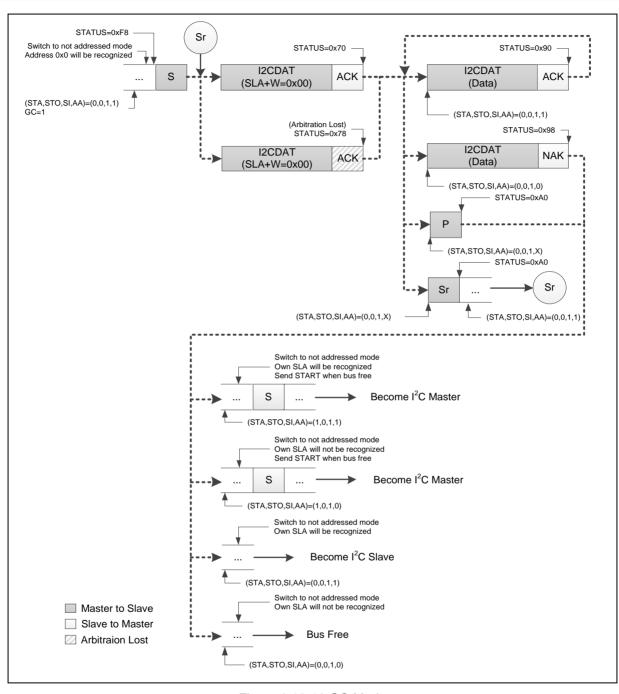
nuvoton

**Note:** During I<sup>2</sup>C communication, the I2Cn\_SCL clock will be released when writing '1' to clear SI flag in Slave mode.



Figure 6.12-12 Save Mode Control Flow

If  $I^2C$  is still receiving data in addressed Slave mode but got a STOP or Repeat START, the status code will be 0xA0. User could follow the action for status code 0x88 as shown in the Figure 6.12-12 when getting 0xA0 status.


NUC131 SERIES TECHNICAL REFERENCE MANUAL

If I<sup>2</sup>C is still transmitting data in addressed Slave mode but got a STOP or Repeat START, the status code will be 0xA0. User could follow the action for status code 0xC8 as shown in the Figure 6.12-12 when getting 0xA0 status.

**Note:** After slave gets status of 0x88, 0xC8, 0xC0 and 0xA0, slave can switch to not address mode and own SLA will not be recognized. If entering this status, slave will not receive any I<sup>2</sup>C signal or address from master. At this status, I<sup>2</sup>C should be reset to leave this status.

### 6.12.5.2.3 General Call (GC) Mode

If the GC(I2CADDRn[0]) bit is set, the I<sup>2</sup>C port hardware will respond to General Call address (0x00). User can clear GC bit to disable general call function. When the GC bit is set and the I<sup>2</sup>C in Slave mode, it can receive the general call address by 0x00 after master send general call address to I<sup>2</sup>C bus, then it will follow status of GC mode.



nuvoton

Figure 6.12-13 GC Mode

If I<sup>2</sup>C is still receiving data in GC mode but got a STOP or Repeat START, the status code will be 0xA0. User could follow the action for status code 0x98 in above figure when getting 0xA0 status.

Note: After slave gets status of 0x98 and 0xA0, slave can switch to not address mode and own SLA will not be recognized. If entering this status, slave will not receive any I<sup>2</sup>C signal or address from master. At this time, I<sup>2</sup>C controller should be reset to leave this status.

#### 6.12.5.2.4 Multi-Master

In some applications, there are two or more masters on the same  $I^2C$  bus to access slaves, and the masters may transmit data simultaneously. The  $I^2C$  supports multi-master by including collision detection and arbitration to prevent data corruption.

If for some reason two masters initiate command at the same time, the arbitration procedure determines which master wins and can continue with the command. Arbitration is performed on the I2Cn\_SDA signal while the I2Cn\_SCL signal is high. Each master checks if the I2Cn\_SDA signal on the bus corresponds to the generated I2Cn\_SDA signal. If the I2Cn\_SDA signal on the bus is low but it should be high, then this master has lost arbitration. The device that has lost arbitration can generate I2Cn\_SCL pulses until the byte ends. The arbitration procedure can continue until all the data is transferred. This means that in multi-master system each master must monitor the bus for collisions and act accordingly.

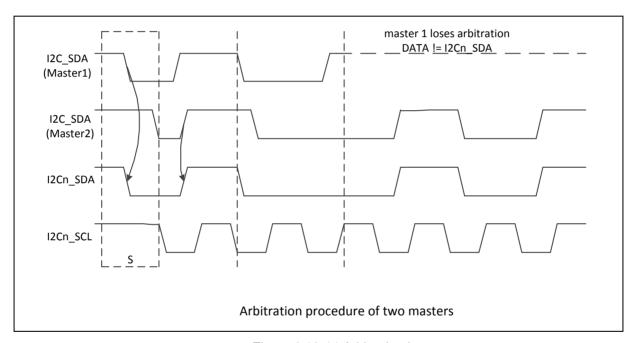



Figure 6.12-14 Arbitration Lost

- When I2CSTATUS = 0x38, an "Arbitration Lost" is received. Arbitration lost event maybe occur during the send START bit, data bits or STOP bit. User could set (STA, STO, SI, AA) = (1, 0, 1, X) to send START again when bus free, or set (STA, STO, SI, AA) = (0, 0, 1, X) back to not addressed Slave mode.
- When I2CSTATUS = 0x00, a "Bus Error" is received. To recover I<sup>2</sup>C bus from a bus error, STO(I2CON[4]) should be set and SI(I2CON[3]) should be cleared, and then STO(I2CON[4]) is cleared to release bus.
  - Set (STA, STO, SI, AA) = (0, 1, 1, X) to stop current transfer
  - Set (STA, STO, SI, AA) = (0, 0, 1, X) to release bus

## 6.12.5.3f<sup>2</sup>C Protocol Registers

To control I<sup>2</sup>C port through the following fifteen special function registers: I2CON (Control register), I2CSTATUS (Status register), I2CDAT (Data register), I2CADDRn (Address registers, n=0~3),



I2CADMn (Address mask registers, n=0~3), I2CLK (Clock rate register), I2CTOC (Time-out counter register), I2CWKCON(Wake up control register), I2CWKSTS(Wake up status register).

## 6.12.5.3.1 Address Registers (I2CADDR)

The I<sup>2</sup>C port is equipped with four slave address registers, I2CADDRn (n=0~3). The contents of the register are irrelevant when I<sup>2</sup>C is in Master mode. In Slave mode, the bit field I2CADDRn[7:1] must be loaded with the chip's own slave address. The I<sup>2</sup>C hardware will react if the contents of I2CADDRn are matched with the received slave address.

The I<sup>2</sup>C ports support the "General Call" function. If the GC (I2CADDRn[0]) bit is set the I<sup>2</sup>C port hardware will respond to General Call address (0x00). Clear GC bit to disable general call function.

When the GC bit is set and the I<sup>2</sup>C is in Slave mode, it can receive the general call address by 0x00 after Master send general call address to I<sup>2</sup>C bus, then it will follow status of GC mode.

### 6.12.5.3.2 Slave Address Mask Registers (I2CADM)

The  $I^2C$  bus controller supports multiple address recognition with four address mask registers I2CADMn (n=0~3). When the bit in the address mask register is set to 1, it means the received corresponding address bit is "Don't care". If the bit is set to 0, it means the received corresponding register bit should be exactly the same as address register.

#### 6.12.5.3.3 Data Register (I2CDAT)

This register contains a byte of serial data to be transmitted or a byte which just has been received. The CPU can be read from or written to the 8-bit (I2CDAT[7:0]) directly while it is not in the process of shifting a byte. When I<sup>2</sup>C is in a defined state and the SI (I2CON[3]) is set, data in I2CDAT[7:0] remains stable. While data is being shifted out, data on the bus is simultaneously being shifted in; I2CDAT[7:0] always contains the last data byte presented on the bus.

The acknowledge bit is controlled by the I<sup>2</sup>C hardware and cannot be accessed by the CPU. Serial data is shifted into I2CDAT[7:0] on the rising edges of serial clock pulses on the I2Cn\_SCL line. When a byte has been shifted into I2CDAT[7:0], the serial data is available in I2CDAT[7:0], and the acknowledge bit (ACK or NACK) is returned by the control logic during the ninth clock pulse. In order to monitor bus status while sending data, the bus date will be shifted to I2CDAT[7:0] when sending I2CDAT[7:0] to bus. In the case of sending data, serial data bits are shifted out from I2CDAT[7:0] on the falling edge of I2Cn\_SCL clocks, and is shifted to I2CDAT[7:0] on the rising edge of I2Cn\_SCL clocks.




Figure 6.12-15 I<sup>2</sup>C Data Shifting Direction

## 6.12.5.3.4 Control Register (I2CON)

nuvoton

The CPU can be read from and written to I2CON register directly. When the I<sup>2</sup>C port is enabled by setting ENS1 (I2CON[6]) to high, the internal states will be controlled by I2CON and I<sup>2</sup>C logic hardware.

There are two bits are affected by hardware: the SI(I2CON[3]) bit is set when the I2C hardware requests a serial interrupt, and the STO bit is cleared when a STOP condition is present on the bus. The STO(I2CON[4]) bit is also cleared when ENS1(I2CON[6]) = 0.

Once a new status code is generated and stored in I2CSTATUS, the I<sup>2</sup>C Interrupt Flag bit SI will be set automatically. If the Enable Interrupt bit EI (I2CON[7]) is set at this time, the I2C interrupt will be generated. These bit fields I2CSTATUS[7:0] stores the internal state code, the content keeps stable until SI(I2CON[3]) is cleared by software.

#### 6.12.5.3.5 Status Register (I2CSTATUS)

I2CSTATUS[7:0] is an 8-bit read-only register. The bit fields I2CSTATUS[7:0] contains the status code and there are 26 possible status codes. All states are listed in Table 6.12-1 when I2CSTATUS[7:0] is 0xF8, no serial interrupt is requested. All other I2CSTATUS[7:0] values correspond to the defined I2C states. When each of these states is entered, a status interrupt is requested (SI(I2CON[3]) = 1). A valid status code is present in I2CSTATUS[7:0] one cycle after SI set by hardware and is still present one cycle after SI reset by software.

In addition, the state 0x00 stands for a Bus Error, which occurs when a START or STOP condition is present at an incorrect position in the I<sup>2</sup>C format frame. A Bus Error may occur during the serial transfer of an address byte, a data byte or an acknowledge bit. To recover I<sup>2</sup>C from bus error, STO (I2CON[4]) should be set and SI(I2CON[3]) should be cleared to enter Not Addressed Slave mode. Then STO(I2CON[4]) is cleared to release bus and to wait for a new communication. The I<sup>2</sup>C bus cannot recognize stop condition during this action when a bus error occurs.

| Master Mode |                              | Slave Mode | Slave Mode                          |  |  |
|-------------|------------------------------|------------|-------------------------------------|--|--|
| STATUS      | Description                  | STATUS     | Description                         |  |  |
| 0x08        | Start                        | 0xA0       | Slave Transmit Repeat Start or Stop |  |  |
| 0x10        | Master Repeat Start          | 0xA8       | Slave Transmit Address ACK          |  |  |
| 0x18        | Master Transmit Address ACK  | 0xB0       | Slave Transmit Arbitration Lost     |  |  |
| 0x20        | Master Transmit Address NACK | 0xB8       | Slave Transmit Data ACK             |  |  |
| 0x28        | Master Transmit Data ACK     | 0xC0       | Slave Transmit Data NACK            |  |  |
| 0x30        | Master Transmit Data NACK    | 0xC8       | Slave Transmit Last Data ACK        |  |  |
| 0x38        | Master Arbitration Lost      | 0x60       | Slave Receive Address ACK           |  |  |
| 0x40        | Master Receive Address ACK   | 0x68       | Slave Receive Arbitration Lost      |  |  |
| 0x48        | Master Receive Address NACK  | 0x80       | Slave Receive Data ACK              |  |  |
| 0x50        | Master Receive Data ACK      | 0x88       | Slave Receive Data NACK             |  |  |
| 0x58        | Master Receive Data NACK     | 0x70       | GC mode Address ACK                 |  |  |



| 0x00 | Bus error                                                                                          | 0x78 | GC mode Arbitration Lost |
|------|----------------------------------------------------------------------------------------------------|------|--------------------------|
|      |                                                                                                    | 0x90 | GC mode Data ACK         |
|      |                                                                                                    | 0x98 | GC mode Data NACK        |
|      | Bus Released  Note: Status "0xF8" exists in both master/slave modes, and it won't raise interrupt. |      |                          |

Table 6.12-1 I<sup>2</sup>C Status Code Description

### 6.12.5.3.6 Clock Baud Rate Bits (I2CLK)

The data baud rate of I<sup>2</sup>C is determines by I2CLK (I2CLK[7:0]) when I<sup>2</sup>C is in Master Mode, and it is not necessary in a Slave mode. In the Slave mode, I<sup>2</sup>C will automatically synchronize it with any clock frequency from master I<sup>2</sup>C device.

The data baud rate of  $I^2C$  setting is Data Baud Rate of  $I^2C$  = (system clock) / (4x (I2CLK[7:0] +1)). If system clock = 16 MHz, the I2CLK[7:0] = 40 (0x28), the data baud rate of  $I^2C$  = 16 MHz/ (4x (40 +1)) = 97.5 Kbits/sec.

## 6.12.5.3.7 Time-out Counter Register (I2CTOC)

There is a 14-bit time-out counter which can be used to deal with the  $I^2C$  bus hang-up. If the time-out counter is enabled, the counter starts up counting until it overflows (TIF (I2CTOC[0]) = 1) and generates  $I^2C$  interrupt to CPU or stops counting by clearing ENTI(I2CTOC[2]) to 0. When time-out counter is enabled, writing 1 to the SI (I2CON[3]) flag will reset counter and re-start up counting after SI is cleared. If  $I^2C$  bus hangs up, it causes the I2CSTATUS and flag SI (I2CON[3]) are not updated for a period, the 14-bit time-out counter may overflow and acknowledge CPU the  $I^2C$  interrupt. Refer to the Figure 6.12-16 for the 14-bit time-out counter. User may write 1 to clear TIF(I2C\_TOC[0]) to 0.

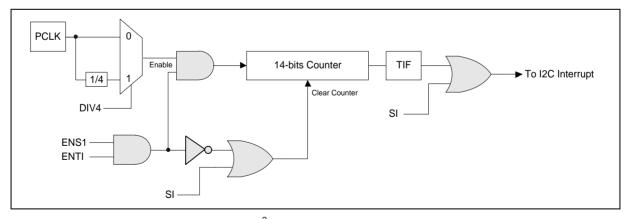



Figure 6.12-16 I<sup>2</sup>C Time-out Count Block Diagram

#### 6.12.5.3.8 Wake-up Control Register (I2CWKUPCON)

When chip enters Power-down mode, other I<sup>2</sup>C master can wake up our chip by addressing our I<sup>2</sup>C device, user must configure the related setting before entering Sleep mode. When the chip is woken-up by address match with one of the four address register, the following data will be abandoned at this time.

### 6.12.5.3.9 Wake-up Status Register (I2CWKUPSTS)

When system is woken up by other I<sup>2</sup>C master device, WKUPIF (I2CWKUPSTS[0]) is set to indicate this event. User needs write "1" to clear this bit.

### 6.12.6 Example for Random Read on EEPROM

The following steps are used to configure the I2C0 related registers when using I<sup>2</sup>C to read data from EEPROM.

- 1. Set the multi-function pin in the "GPA MFP" registers as I2C0\_SCL and I2C0\_SDA pins.
- 2. Enable I2C APB clock by setting I2C0\_EN (APBCLK[8]).
- 3. Set I2C0\_RST (IPRSTC2[8]) = 1 to reset I2C controller then set I2C controller to normal operation by setting I2C0\_RST (IPRSTC2[8]) = 0;
- 4. Set ENS1 (I2CON[6])=1 to enable I2C0 controller.
- 5. Write a divided value by setting I2CLK register for I2C clock rate.
- 6. Set SETENA (NVIC ISER[31:0])=0x00040000 in the "NVIC ISER" register to set I2C0 IRQ.
- 7. Set EI (I2CON[7])=1 to enable I2C0 Interrupt.
- 8. Set I2C0 address registers which are "I2CADDR0~I2CADDR3".

Random read operation is one of the methods of access EEPROM. The method allows the master to access any address of EEPROM space. The Figure 6.12-17 shows the EEPROM random read operation.

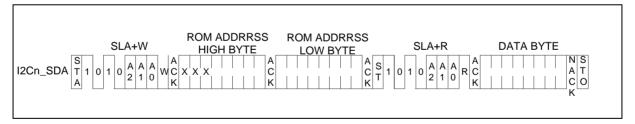
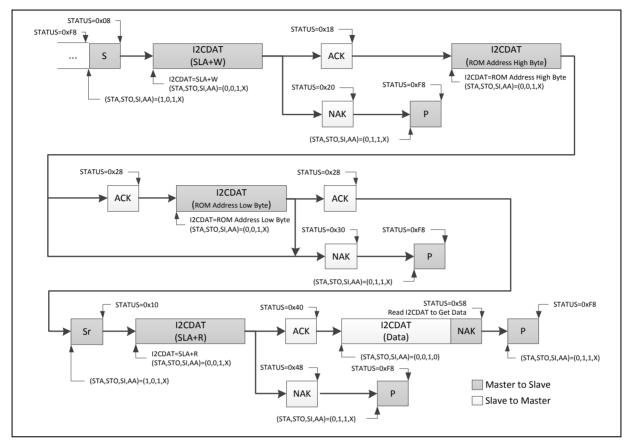




Figure 6.12-17 EEPROM Random Read

The Figure 6.12-18 shows how to use I<sup>2</sup>C controller to implement the protocol of EEPROM random read.



nuvoton

Figure 6.12-18 Protocol of EEPROM Random Read

The I<sup>2</sup>C controller sends START to bus to be a master. Then it sends a SLA+W (Slave address + Write bit) to EERPOM followed by two bytes data address to set the EEPROM address to read. Finally, a Repeat START followed by SLA+R is sent to read the data from EEPROM.

## 6.12.7 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

| Register                                                                 | Offset       | R/W | Description                                   | Reset Value |
|--------------------------------------------------------------------------|--------------|-----|-----------------------------------------------|-------------|
| I <sup>2</sup> C Base Address:<br>I2C0_BA = 0x4002_<br>I2C1_BA = 0x4012_ | _            |     |                                               |             |
| I2CON<br>n=0,1                                                           | I2Cn_BA+0x00 | R/W | I <sup>2</sup> C Control Register             | 0x0000_0000 |
| I2CADDR0<br>n=0,1                                                        | I2Cn_BA+0x04 | R/W | I <sup>2</sup> C Slave Address Register0      | 0x0000_0000 |
| I2CDAT<br>n=0,1                                                          | I2Cn_BA+0x08 | R/W | I <sup>2</sup> C Data Register                | 0x0000_0000 |
| I2CSTATUS<br>n=0,1                                                       | I2Cn_BA+0x0C | R   | I <sup>2</sup> C Status Register              | 0x0000_00F8 |
| I2CLK<br>n=0,1                                                           | I2Cn_BA+0x10 | R/W | I <sup>2</sup> C Clock Divided Register       | 0x0000_0000 |
| I2CTOC<br>n=0,1                                                          | I2Cn_BA+0x14 | R/W | I <sup>2</sup> C Time-out Counter Register    | 0x0000_0000 |
| I2CADDR1<br>n=0,1                                                        | I2Cn_BA+0x18 | R/W | I <sup>2</sup> C Slave Address Register1      | 0x0000_0000 |
| I2CADDR2<br>n=0,1                                                        | I2Cn_BA+0x1C | R/W | I <sup>2</sup> C Slave Address Register2      | 0x0000_0000 |
| I2CADDR3<br>n=0,1                                                        | I2Cn_BA+0x20 | R/W | I <sup>2</sup> C Slave Address Register3      | 0x0000_0000 |
| I2CADM0<br>n=0,1                                                         | I2Cn_BA+0x24 | R/W | I <sup>2</sup> C Slave Address Mask Register0 | 0x0000_0000 |
| I2CADM1<br>n=0,1                                                         | I2Cn_BA+0x28 | R/W | I <sup>2</sup> C Slave Address Mask Register1 | 0x0000_0000 |
| I2CADM2<br>n=0,1                                                         | I2Cn_BA+0x2C | R/W | I <sup>2</sup> C Slave Address Mask Register2 | 0x0000_0000 |
| I2CADM3<br>n=0,1                                                         | I2Cn_BA+0x30 | R/W | I <sup>2</sup> C Slave Address Mask Register3 | 0x0000_0000 |
| I2CWKUPCON<br>n=0,1                                                      | I2Cn_BA+0x3C | R/W | I <sup>2</sup> C Wake-up Control Register     | 0x0000_0000 |
| I2CWKUPSTS<br>n=0,1                                                      | I2Cn_BA+0x40 | R/W | I <sup>2</sup> C Wake-up Status Register      | 0x0000_0000 |



# 6.12.8 Register Description

# I<sup>2</sup>C Control Register (I2CON)

| Register       | Offset       | R/W | Description                       | Reset Value |
|----------------|--------------|-----|-----------------------------------|-------------|
| I2CON<br>n=0,1 | I2Cn_BA+0x00 | R/W | I <sup>2</sup> C Control Register | 0x0000_0000 |

| 31       | 30       | 29  | 28  | 27 | 26 | 25       | 24 |  |  |
|----------|----------|-----|-----|----|----|----------|----|--|--|
| Reserved |          |     |     |    |    |          |    |  |  |
| 23       | 22       | 21  | 20  | 19 | 18 | 17       | 16 |  |  |
|          | Reserved |     |     |    |    |          |    |  |  |
| 15       | 14       | 13  | 12  | 11 | 10 | 9        | 8  |  |  |
|          | Reserved |     |     |    |    |          |    |  |  |
| 7        | 6        | 5   | 4   | 3  | 2  | 1        | 0  |  |  |
| El       | ENS1     | STA | sто | SI | AA | Reserved |    |  |  |

| Bits   | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| [7]    | EI          | Interrupt Enable Control  0 = I <sup>2</sup> C interrupt Disabled.  1 = I <sup>2</sup> C interrupt Enabled.                                                                                                                                                                                                                                                                                                                                                    |
| [6]    | ENS1        | I <sup>2</sup> C Controller Enable Control  0 = Disabled.  1 = Enabled.  Set to enable I <sup>2</sup> C serial function controller. When ENS1=1 the I <sup>2</sup> C serial function enables. The multi-function pin function of I2Cn_SDA and I2Cn_SCL must set to I <sup>2</sup> C function first.                                                                                                                                                            |
| [5]    | STA         | I <sup>2</sup> C START Control  Setting STA to logic 1 to enter Master mode, the I <sup>2</sup> C hardware sends a START or repeat START condition to bus when the bus is free.                                                                                                                                                                                                                                                                                |
| [4]    | sто         | I <sup>2</sup> C STOP Control  In Master mode, setting STO to transmit a STOP condition to bus then I <sup>2</sup> C hardware will check the bus condition if a STOP condition is detected this bit will be cleared by hardware automatically. In a slave mode, setting STO resets I <sup>2</sup> C hardware to the defined "not addressed" slave mode. This means it is NO LONGER in the slave receiver mode to receive data from the master transmit device. |
| [3]    | SI          | I <sup>2</sup> C Interrupt Flag  When a new I <sup>2</sup> C state is present in the I2CSTATUS register, the SI flag is set by hardware, and if bit EI (I2CON[7]) is set, the I <sup>2</sup> C interrupt is requested. SI must be cleared by software. Clear SI by writing 1 to this bit.                                                                                                                                                                      |
| [2]    | AA          | Assert Acknowledge Control  When AA =1 prior to address or data received, an acknowledged (low level to I2Cn_SDA) will be returned during the acknowledge clock pulse on the I2Cn_SCL line when 1.) A slave is acknowledging the address sent from master, 2.) The receiver devices are                                                                                                                                                                        |

nuvoTon

| а     |          | acknowledging the data sent by transmitter. When AA=0 prior to address or data received, a Not acknowledged (high level to I2Cn_SDA) will be returned during the acknowledge clock pulse on the I2Cn_SCL line. |
|-------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [1:0] | Reserved | Reserved.                                                                                                                                                                                                      |



# I<sup>2</sup>C Data Register (I2CDAT)

| Register        | Offset       | R/W | Description                    | Reset Value |
|-----------------|--------------|-----|--------------------------------|-------------|
| I2CDAT<br>n=0,1 | I2Cn_BA+0x08 | R/W | I <sup>2</sup> C Data Register | 0x0000_0000 |

| 31       | 30              | 29 | 28 | 27 | 26 | 25 | 24 |  |  |
|----------|-----------------|----|----|----|----|----|----|--|--|
| Reserved |                 |    |    |    |    |    |    |  |  |
| 23       | 22              | 21 | 20 | 19 | 18 | 17 | 16 |  |  |
|          | Reserved        |    |    |    |    |    |    |  |  |
| 15       | 14              | 13 | 12 | 11 | 10 | 9  | 8  |  |  |
|          | Reserved        |    |    |    |    |    |    |  |  |
| 7        | 7 6 5 4 3 2 1 0 |    |    |    |    |    |    |  |  |
|          | I2CDAT          |    |    |    |    |    |    |  |  |

| Bits   | Description        |                                                                                                                       |  |  |  |
|--------|--------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:8] | Reserved Reserved. |                                                                                                                       |  |  |  |
| [7:0]  | H2CDAT             | I <sup>2</sup> C Data Register This field is located with the 8-bit transferred data of I <sup>2</sup> C serial port. |  |  |  |



# I<sup>2</sup>C Status Register (I2CSTATUS)

| Register           | Offset       | R/W | Description                      | Reset Value |
|--------------------|--------------|-----|----------------------------------|-------------|
| I2CSTATUS<br>n=0,1 | I2Cn_BA+0x0C | R   | I <sup>2</sup> C Status Register | 0x0000_00F8 |

| 31       | 30              | 29 | 28 | 27 | 26 | 25 | 24 |  |  |
|----------|-----------------|----|----|----|----|----|----|--|--|
| Reserved |                 |    |    |    |    |    |    |  |  |
| 23       | 22              | 21 | 20 | 19 | 18 | 17 | 16 |  |  |
|          | Reserved        |    |    |    |    |    |    |  |  |
| 15       | 14              | 13 | 12 | 11 | 10 | 9  | 8  |  |  |
|          | Reserved        |    |    |    |    |    |    |  |  |
| 7        | 7 6 5 4 3 2 1 0 |    |    |    |    |    |    |  |  |
|          | I2CSTATUS       |    |    |    |    |    |    |  |  |

| Bits   | Description | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:8] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |
| [7:0]  | 12CSTATUS   | I <sup>2</sup> C Status Register  There are 26 possible status codes.  When I2CSTATUS contains 0xF8, no serial interrupt is requested.  All other I2CSTATUS values correspond to defined I <sup>2</sup> C states. When each of these states is entered, a status interrupt is requested (SI (I2CON[3])= 1). A valid status code is present in I2CSTATUS one cycle after SI is set by hardware and is still present one cycle after SI has been reset by software.  In addition, states 0x00 stands for a Bus Error. A Bus Error occurs when a START or STOP condition is present at an illegal position in the formation frame. Example of illegal position are during the serial transfer of an address byte, a data byte or an acknowledge bit. |  |  |  |  |  |



# I<sup>2</sup>C Clock Divided Register (I2CLK)

| Register       | Offset       | R/W | Description                             | Reset Value |
|----------------|--------------|-----|-----------------------------------------|-------------|
| I2CLK<br>n=0,1 | I2Cn_BA+0x10 | R/W | I <sup>2</sup> C Clock Divided Register | 0x0000_0000 |

| 31       | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|----------|----------|----|----|----|----|----|----|--|--|--|
|          | Reserved |    |    |    |    |    |    |  |  |  |
| 23       | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|          | Reserved |    |    |    |    |    |    |  |  |  |
| 15       | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
| Reserved |          |    |    |    |    |    |    |  |  |  |
| 7        | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|          | I2CLK    |    |    |    |    |    |    |  |  |  |

| Bits   | Description        |                                                                                                                                                                |  |  |
|--------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:8] | Reserved Reserved. |                                                                                                                                                                |  |  |
| [7:0]  | I2CLK              | $I^2C$ Clock Divided Register The $I^2C$ clock rate bits: Data Baud Rate of $I^2C$ = (system clock) / (4 * (I2CLK+1)).  Note: The minimum value of I2CLK is 4. |  |  |

# I<sup>2</sup>C Time-out Counter Register (I2CTOC)

nuvoTon

| Register        | Offset       | R/W | Description                                | Reset Value |
|-----------------|--------------|-----|--------------------------------------------|-------------|
| I2CTOC<br>n=0,1 | I2Cn_BA+0x14 | R/W | I <sup>2</sup> C Time-out Counter Register | 0x0000_0000 |

| 31 | 30       | 29 | 28 | 27 | 26 | 25   | 24  |  |  |  |
|----|----------|----|----|----|----|------|-----|--|--|--|
|    | Reserved |    |    |    |    |      |     |  |  |  |
| 23 | 22       | 21 | 20 | 19 | 18 | 17   | 16  |  |  |  |
|    | Reserved |    |    |    |    |      |     |  |  |  |
| 15 | 14       | 13 | 12 | 11 | 10 | 9    | 8   |  |  |  |
|    | Reserved |    |    |    |    |      |     |  |  |  |
| 7  | 6        | 5  | 4  | 3  | 2  | 1    | 0   |  |  |  |
|    | Reserved |    |    |    |    | DIV4 | TIF |  |  |  |

| Bits   | Description |                                                                                                                                                                                                                                                                             |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:3] | Reserved    | Reserved.                                                                                                                                                                                                                                                                   |
| [2]    | ENTI        | Time-Out Counter Enable Control  0 = Disabled.  1 = Enabled.  When Enabled, the 14-bit time-out counter will start counting when SI (I2CON[3]) is clear. Setting flag SI SI(I2CON[3]) to high will reset counter and re-start up counting after SI SI(I2CON[3]) is cleared. |
| [1]    | DIV4        | Time-Out Counter Input Clock Divided By 4  0 = Disabled.  1 = Enabled.  When Enabled, The time-out period is extend 4 times.                                                                                                                                                |
| [0]    | TIF         | Time-Out Flag  This bit is set by hardware when I <sup>2</sup> C time-out happened and it can interrupt CPU if I <sup>2</sup> C interrupt enable bit EI (I2CON[7]) is set to 1.  Note: Write 1 to clear this bit.                                                           |



## I<sup>2</sup>C Slave Address Register (I2CADDRx)

| Register          | Offset       | R/W | Description                              | Reset Value |
|-------------------|--------------|-----|------------------------------------------|-------------|
| I2CADDR0<br>n=0,1 | I2Cn_BA+0x04 | R/W | I <sup>2</sup> C Slave Address Register0 | 0x0000_0000 |
| I2CADDR1<br>n=0,1 | I2Cn_BA+0x18 | R/W | I <sup>2</sup> C Slave Address Register1 | 0x0000_0000 |
| I2CADDR2<br>n=0,1 | I2Cn_BA+0x1C | R/W | I <sup>2</sup> C Slave Address Register2 | 0x0000_0000 |
| I2CADDR3<br>n=0,1 | I2Cn_BA+0x20 | R/W | I <sup>2</sup> C Slave Address Register3 | 0x0000_0000 |

| 31       | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|----------|----------|----|----|----|----|----|----|--|--|--|
|          | Reserved |    |    |    |    |    |    |  |  |  |
| 23       | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
| Reserved |          |    |    |    |    |    |    |  |  |  |
| 15       | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
| Reserved |          |    |    |    |    |    |    |  |  |  |
| 7        | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
| I2CADDR  |          |    |    |    |    |    | GC |  |  |  |

| Bits   | Description | Description                                                                                                                                                                                                                                                                                         |  |  |  |
|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:8] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                           |  |  |  |
| [7:1]  | I2CADDR     | I <sup>2</sup> C Address Register  The content of this register is irrelevant when I <sup>2</sup> C is in Master mode. In the slave mode, the seven most significant bits must be loaded with the chip's own address. The I <sup>2</sup> C hardware will react if either of the address is matched. |  |  |  |
| [0]    | GC          | General Call Function  0 = General Call Function Disabled.  1 = General Call Function Enabled.                                                                                                                                                                                                      |  |  |  |



# I<sup>2</sup>C Slave Address Mask Register (I2CADMx)

| Register         | Offset       | R/W | Description                                   | Reset Value |
|------------------|--------------|-----|-----------------------------------------------|-------------|
| I2CADM0<br>n=0,1 | I2Cn_BA+0x24 | R/W | I <sup>2</sup> C Slave Address Mask Register0 | 0x0000_0000 |
| I2CADM1<br>n=0,1 | I2Cn_BA+0x28 | R/W | I <sup>2</sup> C Slave Address Mask Register1 | 0x0000_0000 |
| I2CADM2<br>n=0,1 | I2Cn_BA+0x2C | R/W | I <sup>2</sup> C Slave Address Mask Register2 | 0x0000_0000 |
| I2CADM3<br>n=0,1 | I2Cn_BA+0x30 | R/W | I <sup>2</sup> C Slave Address Mask Register3 | 0x0000_0000 |

| 31       | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |  |
|----------|----------|----|----|----|----|----|----|--|--|
| Reserved |          |    |    |    |    |    |    |  |  |
| 23       | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |  |
|          | Reserved |    |    |    |    |    |    |  |  |
| 15       | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |  |
|          | Reserved |    |    |    |    |    |    |  |  |
| 7        | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |  |
|          | 12CADM   |    |    |    |    |    |    |  |  |

| Bits   | Description |                                                                                                                                                                                                                                                                                                                                                            |
|--------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                  |
|        |             | I <sup>2</sup> C Address Mask Register                                                                                                                                                                                                                                                                                                                     |
|        |             | 0 = Mask Disabled (the received corresponding register bit should be exact the same as address register.).                                                                                                                                                                                                                                                 |
| [7:1]  | I2CADM      | 1 = Mask Enabled (the received corresponding address bit is don't care.).                                                                                                                                                                                                                                                                                  |
|        |             | I <sup>2</sup> C bus controllers support multiple address recognition with four address mask register. When the bit in the address mask register is set to one, it means the received corresponding address bit is don't-care. If the bit is set to zero, that means the received corresponding register bit should be exact the same as address register. |
| [0]    | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                  |



# I<sup>2</sup>C Wake-up Control Register (I2CWKUPCON)

| Register            | Offset       | R/W | Description                               | Reset Value |
|---------------------|--------------|-----|-------------------------------------------|-------------|
| I2CWKUPCON<br>n=0,1 | I2Cn_BA+0x3C | R/W | I <sup>2</sup> C Wake-up Control Register | 0x0000_0000 |

| 31 | 30            | 29 | 28       | 27    | 26 | 25 | 24     |  |
|----|---------------|----|----------|-------|----|----|--------|--|
|    |               |    | Rese     | erved |    |    |        |  |
| 23 | 22            | 21 | 20       | 19    | 18 | 17 | 16     |  |
|    | Reserved      |    |          |       |    |    |        |  |
| 15 | 14            | 13 | 12       | 11    | 10 | 9  | 8      |  |
|    |               |    | Rese     | erved |    |    |        |  |
| 7  | 7 6 5 4 3 2 1 |    |          |       |    |    |        |  |
|    |               |    | Reserved |       |    |    | WKUPEN |  |

| Bits   | Description | escription                                                                                                                             |  |  |  |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:1] | Reserved    | Reserved.                                                                                                                              |  |  |  |
| [0]    | WKUPEN      | I <sup>2</sup> C Wake-Up Enable Control 0 = I <sup>2</sup> C wake-up function Disabled. 1 = I <sup>2</sup> C wake-up function Enabled. |  |  |  |



# I<sup>2</sup>C Wake-up Status Register (I2CWKUPSTS)

| Register            | Offset       | R/W | Description                              | Reset Value |
|---------------------|--------------|-----|------------------------------------------|-------------|
| I2CWKUPSTS<br>n=0,1 | I2Cn_BA+0x40 | R/W | I <sup>2</sup> C Wake-up Status Register | 0x0000_0000 |

| 31 | 30                  | 29 | 28       | 27    | 26 | 25 | 24     |  |
|----|---------------------|----|----------|-------|----|----|--------|--|
|    |                     |    | Rese     | erved |    |    |        |  |
| 23 | 22                  | 21 | 20       | 19    | 18 | 17 | 16     |  |
|    | Reserved            |    |          |       |    |    |        |  |
| 15 | 15 14 13 12 11 10 9 |    |          |       |    |    |        |  |
|    | Reserved            |    |          |       |    |    |        |  |
| 7  | 7 6 5 4 3 2 1       |    |          |       |    |    |        |  |
|    |                     |    | Reserved |       |    |    | WKUPIF |  |

| Bits   | Description | escription                                                                                                                                                                                                     |  |  |
|--------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:1] | Reserved    | Reserved.                                                                                                                                                                                                      |  |  |
| [0]    | WKUPIF      | I <sup>2</sup> C Wake-Up Flag 0 = Chip is not woken-up from Power-down mode by I <sup>2</sup> C. 1 = Chip is woken-up from Power-down mode by I <sup>2</sup> C.  Note: Software can write 1 to clear this bit. |  |  |

### 6.13 Serial Peripheral Interface (SPI)

#### 6.13.1 Overview

nuvoTon

The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol that operates in full duplex mode. Devices communicate in Master/Slave mode with the 4-wire bi-direction interface. The NuMicro® NUC131 series contains one set of SPI controllers performing a serial-to-parallel conversion on data received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. This SPI controller can be configured as a master or a slave device.

The SPI controller supports the variable bus clock function for special applications.

#### **6.13.2 Features**

- One set of SPI controller
- Supports Master or Slave mode operation
- Supports Dual I/O Transfer mode
- Configurable bit length of a transaction word from 8 to 32 bits
- Provides separate 8-layer depth transmit and receive FIFO buffers
- Supports MSB first or LSB first transfer sequence
- Supports the Byte Reorder function
- Supports Byte or Word Suspend mode
- Variable output bus clock frequency in Master mode
- Supports 3-wire, no slave select signal, bi-direction interface

### 6.13.3 Block Diagram

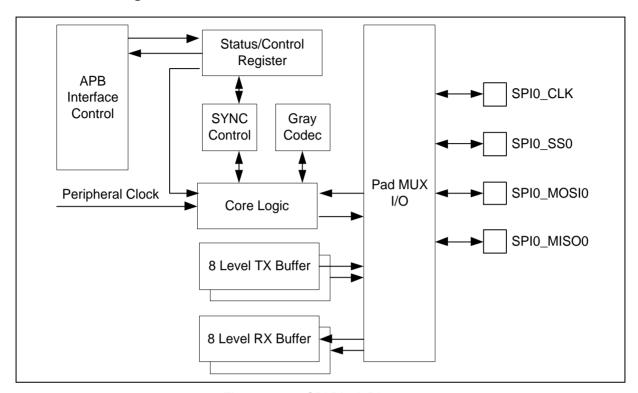



Figure 6.13-1 SPI Block Diagram

### 6.13.4 Basic Configuration

The basic configurations of SPI0 are as follows:

- SPI0 pin functions are configured in ALT\_MFP, GPB\_MFP and GPC\_MFP registers.
- Select the source of SPI0 peripheral clock on SPI0\_S (CLKSEL1[4]).
- Enable SPI0 peripheral clock on SPI0\_EN (APBCLK[12]).
- Reset SPI0 controller on SPI0\_RST (IPRSC2[12]).

### 6.13.5 Functional Description

### 6.13.5.1 Terminology

### SPI Peripheral Clock and SPI Bus Clock

The SPI controller needs the SPI peripheral clock to drive the SPI logic unit to perform the data transfer. The SPI bus clock is the clock presented on SPI0\_CLK pin.

The SPI peripheral clock rate is determined by the settings of clock source, BCn option and clock divisor. The SPI0\_S bit of CLKSEL1 register determines the clock source of the SPI peripheral clock. The clock source can be HCLK or PLL output clock. Set the BCn bit of SPI\_CNTRL2 register to 0 for the compatible SPI clock rate calculation of previous products. DIVIDER (SPI\_DIVIDER[7:0]) setting determines the divisor of the clock rate calculation.

In Master mode, if the variable clock function is disabled, the output frequency of the SPI bus clock output pin is equal to the SPI peripheral clock rate. In general, the SPI bus clock is denoted as SPI clock. In Slave mode, the SPI bus clock is provided by an off-chip master device. The SPI peripheral clock rate of slave device must be faster than the SPI bus clock rate of the master device connected together. The frequency of SPI peripheral clock cannot be faster than the APB clock rate regardless of Master or Slave mode.

#### Master/Slave Mode

nuvoton

The SPI controller can be set as Master or Slave mode by setting SLAVE (SPI\_CNTRL[18]) to communicate with the off-chip SPI Slave or Master device. The application block diagrams in Master and Slave mode are shown in Figure 6.13-2 and Figure 6.13-3.

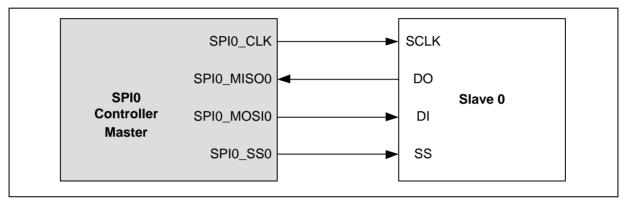



Figure 6.13-2 SPI Master Mode Application Block Diagram

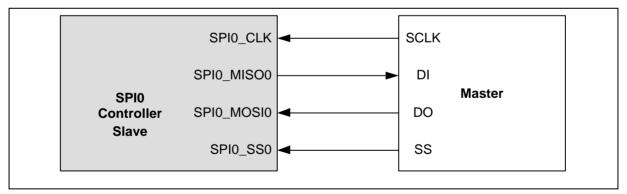



Figure 6.13-3 SPI Slave Mode Application Block Diagram

### **Clock Polarity**

The CLKP (SPI\_CTL[11]) defines the bus clock idle state. If CLKP = 1, the SPI0\_CLK output is high at idle state, otherwise it is low at idle state if CLKP = 0.

### Transmit/Receive Bit Length

The bit length of a transaction word is defined in TX\_BIT\_LEN bit field (SPI\_CNTRL[7:3]). It can be configured up to 32-bit length in a transaction word for transmitting and receiving.

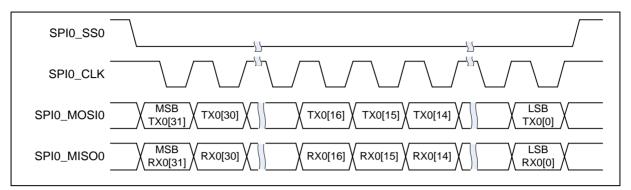



Figure 6.13-4 32-Bit in One Transaction (Master Mode)

### LSB/MSB First

LSB (SPI\_CNTRL[10]) defines the bit transfer sequence in a transaction. If the LSB bit (SPI\_CNTRL[10]) is set to 1, the transfer sequence is LSB first. The bit 0 will be transferred firstly. If the LSB bit (SPI\_CNTRL[10]) is cleared to 0, the transfer sequence is MSB first.

### **Transmit Edge**

TX\_NEG (SPI\_CNTRL[2]) defines the data transmitted out either on negative edge or on positive edge of SPI bus clock.

### Receive Edge

RX\_NEG (SPI\_CNTRL[1]) defines the data received either on negative edge or on positive edge of SPI clock.

**Note:** The settings of TX\_NEG (SPI\_CNTRL[2]) and RX\_NEG (SPI\_CNTRL[1]) are mutual exclusive. In other words, do not transmit and receive data on the same clock edge.

### **Word Suspend**

SP\_CYCLE (SPI\_CNTRL[15:12]) provide a configurable suspend interval, 0.5 ~ 15.5 SPI clock periods, between two successive transaction words in Master mode. The definition of the suspend interval is the duration between the last clock edge of the preceding transaction word and the first clock edge of the following transaction word. The default value of SP\_CYCLE (SPI\_CNTRL[15:12]) is 0x3 (3.5 SPI bus clock cycles). This SP\_CYCLE (SPI\_CNTRL[15:12]) setting will not take effect to the word suspend interval if FIFO mode is disabled by software.

If both VARCLK\_EN (SPI\_CNTRL[23]) and FIFO (SPI\_CNTRL[21]) bits are set to 1, the minimum word suspend period is (6.5 + SP\_CYCLE)\*SPI clock period.

### Slave Selection

In Master mode, this SPI controller can drive off-chip slave device through the slave select output pin SPI0\_SS0. In Slave mode, the off-chip master device drives the slave select signal from the SPI0\_SS0 input pin to this SPI controller. In Master and Slave mode, the active state of slave select signal can be programmed to low or high active in SS\_LVL (SPI\_SSR[2]), and SS\_LTRIG (SPI\_SSR[4]) defines the slave select signal SPI0\_SS0 is level-triggered or edge-triggered. The selection of trigger conditions depends on what type of peripheral slave/master device is connected.

In Slave mode, if the SS\_LTRIG bit is configured as level trigger, the LTRIG\_FLAG (SPI\_SSR[5]) is used to indicate if the received bits among one transaction meets the requirement defined in TX\_BIT\_LEN (SPI\_CNTRL[7:3]).

## Level-trigger/Edge-trigger

nuvoton

In Slave mode, the slave select signal can be configured as level-trigger or edge-trigger. In edge-trigger, the data transfer starts from an active edge and ends on an inactive edge of the slave select signal. The unit-transfer interrupt flag (SPI\_CNTRL[16]) will be set to 1 as an inactive edge is detected. If the master does not send an inactive edge to slave, the transfer procedure will not be completed and the unit transfer interrupt flag of slave will not be set. In level-trigger, the unit-transfer interrupt flag of slave will be set when one of the following two conditions occurs. The first condition is that if the number of transferred bits matches the settings of TX\_BIT\_LEN (SPI\_CNTRL[7:3]), the unit transfer interrupt flag of slave will be set. As to the second condition, if the master set the slave select pin to inactive level during the transfer is in progress, it will force slave device to terminate the current transfer no matter how many bits have been transferred and the unit transfer interrupt flag will be set. User can read the status of LTRIG\_FLAG bit (SPI\_SSR[5]) to check if the data has been completely transferred.

#### 6.13.5.2 Automatic Slave Selection

In Master mode, if AUTOSS (SPI\_SSR[3]) is set to 1, the slave select signal will be generated automatically and output to the SPI0\_SS0 pin according to whether SSR[0] (SPI\_SSR[0]) is enabled or not. This means that the slave select signal, which is selected in SSR[0], will be asserted by the SPI controller when the SPI data transfer is started by setting the GO\_BUSY bit (SPI\_CNTRL[0]) and will be de-asserted after the data transfer is finished. If the AUTOSS bit (SPI\_SSR[3]) is cleared, the slave select output signal will be asserted/de-asserted by setting/clearing the bit of SPI\_SSR[0]. The active state of the slave select output signal is specified in SS\_LVL (SPI\_SSR[2]).

In Master mode, if the value of SP\_CYCLE[3:0] is less than 3 and the AUTOSS is set as 1, the slave select signal will be kept in active state between two successive transactions.

In Slave mode, to recognize the inactive state of the slave select signal, the inactive period of the slave select signal must be larger than or equal to 6 peripheral clock periods between two successive transactions.

### 6.13.5.3 Variable Bus Clock Frequency

In Master mode, if VARCLK\_EN (SPI\_CNTRL[23]) is set to 1, the output of SPI clock can be programmed as variable frequency pattern. The SPI clock period of each cycle depends on the setting of the SPI\_VARCLK register. When the variable clock function is enabled, the TX\_BIT\_LEN (SPI\_CNTRL[7:3]) setting must be set as 0x10 to configure the data transfer as 16-bit transfer mode. The SPI\_VARCLK[31] determines the clock period of the first clock cycle. If SPI\_VARCLK[31] is 0, the first clock cycle depends on the DIVIDER (SPI\_DIVIDER[7:0]) setting; if it is 1, the first clock cycle depends on the DIVIDER2 (SPI\_DIVIDER[23:16]) setting. Two successive bits in SPI\_VARCLK[30:1] defines one clock cycle. If the two successive bits are 00, the clock cycle depends on the DIVIDER (SPI\_DIVIDER[7:0]) setting; if they are 11, the clock cycle depends on the DIVIDER2 (SPI\_DIVIDER[23:16]) setting. The bit field SPI\_VARCLK[30:29] defines the second clock cycle of SPI clock of a transaction, and the bit field SPI\_VARCLK[28:27] defines the third clock cycle, and so on. The VARCLK[0] has no meaning. The Figure 6.13-5 shows the timing relationship among the SPI bus clock, the SPI\_VARCLK setting, the DIVIDER (SPI\_DIVIDER[7:0]) setting and the DIVIDER2 (SPI\_DIVIDER[23:16]) setting.

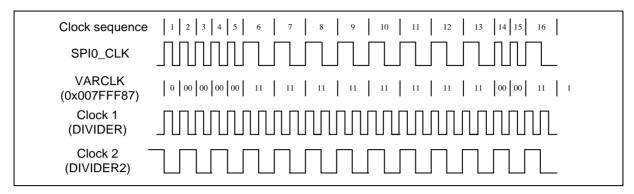



Figure 6.13-5 Variable Bus Clock Frequency

### 6.13.5.4 Byte Reorder Function

When the transfer is set as MSB first (LSB (SPI\_CNTRL[10]) = 0) and the REORDER bit (SPI\_CNTRL[19]) is set to 1, the data stored in the TX buffer and RX buffer will be rearranged in the order as [Byte0, Byte1, Byte2, Byte3] in 32-bit Transfer mode (TX\_BIT\_LEN (SPI\_CNTRL[7:3]) = 0). The sequence of transmitted/received data will be Byte0, Byte1, Byte2, and then Byte3. If the TX\_BIT\_LEN (SPI\_CNTRL[7:3]) is set as 24-bit transfer mode, the data in TX buffer and RX buffer will be rearranged as [unknown byte, Byte0, Byte1, Byte2]. The SPI controller will transmit/receive data with the sequence of Byte0, Byte1 and then Byte2. Each byte will be transmitted/received with MSB first. The rule of 16-bit mode is the same as above. Byte Reorder function is only available when TX\_BIT\_LEN (SPI\_CNTRL[7:3]) is configured as 16, 24, and 32 bits.

Note: The Byte Reorder function is not supported when the variable bus clock function is enabled.

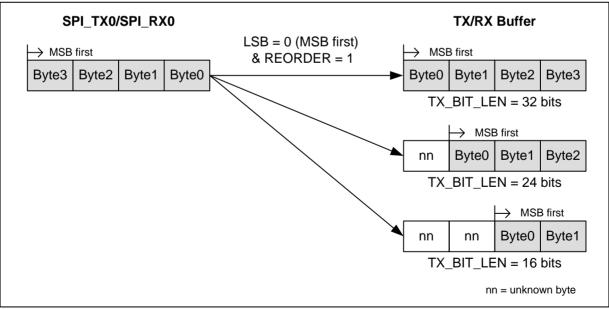



Figure 6.13-6 Byte Reorder Function

### 6.13.5.5 Byte Suspend Function

In Master mode, if REORDER (SPI\_CNTRL[19]) is set to 1, a suspend interval of 0.5 ~ 15.5 SPI clock

periods will be inserted by hardware between two successive bytes in a transaction word. Both settings of byte suspend interval and word suspend interval are configured in SP CYCLE (SPI CNTRL[15:12]).

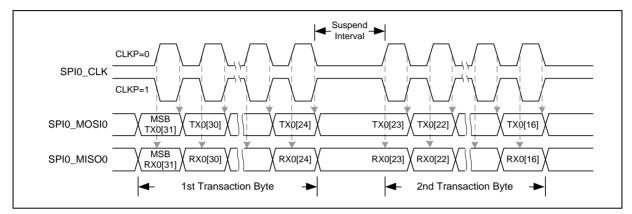



Figure 6.13-7 Timing Waveform for Byte Suspend (Master Mode)

#### 6.13.5.6 Slave 3-wire Mode

nuvoton

When NOSLVSEL (SPI CNTRL2[8]) is set by software to enable the Slave 3-wire mode, the SPI controller can work with no slave select signal in Slave mode. The NOSLVSEL bit (SPI CNTRL2[8]) only takes effect in Slave mode. Only three pins, SPI0 CLK, SPI0 MISO0 and SPI0 MOSI0, are required to communicate with a SPI master. The SPI0 SS pin can be configured as a GPIO. When the NOSLVSEL bit (SPI\_CNTRL2[8]) is set to 1, the SPI slave will be ready to transmit/receive data after the GO BUSY bit (SPI CNTRL[0]) is set to 1. As the number of received bits meets the requirement which defined in TX BIT LEN (SPI CNTRL[7:3]), the unit-transfer interrupt flag, IF (SPI CNTRL[16]), will be set to 1.

Note: In Slave 3-wire mode, the SS LTRIG (SPI SSR[4]) should be set as 1.

#### 6.13.5.7 Dual I/O Mode

The SPI controller also supports Dual I/O transfer when setting the DUAL IO EN (SPI CNTRL2[13]) to 1. Many general SPI flashes support Dual I/O transfer. The DUAL\_IO\_DIR (SPI\_CNTRL2[12]) is used to define the direction of the transfer data. When the DUAL\_IO\_DIR bit is set to 1, the controller will send the data to external device. When the DUAL IO DIR bit is set to 0, the controller will read the data from the external device. This function supports 8, 16, 24, and 32-bit data transfer.

The Dual I/O mode is not supported when the Slave 3-wire mode or the Byte Reorder function is enabled.

If both the DUAL\_IO\_EN (SPI\_CNTRL2[13]) and DUAL\_IO\_DIR (SPI\_CNTRL2[12]) bits are set as 1, the SPI0\_MOSI0 is the even bit data output and the SPI0\_MISO0 will be set as the odd bit data output. If the DUAL IO EN (SPI CNTRL2[13]) is set as 1 and DUAL IO DIR (SPI CNTRL2[12]) is set as 0, both the SPI0\_MISO0 and SPI0\_MOSI0 will be set as data input ports.

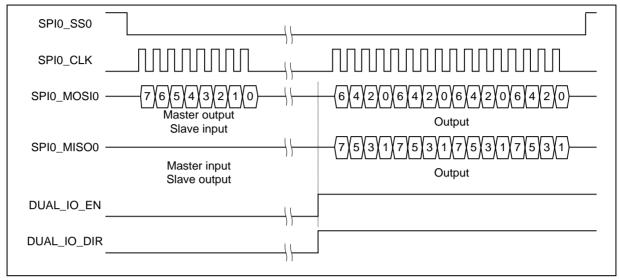



Figure 6.13-8 Bit Sequence of Dual Output Mode

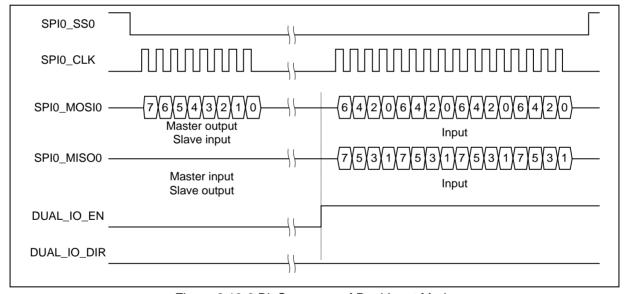



Figure 6.13-9 Bit Sequence of Dual Input Mode

### 6.13.5.8 FIFO Mode

nuvoton

The SPI controller supports FIFO mode when the FIFO bit in SPI\_CNTRL[21] is set as 1. The SPI controller equip with eight 32-bit wide transmit and receive FIFO buffers.

The transmit FIFO buffer is an 8-layer depth, 32-bit wide, first-in, first-out register buffer. Data can be written to the transmit FIFO buffer through software by writing the SPI\_TX0 register. The data stored in the transmit FIFO buffer will be read and sent out by the transmission control logic. If the 8-layer transmit FIFO buffer is full, the TX\_FULL bit (SPI\_STATUS[27]) will be set to 1. When the SPI transmission logic unit draws out the last datum of the transmit FIFO buffer, so that the 8-layer transmit FIFO buffer is empty, the TX EMPTY bit (SPI STATUS[26]) will be set to 1. Notice that the TX\_EMPTY (SPI\_STATUS[26]) flag is set to 1 while the last transaction is still in progress. In Master mode, both the GO\_BUSY bit (SPI\_CNTRL[0]) and TX\_EMPTY bit (SPI\_STATUS[26]) should be



checked by software to make sure whether the SPI is in idle or not.

The received FIFO buffer is also an 8-layer depth, 32-bit wide, first-in, first-out register buffer. The receive control logic will store the received data to this buffer. The FIFO buffer data can be read from SPI\_RX0 register by software. There are FIFO related status bits, like RX\_EMPTY (SPI\_STATUS[24]) and RX\_FULL (SPI\_STATUS[25]), to indicate the current status of FIFO buffer.

In FIFO mode, the transmitting and receiving threshold can be set through software by setting the TX\_THRESHOLD (SPI\_FIFO\_CTL[30:28]) and RX\_THRESHOLD (SPI\_FIFO\_CTL[26:24]) settings. When the count of valid data stored in transmit FIFO buffer is less than or equal to TX\_THRESHOLD setting, the TX\_INTSTS bit (SPI\_STATUS[4]) will be set to 1. When the count of valid data stored in receive FIFO buffer is larger than RX\_THRESHOLD setting, the RX\_INTSTS bit (SPI\_STATUS[0]) will be set to 1.

In FIFO mode, 8 data can be written to the SPI transmit FIFO buffer by software in advance. When the SPI controller operates with FIFO mode, the GO\_BUSY bit of SPI\_CNTRL register will be controlled by hardware, and the content of SPI\_CNTRL register should not be modified by software unless the FIFO bit is cleared to disable FIFO mode.

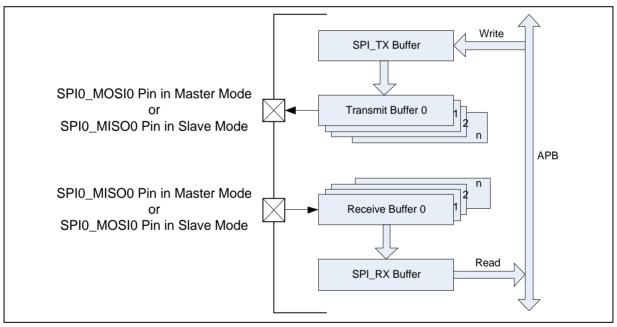



Figure 6.13-10 FIFO Mode Block Diagram

In Master mode, when the FIFO bit is set to 1 and the first datum is written to the SPI\_TX0 register, the TX\_EMPTY (SPI\_STATUS[26]) flag will be cleared to 0. The transmission immediately starts as long as the transmit FIFO buffer is not empty. User can write the next data into SPI\_TX0 register immediately. The SPI controller will insert a suspend interval between two successive transactions in FIFO mode and the period of suspend interval is decided by the setting of SP\_CYCLE (SPI\_CNTRL[15:12]). User can write data into SPI\_TX0 register as long as the TX\_FULL (SPI\_STATUS[27]) flag is 0.

The subsequent transactions will be triggered automatically if the transmitted data are updated in time. If the SPI\_TX0 register does not be updated after all data transfer are done, the transfer will stop.

In Master mode, during receiving operation, the serial data are received from SPI0\_MISO0 pin and stored to receive FIFO buffer. The RX\_EMPTY (SPI\_STATUS[24]) flag will be cleared to 0 while the receive FIFO buffer contains unread data. The received data can be read by software from SPI\_RX0

register as long as the RX\_EMPTY (SPI\_STATUS[24]) flag is 0. If the receive FIFO buffer contains 8 unread data, the RX\_FULL (SPI\_STATUS[25]) flag will be set to 1. The SPI controller will stop receiving data until the SPI\_RX0 register is read by software.

In Slave mode, when the FIFO bit is set as 1, the GO\_BUSY bit will be set as 1 by hardware automatically.

In Slave mode, during transmission operation, when data is written to the SPI\_TX0 register by software, the data will be loaded into transmit FIFO buffer and the TX\_EMPTY (SPI\_STATUS[26]) flag will be set to 0. The transmission will start when the slave device receives clock signal from master. Data can be written to SPI\_TX0 register as long as the TX\_FULL (SPI\_STATUS[27]) flag is 0. After all data have been drawn out by the SPI transmission logic unit and the SPI\_TX0 register is not updated by software, the TX\_EMPTY (SPI\_STATUS[26]) flag will be set to 1.

In Slave mode, during receiving operation, the serial data is received from SPI0\_MOSI0 pin and stored to receive FIFO buffer. The reception mechanism is similar to Master mode reception operation.

### 6.13.5.9 Interrupt

### SPI unit transfer interrupt

As the SPI controller finishes a unit transfer, the unit transfer interrupt flag IF (SPI\_CNTRL[16]) will be set to 1. The unit transfer interrupt event will generate an interrupt to CPU if the unit transfer interrupt enable bit IE (SPI\_CNTRL[17]) is set. The unit transfer interrupt flag can be cleared only by writing 1 to it.

### SPI Slave 3-wire mode start interrupt

In 3-wire mode, the slave 3-wire mode start interrupt flag, SLV\_START\_INTSTS (SPI\_CNTRL2[11]), will be set to 1 when the slave senses the SPI clock signal. The SPI controller will issue an interrupt if the SSTA\_INTEN (SPI\_CNTRL2[10]) is set to 1. If the count of the received bits is less than the setting of TX\_BIT\_LEN and there is no more SPI clock input over the expected time period which is defined by the user, the user can set the SLV\_ABORT bit (SPI\_CNTRL2[9]) to abort the current transfer. The unit transfer interrupt flag, IF, will be set to 1 if the software set the SLV\_ABORT bit (SPI\_CNTRL2[9]).

### Receive FIFO time-out interrupt

In FIFO mode, there is a time-out function to inform user. If there is a received data in the FIFO and it is not read by software over 64 SPI peripheral clock periods in Master mode or over 576 SPI peripheral clock periods in Slave mode, it will send a time-out interrupt to the system if the time-out interrupt enable bit, SPI\_FIFO\_CTL[21], is set to 1.

### Transmit FIFO interrupt

In FIFO mode, if the valid data count of the transmit FIFO buffer is less than or equal to the setting value of TX\_THRESHOLD, the transmit FIFO interrupt flag will be set to 1. The SPI controller will generate a transmit FIFO interrupt to the system if the transmit FIFO interrupt enable bit, SPI\_FIFO\_CTL[3], is set to 1.

#### Receive FIFO interrupt

In FIFO mode, if the valid data count of the receive FIFO buffer is larger than the setting value of

RX THRESHOLD, the receive FIFO interrupt flag will be set to 1. The SPI controller will generate a receive FIFO interrupt to the system if the receive FIFO interrupt enable bit, SPI FIFO CTL[2], is set to 1.

### 6.13.6 Timing Diagram

nuvoton

The active state of slave select signal can be defined by setting the SS LVL (SPI SSR[2]) and SS LTRIG (SPI SSR[4]). The SPI clock which is in idle state can be configured as high or low state by setting the CLKP (SPI CNTRL[11]). It also provides the bit length of a transaction word in TX BIT LEN (SPI CNTRL[7:3]), and transmitting/receiving data from MSB or LSB first in LSB (SPI CNTRL[10]). User can also select which edge of SPI clock to transmit/receive data in TX\_NEG/RX\_NEG (SPI\_CNTRL[2:1]). Four SPI timing diagrams for master/slave operations and the related settings are shown in Figure 6.13-11, Figure 6.13-12, Figure 6.13-13 and Figure 6.13-14.

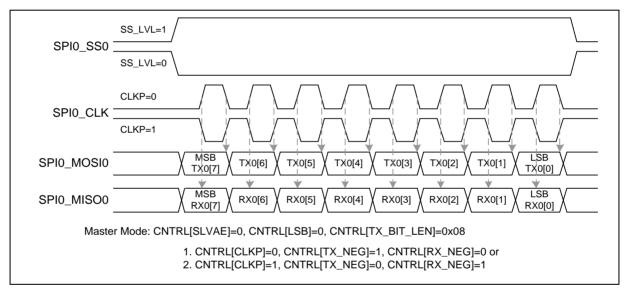



Figure 6.13-11 SPI Timing in Master Mode

nuvoton

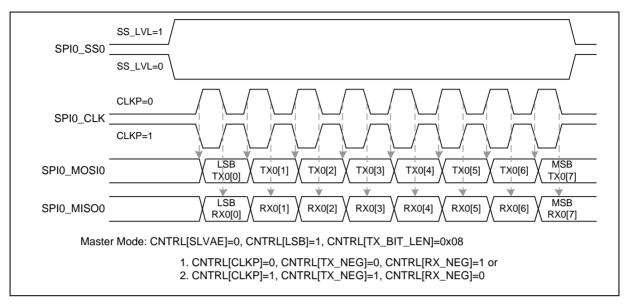



Figure 6.13-12 SPI Timing in Master Mode (Alternate Phase of SPI Bus Clock)

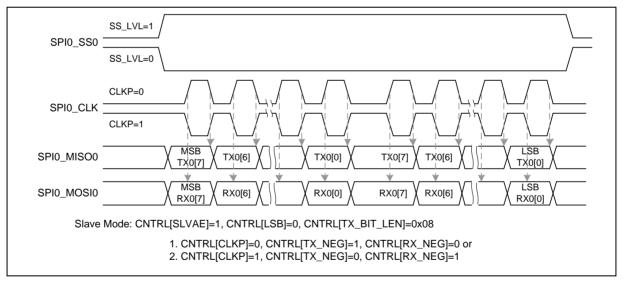



Figure 6.13-13 SPI Timing in Slave Mode

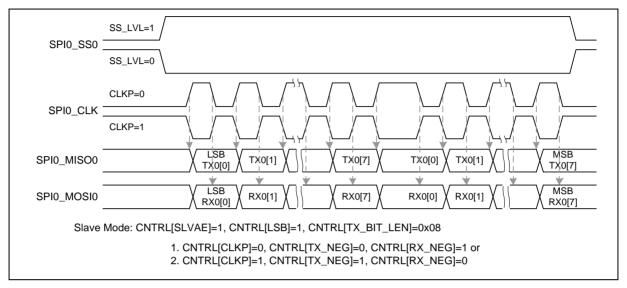



Figure 6.13-14 SPI Timing in Slave Mode (Alternate Phase of SPI Bus Clock)

### 6.13.7 **Programming Examples**

nuvoton

**Example 1:** The SPI controller is set as a master to access an off-chip slave device with the following specifications:

- Data bit is latched on positive edge of SPI clock.
- Data bit is driven on negative edge of SPI clock.
- Data is transferred from MSB first.
- SPI bus clock is low at idle state.
- Only one byte of data to be transmitted/received in a transaction.
- Uses the first SPI slave select pin to connect with an off-chip slave device. The slave select signal is active low.

The operation flow is as follows.

- 1) Set the DIVIDER (SPI\_DIVIDER[7:0]) register to determine the output frequency of SPI clock.
- Write the SPI\_SSR register a proper value for the related settings of Master mode:
  - Clear the Automatic Slave Selection bit, AUTOSS (SPI\_SSR[3]), to 0. 1.
  - 2. Select low level trigger output of slave select signal in the Slave Select Active Level bit, SS\_LVL (SPI\_SSR[2]), and Slave Select Level Trigger bit, SS\_LTRIG(SPI\_SSR[4]).
  - Select slave select signal to be output active at the I/O pin by setting the Slave Select Register bit SSR[0] (SPI\_SSR[0]) to active the off-chip slave device.
- Write the related settings into the SPI\_CNTRL register to control the SPI master actions 3)
  - 1. Set this SPI controller as master device in SLAVE bit (SPI CNTRL[18] = 0).
  - 2. Force the SPI clock to low at idle state in CLKP bit (SPI\_CNTRL[11] = 0).

- 3. Select data transmitted at negative edge of SPI clock in TX\_NEG bit (SPI\_CNTRL[2] = 1).
- 4. Select data latched at positive edge of SPI clock in RX NEG bit (SPI CNTRL[1] = 0).
- 5. Set the bit length of word transfer as 8-bit in  $TX_BIT_LEN$  bit field. (SPI\_CNTRL[7:3] = 0x08).
- Set MSB transfer first in MSB bit (SPI CNTRL[10] = 0).
- 4) If this SPI master attempts to transmit (write) one byte data to the off-chip slave device, write the byte data that will be transmitted into the SPI\_TX0 register.
- 5) If this SPI master just only attempts to receive (read) one byte data from the off-chip slave device and does not care what data will be transmitted, the SPI\_TX0 register does not need to be updated by software.
- 6) Enable the GO\_BUSY bit (SPI\_CNTRL[0] = 1) to start the data transfer with the SPI interface.
- 7) Waiting for SPI interrupt (if the Interrupt Enable IE bit is set) or just polling the GO\_BUSY bit till it is cleared to 0 by hardware automatically.
- 8) Read out the received one byte data from SPI\_RX0[7:0].
- 9) Go to 4) to continue another data transfer or set SSR[0] to 0 to inactivate the off-chip slave device.

**Example 2:** The SPI controller is set as a slave device and connects with an off-chip master device. The off-chip master device communicates with the on-chip SPI slave controller through the SPI interface with the following specifications:

- Data bit is latched on positive edge of SPI clock.
- Data bit is driven on negative edge of SPI clock.
- Data is transferred from LSB first.
- SPI bus clock is high at idle state.
- Only one byte of data to be transmitted/received in a transaction.
- Slave select signal is high level trigger.

The operation flow is as follows.

- Write the SPI\_SSR register a proper value for the related settings of Slave mode: Select high level and level trigger for the input of slave select signal by setting the Slave Select Active Level bit SS\_LVL (SPI\_SSR[2] = 1) and the Slave Select Level Trigger bit SS\_LTRIG (SPI\_SSR[4] = 1).
- 2) Write the related settings into the SPI CNTRL register to control this SPI slave actions
  - 1. Set the SPI controller as slave device in SLAVE bit (SPI\_CNTRL[18] = 1).
  - 2. Select the SPI clock high at idle state in CLKP bit (SPI\_CNTRL[11] = 1).
  - 3. Select data transmitted at negative edge of SPI clock in TX NEG bit (SPI CNTRL[2] = 1).
  - 4. Select data latched at positive edge of SPI clock in RX\_NEG bit (SPI\_CNTRL[1] = 0).
  - 5. Set the bit length of word transfer as 8-bit in TX\_BIT\_LEN bit field (SPI\_CNTRL[7:3] = 0x08).
  - 6. Set LSB transfer first in LSB bit (SPI\_CNTRL[10] = 1).



- 3) If this SPI slave attempts to transmit (be read) one byte data to the off-chip master device, write the byte data that will be transmitted into the SPI\_TX0 register.
- 4) If this SPI slave just only attempts to receive (be written) one byte data from the off-chip master device and does not care what data will be transmitted, the SPI\_TX0 register does not need to be updated by software.
- 5) Enable the GO\_BUSY bit (SPI\_CNTRL[0] = 1) to wait for the slave select trigger input and SPI clock input from the off-chip master device to start the data transfer at the SPI interface.
- 6) Waiting for SPI interrupt (if the Interrupt Enable IE bit is set), or just polling the GO\_BUSY bit till it is cleared to 0 by hardware automatically.
- 7) Read out the received one byte data from SPI\_RX0[7:0].
- 8) Go to 3) to continue another data transfer or stop data transfer.



# 6.13.8 Register Map

R: read only, W: write only, R/W: both read and write

| Register     | Offset                                     | R/W | Description                     | Reset Value |  |  |  |
|--------------|--------------------------------------------|-----|---------------------------------|-------------|--|--|--|
|              | SPI Base Address:<br>SPI0_BA = 0x4003_0000 |     |                                 |             |  |  |  |
| SPI_CNTRL    | SPI0_BA+0x00                               | R/W | Control and Status Register     | 0x0500_3004 |  |  |  |
| SPI_DIVIDER  | SPI0_BA+0x04                               | R/W | Clock Divider Register          | 0x0000_0000 |  |  |  |
| SPI_SSR      | SPI0_BA+0x08                               | R/W | Slave Select Register           | 0x0000_0000 |  |  |  |
| SPI_RX0      | SPI0_BA+0x10                               | R   | Data Receive Register 0         | 0x0000_0000 |  |  |  |
| SPI_RX1      | SPI0_BA+0x14                               | R   | Data Receive Register 1         | 0x0000_0000 |  |  |  |
| SPI_TX0      | SPI0_BA+0x20                               | W   | Data Transmit Register 0        | 0x0000_0000 |  |  |  |
| SPI_TX1      | SPI0_BA+0x24                               | W   | Data Transmit Register 1        | 0x0000_0000 |  |  |  |
| SPI_VARCLK   | SPI0_BA+0x34                               | R/W | Variable Clock Pattern Register | 0x007F_FF87 |  |  |  |
| SPI_CNTRL2   | SPI0_BA+0x3C                               | R/W | Control and Status Register 2   | 0x0000_1000 |  |  |  |
| SPI_FIFO_CTL | SPI0_BA+0x40                               | R/W | SPI FIFO Control Register       | 0x4400_0000 |  |  |  |
| SPI_STATUS   | SPI0_BA+0x44                               | R/W | SPI Status Register             | 0x0500_0000 |  |  |  |



# 6.13.9 Register Description

## SPI Control and Status Register (SPI\_CNTRL)

| Register  | Offset       | R/W | Description                 | Reset Value |
|-----------|--------------|-----|-----------------------------|-------------|
| SPI_CNTRL | SPI0_BA+0x00 | R/W | Control and Status Register | 0x0500_3004 |

| 31        | 30         | 29    | 28       | 27      | 26       | 25      | 24       |
|-----------|------------|-------|----------|---------|----------|---------|----------|
|           | Rese       | erved |          | TX_FULL | TX_EMPTY | RX_FULL | RX_EMPTY |
| 23        | 22         | 21    | 20       | 19      | 18       | 17      | 16       |
| VARCLK_EN | Reserved   | FIFO  | Reserved | REORDER | SLAVE    | ΙE      | IF       |
| 15        | 14         | 13    | 12       | 11      | 10       | 9       | 8        |
|           | SP_C       | YCLE  |          | CLKP    | LSB      | Rese    | erved    |
| 7         | 6          | 5     | 4        | 3       | 2        | 1       | 0        |
|           | TX_BIT_LEN |       |          |         | TX_NEG   | RX_NEG  | GO_BUSY  |

| Bits    | Description | Description                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|---------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:28] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| [27]    | TX_FULL     | Transmit FIFO Buffer Full Indicator (Read Only)  It is a mutual mirror bit of SPI_STATUS[27].  0 = Transmit FIFO buffer is not full.  1 = Transmit FIFO buffer is full.                                                                                                                                                                                                    |  |  |  |  |  |
| [26]    | TX_EMPTY    | Transmit FIFO Buffer Empty Indicator (Read Only)  It is a mutual mirror bit of SPI_STATUS[26].  0 = Transmit FIFO buffer is not empty.  1 = Transmit FIFO buffer is empty.                                                                                                                                                                                                 |  |  |  |  |  |
| [25]    | RX_FULL     | Receive FIFO Buffer Full Indicator (Read Only)  It is a mutual mirror bit of SPI_STATUS[25].  0 = Receive FIFO buffer is not full.  1 = Receive FIFO buffer is full.                                                                                                                                                                                                       |  |  |  |  |  |
| [24]    | RX_EMPTY    | Receive FIFO Buffer Empty Indicator (Read Only)  It is a mutual mirror bit of SPI_STATUS[24].  0 = Receive FIFO buffer is not empty.  1 = Receive FIFO buffer is empty.                                                                                                                                                                                                    |  |  |  |  |  |
| [23]    | VARCLK_EN   | Variable Clock Enable Control (Master Only)  0 = SPI clock output frequency is fixed and decided only by the value of DIVIDER.  1 = SPI clock output frequency is variable. The output frequency is decided by the value of VARCLK, DIVIDER, and DIVIDER2.  Note: When this VARCLK_EN bit is set to 1, the setting of TX_BIT_LEN must be programmed as 0x10 (16-bit mode). |  |  |  |  |  |
| [22]    | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |

nuvoTon

|         |          | FIFO Made Facility Control                                                                                                                                                                                                                                                                                                                                                                                            |
|---------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         |          | FIFO Mode Enable Control                                                                                                                                                                                                                                                                                                                                                                                              |
|         |          | 0 = FIFO mode Disabled.                                                                                                                                                                                                                                                                                                                                                                                               |
|         |          | 1 = FIFO mode Enabled.                                                                                                                                                                                                                                                                                                                                                                                                |
|         |          | Note:                                                                                                                                                                                                                                                                                                                                                                                                                 |
| [04]    | FIFO     | 1. Before enabling FIFO mode, the other related settings should be set in advance.                                                                                                                                                                                                                                                                                                                                    |
| [21]    | FIFO     | 2. In Master mode, if the FIFO mode is enabled, the GO_BUSY bit will be set to 1 automatically after writing data to the transmit FIFO buffer; the GO_BUSY bit will be cleared to 0 automatically when the SPI controller is in idle. If all data stored at transmit FIFO buffer are sent out, the TX_EMPTY bit will be set to 1 and the GO_BUSY bit will be cleared to 0.                                            |
|         |          | 3. After clearing this bit to 0, user must wait for at least 2 peripheral clock periods before setting this bit to 1 again.                                                                                                                                                                                                                                                                                           |
| [20]    | Reserved | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                             |
|         |          | Byte Reorder Function EnableBit                                                                                                                                                                                                                                                                                                                                                                                       |
|         |          | 0 = Byte Reorder function Disabled.                                                                                                                                                                                                                                                                                                                                                                                   |
|         |          | 1 = Byte Reorder function Enabled. A byte suspend interval will be inserted among each byte. The period of the byte suspend interval depends on the setting of SP_CYCLE.  Note:                                                                                                                                                                                                                                       |
| [19]    | REORDER  | <ol> <li>Byte Reorder function is only available if TX_BIT_LEN is defined as 16, 24, and 32 bits.</li> </ol>                                                                                                                                                                                                                                                                                                          |
|         |          | <ol><li>In Slave mode with level-trigger configuration, the slave select pin must be kept at<br/>active state during the byte suspend interval.</li></ol>                                                                                                                                                                                                                                                             |
|         |          | <ol><li>The Byte Reorder function is not supported when the variable bus clock function or<br/>Dual I/O mode is enabled.</li></ol>                                                                                                                                                                                                                                                                                    |
|         |          | Slave Mode EnableBit                                                                                                                                                                                                                                                                                                                                                                                                  |
| [18]    | SLAVE    | 0 = Master mode.                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |          | 1 = Slave mode.                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |          | Unit Transfer Interrupt EnableBit                                                                                                                                                                                                                                                                                                                                                                                     |
| [17]    | IE       | 0 = SPI unit transfer interrupt Disabled.                                                                                                                                                                                                                                                                                                                                                                             |
|         |          | 1 = SPI unit transfer interrupt Enabled.                                                                                                                                                                                                                                                                                                                                                                              |
|         |          | Unit Transfer Interrupt Flag                                                                                                                                                                                                                                                                                                                                                                                          |
|         |          | 0 = No transaction has been finished since this bit was cleared to 0.                                                                                                                                                                                                                                                                                                                                                 |
| [16]    | IF       | 1 = SPI controller has finished one unit transfer.                                                                                                                                                                                                                                                                                                                                                                    |
|         |          | Note: This bit will be cleared by writing 1 to itself.                                                                                                                                                                                                                                                                                                                                                                |
|         |          | Suspend Interval (Master Only)                                                                                                                                                                                                                                                                                                                                                                                        |
|         |          | The four bits provide configurable suspend interval between two successive transmit/receive transaction in a transfer. The definition of the suspend interval is the interval between the last clock edge of the preceding transaction word and the first clock edge of the following transaction word. The default value is 0x3. The period of the suspend interval is obtained according to the following equation. |
|         |          | (SP_CYCLE[3:0] + 0.5) * period of SPI bus clock cycle                                                                                                                                                                                                                                                                                                                                                                 |
|         |          | Example:                                                                                                                                                                                                                                                                                                                                                                                                              |
| [15:12] | SP_CYCLE | SP_CYCLE = 0x0 0.5 SPI bus clock cycle.                                                                                                                                                                                                                                                                                                                                                                               |
|         |          | SP_CYCLE = 0x1 1.5 SPI bus clock cycles.                                                                                                                                                                                                                                                                                                                                                                              |
|         |          |                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |          | SP_CYCLE = 0xE 14.5 SPI bus clock cycles.                                                                                                                                                                                                                                                                                                                                                                             |
|         |          | SP_CYCLE = 0xF 15.5 SPI bus clock cycles.                                                                                                                                                                                                                                                                                                                                                                             |
|         |          | If the variable clock function is enabled and the transmit FIFO buffer is not empty, the minimum period of suspend interval between the successive transactions is (6.5 + SP_CYCLE) * SPI bus clock cycle.                                                                                                                                                                                                            |
|         |          |                                                                                                                                                                                                                                                                                                                                                                                                                       |

|       |            | Clock Polority                                                                                                                                                                                                                                 |
|-------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [11]  | CLKP       | Clock Polarity 0 = SPI bus clock is idle low.                                                                                                                                                                                                  |
| ניין  | CLKP       | 1 = SPI bus clock is idle ligh.                                                                                                                                                                                                                |
|       |            | 1 = SFI bus clock is late high.                                                                                                                                                                                                                |
|       |            | Send LSB First                                                                                                                                                                                                                                 |
| [10]  | LSB        | 0 = The MSB, which bit of transmit/receive register depends on the setting of TX_BIT_LEN, is transmitted/received first.                                                                                                                       |
| []    |            | 1 = The LSB, bit 0 of the SPI TX0/1 register, is sent first to the SPI data output pin, and the first bit received from the SPI data input pin will be put in the LSB position of the RX register (bit 0 of SPI_RX0/1).                        |
| [9:8] | Reserved   | Reserved.                                                                                                                                                                                                                                      |
|       |            | Transmit Bit Length                                                                                                                                                                                                                            |
|       |            | This field specifies how many bits can be transmitted/received in one transaction. The minimum bit length is 8 bits and can up to 32 bits.                                                                                                     |
|       |            | TX_BIT_LEN = 0x08 8 bits.                                                                                                                                                                                                                      |
| [7:3] | TX_BIT_LEN | TX_BIT_LEN = 0x09 9 bits.                                                                                                                                                                                                                      |
|       |            |                                                                                                                                                                                                                                                |
|       |            | TX_BIT_LEN = 0x1F 31 bits.                                                                                                                                                                                                                     |
|       |            | TX_BIT_LEN = 0x00 32 bits.                                                                                                                                                                                                                     |
|       |            | Transmit On Negative Edge                                                                                                                                                                                                                      |
| [2]   | TX_NEG     | 0 = Transmitted data output signal is changed on the rising edge of SPI bus clock.                                                                                                                                                             |
|       |            | 1 = Transmitted data output signal is changed on the falling edge of SPI bus clock.                                                                                                                                                            |
|       |            | Receive On Negative Edge                                                                                                                                                                                                                       |
| [1]   | RX_NEG     | 0 = Received data input signal is latched on the rising edge of SPI bus clock.                                                                                                                                                                 |
|       |            | 1 = Received data input signal is latched on the falling edge of SPI bus clock.                                                                                                                                                                |
|       |            | SPI Transfer Control Bit And Busy Status                                                                                                                                                                                                       |
|       |            | 0 = Data transfer stopped.                                                                                                                                                                                                                     |
|       |            | 1 = In Master mode, writing 1 to this bit to start the SPI data transfer; in Slave mode, writing 1 to this bit indicates that the slave is ready to communicate with a master.                                                                 |
| [0]   | GO_BUSY    | If FIFO mode is disabled, during the data transfer, this bit keeps the value of 1. As the transfer is finished, this bit will be cleared automatically. Software can read this bit to check if the SPI is in busy status.                      |
|       |            | In FIFO mode, this bit will be controlled by hardware. Software should not modify this bit. In Slave mode, this bit always returns 1 when this register is read by software. In Master mode, this bit reflects the busy or idle status of SPI. |
|       |            | <b>Note:</b> When FIFO mode is disabled, all configurations should be set before writing 1 to this GO_BUSY bit.                                                                                                                                |

nuvoTon



## SPI Divider Register (SPI\_DIVIDER)

| Register    | Offset       | R/W | Description            | Reset Value |
|-------------|--------------|-----|------------------------|-------------|
| SPI_DIVIDER | SPI0_BA+0x04 | R/W | Clock Divider Register | 0x0000_0000 |

| 31 | 30       | 29 | 28 | 27 | 26 | 25 | 24 |  |
|----|----------|----|----|----|----|----|----|--|
|    | Reserved |    |    |    |    |    |    |  |
| 23 | 22       | 21 | 20 | 19 | 18 | 17 | 16 |  |
|    | DIVIDER2 |    |    |    |    |    |    |  |
| 15 | 14       | 13 | 12 | 11 | 10 | 9  | 8  |  |
|    | Reserved |    |    |    |    |    |    |  |
| 7  | 6        | 5  | 4  | 3  | 2  | 1  | 0  |  |
|    | DIVIDER  |    |    |    |    |    |    |  |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:24] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| [23:16] | DIVIDER2    | Clock Divider 2 Register (Master Only)  The value in this field is the $2^{nd}$ frequency divider for generating the second clock of the variable clock function. The frequency is obtained according to the following equation: $f_{clock2} = \frac{f_{spi\_eclk}}{(DIVIDER2+1)*2}$ If the VARCLK_EN bit is cleared to 0, this setting is unmeaning.                                                                                                                                                                                                 |  |  |  |
| [15:8]  | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| [7:0]   | DIVIDER     | Clock Divider 1 Register  The value in this field is the frequency divider for generating the SPI peripheral clock, $f_{\rm spi\_eclk}$ , and the SPI bus clock of SPI master. The frequency is obtained according to the following equation.  If the bit of BCn, SPI_CNTRL2[31], is set to 0, $f_{spi\_eclk} = \frac{f_{system\_clock}}{(DIVIDER+1)*2}$ else if BCn is set to 1, $f_{spi\_eclk} = \frac{f_{spi\_clock\_src}}{(DIVIDER+1)}$ where $f_{spi\_clock\_src}$ is the SPI peripheral clock source, which is defined in the CLKSEL1 register. |  |  |  |



## SPI Slave Select Register (SPI\_SSR)

| Register | Offset       | R/W | Description           | Reset Value |
|----------|--------------|-----|-----------------------|-------------|
| SPI_SSR  | SPI0_BA+0x08 | R/W | Slave Select Register | 0x0000_0000 |

| 31                  | 30       | 29         | 28       | 27     | 26     | 25       | 24  |  |
|---------------------|----------|------------|----------|--------|--------|----------|-----|--|
|                     | Reserved |            |          |        |        |          |     |  |
| 23                  | 22       | 21         | 20       | 19     | 18     | 17       | 16  |  |
|                     | Reserved |            |          |        |        |          |     |  |
| 15                  | 14       | 13         | 12       | 11     | 10     | 9        | 8   |  |
|                     | Reserved |            |          |        |        |          |     |  |
| 7                   | 6        | 5          | 4        | 3      | 2      | 1        | 0   |  |
| Reserved LTRIG_FLAG |          | LTRIG_FLAG | SS_LTRIG | AUTOSS | SS_LVL | Reserved | SSR |  |

| Bits   | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:6] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|        |             | Level Trigger Accomplish Flag  In Slave mode, this bit indicates whether the received bit number meets the requirement or not after the current transaction done.                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| [5]    | LTRIG_FLAG  | 0 = Transferred bit length of one transaction does not meet the specified requirement.  1 = Transferred bit length meets the specified requirement which defined in TX_BIT_LEN.  Note: This bit is READ only. As the GO_BUSY bit is set to 1 by software, the  LTRIG_FLAG will be cleared to 0 after 4 SPI peripheral clock periods plus 1 system clock  period. In FIFO mode, this bit has no meaning.                                                                                           |  |  |  |  |
| [4]    | SS_LTRIG    | Slave Select Level Trigger Enable Control (Slave Only)  0 = Slave select signal is edge-trigger. This is the default value. The SS_LVL bit decides the signal is active after a falling-edge or rising-edge.  1 = Slave select signal is level-trigger. The SS_LVL bit decides the signal is active low or active high.                                                                                                                                                                           |  |  |  |  |
| [3]    | AUTOSS      | Automatic Slave Select Function Enable Control (Master Only)  0 = If this bit is cleared, slave select signal will be asserted/de-asserted by setting /clearing the corresponding bit of SPI_SSR[0].  1 = If this bit is set, SPI0_SPISS0 signal will be generated automatically. It means that device/slave select signal, which is set in SPI_SSR[0], will be asserted by the SPI controller when transmit/receive is started, and will be de-asserted after each transmit/receive is finished. |  |  |  |  |
| [2]    | SS_LVL      | Slave Select Active Level  This bit defines the active status of slave select signal (SPI0_SPISS0).  0 = The slave select signal SPI0_SPISS0 is active on low-level/falling-edge.  1 = The slave select signal SPI0_SPISS0 is active on high-level/rising-edge.                                                                                                                                                                                                                                   |  |  |  |  |
| [1]    | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| [0]    | SSR         | Slave Select Control Bit (Master Only)  If AUTOSS bit is cleared, writing 1 to any bit of this field sets the proper SPI0_SPISS0 line                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |



| to an active state and writing 0 sets the line back to inactive state.                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| If the AUTOSS bit is set, writing 0 to any bit location of this field will keep the corresponding SPI0_SPISS0 line at inactive state; writing 1 to any bit location of this field will select appropriate SPI0_SPISS0 line to be automatically driven to active state for the duration of the transmit/receive, and will be driven to inactive state for the rest of the time. The active state of SPI0_SPISS0 is specified in SS_LVL. |
| Note: SPI0_SPISS0 is defined as the slave select input in Slave mode.                                                                                                                                                                                                                                                                                                                                                                  |



## SPI Data Receive Register (SPI\_RX)

| Register | Offset       | R/W | Description             | Reset Value |
|----------|--------------|-----|-------------------------|-------------|
| SPI_RX0  | SPI0_BA+0x10 | R   | Data Receive Register 0 | 0x0000_0000 |
| SPI_RX1  | SPI0_BA+0x14 | R   | Data Receive Register 1 | 0x0000_0000 |

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 |  |
|----|----|----|----|----|----|----|----|--|
|    | RX |    |    |    |    |    |    |  |
| 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |  |
|    |    |    | R  | Х  |    |    |    |  |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  |  |
|    | RX |    |    |    |    |    |    |  |
| 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |  |
|    | RX |    |    |    |    |    |    |  |

| Bits   | Description |                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |             | Data Receive Register                                                                                                                                                                                                                                                                                                                                                                                        |
| [31:0] | IXX         | The data receive register holds the datum received from SPI data input pin. If FIFO mode is disabled, the last received data can be accessed through software by reading this register. If the FIFO bit is set as 1 and the RX_EMPTY bit, SPI_CNTRL[24] or SPI_STATUS[24], is not set to 1, the receive FIFO buffer can be accessed through software by reading this register. This is a read-only register. |

## SPI Data Transmit Register (SPI\_TX)

nuvoTon

| Register | Offset       | R/W | Description              | Reset Value |
|----------|--------------|-----|--------------------------|-------------|
| SPI_TX0  | SPI0_BA+0x20 | W   | Data Transmit Register 0 | 0x0000_0000 |
| SPI_TX1  | SPI0_BA+0x24 | W   | Data Transmit Register 1 | 0x0000_0000 |

| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 |  |
|----|----|----|----|----|----|----|----|--|
|    | TX |    |    |    |    |    |    |  |
| 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 |  |
|    |    |    | Т  | x  |    |    |    |  |
| 15 | 14 | 13 | 12 | 11 | 10 | 9  | 8  |  |
|    |    |    | Т  | X  |    |    |    |  |
| 7  | 6  | 5  | 4  | 3  | 2  | 1  | 0  |  |
| TX |    |    |    |    |    |    |    |  |

| Bits   | Description | Description                                                                                                                                                                                                                                                  |  |  |  |  |
|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|        |             | Data Transmit Register                                                                                                                                                                                                                                       |  |  |  |  |
|        |             | The data transmit registers hold the data to be transmitted in the next transfer. The number of valid bits depends on the setting of transmit bit length field of the SPI_CNTRL register.                                                                    |  |  |  |  |
| [31:0] | тх          | For example, if TX_BIT_LEN is set to 0x08, the bits TX[7:0] will be transmitted in next transfer. If TX_BIT_LEN is set to 0x00, the SPI controller will perform a 32-bit transfer.                                                                           |  |  |  |  |
|        |             | <b>Note 1:</b> When the SPI controller is configured as a slave device and FIFO mode is disabled, if the SPI controller attempts to transmit data to a master, the transmit data register should be updated by software before setting the GO_BUSY bit to 1. |  |  |  |  |
|        |             | <b>Note 2</b> : In Master mode, SPI controller will start to transfer after 5 peripheral clock cycles since user wrote to this register.                                                                                                                     |  |  |  |  |



# SPI Variable Clock Pattern Register (SPI\_VARCLK)

| Register   | Offset       | R/W | Description                     | Reset Value |
|------------|--------------|-----|---------------------------------|-------------|
| SPI_VARCLK | SPI0_BA+0x34 | R/W | Variable Clock Pattern Register | 0x007F_FF87 |

| 31 | 30     | 29 | 28  | 27  | 26 | 25 | 24 |  |
|----|--------|----|-----|-----|----|----|----|--|
|    |        |    | VAR | CLK |    |    |    |  |
| 23 | 22     | 21 | 20  | 19  | 18 | 17 | 16 |  |
|    |        |    | VAR | CLK |    |    |    |  |
| 15 | 14     | 13 | 12  | 11  | 10 | 9  | 8  |  |
|    |        |    | VAR | CLK |    |    |    |  |
| 7  | 6      | 5  | 4   | 3   | 2  | 1  | 0  |  |
|    | VARCLK |    |     |     |    |    |    |  |

| Bits   | Description | escription                                                                                                                                                                                                        |  |  |  |  |
|--------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|        |             | Variable Clock Pattern                                                                                                                                                                                            |  |  |  |  |
| [31:0] | VAICER      | This register defines the clock pattern of the SPI transfer. If the variable clock function is disabled, this setting is unmeaning. Refer to the "Variable Clock Function" paragraph for more detail description. |  |  |  |  |

# SPI Control and Status Register 2 (SPI\_CNTRL2)

| Register   | Offset       | R/W | Description                   | Reset Value |
|------------|--------------|-----|-------------------------------|-------------|
| SPI_CNTRL2 | SPI0_BA+0x3C | R/W | Control and Status Register 2 | 0x0000_1000 |

| 31   | 30                                                                 | 29       | 28 | 27 | 26 | 25 | 24       |  |  |
|------|--------------------------------------------------------------------|----------|----|----|----|----|----------|--|--|
| BCn  |                                                                    | Reserved |    |    |    |    |          |  |  |
| 23   | 22                                                                 | 21       | 20 | 19 | 18 | 17 | 16       |  |  |
|      | Reserved                                                           |          |    |    |    |    |          |  |  |
| 15   | 14                                                                 | 13       | 12 | 11 | 10 | 9  | 8        |  |  |
| Rese | Reserved DUAL_ DUAL_ SLV_START SSTA_ SLV_ABORT IO_DIR INTSTS INTEN |          |    |    |    |    | NOSLVSEL |  |  |
| 7    | 6                                                                  | 5        | 4  | 3  | 2  | 1  | 0        |  |  |
|      | Reserved                                                           |          |    |    |    |    |          |  |  |

| Bits    | Description      |                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31]    | BCn              | SPI Peripheral Clock Backward Compatible Option  0 = Backward compatible clock configuration.  1 = Clock configuration is not backward compatible.  Refer to the description of SPI_DIVIDER register for details.                                                                                                                                                                                      |
| [30:17] | Reserved         | Reserved.                                                                                                                                                                                                                                                                                                                                                                                              |
| [16]    | SS_INT_OPT       | Slave Select Inactive Interrupt Option  This setting is only available if the SPI controller is configured as level trigger slave device.  0 = As the slave select signal goes to inactive level, the IF bit will NOT be set to 1.  1 = As the slave select signal goes to inactive level, the IF bit will be set to 1.                                                                                |
| [15:14] | Reserved         | Reserved.                                                                                                                                                                                                                                                                                                                                                                                              |
| [13]    | DUAL_IO_EN       | Dual I/O Mode EnableBit  0 = Dual I/O mode Disabled.  1 = Dual I/O mode Enabled.                                                                                                                                                                                                                                                                                                                       |
| [12]    | DUAL_IO_DIR      | Dual I/O Mode Direction Control 0 = Dual Input mode. 1 = Dual Output mode.                                                                                                                                                                                                                                                                                                                             |
| [11]    | SLV_START_INTSTS | Slave 3-Wire Mode Start Interrupt Status  This bit indicates if a transaction has started in Slave 3-wire mode. It is a mutual mirror bit of SPI_STATUS[11].  0 = Slave has not detected any SPI clock transition since the SSTA_INTEN bit was set to 1.  1 = A transaction has started in Slave 3-wire mode. It will be cleared automatically when a transaction is done or by writing 1 to this bit. |
| [10]    | SSTA_INTEN       | Slave 3-Wire Mode Start Interrupt Enable Control Used to enable interrupt when the transfer has started in Slave 3-wire mode. If                                                                                                                                                                                                                                                                       |



|       |           | there is no transfer done interrupt over the time period which is defined by user after the transfer start, the user can set the SLV_ABORT bit to force the transfer done.  0 = Transaction start interrupt Disabled.                                            |
|-------|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |           | 1 = Transaction start interrupt Enabled. It will be cleared to 0 as the current transfer is done or the SLV_START_INTSTS bit is cleared.                                                                                                                         |
|       |           | Slave 3-Wire Mode Abort Control                                                                                                                                                                                                                                  |
|       |           | In normal operation, there is an interrupt event when the received data meet the required bits which defined in TX_BIT_LEN.                                                                                                                                      |
| [9]   | SLV_ABORT | If the received bits are less than the requirement and there is no more SPI clock input over the one transfer time in Slave 3-wire mode, the user can set this bit to force the current transfer done and then the user can get a transfer done interrupt event. |
|       |           | <b>Note:</b> This bit will be cleared to 0 automatically by hardware after it is set to 1 by software.                                                                                                                                                           |
|       |           | Slave 3-Wire Mode Enable Control                                                                                                                                                                                                                                 |
|       |           | This is used to ignore the slave select signal in Slave mode. The SPI controller can work with 3-wire interface including SPI0_CLK, SPI0_MISO0 and SPI0_MOSI0 pins.                                                                                              |
| [8]   | NOSLVSEL  | 0 = 4-wire bi-direction interface.                                                                                                                                                                                                                               |
|       |           | 1 = 3-wire bi-direction interface.                                                                                                                                                                                                                               |
|       |           | <b>Note:</b> In Slave 3-wire mode, the SS_LTRIG, SPI_SSR[4] will be set as 1 automatically.                                                                                                                                                                      |
| [7:0] | Reserved  | Reserved.                                                                                                                                                                                                                                                        |

# SPI FIFO Control Register (SPI\_FIFO\_CTL)

| Register     | Offset       | R/W | Description               | Reset Value |
|--------------|--------------|-----|---------------------------|-------------|
| SPI_FIFO_CTL | SPI0_BA+0x40 | R/W | SPI FIFO Control Register | 0x4400_0000 |

| 31       | 30             | 29                | 28       | 27       | 26           | 25     | 24     |
|----------|----------------|-------------------|----------|----------|--------------|--------|--------|
| Reserved | TX_THRESHOLD   |                   |          | Reserved | RX_THRESHOLD |        |        |
| 23       | 22             | 21                | 20       | 19       | 18           | 17     | 16     |
| Rese     | erved          | TIMEOUT_<br>INTEN | Reserved |          |              |        |        |
| 15       | 14             | 13                | 12       | 11       | 10           | 9      | 8      |
|          |                |                   | Rese     | erved    |              |        |        |
| 7        | 6              | 5                 | 4        | 3        | 2            | 1      | 0      |
| Reserved | RXOV_<br>INTEN | Rese              | erved    | TX_INTEN | RX_INTEN     | TX_CLR | RX_CLR |

| Bits    | Description   |                                                                                                                                                                                                                  |
|---------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31]    | Reserved      | Reserved.                                                                                                                                                                                                        |
| [30:28] | TX_THRESHOLD  | Transmit FIFO Threshold  If the valid data count of the transmit FIFO buffer is less than or equal to the TX_THRESHOLD setting, the TX_INTSTS bit will be set to 1, else the TX_INTSTS bit will be cleared to 0. |
| [27]    | Reserved      | Reserved.                                                                                                                                                                                                        |
| [26:24] | RX_THRESHOLD  | Receive FIFO Threshold  If the valid data count of the receive FIFO buffer is larger than the RX_THRESHOLD setting, the RX_INTSTS bit will be set to 1, else the RX_INTSTS bit will be cleared to 0.             |
| [23:22] | Reserved      | Reserved.                                                                                                                                                                                                        |
| [21]    | TIMEOUT_INTEN | Receive FIFO Time-Out Interrupt Enable Control  0 = Time-out interrupt Disabled.  1 = Time-out interrupt Enabled.                                                                                                |
| [20:7]  | Reserved      | Reserved.                                                                                                                                                                                                        |
| [6]     | RXOV_INTEN    | Receive FIFO Overrun Interrupt Enable Control  0 = Receive FIFO overrun interrupt Disabled.  1 = Receive FIFO overrun interrupt Enabled.                                                                         |
| [5:4]   | Reserved      | Reserved.                                                                                                                                                                                                        |
| [3]     | TX_INTEN      | Transmit Threshold Interrupt Enable Control  0 = TX threshold interrupt Disabled.  1 = TX threshold interrupt Enabled.                                                                                           |
| [2]     | RX_INTEN      | Receive Threshold Interrupt Enable Control                                                                                                                                                                       |



|     |        | 0 = RX threshold interrupt Disabled.<br>1 = RX threshold interrupt Enabled.                                                                                                                                                           |
|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [1] | TX_CLR | Clear Transmit FIFO Buffer  0 = No effect.  1 = Clear transmit FIFO buffer. The TX_FULL flag will be cleared to 0 and the TX_EMPTY flag will be set to 1. This bit will be cleared to 0 by hardware after it is set to 1 by software. |
| [0] | RX_CLR | Clear Receive FIFO Buffer  0 = No effect.  1 = Clear receive FIFO buffer. The RX_FULL flag will be cleared to 0 and the RX_EMPTY flag will be set to 1. This bit will be cleared to 0 by hardware after it is set to 1 by software.   |

# SPI Status Register (SPI\_STATUS)

| Register   | Offset       | R/W | Description         | Reset Value |
|------------|--------------|-----|---------------------|-------------|
| SPI_STATUS | SPI0_BA+0x44 | R/W | SPI Status Register | 0x0500_0000 |

| 31 | 30       | 29     | 28        | 27                   | 26                       | 25        | 24 |  |  |  |
|----|----------|--------|-----------|----------------------|--------------------------|-----------|----|--|--|--|
|    | TX_FIFO  | _COUNT |           | TX_FULL              | TX_FULL TX_EMPTY RX_FULL |           |    |  |  |  |
| 23 | 22       | 21     | 20        | 19                   | 19 18 17                 |           |    |  |  |  |
|    | Reserved |        | TIMEOUT   |                      | Reserved                 |           |    |  |  |  |
| 15 | 14       | 13     | 12        | 11                   | 10                       | 8         |    |  |  |  |
|    | RX_FIFO  | _COUNT |           | SLV_START<br>_INTSTS |                          |           |    |  |  |  |
| 7  | 6        | 5      | 4         | 3                    | 2 1                      |           | 0  |  |  |  |
|    | Reserved |        | TX_INTSTS | Reserved             | RX_<br>OVERRUN           | RX_INTSTS |    |  |  |  |

| Bits    | Description   |                                                                                                                                                                                                                                                                                                                                                      |
|---------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:28] | TX_FIFO_COUNT | Transmit FIFO Data Count (Read Only)  This bit field indicates the valid data count of transmit FIFO buffer.                                                                                                                                                                                                                                         |
| [27]    | TX_FULL       | Transmit FIFO Buffer Full Indicator (Read Only)  It is a mutual mirror bit of SPI_CNTRL[27].  0 = Transmit FIFO buffer is not full.  1 = Transmit FIFO buffer is full.                                                                                                                                                                               |
| [26]    | TX_EMPTY      | Transmit FIFO Buffer Empty Indicator (Read Only)  It is a mutual mirror bit of SPI_CNTRL[26].  0 = Transmit FIFO buffer is not empty.  1 = Transmit FIFO buffer is empty.                                                                                                                                                                            |
| [25]    | RX_FULL       | Receive FIFO Buffer Empty Indicator (Read Only)  It is a mutual mirror bit of SPI_CNTRL[25].  0 = Receive FIFO buffer is not full.  1 = Receive FIFO buffer is full.                                                                                                                                                                                 |
| [24]    | RX_EMPTY      | Receive FIFO Buffer Empty Indicator (Read Only)  It is a mutual mirror bit of SPI_CNTRL[24].  0 = Receive FIFO buffer is not empty.  1 = Receive FIFO buffer is empty.                                                                                                                                                                               |
| [23:21] | Reserved      | Reserved.                                                                                                                                                                                                                                                                                                                                            |
| [20]    | TIMEOUT       | Time-Out Interrupt Flag  0 = No receive FIFO time-out event.  1 = Receive FIFO buffer is not empty and no read operation on receive FIFO buffer over 64 SPI clock period in Master mode or over 576 SPI peripheral clock period in Slave mode. When the received FIFO buffer is read by software, the time-out status will be cleared automatically. |

|         |                      | Note: This bit will be cleared by writing 1 to itself.                                                                                                                                                                                                                                                                                                                                     |
|---------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [19:17] | Reserved             | Reserved.                                                                                                                                                                                                                                                                                                                                                                                  |
| [16]    | IF                   | SPI Unit Transfer Interrupt Flag  It is a mutual mirror bit of SPI_CNTRL[16].  0 = No transaction has been finished since this bit was cleared to 0.  1 = SPI controller has finished one unit transfer.  Note: This bit will be cleared by writing 1 to itself.                                                                                                                           |
| [15:12] | RX_FIFO_COUNT        | Receive FIFO Data Count (Read Only)  This bit field indicates the valid data count of receive FIFO buffer.                                                                                                                                                                                                                                                                                 |
| [11]    | SLV_START_INT<br>STS | Slave Start Interrupt Status  It is used to dedicate if a transaction has started in Slave 3-wire mode. It is a mutual mirror bit of SPI_CNTRL2[11].  0 = Slave has not detected any SPI clock transition since the SSTA_INTEN bit was set to 1.  1 = A transaction has started in Slave 3-wire mode. It will be cleared as a transaction is done or by writing 1 to this bit.             |
| [10:5]  | Reserved             | Reserved.                                                                                                                                                                                                                                                                                                                                                                                  |
| [4]     | TX_INTSTS            | Transmit FIFO Threshold Interrupt Status (Read Only)  0 = The valid data count within the transmit FIFO buffer is larger than the setting value of TX_THRESHOLD.  1 = The valid data count within the transmit FIFO buffer is less than or equal to the setting value of TX_THRESHOLD.  Note: If TX_INTEN = 1 and TX_INTSTS = 1, the SPI controller will generate a SPI interrupt request. |
| [3]     | Reserved             | Reserved.                                                                                                                                                                                                                                                                                                                                                                                  |
| [2]     | RX_OVERRUN           | Receive FIFO Overrun Status  When the receive FIFO buffer is full, the follow-up data will be dropped and this bit will be set to 1.  Note: This bit will be cleared by writing 1 to itself.                                                                                                                                                                                               |
| [1]     | Reserved             | Reserved.                                                                                                                                                                                                                                                                                                                                                                                  |
| [0]     | RX_INTSTS            | Receive FIFO Threshold Interrupt Status (Read Only)  0 = The valid data count within the Rx FIFO buffer is less than or equal to the setting value of RX_THRESHOLD.  1 = The valid data count within the receive FIFO buffer is larger than the setting value of RX_THRESHOLD.  Note: If RX_INTEN = 1 and RX_INTSTS = 1, the SPI controller will generate a SPI interrupt request.         |

## 6.14 Controller Area Network (CAN)

#### 6.14.1 Overview

The C\_CAN consists of the CAN Core, Message RAM, Message Handler, Control Registers and Module Interface (Refer to Figure 6.14-1). The CAN Core performs communication according to the CAN protocol version 2.0 part A and B. The bit rate can be programmed to values up to 1MBit/s. For the connection to the physical layer, additional transceiver hardware is required.

For communication on a CAN network, individual Message Objects are configured. The Message Objects and Identifier Masks for acceptance filtering of received messages are stored in the Message RAM. All functions concerning the handling of messages are implemented in the Message Handler. These functions include acceptance filtering, the transfer of messages between the CAN Core and the Message RAM, and the handling of transmission requests as well as the generation of the module interrupt.

The register set of the C\_CAN can be accessed directly by the software through the module interface. These registers are used to control/configure the CAN Core and the Message Handler and to access the Message RAM.

#### **6.14.2 Features**

- Supports CAN protocol version 2.0 part A and B.
- Bit rates up to 1 MBit/s.
- 32 Message Objects.
- Each Message Object has its own identifier mask.
- Programmable FIFO mode (concatenation of Message Objects).
- Maskable interrupt.
- Disabled Automatic Re-transmission mode for Time Triggered CAN applications.
- Programmable loop-back mode for self-test operation.
- 16-bit module interfaces to the AMBA APB bus.
- Supports wake-up function



## 6.14.3 Block Diagram

The C\_CAN interfaces with the AMBA APB bus. The Figure 6.14-1 shows the block diagram of the C\_CAN.

## **CAN Core**

CAN Protocol Controller and Rx/Tx Shift Register for serial/parallel conversion of messages.

## Message RAM

Stores Message Objects and Identifier Masks.

## Registers

All registers used to control and to configure the C\_CAN.

## Message Handler

State Machine that controls the data transfer between the Rx/Tx Shift Register of the CAN Core and the Message RAM as well as the generation of interrupts as programmed in the Control and Configuration Registers.

#### **Module Interface**

C\_CAN interfaces to the AMBA APB 16-bit bus from ARM.

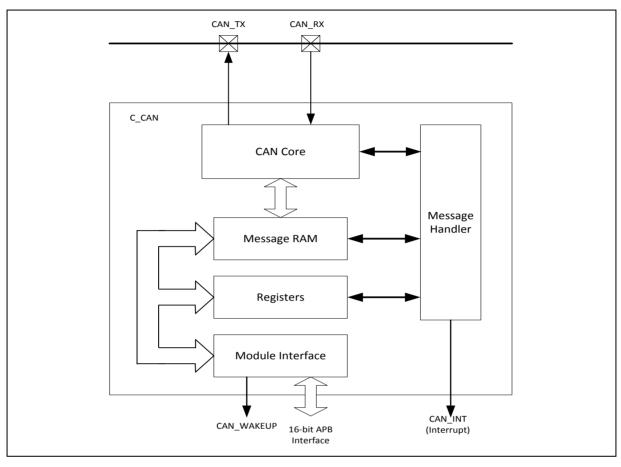



Figure 6.14-1 CAN Peripheral Block Diagram

## 6.14.4 Basic Configuration

The basic configurations of CAN are as follows.

- CAN pins are configured on GPA\_MFP and GPC\_MFP registers.
- Enable CAN clock (CANO EN (APBCLK[24]) and CAN1 EN (APBCLK[25])).
- Reset CAN controller (CAN0\_RST (IPRSTC2[24]) and CAN1\_RST (IPRSTC2[25])).

## 6.14.5 Functional Description

#### 6.14.5.1 Software Initialization

The software initialization is started by setting the Init bit (CAN\_CON[0]), either by a software or a hardware reset, or by going to bus-off state.

While the Init bit is set, all messages transfer to and from the CAN bus are stopped and the status of the CAN\_TX output pin is recessive (HIGH). The Error Management Logic (EML) counters are unchanged. Setting the Init bit does not change any configuration register.

To initialize the CAN Controller, software has to set up the Bit Timing Register and each Message Object. If a Message Object is not required, the corresponding MsgVal bit (CAN\_IFn\_ARB2[15])



should be cleared. Otherwise, the entire Message Object has to be initialized.

Access to the Bit Timing Register and to the Baud Rate Prescaler Extension Register for configuring bit timing is enabled when both the Init and CCE (CAN\_CON[6]) bits are set.

Resetting the Init bit (by software only) finishes the software initialization. Later, the Bit Stream Processor (BSP) (see Section 6.5.7.15: Configuring the Bit Timing) synchronizes itself to the data transfer on the CAN bus by waiting for the occurrence of a sequence of 11 consecutive recessive bits (=Bus Idle) before it can take part in bus activities and start the message transfer.

The initialization of the Message Objects is independent of Init and can be done on the fly, but the Message Objects should all be configured to particular identifiers or set to not valid before the BSP starts the message transfer.

To change the configuration of a Message Object during normal operation, the software has to start by resetting the corresponding MsgVal bit. When the configuration is completed, MsgVal bit is set again.

#### 6.14.5.2 CAN Message Transfer

Once the C\_CAN is initialized and Init bit (CAN\_CON[0]) is reset to zero, the C\_CAN Core synchronizes itself to the CAN bus and starts the message transfer.

Received messages are stored in their appropriate Message Objects if they pass the Message Handler's acceptance filtering. The whole message including all arbitration bits, DLC (CAN\_IFn\_MCON[3:0]) and eight data bytes (CAN\_IFn\_DAT\_A1/2; CAN\_IFn\_DAT\_B1/2) are stored in the Message Object. If the Identifier Mask is used, the arbitration bits which are masked to "don't care" may be overwritten in the Message Object.

Software can read or write each message any time through the Interface Registers and the Message Handler guarantees data consistency in case of concurrent accesses.

Messages to be transmitted are updated by the application software. If a permanent Message Object (arbitration and control bits are set during configuration) exists for the message, only the data bytes are updated and the TxRqst bit (CAN\_IFn\_MCON[8]) with NewDat bit (CAN\_IFn\_MCON[15]) are set to start the transmission. If several transmit messages are assigned to the same Message Object (when the number of Message Objects is not sufficient), the whole Message Object has to be configured before the transmission of this message is requested.

The transmission of any number of Message Objects may be requested at the same time. Message objects are transmitted subsequently according to their internal priority. Messages may be updated or set to not valid any time, even when their requested transmission is still pending. The old data will be discarded when a message is updated before its pending transmission has started.

Depending on the configuration of the Message Object, the transmission of a message may be requested autonomously by the reception of a remote frame with a matching identifier.

## 6.14.5.3Disabled Automatic Retransmission

In accordance with the CAN Specification (see ISO11898, 6.3.3 Recovery Management), the C\_CAN provides means for automatic retransmission of frames that have lost arbitration or have been disturbed by errors during transmission. The frame transmission service will not be confirmed to the user before the transmission is successfully completed. This means that, by default, automatic retransmission is enabled. It can be disabled to enable the C\_CAN to work within a Time Triggered CAN (TTCAN, see ISO11898-1) environment.

The Disabled Automatic Retransmission mode is enabled by setting the Disable Automatic Retransmission (DAR bit (CAN\_CON[5])) to one. In this operation mode, the programmer has to consider the different behavior of bits TxRqst (CAN\_IFn\_MCON[8]) and NewDat (CAN\_IFn\_MCON[15]) of the Message Buffers:

- When a transmission starts, bit TxRqst of the respective Message Buffer is cleared, while bit NewDat remains set.
- When the transmission completed successfully, bit NewDat is cleared.
- When a transmission fails (lost arbitration or error), bit NewDat remains set.
- To restart the transmission, the software should set the bit TxRqst again.

#### 6.14.6 **Test Mode**

Test Mode is entered by setting the Test bit (CAN\_CON[7]). In Test Mode, bits Tx1 (CAN\_TEST[6]), Tx0 (CAN\_TEST[5]), LBack (CAN\_TEST[4]), Silent (CAN\_TEST[3]) and Basic (CAN\_TEST[2]) are writeable. Bit Rx (CAN\_TEST[7]) monitors the state of the CAN\_RX pin and therefore is only readable. All Test Register functions are disabled when the Test bit is cleared.

#### 6.14.6.1 Silent Mode

The CAN Core can be set in Silent Mode by programming the Silent bit (CAN\_TEST[3]) to one. In Silent Mode, the C\_CAN is able to receive valid data frames and valid remote frames, but it sends only recessive bits on the CAN bus and it cannot start a transmission. If the CAN Core is required to send a dominant bit (ACK bit, Error Frames), the bit is rerouted internally so that the CAN Core monitors this dominant bit, although the CAN bus may remain in recessive state. The Silent Mode can be used to analysis the traffic on a CAN bus without affecting it by the transmission of dominant bits. The Figure 6.14-2 shows the connection of signals CAN\_TX and CAN\_RX to the CAN Core in Silent Mode.

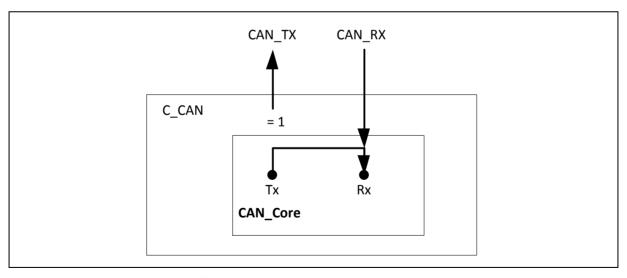
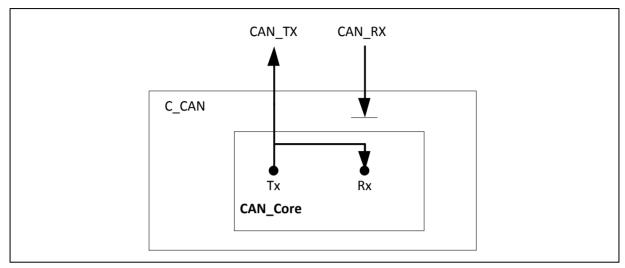
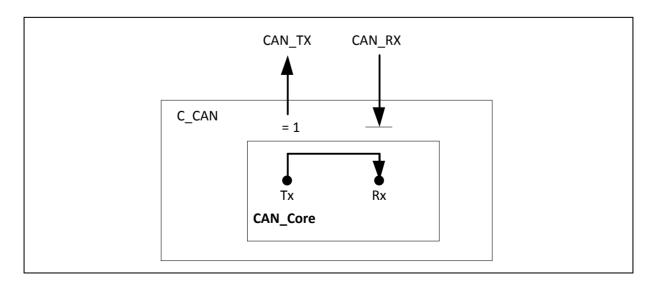



Figure 6.14-2 CAN Core in Silent Mode

#### 6.14.6.2Loop Back Mode

The CAN Core can be set in Loop Back Mode by programming the Test Register bit LBack (CAN\_TEST[4]) to one. In Loop Back Mode, the CAN Core treats its own transmitted messages as received messages and stores them in a Receive Buffer (if they pass acceptance filtering). The Figure 6.14-3 shows the connection of signals, CAN\_TX and CAN\_RX, to the CAN Core in Loop Back Mode.





Figure 6.14-3 CAN Core in Loop Back Mode

This mode is provided for self-test functions. To be independent from external stimulation, the CAN Core ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a data/ remote frame) in Loop Back Mode. In this mode, the CAN Core performs an internal feedback from its Tx output to its Rx input. The actual value of the CAN\_RX input pin is disregarded by the CAN Core. The transmitted messages can be monitored on the CAN\_TX pin.

#### 6.14.6.3Loop Back Combined with Silent Mode

nuvoton

It is also possible to combine Loop Back Mode and Silent Mode by programming bits LBack (CAN\_TEST[4]) and Silent (CAN\_TEST[3]) to one at the same time. This mode can be used for a "Hot Selftest", which means that C\_CAN can be tested without affecting a running CAN system connected to the CAN\_TX and CAN\_RX pins. In this mode, the CAN\_RX pin is disconnected from the CAN Core and the CAN\_TX pin is held recessive. The Figure 6.14-4 shows the connection of signals CAN\_TX and CAN\_RX to the CAN Core in case of the combination of Loop Back Mode with Silent Mode.



## Figure 6.14-4 CAN Core in Loop Back Mode Combined with Silent Mode

#### 6.14.6.4Basic Mode

The CAN Core can be set in Basic Mode by programming the Basic bit (CAN\_TEST[2]) to one. In this mode, the C\_CAN runs without the Message RAM.

The IF1 Registers are used as Transmit Buffer. The transmission of the contents of the IF1 Registers is requested by writing the Busy bit (CAN\_IFn\_CREQ[15]) of the IF1 Command Request Register to one. The IF1 Registers are locked while the Busy bit is set. The Busy bit indicates that the transmission is pending.

As soon the CAN bus is idle, the IF1 Registers are loaded into the shift register of the CAN Core and the transmission is started. When the transmission has been completed, the Busy bit is reset and the locked IF1 Registers are released.

A pending transmission can be aborted at any time by resetting the Busy bit in the IF1 Command Request Register while the IF1 Registers are locked. If the software has reset the Busy bit, a possible retransmission in case of lost arbitration or in case of an error is disabled.

The IF2 Registers are used as a Receive Buffer. After the reception of a message the contents of the shift register is stored into the IF2 Registers, without any acceptance filtering.

Additionally, the actual contents of the shift register can be monitored during the message transfer. Each time a read Message Object is initiated by writing the Busy bit of the IF2 Command Request Register to one, the contents of the shift register are stored into the IF2 Registers.

In Basic Mode, the evaluation of all Message Object related control and status bits and the control bits of the IFn Command Mask Registers are turned off. The message number of the Command request registers is not evaluated. The NewDat (CAN\_IFn\_MCON[15]) and MsgLst (CAN\_IFn\_MCON[14]) bits retain their function, DLC3-0 indicates the received DLC (CAN\_IFn\_MCON[3:0]), and the other control bits are read as '0'.

## 6.14.6.5Software Control of CAN\_TX Pin

Four output functions are available for the CAN transmit pin, CAN\_TX. In addition to its default function (serial data output), the CAN transmit pin can drive the CAN Sample Point signal to monitor CAN\_Core's bit timing and it can drive constant dominant or recessive values. The latter two functions, combined with the readable CAN receive pin CAN\_RX, can be used to check the physical layer of the CAN bus.

The output mode for the CAN\_TX pin is selected by programming the Tx1 (CAN\_TEST[6]) and Tx0 (CAN\_TEST[5]) bits.

The three test functions of the CAN\_TX pin interfere with all CAN protocol functions. CAN\_TX must be left in its default function when CAN message transfer or any of the test modes (Loop Back Mode, Silent Mode or Basic Mode) are selected.

#### 6.14.7 CAN Communications

#### 6.14.7.1 Managing Message Objects

The configuration of the Message Objects in the Message RAM (with the exception of the bits MsgVal, NewDat, IntPnd and TxRqst) will not be affected by resetting the chip. All the Message Objects must be initialized by the application software or they must be "not valid" (MsgVal bit = '0') and the bit timing must be configured before the application software clears the Init bit (CAN CON[0]).



The configuration of a Message Object is done by programming Mask, Arbitration, Control and Data fields of one of the two interface registers to the desired values. By writing to the corresponding IFn Command Request Register, the IFn Message Buffer Registers are loaded into the addressed Message Object in the Message RAM.

When the Init bit is cleared, the CAN Protocol Controller state machine of the CAN\_Core and the state machine of the Message Handler control the internal data flow of the C\_CAN. Received messages that pass the acceptance filtering are stored into the Message RAM, messages with pending transmission request are loaded into the CAN\_Core's Shift Register and are transmitted through the CAN bus.

The application software reads received messages and updates messages to be transmitted through the IFn Interface Registers. Depending on the configuration, the application software is interrupted on certain CAN message and CAN error events.

### 6.14.7.2 Message Handler State Machine

The Message Handler controls the data transfer between the Rx/Tx Shift Register of the CAN Core, the Message RAM and the IFn Registers.

The Message Handler FSM controls the following functions:

- Data Transfer from IFn Registers to the Message RAM
- Data Transfer from Message RAM to the IFn Registers
- Data Transfer from Shift Register to the Message RAM
- Data Transfer from Message RAM to Shift Register
- Data Transfer from Shift Register to the Acceptance Filtering unit
- Scanning of Message RAM for a matching Message Object
- Handling of TxRqst flags
- Handling of interrupts

#### 6.14.7.3Data Transfer from/to Message RAM

When the application software initiates a data transfer between the IFn Registers and Message RAM, the Message Handler sets the Busy bit (CAN\_IFn\_CREQ[15]) to '1'. After the transfer has completed, the Busy bit is again cleared (see the Figure 6.14-5).

The respective Command Mask Register specifies whether a complete Message Object or only parts of it will be transferred. Due to the structure of the Message RAM, it is not possible to write single bits/bytes of one Message Object. It is always necessary to write a complete Message Object into the Message RAM. Therefore, the data transfer from the IFn Registers to the Message RAM requires a read-modify-write cycle. First, those parts of the Message Object that are not to be changed are read from the Message RAM and then the complete contents of the Message Buffer Registers are written into the Message Object.

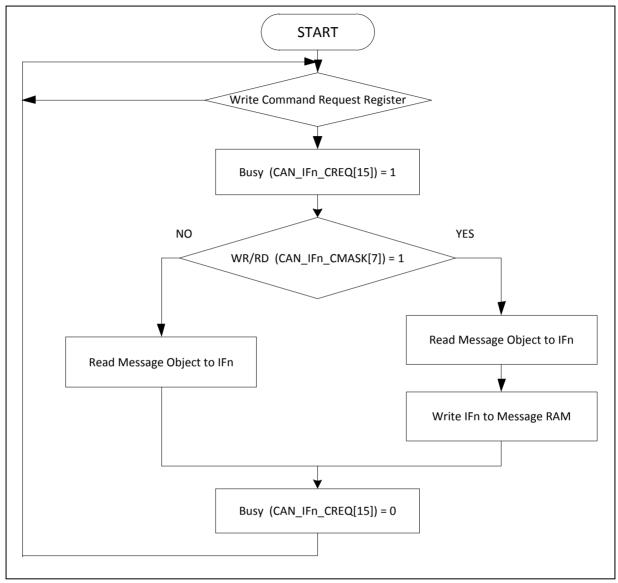



Figure 6.14-5 Data Transfer between IFn Registers and Message

After a partial write of a Message Object, the Message Buffer Registers that are not selected in the Command Mask Register will set the actual contents of the selected Message Object.

After a partial read of a Message Object, the Message Buffer Registers that are not selected in the Command Mask Register will be left unchanged.

#### 6.14.7.4Message Transmission

nuvoton

If the shift register of the CAN Core cell is ready for loading and if there is no data transfer between the IFn Registers and Message RAM, the MsgVal bit (CAN\_IFn\_ARB2[15]) and TxRqst bits (CAN\_TXREQ1/2) are evaluated. The valid Message Object with the highest priority pending transmission request is loaded into the shift register by the Message Handler and the transmission is started. The NewDat (CAN\_IFn\_MCON[15]) bit of the Message Object is reset.

After a successful transmission and also if no new data was written to the Message Object (NewDat =



'0') since the start of the transmission, the TxRqst bit of the Message Control register (CAN\_IFn\_MCON[8]) will be reset. If TxIE bit (CAN\_IFn\_MCON[11]) is set, IntPnd bit (CAN\_IFn\_MCON[13]) of the Interrupt Identifier register will be set after a successful transmission. If the C\_CAN has lost the arbitration or if an error occurred during the transmission, the message will be retransmitted as soon as the CAN bus is free again. Meanwhile, if the transmission of a message with higher priority has been requested, the messages will be transmitted in the order of their priority.

## 6.14.7.5 Acceptance Filtering of Received Messages

When the arbitration and control field (Identifier + IDE + RTR + DLC) of an incoming message is completely shifted into the Rx/Tx Shift Register of the CAN Core, the Message Handler FSM starts the scanning of the Message RAM for a matching valid Message Object.

To scan the Message RAM for a matching Message Object, the Acceptance Filtering unit is loaded with the arbitration bits from the CAN Core shift register. The arbitration and mask fields (including MsgVal (CAN\_IFn\_ARB2[15]), UMask (CAN\_IFn\_MCON[12]), NewDat (CAN\_IFn\_MCON[15]) and EoB (CAN\_IFn\_MCON[7]) of Message Object 1 are then loaded into the Acceptance Filtering unit and compared with the arbitration field from the shift register. This is repeated with each following Message Object until a matching Message Object is found or until the end of the Message RAM is reached.

If a match occurs, the scan is stopped and the Message Handler FSM proceeds depending on the type of frame (Data Frame or Remote Frame) received.

#### **Reception of Data Frame**

The Message Handler FSM stores the message from the CAN Core shift register into the respective Message Object in the Message RAM. Not only the data bytes, but all arbitration bits and the Data Length Code are stored into the corresponding Message Object. This is done to keep the data bytes connected with the identifier even if arbitration mask registers are used.

The NewDat bit (CAN\_IFn\_MCON[15]) is set to indicate that new data (not yet seen by the software) has been received. The application software should reset NewDat bit when the Message Object has been read. If at the time of reception, the NewDat bit was already set, MsgLst (CAN\_IFn\_MCON[14]) is set to indicate that the previous data (supposedly not seen by the software) is lost. If the RxIE bit (CAN\_IFn\_MCON[10]) is set, the IntPnd bit (CAN\_IFn\_MCON[13]) is set, causing the Interrupt Register to point to this Message Object.

The TxRqst bit (CAN\_IFn\_MCON[8]) of this Message Object is reset to prevent the transmission of a Remote Frame, while the requested Data Frame has just been received.

#### **Reception of Remote Frame**

When a Remote Frame is received, three different configurations of the matching Message Object have to be considered:

1) Dir (CAN\_IFn\_ARB2[13]) = '1' (direction = transmit), RmtEn (CAN\_IFn\_MCON[9]) = '1' and UMask (CAN\_IFn\_MCON[12]) = '1' or '0'

At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is set. The rest of the Message Object remains unchanged.

2) Dir = '1' (direction = transmit), RmtEn = '0' and UMask = '0'

At the reception of a matching Remote Frame, the TxRqst bit of this Message Object remains unchanged; the Remote Frame is ignored.

3) Dir = '1' (direction = transmit), RmtEn = '0' and UMask = '1'

At the reception of a matching Remote Frame, the TxRqst bit of this Message Object is reset. The arbitration and control field (Identifier + IDE + RTR + DLC) from the shift register is stored in the Message Object of the Message RAM and the NewDat bit (CAN IFn MCON[15]) of this Message Object is set. The data field of the Message Object remains unchanged; the Remote Frame is treated similar to a received Data Frame.

## 6.14.7.6Receive/Transmit Priority

nuvoton

The receive/transmit priority for the Message Objects is attached to the message number. Message Object 1 has the highest priority, while Message Object 32 has the lowest priority. If more than one transmission request is pending, they are serviced due to the priority of the corresponding Message Object.

## 6.14.7.7Configuring a Transmit Object

The Table 6.14-1 shows how a Transmit Object should be initialized.

| Ms | Arb   | Data  | Mask  | EoB | Dir | NewDat | MsgLst | RxIE | TxIE  | IntPnd | RmtEn | TxRqst |
|----|-------|-------|-------|-----|-----|--------|--------|------|-------|--------|-------|--------|
| 1  | appl. | appl. | appl. | 1   | 1   | 0      | 0      | 0    | appl. | 0      | appl. | 0      |

Table 6.14-1 Initialization of a Transmit Object

**Note:** appl. = application software.

The Arbitration Register values (ID28-0 (CAN IFn ARB1/2) and Xtd bit (CAN IFn ARB2[14])) are provided by the application. They define the identifier and type of the outgoing message. If an 11-bit Identifier ("Standard Frame") is used, it is programmed to ID28 - ID18. The ID17 - ID0 can then be disregarded.

If the TxIE bit (CAN\_IFn\_MCON[11]) is set, the IntPnd bit (CAN\_IFn\_MCON[13]) will be set after a successful transmission of the Message Object.

If the RmtEn bit (CAN IFn MCON[9]) is set, a matching received Remote Frame will cause the TxRqst bit (CAN IFn MCON[8]) to be set; the Remote Frame will autonomously be answered by a Data Frame.

The Data Register values (DLC3-0 (CAN IFn MCON[3:0]), Data(0)-(7)) are provided by the application, TxRqst and RmtEn may not be set before the data is valid.

The Mask Registers (Msk28-0, UMask, MXtd and MDir bits) may be used (UMask (CAN IFn MCON[12]) = '1') to allow groups of Remote Frames with similar identifiers to set the TxRqst bit. The Dir bit (CAN\_IFn\_ARB2[13]) should not be masked.

#### 6.14.7.8 Updating a Transmit Object

The software may update the data bytes of a Transmit Object any time through the IFn Interface registers, neither MsgVal bit (CAN\_IFn\_ARB2[15]) nor TxRqst (CAN\_IFn\_MCON[8]) have to be reset before the update.

Even if only a part of the data bytes are to be updated, all four bytes of the corresponding IFn Data A



Register or IFn Data B Register have to be valid before the contents of that register are transferred to the Message Object. Either the application software has to write all four bytes into the IFn Data Register or the Message Object is transferred to the IFn Data Register before the software writes the new data bytes.

When only the (eight) data bytes are updated, first 0x0087 is written to the Command Mask Register and then the number of the Message Object is written to the Command Request Register, concurrently updating the data bytes and setting TxRqst.

To prevent the reset of TxRqst at the end of a transmission that may already be in progress while the data is updated, NewDat (CAN\_IFn\_MCON[15]) has to be set together with TxRqst.

When NewDat is set together with TxRqst, NewDat will be reset as soon as the new transmission has started.

## 6.14.7.9 Configuring a Receive Object

The Table 6.14-2 shows how a Receive Object should be initialized.

| MsgVal | Arb   | Data  | Mask  | EoB | Dir | NewDat | MsgLst | RxIE  | TxIE | IntPnd | RmtEn | TxRqst |
|--------|-------|-------|-------|-----|-----|--------|--------|-------|------|--------|-------|--------|
| 1      | appl. | appl. | appl. | 1   | 0   | 0      | 0      | appl. | 0    | 0      | 0     | 0      |

Table 6.14-2 Initialization of a Receive Object

The Arbitration Registers values (ID28-0 (CAN\_IFn\_ARB1/2) and Xtd bit (CAN\_IFn\_ARB2[14])) are provided by the application. They define the identifier and type of accepted received messages. If an 11-bit Identifier ("Standard Frame") is used, it is programmed to ID28 - ID18. Then ID17 - ID0 can be disregarded. When a Data Frame with an 11-bit Identifier is received, ID17 - ID0 will be set to '0'.

If the RxIE bit (CAN\_IFn\_MCON[10]) is set, the IntPnd bit (CAN\_IFn\_MCON[13]) will be set when a received Data Frame is accepted and stored in the Message Object.

The Data Length Code (DLC3-0 (CAN\_IFn\_MCON[3:0])) is provided by the application. When the Message Handler stores a Data Frame in the Message Object, it will store the received Data Length Code and eight data bytes. If the Data Length Code is less than 8, the remaining bytes of the Message Object will be overwritten by unspecified values.

The Mask Registers (Msk28-0, UMask, MXtd and MDir bits) may be used (UMask (CAN\_IFn\_MCON[12]) = '1') to allow groups of Data Frames with similar identifiers to be accepted. The Dir bit (CAN\_IFn\_ARB2[13]) should not be masked in typical applications.

## 6.14.7.10 Handling Received Messages

The application software may read a received message any time through the IFn Interface registers. The data consistency is guaranteed by the Message Handler state machine.

Typically, the software will write first 0x007F to the Command Mask Register and then the number of the Message Object to the Command Request Register. This combination will transfer the whole received message from the Message RAM into the Message Buffer Register. Additionally, the bits NewDat (CAN\_IFn\_MCON[15]) and IntPnd (CAN\_IFn\_MCON[13]) are cleared in the Message RAM (not in the Message Buffer).

If the Message Object uses masks for acceptance filtering, the arbitration bits show which of the matching messages have been received.

The actual value of NewDat shows whether a new message has been received since the last time this Message Object was read. The actual value of MsgLst (CAN\_IFn\_MCON[14]) shows whether more than one message has been received since the last time this Message Object was read. MsgLst will not be automatically reset.

By means of a Remote Frame, the software may request another CAN node to provide new data for a receive object. Setting the TxRqst bit (CAN\_IFn\_MCON[8]) of a receive object will cause the transmission of a Remote Frame with the receive object's identifier. This Remote Frame triggers the other CAN node to start the transmission of the matching Data Frame. If the matching Data Frame is received before the Remote Frame could be transmitted, the TxRqst bit is automatically reset.

## 6.14.7.11 Configuring a FIFO Buffer

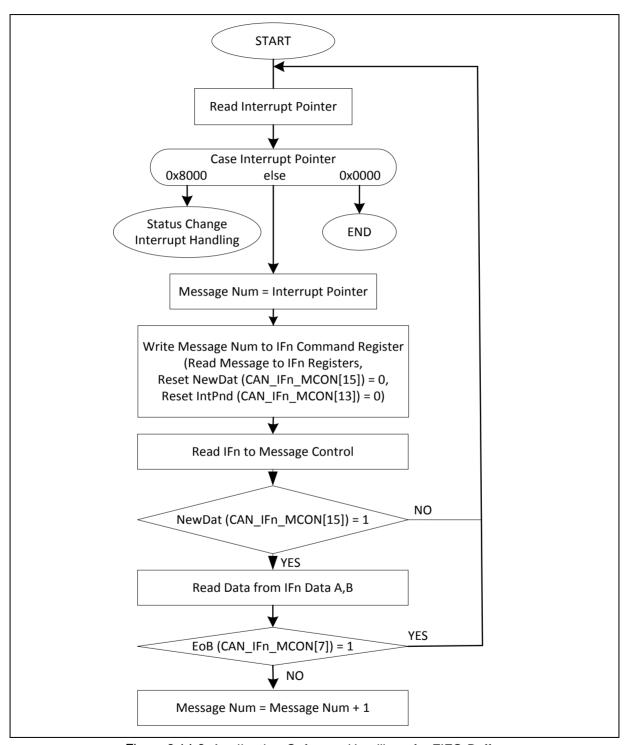
With the exception of the EoB bit (CAN\_IFn\_MCON[7]), the configuration of Receive Objects belonging to a FIFO Buffer is the same as the configuration of a (single) Receive Object, see Section 6.5.7.9: Configuring a Receive Object.

To concatenate two or more Message Objects into a FIFO Buffer, the identifiers and masks (if used) of these Message Objects have to be programmed to matching values. Due to the implicit priority of the Message Objects, the Message Object with the lowest number will be the first Message Object of the FIFO Buffer. The EoB bit of all Message Objects of a FIFO Buffer except the last have to be programmed to zero. The EoB bit of the last Message Object of a FIFO Buffer is set to one, configuring it as the End of the Block.

## 6.14.7.12 Receiving Messages with FIFO Buffers

Received messages with identifiers matching to a FIFO Buffer are stored into a Message Object of this FIFO Buffer starting with the Message Object with the lowest message number.

When a message is stored into a Message Object of a FIFO Buffer, the NewDat bit (CAN\_IFn\_MCON[15]) of this Message Object is set. By setting NewDat while EoB (CAN\_IFn\_MCON[7]) is zero, the Message Object is locked for further write access by the Message Handler until the application software has written the NewDat bit back to zero.


Messages are stored into a FIFO Buffer until the last Message Object of this FIFO Buffer is reached. If none of the preceding Message Objects is released by writing NewDat to zero, all further messages for this FIFO Buffer will be written into the last Message Object of the FIFO Buffer and therefore overwrite the previous messages.

#### 6.14.7.13 Reading from a FIFO Buffer

When the application software transfers the contents of a Message Object to the IFn Message Buffer register by writing its number to the IFn Command Request Register, the corresponding Command Mask Register should be programmed in such a way that bits NewDat (CAN\_IFn\_MCON[15]) and IntPnd (CAN\_IFn\_MCON[13]) are reset to zero (TxRqst/NewDat (CAN\_IFn\_CMASK[2]) = '1' and CIrIntPnd (CAN\_IFn\_CMASK[3]) = '1'). The values of these bits in the Message Control Register always reflect the status before resetting the bits.

To assure the correct function of a FIFO Buffer, the application software should read the Message Objects starting at the FIFO Object with the lowest message number.

The Figure 6.14-6 shows how a set of Message Objects which are concatenated to a FIFO Buffer can be handled by the application software.



nuvoton

Figure 6.14-6 Application Software Handling of a FIFO Buffer

#### 6.14.7.14 Handling Interrupts

If several interrupts are pending, the CAN Interrupt Register will point to the pending interrupt with the highest priority, disregarding their chronological order. An interrupt remains pending until the application software has cleared it.

The Status Interrupt has the highest priority. Among the message interrupts, interrupt priority of the Message Object decreases with increasing message number.

A message interrupt is cleared by clearing the IntPnd bit (CAN\_IFn\_MCON[13]) of the Message Object. The Status Interrupt is cleared by reading the Status Register.

The interrupt identifier, IntId, in the Interrupt Register, indicates the cause of the interrupt. When no interrupt is pending, the register will hold the value zero. If the value of the Interrupt Register is different from zero, then there is an interrupt pending and, if IE (CAN\_IFn\_CON[1]) is set, the CAN\_INT interrupt signal is active. The interrupt remains active until the Interrupt Register is back to value zero (the cause of the interrupt is reset) or until IE is reset.

The value 0x8000 indicates that an interrupt is pending because the CAN Core has updated (not necessarily changed) the Status Register (Error Interrupt or Status Interrupt). This interrupt has the highest priority. The application software can update (reset) the status bits RxOk (CAN\_STATUS[4]), TxOk (CAN\_STATUS[3]) and LEC (CAN\_STATUS[2:0]), but a write access of the software to the Status Register can never generate or reset an interrupt.

All other values indicate that the source of the interrupt is one of the Message Objects. Intld points to the pending message interrupt with the highest interrupt priority.

The application software controls whether a change of the Status Register may cause an interrupt (bits EIE (CAN\_IFn\_MCON[3]) and SIE (CAN\_IFn\_MCON[2])) and whether the interrupt line becomes active when the Interrupt Register is different from zero (bit IE in the CAN Control Register). The Interrupt Register will be updated even when IE is reset.

The application software has two possibilities to follow the source of a message interrupt. First, it can follow the Intld in the Interrupt Register and second it can poll the Interrupt Pending Register.

An interrupt service routine that is reading the message that is the source of the interrupt may read the message and reset the Message Object's IntPnd at the same time (bit ClrIntPnd (CAN\_IFn\_CMASK[3])). When IntPnd is cleared, the Interrupt Register will point to the next Message Object with a pending interrupt.

#### 6.14.7.15 Configuring the Bit Timing

Even if minor errors in the configuration of the CAN bit timing do not result in immediate failure, the performance of a CAN network can be reduced significantly.

In many cases, the CAN bit synchronization will amend a faulty configuration of the CAN bit timing to such a degree that only occasionally an error frame is generated. However, in the case of arbitration, when two or more CAN nodes simultaneously try to transmit a frame, a misplaced sample point may cause one of the transmitters to become error passive.

The analysis of such sporadic errors requires a detailed knowledge of the CAN bit synchronization inside a CAN node and interaction of the CAN nodes on the CAN bus.

#### 6.14.7.16 Bit Time and Bit Rate

CAN supports bit rates in the range of lower than 1 Kbit/s up to 1000 Kbit/s. Each member of the CAN network has its own clock generator, usually a quartz oscillator. The timing parameter of the bit time (i.e. the reciprocal of the bit rate) can be configured individually for each CAN node, creating a common bit rate even though the oscillator periods of the CAN nodes ( $f_{osc}$ ) may be different.

The frequencies of these oscillators are not absolutely stable, small variations are caused by changes in temperature or voltage and by deteriorating components. As long as the variations remain inside a specific oscillator tolerance range (df), the CAN nodes are able to compensate for the different bit rates by re-synchronizing to the bit stream.

nuvoton

According to the CAN specification, the bit time is divided into four segments (see Figure 6.14-7). The Synchronization Segment, the Propagation Time Segment, the Phase Buffer Segment 1 and the Phase Buffer Segment 2. Each segment consists of a specific, programmable number of time quanta (see Table 6.14-3). The length of the time quantum (t<sub>n</sub>), which is the basic time unit of the bit time, is defined by the CAN controller's APB clock  $f_{APB}$  and the BRP bit (CAN\_BTIME[5:0]) :  $t_{\alpha} = BRP / f_{APB}$ .

The Synchronization Segment, Sync Seg, is that part of the bit time where edges of the CAN bus level are expected to occur. The distance between an edge that occurs outside of Sync Seg, and the Sync Seg is called the phase error of that edge. The Propagation Time Segment, Prop Seg, is intended to compensate for the physical delay time within the CAN network. The Phase Buffer Segments Phase Seg1 and Phase Seg2 surround the Sample Point. The (Re-)Synchronization Jump Width (SJW) defines how far a re-synchronization may move the Sample Point inside the limits defined by the Phase Buffer Segments to compensate for edge phase errors.

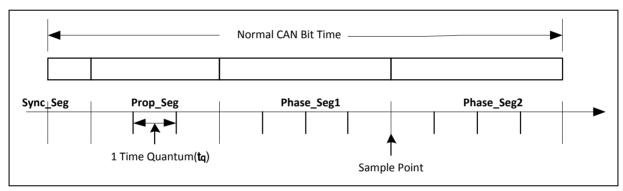



Figure 6.14-7 Bit Timing

| Parameter                                                                         | Range               | Remark                                                   |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------|---------------------|----------------------------------------------------------|--|--|--|--|--|--|--|
| BRP                                                                               | [1 32]              | Defines the length of the time quantum t <sub>q</sub>    |  |  |  |  |  |  |  |
| Sync_Seg                                                                          | 1 tq                | Fixed length, synchronization of bus input to APB clock  |  |  |  |  |  |  |  |
| Prop_Seg                                                                          | [18] t <sub>q</sub> | Compensates for the physical delay time                  |  |  |  |  |  |  |  |
| Phase_Seg1                                                                        | [18] t <sub>q</sub> | Which may be lengthened temporarily by synchronization   |  |  |  |  |  |  |  |
| Phase_Seg2                                                                        | [1] t <sub>q</sub>  | Which may be shortened temporarily by synchronization    |  |  |  |  |  |  |  |
| SJW                                                                               | [14] t <sub>q</sub> | Which may not be longer than either Phase Buffer Segment |  |  |  |  |  |  |  |
| This table describes the minimum programmable ranges required by the CAN protocol |                     |                                                          |  |  |  |  |  |  |  |

Table 6.14-3 CAN Bit Time Parameters

A given bit rate may be met by different bit time configurations, but for the proper function of the

CAN network the physical delay time and the oscillator's tolerance range have to be considered.

## 6.14.7.17 Propagation Time Segment

This part of the bit time is used to compensate physical delay time within the network. These delay time consist of the signal propagation time on the bus and the internal delay time of the CAN nodes.

Any CAN node synchronized to the bit stream on the CAN bus will be out of phase with the transmitter of that bit stream, caused by the signal propagation time between the two nodes. The CAN protocol's non-destructive bitwise arbitration and the dominant acknowledge bit provided by receivers of CAN messages requires that a CAN node transmitting a bit stream must also be able to receive dominant bits transmitted by other CAN nodes that are synchronized to that bit stream. The example in the Figure 6.14-8 shows the phase shift and propagation time between two CAN nodes.

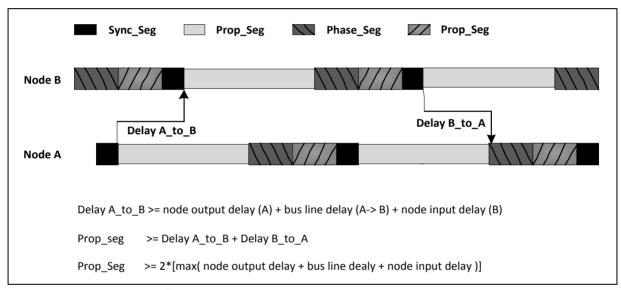



Figure 6.14-8 Propagation Time Segment

In this example, both nodes A and B are transmitters, performing an arbitration for the CAN bus. Node A has sent its Start of Frame bit less than one bit time earlier than node B, therefore node B has synchronized itself to the received edge from recessive to dominant. Since node B has received this edge delay (A\_to\_B) after it has been transmitted, B's bit timing segments are shifted with respect to A. Node B sends an identifier with higher priority and so it will win the arbitration at a specific identifier bit when it transmits a dominant bit while node A transmits a recessive bit. The dominant bit transmitted by node B will arrive at node A after the delay (B\_to\_A).

Due to oscillator tolerances, the actual position of node A's Sample Point can be anywhere inside the nominal range of node A's Phase Buffer Segments, so the bit transmitted by node B must arrive at node A before the start of Phase\_Seg1. This condition defines the length of Prop\_Seg.

If the edge from recessive to dominant transmitted by node B arrives at node A after the start of Phase\_Seg1, it can happen that node A samples a recessive bit instead of a dominant bit, resulting in a bit error and the destruction of the current frame by an error flag.

The error occurs only when two nodes arbitrate for the CAN bus that have oscillators of opposite ends of the tolerance range and that are separated by a long bus line. This is an example of a minor error in the bit timing configuration (Prop\_Seg is too short) that causes sporadic bus errors.



Some CAN implementations provide an optional 3 Sample Mode but the  $C_CAN$  does not. In this mode, the CAN bus input signal passes a digital low-pass filter, using three samples and a majority logic to determine the valid bit value. This results in an additional input delay of 1  $t_q$ , requiring a longer Prop Seq.

## 6.14.7.18 Phase Buffer Segments and Synchronization

The Phase Buffer Segments (Phase\_Seg1 and Phase\_Seg2) and the Synchronization Jump Width (SJW) are used to compensate for the oscillator tolerance. The Phase Buffer Segments may be lengthened or shortened by synchronization.

Synchronizations occur on edges from recessive to dominant, their purpose is to control the distance between edges and Sample Points.

Edges are detected by sampling the actual bus level in each time quantum and comparing it with the bus level at the previous Sample Point. A synchronization may be done only if a recessive bit was sampled at the previous Sample Point and if the bus level at the actual time quantum is dominant.

An edge is synchronous if it occurs inside of Sync\_Seg, otherwise the distance between edge and the end of Sync\_Seg is the edge phase error, measured in time quanta. If the edge occurs before Sync Seg, the phase error is negative, else it is positive.

Two types of synchronization exist, Hard Synchronization and Re-synchronization.

A Hard Synchronization is done once at the start of a frame and inside a frame only when Resynchronizations occur.

#### Hard Synchronization

After a hard synchronization, the bit time is restarted with the end of Sync\_Seg, regardless of the edge phase error. Thus hard synchronization forces the edge, which has caused the hard synchronization to lie within the synchronization segment of the restarted bit time.

#### Bit Re-synchronization

Re-synchronization leads to a shortening or lengthening of the bit time such that the position of the sample point is shifted with regard to the edge.

When the phase error of the edge which causes Re-synchronization is positive, Phase\_Seg1 is lengthened. If the magnitude of the phase error is less than SJW, Phase\_Seg1 is lengthened by the magnitude of the phase error, else it is lengthened by SJW.

When the phase error of the edge, which causes Re-synchronization is negative, Phase\_Seg2 is shortened. If the magnitude of the phase error is less than SJW, Phase\_Seg2 is shortened by the magnitude of the phase error, else it is shortened by SJW.

When the magnitude of the phase error of the edge is less than or equal to the programmed value of SJW, the results of Hard Synchronization and Re-synchronization are the same. If the magnitude of the phase error is larger than SJW, the Re-synchronization cannot compensate the phase error completely, an error (phase error - SJW) remains.

Only one synchronization may be done between two Sample Points. The Synchronizations maintain a minimum distance between edges and Sample Points, giving the bus level time to stabilize and filtering out spikes that are shorter than (Prop\_Seg + Phase\_Seg1).

Apart from noise spikes, most synchronizations are caused by arbitration. All nodes synchronize "hard" on the edge transmitted by the "leading" transceiver that started transmitting first, but due to propagation delay time, they cannot become ideally synchronized. The "leading" transmitter does not

necessarily win the arbitration, therefore the receivers have to synchronize themselves to different transmitters that subsequently "take the lead" and that are differently synchronized to the previously "leading" transmitter. The same happens at the acknowledge field, where the transmitter and some of the receivers will have to synchronize to that receiver that "takes the lead" in the transmission of the dominant acknowledge bit.

Synchronizations after the end of the arbitration will be caused by oscillator tolerance, when the differences in the oscillator's clock periods of transmitter and receivers sum up during the time between synchronizations (at most ten bits). These summarized differences may not be longer than the SJW, limiting the oscillator's tolerance range.

The examples in the Figure 6.14-8 show how the Phase Buffer Segments are used to compensate for phase errors. There are three drawings of each two consecutive bit timings. The upper drawing shows the synchronization on a "late" edge, the lower drawing shows the synchronization on an "early" edge, and the middle drawing is the reference without synchronization.

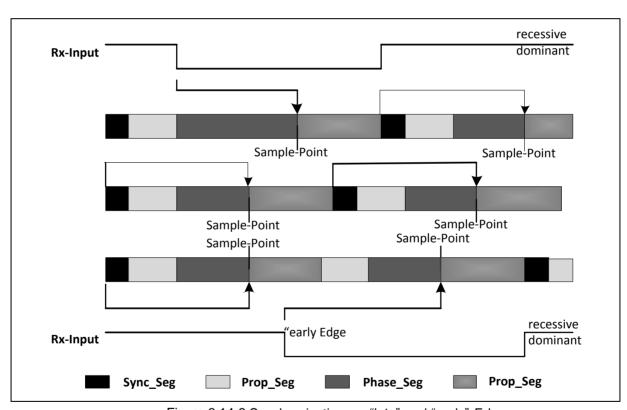



Figure 6.14-9 Synchronization on "late" and "early" Edges

In the first example an edge from recessive to dominant occurs at the end of Prop\_Seg. The edge is "late" since it occurs after the Sync\_Seg. Reacting to the "late" edge, Phase\_Seg1 is lengthened so that the distance from the edge to the Sample Point is the same as it would have been from the Sync\_Seg to the Sample Point if no edge had occurred. The phase error of this "late" edge is less than SJW, so it is fully compensated and the edge from dominant to recessive at the end of the bit, which is one nominal bit time long, occurs in the Sync\_Seg.

In the second example an edge from recessive to dominant occurs during Phase\_Seg2. The edge is "early" since it occurs before a Sync\_Seg. Reacting to the "early" edge, Phase\_Seg2 is shortened and Sync\_Seg is omitted, so that the distance from the edge to the Sample Point is the same as it would have been from a Sync\_Seg to the Sample Point if no edge had occurred. As in the previous example,



the magnitude of this "early" edge's phase error is less than SJW, so it is fully compensated.

The Phase Buffer Segments are lengthened or shortened temporarily only; at the next bit time, the segments return to their nominal programmed values.

In these examples, the bit timing is seen from the point of view of the CAN implementation's state machine, where the bit time starts and ends at the Sample Points. The state machine omits Sync\_Seg when synchronising on an "early" edge because it cannot subsequently redefine that time quantum of Phase\_Seg2 where the edge occurs to be the Sync\_Seg.

The examples in the Figure 6.14-10 show how short dominant noise spikes are filtered by synchronisations. In both examples the spike starts at the end of Prop\_Seg and has the length of (Prop Seg + Phase Seg1).

In the first example, the Synchronization Jump Width is greater than or equal to the phase error of the spike's edge from recessive to dominant. Therefore the Sample Point is shifted after the end of the spike; a recessive bus level is sampled.

In the second example, SJW is shorter than the phase error, so the Sample Point cannot be shifted far enough; the dominant spike is sampled as actual bus level.

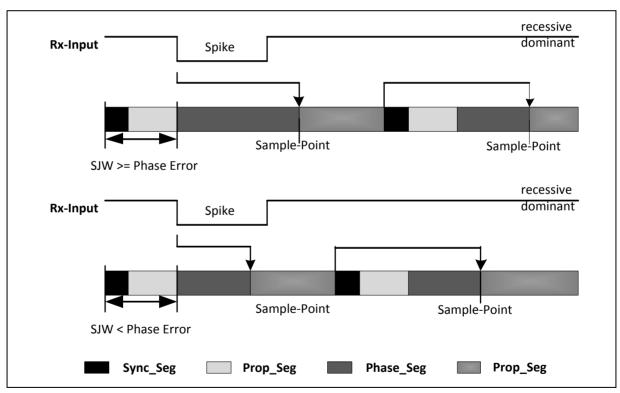



Figure 6.14-10 Filtering of Short Dominant Spikes

## 6.14.7.19 Oscillator Tolerance Range

The oscillator tolerance range was increased when the CAN protocol was developed from version 1.1 to version 1.2 (version 1.0 was never implemented in silicon). The option to synchronize on edges from dominant to recessive became obsolete, only edges from recessive to dominant are considered for synchronization. The protocol update to version 2.0 (A and B) had no influence on the oscillator tolerance.

The tolerance range  $d_f$  for an oscillator frequency  $f_{osc}$  around the nominal frequency  $f_{nom}$  is:

$$(1 - d_f) \cdot f_{nom} \le f_{osc} \le (1 + d_f) \cdot f_{nom}$$

It depends on the proportions of Phase\_Seg1, Phase\_Seg2, SJW and the bit time. The maximum tolerance  $d_f$  is the defined by two conditions (both shall be met):

**Note:** These conditions base on the APB  $cock = f_{osc}$ .

It has to be considered that SJW may not be larger than the smaller of the Phase Buffer Segments and that the Propagation Time Segment limits that part of the bit time that may be used for the Phase Buffer Segments.

The combination Prop\_Seg = 1 and Phase\_Seg1 = Phase\_Seg2 = SJW = 4 allows the largest possible oscillator tolerance of 1.58%. This combination with a Propagation Time Segment of only 10% of the bit time is not suitable for short bit times; it can be used for bit rates of up to 125 Kbit/s (bit time = 8us) with a bus length of 40 m.

#### 6.14.7.20 Configuring the CAN Protocol Controller

In most CAN implementations and also in the C\_CAN, the bit timing configuration is programmed in two register bytes. The sum of Prop\_Seg and Phase\_Seg1 (as TSEG1 (CAN\_BTIME[11:8])) is combined with Phase\_Seg2 (as TSEG2 (CAN\_BTIME[14:12])) in one byte, SJW (CAN\_BTIME[7:6]) and BRP (CAN\_BTIME[5:0]) are combined in the other byte.

In these bit timing registers, the four components TSEG1, TSEG2, SJW, and BRP have to be programmed to a numerical value that is one less than its functional value. Therefore, instead of values in the range of [1..n], values in the range of [0..n-1] are programmed. That way, e.g. SJW (functional range of [1..4]) is represented by only two bits.

Therefore the length of the bit time is (programmed values) [TSEG1 + TSEG2 + 3]  $t_q$  or (functional values) [Sync\_Seg + Prop\_Seg + Phase\_Seg1 + Phase\_Seg2]  $t_q$ .

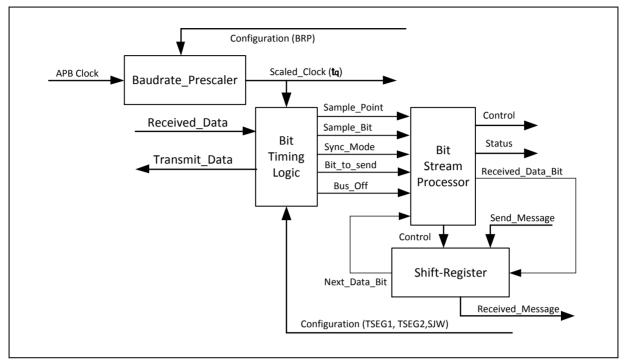



Figure 6.14-11 Structure of the CAN Core's CAN Protocol Controller

The data in the bit timing registers is the configuration input of the CAN protocol controller. The Baud Rate Prescaler (configured by BRP) defines the length of the time quantum, the basic time unit of the bit time; the Bit Timing Logic (configured by TSEG1, TSEG2 and SJW) defines the number of time quanta in the bit time.

The processing of the bit time, the calculation of the position of the Sample Point, and occasional synchronizations are controlled by the BTL (Bit Timing Logic) state machine, which is evaluated once each time quantum. The rest of the CAN protocol controller, the BSP (Bit Stream Processor) state machine is evaluated once each bit time, at the Sample Point.

The Shift Register sends the messages serially and parallelizes received messages. It's loading and shifting is controlled by the BSP.

The BSP translates messages into frames and vice versa. It generates and discards the enclosing fixed format bits, inserts and extracts stuff bits, calculates and checks the CRC code, performs the error management, and decides which type of synchronization is to be used. It is evaluated at the Sample Point and processes the sampled bus input bit. The time that is needed to calculate the next bit to be sent after the Sample point (e.g. data bit, CRC (Cyclic Redundancy Check) bit, stuff bit, error flag or idle) is called the Information Processing Time (IPT).

The IPT is application specific but may not be longer than 2 ta; the IPT for the C\_CAN is 0 ta. Its length is the lower limit of the programmed length of Phase\_Seg2. In case of a synchronization, Phase\_Seg2 may be shortened to a value less than IPT, which does not affect bus timing.

#### 6.14.7.21 Calculating Bit Timing Parameters

nuvoton

Usually, the calculation of the bit timing configuration starts with a desired bit rate or bit time. The resulting bit time (1/bit rate) must be an integer multiple of the APB clock period.

The bit time may consist of 4 to 25 time quanta, the length of the time quantum t<sub>a</sub> is defined by the Baud Rate Prescaler with  $t_q = (Baud Rate Prescaler)/f_{apb_clk}$ . Several combinations may lead to the desired bit time, allowing iterations of the following steps.

First part of the bit time to be defined is the Prop\_Seg. Its length depends on the delay times measured in the APB clock. A maximum bus length as well as a maximum node delay has to be defined for expandible CAN bus systems. The resulting time for Prop\_Seg is converted into time quanta (rounded up to the nearest integer multiple of t<sub>n</sub>).

The Sync\_Seg is 1  $t_q$  long (fixed), leaving (bit time – Prop\_Seg – 1)  $t_q$  for the two Phase Buffer Segments. If the number of remaining  $t_q$  is even, the Phase Buffer Segments have the same length, Phase\_Seg2 = Phase\_Seg1, else Phase\_Seg2 = Phase\_Seg1 + 1.

The minimum nominal length of Phase\_Seg2 has to be regarded as well. Phase\_Seg2 may not be shorter than the IPT of the CAN controller, which, depending on the actual implementation, is in the range of  $[0..2] t_a$ .

The length of the Synchronization Jump Width is set to its maximum value, which is the minimum of 4 and Phase\_Seg1.

The oscillator tolerance range necessary for the resulting configuration is calculated by the formulas given in Section "Oscillator Tolerance Range".

If more than one configuration is possible, that configuration allowing the highest oscillator tolerance range should be chosen.

CAN nodes with different system clocks require different configurations to come to the same bit rate. The calculation of the propagation time in the CAN network, based on the nodes with the longest delay time, is done once for the whole network.

The oscillator tolerance range of the CAN systems is limited by that node with the lowest tolerance range.

The calculation may show that bus length or bit rate have to be decreased or that the stability of the oscillator frequency has to be increased in order to find a protocol compliant configuration of the CAN bit timing. The resulting configuration is written into the Bit Timing Register: (Phase\_Seg2-1) & (Phase\_Seg1+Prop\_Seg-1) & (SynchronisationJumpWidth-1) & (Prescaler-1)



# **Example for Bit Timing at High Baud rate**

In this example, the frequency of APB\_CLK is 10 MHz, BRP (CAN\_BTIME[5:0]) is 0, and the bit rate is 1 MBit/s.

| $T_q$                     | 100  | ns           | $= t_{APB\_CLK}$                                                                                |
|---------------------------|------|--------------|-------------------------------------------------------------------------------------------------|
| delay of bus driver       | 50   | ns           |                                                                                                 |
| delay of receiver circuit | 30   | ns           |                                                                                                 |
| delay of bus line (40m)   | 220  | ns           |                                                                                                 |
| $t_{Prop}$                | 600  | ns           | = 6 • t <sub>q</sub>                                                                            |
| $t_{\text{SJW}}$          | 100  | ns           | = 1 • t <sub>q</sub>                                                                            |
| t <sub>TSeg1</sub>        | 700  | ns           | $=t_{Prop} + t_{SJW}$                                                                           |
| t <sub>TSeg2</sub>        | 200  | ns           | = Information Processing Time + 1 • $t_q$                                                       |
| tSync-Seg                 | 100  | ns           | = 1 • tq                                                                                        |
| bit time                  | 1000 | ns           | $= t_{Sync\text{-Seg}} + t_{TSeg1} + t_{TSeg2}$                                                 |
| tolerance for APB_CLK 0.3 | 9 %  | $={2\times}$ | $\frac{\textit{Min}(\textit{PB1},\textit{PB2})}{13 \times (\textit{bit time} - \textit{PB2}))}$ |
|                           |      | $={2\times}$ | $\frac{0.1us}{13\times(1us-0.2us))}$                                                            |

In this example, the CAN\_BTIME register is programmed to 0x1600.

# **Example for Bit Timing at Low Baudrate**

nuvoton

In this example, the frequency of APB\_CLK is 2 MHz, BRP (CAN\_BTIME[5:0]) is 1, and the bit rate is 100 KBit/s.

| $\mathbf{t}_{q}$           | 1us   | = 2 • tapb_clk                                                   |
|----------------------------|-------|------------------------------------------------------------------|
| delay of bus driver        | 200ns |                                                                  |
| delay of receiver circuit  | 80ns  |                                                                  |
| delay of bus line (40m)    | 220ns |                                                                  |
| $t_{Prop}$                 | 1us   | = 1 • t <sub>q</sub>                                             |
| t <sub>SJW</sub>           | 4us   | = 4 • t <sub>q</sub>                                             |
| tTSeg1                     | 5us   | $= t_{Prop} + t_{SJW}$                                           |
| t <sub>TSeg2</sub>         | 4us   | = Information Processing Time + $3 \cdot t_q$                    |
| tSync-Seg                  | 1us   | = 1 • t <sub>q</sub>                                             |
| bit time                   | 10us  | $= t_{Sync\text{-Seg}} + t_{TSeg1} + t_{TSeg2}$                  |
| tolerance for APB_CLK 1.58 | %     | $= \frac{Min(PB1, PB2)}{2 \times 13 \times (bit \ time - PB2))}$ |
|                            |       | $=\frac{4us}{2\times13\times(10us-4us))}$                        |

In this example, the CAN\_BTIME register is programmed to 0x34C1.

#### 6.14.8 CAN Interface Reset State

After the hardware reset, the C CAN registers hold the reset values which are given in the register description in CAN register map.

Additionally the bus-off state is reset and the output CAN\_TX is set to recessive (HIGH). The value 0x0001 (Init = '1') in the CAN Control Register enables the software initialization. The C\_CAN does not influence the CAN bus until the application software resets the Init bit (CAN CON[0]) to '0'.

The data stored in the Message RAM is not affected by a hardware reset. After powered on, the contents of the Message RAM are undefined.



# **CAN Register Map for Each Bit Function**

| Addr<br>Offset | Register Name     | 15     | 14 13 12 11 10 9  |       |        |       |        | 8     | 7   | 6              | 5     | 4                         | 3       | 2         | 1       | 0      |        |
|----------------|-------------------|--------|-------------------|-------|--------|-------|--------|-------|-----|----------------|-------|---------------------------|---------|-----------|---------|--------|--------|
| 00h            | CAN_CON           |        | Reserved          |       |        |       |        |       |     | Test           | CCE   | DAR                       | Res     | EIE       | SIE     | IE     | Init   |
| 04h            | CAN_STATUS        |        |                   |       | Rese   | erved |        |       |     | BOff           | EWarn | EPass                     | RxOk    | TxOk      |         | LEC    |        |
| 08h            | CAN_ERR           | RP     |                   |       | F      | REC6- | 0      |       |     |                |       |                           | TE      | C7-0      |         |        |        |
| 0Ch            | CAN_BTIME         | Res    | -                 | TSeg2 | 2      |       | TS     | eg1   |     | SJ             | IW    |                           |         | В         | RP      |        |        |
| 10h            | CAN_IIDR          |        |                   |       | Intld  | 15-8  |        |       |     |                |       |                           | Intl    | d7-0      |         |        |        |
| 14h            | CAN_TEST          |        |                   |       | Rese   | erved |        |       |     | Rx             | Tx1   | LBack Silent Silent Basic |         |           |         |        | erved  |
| 18h            | CAN_BRPE          |        |                   |       |        |       | Rese   | erved |     |                |       | BRPE                      |         |           |         |        |        |
| 20h            | CAN_IF1_CRE<br>Q  | Busy   |                   |       |        | R     | eserve | ed    |     | Message Number |       |                           |         |           |         |        |        |
| 24h            | CAN_IF1_CMA<br>SK |        |                   |       | Rese   | erved |        |       |     | WR/RD          | Mask  | Arb                       | Control | CirintPnd | TxRqst/ | Data A | Data B |
| 28h            | CAN_IF1_MAS<br>K1 |        |                   |       |        |       |        |       | Msł | (15-0          |       |                           |         |           |         |        |        |
| 2Ch            | CAN_IF1_MAS<br>K2 | MXtd   | MDir Res Msk28-16 |       |        |       |        |       |     |                |       |                           |         |           |         |        |        |
| 30h            | CAN_IF1_ARB<br>1  |        |                   |       | ID15-0 |       |        |       |     |                |       |                           |         |           |         |        |        |
| 34h            | CAN_IF1_ARB<br>2  | MsgVal | Xtd Dir ID28-16   |       |        |       |        |       |     |                |       |                           |         |           |         |        |        |

| Addr<br>Offset | Register Name      | 1<br>5          | 1 4                                         | 1 3             | 1 2  | 1     | 1      | 9  | 8   | 7                | 6      | 5              | 4       | 3         | 2       | 1      | 0      |
|----------------|--------------------|-----------------|---------------------------------------------|-----------------|------|-------|--------|----|-----|------------------|--------|----------------|---------|-----------|---------|--------|--------|
| 38h            | CAN_IF1_MCO<br>N   | NewDat          | MsgLst IntPnd UMask TxIE RxIE RxIE          |                 |      |       |        |    |     | EoB              | R      | eserved DLC3-0 |         |           |         |        |        |
| 3Ch            | CAN_IF1_DAT<br>_A1 |                 |                                             |                 | Dat  | a(1)  |        |    |     |                  |        |                | Da      | ta(0)     |         |        |        |
| 40h            | CAN_IF1_DAT<br>_A2 |                 |                                             |                 | Dat  | a(3)  |        |    |     |                  |        |                | Da      | ta(2)     |         |        |        |
| 44h            | CAN_IF1_DAT<br>_B1 |                 |                                             |                 | Dat  | a(5)  |        |    |     |                  |        |                | Da      | ta(4)     |         |        |        |
| 48h            | CAN_IF1_DAT<br>_B2 |                 |                                             |                 | Dat  | a(7)  |        |    |     |                  |        |                | Da      | ta(6)     |         |        |        |
| 80h            | CAN_IF2_CRE<br>Q   | Busy            |                                             |                 |      | R     | eserve | ed |     | Message Number   |        |                |         |           |         |        |        |
| 84h            | CAN_IF2_CMA<br>SK  |                 |                                             |                 | Rese | erved |        |    |     | WR/RD            | Mask   | Arb            | Control | CirintPnd | TxRqst/ | Data A | Data B |
| 88h            | CAN_IF2_MAS<br>K1  |                 |                                             |                 |      |       |        |    | Msl | <b>&lt;</b> 15-0 |        |                |         |           |         |        |        |
| 8Ch            | CAN_IF2_MAS<br>K2  | MXt<br>d        | MDir                                        | Res.            |      |       |        |    |     | M                | 1sk28- | -16            |         |           |         |        |        |
| 90h            | CAN_IF2_ARB<br>1   |                 | •                                           |                 |      |       |        |    | ID  | 15-0             |        |                |         |           |         |        |        |
| 94h            | CAN_IF2_ARB<br>2   | MsgVal          | Xtd                                         | itd Dir ID28-16 |      |       |        |    |     |                  |        |                |         |           |         |        |        |
| 98h            | CAN_IF2_MCO<br>N   | NewDat          | M SgLst   IntPnd   IntPnd   IntPnd   Drc3-0 |                 |      |       |        |    |     |                  |        |                |         |           |         |        |        |
| 9Ch            | CAN_IF2_DAT<br>_A1 | Data(1) Data(0) |                                             |                 |      |       |        |    |     |                  |        |                |         |           |         |        |        |



| Addr<br>Offset | Register Name      | 15 14 13 12 11 10 9 8 7 6 5 4 3 2 |                           |  |     |      |  |     |        | 1    | 0           |              |               |        |  |  |  |
|----------------|--------------------|-----------------------------------|---------------------------|--|-----|------|--|-----|--------|------|-------------|--------------|---------------|--------|--|--|--|
| A0h            | CAN_IF2_DAT<br>_A2 |                                   | Data(3) Data(2)           |  |     |      |  |     |        |      |             |              |               |        |  |  |  |
| A4h            | CAN_IF2_DAT<br>_B1 |                                   |                           |  | Dat | a(5) |  |     |        |      |             |              | Da            | ata(4) |  |  |  |
| A8h            | CAN_IF2_DAT<br>_B2 |                                   |                           |  | Dat | a(7) |  |     |        |      |             |              | Da            | ata(6) |  |  |  |
| 100h           | CAN_TXREQ1         |                                   |                           |  |     |      |  | Тх  | :Rqst1 | 6-1  |             |              |               |        |  |  |  |
| 104h           | CAN_TXREQ2         |                                   |                           |  |     |      |  | Txl | Rqst3: | 2-17 |             |              |               |        |  |  |  |
| 120h           | CAN_NDAT1          |                                   |                           |  |     |      |  | Ne  | wDat   | 16-1 |             |              |               |        |  |  |  |
| 124h           | CAN_NDAT2          |                                   | NewDat32-17               |  |     |      |  |     |        |      |             |              |               |        |  |  |  |
| 140h           | CAN_IPND1          |                                   |                           |  |     |      |  | In  | tPnd1  | 6-1  |             |              |               |        |  |  |  |
| 144h           | CAN_IPND2          |                                   |                           |  |     |      |  | Int | Pnd32  | 2-17 |             |              |               |        |  |  |  |
| 160h           | CAN_MVLD1          |                                   |                           |  |     |      |  | Ms  | sgVal1 | 6-1  |             |              |               |        |  |  |  |
| 164h           | CAN_MVLD2          |                                   |                           |  |     |      |  | Ms  | gVal3  | 2-17 |             |              |               |        |  |  |  |
| 168h           | CAN_WU_EN          |                                   | Reserved                  |  |     |      |  |     |        |      |             | WAKU<br>P_EN |               |        |  |  |  |
| 16Ch           | CAN_WU_STA<br>TUS  |                                   | Reserved                  |  |     |      |  |     |        |      |             |              | WAKU<br>P_STS |        |  |  |  |
| 170h           | CAN_RAM_CE<br>N    |                                   | Reserved R <sub>C</sub> C |  |     |      |  |     |        |      | RAM_<br>CEN |              |               |        |  |  |  |
| Others         | Reserved           |                                   | Reserved                  |  |     |      |  |     |        |      |             |              |               |        |  |  |  |

Table 6.14-4 CAN Register Map for Each Bit Function

Note: Reserved bits are read as 0' except for IFn Mask 2 Register where they are read as '1'.

Res. = Reserved

## 6.14.9 Register Description

nuvoTon

The C\_CAN allocates an address space of 256 bytes. The registers are organized as 16-bit registers.

The two sets of interface registers (IF1 and IF2) control the software access to the Message RAM. They buffer the data to be transferred to and from the RAM, avoiding conflicts between software accesses and message reception/transmission.

## 6.14.10 Register Map

R: read only, W: write only, R/W: both read and write

| Register                             | Offset       | R/W | Description                                         | Reset Value |
|--------------------------------------|--------------|-----|-----------------------------------------------------|-------------|
| CAN Base Address<br>CAN0_BA = 0x4018 |              | •   | •                                                   |             |
| CAN_CON                              | CAN0_BA+0x00 | R/W | Control Register                                    | 0x0000_0001 |
| CAN_STATUS                           | CAN0_BA+0x04 | R/W | Status Register                                     | 0x0000_0000 |
| CAN_ERR                              | CAN0_BA+0x08 | R   | Error Counter Register                              | 0x0000_0000 |
| CAN_BTIME                            | CAN0_BA+0x0C | R/W | Bit Timing Register                                 | 0x0000_2301 |
| CAN_IIDR                             | CAN0_BA+0x10 | R   | Interrupt Identifier Register                       | 0x0000_0000 |
| CAN_TEST                             | CAN0_BA+0x14 | R/W | Test Register (Register Map Note 1)                 | 0x0000_0080 |
| CAN_BRPE                             | CAN0_BA+0x18 | R/W | Baud Rate Prescaler Extension Register              | 0x0000_0000 |
| CAN_IF1_CREQ                         | CAN0_BA+0x20 | R/W | IF1 (Register Map Note 2) Command Request Registers | 0x0000_0001 |
| CAN_IF2_CREQ                         | CAN0_BA+0x80 | R/W | IF2 (Register Map Note 2) Command Request Registers | 0x0000_0001 |
| CAN_IF1_CMASK                        | CAN0_BA+0x24 | R/W | IF1 Command Mask Register                           | 0x0000_0000 |
| CAN_IF2_CMASK                        | CAN0_BA+0x84 | R/W | IF2 Command Mask Register                           | 0x0000_0000 |
| CAN_IF1_MASK1                        | CAN0_BA+0x28 | R/W | IF1 Mask 1 Register                                 | 0x0000_FFFF |
| CAN_IF2_MASK1                        | CAN0_BA+0x88 | R/W | IF2 Mask 1 Register                                 | 0x0000_FFFF |
| CAN_IF1_MASK2                        | CAN0_BA+0x2C | R/W | IF1 Mask 2 Register                                 | 0x0000_FFFF |
| CAN_IF2_MASK2                        | CAN0_BA+0x8C | R/W | IF2 Mask 2 Register                                 | 0x0000_FFFF |
| CAN_IF1_ARB1                         | CAN0_BA+0x30 | R/W | IF1 Arbitration 1 Register                          | 0x0000_0000 |
| CAN_IF2_ARB1                         | CAN0_BA+0x90 | R/W | IF2 Arbitration 1 Register                          | 0x0000_0000 |
| CAN_IF1_ARB2                         | CAN0_BA+0x34 | R/W | IF1 Arbitration 2 Register                          | 0x0000_0000 |
| CAN_IF2_ARB2                         | CAN0_BA+0x94 | R/W | IF2 Arbitration 2 Register                          | 0x0000_0000 |



| CAN_IF1_MCON                        | CAN0_BA+0x38                   | R/W                     | IF1 Message Control Register               | 0x0000_0000 |
|-------------------------------------|--------------------------------|-------------------------|--------------------------------------------|-------------|
| CAN_IF2_MCON                        | CAN0_BA+0x98                   | R/W                     | IF2 Message Control Register               | 0x0000_0000 |
| CAN_IF1_DAT_A1                      | AN_IF1_DAT_A1 CANO_BA+0x3C R/W |                         | IF1 Data A1 Register (Register Map Note 3) | 0x0000_0000 |
| CAN_IF1_DAT_A2 CAN0_BA+0x40 R/W     |                                | R/W                     | IF1 Data A2 Register (Register Map Note 3) | 0x0000_0000 |
| CAN_IF1_DAT_B1 CAN0_BA+0x44 R/V     |                                | R/W                     | IF1 Data B1 Register (Register Map Note 3) | 0x0000_0000 |
| CAN_IF1_DAT_B2 CAN0_BA+0x48         |                                | R/W                     | IF1 Data B2 Register (Register Map Note 3) | 0x0000_0000 |
| CAN_IF2_DAT_A1 CAN0_BA+0x9C         |                                | R/W                     | IF2 Data A1 Register (Register Map Note 3) | 0x0000_0000 |
| CAN_IF2_DAT_A2 CAN0_BA+0xA0 RA      |                                | R/W                     | IF2 Data A2 Register (Register Map Note 3) | 0x0000_0000 |
| CAN_IF2_DAT_B1                      | CAN0_BA+0xA4                   | R/W                     | IF2 Data B1 Register (Register Map Note 3) | 0x0000_0000 |
| CAN_IF2_DAT_B2                      | CAN0_BA+0xA8                   | R/W                     | IF2 Data B2 Register (Register Map Note 3) | 0x0000_0000 |
| CAN_TXREQ1                          | CAN0_BA+0x100                  | R                       | Transmission Request Register 1            | 0x0000_0000 |
| CAN_TXREQ2                          | CAN0_BA+0x104                  | R                       | Transmission Request Register 2            | 0x0000_0000 |
| CAN_NDAT1                           | CAN0_BA+0x120                  | R                       | New Data Register 1                        | 0x0000_0000 |
| CAN_NDAT2                           | CAN0_BA+0x124                  | R                       | New Data Register 2                        | 0x0000_0000 |
| CAN_IPND1                           | CAN0_BA+0x140                  | R                       | Interrupt Pending Register 1               | 0x0000_0000 |
| CAN_IPND2                           | CAN0_BA+0x144                  | R                       | Interrupt Pending Register 2               | 0x0000_0000 |
| CAN_MVLD1                           | CAN0_BA+0x160                  | R                       | Message Valid Register 1                   | 0x0000_0000 |
| CAN_MVLD2                           | CAN0_BA+0x164                  | R                       | Message Valid Register 2                   | 0x0000_0000 |
| CAN_WU_EN CAN0_BA+0x168 R/W Wake-up |                                | Wake-up Enable Register | 0x0000_0000                                |             |
| CAN_WU_STATUS                       | CAN0_BA+0x16C                  | R/W                     | Wake-up Status Register                    | 0x0000_0000 |

**Note:** 1. 0x00 & 0br0000000, where r signifies the actual value of the CAN\_RX.

- 2. IFn: The two sets of Message Interface Registers IF1 and IF2, have identical function.
- 3. An/Bn: The two sets of data registers A1, A2 and B1, B2.
- 4. CAN\_BA, where x = 0 or 1.

# CAN Control Register (CAN\_CON)

nuvoTon

| Register | Offset       | R/W | Description      | Reset Value |
|----------|--------------|-----|------------------|-------------|
| CAN_CON  | CAN0_BA+0x00 | R/W | Control Register | 0x0000_0001 |

| 31   | 30       | 29  | 28       | 27  | 26  | 25 | 24   |  |  |  |
|------|----------|-----|----------|-----|-----|----|------|--|--|--|
|      | Reserved |     |          |     |     |    |      |  |  |  |
| 23   | 22       | 21  | 20       | 19  | 18  | 17 | 16   |  |  |  |
|      | Reserved |     |          |     |     |    |      |  |  |  |
| 15   | 14       | 13  | 12       | 11  | 10  | 9  | 8    |  |  |  |
|      | Reserved |     |          |     |     |    |      |  |  |  |
| 7    | 6        | 5   | 4        | 3   | 2   | 1  | 0    |  |  |  |
| Test | CCE      | DAR | Reserved | EIE | SIE | ΙE | Init |  |  |  |

| Bits   | Description |                                                                                                                                                                                                                                      |
|--------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | Reserved    | Reserved.                                                                                                                                                                                                                            |
| [7]    | Test        | Test Mode Enable Control 0 = Normal Operation. 1 = Test Mode.                                                                                                                                                                        |
| [6]    | CCE         | Configuration Change Enable Control  0 = No write access to the Bit Timing Register.  1 = Write access to the Bit Timing Register (CAN_BTIME) allowed. (while Init bit (CAN_CON[0]) = 1).                                            |
| [5]    | DAR         | Automatic Re-Transmission Disable Control  0 = Automatic Retransmission of disturbed messages Enabled.  1 = Automatic Retransmission Disabled.                                                                                       |
| [4]    | Reserved    | Reserved.                                                                                                                                                                                                                            |
| [3]    | EIE         | Error Interrupt Enable Control  0 = Disabled - No Error Status Interrupt will be generated.  1 = Enabled - A change in the bits BOff (CAN_STATUS[7]) or EWarn (CAN_STATUS[6]) in the Status Register will generate an interrupt.     |
| [2]    | SIE         | Status Change Interrupt Enable Control  0 = Disabled - No Status Change Interrupt will be generated.  1 = Enabled - An interrupt will be generated when a message transfer is successfully completed or a CAN bus error is detected. |
| [1]    | IE          | Module Interrupt Enable Control 0 = Disabled. 1 = Enabled.                                                                                                                                                                           |
| [0]    | Init        | Init Initialization 0 = Normal Operation.                                                                                                                                                                                            |

1 = Initialization is started.

**Note:** The bus-off recovery sequence (see CAN Specification Rev. 2.0) cannot be shortened by setting or resetting the Init bit (CAN\_CON[0]). If the device goes in the bus-off state, it will set Init of its own accord, stopping all bus activities. Once Init has been cleared by the CPU, the device will then wait for 129 occurrences of Bus Idle (129 \* 11 consecutive recessive bits) before resuming normal operations. At the end of the bus-off recovery sequence, the Error Management Counters will be reset.

During the waiting time after resetting Init, each time a sequence of 11 recessive bits has been monitored, a Bit0Error code is written to the Status Register, enabling the CPU to readily check up whether the CAN bus is stuck at dominant or continuously disturbed and to monitor the proceeding of the bus-off recovery sequence.

# **CAN Status Register (CAN\_STATUS)**

nuvoTon

| Register   | Offset       | R/W | Description     | Reset Value |
|------------|--------------|-----|-----------------|-------------|
| CAN_STATUS | CAN0_BA+0x04 | R/W | Status Register | 0x0000_0000 |

| 31   | 30       | 29    | 28   | 27   | 26  | 25 | 24 |  |  |  |
|------|----------|-------|------|------|-----|----|----|--|--|--|
|      | Reserved |       |      |      |     |    |    |  |  |  |
| 23   | 22       | 21    | 20   | 19   | 18  | 17 | 16 |  |  |  |
|      | Reserved |       |      |      |     |    |    |  |  |  |
| 15   | 14       | 13    | 12   | 11   | 10  | 9  | 8  |  |  |  |
|      | Reserved |       |      |      |     |    |    |  |  |  |
| 7    | 6        | 5     | 4    | 3    | 2   | 1  | 0  |  |  |  |
| BOff | EWarn    | EPass | RxOK | ТхОК | LEC |    |    |  |  |  |

| Bits   | Description |                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                         |
| [7]    | BOff        | Bus-Off Status (Read Only)  0 = The CAN module is not in bus-off state.  1 = The CAN module is in bus-off state.                                                                                                                                                                                                                                                                                  |
| [6]    | EWarn       | Error Warning Status (Read Only)  0 = Both error counters are below the error warning limit of 96.  1 = At least one of the error counters in the EML has reached the error warning limit of 96.                                                                                                                                                                                                  |
| [5]    | EPass       | Error Passive (Read Only)  0 = The CAN Core is error active.  1 = The CAN Core is in the error passive state as defined in the CAN Specification.                                                                                                                                                                                                                                                 |
| [4]    | RxOK        | Received A Message Successfully  0 = No message has been successfully received since this bit was last reset by the CPU. This bit is never reset by the CAN Core.  1 = A message has been successfully received since this bit was last reset by the CPU (independent of the result of acceptance filtering).                                                                                     |
| [3]    | ТхОК        | Transmitted A Message Successfully  0 = Since this bit was reset by the CPU, no message has been successfully transmitted. This bit is never reset by the CAN Core.  1 = Since this bit was last reset by the CPU, a message has been successfully (error free and acknowledged by at least one other node) transmitted.                                                                          |
| [2:0]  | LEC         | Last Error Code (Type Of The Last Error To Occur On The CAN Bus)  The LEC field holds a code, which indicates the type of the last error to occur on the CAN bus. This field will be cleared to '0' when a message has been transferred (reception or transmission) without error. The unused code '7' may be written by the CPU to check for updates. The Table 6.14-5 describes the error code. |



| Error Code | Meanings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0          | No Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1          | Stuff Error: More than 5 equal bits in a sequence have occurred in a part of a received message where this is not allowed.                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2          | Form Error: A fixed format part of a received frame has the wrong format.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3          | AckError: The message this CAN Core transmitted was not acknowledged by another node.                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4          | Bit1Error: During the transmission of a message (with the exception of the arbitration field), the device wanted to send a recessive level (bit of logical value '1'), but the monitored bus value was dominant.                                                                                                                                                                                                                                                                                                           |
| 5          | Bit0Error: During the transmission of a message (or acknowledge bit, or active error flag, or overload flag), though the device wanted to send a dominant level (data or identifier bit logical value '0'), but the monitored Bus value was recessive. During bus-off recovery, this status is set each time a sequence of 11 recessive bits has been monitored. This enables the CPU to monitor the proceedings of the bus-off recovery sequence (indicating the bus is not stuck at dominant or continuously disturbed). |
| 6          | CRCError: The CRC check sum was incorrect in the message received, the CRC received for an incoming message does not match with the calculated CRC for the received data.                                                                                                                                                                                                                                                                                                                                                  |
| 7          | Unused: When the LEC shows the value '7', no CAN bus event was detected since the CPU wrote this value to the LEC.                                                                                                                                                                                                                                                                                                                                                                                                         |

Table 6.14-5 Error Codes

#### **Status Interrupts**

A Status Interrupt is generated by bits BOff (CAN\_STATUS[7]) and EWarn (CAN\_STATUS[6]) (Error Interrupt) or by RxOk (CAN\_STATUS[4]), TxOk (CAN\_STATUS[3]) and LEC (CAN\_STATUS[2:0]) (Status Change Interrupt) assumed that the corresponding enable bits in the CAN Control Register are set. A change of bit EPass (CAN\_STATUS[5]) or a write to RxOk, TxOk or LEC will never generate a Status Interrupt.

Reading the Status Register will clear the Status Interrupt value (8000h) in the Interrupt Register, if it is pending.



# **CAN Error Counter Register (CAN\_ERR)**

| Register | Offset       | R/W | Description            | Reset Value |
|----------|--------------|-----|------------------------|-------------|
| CAN_ERR  | CAN0_BA+0x08 | R   | Error Counter Register | 0x0000_0000 |

| 31 | 30       | 29 | 28 | 27  | 26 | 25 | 24 |  |  |  |
|----|----------|----|----|-----|----|----|----|--|--|--|
|    | Reserved |    |    |     |    |    |    |  |  |  |
| 23 | 22       | 21 | 20 | 19  | 18 | 17 | 16 |  |  |  |
|    | Reserved |    |    |     |    |    |    |  |  |  |
| 15 | 14       | 13 | 12 | 11  | 10 | 9  | 8  |  |  |  |
| RP |          |    |    | REC |    |    |    |  |  |  |
| 7  | 6        | 5  | 4  | 3   | 2  | 1  | 0  |  |  |  |
|    | TEC      |    |    |     |    |    |    |  |  |  |

| Bits    | Description | escription                                                                                                                                                                                     |  |  |  |  |  |  |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:16] | Reserved    | Reserved.                                                                                                                                                                                      |  |  |  |  |  |  |
| [15]    | RP          | Receive Error Passive  0 = The Receive Error Counter is below the error passive level.  1 = The Receive Error Counter has reached the error passive level as defined in the CAN Specification. |  |  |  |  |  |  |
| [14:8]  | REC         | Receive Error Counter  Actual state of the Receive Error Counter. Values between 0 and 127.                                                                                                    |  |  |  |  |  |  |
| [7:0]   | TEC         | Transmit Error Counter Actual state of the Transmit Error Counter. Values between 0 and 255.                                                                                                   |  |  |  |  |  |  |



### **Bit Timing Register (CAN\_BTIME)**

| Register  | Offset       | R/W | Description         | Reset Value |
|-----------|--------------|-----|---------------------|-------------|
| CAN_BTIME | CAN0_BA+0x0C | R/W | Bit Timing Register | 0x0000_2301 |

| 31       | 30             | 29 | 28   | 27    | 26 | 25 | 24 |
|----------|----------------|----|------|-------|----|----|----|
|          |                |    | Rese | erved |    |    |    |
| 23       | 22             | 21 | 20   | 19    | 18 | 17 | 16 |
|          |                |    | Rese | erved |    |    |    |
| 15       | 14             | 13 | 12   | 11    | 10 | 9  | 8  |
| Reserved | Reserved TSeg2 |    |      | TSeg1 |    |    |    |
| 7        | 6              | 5  | 4    | 3     | 2  | 1  | 0  |
| SJ       | SJW            |    | BRP  |       |    |    |    |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                |
|---------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:15] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                      |
| [14:12] | TSeg2       | Time Segment After Sample Point  0x0-0x7: Valid values for TSeg2 are [07]. The actual interpretation by the hardware of this value is such that one more than the value programmed here is used.                                                                                                                                                               |
| [11:8]  | TSeg1       | Time Segment Before The Sample Point Minus Sync_Seg  0x01-0x0F: valid values for TSeg1 are [115]. The actual interpretation by the hardware of this value is such that one more than the value programmed is used.                                                                                                                                             |
| [7:6]   | sJW         | (Re)Synchronization Jump Width  0x0-0x3: Valid programmed values are [03]. The actual interpretation by the hardware of this value is such that one more than the value programmed here is used.                                                                                                                                                               |
| [5:0]   | BRP         | Baud Rate Prescaler  0x01-0x3F: The value by which the oscillator frequency is divided for generating the bit time quanta. The bit time is built up from a multiple of this quantum. Valid values for the Baud Rate Prescaler are [063]. The actual interpretation by the hardware of this value is such that one more than the value programmed here is used. |

**Note:** With a module clock APB\_CLK of 8 MHz, the reset value of 0x2301 configures the C\_CAN for a bit rate of 500 Kbit/s. The registers are only writable if bits CCE (CAN\_CON[6]) and Init (CAN\_CON[0]) are set.



# Interrupt Identify Register (CAN\_IIDR)

| Register | Offset       | R/W | Description                   | Reset Value |
|----------|--------------|-----|-------------------------------|-------------|
| CAN_IIDR | CAN0_BA+0x10 | R   | Interrupt Identifier Register | 0x0000_0000 |

| 31 | 30    | 29 | 28   | 27    | 26 | 25 | 24 |
|----|-------|----|------|-------|----|----|----|
|    |       |    | Rese | erved |    |    |    |
| 23 | 22    | 21 | 20   | 19    | 18 | 17 | 16 |
|    |       |    | Rese | erved |    |    |    |
| 15 | 14    | 13 | 12   | 11    | 10 | 9  | 8  |
|    | Intld |    |      |       |    |    |    |
| 7  | 6     | 5  | 4    | 3     | 2  | 1  | 0  |
|    | Intld |    |      |       |    |    |    |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:16] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|         |             | Interrupt Identifier (Indicates The Source Of The Interrupt)                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| [15:0]  | Intid       | If several interrupts are pending, the CAN Interrupt Register will point to the pending interrupt with the highest priority, disregarding their chronological order. An interrupt remains pending until the application software has cleared it. If IntId is different from 0x0000 and IE (CAN_IFn_MCON[1]) is set, the IRQ interrupt signal to the EIC is active. The interrupt remains active until IntId is back to value 0x0000 (the cause of the interrupt is reset) or until IE is reset. |
|         |             | The Status Interrupt has the highest priority. Among the message interrupts, the Message Object's interrupt priority decreases with increasing message number.                                                                                                                                                                                                                                                                                                                                  |
|         |             | A message interrupt is cleared by clearing the Message Object's IntPnd bit (CAN_IFn_MCON[13]). The Status Interrupt is cleared by reading the Status Register.                                                                                                                                                                                                                                                                                                                                  |

| Intld Value   | Meanings                                             |  |  |  |
|---------------|------------------------------------------------------|--|--|--|
| 0x0000        | No Interrupt is Pending                              |  |  |  |
| 0x0001-0x0020 | Number of Message Object which caused the interrupt. |  |  |  |
| 0x0021-0x7FFF | Unused                                               |  |  |  |
| 0x8000        | Status Interrupt                                     |  |  |  |
| 0x8001-0xFFFF | Unused                                               |  |  |  |

Table 6.14-6 Source of Interrupts



#### Test Register (CAN\_TEST)

| Register | Offset       | R/W | Description                         | Reset Value |
|----------|--------------|-----|-------------------------------------|-------------|
| CAN_TEST | CAN0_BA+0x14 | R/W | Test Register (Register Map Note 1) | 0x0000_0080 |

| 31 | 30       | 29 | 28    | 27     | 26    | 25   | 24    |
|----|----------|----|-------|--------|-------|------|-------|
|    | Reserved |    |       |        |       |      |       |
| 23 | 22       | 21 | 20    | 19     | 18    | 17   | 16    |
|    | Reserved |    |       |        |       |      |       |
| 15 | 14       | 13 | 12    | 11     | 10    | 9    | 8     |
|    | Reserved |    |       |        |       |      |       |
| 7  | 6        | 5  | 4     | 3      | 2     | 1    | 0     |
| Rx | Tx       |    | LBack | Silent | Basic | Rese | erved |

| Bits   | Description |                                                                                                                                                                                                                                                 |
|--------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | Reserved    | Reserved.                                                                                                                                                                                                                                       |
| [7]    | Rx          | Monitors The Actual Value Of CAN_RX Pin (Read Only)  0 = The CAN bus is dominant (CAN_RX = '0').  1 = The CAN bus is recessive (CAN_RX = '1').                                                                                                  |
| [6:5]  | Tx          | Tx[1:0]: Control Of CAN_TX Pin  00 = Reset value, CAN_TX pin is controlled by the CAN Core.  01 = Sample Point can be monitored at CAN_TX pin.  10 = CAN_TX pin drives a dominant ('0') value.  11 = CAN_TX pin drives a recessive ('1') value. |
| [4]    | LBack       | Loop Back Mode Enable Control  0 = Loop Back Mode is Disabled.  1 = Loop Back Mode is Enabled.                                                                                                                                                  |
| [3]    | Silent      | Silent Mode  0 = Normal operation.  1 = The module is in Silent Mode.                                                                                                                                                                           |
| [2]    | Basic       | Basic Mode  0 = Basic Mode Disabled.  1= IF1 Registers used as Tx Buffer, IF2 Registers used as Rx Buffer.                                                                                                                                      |
| [1:0]  | Reserved    | Reserved.                                                                                                                                                                                                                                       |

Reset value: 0000 0000 R000 0000 b (R: current value of RX pin)

**Note:** Write access to the Test Register is enabled by setting the Test bit (CAN\_CON[7]). The different test functions may be combined, but Tx[1:0] "00" (CAN\_TEST[6:5]) disturbs message transfer.



# **Baud Rate Prescaler Extension REGISTER (CAN\_BRPE)**

| Register | Offset       | R/W | Description                            | Reset Value |
|----------|--------------|-----|----------------------------------------|-------------|
| CAN_BRPE | CAN0_BA+0x18 | R/W | Baud Rate Prescaler Extension Register | 0x0000_0000 |

| 31 | 30       | 29 | 28   | 27    | 26 | 25 | 24 |
|----|----------|----|------|-------|----|----|----|
|    | Reserved |    |      |       |    |    |    |
| 23 | 22       | 21 | 20   | 19    | 18 | 17 | 16 |
|    |          |    | Rese | erved |    |    |    |
| 15 | 14       | 13 | 12   | 11    | 10 | 9  | 8  |
|    | Reserved |    |      |       |    |    |    |
| 7  | 6        | 5  | 4    | 3     | 2  | 1  | 0  |
|    | Reserved |    |      | BRPE  |    |    |    |

| Bits   | Description        |                                                                                                                                                                                                                                                            |  |  |
|--------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| [31:4] | Reserved Reserved. |                                                                                                                                                                                                                                                            |  |  |
| [3:0]  | BRPE               | Baud Rate Prescaler Extension  0x00-0x0F: By programming BRPE, the Baud Rate Prescaler can be extended to values up to 1023. The actual interpretation by the hardware is that one more than the value programmed by BRPE (MSBs) and BTIME (LSBs) is used. |  |  |



#### Message Interface Register Sets

There are two sets of Interface Registers, which are used to control the CPU access to the Message RAM. The Interface Registers avoid conflict between the CPU accesses to the Message RAM and CAN message reception and transmission by buffering the data to be transferred. A complete Message Object or parts of the Message Object may be transferred between the Message RAM and the IFn Message Buffer registers in one single transfer.

The function of the two interface register sets is identical except for the Basic test mode. They can be used the way one set of registers is used for data transfer to the Message RAM while the other set of registers is used for the data transfer from the Message RAM, allowing both processes to be interrupted by each other. The Table 6.14-7 provides an overview of the two Interface Register sets.

Each set of Interface Registers consists of Message Buffer Registers controlled by their own Command Registers. The Command Mask Register specifies the direction of the data transfer and which parts of a Message Object will be transferred. The Command Request Register is used to select a Message Object in the Message RAM as target or source for the transfer and to start the action specified in the Command Mask Register.

| Address      | IF1 Register Set    | Address      | IF2 Register Set    |
|--------------|---------------------|--------------|---------------------|
| CAN0_BA+0x20 | IF1 Command Request | CAN0_BA+0x80 | IF2 Command Request |
| CAN0_BA+0x24 | IF1 Command Mask    | CAN0_BA+0x84 | IF2 Command Mask    |
| CAN0_BA+0x28 | IF1 Mask 1          | CAN0_BA+0x88 | IF2 Mask 1          |
| CAN0_BA+0x2C | IF1 Mask 2          | CAN0_BA+0x8C | IF2 Mask 2          |
| CAN0_BA+0x30 | IF1 Arbitration 1   | CAN0_BA+0x90 | IF2 Arbitration 1   |
| CAN0_BA+0x34 | IF1 Arbitration 2   | CAN0_BA+0x94 | IF2 Arbitration 2   |
| CAN0_BA+0x38 | IF1 Message Control | CAN0_BA+0x98 | IF2 Message Control |
| CAN0_BA+0x3C | IF1 Data A 1        | CAN0_BA+0x9C | IF2 Data A 1        |
| CAN0_BA+0x40 | IF1 Data A 2        | CAN0_BA+0xA0 | IF2 Data A 2        |
| CAN0_BA+0x44 | IF1 Data B 1        | CAN0_BA+0xA4 | IF2 Data B 1        |
| CAN0_BA+0x48 | IF1 Data B 2        | CAN0_BA+0xA8 | IF2 Data B 2        |

Table 6.14-7 IF1 and IF2 Message Interface Register



### IFn Command Request Register (CAN\_IFn\_CREQ)

| Register     | Offset       | R/W | Description                                         | Reset Value |
|--------------|--------------|-----|-----------------------------------------------------|-------------|
| CAN_IF1_CREQ | CAN0_BA+0x20 | R/W | IFn (Register Map Note 2) Command Request Registers | 0x0000_0001 |
| CAN_IF2_CREQ | CAN0_BA+0x80 | R/W | IFn (Register Map Note 2) Command Request Registers | 0x0000_0001 |

| 31                      | 30              | 29 | 28 | 27       | 26 | 25 | 24 |  |  |  |  |
|-------------------------|-----------------|----|----|----------|----|----|----|--|--|--|--|
| Reserved                |                 |    |    |          |    |    |    |  |  |  |  |
| 23                      | 22              | 21 | 20 | 19       | 18 | 17 | 16 |  |  |  |  |
|                         | Reserved        |    |    |          |    |    |    |  |  |  |  |
| 15                      | 14              | 13 | 12 | 11       | 10 | 9  | 8  |  |  |  |  |
| Busy                    |                 |    |    | Reserved |    |    |    |  |  |  |  |
| 7                       | 7 6 5 4 3 2 1 0 |    |    |          |    |    |    |  |  |  |  |
| Reserved Message Number |                 |    |    |          |    |    |    |  |  |  |  |

| Bits    | Description    |                                                                                                                                                                                                                                                   |
|---------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:16] | Reserved       | Reserved.                                                                                                                                                                                                                                         |
| [15]    | Busy           | Busy Flag  0 = Read/write action has finished.  1 = Writing to the IFn Command Request Register is in progress. This bit can only be read by the software.                                                                                        |
| [14:6]  | Reserved       | Reserved.                                                                                                                                                                                                                                         |
| [5:0]   | Message Number | Message Number  0x01-0x20: Valid Message Number, the Message Object in the Message.  RAM is selected for data transfer.  0x00: Not a valid Message Number, interpreted as 0x20.  0x21-0x3F: Not a valid Message Number, interpreted as 0x01-0x1F. |

A message transfer is started as soon as the application software has written the message number to the Command Request Register. With this write operation, the Busy bit (CAN\_IFn\_CREQ[15]) is automatically set to notify the CPU that a transfer is in progress. After a waiting time of 3 to 6 APB\_CLK periods, the transfer between the Interface Register and the Message RAM is completed. The Busy bit is cleared.

**Note:** When a Message Number that is not valid is written into the Command Request Register, the Message Number will be transformed into a valid value and that Message Object will be transferred.



# IFn Command Mask Register (CAN\_IFn\_CMASK)

The control bits of the IFn Command Mask Register specify the transfer direction and select which of the IFn Message Buffer Registers as source or target of the data transfer.

| Register      | Offset       | R/W | Description               | Reset Value |
|---------------|--------------|-----|---------------------------|-------------|
| CAN_IF1_CMASK | CAN0_BA+0x24 | R/W | IF1 Command Mask Register | 0x0000_0000 |
| CAN_IF2_CMASK | CAN0_BA+0x84 | R/W | IF2 Command Mask Register | 0x0000_0000 |

| 31       | 30       | 29  | 28      | 27        | 26                | 25    | 24    |  |  |  |  |
|----------|----------|-----|---------|-----------|-------------------|-------|-------|--|--|--|--|
| Reserved |          |     |         |           |                   |       |       |  |  |  |  |
| 23       | 22       | 21  | 20      | 19        | 18                | 17    | 16    |  |  |  |  |
|          | Reserved |     |         |           |                   |       |       |  |  |  |  |
| 15       | 14       | 13  | 12      | 11        | 10                | 9     | 8     |  |  |  |  |
|          | Reserved |     |         |           |                   |       |       |  |  |  |  |
| 7        | 6        | 5   | 4       | 3         | 2                 | 1     | 0     |  |  |  |  |
| WR/RD    | Mask     | Arb | Control | CirintPnd | TxRqst/<br>NewDat | DAT_A | DAT_B |  |  |  |  |

| Bits   | Description |                                                                                                                                       |
|--------|-------------|---------------------------------------------------------------------------------------------------------------------------------------|
| [31:8] | Reserved    | Reserved.                                                                                                                             |
|        |             | Write / Read Mode                                                                                                                     |
| [7]    | WR/RD       | 0 = Read: Transfer data from the Message Object addressed by the Command Request Register into the selected Message Buffer Registers. |
|        |             | 1 = Write: Transfer data from the selected Message Buffer Registers to the Message Object addressed by the Command Request Register.  |
|        |             | Access Mask Bits                                                                                                                      |
|        |             | Write Operation:                                                                                                                      |
|        |             | 0 = Mask bits unchanged.                                                                                                              |
| [6]    | Mask        | 1 = Transfer Identifier Mask + MDir + MXtd to Message Object.                                                                         |
|        |             | Read Operation:                                                                                                                       |
|        |             | 0 = Mask bits unchanged.                                                                                                              |
|        |             | 1 = Transfer Identifier Mask + MDir + MXtd to IFn Message Buffer Register.                                                            |
|        |             | Access Arbitration Bits                                                                                                               |
|        |             | Write Operation:                                                                                                                      |
|        |             | 0 = Arbitration bits unchanged.                                                                                                       |
| [5]    | Arb         | 1 = Transfer Identifier + Dir (CAN_IFn_ARB2[13]) + Xtd (CAN_IFn_ARB2[14]) + MsgVal (CAN_IFn_ARB2[15]) to Message Object.              |
|        |             | Read Operation:                                                                                                                       |
|        |             | 0 = Arbitration bits unchanged.                                                                                                       |
|        |             | 1 = Transfer Identifier + Dir + Xtd + MsgVal to IFn Message Buffer Register.                                                          |
| [4]    | Control     | Control Access Control Bit                                                                                                            |
| [4]    | Control     | Write Operation:                                                                                                                      |

nuvoTon

|      |               | 0 = Control Bits unchanged.                                                                                                                                                                                                                          |
|------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |               |                                                                                                                                                                                                                                                      |
|      |               | 1 = Transfer Control Bits to Message Object.                                                                                                                                                                                                         |
|      |               | Read Operation:                                                                                                                                                                                                                                      |
|      |               | 0 = Control Bits unchanged.                                                                                                                                                                                                                          |
|      |               | 1 = Transfer Control Bits to IFn Message Buffer Register.                                                                                                                                                                                            |
|      |               | Clear Interrupt Pending Bit                                                                                                                                                                                                                          |
|      |               | Write Operation:                                                                                                                                                                                                                                     |
| [3]  | CirintPnd     | When writing to a Message Object, this bit is ignored.                                                                                                                                                                                               |
| [၁]  | On the field  | Read Operation:                                                                                                                                                                                                                                      |
|      |               | 0 = IntPnd bit (CAN_IFn_MCON[13]) remains unchanged.                                                                                                                                                                                                 |
|      |               | 1 = Clear IntPnd bit in the Message Object.                                                                                                                                                                                                          |
|      |               | Access Transmission Request Bit When Write Operation                                                                                                                                                                                                 |
|      |               | 0 = TxRqst bit unchanged.                                                                                                                                                                                                                            |
|      |               | 1 = Set TxRqst bit.                                                                                                                                                                                                                                  |
|      |               | <b>Note:</b> If a transmission is requested by programming bit TxRqst/NewDat in the IFn Command Mask Register, bit TxRqst in the IFn Message Control Register will be ignored.                                                                       |
| [2]  | TxRqst/NewDat | Access New Data Bit when Read Operation.                                                                                                                                                                                                             |
|      |               | 0 = NewDat bit remains unchanged.                                                                                                                                                                                                                    |
|      |               | 1 = Clear NewDat bit in the Message Object.                                                                                                                                                                                                          |
|      |               | <b>Note:</b> A read access to a Message Object can be combined with the reset of the control bits IntPnd and NewDat. The values of these bits transferred to the IFn Message Control Register always reflect the status before resetting these bits. |
|      |               | Access Data Bytes [3:0]                                                                                                                                                                                                                              |
|      |               | Write Operation:                                                                                                                                                                                                                                     |
|      |               | 0 = Data Bytes [3:0] unchanged.                                                                                                                                                                                                                      |
| [1]  | DAT_A         | 1 = Transfer Data Bytes [3:0] to Message Object.                                                                                                                                                                                                     |
|      |               | Read Operation:                                                                                                                                                                                                                                      |
|      |               | 0 = Data Bytes [3:0] unchanged.                                                                                                                                                                                                                      |
|      |               | 1 = Transfer Data Bytes [3:0] to IFn Message Buffer Register.                                                                                                                                                                                        |
|      |               | Access Data Bytes [7:4]                                                                                                                                                                                                                              |
|      |               | Write Operation:                                                                                                                                                                                                                                     |
|      |               | 0 = Data Bytes [7:4] unchanged.                                                                                                                                                                                                                      |
| [0]  | DAT B         | 1 = Transfer Data Bytes [7:4] to Message Object.                                                                                                                                                                                                     |
| ادما |               | Read Operation:                                                                                                                                                                                                                                      |
|      |               | 0 = Data Bytes [7:4] unchanged.                                                                                                                                                                                                                      |
|      |               |                                                                                                                                                                                                                                                      |
|      |               | 1 = Transfer Data Bytes [7:4] to IFn Message Buffer Register.                                                                                                                                                                                        |



# IFn Mask 1 Register (CAN\_IFn\_MASK1)

| Register      | Register Offset |     | Description         | Reset Value |
|---------------|-----------------|-----|---------------------|-------------|
| CAN_IF1_MASK1 | CAN0_BA+0x28    | R/W | IF1 Mask 1 Register | 0x0000_FFFF |
| CAN_IF2_MASK1 | CAN0_BA+0x88    | R/W | IF2 Mask 1 Register | 0x0000_FFFF |

| 31              | 30       | 29 | 28  | 27             | 26 | 25 | 24 |  |  |  |  |
|-----------------|----------|----|-----|----------------|----|----|----|--|--|--|--|
| Reserved        |          |    |     |                |    |    |    |  |  |  |  |
| 23              | 22       | 21 | 20  | 19             | 18 | 17 | 16 |  |  |  |  |
|                 | Reserved |    |     |                |    |    |    |  |  |  |  |
| 15              | 14       | 13 | 12  | 11             | 10 | 9  | 8  |  |  |  |  |
| Msk15-8         |          |    |     |                |    |    |    |  |  |  |  |
| 7 6 5 4 3 2 1 0 |          |    |     |                |    |    |    |  |  |  |  |
|                 |          |    | Msl | <b>&lt;7-0</b> |    |    |    |  |  |  |  |

| Bits    | Description | escription                                                                                                              |  |  |  |  |  |  |
|---------|-------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:16] | Reserved    | Reserved. Reserved.                                                                                                     |  |  |  |  |  |  |
|         | Msk15-0     | Identifier Mask 15-0                                                                                                    |  |  |  |  |  |  |
| [15:0]  |             | 0 = The corresponding bit in the identifier of the message object cannot inhibit the match in the acceptance filtering. |  |  |  |  |  |  |
|         |             | 1 = The corresponding identifier bit is used for acceptance filtering.                                                  |  |  |  |  |  |  |



# IFn Mask 2 Register (CAN\_IFn\_MASK2)

| Register      | Offset       | R/W | Description         | Reset Value |
|---------------|--------------|-----|---------------------|-------------|
| CAN_IF1_MASK2 | CAN0_BA+0x2C | R/W | IF1 Mask 2 Register | 0x0000_FFFF |
| CAN_IF2_MASK2 | CAN0_BA+0x8C | R/W | IF2 Mask 2 Register | 0x0000_FFFF |

| 31   | 30       | 29       | 28       | 27 | 26 | 25 | 24 |  |
|------|----------|----------|----------|----|----|----|----|--|
|      | Reserved |          |          |    |    |    |    |  |
| 23   | 22       | 21       | 20       | 19 | 18 | 17 | 16 |  |
|      | Reserved |          |          |    |    |    |    |  |
| 15   | 14       | 13       | 12       | 11 | 10 | 9  | 8  |  |
| MXtd | MDir     | Reserved | Msk28-24 |    |    |    |    |  |
| 7    | 6        | 5        | 4        | 3  | 2  | 1  | 0  |  |
|      | Msk23-16 |          |          |    |    |    |    |  |

| Bits    | Description |                                                                                                                                                                                                                                                                                                          |
|---------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:16] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                |
|         |             | Mask Extended Identifier                                                                                                                                                                                                                                                                                 |
|         |             | 0 = The extended identifier bit (IDE) has no effect on the acceptance filtering.                                                                                                                                                                                                                         |
| [45]    | MXtd        | 1 = The extended identifier bit (IDE) is used for acceptance filtering.                                                                                                                                                                                                                                  |
| [15]    | MATO        | <b>Note:</b> When 11-bit ("standard") Identifiers are used for a Message Object, the identifiers of received Data Frames are written into bits ID28 to ID18 (CAN_IFn_ARB2[12:2]). For acceptance filtering, only these bits together with mask bits Msk28 to Msk18 (CAN_IFn_MASK2[12:2]) are considered. |
|         |             | Mask Message Direction                                                                                                                                                                                                                                                                                   |
| [14]    | MDir        | 0 = The message direction bit (Dir (CAN_IFn_ARB2[13])) has no effect on the acceptance filtering.                                                                                                                                                                                                        |
|         |             | 1 = The message direction bit (Dir) is used for acceptance filtering.                                                                                                                                                                                                                                    |
| [13]    | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                |
|         |             | Identifier Mask 28-16                                                                                                                                                                                                                                                                                    |
| [12:0]  | Msk28-16    | 0 = The corresponding bit in the identifier of the message object cannot inhibit the match in the acceptance filtering.                                                                                                                                                                                  |
|         |             | 1 = The corresponding identifier bit is used for acceptance filtering.                                                                                                                                                                                                                                   |



# IFn Arbitration 1 Register (CAN\_IFn\_ARB1)

| Register     | Offset       | R/W | Description                | Reset Value |
|--------------|--------------|-----|----------------------------|-------------|
| CAN_IF1_ARB1 | CAN0_BA+0x30 | R/W | IF1 Arbitration 1 Register | 0x0000_0000 |
| CAN_IF2_ARB1 | CAN0_BA+0x90 | R/W | IF2 Arbitration 1 Register | 0x0000_0000 |

| 31 | 30       | 29 | 28   | 27    | 26 | 25 | 24 |  |  |
|----|----------|----|------|-------|----|----|----|--|--|
|    | Reserved |    |      |       |    |    |    |  |  |
| 23 | 22       | 21 | 20   | 19    | 18 | 17 | 16 |  |  |
|    |          |    | Rese | erved |    |    |    |  |  |
| 15 | 14       | 13 | 12   | 11    | 10 | 9  | 8  |  |  |
|    | ID15-8   |    |      |       |    |    |    |  |  |
| 7  | 6        | 5  | 4    | 3     | 2  | 1  | 0  |  |  |
|    | ID7-0    |    |      |       |    |    |    |  |  |

| Bits    | Description |                                                    |  |  |
|---------|-------------|----------------------------------------------------|--|--|
| [31:16] | Reserved    | Reserved.                                          |  |  |
|         |             | Message Identifier 15-0                            |  |  |
| [15:0]  | ID15-0      | ID28 - ID0, 29-bit Identifier ("Extended Frame").  |  |  |
|         |             | ID28 - ID18, 11-bit Identifier ("Standard Frame"). |  |  |

# IFn Arbitration 2 Register (CAN\_IFn\_ARB2)

nuvoTon

| Register     | Offset       | R/W | Description                | Reset Value |
|--------------|--------------|-----|----------------------------|-------------|
| CAN_IF1_ARB2 | CAN0_BA+0x34 | R/W | IF1 Arbitration 2 Register | 0x0000_0000 |
| CAN_IF2_ARB2 | CAN0_BA+0x94 | R/W | IF2 Arbitration 2 Register | 0x0000_0000 |

| 31       | 30      | 29  | 28   | 27    | 26      | 25 | 24 |
|----------|---------|-----|------|-------|---------|----|----|
| Reserved |         |     |      |       |         |    |    |
| 23       | 22      | 21  | 20   | 19    | 18      | 17 | 16 |
|          |         |     | Rese | erved |         |    |    |
| 15       | 14      | 13  | 12   | 11    | 10      | 9  | 8  |
| MsgVal   | Xtd     | Dir |      |       | ID28-24 |    |    |
| 7        | 6       | 5   | 4    | 3     | 2       | 1  | 0  |
|          | ID23-16 |     |      |       |         |    |    |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:16] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |             | Message Valid                                                                                                                                                                                                                                                                                                                                                                                                                  |
|         |             | 0 = The Message Object is ignored by the Message Handler.                                                                                                                                                                                                                                                                                                                                                                      |
|         |             | 1 = The Message Object is configured and should be considered by the Message Handler.                                                                                                                                                                                                                                                                                                                                          |
| [15]    | MsgVal      | <b>Note:</b> The application software must reset the MsgVal bit of all unused Messages Objects during the initialization before it resets bit Init (CAN_CON[0]). This bit must also be reset before the identifier Id28-0 (CAN_IFn_ARB1/2), the control bits Xtd (CAN_IFn_ARB2[14]), Dir (CAN_IFn_ARB2[13]), or the Data Length Code DLC3-0 (CAN_IFn_MCON[3:0]) are modified, or if the Messages Object is no longer required. |
|         |             | Extended Identifier                                                                                                                                                                                                                                                                                                                                                                                                            |
| [14]    | Xtd         | 0 = The 11-bit ("standard") Identifier will be used for this Message Object.                                                                                                                                                                                                                                                                                                                                                   |
|         |             | 1 = The 29-bit ("extended") Identifier will be used for this Message Object.                                                                                                                                                                                                                                                                                                                                                   |
|         |             | Message Direction                                                                                                                                                                                                                                                                                                                                                                                                              |
|         |             | 0 = Direction is receive.                                                                                                                                                                                                                                                                                                                                                                                                      |
| [13]    | Dir         | On TxRqst, a Remote Frame with the identifier of this Message Object is transmitted. On reception of a Data Frame with matching identifier, that message is stored in this Message Object.                                                                                                                                                                                                                                     |
|         |             | 1 = Direction is transmit.                                                                                                                                                                                                                                                                                                                                                                                                     |
|         |             | On TxRqst, the respective Message Object is transmitted as a Data Frame. On reception of a Remote Frame with matching identifier, the TxRqst bit (CAN_IFn_CMASK[2]) of this Message Object is set (if RmtEn (CAN_IFn_MCON[9]) = one).                                                                                                                                                                                          |
|         |             | Message Identifier 28-16                                                                                                                                                                                                                                                                                                                                                                                                       |
| [12:0]  | ID28-16     | ID28 - ID0, 29-bit Identifier ("Extended Frame").                                                                                                                                                                                                                                                                                                                                                                              |
|         |             | ID28 - ID18, 11-bit Identifier ("Standard Frame").                                                                                                                                                                                                                                                                                                                                                                             |



# IFn Message Control Register (CAN\_IFn\_MCON)

| Register     | Offset       | R/W | Description                  | Reset Value |
|--------------|--------------|-----|------------------------------|-------------|
| CAN_IF1_MCON | CAN0_BA+0x38 | R/W | IF1 Message Control Register | 0x0000_0000 |
| CAN_IF2_MCON | CAN0_BA+0x98 | R/W | IF2 Message Control Register | 0x0000_0000 |

| 31           | 30     | 29     | 28    | 27    | 26   | 25    | 24     |
|--------------|--------|--------|-------|-------|------|-------|--------|
|              |        |        | Rese  | erved |      |       |        |
| 23           | 22     | 21     | 20    | 19    | 18   | 17    | 16     |
|              |        |        | Rese  | erved |      |       |        |
| 15           | 14     | 13     | 12    | 11    | 10   | 9     | 8      |
| NewDat       | MsgLst | IntPnd | UMask | TxIE  | RxIE | RmtEn | TxRqst |
| 7            | 6      | 5      | 4     | 3     | 2    | 1     | 0      |
| EoB Reserved |        |        |       |       | DI   | _C    |        |

| Bits    | Description |                                                                                                                                                                                                         |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:16] | Reserved    | Reserved.                                                                                                                                                                                               |
|         |             | New Data                                                                                                                                                                                                |
| [15]    | NewDat      | 0 = No new data has been written into the data portion of this Message Object by the Message Handler since last time this flag was cleared by the application software.                                 |
|         |             | 1 = The Message Handler or the application software has written new data into the data portion of this Message Object.                                                                                  |
|         |             | Message Lost (only valid for Message Objects with direction = receive).                                                                                                                                 |
| [14]    | MsgLst      | 0 = No message lost since last time this bit was reset by the CPU.                                                                                                                                      |
| []      | eg_e:       | 1 = The Message Handler stored a new message into this object when NewDat was still set, the CPU has lost a message.                                                                                    |
|         |             | Interrupt Pending                                                                                                                                                                                       |
| [13]    | IntPnd      | 0 = This message object is not the source of an interrupt.                                                                                                                                              |
| [10]    |             | 1 = This message object is the source of an interrupt. The Interrupt Identifier in the Interrupt Register will point to this message object if there is no other interrupt source with higher priority. |
|         |             | Use Acceptance Mask                                                                                                                                                                                     |
|         |             | 0 = Mask ignored.                                                                                                                                                                                       |
| [12]    | UMask       | 1 = Use Mask (Msk28-0, MXtd, and MDir) for acceptance filtering.                                                                                                                                        |
|         |             | <b>Note:</b> If the UMask bit is set to one, the Message Object's mask bits have to be programmed during initialization of the Message Object before MsgVal bit (CAN_IFn_ARB2[15]) is set to one.       |
|         |             | Transmit Interrupt Enable Control                                                                                                                                                                       |
| [11]    | TxIE        | 0 = IntPnd (CAN_IFn_MCON[13]) will be left unchanged after the successful transmission of a frame.                                                                                                      |
|         |             | 1 = IntPnd will be set after a successful transmission of a frame.                                                                                                                                      |
| [40]    | RxIE        | Receive Interrupt Enable Control                                                                                                                                                                        |
| [10]    | KXIE        | 0 = IntPnd (CAN_IFn_MCON[13]) will be left unchanged after a successful reception of a frame.                                                                                                           |

nuvoTon

|       |          | 1 = IntPnd will be set after a successful reception of a frame.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [9]   | RmtEn    | Remote Enable Control  0 = At the reception of a Remote Frame, TxRqst (CAN_IFn_MCON[8]) is left unchanged.  1 = At the reception of a Remote Frame, TxRqst is set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| [8]   | TxRqst   | Transmit Request  0 = This Message Object is not waiting for transmission.  1 = The transmission of this Message Object is requested and is not yet done.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| [7]   | ЕоВ      | End Of Buffer  0 = Message Object belongs to a FIFO Buffer and is not the last Message Object of that FIFO Buffer.  1 = Single Message Object or last Message Object of a FIFO Buffer.  Note: This bit is used to concatenate two or more Message Objects (up to 32) to build a FIFO Buffer. For single Message Objects (not belonging to a FIFO Buffer), this bit must always be set to one.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| [6:4] | Reserved | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| [3:0] | DLC      | Data Length Code  0-8: Data Frame has 0-8 data bytes.  9-15: Data Frame has 8 data bytes  Note: The Data Length Code of a Message Object must be defined the same as in all the corresponding objects with the same identifier at other nodes. When the Message Handler stores a data frame, it will write the DLC to the value given by the received message.  Data(0): 1st data byte of a CAN Data Frame  Data(1): 2nd data byte of a CAN Data Frame  Data(2): 3rd data byte of a CAN Data Frame  Data(3): 4th data byte of a CAN Data Frame  Data(4): 5th data byte of a CAN Data Frame  Data(5): 6th data byte of a CAN Data Frame  Data(6): 7th data byte of a CAN Data Frame  Note: The Data(0) byte is the first data byte shifted into the shift register of the CAN Core during a reception while the Data(7) byte is the last. When the Message Handler stores a Data Frame, it will write all the eight data bytes into a Message Object. If the Data Length Code is less than 8, the remaining bytes of the Message Object will be overwritten by unspecified values. |



# IFn Data A1 Register (CAN\_IFn\_DAT\_A1)

| Register       | Offset       | R/W | Description                                | Reset Value |
|----------------|--------------|-----|--------------------------------------------|-------------|
| CAN_IF1_DAT_A1 | CAN0_BA+0x3C | R/W | IF1 Data A1 Register (Register Map Note 3) | 0x0000_0000 |
| CAN_IF2_DAT_A1 | CAN0_BA+0x9C | R/W | IF2 Data A1 Register (Register Map Note 3) | 0x0000_0000 |

| 31 | 30       | 29 | 28  | 27   | 26 | 25 | 24 |  |  |  |
|----|----------|----|-----|------|----|----|----|--|--|--|
|    | Reserved |    |     |      |    |    |    |  |  |  |
| 23 | 22       | 21 | 20  | 19   | 18 | 17 | 16 |  |  |  |
|    | Reserved |    |     |      |    |    |    |  |  |  |
| 15 | 14       | 13 | 12  | 11   | 10 | 9  | 8  |  |  |  |
|    |          |    | Dat | a(1) |    |    |    |  |  |  |
| 7  | 6        | 5  | 4   | 3    | 2  | 1  | 0  |  |  |  |
|    | Data(0)  |    |     |      |    |    |    |  |  |  |

| Bits    | Description                                    |                                                |  |  |  |
|---------|------------------------------------------------|------------------------------------------------|--|--|--|
| [31:16] | Reserved                                       | eserved Reserved.                              |  |  |  |
| [15:8]  | Data Byte 1 2nd data byte of a CAN Data Frame. |                                                |  |  |  |
| [7:0]   | Data(0)                                        | Data Byte 0 1st data byte of a CAN Data Frame. |  |  |  |



# IFn Data A2 Register (CAN\_IFn\_DAT\_A2)

| Register       | Offset       | R/W | Description                                | Reset Value |
|----------------|--------------|-----|--------------------------------------------|-------------|
| CAN_IF1_DAT_A2 | CAN0_BA+0x40 | R/W | IF1 Data A2 Register (Register Map Note 3) | 0x0000_0000 |
| CAN_IF2_DAT_A2 | CAN0_BA+0xA0 | R/W | IF2 Data A2 Register (Register Map Note 3) | 0x0000_0000 |

| 31 | 30       | 29 | 28  | 27   | 26 | 25 | 24 |  |  |
|----|----------|----|-----|------|----|----|----|--|--|
|    | Reserved |    |     |      |    |    |    |  |  |
| 23 | 22       | 21 | 20  | 19   | 18 | 17 | 16 |  |  |
|    | Reserved |    |     |      |    |    |    |  |  |
| 15 | 14       | 13 | 12  | 11   | 10 | 9  | 8  |  |  |
|    |          |    | Dat | a(3) |    |    |    |  |  |
| 7  | 6        | 5  | 4   | 3    | 2  | 1  | 0  |  |  |
|    | Data(2)  |    |     |      |    |    |    |  |  |

| Bits    | Description                                  |                                               |  |  |  |  |
|---------|----------------------------------------------|-----------------------------------------------|--|--|--|--|
| [31:16] | Reserved                                     | eserved Reserved.                             |  |  |  |  |
| [15:8]  | Data Byte 3 4th data byte of CAN Data Frame. |                                               |  |  |  |  |
| [7:0]   | Data(2)                                      | Data Byte 2  3rd data byte of CAN Data Frame. |  |  |  |  |



# IFn Data B1 Register (CAN\_IFn\_DAT\_B1)

| Register       | Offset       | R/W | Description                                | Reset Value |
|----------------|--------------|-----|--------------------------------------------|-------------|
| CAN_IF1_DAT_B1 | CAN0_BA+0x44 | R/W | IF1 Data B1 Register (Register Map Note 3) | 0x0000_0000 |
| CAN_IF2_DAT_B1 | CAN0_BA+0xA4 | R/W | IF2 Data B1 Register (Register Map Note 3) | 0x0000_0000 |

| 31 | 30       | 29 | 28  | 27   | 26 | 25 | 24 |  |  |  |
|----|----------|----|-----|------|----|----|----|--|--|--|
|    | Reserved |    |     |      |    |    |    |  |  |  |
| 23 | 22       | 21 | 20  | 19   | 18 | 17 | 16 |  |  |  |
|    | Reserved |    |     |      |    |    |    |  |  |  |
| 15 | 14       | 13 | 12  | 11   | 10 | 9  | 8  |  |  |  |
|    |          |    | Dat | a(5) |    |    |    |  |  |  |
| 7  | 6        | 5  | 4   | 3    | 2  | 1  | 0  |  |  |  |
|    | Data(4)  |    |     |      |    |    |    |  |  |  |

| Bits    | Description                                  | Description                                  |  |  |  |  |
|---------|----------------------------------------------|----------------------------------------------|--|--|--|--|
| [31:16] | Reserved                                     | eserved Reserved.                            |  |  |  |  |
| [15:8]  | Data Byte 5 6th data byte of CAN Data Frame. |                                              |  |  |  |  |
| [7:0]   | Data(4)                                      | Data Byte 4 5th data byte of CAN Data Frame. |  |  |  |  |



### IFn Data B2 Register (CAN\_IFn\_DAT\_B2)

| Register       | Offset       | R/W | Description                                | Reset Value |
|----------------|--------------|-----|--------------------------------------------|-------------|
| CAN_IF1_DAT_B2 | CAN0_BA+0x48 | R/W | IF1 Data B2 Register (Register Map Note 3) | 0x0000_0000 |
| CAN_IF2_DAT_B2 | CAN0_BA+0xA8 | R/W | IF2 Data B2 Register (Register Map Note 3) | 0x0000_0000 |

| 31 | 30       | 29 | 28  | 27   | 26 | 25 | 24 |  |  |  |
|----|----------|----|-----|------|----|----|----|--|--|--|
|    | Reserved |    |     |      |    |    |    |  |  |  |
| 23 | 22       | 21 | 20  | 19   | 18 | 17 | 16 |  |  |  |
|    | Reserved |    |     |      |    |    |    |  |  |  |
| 15 | 14       | 13 | 12  | 11   | 10 | 9  | 8  |  |  |  |
|    |          |    | Dat | a(7) |    |    |    |  |  |  |
| 7  | 6        | 5  | 4   | 3    | 2  | 1  | 0  |  |  |  |
|    | Data(6)  |    |     |      |    |    |    |  |  |  |

| Bits    | Description                                  |                                              |  |  |  |
|---------|----------------------------------------------|----------------------------------------------|--|--|--|
| [31:16] | Reserved                                     | rved Reserved.                               |  |  |  |
| [15:8]  | Data Byte 7 8th data byte of CAN Data Frame. |                                              |  |  |  |
| [7:0]   | Data(6)                                      | Data Byte 6 7th data byte of CAN Data Frame. |  |  |  |

In a CAN Data Frame, Data(0) is the first, Data(7) is the last byte to be transmitted or received. In CAN's serial bit stream, the MSB of each byte will be transmitted first.



#### Message Object in the Message Memory

There are 32 Message Objects in the Message RAM. To avoid conflicts between application software access to the Message RAM and CAN message reception and transmission, the CPU cannot directly access the Message Objects, these accesses are handled through the IF*n* Interface Registers. The Table 6.14-8 provides an overview of the structures of a Message Object.

|        | Message Object |      |      |              |         |         |         |         |         |         |         |         |  |
|--------|----------------|------|------|--------------|---------|---------|---------|---------|---------|---------|---------|---------|--|
| UMask  | Msk<br>[28:0]  | MXtd | MDir | EoB          | Nev     | vDat    | MsgLst  | RxIE    | TxIE    | IntPnd  | RmtEn   | TxRqst  |  |
| MsgVal | ID<br>[28:0]   | Xtd  | Dir  | DLC<br>[3:0] | Data(0) | Data(1) | Data(2) | Data(3) | Data(4) | Data(5) | Data(6) | Data(7) |  |

Table 6.14-8 Structure of a Message Object in the Message Memory

The Arbitration Registers ID28-0 (CAN\_IFn\_ARB1/2), Xtd (CAN\_IFn\_ARB2[14]) and Dir (CAN\_IFn\_ARB2[13]) are used to define the identifier and type of outgoing messages and are used (together with the mask registers Msk28-0 (CAN\_IFn\_MASK1/2), MXtd (CAN\_IFn\_MASK2[15]) and MDir (CAN\_IFn\_MASK2[14])) for acceptance filtering of incoming messages. A received message is stored in the valid Message Object with matching identifier and Direction = receive (Data Frame) or Direction = transmit (Remote Frame). Extended frames can be stored only in Message Objects with Xtd = one, standard frames in Message Objects with Xtd = zero. If a received message (Data Frame or Remote Frame) matches with more than one valid Message Object, it is stored into that with the lowest message number.

#### Message Handler Registers

All Message Handler registers are read only. Their contents (TxRqst (CAN\_IFn\_MCON[8]), NewDat (CAN\_IFn\_MCON[15]), IntPnd (CAN\_IFn\_MCON[13]) and MsgVal (CAN\_IFn\_ARB2[15]) bits of each Message Object and the Interrupt Identifier) are status information provided by the Message Handler FSM.

#### Transmission Request Register 1 (CAN\_TXREQ1)

nuvoton

These registers hold the TxRqst bits of the 32 Message Objects. By reading the TxRqst bits, the software can check which Message Object in a Transmission Request is pending. The TxRqst bit of a specific Message Object can be set/reset by the application software through the IFn Message Interface Registers or by the Message Handler after reception of a Remote Frame or after a successful transmission.

| Register   | Offset        | R/W | Description                     | Reset Value |
|------------|---------------|-----|---------------------------------|-------------|
| CAN_TXREQ1 | CAN0_BA+0x100 | R   | Transmission Request Register 1 | 0x0000_0000 |

| 31       | 30              | 29 | 28   | 27     | 26 | 25 | 24 |  |  |  |  |
|----------|-----------------|----|------|--------|----|----|----|--|--|--|--|
| Reserved |                 |    |      |        |    |    |    |  |  |  |  |
| 23       | 22              | 21 | 20   | 19     | 18 | 17 | 16 |  |  |  |  |
|          | Reserved        |    |      |        |    |    |    |  |  |  |  |
| 15       | 14              | 13 | 12   | 11     | 10 | 9  | 8  |  |  |  |  |
|          |                 |    | TxRq | st16-9 |    |    |    |  |  |  |  |
| 7        | 7 6 5 4 3 2 1 0 |    |      |        |    |    |    |  |  |  |  |
|          | TxRqst8-1       |    |      |        |    |    |    |  |  |  |  |

| Bits    | Description        |                                                                                                                                                                                                                             |  |  |  |  |  |
|---------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| [31:16] | Reserved Reserved. |                                                                                                                                                                                                                             |  |  |  |  |  |
| [15:0]  | TxRqst16-1         | Transmission Request Bits 16-1 (Of All Message Objects)  0 = This Message Object is not waiting for transmission.  1 = The transmission of this Message Object is requested and is not yet done.  These bits are read only. |  |  |  |  |  |



# Transmission Request Register 2 (CAN\_TXREQ2)

| Register   | Offset        | R/W | Description                     | Reset Value |
|------------|---------------|-----|---------------------------------|-------------|
| CAN_TXREQ2 | CAN0_BA+0x104 | R   | Transmission Request Register 2 | 0x0000_0000 |

| 31       | 30          | 29 | 28    | 27      | 26 | 25 | 24 |  |  |  |  |
|----------|-------------|----|-------|---------|----|----|----|--|--|--|--|
| Reserved |             |    |       |         |    |    |    |  |  |  |  |
| 23       | 22          | 21 | 20    | 19      | 18 | 17 | 16 |  |  |  |  |
|          | Reserved    |    |       |         |    |    |    |  |  |  |  |
| 15       | 14          | 13 | 12    | 11      | 10 | 9  | 8  |  |  |  |  |
|          |             |    | TxRqs | st32-25 |    |    |    |  |  |  |  |
| 7        | 6           | 5  | 4     | 3       | 2  | 1  | 0  |  |  |  |  |
|          | TxRqst24-17 |    |       |         |    |    |    |  |  |  |  |

| Bits    | Description        |                                                                                                                                                                                                                              |  |  |  |  |  |  |
|---------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:16] | Reserved Reserved. |                                                                                                                                                                                                                              |  |  |  |  |  |  |
| [15:0]  | TxRqst32-17        | Transmission Request Bits 32-17 (Of All Message Objects)  0 = This Message Object is not waiting for transmission.  1 = The transmission of this Message Object is requested and is not yet done.  These bits are read only. |  |  |  |  |  |  |

### New Data Register 1 (CAN\_NDAT1)

nuvoton

These registers hold the NewDat bits of the 32 Message Objects. By reading out the NewDat bits, the software can check for which Message Object the data portion was updated. The NewDat bit of a specific Message Object can be set/reset by the software through the IFn Message Interface Registers or by the Message Handler after reception of a Data Frame or after a successful transmission.

| Register  | Offset        | R/W | Description         | Reset Value |
|-----------|---------------|-----|---------------------|-------------|
| CAN_NDAT1 | CAN0_BA+0x120 | R   | New Data Register 1 | 0x0000_0000 |

| 31       | 30         | 29 | 28    | 27      | 26 | 25 | 24 |  |  |  |  |
|----------|------------|----|-------|---------|----|----|----|--|--|--|--|
| Reserved |            |    |       |         |    |    |    |  |  |  |  |
| 23       | 22         | 21 | 20    | 19      | 18 | 17 | 16 |  |  |  |  |
|          | Reserved   |    |       |         |    |    |    |  |  |  |  |
| 15       | 14         | 13 | 12    | 11      | 10 | 9  | 8  |  |  |  |  |
|          |            |    | NewDa | ata16-9 |    |    |    |  |  |  |  |
| 7        | 6          | 5  | 4     | 3       | 2  | 1  | 0  |  |  |  |  |
|          | NewData8-1 |    |       |         |    |    |    |  |  |  |  |

| Bits    | Description        |                                                                                                                                                                             |  |  |  |  |  |  |
|---------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| [31:16] | Reserved Reserved. |                                                                                                                                                                             |  |  |  |  |  |  |
|         |                    | New Data Bits 16-1 (Of All Message Objects)                                                                                                                                 |  |  |  |  |  |  |
| [15:0]  |                    | 0 = No new data has been written into the data portion of this Message Object by the Message Handler since the last time this flag was cleared by the application software. |  |  |  |  |  |  |
|         |                    | 1 = The Message Handler or the application software has written new data into the data portion of this Message Object.                                                      |  |  |  |  |  |  |



# New Data Register 2 (CAN\_NDAT2)

| Register  | Offset        | R/W | Description         | Reset Value |
|-----------|---------------|-----|---------------------|-------------|
| CAN_NDAT2 | CAN0_BA+0x124 | R   | New Data Register 2 | 0x0000_0000 |

| 31       | 30           | 29 | 28    | 27      | 26 | 25 | 24 |  |  |  |  |
|----------|--------------|----|-------|---------|----|----|----|--|--|--|--|
| Reserved |              |    |       |         |    |    |    |  |  |  |  |
| 23       | 22           | 21 | 20    | 19      | 18 | 17 | 16 |  |  |  |  |
|          | Reserved     |    |       |         |    |    |    |  |  |  |  |
| 15       | 14           | 13 | 12    | 11      | 10 | 9  | 8  |  |  |  |  |
|          |              |    | NewDa | ta32-25 |    |    |    |  |  |  |  |
| 7        | 6            | 5  | 4     | 3       | 2  | 1  | 0  |  |  |  |  |
|          | NewData24-17 |    |       |         |    |    |    |  |  |  |  |

| Bits    | Description        |                                                                                                                                                                             |  |  |  |  |
|---------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:16] | Reserved Reserved. |                                                                                                                                                                             |  |  |  |  |
|         | NewData32-17       | New Data Bits 32-17 (Of All Message Objects)                                                                                                                                |  |  |  |  |
| [15:0]  |                    | 0 = No new data has been written into the data portion of this Message Object by the Message Handler since the last time this flag was cleared by the application software. |  |  |  |  |
|         |                    | 1 = The Message Handler or the application software has written new data into the data portion of this Message Object.                                                      |  |  |  |  |

### Interrupt Pending Register 1 (CAN\_IPND1)

nuvoton

These registers contain the IntPnd bits of the 32 Message Objects. By reading the IntPnd bits, the software can check for which Message Object an interrupt is pending. The IntPnd bit of a specific Message Object can be set/reset by the application software through the IFn Message Interface Registers or by the Message Handler after reception or after a successful transmission of a frame. This will also affect the value of Intld in the Interrupt Register.

| Register  | Offset        | R/W | Description                  | Reset Value |
|-----------|---------------|-----|------------------------------|-------------|
| CAN_IPND1 | CAN0_BA+0x140 | R   | Interrupt Pending Register 1 | 0x0000_0000 |

| 31 | 30         | 29 | 28   | 27    | 26 | 25 | 24 |  |  |  |
|----|------------|----|------|-------|----|----|----|--|--|--|
|    | Reserved   |    |      |       |    |    |    |  |  |  |
| 23 | 22         | 21 | 20   | 19    | 18 | 17 | 16 |  |  |  |
|    |            |    | Rese | erved |    |    |    |  |  |  |
| 15 | 14         | 13 | 12   | 11    | 10 | 9  | 8  |  |  |  |
|    | IntPnd16-9 |    |      |       |    |    |    |  |  |  |
| 7  | 6          | 5  | 4    | 3     | 2  | 1  | 0  |  |  |  |
|    | IntPnd8-1  |    |      |       |    |    |    |  |  |  |

| Bits    | Description        |                                                            |  |  |  |  |  |
|---------|--------------------|------------------------------------------------------------|--|--|--|--|--|
| [31:16] | Reserved Reserved. |                                                            |  |  |  |  |  |
|         |                    | Interrupt Pending Bits 16-1 (Of All Message Objects)       |  |  |  |  |  |
| [15:0]  | IntPnd16-1         | 0 = This message object is not the source of an interrupt. |  |  |  |  |  |
|         |                    | 1 = This message object is the source of an interrupt.     |  |  |  |  |  |



# Interrupt Pending Register 2 (CAN\_IPND2)

| Register  | Offset        | R/W | Description                  | Reset Value |
|-----------|---------------|-----|------------------------------|-------------|
| CAN_IPND2 | CAN0_BA+0x144 | R   | Interrupt Pending Register 2 | 0x0000_0000 |

| 31 | 30          | 29 | 28   | 27    | 26 | 25 | 24 |  |  |  |
|----|-------------|----|------|-------|----|----|----|--|--|--|
|    | Reserved    |    |      |       |    |    |    |  |  |  |
| 23 | 22          | 21 | 20   | 19    | 18 | 17 | 16 |  |  |  |
|    |             |    | Rese | erved |    |    |    |  |  |  |
| 15 | 14          | 13 | 12   | 11    | 10 | 9  | 8  |  |  |  |
|    | IntPnd32-25 |    |      |       |    |    |    |  |  |  |
| 7  | 6           | 5  | 4    | 3     | 2  | 1  | 0  |  |  |  |
|    | IntPnd24-17 |    |      |       |    |    |    |  |  |  |

| Bits    | Description        |                                                            |  |  |  |  |  |
|---------|--------------------|------------------------------------------------------------|--|--|--|--|--|
| [31:16] | Reserved Reserved. |                                                            |  |  |  |  |  |
|         |                    | Interrupt Pending Bits 32-17 (Of All Message Objects)      |  |  |  |  |  |
| [15:0]  | IntPnd32-17        | 0 = This message object is not the source of an interrupt. |  |  |  |  |  |
|         |                    | 1 = This message object is the source of an interrupt.     |  |  |  |  |  |

#### Message Valid Register 1 (CAN\_MVLD1)

nuvoton

These registers hold the MsgVal bits of the 32 Message Objects. By reading the MsgVal bits, the application software can check which Message Object is valid. The MsgVal bit of a specific Message Object can be set/reset by the application software via the IFn Message Interface Registers.

| Register  | Offset        | R/W | Description              | Reset Value |
|-----------|---------------|-----|--------------------------|-------------|
| CAN_MVLD1 | CAN0_BA+0x160 | R   | Message Valid Register 1 | 0x0000_0000 |

| 31              | 30          | 29 | 28   | 27    | 26 | 25 | 24 |  |  |
|-----------------|-------------|----|------|-------|----|----|----|--|--|
| Reserved        |             |    |      |       |    |    |    |  |  |
| 23              | 22          | 21 | 20   | 19    | 18 | 17 | 16 |  |  |
|                 |             |    | Rese | erved |    |    |    |  |  |
| 15              | 14          | 13 | 12   | 11    | 10 | 9  | 8  |  |  |
|                 | MsgVal16- 9 |    |      |       |    |    |    |  |  |
| 7 6 5 4 3 2 1 0 |             |    |      |       |    |    |    |  |  |
|                 | MsgVal8-1   |    |      |       |    |    |    |  |  |

| Bits    | Description         |                                                                                                                        |  |  |  |  |
|---------|---------------------|------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| [31:16] | Reserved. Reserved. |                                                                                                                        |  |  |  |  |
|         | MsgVal16-1          | lessage Valid Bits 16-1 (Of All Message Objects) (Read Only)                                                           |  |  |  |  |
|         |                     | 0 = This Message Object is ignored by the Message Handler.                                                             |  |  |  |  |
| [15:0]  |                     | 1 = This Message Object is configured and should be considered by the Message Handler.                                 |  |  |  |  |
|         |                     | Ex. CAN_MVLD1[0] means Message object No.1 is valid or not. If CAN_MVLD1[0] is set, message object No.1 is configured. |  |  |  |  |



# Message Valid Register 2 (CAN\_MVLD2)

| Register  | Offset        | R/W | Description              | Reset Value |
|-----------|---------------|-----|--------------------------|-------------|
| CAN_MVLD2 | CAN0_BA+0x164 | R   | Message Valid Register 2 | 0x0000_0000 |

| 31 | 30              | 29 | 28   | 27    | 26 | 25 | 24 |  |  |  |
|----|-----------------|----|------|-------|----|----|----|--|--|--|
|    | Reserved        |    |      |       |    |    |    |  |  |  |
| 23 | 22              | 21 | 20   | 19    | 18 | 17 | 16 |  |  |  |
|    |                 |    | Rese | erved |    |    |    |  |  |  |
| 15 | 14              | 13 | 12   | 11    | 10 | 9  | 8  |  |  |  |
|    | MsgVal32-25     |    |      |       |    |    |    |  |  |  |
| 7  | 7 6 5 4 3 2 1 0 |    |      |       |    |    |    |  |  |  |
|    | MsgVal24-17     |    |      |       |    |    |    |  |  |  |

| Bits    | Description        |                                                                                                                           |  |  |  |
|---------|--------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:16] | Reserved Reserved. |                                                                                                                           |  |  |  |
|         | MsgVal32-17        | Message Valid Bits 32-17 (Of All Message Objects) (Read Only)                                                             |  |  |  |
|         |                    | 0 = This Message Object is ignored by the Message Handler.                                                                |  |  |  |
| [15:0]  |                    | 1 = This Message Object is configured and should be considered by the Message Handler.                                    |  |  |  |
|         |                    | Ex.CAN_MVLD2[15] means Message object No.32 is valid or not. If CAN_MVLD2[15] is set, message object No.32 is configured. |  |  |  |



# Wake Up Enable Register (CAN\_WU\_EN)

| Register  | Offset        | R/W | Description             | Reset Value |
|-----------|---------------|-----|-------------------------|-------------|
| CAN_WU_EN | CAN0_BA+0x168 | R/W | Wake-up Enable Register | 0x0000_0000 |

| 31       | 30       | 29 | 28 | 27 | 26 | 25       | 24 |  |
|----------|----------|----|----|----|----|----------|----|--|
|          | Reserved |    |    |    |    |          |    |  |
| 23       | 22       | 21 | 20 | 19 | 18 | 17       | 16 |  |
|          | Reserved |    |    |    |    |          |    |  |
| 15       | 14       | 13 | 12 | 11 | 10 | 9        | 8  |  |
| Reserved |          |    |    |    |    |          |    |  |
| 7        | 6        | 5  | 4  | 3  | 2  | 1        | 0  |  |
| Reserved |          |    |    |    |    | WAKUP_EN |    |  |

| Bits   | Description        |                                                                               |  |  |  |
|--------|--------------------|-------------------------------------------------------------------------------|--|--|--|
| [31:1] | Reserved Reserved. |                                                                               |  |  |  |
|        | WAKUP_EN           | Wake-Up Enable Control                                                        |  |  |  |
| [0]    |                    | 0 = The wake-up function Disabled.                                            |  |  |  |
| [0]    |                    | 1 = The wake-up function Enabled.                                             |  |  |  |
|        |                    | Note: User can wake-up system when there is a falling edge in the CAN_Rx pin. |  |  |  |



# Wake Up Status Register (CAN\_WU\_STATUS)

| Register      | Offset        | R/W | Description             | Reset Value |
|---------------|---------------|-----|-------------------------|-------------|
| CAN_WU_STATUS | CAN0_BA+0x16C | R/W | Wake-up Status Register | 0x0000_0000 |

| 31       | 30       | 29 | 28 | 27 | 26 | 25        | 24 |
|----------|----------|----|----|----|----|-----------|----|
|          | Reserved |    |    |    |    |           |    |
| 23       | 22       | 21 | 20 | 19 | 18 | 17        | 16 |
|          | Reserved |    |    |    |    |           |    |
| 15       | 14       | 13 | 12 | 11 | 10 | 9         | 8  |
|          | Reserved |    |    |    |    |           |    |
| 7        | 6        | 5  | 4  | 3  | 2  | 1         | 0  |
| Reserved |          |    |    |    |    | WAKUP_STS |    |

| Bits   | Description        |                                               |  |  |
|--------|--------------------|-----------------------------------------------|--|--|
| [31:1] | Reserved Reserved. |                                               |  |  |
|        | WAKUP_STS          | Wake-Up Status                                |  |  |
| [0]    |                    | 0 = No wake-up event occurred.                |  |  |
| [0]    |                    | 1 = Wake-up event occurred.                   |  |  |
|        |                    | Note: This bit can be cleared by writing '0'. |  |  |

### 6.15 Analog-to-Digital Converter (ADC)

#### 6.15.1 Overview

nuvoton

The NuMicro® NUC131 series contains one 12-bit successive approximation analog-to-digital converters (SAR A/D converter) with 8 input channels. The A/D converter supports three operation modes: single, single-cycle scan and continuous scan mode. The A/D converter can be started by software, PWM, BPWM trigger and external STADC pin.

#### 6.15.2 Features

- Analog input voltage range: 0~VREF
- 12-bit resolution and 10-bit accuracy is guaranteed
- Up to 8 single-end analog input channels or 4 differential analog input channels
- Up to 760 kSPS conversion rate (chip working at 5V)
- Three operating modes
  - Single mode: A/D conversion is performed one time on a specified channel
  - Single-cycle scan mode: A/D conversion is performed one cycle on all specified channels with the sequence from the smallest numbered channel to the largest numbered channel
  - Continuous scan mode: A/D converter continuously performs Single-cycle scan mode until software stops A/D conversion
- An A/D conversion can be started by:
  - Writing 1 to ADST bit (ADCR[11]) through software
  - PWM and BPWM trigger
  - External pin STADC
- Conversion results are held in data registers for each channel with valid and overrun indicators
- Supports two set digital comparators. The conversion result can be compared with specify value and user can select whether to generate an interrupt when conversion result matches the compare register setting
- Channel 7 supports 2 input sources: external analog voltage, and internal Band-gap voltage



### 6.15.3 Block Diagram

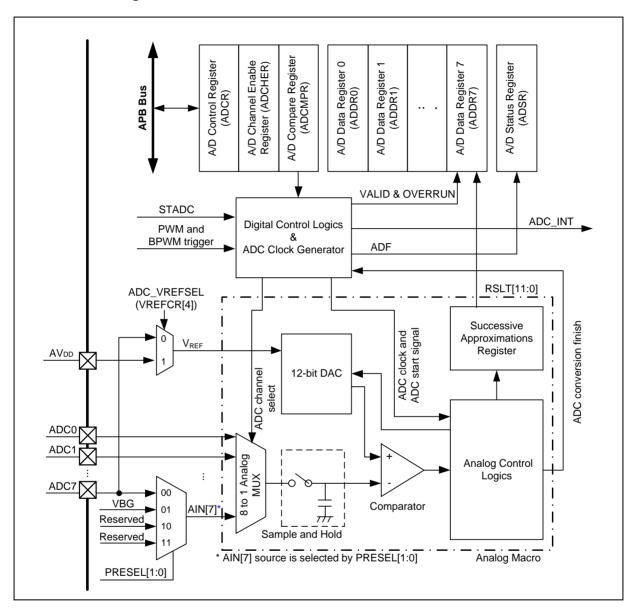



Figure 6.15-1 ADC Controller Block Diagram

#### 6.15.4 Basic Configuration

The ADC Controller clock source is enabled by ADC\_EN bit (CLK\_APBCLK[28]). After user change the GPA\_MFP register to ADC analog input, user need set OFFD (GPIOA\_OFFD[23:16]) = 1 to disable digital input path.

### 6.15.5 Functional Description

The A/D converter operates by successive approximation with 12-bit resolution. The ADC has three Apr 8, 2020 Page **541** of **562** Rev 1.01

operation modes: Single mode, Single-cycle Scan mode and Continuous Scan mode. When changing the operating mode or analog input channel, to prevent incorrect operation, software must clear ADST bit (ADCR[11]) to 0.

#### 6.15.5.1 ADC Clock Generator

The maximum sampling rate is up to 760 kSPS. The ADC engine has four clock sources selected by 2-bit ADC\_S (CLKSEL1[3:2]), the ADC clock frequency is divided by an 8-bit prescaler with the formula:

The ADC clock frequency = (ADC clock source frequency) / (ADC\_N (CLKDIV[23:16])+1);

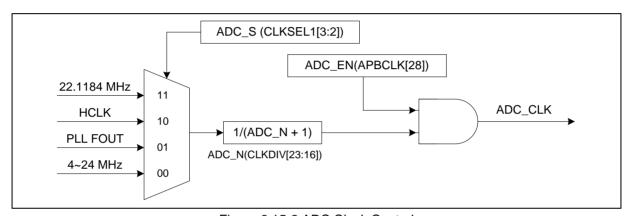



Figure 6.15-2 ADC Clock Control

#### 6.15.5.2 Single Mode

In single mode, A/D conversion is performed only once on the specified single channel. The operations are as follows:

- A/D conversion will be started when the ADST bit (ADCR[11]) is set to 1 by software.
- 2. When A/D conversion is finished, the result is stored in the A/D data register corresponding to the channel.
- 3. The ADF bit (ADSR[0]) will be set to 1. If the ADIE bit (ADCR[1]) is set to 1, the ADC interrupt will be asserted.
- 4. The ADST bit remains 1 during A/D conversion. When A/D conversion ends, the ADST bit is automatically cleared to 0 and the A/D converter enters idle state.

**Note:** If software enables more than one channel in single mode, the channel with the smallest number will be selected and the other enabled channels will be ignored.

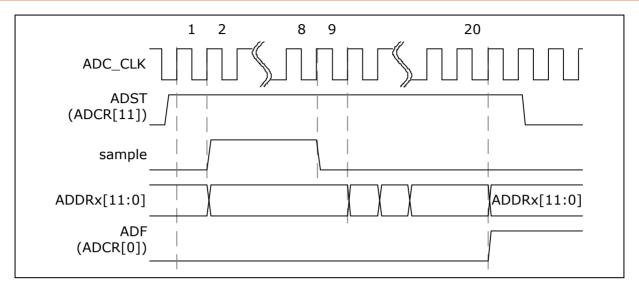



Figure 6.15-3 Single Mode Conversion Timing Diagram

#### 6.15.5.3 Single-Cycle Scan Mode

nuvoton

In single-cycle scan mode, A/D conversion will sample and convert the specified channels once in the sequence from the smallest number enabled channel to the largest number enabled channel.

- When the ADST bit (ADCR[11]) is set to 1 by software or external trigger input, A/D conversion starts on the channel with the smallest number.
- 2. When A/D conversion for each enabled channel is completed, the result is sequentially transferred to the A/D data register corresponding to each channel.
- 3. When the conversions of all the enabled channels are completed, the ADF bit (ADSR[0]) is set to 1. If the ADC interrupt function is enabled, the ADC interrupt occurs.
- After A/D conversion ends, the ADST bit is automatically cleared to 0 and the A/D converter 4. enters idle state. If ADST is cleared to 0 before all enabled ADC channels conversion done, ADC controller will finish current conversion and save the result to the ADDRx of the current conversion channel.

An example timing diagram for single-cycle scan on enabled channels (0, 2, 3 and 7) is shown in Figure 6.15-4:

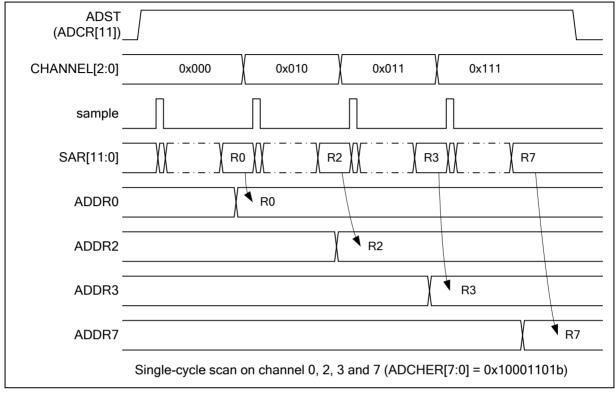



Figure 6.15-4 Single-Cycle Scan on Enabled Channels Timing Diagram

### 6.15.5.4 Continuous Scan Mode

nuvoton

In continuous scan mode, A/D conversion is performed sequentially on the specified channels that enabled by CHEN bits (ADCHER[7:0]). The operations are as follows:

- 1. When the ADST bit (ADCR[11]) is set to 1 by software, A/D conversion starts on the channel with the smallest number.
- When A/D conversion for each enabled channel is completed, the result of each enabled channel 2. is stored in the A/D data register corresponding to each enabled channel.
- When A/D converter completes the conversions of all enabled channels sequentially, the ADF bit 3. (ADSR[0]) will be set to 1. If the ADC interrupt function is enabled, the ADC interrupt occurs. The conversion of the enabled channel with the smallest number will start again if software has not cleared the ADST bit.
- As long as the ADST bit remains at 1, the step 2 ~ 3 will be repeated. When ADST is cleared to 4. 0, ADC controller will stop conversion.

An example timing diagram for continuous scan on enabled channels (0, 2, 3 and 7) is shown in Figure 6.15-5:

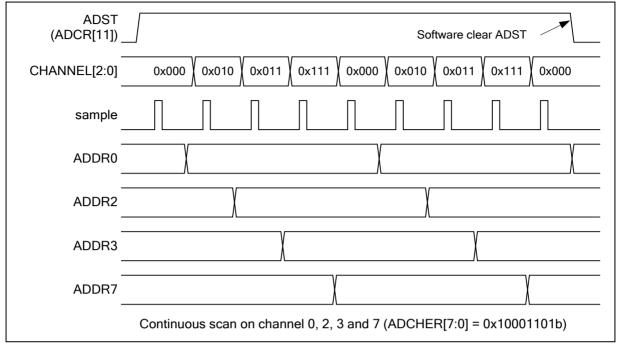



Figure 6.15-5 Continuous Scan on Enabled Channels Timing Diagram

#### 6.15.5.5 External trigger Input Sampling and A/D Conversion Time

In single-cycle scan mode, A/D conversion can be triggered by external pin request. When the TRGEN (ADCR[8]) is set to high to enable ADC external trigger function, setting the TRGS bits (ADCR[5:4]) to 00b is to select external trigger input from the STADC pin. Software can set TRGCOND (ADCR[7:6]) to select trigger condition is falling/rising edge or low/high level. If level trigger condition is selected, the STADC pin must be kept at defined state at least 8 PCLKs. The ADST bit will be set to 1 at the 9th PCLK and start to conversion. Conversion is continuous if external trigger input is kept at active state in level trigger mode. It is stopped only when external condition trigger condition disappears. If edge trigger condition is selected, the high and low state must be kept at least 4 PLCKs. Pulse that is shorter than this specification will be ignored.

#### 6.15.5.6 PWM and BPWM trigger

nuvoton

In single-cycle scan mode, the PWM and BPWM can be the trigger source of ADC by setting the TRGEN (ADCR[8]) to 1 and the TRGS (ADCR[5:4]) to 11b.

When PWM enables trigger ADC function, the PWM will generate a trigger signal to ADC when trigger events happened, BPWM have the same behavior. PWM and BPWM trigger events please refer to their corresponding section.

#### 6.15.5.7 Conversion Result Monitor by Compare Function

The ADC controller provide two sets of compare register ADCMPR0 and ADCMPR1, to monitor maximum two specified channels conversion result from A/D conversion controller, refer to Figure 6.15-6. Software can select which channel to be monitored by set CMPCH (ADCMPR0/1[5:3]) and CMPCOND bit (ADCMPR0/1[2]) is used to check conversion result is less than specify value or greater than (equal to) value specified in CMPD (ADCMPR0/1[27:16]). When the conversion of the channel specified by CMPCH is completed, the comparing action will be triggered one time

automatically. When the compare result meets the setting, compare match counter will increase 1, otherwise, the compare match counter will be cleared to 0. It means the comparing data must be successively matched with the compare condition. Once any comparing data does not match during the comparing, the compare match counter will clear to 0. When counter value reach the setting of (CMPMATCNT (ADCMPR0/1[11:8])+1) then CMPF0/1 bit (ADSR[1]/[2]) will be set to 1, if CMPIE bit (ADCMPR0/1[1]) is set then an ADC\_INT interrupt request is generated. Software can use it to monitor the external analog input pin voltage transition in scan mode without imposing a load on software. Detailed logics diagram is shown in Figure 6.15-6:

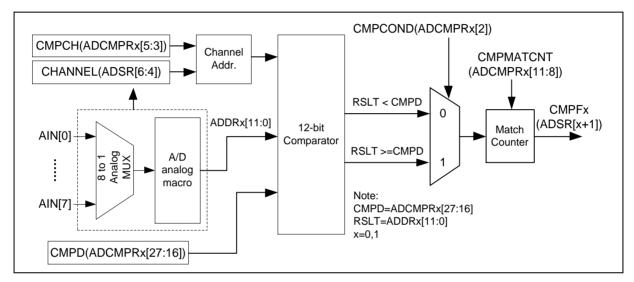



Figure 6.15-6 A/D Conversion Result Monitor Logics Diagram

#### 6.15.5.8 Interrupt Sources

There are three interrupt sources of ADC interrupt. When an ADC operation mode finishes its conversion, the A/D conversion end flag, ADF, will be set to 1. The CMPF0 (ADSR[1]) and CMPF1 (ADSR[2]) are the compare flags of compare function. When the conversion result meets the settings of ADCMPR0/1, the corresponding flag will be set to 1. When one of the flags, ADF (ADSR[0]), CMPF0 and CMPF1, is set to 1 and the corresponding interrupt enable bit, ADIE (ADCR[1]) and CMPIE (ADCMPR0/1[1]), is set to 1, the ADC interrupt will be asserted. Software can clear the flag to revoke the interrupt request.

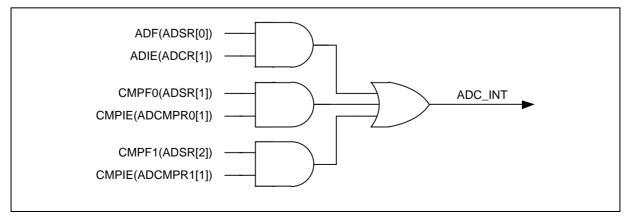



Figure 6.15-7 A/D Controller Interrupt

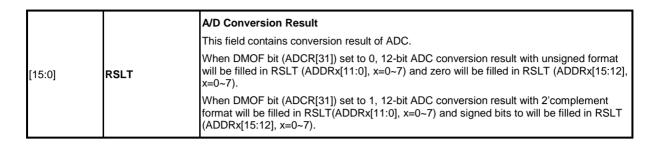


# 6.15.6 Register Map

R: read only, W: write only, R/W: both read and write

| Register | Offset                                    | R/W | Description                 | Reset Value |  |  |  |  |
|----------|-------------------------------------------|-----|-----------------------------|-------------|--|--|--|--|
|          | ADC Base Address:<br>ADC_BA = 0x400E_0000 |     |                             |             |  |  |  |  |
| ADDR0    | ADC_BA+0x00                               | R   | ADC Data Register 0         | 0x0000_0000 |  |  |  |  |
| ADDR1    | ADC_BA+0x04                               | R   | ADC Data Register 1         | 0x0000_0000 |  |  |  |  |
| ADDR2    | ADC_BA+0x08                               | R   | ADC Data Register 2         | 0x0000_0000 |  |  |  |  |
| ADDR3    | ADC_BA+0x0C                               | R   | ADC Data Register 3         | 0x0000_0000 |  |  |  |  |
| ADDR4    | ADC_BA+0x10                               | R   | ADC Data Register 4         | 0x0000_0000 |  |  |  |  |
| ADDR5    | ADC_BA+0x14                               | R   | ADC Data Register 5         | 0x0000_0000 |  |  |  |  |
| ADDR6    | ADC_BA+0x18                               | R   | ADC Data Register 6         | 0x0000_0000 |  |  |  |  |
| ADDR7    | ADC_BA+0x1C                               | R   | ADC Data Register 7         | 0x0000_0000 |  |  |  |  |
| ADCR     | ADC_BA+0x20                               | R/W | ADC Control Register        | 0x0000_0000 |  |  |  |  |
| ADCHER   | ADC_BA+0x24                               | R/W | ADC Channel Enable Register | 0x0000_0000 |  |  |  |  |
| ADCMPR0  | ADC_BA+0x28                               | R/W | ADC Compare Register 0      | 0x0000_0000 |  |  |  |  |
| ADCMPR1  | ADC_BA+0x2C                               | R/W | ADC Compare Register 1      | 0x0000_0000 |  |  |  |  |
| ADSR     | ADC_BA+0x30                               | R/W | ADC Status Register         | 0x0000_0000 |  |  |  |  |

# 6.15.7 Register Description


nuvoTon

## ADC Data Registers (ADDR0 ~ ADDR7)

| Register | Offset      | R/W | Description         | Reset Value |
|----------|-------------|-----|---------------------|-------------|
| ADDR0    | ADC_BA+0x00 | R   | ADC Data Register 0 | 0x0000_0000 |
| ADDR1    | ADC_BA+0x04 | R   | ADC Data Register 1 | 0x0000_0000 |
| ADDR2    | ADC_BA+0x08 | R   | ADC Data Register 2 | 0x0000_0000 |
| ADDR3    | ADC_BA+0x0C | R   | ADC Data Register 3 | 0x0000_0000 |
| ADDR4    | ADC_BA+0x10 | R   | ADC Data Register 4 | 0x0000_0000 |
| ADDR5    | ADC_BA+0x14 | R   | ADC Data Register 5 | 0x0000_0000 |
| ADDR6    | ADC_BA+0x18 | R   | ADC Data Register 6 | 0x0000_0000 |
| ADDR7    | ADC_BA+0x1C | R   | ADC Data Register 7 | 0x0000_0000 |

| 31 | 30       | 29   | 28    | 27 | 26 | 25    | 24      |  |  |  |
|----|----------|------|-------|----|----|-------|---------|--|--|--|
|    | Reserved |      |       |    |    |       |         |  |  |  |
| 23 | 22       | 21   | 20    | 19 | 18 | 17    | 16      |  |  |  |
|    |          | Rese | erved |    |    | VALID | OVERRUN |  |  |  |
| 15 | 14       | 13   | 12    | 11 | 10 | 9     | 8       |  |  |  |
|    | RSLT     |      |       |    |    |       |         |  |  |  |
| 7  | 6        | 5    | 4     | 3  | 2  | 1     | 0       |  |  |  |
|    | RSLT     |      |       |    |    |       |         |  |  |  |

| Bits    | Description | Description                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|---------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:18] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |
| [17]    | VALID       | Valid Flag  0 = Data in RSLT bits (ADDRx[15:0], x=0~7) is not valid.  1 = Data in RSLT bits (ADDRx[15:0], x=0~7) is valid.  This bit is set to 1 when corresponding channel analog input conversion is completed and cleared by hardware after ADDR register is read.  This is a read only bit.                                                                                            |  |  |  |
| [16]    | OVERRUN     | Overrun Flag  0 = Data in RSLT (ADDRx[15:0], x=0~7) is recent conversion result.  1 = Data in RSLT (ADDRx[15:0], x=0~7) is overwritten.  If converted data in RSLT has not been read before new conversion result is loaded to this register, OVERRUN is set to 1 and previous conversion result is gone. It is cleared by hardware after ADDR register is read.  This is a read only bit. |  |  |  |



nuvoton

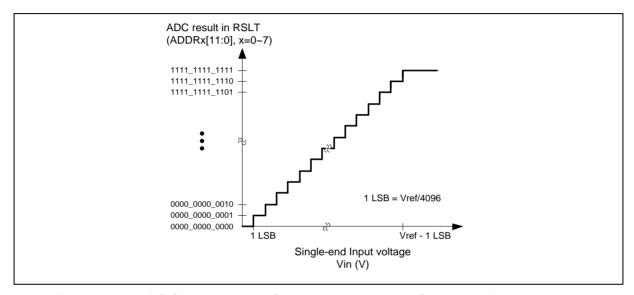



Figure 6.15-8 ADC Single-end Input Conversion Voltage and Conversion Result Mapping

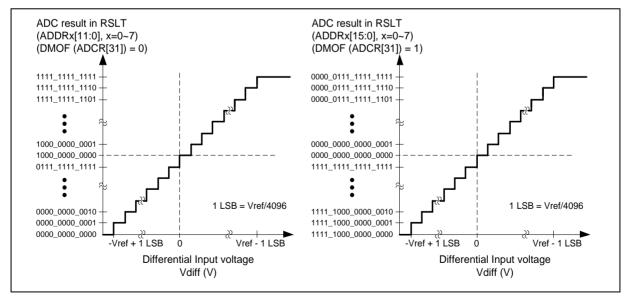



Figure 6.15-9 ADC Differential Input Conversion Voltage and Conversion Result Mapping



## **ADC Control Register (ADCR)**

| Register | Offset      | R/W | Description          | Reset Value |
|----------|-------------|-----|----------------------|-------------|
| ADCR     | ADC_BA+0x20 | R/W | ADC Control Register | 0x0000_0000 |

| 31           | 30   | 29       | 28   | 27    | 26     | 25       | 24    |  |
|--------------|------|----------|------|-------|--------|----------|-------|--|
| DMOF         |      | Reserved |      |       |        |          |       |  |
| 23           | 22   | 21       | 20   | 19    | 18     | 17       | 16    |  |
|              |      |          | Rese | erved |        |          |       |  |
| 15           | 14   | 13       | 12   | 11    | 10     | 9        | 8     |  |
|              | Rese | erved    |      | ADST  | DIFFEN | Reserved | TRGEN |  |
| 7            | 6    | 5        | 4    | 3     | 2      | 1        | 0     |  |
| TRGCOND TRGS |      |          | GS   | AD    | MD     | ADIE     | ADEN  |  |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                    |                     |               |  |  |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|--|--|
| [31]    | DMOF        | 0 = A/D Conversion result will be filled                                                                                                                                                                                                                                                                                                                                                                                                          | A/D Differential Input Mode Output Format  0 = A/D Conversion result will be filled in RSLT at ADDRx registers with unsigned format  1 = A/D Conversion result will be filled in RSLT at ADDRx registers with 2'complement format. |                     |               |  |  |
| [30:12] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                    |                     |               |  |  |
| [11]    | ADST        | A/D Conversion Start  0 = Conversion stops and A/D converter enter idle state.  1 = Conversion starts.  ADST bit can be set to 1 from three sources: software, PWM Center-aligned trigger and external pin STADC. ADST will be cleared to 0 by hardware automatically at the ends of single mode and single-cycle scan mode. In continuous scan mode, A/D conversion is continuously performed until software writes 0 to this bit or chip reset. |                                                                                                                                                                                                                                    |                     |               |  |  |
|         |             | Differential Input Mode Control  0 = Single-end analog input mode.  1 = Differential analog input mode.                                                                                                                                                                                                                                                                                                                                           | ADC Analog                                                                                                                                                                                                                         | y Innué             |               |  |  |
|         |             | Differential input Paired Channel                                                                                                                                                                                                                                                                                                                                                                                                                 | V <sub>plus</sub>                                                                                                                                                                                                                  | V <sub>minus</sub>  |               |  |  |
|         |             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ADC0                                                                                                                                                                                                                               | ADC1                |               |  |  |
| [10]    | DIFFEN      | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ADC2                                                                                                                                                                                                                               | ADC3                |               |  |  |
|         |             | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ADC4                                                                                                                                                                                                                               | ADC5                |               |  |  |
|         |             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ADC6                                                                                                                                                                                                                               | ADC7                |               |  |  |
|         |             | Differential input voltage (V <sub>diff</sub> ) = V <sub>plus</sub> -inverted analog input.  In differential input mode, only the eve to be enabled in ADCHER. The convergister of the enabled channel.                                                                                                                                                                                                                                           | n number of the                                                                                                                                                                                                                    | two corresponding c | hannels needs |  |  |

| [9]   | Reserved | Reserved.                                                                                                                                                                                               |
|-------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |          | Hardware Trigger Enable Control                                                                                                                                                                         |
|       |          | Enable or disable triggering of A/D conversion by hardware (external STADC pin or PWM Center-aligned trigger).                                                                                          |
| [8]   | TRGEN    | 0 = Disabled.                                                                                                                                                                                           |
| [ပ]   | INGEN    | 1 = Enabled.                                                                                                                                                                                            |
|       |          | ADC hardware trigger function is only supported in single-cycle scan mode.                                                                                                                              |
|       |          | If hardware trigger mode, the ADST bit (ADCR[11]) can be set to 1 by the selected hardware trigger source.                                                                                              |
|       |          | External Trigger Condition                                                                                                                                                                              |
|       |          | These two bits decide external pin STADC trigger event is level or edge. The signal must be kept at stable state at least 8 PCLKs for level trigger and 4 PCLKs at high and low state for edge trigger. |
| [7:6] | TRGCOND  | 00 = Low level.                                                                                                                                                                                         |
|       |          | 01 = High level.                                                                                                                                                                                        |
|       |          | 10 = Falling edge.                                                                                                                                                                                      |
|       |          | 11 = Rising edge.                                                                                                                                                                                       |
|       |          | Hardware Trigger Source                                                                                                                                                                                 |
|       |          | 00 = A/D conversion is started by external STADC pin.                                                                                                                                                   |
| [5:4] | TRGS     | 11 = A/D conversion is started by PWM Center-aligned trigger.                                                                                                                                           |
|       |          | Others = Reserved.                                                                                                                                                                                      |
|       |          | Software should disable TRGEN (ADCR[8]) and ADST (ADCR[11]) before change TRGS.                                                                                                                         |
|       |          | A/D Converter Operation Mode                                                                                                                                                                            |
|       |          | 00 = Single conversion.                                                                                                                                                                                 |
| [3:2] | ADMD     | 01 = Reserved.                                                                                                                                                                                          |
| []    |          | 10 = Single-cycle scan.                                                                                                                                                                                 |
|       |          | 11 = Continuous scan.                                                                                                                                                                                   |
|       |          | When changing the operation mode, software should disable ADST bit (ADCR[11]) firstly.                                                                                                                  |
|       |          | A/D Interrupt Enable Control                                                                                                                                                                            |
| [1]   | ADIE     | 0 = A/D interrupt function Disabled.                                                                                                                                                                    |
| [.]   | 7.2.2    | 1 = A/D interrupt function Enabled.                                                                                                                                                                     |
|       |          | A/D conversion end interrupt request is generated if ADIE bit (ADCR[1]) is set to 1.                                                                                                                    |
|       |          | A/D Converter Enable Control                                                                                                                                                                            |
|       |          | 0 = Disabled.                                                                                                                                                                                           |
| [0]   | ADEN     | 1 = Enabled.                                                                                                                                                                                            |
|       |          | Before starting A/D conversion function, this bit should be set to 1. Clear it to 0 to disable A/D converter analog circuit for saving power consumption.                                               |

nuvoTon

## ADC Channel Enable Register (ADCHER)

nuvoTon

| Register | Offset      | R/W | Description                 | Reset Value |
|----------|-------------|-----|-----------------------------|-------------|
| ADCHER   | ADC_BA+0x24 | R/W | ADC Channel Enable Register | 0x0000_0000 |

| 31 | 30              | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|----|-----------------|----|----|----|----|----|----|--|--|--|
|    | Reserved        |    |    |    |    |    |    |  |  |  |
| 23 | 22              | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|    | Reserved        |    |    |    |    |    |    |  |  |  |
| 15 | 14              | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|    | Reserved PRESEL |    |    |    |    |    |    |  |  |  |
| 7  | 6               | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|    | CHEN            |    |    |    |    |    |    |  |  |  |

| Bits    | Description | Description                                                                                                                                                                                                                                                         |  |  |  |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:10] | Reserved    | Reserved.                                                                                                                                                                                                                                                           |  |  |  |
| [9:8]   | PRESEL      | Analog Input Channel 7 Selection  00 = External analog input.  01 = Internal band-gap voltage.  10 = Reserved.  11 = Reserved.                                                                                                                                      |  |  |  |
| [7:0]   | CHEN        | Analog Input Channel Enable Control  Set CHEN[7:0] to enable the corresponding analog input channel 7 ~ 0. If DIFFEN bit (ADCR[10]) is set to 1, only the even number channels need to be enabled.  0 = ADC input channel Disabled.  1 = ADC input channel Enabled. |  |  |  |



## ADC Compare Register 0/1 (ADCMPR0/1)

| Register | Offset      | R/W | Description            | Reset Value |
|----------|-------------|-----|------------------------|-------------|
| ADCMPR0  | ADC_BA+0x28 | R/W | ADC Compare Register 0 | 0x0000_0000 |
| ADCMPR1  | ADC_BA+0x2C | R/W | ADC Compare Register 1 | 0x0000_0000 |

| 31   | 30            | 29 | 28 | 27 | 26         | 25    | 24    |  |
|------|---------------|----|----|----|------------|-------|-------|--|
|      | Reserved      |    |    |    | CMPD[11:8] |       |       |  |
| 23   | 22            | 21 | 20 | 19 | 18         | 17    | 16    |  |
|      | CMPD          |    |    |    |            |       |       |  |
| 15   | 14            | 13 | 12 | 11 | 10         | 9     | 8     |  |
|      | Reserved      |    |    |    | CMPMATCNT  |       |       |  |
| 7    | 6             | 5  | 4  | 3  | 2          | 1     | 0     |  |
| Rese | Reserved CMPC |    |    |    | CMPCOND    | CMPIE | CMPEN |  |

| Bits    | Description |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [31:28] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| [07:46] | CMPD        | Comparison Data  The 12-bit data is used to compare with conversion result of specified channel.  When DMOF bit (ADCR[31]) is set to 0, ADC comparator compares CMPD with                                                                                                                                                                                                                                                                                                                                                                         |
| [27:16] | CMPD        | conversion result with unsigned format. CMPD should be filled in unsigned format. When DMOF bit (ADCR[31]) is set to 1, ADC comparator compares CMPD with conversion result with 2'complement format. CMPD should be filled in 2'complement format.                                                                                                                                                                                                                                                                                               |
| [15:12] | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| [11:8]  | CMPMATCNT   | Compare Match Count  When the specified A/D channel analog conversion result matches the compare condition defined by CMPCOND (ADCMPR0/1[2]), the internal match counter will increase 1, The comparing data must successively matched with the compare condition. Once any comparing data does not match during the comparing, the internal counter will clear to 0. When the internal counter reaches the value to (CMPMATCNT (ADCMPR0/1[11:8]) +1), the CMPF0/1 bit (ADSR[1]/[2]) will be set.                                                 |
| [7:6]   | Reserved    | Reserved.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| [5:3]   | СМРСН       | Compare Channel Selection  000 = Channel 0 conversion result is selected to be compared.  001 = Channel 1 conversion result is selected to be compared.  010 = Channel 2 conversion result is selected to be compared.  011 = Channel 3 conversion result is selected to be compared.  100 = Channel 4 conversion result is selected to be compared.  101 = Channel 5 conversion result is selected to be compared.  110 = Channel 6 conversion result is selected to be compared.  111 = Channel 7 conversion result is selected to be compared. |

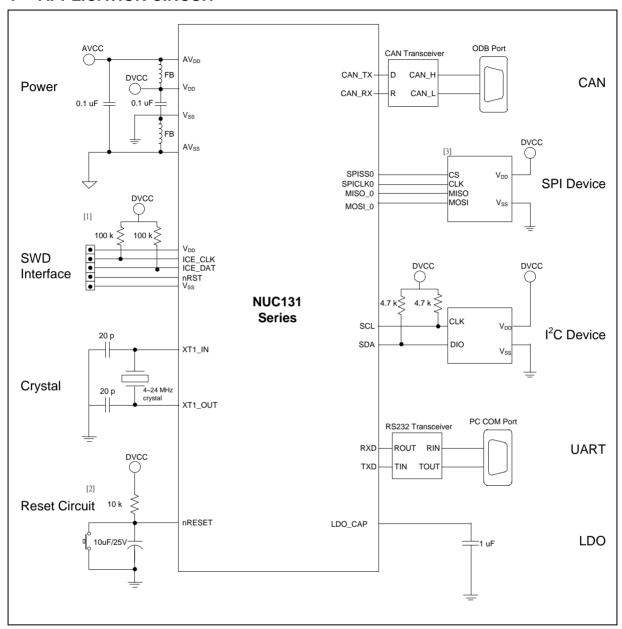
|     |         | Compare Condition                                                                                                                                                                                                                                                                        |
|-----|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |         | 0 = Set the compare condition as that when a 12-bit A/D conversion result is less than the 12-bit CMPD (ADCMPR0/1[27:16]), the internal match counter will increase one.                                                                                                                 |
| [2] | CMPCOND | 1 = Set the compare condition as that when a 12-bit A/D conversion result is greater or equal to the 12-bit CMPD (ADCMPR0/1[27:16]), the internal match counter will increase one.                                                                                                       |
|     |         | <b>Note:</b> When the internal counter reaches the value to (CMPMATCNT (ADCMPR0/1[11:8]) + 1), the CMPF0/1 bit (ADSR[1]/[2]) will be set.                                                                                                                                                |
|     |         | Compare Interrupt Enable Control                                                                                                                                                                                                                                                         |
|     |         | 0 = Compare function interrupt Disabled.                                                                                                                                                                                                                                                 |
| [4] | CMPIE   | 1 = Compare function interrupt Enabled.                                                                                                                                                                                                                                                  |
| [1] | CWFIE   | If the compare function is enabled and the compare condition matches the setting of CMPCOND (ADCMPR0/1[2]) and CMPMATCNT (ADCMPR0/1[11:8]), CMPF0/1 bit (ADSR[1]/[2]) will be asserted, in the meanwhile, if CMPIE (ADCMPR0/1[1]) is set to 1, a compare interrupt request is generated. |
|     |         | Compare Enable Control                                                                                                                                                                                                                                                                   |
| [0] |         | 0 = Compare function Disabled.                                                                                                                                                                                                                                                           |
|     | CMPEN   | 1 = Compare function Enabled.                                                                                                                                                                                                                                                            |
|     |         | Set this bit to 1 to enable ADC controller to compare CMPD (ADCMPR0/1[27:16]) with specified channel conversion result when converted data is loaded into ADDR register.                                                                                                                 |



## ADC Status Register (ADSR)

| Register | Offset      | R/W | Description         | Reset Value |
|----------|-------------|-----|---------------------|-------------|
| ADSR     | ADC_BA+0x30 | R/W | ADC Status Register | 0x0000_0000 |

| 31       | 30               | 29 | 28 | 27   | 26    | 25    | 24  |
|----------|------------------|----|----|------|-------|-------|-----|
|          | Reserved         |    |    |      |       |       |     |
| 23       | 22               | 21 | 20 | 19   | 18    | 17    | 16  |
|          | OVERRUN          |    |    |      |       |       |     |
| 15       | 14               | 13 | 12 | 11   | 10    | 9     | 8   |
|          | VALID            |    |    |      |       |       |     |
| 7        | 6                | 5  | 4  | 3    | 2     | 1     | 0   |
| Reserved | Reserved CHANNEL |    |    | BUSY | CMPF1 | CMPF0 | ADF |


| Bits    | Description |                                                                                                                                                                                                                                                                                         |  |  |  |
|---------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| [31:24] | Reserved    | Reserved.                                                                                                                                                                                                                                                                               |  |  |  |
| [23:16] | OVERRUN     | Overrun Flag It is a mirror to OVERRUN bit (ADDR0~7[16]). It is read only.                                                                                                                                                                                                              |  |  |  |
| [15:8]  | VALID       | Data Valid Flag It is a mirror of VALID bit (ADDR0~7[17]). It is read only.                                                                                                                                                                                                             |  |  |  |
| [7]     | Reserved    | Reserved.                                                                                                                                                                                                                                                                               |  |  |  |
| [6:4]   | CHANNEL     | Current Conversion Channel  This field reflects the current conversion channel when BUSY = 1 (ADSR[3]). When BUSY = 0, it shows the number of the next converted channel.  It is read only.                                                                                             |  |  |  |
| [3]     | BUSY        | BUSY/IDLE  0 = A/D converter is in idle state.  1 = A/D converter is busy at conversion.  This bit is mirror of as ADST bit (ADCR[11]).  It is read only.                                                                                                                               |  |  |  |
| [2]     | CMPF1       | Compare Flag  When the selected channel A/D conversion result meets setting condition in ADCMPR1 then this bit is set to 1. And it is cleared by writing 1 to self.  0 = Conversion result in ADDR does not meet ADCMPR1 setting.  1 = Conversion result in ADDR meets ADCMPR1 setting. |  |  |  |



| [1] | CMPF0 | Compare Flag                                                                                                                                          |  |  |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|     |       | When the selected channel A/D conversion result meets setting condition in ADCMPR0 then this bit is set to 1. And it is cleared by writing 1 to self. |  |  |
|     |       | 0 = Conversion result in ADDR does not meet ADCMPR0 setting.                                                                                          |  |  |
|     |       | 1 = Conversion result in ADDR meets ADCMPR0 setting.                                                                                                  |  |  |
|     |       | A/D Conversion End Flag                                                                                                                               |  |  |
|     |       | A status flag that indicates the end of A/D conversion.                                                                                               |  |  |
| [0] |       | ADF is set to 1 at these two conditions:                                                                                                              |  |  |
| [0] |       | 1. When A/D conversion ends in Single mode.                                                                                                           |  |  |
|     |       | 2. When A/D conversion ends on all specified channels in Scan mode.                                                                                   |  |  |
|     |       | This flag can be cleared by writing 1 to itself.                                                                                                      |  |  |



#### 7 APPLICATION CIRCUIT

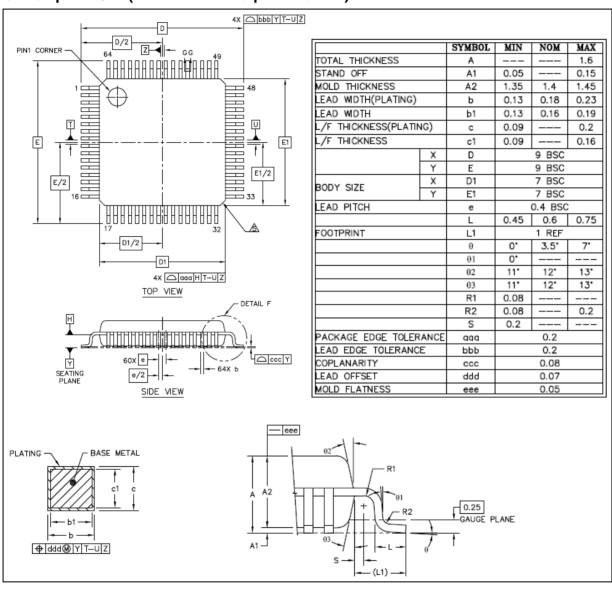


Note 1: It is recommended to use 100 k $\Omega$  pull-up resistor on both ICE\_DAT and ICE\_CLK pin.

**Note 2:** It is recommended to use 10 k $\Omega$  pull-up resistor and 10 uF capacitor on nRESET pin.

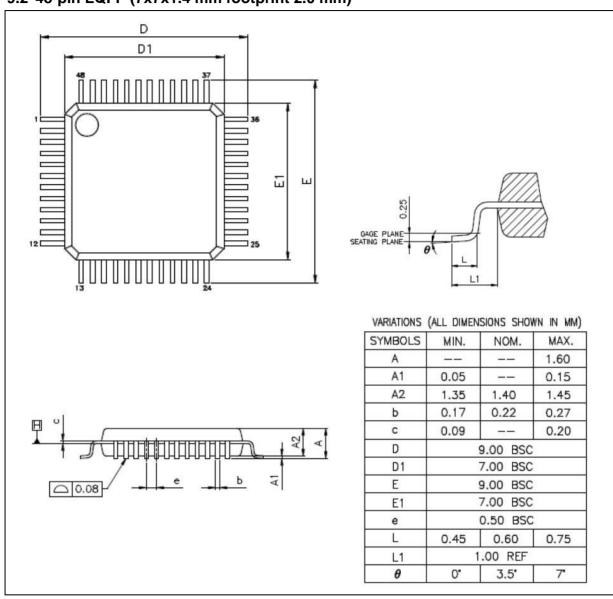
**Note 3:** For the SPI device, the chip supply voltage must be equal to SPI device working voltage. For example, when the SPI Flash working voltage is 3.3 V, the NUC131 chip supply voltage must also be 3.3 V




### **8 ELECTRICAL CHARACTERISTICS**

For information on the NUC131 series electrical characteristics, please refer to NuMicro<sup>®</sup> NUC131 Series Datasheet.




### 9 PACKAGE DIMENSIONS

### 9.1 64-pin LQFP (7x7x1.4 mm footprint 2.0 mm)



# 9.2 48-pin LQFP (7x7x1.4 mm footprint 2.0 mm)

nuvoTon





## **10 REVISION HISTORY**

| Date       | Revision | Description                                                                                                                             |
|------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 2014.10.31 | 1.00     | Initial version                                                                                                                         |
| 2020.04.08 | 1.01     | Modified application circuit in chapter 7                                                                                               |
|            |          | <ol><li>Added notes about the hardware reference design for ICE_DAT, ICE_CLK and<br/>nRESET pins in section 4.4 and chapter 7</li></ol> |
|            |          | 3. Modified ADC conversion rate at chapter 2 and section 6.15                                                                           |

#### **Important Notice**

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.