Arm® Cortex®-M0 32-Bit Microcontroller

NuMicro[®] Family Nano102/112 Series **Technical Reference Manual**

nuvoTon

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation. www.nuvoton.com

Table of Contents

1	GE	NERAL DESCRIPTION	13
2	FE	ATURES	15
2.1		Nano102/Nano112 Features	15
2.2	<u>.</u>	Nano112 Features – LCD Line	20
3	ABI	BREVIATIONS	25
4	PA	RTS INFORMATION LIST AND PIN CONFIGURATION	27
4.1		NuMicro® Nano102/112 Series Selection Code	27
4.2)	NuMicro® Nano112 Products Selection Guide	27
4	.2.1	NuMicro® Nano102 Base Line Selection Guide	27
4	.2.2	NuMicro® Nano112 LCD Line Selection Guide	28
4.3	}	Pin Configuration	29
4	.3.1	NuMicro [®] Nano102 Pin Diagrams	29
4	.3.2	NuMicro [®] Nano112 Pin Diagrams	32
4.4		Pin Description	35
4	.4.1	NuMicro® Nano102 Pin Description	35
4	.4.2	NuMicro [®] Nano112 Pin Description	42
5	BLO	OCK DIAGRAM	54
5.1		Nano102 Block Diagram	54
5.2) -	Nano112 Block Diagram	55
6	FUI	NCTIONAL DESCRIPTION	56
6.1		ARM® Cortex®-M0 Core	56
6	5.1.1	System Timer (SysTick)	58
6	5.1.2	System Timer Control Register Map	59
6	5.1.3	System Timer Control Register Description	59
6	5.1.4	System Control Registers	63
6	5.1.5	System Control Register Memory Map	64
	5.1.6	System Control Register Description	
6.2		Memory Organization	
	5.2.1	Overview	
	5.2.2	Memory Map	
6.3		Nested Vectored Interrupt Controller (NVIC)	
	5.3.1	Overview	
6	5.3.2	Features	72

	6.3.3	Exception Model and System Interrupt Map	72
	6.3.4	Vector Table	74
	6.3.5	Operation Description	74
	6.3.6	NVIC Control Register Map	76
	6.3.7	NVIC Control Register Description	77
	6.3.8	Interrupt Source Control Registers	89
6	.4	System Manager	97
	6.4.1	Overview	97
	6.4.2	Features	97
	6.4.3	Functional Description	97
	6.4.4	Register Map	.104
	6.4.5	Register Description	.106
6	.5	Clock Controller	.151
	6.5.1	Overview	.151
	6.5.2	Features	.151
	6.5.3	Block Diagram	.152
	6.5.4	Functional Description	.155
	6.5.5	Register Map	.159
	6.5.6	Register Description	.160
6	.6	Flash Memory Controller (FMC)	.183
	6.6.1	Overview	.183
	6.6.2	Features	.183
	6.6.3	Block Diagram	.184
	6.6.4	Functional Description	.184
	6.6.5	Register Map	. 198
	6.6.6	Register Description	.199
6	.7	General Purpose I/O Controller	.207
	6.7.1	Overview	.207
	6.7.2	Features	.207
	6.7.3	Basic Configuration	.208
	6.7.4	Block Diagram	.208
	6.7.5	Functional Description	.209
	6.7.6	Register Map	.210
	6.7.7	Register Description	.215
6	.8	DMA Controller	.232
	6.8.1	Overview	.232

	6.8.2	Features	232
	6.8.3	Block Diagram	234
	6.8.4	Functional Description	236
	6.8.5	Register Map	238
	6.8.6	Register Description	240
6.	9 T	imer Controller	268
	6.9.1	Overview	268
	6.9.2	Features	268
	6.9.3	Block Diagram	269
	6.9.4	Functional Description	271
	6.9.5	Register Map	276
	6.9.6	Register Description	278
6.	10 P	Pulse Width Modulation (PWM)	294
	6.10.1	Overview	294
	6.10.2	Features	295
	6.10.3	Block Diagram	296
	6.10.4	Basic Configuration	297
	6.10.5	Functional Description	297
	6.10.6	Register Map	306
	6.10.7	Register Description	308
6.	11 V	Vatchdog Timer Controller	333
	6.11.1	Overview	333
	6.11.2	Features	333
	6.11.3	Block Diagram	334
	6.11.4	Functional Description	334
	6.11.5	Register Map	336
	6.11.6	Register Description	337
6.	12 W	Vindow Watchdog Timer Controller	341
	6.12.1	Overview	341
	6.12.2	Features	341
	6.12.3	Block Diagram	342
	6.12.4	Functional Description	342
	6.12.5	Register Map	344
	6.12.6	Register Description	345
6.	13 R	RTC	350
	6.13.1	Overview	350

6.13.2	Features	350
6.13.3	Block Diagram	351
6.13.4	Functional Description	352
6.13.5	Register Map	355
6.13.6	Register Description	357
6.14	JART Controller	376
6.14.1	Overview	376
6.14.2	Features	376
6.14.3	Block Diagram	377
6.14.4	Basic Configuration	379
6.14.5	Functional Description	380
6.14.6	Register Map	395
6.14.7	Register Description	396
6.15	Smart Card Host Interface (SC)	421
6.15.1	Overview	421
6.15.2	Features	421
6.15.3	Block Diagram	422
6.15.4	Functional description	423
6.15.5	Register Map	430
6.15.6	Register Description	431
6.16 l	² C	458
6.16.1	Overview	458
6.16.2	Features	458
6.16.3	Basic Configuration	459
6.16.4	Functional Description	459
6.16.5	Register Map	473
6.16.6	Register Description	474
6.17	SPI	485
6.17.1	Overview	485
6.17.2	Features	485
6.17.3	Block Diagram	486
6.17.4	Basic Configuration	487
6.17.5	Functional Description	487
6.17.6	Register Map	502
6.17.7	Register Description	503
6.18 l	_CD Display Driver	
47.00	D F-(F04	D - 4.00

	6.18.1	Overview	517
	6.18.2	Features	517
	6.18.3	Block Diagram	518
	6.18.4	Functional Description	518
	6.18.5	Register Map	523
	6.18.6	Register Description	524
	6.18.7	Application Circuit	531
6	5.19	Analog to Digital Converter (ADC)	536
	6.19.1	Overview	536
	6.19.2	Features	536
	6.19.3	Block Diagram	537
	6.19.4	Functional Description	538
	6.19.5	Register Map	549
	6.19.6	Register Description	550
6	5.20	Analog Comparator Controller (ACMP)	568
	6.20.1	Overview	568
	6.20.2	Features	568
	6.20.3	Block Diagram	569
	6.20.4	Functional Description	569
	6.20.5	Register Map	576
	6.20.6	Register Description	577
7	App	olication Circuit	584
8	Elec	ctrical Characteristics	585
9	PAG	CKAGE DIMENSIONS	586
ç	9.1	100L LQFP (14x14x1.4 mm footprint 2.0 mm)	586
ç	9.2	64R LQFP(10x10x1.4 mm footprint 2.0 mm)	587
ç	9.3	64S LQFP (7x7x1.4 mm footprint 2.0 mm)	588
Ç		48L LQFP (7x7x1.4 mm footprint 2.0 mm)	
ç		33L QFN (5x5x1.4 mm footprint 2.0 mm)	
10		VISION HISTORY	
•		=	

LIST OF FIGURES

Figure 4-1 NuMicro® Nano112 Series Selection Code	27
Figure 4-2 NuMicro® Nano102 LQFP 64-pin Diagram	29
Figure 4-3 NuMicro® Nano102 LQFP 48-pin Diagram	30
Figure 4-4 NuMicro® Nano102 QFN 32-pin Diagram	31
Figure 4-5 NuMicro [®] Nano112 LQFP 100-pin Diagram	32
Figure 4-6 NuMicro [®] Nano112 LQFP 64-pin Diagram	33
Figure 4-7 NuMicro [®] Nano112 LQFP 48-pin Diagram	34
Figure 5-1 NuMicro [®] Nano102 Block Diagram	54
Figure 5-2 NuMicro [®] Nano112 Block Diagram	55
Figure 6-1 Functional Block Diagram	56
Figure 6-2 Power Modes	98
Figure 6-3 Power Architecture	. 101
Figure 6-4 Power Supervisors	. 102
Figure 6-5 Scalable LDO and Performance	. 102
Figure 6-6 Clock Controller Block Diagram (1/3)	. 152
Figure 6-7 Clock Controller Block Diagram (2/3)	. 153
Figure 6-8 Clock Controller Block Diagram (3/3)	. 154
Figure 6-9 Clock Source of Frequency Divider0	. 156
Figure 6-10 Clock Source of Frequency Divider1	. 156
Figure 6-11 Frequency Divider0 Block Diagram	. 156
Figure 6-12 Frequency Divider1 Block Diagram	. 157
Figure 6-13 PLL Block Diagram	. 157
Figure 6-14 HIRC Frequency Change	. 158
Figure 6-15 Flash Memory Controller	. 184
Figure 6-16 Flash Memory Organization	. 185
Figure 6-17 Flash Memory Mapping of CBS in CONFIG0	. 187
Figure 6-18 Executable Range of Code with IAP Function Enabled	. 188
Figure 6-19 16/32KB Flash Memory Structure	. 189
Figure 6-20 CPU Halt during ISP Operation	. 194
Figure 6-21 ISP Operation Flow	. 195
Figure 6-22 GPIO Block Diagram	. 208
Figure 6-23 Push-Pull Output	. 209
Figure 6-24 Open-Drain Output	. 209
Figure 6-25 DMA Controller Block Diagram	. 234
17 2020 Page 7 of FOA	

Figure 6-26 DMA Clock Control Diagram	235
Figure 6-27 CRC Generator Block Diagram	235
Figure 6-28 Timer 0 and Timer 2 Controller Block Diagram	269
Figure 6-29 Timer 1 and Timer 3 Controller Block Diagram	270
Figure 6-30 Timer Clock Controller Diagram	270
Figure 6-31 Continuous Counting Mode	273
Figure 6-32 Inter-Timer Trigger Mode	275
Figure 6-33 PWM Clock for Channel 0, 1	296
Figure 6-34 PWM Generator for Channel 0, 1	296
Figure 6-35 PWM Clock for Channel 2, 3	297
Figure 6-36 PWM Generator for Channel 2, 3	297
Figure 6-37 Legend of Internal Comparator Output of PWM-Timer	298
Figure 6-38 PWM-Timer Operation in Edge-aligned Mode	298
Figure 6-39 PWM-Timer Operation in Center-aligned Mode	299
Figure 6-40 PWM Double Buffer Illustration	300
Figure 6-41 PWM Controller Output Duty Ratio	300
Figure 6-42 Paired PWM Output with Dead Zone Generation Operation	301
Figure 6-43 PWM Capture Operation Timing	302
Figure 6-44 PWM-Timer Interrupt	303
Figure 6-45 PWM-Timer Stop Method 1	304
Figure 6-46 Watchdog Controller Block Diagram	334
Figure 6-47 Watchdog Timer Clock Control Diagram	334
Figure 6-48 Watchdog Timing of Interrupt and Reset Signal	335
Figure 6-49 Window Watchdog Controller Block Diagram	342
Figure 6-50 Watchdog Controller Block Diagram	342
Figure 6-51 RTC Core Block Diagram	351
Figure 6-52 UART Clock Control Diagram	377
Figure 6-53 UART Block Diagram	378
Figure 6-54 UART Auto-Baud Rate Block Diagram	383
Figure 6-55 UART Auto-Flow Control Block Diagram	384
Figure 6-56 UART CTSn Wake-Up Case 1	384
Figure 6-57 UART CTSn Wake-Up Case 2	385
Figure 6-58 UART DATA Wake-UI	385
Figure 6-59 UART Receive DATA FIFO Reach RFITL Wake-Up	385

Figure 6-60 UART RS-485 AAD Mode Address Match Wake-Up	. 386
Figure 6-61 IrDA Block Diagram	. 386
Figure 6-62 IrDA TX/RX Timing Diagram	. 387
Figure 6-63 Structure of RS-485 Frame	. 389
Figure 6-64 Structure of LIN Frame	. 390
Figure 6-65 UART with PWM Modulation Waveform	. 394
Figure 6-66 SC Clock Control Diagram (4-bit Prescale Counter in Clock Controller)	. 422
Figure 6-67 SC Controller Block Diagram	. 423
Figure 6-68 SC Data Character	. 423
Figure 6-69 SC Activation Sequence	. 424
Figure 6-70 SC Warm Reset Sequence	. 425
Figure 6-71 SC Deactivation Sequence	. 426
Figure 6-72 Initial Character TS	. 426
Figure 6-73 SC Error Signal	. 427
Figure 6-74 I ² C Bus Timing	. 459
Figure 6-75 I ² C Protocol	. 460
Figure 6-76 I ² C START and STOP Conditions	. 461
Figure 6-77 Bit Transfer on I ² C Bus	. 461
Figure 6-78 Acknowledge on I ² C Bus	. 462
Figure 6-79 I ² C Time-out Block Diagram	. 464
Figure 6-80 I ² C Data Shifting Direction	. 464
Figure 6-81 Control I ² C Bus according to Current I ² C Status	. 466
Figure 6-82 Master Transmitter Mode Control Flow	. 467
Figure 6-83 Master Receiver Mode Control Flow	. 468
Figure 6-84 Slave Mode Control Flow	. 469
Figure 6-85 GC Mode	. 470
Figure 6-86 EEPROM Random Read	. 471
Figure 6-87 Protocol of EEPROM Random Read	. 472
Figure 6-88 SPI Block Diagram	. 486
Figure 6-89 SPI Master Mode Application Block Diagram	. 487
Figure 6-90 SPI Slave Mode Application Block Diagram	. 488
Figure 6-91 SPI Variable Clock Frequency	. 489
Figure 6-92 SPI 32-bit in One Transaction	. 490
Figure 6-93 SPI Byte Reorder	. 491

Figure 6-94 SPI Byte Suspend Mode	491
Figure 6-95 SPI 2-bit Transfer Mode	492
Figure 6-96 SPI 2-bit Transfer Mode Timing Diagram	493
Figure 6-97 SPI DUAL-I/O output Sequence	494
Figure 6-98 SPI FIFO Mode Control	496
Figure 6-99 SPI Timing in Master Mode	497
Figure 6-100 SPI Timing in Master Mode (Alternate Phase of SPICLK & LSB = 1)	497
Figure 6-101 SPI Timing in Slave Mode (Alternate Phase of SPICLK & LSB = 0)	498
Figure 6-102 SPI Timing in Slave Mode	498
Figure 6-103 SPI Timing in Slave Mode (Alternate Phase of SPICLK)	499
Figure 6-104 LCD Driver Block Diagram	518
Figure 6-105 LCD Memory Map	519
Figure 6-106 COM Signal Waveform	519
Figure 6-107 SEG Signal Waveform	520
Figure 6-108 COM-SEG Signal Waveform by 1/6 Duty with 1/3 Bias	521
Figure 6-109 1/3 Bias (External Resistor Ladder)	531
Figure 6-110 1/2 Bias (External Resistor Ladder)	531
Figure 6-111 1/3 Bias (Resistor Ladder with Capacitor)	532
Figure 6-112 1/2 Bias (Resistor Ladder with Capacitor)	532
Figure 6-113 1/2 Bias (Resistor Ladder with Capacitor)	533
Figure 6-114 1/3 Bias (Charge Pump)	533
Figure 6-115 1/2 Bias (Charge Pump)	534
Figure 6-116 ADC Block Diagram	537
Figure 6-117 ADC Controller Block Diagram	537
Figure 6-118 ADC Clock Control	538
Figure 6-119 ADC Single Mode Conversion Timing Diagram	539
Figure 6-120 ADC Single-cycle Scan on Enabled Channels Timing Diagram	540
Figure 6-121 ADC Continuous Scan on Enabled Channels Timing Diagram	541
Figure 6-122 ADC Conversion Result Monitor Logic Diagram	542
Figure 6-123 ADC Controller Interrupt	542
Figure 6-124 ADC Start Conversion Conditions	543
Figure 6-125 Model of Sampling Network	543
Figure 6-126 Increased Sampling Time Waveform	544
Figure 6-127 Additional Sample and Hold Clock Cycles (n) as a Function of the Signal Source Output Resistance Rin (kΩ)	

Figure 6-128 Additional Sample and Hold Clock Cycles (n) as a Function of the Signal Source Output Resistance Rin (kΩ)	
Figure 6-129 Temperature Sensor Transfer Function	. 547
Figure 6-130 Int_V _{REF} for Measuring AV _{DD} Application Block Diagram	. 548
Figure 6-131 Analog Comparator Block Diagram	. 569
Figure 6-132 Comparator Reference Voltage Block Diagram	. 570
Figure 6-133 Normal Comparator Mode Block Diagram	. 570
Figure 6-134 ACMP Single Slope ADC Mode Reference Circuit	. 571
Figure 6-135 ACMP0 Single Slope ADC Mode Timing	. 572
Figure 6-136 ACMP Sigma-Delta ADC Mode Reference Circuit	. 573
Figure 6-137 ACMP Sigma-Delta ADC Mode Timing	. 574
Figure 6-138 Analog Comparator Interrupt Sources	. 575

LIST OF TABLES

Table 1-1 Connectivity Support Table	14
Table 3-1 List of Abbreviations	26
Table 6-1 Exception Model	73
Table 6-2 System Interrupt Map	74
Table 6-3 Vector Table Format	74
Table 6-4 Clocks in Power Modes	99
Table 6-5 Summary of Power Modes	99
Table 6-6 Condition of Entering Power-down Mode Again Table	100
Table 6-7 Peripheral Clocks	155
Table 6-8 Power Modes and Clocks	162
Table 6-9 Memory Access Map	185
Table 6-10 Boot Selection	186
Table 6-11 Boot Selection and Supports Function	186
Table 6-12 ISP Operation Command	197
Table 6-13 Watchdog Time-out Interval Selection	335
Table 6-14 Window Watchdog Prescaler Value Selection	343
Table 6-15 UART Line Control of Word and Stop Length Setting	380
Table 6-16 UART Line Control of Parity Bit Setting	380
Table 6-17 UART Baud Rate Equation	381
Table 6-18 UART Baud Rate Setting	381
Table 6-19 UART Interrupt Sources and Flags	393
Table 6-20 I ² C Status Code Description	463

GENERAL DESCRIPTION

nuvoton

The Nano112 series ultra-low-power 32-bit microcontroller embedded with ARM® Cortex®-M0 core operates at low voltage range from 1.8V to 3.6V and runs up to 32 MHz frequency with 16/32 Kbytes embedded Flash and 4/8 Kbytes embedded SRAM and 4 Kbytes Flash loader memory for In-System Programming (ISP). The Nano112 series integrates 4 COM x 36 SEG or 6 COM x 34 SEG LCD controller, RTC, 12-bit SAR ADC, comparators and provides high performance connectivity peripheral interfaces such as UART, SPI, I²C, GPIOs, and ISO-7816-3 for Smart card. The Nano112 series supports Brown-out Detector, Power-down mode with RTC turn on, RAM retention is less than 1.5 μ A, Deep Power-down mode with RAM retention is less than 650 nA and fast wake-up via many peripheral interfaces.

The Nano112 series provides low voltage, low operating power consumption, low standby current, high integration peripherals, high-efficiency operation, fast wake-up function and the lowest cost 32-bit microcontrollers. The Nano112 series is suitable for a wide range of battery device applications such as:

- Wearable Device
- **Smart Watch**
- Wireless Gaming Control
- Hand-Held Medical Device
- **RFID Reader**
- Mobile Payment Smart Card Reader
- Security Alarm System
- **Smart Home Appliance**
- Wireless Thermostats
- Wireless Sensors Node Device (WSND)
- Wireless Auto Meter Reading (AMR)
- Portable Wireless Data Collector
- Smart Water, Gas, Heat Meters

The Nano112 series includes two product lines: Nano102 Base line and Nano112 LCD line.

The Nano102 Base line, an ultra-low-power 32-bit microcontroller embedded with ARM[®] Cortex[®]-M0 core, operates at low voltage range from 1.8V to 3.6V and runs up to 32 MHz frequency with 16/32 Kbytes embedded flash and 4/8 Kbytes embedded SRAM and 4 Kbytes Flash loader memory for In-System Programming (ISP). It integrates RTC, 8- channels 12-bit SAR ADC, 2xComparators and provides high performance connectivity peripheral interfaces such as 2 x Low Power UARTs, 2 x SPIs. 2 x I²Cs, GPIOs, and 2 x ISO-7816-3 for Smart card. The Nano102 Base line supports Brown-out Detector, Power-down mode with RAM retention and fast wake-up via many peripheral interfaces.

The Nano112 LCD line, an ultra-low-power 32-bit microcontroller embedded with ARM® Cortex®-M0 core, operates at low voltage range from 1.8V to 3.6V and runs up to 32 MHz frequency with 16/32 Kbytes embedded flash and 4/8 Kbytes embedded SRAM and 4 Kbytes Flash loader memory for In-System Programming (ISP). It integrates 4 COM x 36 SEG or 6 COM x 34 SEG LCD controller, RTC, 8channels 12-bit SAR ADC, 2 x Comparators and provides high performance connectivity peripheral interfaces such as 2 x Low Power UARTs, 2 x SPIs, 2 x I²Cs, GPIOs, and 2 x ISO-7816-3 for Smart card. The Nano112 LCD line supports Brown-out Detector, Power-down mode with RAM retention and fast wake-up via many peripheral interfaces.

Product Line	UART	SPI	I ² C	ADC	ACMP	RTC	sc	Timer	LCD
Nano102	•	•	•	•	•	•	•	•	
Nano112	•	•	•	•	•	•	•	•	•

Table 1-1 Connectivity Support Table

2 FEATURES

The equipped features are dependent on the product line and their sub products.

2.1 Nano102/Nano112 Features

- Low Supply Voltage Range: 1.8 V to 3.6 V
- Operating Temperature: -40°C~85°C
- Ultra-Low Power Consumption
 - Normal mode: 142 μA/MHz
 - Power-down mode with RTC on and RAM retention: 1.5 μA
 - Power-down mode and RAM retention: 650 nA
- Three power modes
 - Normal mode
 - ◆ Idle mode
 - Power-down mode
- Wake-up sources
 - ♦ RTC, WDT, I2C, Timer, UART, SPI, BOD, GPIO
- Fast wake-up from Power-down mode: less than 6 μs
- Brown-out
 - ♦ Built-in 2.5V/2.0V/1.7V BOD for wide operating voltage range operation
- One built-in temperature sensor with 1[°]C resolution
- Core
 - ◆ ARM[®] Cortex[®]-M0 core running up to 32 MHz
 - One 24-bit system timer
 - Supports Low Power Sleep mode
 - Single-cycle 32-bit hardware multiplier
 - ◆ NVIC for the 32 interrupt inputs, each with 4-levels of priority
 - ◆ Serial Wire Debug supports with 2 watchpoints/4 breakpoints
- Flash EPROM Memory
 - ♦ 16/32 Kbytes application program memory (APROM)
 - ◆ 4 KB in system programming (ISP) loader program memory (LDROM)
 - Programmable data flash start address and memory size with 512 bytes page erase unit
 - ♦ In System Program (ISP)/In Application Program (IAP) to update on-chip Flash EPROM
- SRAM Memory
 - 4/8 Kbytes embedded SRAM
 - Supports DMA mode
- DMA: Supports Five channels including four PDMA channels and one CRC channel
 - ◆ PDMA
 - Three modes: peripheral-to-memory, memory-to-peripheral, and memory-to-memory

transfer

- Source address and destination address must be word alignment in all modes.
- Memory-to-memory mode: transfer length must be word alignment.
- Peripheral-to-memory and memory-to-peripheral mode: transfer length could be word/half-word/byte alignment.
- Peripheral-to-memory and memory-to-peripheral mode: transfer data width could be word/half-word/byte alignment
- Supports source and destination address direction: increment, fixed, and wrap around
- CRC
 - Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32
 - $igoplus CRC-CCITT: X^{16} + X^{12} + X^5 + 1$
 - lacktriangle CRC-8: $X^8 + X^2 + X + 1$
 - \bullet CRC-16: $X^{16} + X^{15} + X^2 + 1$
 - $\bullet \quad \text{CRC-32: } X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$

Clock Control

- Build-in 12/16 MHz OSC (HIRC) has 2 % deviation within all temperature range. Deviation could be reduced to 1% if turning on auto-trim function. Supports one PLL, up to 32 MHz, for high performance system operation
- ◆ External 4~24 MHz(HXT) crystal input for precise timing operation
- ◆ Low power 10 kHz OSC(LIRC) for watchdog and low power system operation
- ◆ External 32.768 kHz(LXT) crystal input for RTC and low power system operation

GPIO

- Three I/O modes:
 - Push-Pull output
 - Open-Drain output
 - Input only with high impendence
- ◆ All inputs with Schmitt trigger
- ◆ I/O pin configured as interrupt source with edge/level setting
- Supports input 5V tolerance, except
 - PA.0 ~ PA.7 (sharing pin with ADC),
 - PA.12~ PA.13 (sharing pin with comparator),
 - PF.0 ~ PF.1 (sharing pin with LXT).

Timer

- Supports 4 sets of 32-bit timers, each timer with 24-bit up-counting timer and one 8-bit prescale counter
- ◆ Each timer could have independent clock source selection
- ◆ Supports one-shot, periodic, output toggle and continuous operation modes
- Internal trigger event to ADC and PDMA

- Supports PDMA mode
- Wake system up from Power-down mode
- Watchdog Timer
 - ◆ Clock Source from LIRC (Internal 10 kHz Low Speed Oscillator Clock)
 - ♦ Selectable time-out period from 1.6 ms ~ 26 sec (depending on clock source)
 - ◆ Interrupt or reset selectable when watchdog time-out
 - ♦ Wakes system up from Power-down mode
- Window Watchdog Timer(WWDT)
 - ◆ 6-bit down counter and 6-bit compare value to make the window period flexible
 - Selectable WWDT clock pre-scale counter to make WWDT time-out interval variable.
- RTC
 - Supports software compensation by setting frequency compensate register (FCR)
 - Supports RTC counter (second, minute, hour) and calendar counter (day, month, year)
 - Supports Alarm registers (second, minute, hour, day, month, year)
 - ♦ Selectable 12-hour or 24-hour mode
 - Automatic leap year recognition
 - Supports periodic time tick interrupt with 8 periodic options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second
 - ♦ Wake system up from Power-down mode
 - Supports 80 bytes spare registers and a snoop pin to clear the content of these spare registers
 - Supports 1, 1/2, 1/4, 1/8, 1/16 Hz clock output
- PWM/Capture
 - Supports 1 PWM module with two 16-bit PWM generators
 - Provides four PWM outputs or two complementary paired PWM outputs
 - ◆ Each PWM generator equipped with one clock divider, one 8-bit prescaler, two clock selectors, and one Dead-zone generator for complementary paired PWM
 - ♦ (Shared with PWM timers) with four 16-bit digital capture timers provides four rising/falling/both capture inputs.
 - Supports One-shot and Continuous mode
 - Supports Capture interrupt
- UART
 - Up to 1 Mbit/s baud rate and support 9600 baud rate at 32.768 kHz
 - Up to two 16-byte FIFO UART controllers
 - ◆ UART ports with flow control (TX, RX, CTSn and RTSn)
 - ◆ Supports IrDA (SIR) function
 - Supports LIN function
 - Supports RS-485 9 bit mode and direction control.
 - Programmable baud rate generator

- Supports PDMA mode
- Wakes system (CTSn, received data or RS-485 address matched) up from Power-down mode

SPI

nuvoTon

- Up to two sets of SPI controllers
- Supports Master (max. 32 MHz) or Slave (max. 16 MHz) mode operation
- Supports 1 bit and 2 bit transfer mode
- Support Dual IO transfer mode
- Configurable bit length of a transaction from 8 to 32-bit
- Supports MSB first or LSB first transfer sequence
- Two slave select lines supported in Master mode
- Configurable byte or word suspend mode
- Supports byte re-ordering function
- Supports variable serial clock in Master mode
- Provide separate 8-level depth transmit and receive FIFO buffer
- Supports wake-up function(SPI clock toggle in Power-down mode)
- Supports PDMA transfer
- Supports 3-wires, no slave select signal, bi-direction interface

I²C

- Up to two sets of I²C devices
- Master/Slave up to 1 Mbit/s
- Bi-directional data transfer between masters and slaves
- Multi-master bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allows devices with different bit rates to communicate via one serial bus
- Serial clock synchronization used as a handshake mechanism to suspend and resume serial transfer
- Built-in 14-bit time-out counter requesting the I²C interrupt if the I²C bus hangs up and timerout counter overflows
- Programmable clocks allowing for versatile rate control
- Supports 7-bit addressing mode
- Supports multiple address recognition (four slave addresses with mask option)
- Wake system up(address match) from Power-down mode

ADC

- 12-bit SAR ADC up to 1.6MSPS conversion rate
- Up to 12 channels: 8 external channel(PA.0 ~ PA.7) and 4 internal channels.
- Four internal channels: internal reference voltage (Int_V_{REF}), Temperature sensor, AV_{DD}, and

AV_{SS}.

nuvoton

- Supports three reference voltage sources: V_{REF} pin, internal reference voltage (Int_V_{REF}), and AV_{DD}.
- Supports Single Scan, Single Cycle Scan, and Continuous Scan mode
- Each channel with individual result register
- ◆ Threshold voltage detection (comparator function)
- Conversion started by software programming or external input
- Supports PDMA mode
- Supports up to four timer time-out events (TMR0, TMR1, TMR2 and TMR3) to enable ADC
- Smart Card (SC)
 - ◆ Compliant to ISO-7816-3 T=0, T=1
 - ◆ Supports up to two ISO-7816-3 ports
 - Separates receive/transmit 4 bytes entry FIFO for data payloads
 - Programmable transmission clock frequency
 - Programmable receiver buffer trigger level
 - ◆ Programmable guard time selection (11 ETU ~ 267 ETU)
 - A 24-bit and two 8-bit time-out counters for Answer to Request (ATR) and waiting times processing
 - Supports auto inverse convention function
 - ◆ Supports transmitter and receiver error retry and error limit function
 - Supports hardware activation sequence process
 - Supports hardware warm reset sequence process
 - Supports hardware deactivation sequence process
 - Supports hardware auto deactivation sequence when detect the card is removal
 - Supports UART mode (full-duplex)
- ACMP
 - Supports up to 2 analog comparators
 - ◆ Analog input voltage range: 0 ~ AV_{DD}
 - Supports Hysteresis function
 - Two analog comparators with optional internal reference voltage input at negative end
- 96-bit unique ID
- 128-bit unique customer ID
- Packages:
 - All Green package (RoHS)
 - ◆ LQFP 64-pin(7x7) / 48-pin(7x7)/ QFN33-pin(5x5)

2.2 Nano112 Features - LCD Line

- Low Supply Voltage Range: 1.8 V to 3.6 V
- Ultra-Low Power Consumption
 - Operation mode: 150 μA/MHz
 - Power-down mode: 1.5 μA (RTC on, RAM retention)
 - ◆ Deep Power-down mode: 650 nA (RAM retention)
- Fast Wake-Up From Standby Mode: Less than 6 μs
- Core
 - ◆ ARM® Cortex®-M0 core running up to 32 MHz
 - ♦ One 24-bit system timer
 - Supports Low Power Sleep mode
 - ◆ Single-cycle 32-bit hardware multiplier
 - ◆ NVIC for the 32 interrupt inputs, each with 4-levels of priority
 - ◆ Serial Wire Debug supports with 2 watchpoints/4 breakpoints
- Flash EPROM Memory
 - Runs up to 32 MHz with zero wait state for discontinuous address read access.
 - 16/32 Kbytes application program memory (APROM)
 - ♦ 4 Kbytes In System Programming (ISP) loader program memory (LDROM)
 - Programmable data flash start address and memory size with 512 bytes page erase unit
 - In System Program (ISP)/In Application Program (IAP) to update on chip Flash EPROM
- SRAM Memory
 - 4/8 Kbytes embedded SRAM
 - Supports DMA mode
- DMA: Supports 5 channels: 4 PDMA channels, and one CRC channel
 - ◆ PDMA
 - Peripheral-to-memory, memory-to-peripheral, and memory-to-memory transfer
 - Supports word boundary address
 - Supports word alignment transfer length in memory-to-memory mode
 - Supports word/half-word/byte alignment transfer length in peripheral-to-memory and memory-to-peripheral mode
 - Supports word/half-word/byte transfer data width from/to peripheral
 - Supports address direction: increment, fixed, and wrap around
 - ◆ CRC
 - Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32
 - igspace CRC-CCITT: $X^{16} + X^{12} + X^5 + 1$
 - \bullet CRC-8: $X^8 + X^2 + X + 1$
 - lacktriangle CRC-16: $X^{16} + X^{15} + X^2 + 1$

- $\bullet \quad \text{CRC-32: } X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^5 + X^4 + X^2 + X + 1$
- Clock Control
 - Flexible selection for different applications
 - ◆ Built-in 12/16 MHz OSC, can be trimmed to 1 % deviation within all temperature range when turning on auto-trim function (system must have external 32.768 kHz crystal input) otherwise 12/16 MHz OSC has 2 % deviation within all temperature range.
 - ◆ Low power 10 kHz OSC for watchdog and low power system operation
 - ◆ Supports one PLL, up to 32 MHz, for high performance system operation
 - ♦ External 4~24 MHz crystal input for precise timing operation
 - ♦ External 32.768 kHz crystal input for RTC function and low power system operation
- GPIO
 - Three I/O modes:
 - Push-Pull output
 - Open-Drain output
 - Input only with high impendence
 - ◆ All inputs with Schmitt trigger
 - ♦ I/O pin configured as interrupt source with edge/level setting
 - Supports High Driver and High Sink I/O mode
 - ◆ Supports input 5V tolerance, except PA.0 ~ PA.7, PA.12, PA.13, P.0(X32I), PF.1(X32O)
- Timer
 - Supports 4 sets of 32-bit timers, each with 24-bit up-timer and one 8-bit pre-scale counter
 - Independent Clock Source for each timer
 - Provides one-shot, periodic, output toggle and continuous operation modes
 - Internal trigger event to ADC and PDMA
 - Supports PDMA mode
 - Wake system up from Power-down mode
- Watchdog Timer
 - Clock Source from LIRC (Internal 10 kHz Low Speed Oscillator Clock)
 - ♦ Selectable time-out period from 1.6 ms ~ 26 sec (depending on clock source)
 - Interrupt or reset selectable when watchdog time-out
 - Wake system up from Power-down mode
- Window Watchdog Timer(WWDT)
 - ◆ 6-bit down counter and 6-bit compare value to make the window period flexible
 - Selectable WWDT clock pre-scale counter to make WWDT time-out interval variable.
- RTC
 - Supports software compensation by setting frequency compensate register (FCR)
 - Supports RTC counter (second, minute, hour) and calendar counter (day, month, year)

- Supports Alarm registers (second, minute, hour, day, month, year)
- Selectable 12-hour or 24-hour mode
- Automatic leap year recognition
- Supports periodic time tick interrupt with 8 periodic options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second
- Wake system up from Power-down mode
- Supports 80 bytes spare registers and a snoop pin to clear the content of these spare registers
- Supports 1, 1/2, 1/4, 1/8, 1/16 Hz clock output

PWM/Capture

- ◆ Supports 1 PWM module with two 16-bit PWM generators
- Provides four PWM outputs or two complementary paired PWM outputs
- ◆ Each PWM generator equipped with one clock divider, one 8-bit prescaler, two clock selectors, and one Dead-zone generator for complementary paired PWM
- (Shared with PWM timers) with four 16-bit digital capture timers provides four rising/ falling/both capture inputs.
- Supports Capture interrupt

UART

- ◆ Up to 1 Mbit/s baud rate and support 9600 baud rate @ 32kHz, low power mode
- Up to two 16-byte FIFO UART controllers
- UART ports with flow control (TX, RX, CTSn and RTSn)
- Supports IrDA (SIR) function
- Supports LIN function
- ◆ Supports RS-485 9 bit mode and direction control (Low Density Only)
- Programmable baud rate generator
- Supports PDMA mode
- Wake system up (CTS, received data or RS-485 address matched) from Power-down mode

SPI

- Up to two sets of SPI controllers
- Master up to 32 MHz, and Slave up to 16 MHz
- ◆ Supports SPI/MICROWIRE Master/Slave mode
- Full duplex synchronous serial data transfer
- Variable length of transfer data from 4 to 32 bits
- MSB or LSB first data transfer
- RX and TX on both rising or falling edge of serial clock independently
- ◆ Two slave/device select lines when SPI controller is as the master, and 1 slave/device select line when SPI controller is as the slave
- Supports byte suspend mode in 32-bit transmission
- ♦ Supports two channel PDMA requests, one for transmit and another for receive

- Supports three wire mode, no slave select signal, bi-direction interface
- Wake system up (SPI clock toggle) from Power-down mode

I²C

nuvoton

- Up to two sets of I²C devices
- Master/Slave up to 1Mbit/s
- Bidirectional data transfer between masters and slaves
- Multi-master bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allowing devices with different bit rates to communicate via one serial bus
- Serial clock synchronization used as a handshake mechanism to suspend and resume serial transfer
- Built-in 14-bit time-out counter requesting the I²C interrupt if the I²C bus hangs up and timerout counter overflows
- Programmable clocks allow versatile rate control
- Supports 7-bit addressing mode
- Supports multiple address recognition (four slave address with mask option)
- Wake system up (address match) from Power-down mode

ADC

- 12-bit SAR ADC up to 1Msps conversion rate
- Up to 7-ch single-ended input from external pin (PA.0 ~ PA.6)
- Four internal channels from internal reference voltage (Int_V_{REF}), Temperature sensor, AV_{DD}, and AV_{SS}
- Supports three reference voltage sources from V_{REF} pin, internal reference voltage (Int_V_{REF}),
- Single scan/single cycle scan/continuous scan
- Each channel with individual result register
- Only scan on enabled channels
- Threshold voltage detection (comparator function)
- Conversion start by software programming or external input
- Supports PDMA mode
- Supports up to four timer time-out events (TMR0, TMR1, TMR2, and TMR3) to enable ADC
- Smart Card (SC)
 - Compliant to ISO-7816-3 T=0, T=1
 - Supports up to two ISO-7816-3 ports
 - Separates receive / transmit 4 bytes entry FIFO for data payloads
 - Programmable transmission clock frequency
 - Programmable receiver buffer trigger level

- ◆ Programmable guard time selection (11 ETU ~ 267 ETU)
- ◆ A 24-bit and two 8-bit time-out counter for Answer to Request (ATR) and waiting times processing
- Supports auto inverse convention function
- ◆ Supports transmitter and receiver error retry and error limit function
- Supports hardware activation sequence process
- ◆ Supports hardware warm reset sequence process
- Supports hardware deactivation sequence process
- Supports hardware auto deactivation sequence when detect the card is removal
- ◆ Supports UART mode (full-duplex)
- ACMP
 - Supports up to 2 analog comparators
 - ♦ Analog input voltage range: 0 ~ AV_{DD}
 - Supports Hysteresis function
 - Two analog comparators with optional internal reference voltage input at negative end
- Wake-up source
 - ◆ Support RTC, WDT, I²C, Timer, UART, SPI, BOD, GPIO
- LCD
 - ◆ LCD driver for up to 4 COM x 36 SEG or 6 COM x 34 SEG
 - Supports Static, 1/2 bias and 1/3 bias voltage
 - ♦ Six display modes; Static, 1/2 duty, 1/3 duty, 1/4 duty, 1/5 duty and 1/6 duty.
 - Selectable LCD frequency by frequency divider
 - Configurable frame frequency
 - Internal Charge pump, adjustable contrast adjustment
 - Configurable Charge pump frequency
 - Blinking capability
 - Supports R-type/C-type/External C-type method
 - ◆ Configurable internal R-ladder resistor value (200K/300K/400K)
 - LCD frame interrupt
- One built-in temperature sensor with 1[°]C resolution
- Brown-out
 - ◆ Built-in 2.5V/2.0V/1.7V BOD for wide operating voltage range operation
- 96-bit unique ID
- 128-bit unique customer ID
- Operating Temperature: -40°C~85°C
- Packages:
 - All Green package (RoHS)
 - ◆ LQFP 100-pin(14x14) / 64-pin(10x10) / 64-pin(7x7) / 48-pin(7x7)

3 ABBREVIATIONS

Acronym	Description							
ACMP								
	Analog Comparator Controller							
ADC	Analog-to-Digital Converter							
AES	Advanced Encryption Standard							
APB	Advanced Peripheral Bus							
AHB	Advanced High-Performance Bus							
BOD	Brown-out Detection							
CAN	Controller Area Network							
DAP	Debug Access Port							
DES	Data Encryption Standard							
EBI	External Bus Interface							
EPWM	Enhanced Pulse Width Modulation							
FIFO	First In, First Out							
FMC	Flash Memory Controller							
FPU	Floating-point Unit							
GPIO	General-Purpose Input/Output							
HCLK	The Clock of Advanced High-Performance Bus							
HIRC	12/16 MHz Internal High Speed RC Oscillator							
HXT	4~24 MHz External High Speed Crystal Oscillator							
IAP	In Application Programming							
ICP	In Circuit Programming							
ISP	In System Programming							
LDO	Low Dropout Regulator							
LIN	Local Interconnect Network							
LIRC	10 kHz internal low speed RC oscillator (LIRC)							
MPU	Memory Protection Unit							
NTC	Negative Temperature Coefficient							
NVIC	Nested Vectored Interrupt Controller							
PCLK	The Clock of Advanced Peripheral Bus							
PDMA	Peripheral Direct Memory Access							
PLL	Phase-Locked Loop							
PTC	Positive Temperature Coefficient							
PT1000	Thermal Resistance							
PWM	Pulse Width Modulation							
L								

QEI	Quadrature Encoder Interface
SDIO	Secure Digital Input/Output
SPI	Serial Peripheral Interface
SPS	Samples per Second
TDES	Triple Data Encryption Standard
TMR	Timer Controller
UART	Universal Asynchronous Receiver/Transmitter
UCID	Unique Customer ID
USB	Universal Serial Bus
WDT	Watchdog Timer
WWDT	Window Watchdog Timer

Table 3-1 List of Abbreviations

PARTS INFORMATION LIST AND PIN CONFIGURATION

4.1 NuMicro® Nano102/112 Series Selection Code

nuvoTon

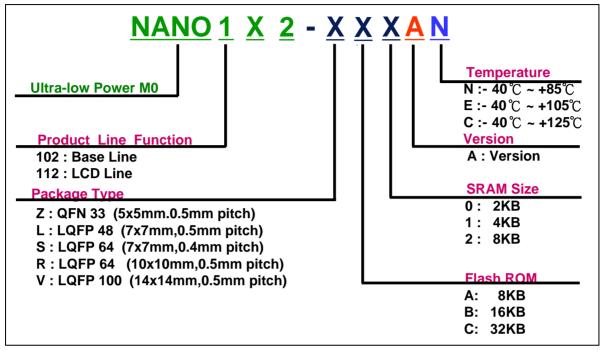


Figure 4-1 NuMicro® Nano112 Series Selection Code

4.2 NuMicro® Nano112 Products Selection Guide

4.2.1 NuMicro® Nano102 Base Line Selection Guide

<u>.</u>	<u> </u>		(KB)	(KB)		it)	Con	nect	ivity	ır	it)	t)				8	Р	
Part Number	APROM (KB)	RAM (KB)	Data Flash (ŀ	ISP ROM (K	0/1	Timer (32-Bit)	UART	IdS	၁ၟ၊	Comparator	PWM (16-Bit)	ADC (12-Bit)	RTC	PDMA	ССБ	ISO-7816-3	ISP/ICP/IAP	Package
NANO102ZB1AN	16	4	Configurable	4	27	4	3	2	2	2	4	2	√	4	1	1	√	QFN33
NANO102ZC2AN	32	8	Configurable	4	27	4	3	2	2	2	4	2	√	4	-	1	V	QFN33
NANO102LB1AN	16	4	Configurable	4	40	4	4	2	2	2	4	7	√	4	1	2	√	LQFP48
NANO102LC2AN	32	8	Configurable	4	40	4	4	2	2	2	4	7	√	4	-	2	√	LQFP48
NANO102SC2AN	32	8	Configurable	4	58	4	4	2	2	2	4	7	V	4	-	2	V	LQFP64*

QFN33: 5x5 mm LQFP48:7x7 mm LQFP64*: 7x7 mm

4.2.2 NuMicro® Nano112 LCD Line Selection Guide

eľ	B)		KB)	(KB)		it)	Con	nect	ivity		it)	it)			8	L		
Part Number	APROM (KB)	RAM (KB)	Data Flash (KB)	ISP ROM (M	O/I	Timer (32-Bit)	UART	SPI	1,5	Comparator	PWM (16-Bit)	ADC (12-Bit)	RTC	PDMA	ISO-7816-3	AAI/GDI/ASI	רכם	Package
NANO112LB1AN	16	4	Configurable	4	40	4	4	2	2	2	4	7	√	4	2	√	4x20, 6x18	LQFP48
NANO112LC2AN	32	8	Configurable	4	40	4	4	2	2	2	4	7	V	4	2	V	4x20, 6x18	LQFP48
NANO112SB1AN	16	4	Configurable	4	58	4	4	2	2	2	4	7	V	4	2	V	4x32, 6x30	LQFP64
NANO112SC2AN	32	8	Configurable	4	58	4	4	2	2	2	4	7	V	4	2	V	4x32, 6x30	LQFP64
NANO112RB1AN	16	4	Configurable	4	58	4	4	2	2	2	4	7	V	4	2	V	4x32, 6x30	LQFP64*
NANO112RC2AN	32	8	Configurable	4	58	4	4	2	2	2	4	7	V	4	2	V	4x32, 6x30	LQFP64*
NANO112VC2AN	32	8	Configurable	4	80	4	4	2	2	2	4	8	√	4	2	V	4x36, 6x34	LQFP100

LQFP48: 7x7 mm LQFP64: 7x7 mm LQFP64*: 10x10 mm

Pin Configuration 4.3

nuvoTon

NuMicro® Nano102 Pin Diagrams 4.3.1

4.3.1.1 NuMicro® Nano102 LQFP 64-pin

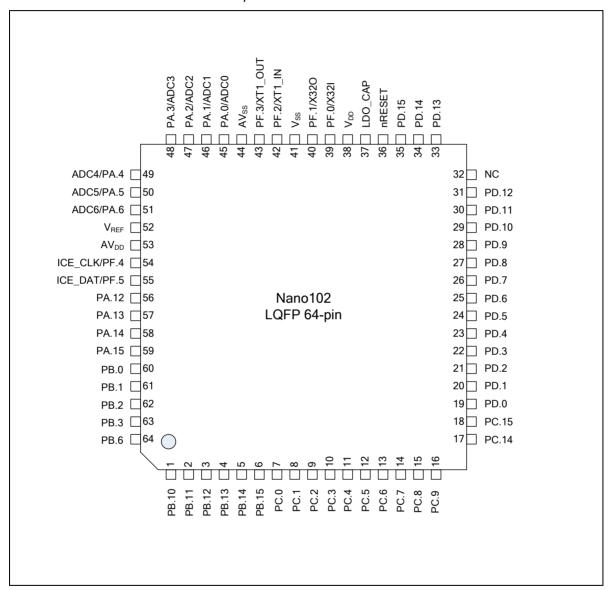


Figure 4- 2 NuMicro® Nano102 LQFP 64-pin Diagram

NuMicro® Nano102 LQFP 48-pin

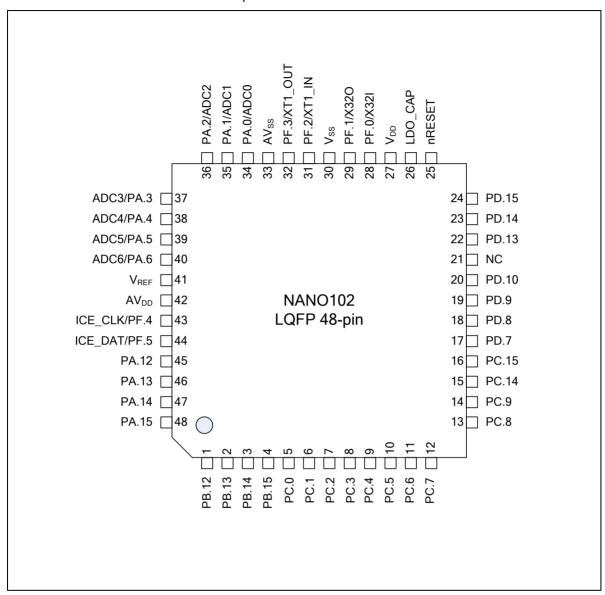


Figure 4-3 NuMicro® Nano102 LQFP 48-pin Diagram

4.3.1.3 NuMicro® Nano102 QFN 33-pin

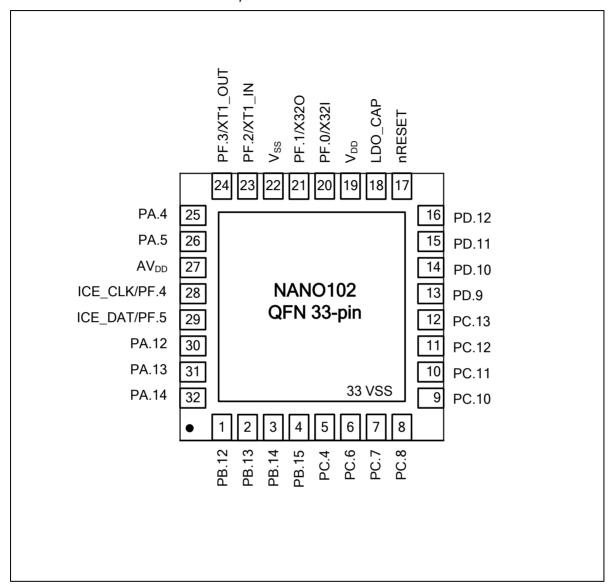


Figure 4-4 NuMicro® Nano102 QFN 32-pin Diagram

NuMicro® Nano112 Pin Diagrams 4.3.2

nuvoTon

NuMicro® Nano112 LQFP 100-pin 4.3.2.1

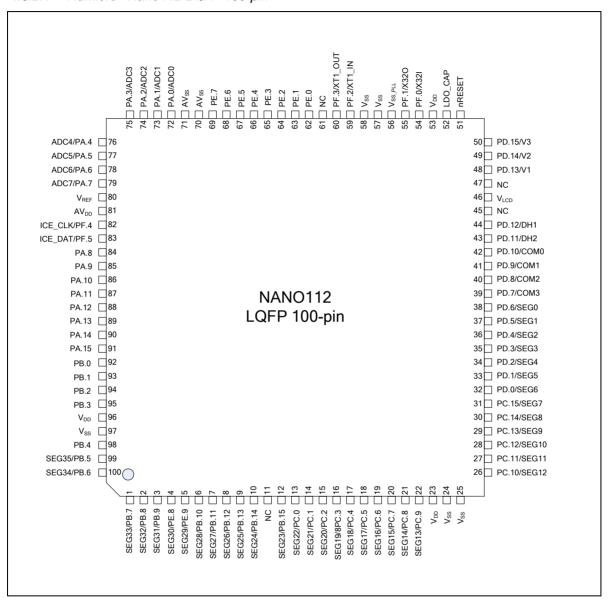


Figure 4-5 NuMicro® Nano112 LQFP 100-pin Diagram

NuMicro® Nano112 LQFP 64-pin 4.3.2.2

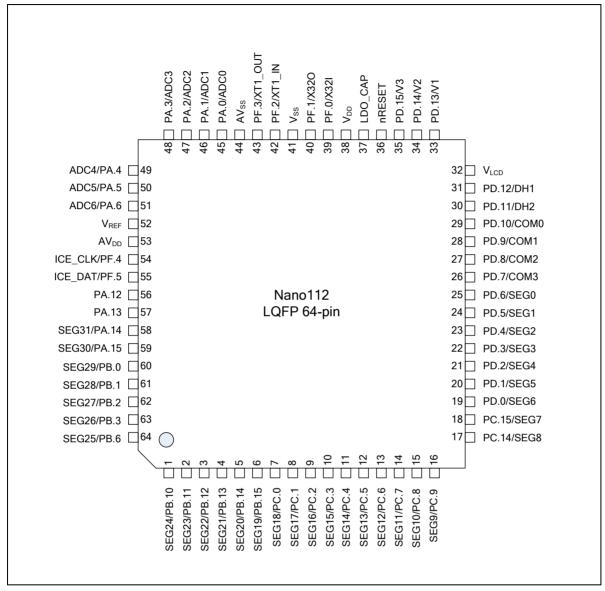


Figure 4-6 NuMicro® Nano112 LQFP 64-pin Diagram

NuMicro® Nano112 LQFP 48-pin 4.3.2.3

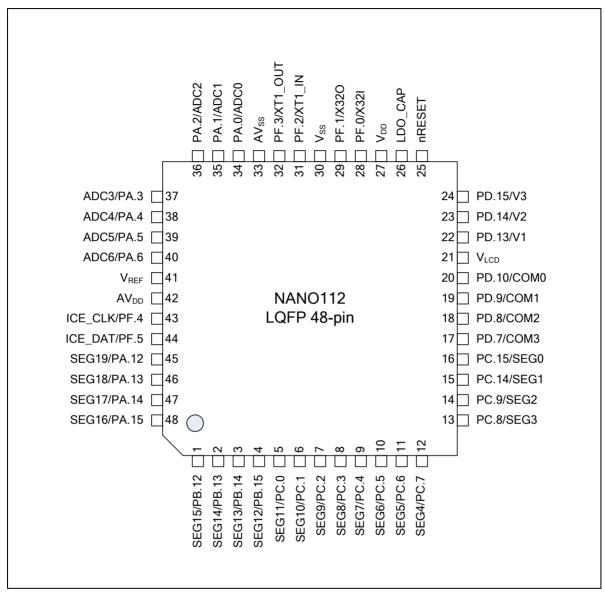


Figure 4-7 NuMicro® Nano112 LQFP 48-pin Diagram

4.4 Pin Description

nuvoTon

4.4.1 NuMicro® Nano102 Pin Description

Pin No.									
64-pin	48-pin	32-pin	Pin Name	Pin Type	Description				
			PB.10	I/O	General purpose digital I/O pin				
1			UART1_RXD	I	UART1 Data receiver input pin				
			SPI0_MOSI1	I/O	SPI0 2 nd MOSI (Master Out, Slave In) pin				
			PB.11	I/O	General purpose digital I/O pin				
			UART1_RTSn	0	UART1 Request to Send output pin				
2			SPI0_MISO1	I/O	SPI0 2 rd MISO (Master In, Slave Out) pin				
			TM1	I/O	Timer1 external counter input or Timer1 toggle out				
			PB.12	I/O	General purpose digital I/O pin				
			UART0_RTSn	0	UART0 Request to Send output pin				
3	1	1	SPI0_MOSI0	I/O	SPI0 1st MOSI (Master Out, Slave In) pin				
			тмо	I/O	Timer0 external counter input or Timer0 toggle out.				
			FCLK0	0	Frequency Divider0 output pin				
			PB.13	I/O	General purpose digital I/O pin				
4	2	2	UART0_RXD	ı	UART0 Data receiver input pin				
			SPI0_MISO0	I/O	SPI0 1st MISO (Master In, Slave Out) pin				
			PB.14	I/O	General purpose digital I/O pin				
5	3	3	UART0_TXD	0	UART0 Data transmitter output pin (This pin could be modulated with PWM0 output.)				
			SPI0_CLK	I/O	SPI0 serial clock pin				
			PB.15	I/O	General purpose digital I/O pin				
6	4	4	UART0_CTSn	ı	UART0 Clear to Send input pin				
			SPI0_SS0	I/O	SPI0 1 st slave select pin				
			PC.0	I/O	General purpose digital I/O pin				
7	5		SPI0_SS1	I/O	SPI0 2 nd slave select pin				
			I2C0_SCL	I/O	I ² C0 clock pin				
			PWM0_CH0	I/O	PWM0 Channel0 output				
			PC.1	I/O	General purpose digital I/O pin				
8	6		I2C0_SDA	I/O	I ² C0 data I/O pin				
			PWM0_CH1	I/O	PWM0 Channel1 output				
9	7		PC.2	I/O	General purpose digital I/O pin				

Pin No.			Din Name	Die T	Bereitstein				
64-pin 48-pin 32-pin		Pin Name	Pin Type	Description					
			I2C1_SCL	0	l ² C1 clock pin				
			PWM0_CH2	I/O	PWM0 Channel2 output				
			PC.3	I/O	General purpose digital I/O pin				
10	8		I2C1_SDA	I/O	I ² C1 data I/O pin				
			PWM0_CH3	I/O	PWM0 Channel3 output				
			PC.4	I/O	General purpose digital I/O pin				
			UART1_CTSn	I	UART1 Clear to Send input pin				
11	9	5	SC0_CLK	0	SmartCard0 clock pin (SC0_UART_TXD)				
			INT0	I	External interrupt0 input pin				
40	40		PC.5	I/O	General purpose digital I/O pin				
12	10		SC0_CD	I	SmartCard0 card detect pin				
			PC.6	I/O	General purpose digital I/O pin				
13	11	6	UART1_RTSn	o	UART1 Request to Send output pin				
			SC0_DAT	I/O	SmartCard0 DATA pin (SC0_UART_RXD)				
			PC.7	I/O	General purpose digital I/O pin				
14	12	7	UART1_RXD	I	UART1 Data receiver input pin				
			SC0_PWR	0	SmartCard0 Power pin				
			PC.8	I/O	General purpose digital I/O pin				
15	13	8	UART1_TXD	o	UART1 Data transmitter output pin (This pin could be modulated with PWM0 output.)				
			SC0_RST	0	SmartCard0 RST pin				
16	14		PC.9	I/O	General purpose digital I/O pin				
			PC.10	I/O	General purpose digital I/O pin				
		9	I2C1_SCL	I/O	I ² C1 clock pin				
			SC1_CD	I	SmartCard1 card detect				
			PC.11	I/O	General purpose digital I/O pin				
		10	I2C1_SDA	I/O	I ² C 1 data I/O pin				
			SC1_PWR	o	SmartCard1 PWR pin				
			PC.12	I/O	General purpose digital I/O pin				
		11	SC1_CLK	0	SmartCard1 clock pin (SC1_UART_TXD)				
		40	PC.13	I/O	General purpose digital I/O pin				
		12	SC1_DAT	I/O	SmartCard1 DATA pin (SC1_UART_RXD)				
47	45		PC.14	I/O	General purpose digital I/O pin				
17	15		SC1_CD	1	SmartCard1 card detect				

Pin No.			a	D: -	D 1.4		
64-pin	48-pin	32-pin	Pin Name	Pin Type	Description		
4.0	40		PC.15	I/O	General purpose digital I/O pin		
18	16		SC1_PWR	0	SmartCard1 PWR pin		
19			PD.0	I/O	General purpose digital I/O pin		
20			PD.1	I/O	General purpose digital I/O pin		
21			PD.2	I/O	General purpose digital I/O pin		
22			PD.3	I/O	General purpose digital I/O pin		
00			PD.4	I/O	General purpose digital I/O pin		
23			SC1_RST	0	SmartCard1 RST pin		
24			PD.5	I/O	General purpose digital I/O pin		
25			PD.6	I/O	General purpose digital I/O pin		
00	4-7		PD.7	I/O	General purpose digital I/O pin		
26	17		SC1_CLK	0	SmartCard1 clock pin (SC1_UART_TXD)		
0.7	40		PD.8	I/O	General purpose digital I/O pin		
27	18		SC1_DAT	1/0	SmartCard1 DATA pin (SC1_UART_RXD)		
			PD.9	I/O	General purpose digital I/O pin		
28	19	13	SC1_RST	0	SmartCard1 RST pin		
			PWM0_CH3	I/O	PWM0 Channel3 output		
	20				PD.10	I/O	General purpose digital I/O pin
29		14	PWM0_CH2	I/O	PWM0 Channel2 output		
			TC1	l l	Timer1 capture input		
			PD.11	I/O	General purpose digital I/O pin		
30		15	PWM0_CH1	I/O	PWM0 Channel1 output		
			TC0	I	Timer0 capture input		
			PD.12	I/O	General purpose digital I/O pin		
			CLK_Hz	0	1, 1/2, 1/4, 1/8, 1/16 Hz clock output		
31		16	PWM0_CH0	I/O	PWM0 Channel0 output		
01			TM1	1/0	Timer1 external counter input or Timer1 toggle out		
			FCLK0	0	Frequency Divider0 output pin		
32	21				NC		
22	20		PD.13	I/O	General purpose digital I/O pin		
33	22		INT1	ı	External interrupt 1 input pin		
34	23		PD.14	I/O	General purpose digital I/O pin		
35	24		PD.15	I/O	General purpose digital I/O pin		

Pin No.			Dia Nama	Dia Tana	Description			
64-pin	48-pin	32-pin	Pin Name	Pin Type	Description			
36	25	17	nRESET	ı	External reset input: low active. Setting this pin low will reset chip to initial state. With internal pull-up. Note: It is recommended to use 10 k Ω pull-up resistor and 10 μ F capacitor on nRESET pin.			
37	26	18	LDO_CAP	Р	LDO capacitor pin			
38	27	19	V_{DD}	Р	Power supply for I/O ports and LDO source			
			PF.0	I/O	General purpose digital I/O pin			
39	28	20	X32I	ı	External 32.768 kHz crystal input pin (default)			
			TM3	I/O	Timer3 external counter input or Timer3 toggle out.			
			PF.1	I/O	General purpose digital I/O pin			
40	29	29	29	29	21	X32O	o	External 32.768 kHz crystal output pin (default)
						TM2	I/O	Timer2 external counter input or Timer2 toggle out.
41	30	22	V_{SS}	G	Ground for digital circuit			
	31		PF.2	I/O	General purpose digital I/O pin			
			XT1_IN	Al	External 4~24 MHz crystal input pin (default)			
42		23	UART1_RXD	I	UART1 Data receiver input pin			
			тсз	I	Timer3 capture input			
			INT1	I	External interrupt1 input pin			
			PF.3	I/O	General purpose digital I/O pin			
			XT1_OUT	AO	External 4~24 MHz crystal output pin			
43	32	24	UART1_TXD	o	UART1 Data transmitter output pin (This pin could be modulated with PWM0 output.)			
			TC2	I	Timer2 capture input			
			INT0	I	External interrupt0 input pin			
44	33		AV _{SS}	G	Ground for ADC and comparators			
45	34		PA.0	I/O	General purpose digital I/O pin			
+0	34		AD0	Al	ADC analog input0			
			PA.1	I/O	General purpose digital I/O pin			
46	35		AD1	Al	ADC analog input1			
40			ACMP0_P3	Al	Comparator0 P-end input3			
			ACMP0_CHDIS	0	Comparator0 charge/discharge path			
47	36		PA.2	I/O	General purpose digital I/O pin			

Pin No.			B: N	F: -	5						
64-pin	48-pin	32-pin	Pin Name	Pin Type	Description						
			SC0_CLK	0	SmartCard0 clock pin (SC0_UART_TXD)						
			INT0	ı	External interrupt0 input pin						
			AD2	Al	ADC analog input2						
			ACMP0_P2	Al	Comparator0 P-end input2						
			ACMP0_CHDIS	0	Comparator0 charge/discharge path						
			PA.3	I/O	General purpose digital I/O pin						
			SC0_DAT	I/O	SmartCard0 DATA pin(SC0_UART_RXD)						
			INT1	- 1	External interrupt 1						
48	37		AD3	Al	ADC analog input3						
			ACMP0_P1	Al	Comparator0 P-end input1						
			ACMP0_CHDIS	0	Comparator0 charge/discharge path						
			PA.4	I/O	General purpose digital I/O pin						
			SC0_CD	ı	SmartCard0 card detect pin						
49	38	25	AD4	Al	ADC analog input4						
			ACMP0_P0	Al	Comparator0 P-end input0						
			ACMP0_CHDIS	0	Comparator0 charge/discharge path						
			PA.5	I/O	General purpose digital I/O pin						
			SPI1_SS0	I/O	SPI1 1 st slave select pin						
		39 26	I2C1_SDA	I/O	I ² C1 data I/O pin						
50	39		SC0_PWR	0	SmartCard0 Power pin						
			AD5	Al	ADC analog input5						
									ACMP0_N	Al	Comparator0 N-end input0
			ACMP0_CHDIS	0	Comparator0 charge/discharge path						
			PA.6	I/O	General purpose digital I/O pin						
			ACMP0_CHDIS	0	Comparator0 charge/discharge path						
51	40		SC0_RST	0	SmartCard0 RST pin						
			ACMP0_OUT	0	Comparator0 output						
			AD6	Al	ADC analog input6						
52	41		V_{REF}	А	ADC/Comparator reference voltage						
53	42	27	AV_{DD}	Р	Power supply for ADC and comparators						
			PF.4	I/O	General purpose digital I/O pin						
54	43	28	ICE_CLK	1	Serial Wired Debugger Clock pin Note: It is recommended to use 100 kΩ pu up resistor on ICE_CLK pin.						

Pin No.					-
64-pin	48-pin	32-pin	Pin Name	Pin Type	Description
			CLK_Hz	0	1, 1/2, 1/4, 1/8, 1/16 Hz clock output
			PWM0_CH2	0	PWM0 Channel2 output
			TC1	ı	Timer1 capture input
			FCLK1	0	Frequency Divider1 output pin
			PF.5	I/O	General purpose digital I/O pin
55	44	29	ICE_DAT	I/O	Serial Wired Debugger Data pin Note: It is recommended to use 100 k Ω pullup resistor on ICE_DAT pin.
00		25	PWM0_CH3	I/O	PWM0 Channel3 output
			TC0	1	Timer0 capture input
			ACMP0_CHDIS	0	Comparator0 charge/discharge path
			PA.12	I/O	General purpose digital I/O pin
		30	UART0_TXD	o	UART0 Data transmitter output pin (This pin could be modulated with PWM0 output.)
56	45		SPI1_MOSI0	I/O	SPI1 1 st MOSI (Master Out, Slave In) pin
			I2C0_SCL	I/O	I ² C 0 clock pin
			ACMP1_P	Al	Comparator1 P-end input
		31	PA.13	I/O	General purpose digital I/O pin
			UART0_RXD	1	UART0 Data receiver input pin
57	46		SPI1_MISO0	1/0	SPI1 1 st MISO (Master In, Slave Out) pin
			I2C0_SDA	I/O	I ² C0 data I/O pin
			ACMP1_N	Al	Comparator1 N-end input
			PA.14	1/0	General purpose digital I/O pin
58	47	32	SPI1_CLK	1/0	SPI1 serial clock pin
56	47	32	I2C1_SCL	1/0	I ² C1 clock pin
			ACMP0_CHDIS	0	Comparator0 charge/discharge path
			PA.15	I/O	General purpose digital I/O pin
			SPI1_SS0	1/0	SPI1 1 st slave select pin
59	48		I2C1_SDA	I/O	I ² C1 data I/O pin
			тсз	1	Timer3 capture input
			ACMP1_OUT	0	Comparator1 output
			PB.0	I/O	General purpose digital I/O pin
60			UART0_TXD	0	UART0 Data transmitter output pin(This pin could modulate with PWM0 output)
			FCLK1	0	Frequency Divider1 output pin

Pin No.			— Pin Name	Din Tuna	Parasitation.
64-pin	48-pin	32-pin		Pin Type	Description
			PB.1	I/O	General purpose digital I/O pin
61			UART0_RXD	I	UART0 Data receiver input pin
01			TC2	I	Timer 2 capture input
			INT1	I	External interrupt1 input pin
			PB.2	I/O	General purpose digital I/O pin
			UART0_RTSn	0	UART0 Request to Send output pin
62			SPI1_MOSI1	I/O	SPI1 2 nd MOSI (Master Out, Slave In) pin
			I2C0_SCL	I/O	l ² C0 clock pin
			тмз	I/O	Timer3 external counter input or Timer3 toggle out.
			PB.3	I/O	General purpose digital I/O pin
			UART0_CTSn	I	UART0 Clear to Send input pin
63			SPI1_MISO1	I/O	SPI1 2 nd MISO (Master In, Slave Out) pin
			I2C0_SDA	I/O	I ² C0 data I/O pin
			TM2	I/O	Timer2 external counter input or Timer2 toggle out.
			PB.6	I/O	General purpose digital I/O pin
64			UART1_TXD	О	UART1 Data transmitter output pin (This pin could be modulated with PWM0 output.)
			SPI1_SS1	I/O	SPI1 2 nd slave select pin
			FCLK0	0	Frequency Divider0 output pin

Note: Pin Type: I = Digital Input, O = Digital Output; AI = Analog Input; AO = Analog Output; P = Power Pin; AP = Analog Power.

4.4.2 NuMicro® Nano112 Pin Description

Pin No.			D: 11		D 1.0
100-pin	64-pin	48-pin	Pin Name	Pin Type	Description
			PB.7	I/O	General purpose digital I/O pin
4			LCD_SEG33	0	LCD segment output 33 at 100-pin
1			UART1_CTSn	I	UART1 Clear to Send input pin
			SC0_CD	I	SmartCard0 card detect
			PB.8	1/0	General purpose digital I/O pin
			LCD_SEG32	0	LCD segment output 32 at 100-pin
			SNOOPER	I	Snooper pin
2			PWM0_CH0	1/0	PWM0 Channel0 output
			тмо	I/O	Timer0 external counter input or Timer0 toggle out.
			INT1	I	External interrupt1 input pin
			PB.9	1/0	General purpose digital I/O pin
3			LCD_SEG31	0	LCD segment output 31 at 100-pin
			PWM0_CH1	I/O	PWM0 Channel1 output
			PE.8	1/0	General purpose digital I/O pin
4			LCD_SEG30	0	LCD segment output 30 at 100-pin
			PWM0_CH2	1/0	PWM0 Channel2 output
			PE.9	1/0	General purpose digital I/O pin
5			LCD_SEG29	0	LCD segment output 29 at 100-pin
			PWM0_CH3	1/0	PWM0 Channel3 output
			PB.10	1/0	General purpose digital I/O pin
			LCD_SEG28	0	LCD segment output 28 at 100-pin
6	1		LCD_SEG24	0	LCD segment output 24 at 64-pin
			UART1_RXD	I	UART1 Data receiver input pin
			SPI0_MOSI1	1/0	SPI0 2 nd MOSI (Master Out, Slave In) pin
			PB.11	1/0	General purpose digital I/O pin
			LCD_SEG27	0	LCD segment output 27 at 100-pin
			LCD_SEG23	0	LCD segment output 23 at 64-pin
7	2		UART1_RTSn	0	UART1 Request to Send output pin
			SPI0_MISO1	1/0	SPI0 2 rd MISO (Master In, Slave Out) pin
			TM1	I/O	Timer1 external counter input or Timer1 toggle out
8	3	1	PB.12	1/0	General purpose digital I/O pin

Pin No.			Die News		5
100-pin	64-pin	48-pin	Pin Name	Pin Type	Description
			LCD_SEG26	0	LCD segment output 26 at 100-pin
			LCD_SEG22	0	LCD segment output 22 at 64-pin
			LCD_SEG15	0	LCD segment output 15 at 48-pin
			UART0_RTSn	0	UART0 Request to Send output pin
			SPI0_MOSI0	I/O	SPI0 1st MOSI (Master Out, Slave In) pin
			тмо	I/O	Timer0 external counter input or Timer0 toggle out.
			FCLK0	0	Frequency Divider0 output pin
			PB.13	I/O	General purpose digital I/O pin
			LCD_SEG25	0	LCD segment output 25 at 100-pin
9	4	2	LCD_SEG21	0	LCD segment output 21 at 64-pin
9	4	2	LCD_SEG14	0	LCD segment output 14 at 48-pin
			UART0_RXD	I	UART0 Data receiver input pin
			SPI0_MISO0	I/O	SPI0 1st MISO (Master In, Slave Out) pin
			PB.14	I/O	General purpose digital I/O pin
			LCD_SEG24	0	LCD segment output 24 at 100-pin
			LCD_SEG20	0	LCD segment output 20 at 64-pin
10	5	5 3	LCD_SEG13	0	LCD segment output 13 at 48-pin
			UART0_TXD	o	UART0 Data transmitter output pin (This pin could be modulated with PWM0 output.)
			SPI0_CLK	I/O	SPI0 serial clock pin
11			NC		
			PB.15	I/O	General purpose digital I/O pin
			LCD_SEG23	0	LCD segment output 23 at 100-pin
12	6	4	LCD_SEG19	0	LCD segment output 19 at 64-pin
12		4	LCD_SEG12	0	LCD segment output 12 at 48-pin
			UART0_CTSn	I	UART0 Clear to Send input pin
			SPI0_SS0	I/O	SPI0 1 st slave select pin
			PC.0	I/O	General purpose digital I/O pin
			LCD_SEG22	0	LCD segment output 24 at 100-pin
13	7	5	LCD_SEG18	0	LCD segment output 18 at 64-pin
13	'		LCD_SEG11	0	LCD segment output 11 at 48-pin
			SPI0_SS1	I/O	SPI0 2 nd slave select pin
			I2C0_SCL	I/O	l ² C0 clock pin

Pin No.			— Pin Name	Din Tuna	Description
100-pin	64-pin	48-pin		Pin Type	Description
			PWM0_CH0	I/O	PWM0 Channel0 output
			PC.1	I/O	General purpose digital I/O pin
			LCD_SEG21	0	LCD segment output 21 at 100-pin
1.1		6	LCD_SEG17	0	LCD segment output 17 at 64-pin
14	8	0	LCD_SEG10	0	LCD segment output 10 at 48-pin
			I2C0_SDA	I/O	I ² C0 data I/O pin
			PWM0_CH1	I/O	PWM0 Channel1 output
			PC.2	I/O	General purpose digital I/O pin
			LCD_SEG20	0	LCD segment output 20 at 100-pin
45		_	LCD_SEG16	0	LCD segment output 16 at 64-pin
15	9	7	LCD_SEG9	0	LCD segment output 9 at 48-pin
			I2C1_SCL	0	l ² C1 clock pin
			PWM0_CH2	I/O	PWM0 Channel2 output
	10	8	PC.3	I/O	General purpose digital I/O pin
			LCD_SEG19	0	LCD segment output 19 at 100-pin
40			LCD_SEG15	0	LCD segment output 15 at 64-pin
16			LCD_SEG8	0	LCD segment output 8 at 48-pin
			I2C1_SDA	I/O	I ² C1 data I/O pin
			PWM0_CH3	I/O	PWM0 Channel3 output
			PC.4	I/O	General purpose digital I/O pin
			LCD_SEG18	0	LCD segment output 18 at 100-pin
			LCD_SEG14	0	LCD segment output 14 at 64-pin
17	11	9	LCD_SEG7	0	LCD segment output 7 at 48-pin
			UART1_CTSn	1	UART1 Clear to Send input pin
			SC0_CLK	0	SmartCard0 clock pin (SC0_UART_TXD)
			INT0	I	External interrupt0 input pin
			PC.5	I/O	General purpose digital I/O pin
			LCD_SEG17	0	LCD segment output 17 at 100-pin
18	12	10	LCD_SEG13	0	LCD segment output 13 at 64-pin
			LCD_SEG6	0	LCD segment output 6 at 48-pin
			SC0_CD	I	SmartCard0 card detect pin
10	40	44	PC.6	I/O	General purpose digital I/O pin
19	13	11	LCD_SEG16	0	LCD segment output 16 at 100-pin

Pin No.			D: N	D: -	5
100-pin	64-pin	48-pin	Pin Name	Pin Type	Description
			LCD_SEG12	0	LCD segment output 12 at 64-pin
			LCD_SEG5	0	LCD segment output 5 at 48-pin
			UART1_RTSn	0	UART1 Request to Send output pin
			SC0_DAT	I/O	SmartCard0 DATA pin (SC0_UART_RXD)
			PC.7	I/O	General purpose digital I/O pin
			LCD_SEG15	0	LCD segment output 15 at 100-pin
00		40	LCD_SEG11	0	LCD segment output 11 at 64-pin
20	14	12	LCD_SEG4	0	LCD segment output 4 at 48-pin
			UART1_RXD	ı	UART1 Data receiver input pin
			SC0_PWR	0	SmartCard0 Power pin
			PC.8	I/O	General purpose digital I/O pin
			LCD_SEG14	0	LCD segment output 14 at 100-pin
		5 13	LCD_SEG10	0	LCD segment output 10 at 64-pin
21	15		LCD_SEG3	0	LCD segment output 3 at 48-pin
			UART1_TXD	0	UART1 Data transmitter output pin (This pin could be modulated with PWM0 output.)
			SC0_RST	0	SmartCard0 RST pin
	16	16 14	PC.9	I/O	General purpose digital I/O pin
00			LCD_SEG13	0	LCD segment output 13 at 100-pin
22			LCD_SEG9	0	LCD segment output 9 at 64-pin
			LCD_SEG2	0	LCD segment output 2 at 48-pin
23			V_{DD}	Р	Power supply for I/O ports and LDO source
24			V _{SS}	G	Ground for digital circuit
25			V _{SS}	G	Ground for digital circuit
			PC.10	I/O	General purpose digital I/O pin
00			LCD_SEG12	0	LCD segment output 12 at 100-pin
26			I2C1_SCL	I/O	l ² C1 clock pin
			SC1_CD	ı	SmartCard1 card detect pin
			PC.11	I/O	General purpose digital I/O pin
a=			LCD_SEG11	0	LCD segment output 11 at 100-pin
27			I2C1_SDA	I/O	I ² C 1 data I/O pin
			SC1_PWR	0	SmartCard1 PWR pin
			PC.12	I/O	General purpose digital I/O pin
28			LCD_SEG10	0	LCD segment output 10 at 100-pin

Pin No.					
100-pin	64-pin	48-pin	Pin Name	Pin Type	Description
			SC1_CLK	0	SmartCard1 clock pin (SC1_UART_TXD)
			PC.13	I/O	General purpose digital I/O pin
29			LCD_SEG9	0	LCD segment output 9 at 100-pin
			SC1_DAT	I/O	SmartCard1 DATA pin (SC1_UART_RXD)
			PC.14	I/O	General purpose digital I/O pin
			LCD_SEG8	0	LCD segment output 8 at 100-pin
30	17	15	LCD_SEG8	0	LCD segment output 8 at 64-pin
			LCD_SEG1	0	LCD segment output 1 at 48-pin
			SC1_CD	ı	SmartCard1 card detect
			PC.15	I/O	General purpose digital I/O pin
			LCD_SEG7	0	LCD segment output 7 at 100-pin
31	18	16	LCD_SEG7	0	LCD segment output 7 at 64-pin
			LCD_SEG0	0	LCD segment output 0 at 48-pin
			SC1_PWR	0	SmartCard1 PWR pin
			PD.0	I/O	General purpose digital I/O pin
32	19		LCD_SEG6	0	LCD segment output 6 at 100-pin
			LCD_SEG6	0	LCD segment output 6 at 64-pin
			PD.1	I/O	General purpose digital I/O pin
33	20		LCD_SEG5	0	LCD segment output 5 at 100-pin
			LCD_SEG5	0	LCD segment output 5 at 64-pin
			PD.2	I/O	General purpose digital I/O pin
34	21		LCD_SEG4	0	LCD segment output 4 at 100-pin
			LCD_SEG4	0	LCD segment output 4 at 64-pin
			PD.3	I/O	General purpose digital I/O pin
35	22		LCD_SEG3	0	LCD segment output 3 at 100-pin
			LCD_SEG3	0	LCD segment output 3 at 64-pin
			PD.4	I/O	General purpose digital I/O pin
26	22		LCD_SEG2	0	LCD segment output 2 at 100-pin
36	23		LCD_SEG2	0	LCD segment output 2 at 64-pin
			SC1_RST	0	SmartCard1 RST pin
			PD.5	I/O	General purpose digital I/O pin
37	24		LCD_SEG1	0	LCD segment output 1 at 100-pin (or as LCD_COM5)

Pin No.			D: 11		5 1.1
100-pin	64-pin	48-pin	Pin Name	Pin Type	Description
			LCD_SEG1	0	LCD segment output 1 at 64-pin (or as LCD_COM5)
			PD.6	1/0	General purpose digital I/O pin
38	25		LCD_SEG0	0	LCD segment output 0 at 100-pin(or as LCD_COM4)
			LCD_SEG0	0	LCD segment output 0 at 64-pin (or as LCD_COM4)
			PD.7	I/O	General purpose digital I/O pin
			LCD_COM3	0	LCD common output 3 at 100-pin
39	26	17	LCD_COM3	0	LCD common output 3 at 64-pin
			LCD_COM3	0	LCD common output 3 at 48-pin
			SC1_CLK	0	SmartCard1 clock pin (SC1_UART_TXD)
			PD.8	I/O	General purpose digital I/O pin
		27 18	LCD_COM2	0	LCD common output 2 at 100-pin
40	27		LCD_COM2	0	LCD common output 2 at 64-pin
			LCD_COM2	0	LCD common output 2 at 48-pin
			SC1_DAT	I/O	SmartCard1 DATA pin (SC1_UART_RXD)
	28		PD.9	I/O	General purpose digital I/O pin
		28 19	LCD_COM1	0	LCD common output 1 at 100-pin
41			LCD_COM1	0	LCD common output 1 at 64-pin
41			LCD_COM1	0	LCD common output 1 at 48-pin
			SC1_RST	0	SmartCard1 RST pin
			PWM0_CH3	I/O	PWM0 Channel3 output
			PD.10	I/O	General purpose digital I/O pin
			LCD_COM0	0	LCD common output 0 at 100-pin
40	20	20	LCD_COM0	0	LCD common output 0 at 64-pin
42	29	20	LCD_COM0	0	LCD common output 0 at 48-pin
			PWM0_CH2	I/O	PWM0 Channel2 output
			TC1	I	Timer1 capture input
			PD.11	I/O	General purpose digital I/O pin
			LCD_DH2	0	LCD external capacitor pin of charge pump circuit at 100-pin
43	30		LCD_DH2	0	LCD external capacitor pin of charge pump circuit at 64-pin
			PWM0_CH1	I/O	PWM0 Channel1 output
			TC0	ı	Timer0 capture input

Pin No.			Din Name	l	5		
100-pin	64-pin	48-pin	Pin Name	Pin Type	Description		
			PD.12	I/O	General purpose digital I/O pin		
			CLK_Hz	0	1, 1/2, 1/4, 1/8, 1/16 Hz clock output		
			LCD_DH1	0	LCD external capacitor pin of charge pump circuit at 100-pin		
44	31		LCD_DH1	0	LCD external capacitor pin of charge pump circuit at 64-pin		
			PWM0_CH0	1/0	PWM0 Channel0 output		
			TM1	1/0	Timer1 external counter input		
			FCLK0	0	Frequency Divider0 output pin		
45					NC		
46	32	21	V _{LCD}	Р	LCD power supply pin		
47					NC		
			PD.13	I/O	General purpose digital I/O pin		
				LCD_V1	ı	Input pin of the 1 st most positive LCD level at 100-pin	
48	33	22	LCD_V1	ı	Input pin of the 1 st most positive LCD level at 64-pin		
					LCD_V1	ı	Input pin of the 1 st most positive LCD level at 48-pin
			INT1	ı	External interrupt 1 input pin		
			PD.14	I/O	General purpose digital I/O pin		
		34 23	LCD_V2	ı	Input pin of the 2 nd most positive LCD level at 100-pin		
49	34		LCD_V2	1	Input pin of the 2 nd most positive LCD level at 64-pin		
			LCD_V2	1	Input pin of the 2 nd most positive LCD level at 48-pin		
			PD.15	I/O	General purpose digital I/O pin		
			LCD_V3	1	Input pin of the 3 rd most positive LCD level at 100-pin		
50	35	24	LCD_V3	ı	Input pin of the 3 rd most positive LCD level at 64-pin		
			LCD_V3	ı	Input pin of the 3 rd most positive LCD level at 48-pin		
51	35	25	nRESET		External reset input: low active. Setting this pin low will reset chip to initial state. With internal pull-up. Note: It is recommended to use 10 k Ω pull-up resistor and 10 μ F capacitor on nRESET pin.		
52	37	26	LDO_CAP	Р	LDO capacitor pin		
53	38	27	V_{DD}	Р	Power supply for I/O ports and LDO source		

100-pin 64-pin 48-pin	Pin No.						
Section Sect	100-pin	64-pin	48-pin	Pin Name	Pin Type	Description	
TM3				PF.0	I/O	General purpose digital I/O pin	
TM3	54	38	28	X32I	ı	External 32.768 kHz crystal input pin(default)	
Section Sect				тмз	I/O	Timer3 external counter input or Timer3 toggle out.	
TM2				PF.1	I/O	General purpose digital I/O pin	
1012 102 103 104 105	55	40	29	X32O	0	External 32.768 kHz crystal output pin(default)	
Second S				TM2	I/O	Timer2 external counter input or Timer2 toggle out.	
Second S	56			V_{SS_PLL}	G	Ground for PLL	
PF.2 VO General purpose digital I/O pin	57	41	30	V _{SS}	G	Ground for digital circuit	
Al	58			V _{SS}	G	Ground for digital circuit	
1				PF.2	I/O	General purpose digital I/O pin	
TC3				XT1_IN	Al	External 4~24 MHz crystal input pin(default)	
NT1	59	42	31	UART1_RXD	I	UART1 Data receiver input pin	
PF.3 I/O General purpose digital I/O pin				TC3	I	Timer3 capture input	
A0				INT1	I	External interrupt1 input pin	
A3 32 UART1_TXD O UART1 Data transmitter output pin (This pir could be modulated with PWM0 output.)				PF.3	I/O	General purpose digital I/O pin	
Could be modulated with PWM0 output.				XT1_OUT	AO	External 4~24 MHz crystal output pin	
INTO I External interrupt0 input pin	60	43	32	UART1_TXD	0	UART1 Data transmitter output pin (This pin could be modulated with PWM0 output.)	
NC				TC2	ı	Timer 2 capture input	
PE.0 I/O General purpose digital I/O pin				INT0	I	External interrupt0 input pin	
SPI0_MOSI0 I/O SPI0 1st MOSI (Master Out, Slave In) pin	61					NC	
SPI0_MOSI0	60			PE.0	I/O	General purpose digital I/O pin	
SPI0_MISO0	02			SPI0_MOSI0	I/O	SPI0 1st MOSI (Master Out, Slave In) pin	
SPI0_MISO0	63			PE.1	I/O	General purpose digital I/O pin	
64 SPI0_CLK I/O SPI0 serial clock pin 65 PE.3 I/O General purpose digital I/O pin 50 SPI0_SS0 I/O SPI0 1st slave select pin 66 PE.4 I/O General purpose digital I/O pin 67 PE.5 I/O General purpose digital I/O pin	03			SPI0_MISO0	I/O	SPI0 1st MISO (Master In, Slave Out) pin	
SPI0_CLK	64			PE.2	I/O	General purpose digital I/O pin	
65 SPI0_SS0 I/O SPI0 1st slave select pin PE.4 I/O General purpose digital I/O pin SC1_RST O SmartCard1 RST pin PE.5 I/O General purpose digital I/O pin	04			SPI0_CLK	I/O	SPI0 serial clock pin	
SPI0_SS0	0.5			PE.3	I/O	General purpose digital I/O pin	
66 SC1_RST O SmartCard1 RST pin PE.5 I/O General purpose digital I/O pin				SPI0_SS0	1/0	SPI0 1 st slave select pin	
SC1_RST O SmartCard1 RST pin PE.5 I/O General purpose digital I/O pin	66			PE.4	I/O	General purpose digital I/O pin	
67	00			SC1_RST	0	SmartCard1 RST pin	
	67			PE.5	I/O	General purpose digital I/O pin	
	6/			SC1_PWR	0	SmartCard1 PWR pin	

Pin No.							
100-pin	64-pin 48-pin		Pin Name	Pin Type	Description		
			PE.6	I/O	General purpose digital I/O pin		
68			SC1_CLK	0	SmartCard1 clock pin (SC1_UART_TXD)		
00			PE.7	I/O	General purpose digital I/O pin		
69			SC1_DAT	I/O	SmartCard1 DATA pin (SC1_UART_RXD)		
70	44	33	AV _{SS}	G	Ground for ADC and comparators		
71			AV _{SS}	G	Ground for ADC and comparators		
72	45	34	PA.0	I/O	General purpose digital I/O pin		
12	45	34	AD0	Al	ADC analog input0		
			PA.1	I/O	General purpose digital I/O pin		
70	40	25	ACMP0_CHDIS	0	Comparator0 charge/discharge path		
73	46	35	ACMP0_P3	Al	Comparator0 P-end input3		
			AD1	Al	ADC analog input1		
			PA.2	I/O	General purpose digital I/O pin		
			ACMP0_CHDIS	0	Comparator0 charge/discharge path		
74	47	36	SC0_CLK	0	SmartCard0 clock pin (SC0_UART_TXD)		
74	47	30	ACMP0_P2	Al	Comparator0 P-end input2		
			AD2	Al	ADC analog input2		
			INT0	ı	External interrupt0 input pin		
			PA.3	I/O	General purpose digital I/O pin		
			ACMP0_CHDIS	0	Comparator0 charge/discharge path		
75	48	37	SC0_DAT	I/O	SmartCard0 DATA pin (SC0_UART_RXD)		
75	40	31	ACMP0_P1	Al	Comparator0 P-end input1		
			AD3	Al	ADC analog input3		
			INT1	I	External interrupt 1		
			PA.4	I/O	General purpose digital I/O pin		
			ACMP0_CHDIS	0	Comparator0 charge/discharge path		
76	49	38	SC0_CD	1	SmartCard0 card detect pin		
			ACMP0_P0	Al	Comparator0 P-end input0		
			AD4	Al	ADC analog input4		
			PA.5	I/O	General purpose digital I/O pin		
77	50	39	ACMP0_CHDIS	0	Comparator0 charge/discharge path		
11	30	39	SPI1_SS0	I/O	SPI1 1 st slave select pin		
			I2C1_SDA	I/O	I ² C1 data I/O pin		

Pin No.					
100-pin	64-pin	48-pin	Pin Name	Pin Type	Description
			SC0_PWR	0	SmartCard0 Power pin
			ACMP0_N	Al	Comparator0 N-end input0
			AD5	Al	ADC analog input5
			PA.6	I/O	General purpose digital I/O pin
			ACMP0_CHDIS	0	Comparator0 charge/discharge path
78	51	40	SC0_RST	0	SmartCard0 RST pin
			ACMP0_OUT	0	Comparator0 output
			AD6	Al	ADC analog input6
			PA.7	1/0	General purpose digital I/O pin
79			SC1_CD	1	SmartCard1 card detect
			AD7	Al	ADC analog input7
80	52	41	V_{REF}	Α	ADC/Comparator reference voltage
81	53	42	AV_{DD}	Р	Power supply for ADC and comparators
			PF.4	1/0	General purpose digital I/O pin
			ICE_CLK	ı	Serial Wired Debugger Clock pin Note: It is recommended to use 100 k Ω pull-up resistor on ICE_CLK pin.
82	54	43	CLK_Hz	0	1, 1/2, 1/4, 1/8, 1/16 Hz clock output
			PWM0_CH2	0	PWM0 Channel2 output
			TC1	1	Timer1 capture input
			FCLK1	0	Frequency Divider1 output pin
			PF.5	1/0	General purpose digital I/O pin
00	55	44	ICE_DAT	I/O	Serial Wired Debugger Data pin Note: It is recommended to use 100 k Ω pull-up resistor on ICE_DAT pin.
83	55	44	ACMP0_CHDIS	0	Comparator0 charge/discharge path
			PWM0_CH3	I/O	PWM0 Channel3 output
			TC0	1	Timer0 capture input
			PA.8	I/O	General purpose digital I/O pin
84			SC0_PWR	0	SmartCard0 Power pin
_			PA.9	1/0	General purpose digital I/O pin
85			SC0_RST	0	SmartCard0 RST pin
			PA.10	1/0	General purpose digital I/O pin
86			SC0_CLK	0	SmartCard0 clock pin (SC0_UART_TXD)
87			PA.11	1/0	General purpose digital I/O pin

Pin No.			Pin Namo	Din Tuna	Description	
100-pin 64-pin 48-		48-pin	Pin Name	Pin Type	Description	
			SC0_DAT	1/0	SmartCard0 DATA pin(SC0_UART_RXD)	
			STADC	1	ADC external trigger input.	
			PA.12	1/0	General purpose digital I/O pin	
			LCD_SEG19	0	LCD segment output 19 at 48-pin	
88	56	45	UART0_TXD	0	UART0 Data transmitter output pin (This pin could be modulated with PWM0 output.)	
			SPI1_MOSI0	I/O	SPI1 1st MOSI (Master Out, Slave In) pin	
			I2C0_SCL	I/O	I ² C 0 clock pin	
			ACMP1_P	Al	Comparator1 P-end input	
			PA.13	1/0	General purpose digital I/O pin	
			LCD_SEG18	0	LCD segment output 18 at 48-pin	
00	F-7	40	UART0_RXD	1	UART0 Data receiver input pin	
89	57	46	SPI1_MISO0	1/0	SPI1 1st MISO (Master In, Slave Out) pin	
			I2C0_SDA	1/0	I ² C0 data I/O pin	
			ACMP1_N	Al	Comparator1 N-end input	
		8 47	PA.14	1/0	General purpose digital I/O pin	
			ACMP0_CHDIS	0	Comparator0 charge/discharge path	
00	50		LCD_SEG31	0	LCD segment output 31 at 64-pin	
90	58		LCD_SEG17	0	LCD segment output 17 at 48-pin	
			SPI1_CLK	1/0	SPI1 serial clock pin	
			I2C1_SCL	1/0	I ² C1 clock pin	
			PA.15	1/0	General purpose digital I/O pin	
			LCD_SEG30	0	LCD segment output 30 at 64-pin	
			LCD_SEG16	0	LCD segment output 16 at 48-pin	
91	59	48	SPI1_SS0	1/0	SPI1 1 st slave select pin	
			I2C1_SDA	1/0	I ² C1 data I/O pin	
			ACMP1_OUT	0	Comparator1 output	
			TC3	1	Timer3 capture input	
			PB.0	I/O	General purpose digital I/O pin	
			LCD_SEG29	0	LCD segment output 29 at 64-pin	
92	60		UARTO_TXD	0	UART0 Data transmitter output pin (This pin could be modulated with PWM0 output.)	
			FCLK1	0	Frequency Divider1 output pin	
93	61		PB.1	I/O	General purpose digital I/O pin	

Pin No.			Din Nama	Din Tyno	Description	
100-pin	64-pin	48-pin	— Pin Name	Pin Type	Description	
			LCD_SEG28	0	LCD segment output 28 at 64-pin	
			UART0_RXD	I	UART0 Data receiver input pin	
			TC2	I	Timer 2 capture input	
			INT1	I	External interrupt1 input pin	
			PB.2	I/O	General purpose digital I/O pin	
			LCD_SEG27	0	LCD segment output 27 at 64-pin	
			UART0_RTSn	0	UART0 Request to Send output pin	
94	62		SPI1_MOSI1	I/O	SPI1 2 nd MOSI (Master Out, Slave In) pin	
			I2C0_SCL	0	l ² C0 clock pin	
			тмз	I/O	Timer3 external counter input or Timer3 toggle out.	
		PB.3	I/O	General purpose digital I/O pin		
			LCD_SEG26	0	LCD segment output 26 at 64-pin	
			UART0_CTSn	ı	UART0 Clear to Send input pin	
95	63		SPI1_MISO1	I/O	SPI1 2 nd MISO (Master In, Slave Out) pin	
			I2C0_SDA	I/O	I ² C0 data I/O pin	
			TM2	I/O	Timer2 external counter input or Timer2 toggle out.	
96			V_{DD}	Р	Power supply for I/O ports and LDO source	
97			V _{SS}	G	Ground for digital circuit	
			PB.4	I/O	General purpose digital I/O pin	
98			UART1_RTSn	0	UART1 Request to Send output pin	
			SPI1_MISO1	I/O	SPI1 2 nd MISO (Master In, Slave Out) pin	
			PB.5	I/O	General purpose digital I/O pin	
00			LCD_SEG35	0	LCD segment output 35 at 100-pin	
99			UART1_RXD	ı	UART1 Data receiver input pin	
			SPI1_MOSI1	1/0	SPI1 2 nd MOSI (Master Out, Slave In) pin	
			PB.6	I/O	General purpose digital I/O pin	
			LCD_SEG34	0	LCD segment output 34 at 100-pin	
			LCD_SEG25	0	LCD segment output 25 at 64-pin	
100	64		UART1_TXD	o	UART1 Data transmitter output pin (This pin could be modulated with PWM0 output.)	
			SPI1_SS1	I/O	SPI1 2 nd slave select pin	
			FCLK0	0	Frequency Divider0 output pin	

Note: Pin Type: I = Digital Input, O=Digital Output; Al=Analog Input; AO= Analog Output; P=Power Pin; AP=Analog Power.

5 BLOCK DIAGRAM

nuvoTon

5.1 Nano102 Block Diagram

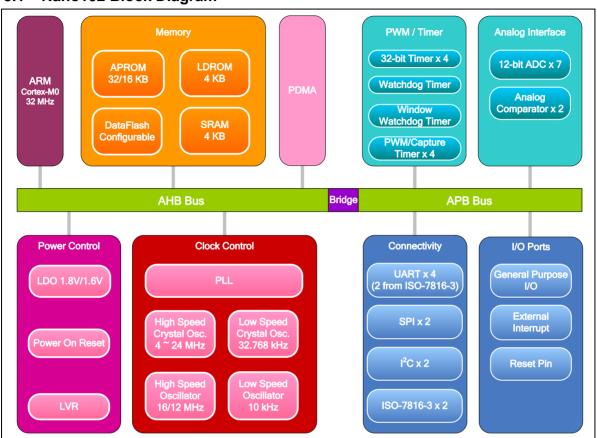


Figure 5-1 NuMicro® Nano102 Block Diagram

Nano112 Block Diagram Analog Interface 32-bit Timer x 4 12-bit ADC x 8 APROM 32/16 KB LDROM 4 KB ARM Watchdog Timer Cortex-M0 32 MHz Analog Comparator x 2 Window Watchdog Timer DataFlash Configurable 4 KB LCD PWM/Capture Timer x 4 4x36, 6x34 Bridge **AHB Bus APB Bus Clock Control Power Control** Connectivity I/O Ports UART x 4 (2 from ISO-7816-3) General Purpose I/O PLL External SPI x 2 Interrupt $I^2C \times 2$ Reset Pin Oscillator 16/12 MHz ISO-7816-3 x 2

5.2

Figure 5-2 NuMicro® Nano112 Block Diagram

FUNCTIONAL DESCRIPTION

ARM® Cortex®-M0 Core 6.1

nuvoton

The Cortex®-M0 processor is a configurable, multistage, 32-bit RISC processor, which has an AMBA AHB-Lite interface and includes an NVIC component. It also has optional hardware debug functionality. The processor can execute Thumb code and is compatible with other Cortex®-M profile processor. The profile supports two modes -Thread mode and Handler mode. Handler mode is entered as a result of an exception. An exception return can only be issued in Handler mode. Thread mode is entered on Reset, and can be entered as a result of an exception return. The following figure shows the functional controller of processor.

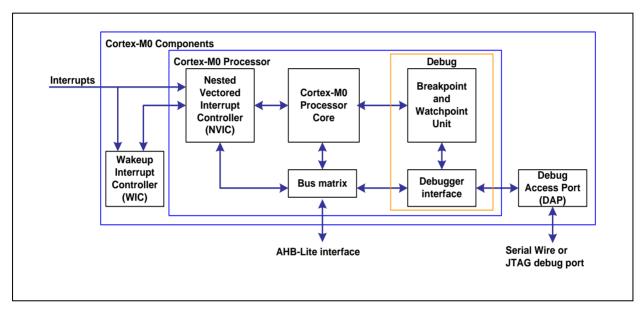


Figure 6-1 Functional Block Diagram

The implemented device provides:

- A low gate count processor:
 - ARMv6-M Thumb® instruction set
 - Thumb-2 technology
 - ARMv6-M compliant 24-bit SysTick timer
 - A 32-bit hardware multiplier
 - System interface supported with little-endian data accesses
 - Ability to have deterministic, fixed-latency, interrupt handling
 - Load/store-multiples and multicycle-multiplies that can be abandoned and restarted to facilitate rapid interrupt handling
 - C Application Binary Interface compliant exception model. This is the ARMv6-M, C Application Binary Interface (C-ABI) compliant exception model that enables the use of pure C functions as interrupt handlers
 - Low Power Sleep mode entry using the Wait For Interrupt (WFI), Wait For Event (WFE)

instructions, or return from interrupt sleep-on-exit feature

- NVIC:
 - ◆ 32 external interrupt inputs, each with four levels of priority
 - Dedicated Non-maskable Interrupt (NMI) input
 - ◆ Supports for both level-sensitive and pulse-sensitive interrupt lines
 - ◆ Supports Wake-up Interrupt Controller (WIC) and, providing Ultra-low Power Sleep mode
- Debug support:
 - Four hardware breakpoints
 - ◆ Two watchpoints
 - ◆ Program Counter Sampling Register (PCSR) for non-intrusive code profiling
 - ♦ Single step and vector catch capabilities
- Bus interfaces:
 - Single 32-bit AMBA-3 AHB-Lite system interface that provides simple integration to all system peripherals and memory
 - Single 32-bit slave port that supports the DAP (Debug Access Port)

System Timer (SysTick) 6.1.1

nuvoTon

The Cortex-M0 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit cleared-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

An RTOS tick timer which fires at a programmable rate (for example 100Hz) and invokes a SysTick routine.

A high speed alarm timer using Core clock.

A variable rate alarm or signal timer - the duration range dependent on the reference clock used and the dynamic range of the counter.

A simple counter. Software can use this to measure task completion time.

An internal Clock Source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

When enabled, the timer will count down from the value in the SysTick Current Value Register (SYST CVR) to zero, and reload (wrap) to the value in the SysTick Reload Value Register (SYST RVR) on the next clock edge, and then decrement on subsequent clocks. When the counter transitions to zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on read.

The SYST CVR value is UNKNOWN on reset. Software should write to the register to clear it to zero before enabling the feature. This ensures the timer will count from the SYST_RVR value rather than an arbitrary value when it is enabled.

If the SYST RVR is zero, the timer will be maintained with a current value of zero after it is reloaded with this value. This mechanism can be used to disable the feature independently from the timer enable bit.

For more detailed information, please refer to the "ARM® Cortex®-M0 Technical Reference Manual" and "ARM® v6-M Architecture Reference Manual".

6.1.2 System Timer Control Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write, W&C: Write 1 clear

Register	Offset	R/W	Description	Reset Value				
SCS Base Address: SCS_BA = 0xE000_E000								
SYST_CTL	SCS_BA+0x10 R/W SysTick Control and Status		SysTick Control and Status	0x0000_0004				
SYST_RVR	SCS_BA+0x14	R/W	SysTick Reload Value Register	0xXXXX_XXXX				
SYST_CVR	SCS_BA+0x18	R/W	SysTick Current Value Register	0xXXXX_XXXX				

6.1.3 System Timer Control Register Description

SysTick Control and Status (SYST_CTL)

Register	Offset		Description	Reset Value
SYST_CTL	SCS_BA+0x10	R/W	SysTick Control and Status	0x0000_0004

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Reserved				COUNTFLAG			
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	2	1	0						
		Reserved	CLKSRC	TICKINT	ENABLE					

Bits	Description	Description					
[31:17]	Reserved	Reserved.					
[16]	COUNTFLAG	System Tick Counter Flag Returns 1 If Timer Counted to 0 Since Last Time this Register Was Read 0 = COUNTFLAG is cleared on read or by a write to the Current Value register. 1 = COUNTFLAG is set by a count transition from 1 to 0.					
[15:3]	Reserved	Reserved.					
[2]	CLKSRC	System Tick Clock Source Selection 0 = Clock Source is (optional) external reference clock. 1 = Core clock used for SysTick. If no external clock provided, this bit will read as 1 and ignore writes.					
[1]	TICKINT	System Tick Interrupt Enable Control					

		0 = Counting down to 0 does not cause the SysTick exception to be pended. Software can use COUNTFLAG to determine if a count to zero has occurred.
		1 = Counting down to 0 will cause the SysTick exception to be pended. Clearing the SysTick Current Value register by a register write in software will not cause SysTick to be pended.
		System Tick Counter Enable Control
[0]	ENABLE	0 = The counter Disabled.
		1 = The counter will operate in a multi-shot manner.

SysTick Reload Value Register)SYST_RVR)

Register	Offset	R/W	Description	Reset Value
SYST_RVR	SCS_BA+0x14	R/W	SysTick Reload Value Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			REL	OAD						
15	14	13	12	11	10	9	8			
			REL	OAD						
7	7 6 5 4 3 2 1 0									
	RELOAD									

Bits	Description	Description					
[31:24]	Reserved	Reserved.					
[23:0]	RELOAD	The value to load into the Current Value register when the counter reaches 0.					

SysTick Current Value Register (SYST_CVR)

Register	Offset	R/W	Description	Reset Value
SYST_CVR	SCS_BA+0x18	R/W	SysTick Current Value Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			CURI	RENT			
15	14	13	12	11	10	9	8
			CURI	RENT			
7	6	5	4	3	2	1	0
	CURRENT						

Bits	Description			
[31:24]	Reserved	Reserved.		
[23:0]	CURRENT	System Tick Current Counter Value This is the value of the counter at the time it is sampled. The counter does not provide read-modify-write protection. The register is write-clear. A software write of any value will clear the register to 0. Unsupported bits RAZ (Read As Zero, writes ignore) (See SysTick Reload Value register).		

6.1.4 **System Control Registers**

nuvoton

Key control and status features of Coterx-M0 are managed centrally in a System Control Block within the System Control Registers.

For more detailed information, please refer to the "ARM® Cortex®-M0 Technical Reference Manual" and "ARM® v6-M Architecture Reference Manual".

6.1.5 System Control Register Memory Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description Reset V		
SCS Base Address: SCS_BA = 0xE000_E000					
CPUID	SCS_BA+0xD00	R	CPUID Base Register	0x410C_C200	
ICSR	SCS_BA+0xD04	R/W	Interrupt Control State Register	0x0000_0000	
SCR	SCS_BA+0xD10	R/W	System Control Register	0x0000_0000	
SHPR2	SCS_BA+0xD1C	R/W	System Handler Priority Register 2	0x0000_0000	
SHPR3	SCS_BA+0xD20	R/W	System Handler Priority Register 3	0x0000_0000	

6.1.6 System Control Register Description

CPUID Base Register (CPUID)

Register	Offset	R/W	Description	Reset Value
CPUID	SCS_BA+0xD00	R	CPUID Base Register	0x410C_C200

31	30	29	28	27	26	25	24
	IMPLEMENTER						
23	22	21	20	19	18	17	16
	Rese	erved		PART			
15	14	13	12	11	10	9	8
			PAR	TNO			
7	6	5	4	3	2	1	0
PARTNO				REVI	SION		

Bits	Description	Description				
[31:24]	IMPLEMENTER	Implementer Code Implementer code assigned by ARM (ARM = 0x41).				
[23:20]	Reserved	Reserved.				
[19:16]	PART	Architecture of the Processor Reads as 0xC for ARMv6-M parts				
[15:4]	PARTNO	Part Number of the Processor Reads as 0xC20.				
[3:0]	REVISION	Revision Number Reads as 0x0				

Interrupt Control State Register (ICSR)

Register	Offset	R/W	Description	Reset Value
ICSR	SCS_BA+0xD04	R/W	Interrupt Control State Register	0x0000_0000

31	30	29	28	27	26	25	24
NMIPENDSET	Rese	erved	PENDSVSET	PENDSVCLR	PENDSTSET	PENDSTCLR	Reserved
23	22	21	20	19	18	17	16
ISRPREEMPT	ISRPENDING	Reserved	VECTPENDING			i	
15	14	13	12	11	10	9	8
	VECTP	ENDING			Reserved		VECTACTIVE
7	6	5	4	3	2	1	0
	VECTACTIVE						

Bits	Description	Description					
		NMI Set-pending Bit					
		Write Operation:					
		0 = No effect.					
		1 = Changes NMI exception state to pending.					
		Read Operation:					
[31]	NMIPENDSET	0 = NMI exception not pending.					
		1 = NMI exception pending.					
		Note: Because NMI is the highest-priority exception, normally the processor enters the NMI exception handler as soon as it detects a write of 1 to this bit. Entering the handler then clears this bit to 0. This means a read of this bit by the NMI exception handler returns 1 only if the NMI signal is reasserted while the processor is executing that handler.					
[30:29]	Reserved	Reserved					
		PendSV Set-pending Bit					
		Write Operation:					
		0 = No effect.					
[28]	PENDSVSET	1 = Changes PendSV exception state to pending.					
[20]	LINDOVOLI	Read Operation:					
		0 = PendSV exception is not pending.					
		1 = PendSV exception is pending.					
		Note: Writing 1 to this bit is the only way to set the PendSV exception state to pending					
		PendSV Clear-pending Bit					
		Write Operation:					
[27]	PENDSVCLR	0 = No effect.					
1		1 = Removes the pending state from the PendSV exception.					
		This bit is write-only. To clear the PENDSV bit, you must "write 0 to PENDSVSET and write 1 to PENDSVCLR" at the same time.					
[26]	PENDSTSET	SysTick Exception Set-pending Bit					

		Write Operation:
		0 = No effect.
		1 = Changes SysTick exception state to pending.
		Read Operation:
		0 = SysTick exception is not pending.
		1 = SysTick exception is pending.
		SynTial: Evention Clear nending Dit
		SysTick Exception Clear-pending Bit
		Write Operation:
[25]	PENDSTCLR	0 = No effect.
		1 = Removes the pending state from the SysTick exception.
		Note: This bit is write-only. When you want to clear PENDST bit, you must "write 0 to PENDSTSET and write 1 to PENDSTCLR" at the same time.
		FENDSTSET and write 1 to FENDSTSER at the same time.
[24]	Reserved	Reserved
1001	ISRPREEMPT	Interrupt Preempt Bit (Read Only)
[23]	ISKPREEWPI	If set, a pending exception will be serviced on exit from the debug halt state.
}		Interrupt Pending Flag, excluding NMI and Faults (Read Only)
[22]	ISRPENDING	0 = Interrupt not pending.
		1 = Interrupt pending.
[21]	Reserved	Reserved
[21]	Nesci veu	Iveseiven
		Exception Number of the Highest Priority Pending Enabled Exception
[20:12]	VECTPENDING	0 = No pending exceptions.
		Non-zero = Exception number of the highest priority pending enabled exception.
[11:9]	Reserved	Reserved
		Contains the Active Exception Number
[8:0]	VECTACTIVE	0 = Thread mode.
-		Non-zero = Exception number of the currently active exception.

System Control Register (SCR)

Register	Offset	R/W	Description	Reset Value
SCR	SCS_BA+0xD10	R/W	System Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved SEVONPEND Reserved SLEEPDEEP SLEEPONEXI R					Reserved		

Bits	Description				
[31:5]	Reserved	Reserved			
		Send Event on Pending Bit			
		0 = Only enabled interrupts or events can wake-up the processor, disabled interrupts are excluded.			
[4]	SEVONPEND	1 = Enabled events and all interrupts, including disabled interrupts, can wake-up the processor.			
		When an event or interrupt enters pending state, the event signal wakes up the processor from WFE. If the processor is not waiting for an event, the event is registered and affects the next WFE.			
		The processor also wakes up on execution of an SEV instruction or an external event.			
[3]	Reserved	Reserved.			
		Processor Deep Sleep and Sleep Mode Selection			
[2]	SLEEPDEEP	Controls whether the processor uses sleep or deep sleep as its low power mode:			
احا	SEELI DELI	0 = Sleep mode.			
		1 = Deep Sleep mode.			
		Sleep-on-exit Enable Control			
		This bit indicates sleep-on-exit when returning from Handler mode to Thread mode.			
[1]	SLEEPONEXIT	0 = Do not sleep when returning to Thread mode.			
]		1 = Enter Sleep or Deep Sleep when returning from ISR to Thread mode. Setting this bit to 1 enables an interrupt driven application to avoid returning to an empty main application.			

System Handler Priority Register 2 (SHPR2)

Register	Offset	R/W	Description	Reset Value
SHPR2	SCS_BA+0xD1C	R/W	System Handler Priority Register 2	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_ 11						
23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8
7	6	5	4	3	2	1	0

Bits	Description					
[31:30] PRI 11		Priority of System Handler 11 – SVCall				
[01.00]		"0" denotes the highest priority and "3" denotes the lowest priority.				

System Handler Priority Register 3 (SHPR3)

Register	Offset	R/W	Description	Reset Value
SHPR3	SCS_BA+0xD20	R/W	System Handler Priority Register 3	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_15	Reserved					
23	22	21	20	19	18	17	16
PRI	_14			Rese	erved		
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Reserved							

Bits	Description	Description				
[31:30]	IPRI 15	Priority of System Handler 15 – SysTick "0" denotes the highest priority and "3" denotes the lowest priority.				
[23:22]	IPRI 14	Priority of System Handler 14 – PendSV "0" denotes the highest priority and "3" denotes the lowest priority.				

6.2 **Memory Organization**

6.2.1 Overview

nuvoTon

The Nano112 provides 4G-byte addressing space. The memory locations assigned to each on-chip modules are shown in following. The detailed register definition, memory space, and programming detailed will be described in the following sections for each on-chip module. The Nano112 series only supports little-endian data format.

6.2.2 Memory Map

The memory locations assigned to each on-chip controllers are shown in the following table.

Address Space	Token	Modules
Flash & SRAM Memory Space		
0x0000_0000 - 0x0001_FFFF	FLASH_BA	FLASH Memory Space (128KB)
0x2000_0000 - 0x2000_3FFF	SRAM_BA	SRAM Memory Space (16KB)
0x6000_0000 0x6001_FFFF	EXTMEM_BA	External Memory Space(128KB)
AHB Modules Space (0x5000_0000 -	- 0x501F_FFFF)	•
0x5000_0000 – 0x5000_01FF	GCR_BA	System Management Control Registers
0x5000_0200 - 0x5000_02FF	CLK_BA	Clock Control Registers
0x5000_0300 - 0x5000_03FF	INT_BA	Interrupt Multiplexer Control Registers
0x5000_4000 – 0x5000_7FFF	GPIO_BA	GPIO Control Registers
0x5000_8000 – 0x5000_BFFF	DMA_BA	DMA Control Registers
0x5000_C000 – 0x5000_FFFF	FMC_BA	Flash Memory Control Registers
APB1 Modules Space (0x4000_0000	~ 0x400F_FFFF)	•
0x4000_4000 – 0x4000_7FFF	WDT_BA	Watchdog Timer Control Registers
0x4000_8000 – 0x4000_BFFF	RTC_BA	Real Time Clock (RTC) Control Register
0x4001_0000 - 0x4001_3FFF	TMR01_BA	Timer0 and Timer1 Control Registers
0x4002_0000 - 0x4002_3FFF	I2C0_BA	I ² C0 Interface Control Registers
0x4003_0000 - 0x4003_3FFF	SPI0_BA	SPI0 with Master/Slave function Control Registers
0x4004_0000 - 0x4004_3FFF	PWM0_BA	PWM0 Control Registers
0x4005_0000 - 0x4005_3FFF	UART0_BA	UART0 Control Registers
0x400B_0000 - 0x400B_3FFF	LCD_BA	LCD Control Registers
0x400E_0000 - 0x400E_3FFF	ADC_BA	12-bit Analog-Digital-Converter (ADC) Control Registers
APB2 Modules Space (0x4010_0000	~ 0x401F_FFFF)	•
0x4011_0000 - 0x4011_3FFF	TMR23_BA	Timer2 and Timer3 Control Registers
0x4012_0000 - 0x4012_3FFF	I2C1_BA	I ² C1 Interface Control Registers
0x4013_0000 - 0x4013_3FFF	SPI1_BA	SPI1 with Master/Slave function Control Registers

0x4015_0000 - 0x4015_3FFF	UART1_BA	UART1 Control Registers
0x4019_0000 - 0x4019_3FFF	SC0_BA	SmartCard0 Control Registers
0x401B_0000 - 0x401B_3FFF	SC1_BA	SmartCard1 Control Registers
0x401D_0000 - 0x401D_3FFF	ACMP_BA	Analog Comparator Control Registers
System Control Space (0xE000_E000 ~	0xE000_EFFF)	
0xE000_E010 - 0xE000_E0FF	SCS_BA	System Timer Control Registers
0xE000_E100 - 0xE000_ECFF	SCS_BA	External Interrupt Controller Control Registers
0xE000_ED00 - 0xE000_ED8F	SCS_BA	System Control Registers

6.3 Nested Vectored Interrupt Controller (NVIC)

6.3.1 Overview

nuvoTon

The Cortex[®]-M0 provides an interrupt controller as an integral part of the exception mode, named as "Nested Vectored Interrupt Controller (NVIC)". It is closely coupled to the processor kernel and provides following features:

6.3.2 Features

- Nested and Vectored interrupt support
- Automatic processor state saving and restoration
- Dynamic priority changing
- Reduced and deterministic interrupt latency

The NVIC prioritizes and handles all supported exceptions. All exceptions are handled in "Handler Mode". This NVIC architecture supports 32 (IRQ[31:0]) discrete interrupts with 4 levels of priority. All of the interrupts and most of the system exceptions can be configured to different priority levels. When an interrupt occurs, the NVIC will compare the priority of the new interrupt to the current running one's priority. If the priority of the new interrupt is higher than the current one, the new interrupt handler will override the current handler.

When any interrupts is accepted, the starting address of the interrupt service routine (ISR) is fetched from a vector table in memory. There is no need to determine which interrupt is accepted and branch to the starting address of the correlated ISR by software. While the starting address is fetched, NVIC will also automatically save processor state including the registers "PC, PSR, LR, R0~R3, R12" to the stack. At the end of the ISR, the NVIC will restore the mentioned registers from stack and resume the normal execution. Thus it will take less and deterministic time to process the interrupt request.

The NVIC supports "Tail Chaining" which handles back-to-back interrupts efficiently without the overhead of states saving and restoration and therefore reduces delay time in switching to pending ISR at the end of current ISR. The NVIC also supports "Late Arrival" which improves the efficiency of concurrent ISRs. When a higher priority interrupt request occurs before the current ISR starts to execute (at the stage of state saving and starting address fetching), the NVIC will give priority to the higher one without delay penalty. Thus it advances the real-time capability.

For more detailed information, please refer to the "ARM® Cortex®-M0 Technical Reference Manual" and "ARM® v6-M Architecture Reference Manual".

6.3.3 Exception Model and System Interrupt Map

The following table lists the exception model supported by Nano112 serials. Software can set four levels of priority on some of these exceptions as well as on all interrupts. The highest user-configurable priority is denoted as "0" and the lowest priority is denoted as "3". The default priority of all the user-configurable interrupts is "0". Note that priority "0" is treated as the fourth priority on the system, after three system exceptions "Reset", "NMI" and "Hard Fault".

Exception Name	Vector Number	Priority
Reset	1	-3
NMI	2	-2
Hard Fault	3	-1
Reserved	4 ~ 10	Reserved
SVCall	11	Configurable
Reserved	12 ~ 13	Reserved
PendSV	14	Configurable
SysTick	15	Configurable
Interrupt (IRQ0 ~ IRQ31)	16 ~ 47	Configurable

Table 6-1 Exception Model

Vector Number	Interrupt Number (Bit In Interrupt Registers)	Interrupt Name	Source IP	Interrupt Description
0 ~ 15	-	-	-	System exceptions
16	0	BOD_INT	Brown-out	Brown-out low voltage detected interrupt
17	1	WDT_INT	WDT	Watchdog Timer interrupt
18	2	EINT0	GPIO	External signal interrupt from GPA.2, GPC.4 or PF.3 pin
19	3	EINT1	GPIO	External signal interrupt from PA.3, PB.1, PB.8, PD.13 or PF.2 pin
20	4	GPABC_INT	GPIO	External signal interrupt from PA[15:0] / PB[13:0]/PC[15:0]
21	5	GPDEF_INT	GPIO	External interrupt from PD[15:0]/PE[9:0]/PF[5:0]
22	6	PWM0_INT	PWM0	PWM0 interrupt
23	7			Reserved
24	8	TMR0_INT	TMR0	Timer0 interrupt
25	9	TMR1_INT	TMR1	Timer1 interrupt
26	10	TMR2_INT	TMR2	Timer2 interrupt
27	11	TMR3_INT	TMR3	Timer3 interrupt
28	12	UART0_INT	UART0	UART0 interrupt
29	13	UART1_INT	UART1	UART1 interrupt
30	14	SPI0_INT	SPI0	SPI0 interrupt
31	15	SPI1_INT	SPI1	SPI1 interrupt
32	16			Reserved
33	17	IRC_INT	IRC	IRC TRIM interrupt

Vector Number	Interrupt Number (Bit In Interrupt Registers)	Interrupt Name	Source IP	Interrupt Description
34	18	I2C0_INT	I2C0	I ² C0 interrupt
35	19	I2C1_INT	I2C1	I ² C1 interrupt
36	20			Reserved
37	21	SC0_INT	SC0	Smart Card0 interrupt
38	22	SC1_INT	SC1	Smart Card1 interrupt
39	23			Reserved
40	24			Reserved
41	25	LCD_INT	LCD	LCD interrupt
42	26	DMA_INT	DMA	DMA interrupt
43	27			Reserved
44	28	PD_WU_INT	CLKC	Clock controller interrupt for chip wake-up from power-down state
45	29	ADC_INT	ADC	ADC interrupt
46	30			Reserved
47	31	RTC_INT	RTC	Real time clock interrupt

Table 6-2 System Interrupt Map

6.3.4 Vector Table

nuvoton

When any interrupts is accepted, the processor will automatically fetch the starting address of the interrupt service routine (ISR) from a vector table in memory. For ARMv6-M, the vector table base address is fixed at 0x00000000. The vector table contains the initialization value for the stack pointer on reset, and the entry point addresses for all exception handlers. The vector number on previous page defines the order of entries in the vector table associated with exception handler entry as illustrated in previous section.

Vector Table Word Offset	Description	
0	SP_main – The Main stack pointer	
Vector Number	Exception Entry Pointer using that Vector Number	

Table 6-3 Vector Table Format

Operation Description

The NVIC interrupts can be enabled and disabled by writing to their corresponding Interrupt Set-Enable or Interrupt Clear-Enable register bit-field. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current enabled state of the corresponding interrupts. When an interrupt is disabled, interrupt assertion will cause the interrupt to become Pending, however, the interrupt will not activate. If an interrupt is Active when it is disabled, it remains in its Active state until

cleared by reset or an exception return. Clearing the enable bit prevents new activations of the associated interrupt.

nuvoton

The NVIC interrupts can be pended/un-pended using a complementary pair of registers to those used to enable/disable the interrupts, named the Set-Pending Register and Clear-Pending Register respectively. The registers use a write-1-to-enable and write-1-to-clear policy, both registers reading back the current pended state of the corresponding interrupts. The Clear-Pending Register has no effect on the execution status of an Active interrupt.

The NVIC interrupts are prioritized by updating an 8-bit field within a 32-bit register (each register supporting four interrupts).

The general registers associated with the NVIC are all accessible from a block of memory in the System Control Space and will be described in next section.

6.3.6 NVIC Control Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
SCS Base Add SCS_BA = 0xE				
NVIC_ISER	SCS_BA+0x100	R/W	IRQ0~IRQ31 Set-Enable Control Register	0x0000_0000
NVIC_ICER	SCS_BA+0x180	R/W	IRQ0~IRQ31 Clear-Enable Control Register	0x0000_0000
NVIC_ISPR	SCS_BA+0x200	R/W	IRQ0~IRQ31 Set-Pending Control Register	0x0000_0000
NVIC_ICPR	SCS_BA+0x280	R/W	IRQ0~IRQ31Clear-Pending Control Register	0x0000_0000
NVIC_IPR0	SCS_BA+0x400	R/W	IRQ0~IRQ3 Priority Control Register	0x0000_0000
NVIC_IPR1	SCS_BA+0x404	R/W	IRQ4~IRQ7 Priority Control Register	0x0000_0000
NVIC_IPR2	SCS_BA+0x408	R/W	IRQ8~IRQ11 Priority Control Register	0x0000_0000
NVIC_IPR3	SCS_BA+0x40C	R/W	IRQ12~IRQ15 Priority Control Register	0x0000_0000
NVIC_IPR4	SCS_BA+0x410	R/W	IRQ16~IRQ19 Priority Control Register	0x0000_0000
NVIC_IPR5	SCS_BA+0x414	R/W	IRQ20~IRQ23 Priority Control Register	0x0000_0000
NVIC_IPR6	SCS_BA+0x418	R/W	IRQ24~IRQ27 Priority Control Register	0x0000_0000
NVIC_IPR7	SCS_BA+0x41C	R/W	IRQ28~IRQ31 Priority Control Register	0x0000_0000

6.3.7 NVIC Control Register Description

IRQ0 ~ IRQ31 Set-Enable Control Register (NVIC_ISER)

Register	Offset	R/W	Description	Reset Value
NVIC_ISER	SCS_BA+0x100	R/W	IRQ0~IRQ31 Set-Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	SETENA								
23	22	21	20	19	18	17	16		
			SET	ENA					
15	14	13	12	11	10	9	8		
			SET	ENA					
7	6	5	4	3	2	1	0		
	SETENA								

Bits	Description	
[31:0]	SETENA	Interrupt Enable Bits Enable one or more interrupts. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Write Operation: 0 = No effect. 1 = Write 1 to enable associated interrupt. Read Operation: 0 = Associated interrupt status Disabled. 1 = Associated interrupt status Enabled. Read value indicates the current enable status.

IRQ0 ~ IRQ31 Clear-Enable Control Register (NVIC_ICER)

Register	Offset	R/W	Description	Reset Value
NVIC_ICER	SCS_BA+0x180	R/W	IRQ0~IRQ31 Clear-Enable Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	CLRENA								
23	22	21	20	19	18	17	16		
			CLR	ENA					
15	14	13	12	11	10	9	8		
	CLRENA								
7 6 5 4 3 2 1 0							0		
	CLRENA								

Bits	Description	
[31:0]	CLRENA	Interrupt Disable Bits Disable one or more interrupts. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Write Operation: 0 = No effect. 1 = Write 1 to disable associated interrupt. Read Operation: 0 = Associated interrupt status Disabled. 1 = Associated interrupt status Enabled. Read value indicates the current enable status.

IRQ0 ~ IRQ31 Set-Pending Control Register (NVIC_ISPR)

Register	Offset	R/W	Description	Reset Value
NVIC_ISPR	SCS_BA+0x200	R/W	IRQ0~IRQ31 Set-Pending Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	SETPEND								
23	22	21	20	19	18	17	16		
	SETPEND								
15	14	13	12	11	10	9	8		
	SETPEND								
7 6 5 4 3 2 1 0							0		
	SETPEND								

Bits	Description				
[31:0]	SETPEND	Set Interrupt Pending Write Operation: 0 = No effect. 1 = Write 1 to set pending state. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Read Operation: 0 = Associated interrupt in not in pending status. 1 = Associated interrupt is in pending status. Read value indicates the current pending status.			

IRQ0 ~ IRQ31 Clear-Pending Control Register (NVIC_ICPR)

Register	Offset	R/W	Description	Reset Value
NVIC_ICPR	SCS_BA+0x280	R/W	IRQ0~IRQ31Clear-Pending Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	CLRPEND								
23	22	21	20	19	18	17	16		
	CLRPEND								
15	14	13	12	11	10	9	8		
	CLRPEND								
7 6 5 4 3 2 1 0							0		
	CLRPEND								

Bits	Description	Description				
[31:0]	CLRPEND	Clear Interrupt Pending Write Operation: 0 = No effect. 1 = Write 1 to clear pending state. Each bit represents an interrupt number from IRQ0 ~ IRQ31 (Vector number from 16 ~ 47). Read Operation: 0 = Associated interrupt in not in pending status. 1 = Associated interrupt is in pending status. Read value indicates the current pending status.				

IRQ0 ~ IRQ3 Interrupt Priority Register (NVIC_IPR0)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR0	SCS_BA+0x400	R/W	IRQ0~IRQ3 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PR	I_3	Reserved					
23	22	21	20	19	18	17	16
PR	I_2	Reserved					
15	14	13	12	11	10	9	8
PR	I_1	Reserved					
7	6	5	4	3	2	1	0
PR	1_0	Reserved					

Bits	Description					
[31:30]	PRI_3	Priority of IRQ3 "0" denotes the highest priority and "3" denotes the lowest priority.				
[23:22]	PRI_2	Priority of IRQ2 "0" denotes the highest priority and "3" denotes the lowest priority.				
[15:14]	PRI_1	Priority of IRQ1 "0" denotes the highest priority and "3" denotes the lowest priority.				
[7:6]	PRI_0	Priority of IRQ0 "0" denotes the highest priority and "3" denotes the lowest priority.				

IRQ4 ~ IRQ7 Interrupt Priority Register (NVIC_IPR1)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR1	SCS_BA+0x404	R/W	IRQ4~IRQ7 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PR	1_7	Reserved					
23	22	21	20	19	18	17	16
PR	I_6	Reserved					
15	14	13	12	11	10	9	8
PR	I_5			Rese	erved		
7	6	5	4	3	2	1	0
PR	1_4	Reserved					

Bits	Description	Description				
[31:30]	PRI_7	Priority of IRQ7 "0" denotes the highest priority and "3" denotes the lowest priority.				
[23:22]	PRI_6	Priority of IRQ6 "0" denotes the highest priority and "3" denotes the lowest priority.				
[15:14]	PRI_5	Priority of IRQ5 "0" denotes the highest priority and "3" denotes the lowest priority.				
[7:6]	PRI_4	Priority of IRQ4 "0" denotes the highest priority and "3" denotes the lowest priority.				

IRQ8 ~ IRQ11 Interrupt Priority Register (NVIC_IPR2)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR2	SCS_BA+0x408	R/W	IRQ8~IRQ11 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_11	Reserved					
23	22	21	20	19	18	17	16
PRI	_10	Reserved					
15	14	13	12	11	10	9	8
PR	I_9	Reserved					
7	6	5	4	3	2	1	0
PR	I_8	Reserved					

Bits	Description	Description			
[31:30]	PRI 11	Priority of IRQ11 "0" denotes the highest priority and "3" denotes the lowest priority.			
[23:22]	PRI_10	Priority of IRQ10 "0" denotes the highest priority and "3" denotes the lowest priority.			
[15:14]	PRI_9	Priority of IRQ9 "0" denotes the highest priority and "3" denotes the lowest priority.			
[7:6]	PRI_8	Priority of IRQ8 "0" denotes the highest priority and "3" denotes the lowest priority.			

IRQ12 ~ IRQ15 Interrupt Priority Register (NVIC_IPR3)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR3	SCS_BA+0x40C	R/W	IRQ12~IRQ15 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PR	_15	Reserved					
23	22	21	20	19	18	17	16
PR	I_ 14	Reserved					
15	14	13	12	11	10	9	8
PR	PRI_13 Reserved						
7	6	5	4	3	2	1	0
PR	I_ 12	Reserved					

Bits	Description					
[31:30]	PRI_15	Priority of IRQ15 "0" denotes the highest priority and "3" denotes the lowest priority.				
[23:22]	PRI_14	Priority of IRQ14 "0" denotes the highest priority and "3" denotes the lowest priority.				
[15:14]	PRI_13	Priority of IRQ13 "0" denotes the highest priority and "3" denotes the lowest priority.				
[7:6]	PRI_12	Priority of IRQ12 "0" denotes the highest priority and "3" denotes the lowest priority.				

IRQ16 ~ IRQ19 Interrupt Priority Register (NVIC_IPR4)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR4	SCS_BA+0x410	R/W	IRQ16~IRQ19 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
PR	_19		Re			rved		
23	22	21	20	19	18	17	16	
PR	RI_18 Reserved							
15	14	13	12	11	10	9	8	
PRI_17 Reserved								
7	6	5	4	3	2	1	0	
PRI	_16	Reserved						

Bits	Description	Description					
[31:30]	PRI_19	Priority of IRQ19 "0" denotes the highest priority and "3" denotes the lowest priority.					
[23:22]	PRI_18	Priority of IRQ18 "0" denotes the highest priority and "3" denotes the lowest priority.					
[15:14]	PRI_17	Priority of IRQ17 "0" denotes the highest priority and "3" denotes the lowest priority.					
[7:6]	PRI_16	Priority of IRQ16 "0" denotes the highest priority and "3" denotes the lowest priority.					

IRQ20 ~ IRQ23 Interrupt Priority Register (NVIC_IPR5)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR5	SCS_BA+0x414	R/W	IRQ20~IRQ23 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_23	Reserved					
23	22	21	20	19	18	17	16
PRI	_22	Reserved					
15	14	13	12	11	10	9	8
PRI	_21	Reserved					
7	6	5	4	3	2	1	0
PRI	_20	Reserved					

Bits	Description					
[31:30]	PRI 23	Priority of IRQ23 "0" denotes the highest priority and "3" denotes the lowest priority.				
[23:22]	PRI_22	Priority of IRQ22 "0" denotes the highest priority and "3" denotes the lowest priority.				
[15:14]	PRI_21	Priority of IRQ21 "0" denotes the highest priority and "3" denotes the lowest priority.				
[7:6]	PRI_20	Priority of IRQ20 "0" denotes the highest priority and "3" denotes the lowest priority.				

IRQ24 ~ IRQ27 Interrupt Priority Register (NVIC_IPR6)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR6	SCS_BA+0x418	R/W	IRQ24~IRQ27 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_27	Reserved					
23	22	21	20	19	18	17	16
PRI	_26	Reserved					
15	14	13	12	11	10	9	8
PRI	_25	Reserved					
7	6	5	4	3	2	1	0
PRI	I_ 24	Reserved					

Bits	Description	Description			
[31:30]	PRI_27	Priority of IRQ27 "0" denotes the highest priority and "3" denotes the lowest priority.			
[23:22]	PRI_26	Priority of IRQ26 "0" denotes the highest priority and "3" denotes the lowest priority.			
[15:14]	PRI_25	Priority of IRQ25 "0" denotes the highest priority and "3" denotes the lowest priority.			
[7:6]	PRI_24	Priority of IRQ24 "0" denotes the highest priority and "3" denotes the lowest priority.			

IRQ28 ~ IRQ31 Interrupt Priority Register (NVIC_IPR7)

Register	Offset	R/W	Description	Reset Value
NVIC_IPR7	SCS_BA+0x41C	R/W	IRQ28~IRQ31 Priority Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PRI	_31	Reserved					
23	22	21	20	19	18	17	16
PRI	_30	Reserved					
15	14	13	12	11	10	9	8
PRI	_29	Reserved					
7	6	5	4	3	2	1	0
PRI	I_ 28			Rese	erved		

Bits	Description	Description		
[31:30]	PRI_31	Priority of IRQ31 "0" denotes the highest priority and "3" denotes the lowest priority.		
[23:22]	PRI_30	Priority of IRQ30 "0" denotes the highest priority and "3" denotes the lowest priority.		
[15:14]	PRI_29	Priority of IRQ29 "0" denotes the highest priority and "3" denotes the lowest priority.		
[7:6]	IPRI 28	Priority of IRQ28 "0" denotes the highest priority and "3" denotes the lowest priority.		

6.3.8 **Interrupt Source Control Registers**

nuvoTon

Besides the interrupt control registers associated with the NVIC, the Nano112 serials also implement some specific control registers to facilitate the interrupt functions, including "interrupt source identify", and "NMI source selection", which are described below.

6.3.8.1 Interrupt Source Control Register Map

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
SCS Base Add INT_BA = 0x50				
IRQ0_SRC	INT_BA+0x00	R	MCU IRQ0 (BOD_INT) interrupt source identify	0xXXXX_XXXX
IRQ1_SRC	INT_BA+0x04	R	MCU IRQ1 (WDT_INT) interrupt source identify	0xXXXX_XXXX
IRQ2_SRC	INT_BA+0x08	R	MCU IRQ2 (EINT0) interrupt source identify	0xXXXX_XXXX
IRQ3_SRC	INT_BA+0x0C	R	MCU IRQ3 (EINT1) interrupt source identify	0xXXXX_XXXX
IRQ4_SRC	INT_BA+0x10	R	MCU IRQ4 (GPABC_INT) interrupt source identify	0xXXXX_XXXX
IRQ5_SRC	INT_BA+0x14	R	MCU IRQ5 (GPDEF_INT) interrupt source identify	0xXXXX_XXXX
IRQ6_SRC	INT_BA+0x18	R	MCU IRQ6 (PWM0_INT) interrupt source identify	0xXXXX_XXXX
IRQ7_SRC	INT_BA+0x1C	R	Reserved	0x0000_0000
IRQ8_SRC	INT_BA+0x20	R	MCU IRQ8 (TMR0_INT) interrupt source identify	0xXXXX_XXXX
IRQ9_SRC	INT_BA+0x24	R	MCU IRQ9 (TMR1_INT) interrupt source identify	0xXXXX_XXXX
IRQ10_SRC	INT_BA+0x28	R	MCU IRQ10 (TMR2_INT) interrupt source identify	0xXXXX_XXXX
IRQ11_SRC	INT_BA+0x2C	R	MCU IRQ11 (TMR3_INT) interrupt source identify	0xXXXX_XXXX
IRQ12_SRC	INT_BA+0x30	R	MCU IRQ12 (UART0_INT) interrupt source identify	0xXXXX_XXXX
IRQ13_SRC	INT_BA+0x34	R	MCU IRQ13 (UART1_INT) interrupt source identify	0xXXXX_XXXX
IRQ14_SRC	INT_BA+0x38	R	MCU IRQ14 (SPI0_INT) interrupt source identify	0xXXXX_XXXX
IRQ15_SRC	INT_BA+0x3C	R	MCU IRQ15 (SPI1_INT) interrupt source identify	0xXXXX_XXXX
IRQ16_SRC	INT_BA+0x40	R	Reserved	0x0000_0000
IRQ17_SRC	INT_BA+0x44	R	MCU IRQ17 (IRC_INT) interrupt source identify	0xXXXX_XXXX

	•			
IRQ18_SRC	INT_BA+0x48	R	MCU IRQ18 (I2C0_INT) interrupt source identify	0xXXXX_XXXX
IRQ19_SRC	INT_BA+0x4C	R	MCU IRQ19 (I2C1_INT) interrupt source identify	0xXXXX_XXXX
IRQ20_SRC	INT_BA+0x50	R	Reserved	0x0000_0000
IRQ21_SRC	INT_BA+0x54	R	MCU IRQ21 (SC0_INT) interrupt source identify	0xXXXX_XXXX
IRQ22_SRC	INT_BA+0x58	R	MCU IRQ22 (SC1_INT) interrupt source identify	0xXXXX_XXXX
IRQ23_SRC	INT_BA+0x5C	R	Reserved	0x0000_0000
IRQ24_SRC	INT_BA+0x60	R	MCU IRQ24 (CKSD_INT) interrupt source identify	0xXXXX_XXXX
IRQ25_SRC	INT_BA+0x64	R	MCU IRQ25 (LCD_INT) interrupt source identify	0xXXXX_XXXX
IRQ26_SRC	INT_BA+0x68	R	MCU IRQ26 (DMA_INT) interrupt source identify	0xXXXX_XXXX
IRQ27_SRC	INT_BA+0x6C	R	Reserved	0x0000_0000
IRQ28_SRC	INT_BA+0x70	R	MCU IRQ28 (PDWU_INT) interrupt source identify	0xXXXX_XXXX
IRQ29_SRC	INT_BA+0x74	R	MCU IRQ29 (ADC_INT) interrupt source identify	0xXXXX_XXXX
IRQ30_SRC	INT_BA+0x78	R	MCU IRQ30 (ACMP_INT) interrupt source identify	0xXXXX_XXXX
IRQ31_SRC	INT_BA+0x7C	R	MCU IRQ31 (RTC_INT) interrupt source identify	0xXXXX_XXXX
NMI_SEL	INT_BA+0x80	R/W	NMI Source Interrupt Select Control Register	0x0000_0000
MCU_IRQ	INT_BA+0x84	R/W	MCU Interrupt Request Source Register	0x0000_0000

6.3.8.2 Interrupt source control register description

Interrupt Source Identify Register (IRQn_SRC)

Register	Offset	R/W	Description	Reset Value
IRQ0_SRC	INT_BA+0x00	R	MCU IRQ0 (BOD_INT) interrupt source identify	0xXXXX_XXXX
IRQ1_SRC	INT_BA+0x04	R	MCU IRQ1 (WDT_INT) interrupt source identify	0xXXXX_XXXX
IRQ2_SRC	INT_BA+0x08	R	MCU IRQ2 (EINT0) interrupt source identify	0xXXXX_XXXX
IRQ3_SRC	INT_BA+0x0C	R	MCU IRQ3 (EINT1) interrupt source identify	0xXXXX_XXXX
IRQ4_SRC	INT_BA+0x10	R	MCU IRQ4 (GPABC_INT) interrupt source identify	0xXXXX_XXXX
IRQ5_SRC	INT_BA+0x14	R	MCU IRQ5 (GPDEF_INT) interrupt source identify	0xXXXX_XXXX
IRQ6_SRC	INT_BA+0x18	R	MCU IRQ6 (PWM0_INT) interrupt source identify	0xXXXX_XXXX
IRQ7_SRC	INT_BA+0x1C	R	Reserved	0x0000_0000
IRQ8_SRC	INT_BA+0x20	R	MCU IRQ8 (TMR0_INT) interrupt source identify	0xXXXX_XXXX
IRQ9_SRC	INT_BA+0x24	R	MCU IRQ9 (TMR1_INT) interrupt source identify	0xXXXX_XXXX
IRQ10_SRC	INT_BA+0x28	R	MCU IRQ10 (TMR2_INT) interrupt source identify	0xXXXX_XXXX
IRQ11_SRC	INT_BA+0x2C	R	MCU IRQ11 (TMR3_INT) interrupt source identify	0xXXXX_XXXX
IRQ12_SRC	INT_BA+0x30	R	MCU IRQ12 (UART0_INT) interrupt source identify	0xXXXX_XXXX
IRQ13_SRC	INT_BA+0x34	R	MCU IRQ13 (UART1_INT) interrupt source identify	0xXXXX_XXXX
IRQ14_SRC	INT_BA+0x38	R	MCU IRQ14 (SPI0_INT) interrupt source identify	0xXXXX_XXXX
IRQ15_SRC	INT_BA+0x3C	R	MCU IRQ15 (SPI1_INT) interrupt source identify	0xXXXX_XXXX
IRQ16_SRC	INT_BA+0x40	R	Reserved	0x0000_0000
IRQ17_SRC	INT_BA+0x44	R	MCU IRQ17 (IRC_INT) interrupt source identify	0xXXXX_XXXX
IRQ18_SRC	INT_BA+0x48	R	MCU IRQ18 (I2C0_INT) interrupt source identify	0xXXXX_XXXX
IRQ19_SRC	INT_BA+0x4C	R	MCU IRQ19 (I2C1_INT) interrupt source identify	0xXXXX_XXXX
IRQ20_SRC	INT_BA+0x50	R	Reserved	0x0000_0000
IRQ21_SRC	INT_BA+0x54	R	MCU IRQ21 (SC0_INT) interrupt source identify	0xXXXX_XXXX
IRQ22_SRC	INT_BA+0x58	R	MCU IRQ22 (SC1_INT) interrupt source identify	0xXXXX_XXXX

IRQ23_SRC	INT_BA+0x5C	R	Reserved	0x0000_0000
IRQ24_SRC	INT_BA+0x60	R	MCU IRQ24 (CKSD_INT) interrupt source identify	0xXXXX_XXXX
IRQ25_SRC	INT_BA+0x64	R	MCU IRQ25 (LCD_INT) interrupt source identify	0xXXXX_XXXX
IRQ26_SRC	INT_BA+0x68	R	MCU IRQ26 (DMA_INT) interrupt source identify	0xXXXX_XXXX
IRQ27_SRC	INT_BA+0x6C	R	Reserved	0x0000_0000
IRQ28_SRC	INT_BA+0x70	R	MCU IRQ28 (PDWU_INT) interrupt source identify	0xXXXX_XXXX
IRQ29_SRC	INT_BA+0x74	R	MCU IRQ29 (ADC_INT) interrupt source identify	0xXXXX_XXXX
IRQ30_SRC	INT_BA+0x78	R	MCU IRQ30 (ACMP_INT) interrupt source identify	0xXXXX_XXXX
IRQ31_SRC	INT_BA+0x7C	R	MCU IRQ31 (RTC_INT) interrupt source identify	0xXXXX_XXXX

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
Reserved				INT_	SRC			

Bits	Description	Description		
[31:4]	Reserved	eserved Reserved.		
[3:0]	INT SRC	Interrupt Source Define the interrupt sources for interrupt event.		

Address	INT Number	Bits	Description
INT_BA+0x00	0	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = BOD_INT
INT_BA+0x04	1	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = WDT_INT
INT_BA+0x08	2	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0

Address	INT Number	Bits	Description	
			Bit0 = EINT0 – external interrupt 0 from PB.14	
INT_BA+0x0C	3	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = EINT1 – external interrupt 1 from PB.15	
INT_BA+0x10	4	[2:0]	Bit2 = GPC_INT Bit1 = GPB_INT Bit0 = GPA_INT	
INT_BA+0x14	5	[2:0]	Bit2 = GPF_INT Bit1 = GPE_INT Bit0 = GPD_INT	
INT_BA+0x18	6	[3:0]	Bit3 = PWM0_CH3_INT Bit2 = PWM0_CH2_INT Bit1 = PWM0_CH1_INT Bit0 = PWM0_CH0_INT	
INT_BA+0x1C	7	[3:0]	Reserved	
INT_BA+0x20	8	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = TMR0_INT	
INT_BA+0x24	9	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = TMR1_INT	
INT_BA+0x28	10	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = TMR2_INT	
INT_BA+0x2C	11	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = TMR3_INT	
INT_BA+0x30	12	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = UART0_INT	
INT_BA+0x34	13	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = UART1_INT	
INT_BA+0x38	14	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = SPI0_INT	
INT_BA+0x3C	15	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = SPI1_INT	
INT_BA+0x40	16	[2:0]	Reserved	
INT_BA+0x44	17	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0	

Address	INT Number	Bits	Description
			Bit0 = IRC_INT
INT_BA+0x48	18	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = I2C0_INT
INT_BA+0x4C	19	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = I2C1_INT
INT_BA+0x50	20	[2:0]	Reserved
INT_BA+0x54	21	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = SC0_INT
INT_BA+0x58	22	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = SC1_INT
INT_BA+0x5C	23	[2:0]	Reserved
INT_BA+0x60	24	[2:0]	Reserved
INT_BA+0x64	25	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = LCD_INT
INT_BA+0x68	26	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = DMA_INT
INT_BA+0x6C	27	[2:0]	Reserved
INT_BA+0x70	28	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = PD_WU_INT
INT_BA+0x74	29	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = ADC_INT
INT_BA+0x78	30	[2:0]	Reserved
INT_BA+0x7C	31	[2:0]	Bit2 = 1'b0 Bit1 = 1'b0 Bit0 = RTC_INT

NMI Interrupt Source Select Control Register (NMI_SEL)

Register	Offset	R/W	Description	Reset Value
NMI_SEL	INT_BA+0x80	R/W	NMI Source Interrupt Select Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved				NMI_SEL		

Bits	Description			
[31:5]	Reserved	served Reserved.		
[4:0]	The NMI Interrupt to Cortex-m0 Can Be Selected from One of the Interrupt NMI_SEL bit[4:0] is used to select the NMI interrupt source			

MCU Interrupt Request Source Register (MCU_IRQ)

Register	Offset	R/W	Description	Reset Value
MCU_IRQ	INT_BA+0x84	R/W	MCU Interrupt Request Source Register	0x0000_0000

31	30	29	28	27	26	25	24
	MCU_IRQ						
23	22	21	20	19	18	17	16
			MCU	_IRQ			
15	14	13	12	11	10	9	8
			MCU	_IRQ			
7	6	5	4	3	2	1	0
MCU_IRQ							

Bits	Description			
[31:0]	MCU_IRQ	MCU IRQ Source Bits The MCU_IRQ collects all the interrupts from the peripherals and generates the synchronous interrupt to MCU Cortex-M0. There are two modes to generate interrupt to Cortex-M0, the normal mode. The MCU_IRQ collects all interrupts from each peripheral and synchronizes them and then interrupts the Cortex-M0. When the MCU_IRQ[n] is "0", setting MCU_IRQ[n] "1" will generate an interrupt to Cortex_M0 NVIC[n]. When the MCU_IRQ[n] is "1" (means an interrupt is asserted), setting the MCU_bit[n] will clear the interrupt Set MCU_IRQ[n] "0": no any effect		

6.4 System Manager

6.4.1 Overview

nuvoton

System manager mainly controls the power modes, wake-up sources, power architecture, reset sources, scalable LDO and system memory map. It also provides information about product ID and multi-function pin control.

6.4.2 Features

- Power modes and wake-up sources
- System power architecture
- Reset sources
- Scalable LDO
- System Memory Map
- System manager registers for:
 - Part Number ID
 - Multi-functional pin control

6.4.3 Functional Description

6.4.3.1 Power modes and Wake-up sources

There are three power modes. There are several wake-up sources in Idle mode and Power-down mode. The available clocks depend on each power mode.

Power Modes:

- Normal mode:
 - Definition: CPU is active.
 - Entry condition: chip is in this power after system reset released
 - Wake-up sources: N/A
 - Available clocks: All.
 - After wake-up: N/A
- Idle mode:
 - Definition: CPU is in sleep mode.
 - Entry condition: CPU sets sleep mode enable and executes WFI instruction.
 - Wake-up source: all interrupts
 - Available clocks: all except CPU clock.
 - After wake-up: CPU back to normal mode.
- Power-down mode:
 - Definition: CPU is in sleep mode and all clocks stop except LXT and LIRC. SRAM content is retained.

- Entry condition: CPU sets sleep mode enable and power down enable and executes WFI instruction.
- Wake-up sources: RTC, WDT, I2C, Timer, UART, SPI, BOD, GPIO
- Available clocks: LXT and LIRC

After wake-up: CPU back to normal mode

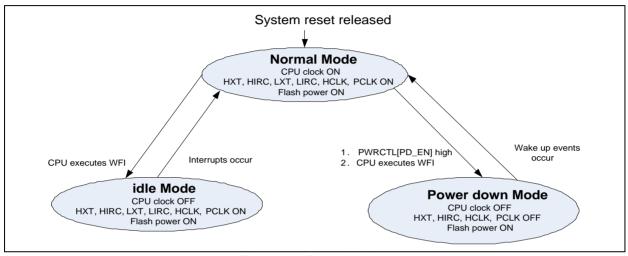


Figure 6-2 Power Modes

	Normal Mode	Idle Mode	Power-Down Mode
Wake-up time to Normal mode	0	0	6us: from wake-up event to first CPU core valid clock
HXT (4~24 MHz XTL)	ON	ON	Halt
HIRC (12/16 MHz OSC)	ON	ON	Halt
LXT (32768 Hz XTL)	ON	ON	ON/OFF ¹
LIRC (10 kHz OSC)	ON	ON	ON/OFF ²
PLL	ON	ON	Halt
LDO	ON	ON	ON
CPU	ON	Halt	Halt
HCLK/PCLK	ON	ON	Halt
SRAM retention	ON	ON	ON
FLASH	ON	ON	Halt
GPIO	ON	ON	Halt
DMA	ON	ON	Halt
I ² C	ON	ON	Halt
PWM	ON	ON	Halt
TIMER	ON	ON	Halt

UART	ON	ON	Halt
SPI	ON	ON	Halt
RTC	ON	ON	ON/OFF ³
WDT	ON	ON	ON/OFF ⁴
LCD	ON	ON	ON/OFF ⁵
ADC	ON	ON	Halt

Table 6-4 Clocks in Power Modes

- 1. LXT (32768 Hz XTL) ON or OFF is depended on SW setting in run mode
- 2. LIRC (10 kHz OSC) ON or OFF is depended on S/W setting in run mode
- 3. RTC functions if LXT is ON
- 4. WDT functions if LIRC is ON.
- 5. LCD functions if LXT is ON.

Mode Name	Entry	Wake-up Sources	Available Clocks	LDO
Normal	After power release	NA	all	ON
HXT (4~24 MHz XTL)	ON	ON	Halt	
HIRC (12/16 MHz OSC)	ON	ON	Halt	
LXT (32768 Hz XTL)	ON	ON	ON/OFF ¹	
LIRC (10 kHz OSC)	ON	ON	ON/OFF ²	
PLL	ON	ON	Halt	
LDO	ON	ON	ON	
CPU	ON	Halt	Halt	
HCLK/PCLK	ON	ON	Halt	
SRAM retention	ON	ON	ON	
FLASH	ON	ON	Halt	
GPIO	ON	ON	Halt	
DMA	ON	ON	Halt	
I ² C	ON	ON	Halt	

Table 6-5 Summary of Power Modes

Wake-up sources in Power-down mode:

nuvoTon

RTC, WDT, I2C, Timer, UART, SPI, BOD, GPIO

After chip enters power down, the following wake-up sources can wake chip up to normal mode and list the condition about how to enter Power-down mode again for each peripheral.

Wake-Up Source	Wake-Up Condition	System Can Enter Power-Down Mode Again Condition (User Need To Wait This Condition Before Setting PD_EN(PWRCTL[6]) And Execute WFI To Enter Power-down mode)
External		After upor write 4 to clear the CDIOV ISDC hit
Interrupts	-	After user write 1 to clear the GPIOx_ISRC bit.
LIADT	Data wake-up	None
UART	CTSn wake-up	Requiring 2 UART_CLK after wake-up.
GPIO	-	After user write 1 to clear the GPIOx_ISRC bit.
RTC	-	Requiring 1 RTC_CLK (about 30 µs) after wake-up.
SPI	-	After SPI slave clock goes from high to low (depending on exteral SPI master)
Timer	TMRx_ISR[TCAP_IS]	After software sets timer TMRx_ISR[SW_RST] (software reset) or software writes 1 to clear TMRx_ISR[TCAP_IS].
rimei	TMRx_ISR[TMR_IS]	After software sets timer TMRx_ISR[SW_RST] (software reset) or software writes 1 to clear TMRx_ISR[TMR_IS].
WDT	-	None
BOD	-	After voltage is raised higher than target voltage or BODx_INT_EN is set to low.
I ² C	-	None

Table 6-6 Condition of Entering Power-down Mode Again Table

6.4.3.2 System Resets

The system reset includes the events listed below. These reset events can be read by the RST_SRC register.

- Hardware Reset
 - Power-on Reset (POR)
 - Brown-out Reset (BOD)
 - Low level on the nRESET pin
 - Watchdog Timer Time-out Reset
- Software Reset
 - MCU Reset SYSRESETREQ(AIRCR[2]
 - Cortex-M0 MCU One-shot Reset- CPU_RST(IPRSTC1[1])
 - Chip One-shot Reset CHIP_RST(IPRSTC1[0])

6.4.3.3 System Power Architecture

In this chip, the power distribution is divided into two segments.

Analog power from AV_{DD} and AV_{SS} provides the power for analog components operation. AV_{DD}

must be equal to V_{DD} to avoid leakage current.

nuvoTon

Digital power from V_{DD} and V_{SS} supplies power to the I/O pins and internal regulator which provides a scalable 1.8 V/1.6 V power for digital operation.

The internal voltage regulator needs an external capacitor (LDO_CAP) to provide stable power for digital operation. Analog power (AVDD) should be the same voltage level as the digital power (VDD). The following figure shows the power distribution.

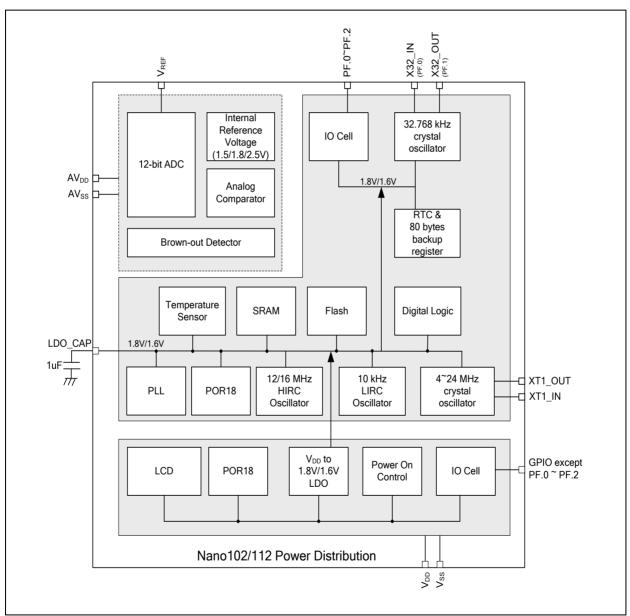


Figure 6-3 Power Architecture

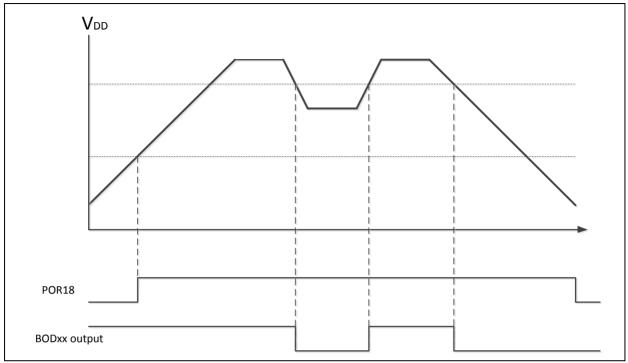


Figure 6-4 Power Supervisors

6.4.3.4 Scalable LDO

nuvoTon

This chip provides scalable LDO to balance the performance and power consumption. There are two options of LDO output voltage: 1.8V and 1.6V. Use 1.8V option when higher performance (operating speed higher than 12MHz) is required. Use 1.6V option when lower power is demand.

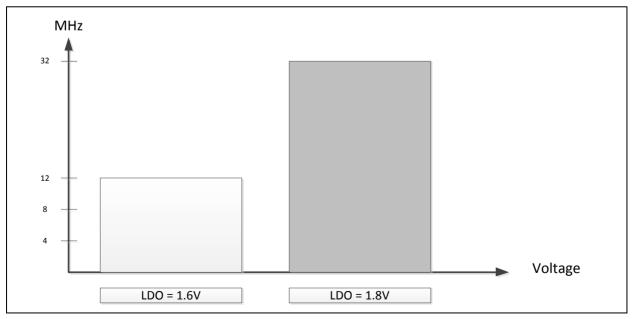


Figure 6-5 Scalable LDO and Performance

6.4.3.5 Auto-trim

nuvoTon

This chip supports auto-trim function: the HIRC trim (12/16 MHz RC oscillator), according to the accurate LXT (32.768 kHz crystal oscillator), automatically gets accurate HIRC output frequency, 1 % deviation within all temperature ranges. For instance, PLL needs an accurate 12 MHz input clock to output accurate clock. In such case, if users do not want to use 12 MHz HXT as PLL input clock, they need to solder 32.768 kHz crystal in system, and set the HIRC target output clock to 12 MHz by setting TRIM SEL (IRCTRIMCTL[1:0] trim frequency selection) to "10", and the auto-trim function will be enabled. Interrupt status bit FREQ_LOCK (IRCTRIMINT[0] HIRC frequency lock status) high indicates the HIRC output frequency is accurate within 1% deviation. To get better results, it is recommended to set both TRIM LOOP (IRCTRIMCTL[5:4] trim calculation loop) and TRIM RETRY CNT (IRCTRIMCTL[7:6] trim value update limitation count) to "11".

6.4.4 **Register Map**

nuvoTon

Open lock sequence for protected registers

Some of the system control registers need to be protected to avoid inadvertent write and disturb the chip operation. These system control registers are locked after the power-on reset till users to open the lock. For users to program these protected registers, an open lock sequence needs to be followed by a special programming sequence. The open sequence is to continually write the data "59h", "16h" "88h" to the key controller address 0x5000_0100(RegLockAddr). Any different data value or different sequence or any other write operations to any other address during these three data program aborts the whole sequence. Therefore, users only follow the order of these three data and do not need to care the time interval when writing them.

After the lock is opened, users can check the lock bit RegLockAddr[0]. "1" is unlocked, "0" is locked. Then users can update the target register value if RegUnLock is high and write any data to the address "0x5000 0100" to re-lock the protected registers

Register	Offset	R/W	Description	Reset Value			
GCR Base Address: GCR_BA = 0x5000_0000							
PDID	GCR_BA+0x00	R	Part Device Identification Number Register	0x0011_XXXX			
RST_SRC	GCR_BA+0x04	R/W	System Reset Source Register	0x0000_00xx			
IPRST_CTL1	GCR_BA+0x08	R/W	Peripheral Reset Control Resister1	0x0000_0000			
IPRST_CTL2	GCR_BA+0x0C	R/W	Peripheral Reset Control Resister2	0x0000_0000			
TEMPCTL	GCR_BA+0x20	R/W	Temperature Sensor Control Register	0x0000_0000			
PA_L_MFP	GCR_BA+0x30	R/W	Port A Low Byte Multiple Function Control Register	0x0000_0000			
PA_H_MFP	GCR_BA+0x34	R/W	Port A High Byte Multiple Function Control Register	0x0000_0000			
PB_L_MFP	GCR_BA+0x38	R/W	Port B Low Byte Multiple Function Control Register	0x0000_0000			
PB_H_MFP	GCR_BA+0x3C	R/W	Port B High Byte Multiple Function Control Register	0x0000_0000			
PC_L_MFP	GCR_BA+0x40	R/W	Port C Low Byte Multiple Function Control Register	0x0000_0000			
PC_H_MFP	GCR_BA+0x44	R/W	Port C High Byte Multiple Function Control Register	0x0000_0000			
PD_L_MFP	GCR_BA+0x48	R/W	Port D Low Byte Multiple Function Control Register	0x0000_0000			
PD_H_MFP	GCR_BA+0x4C	R/W	Port D High Byte Multiple Function Control Register	0x0000_0000			
PE_L_MFP	GCR_BA+0x50	R/W	Port E Low Byte Multiple Function Control Register	0x0000_0000			
PE_H_MFP	GCR_BA+0x54	R/W	Port E High Byte Multiple Function Control Register	0x0000_0000			
PF_L_MFP	GCR_BA+0x58	R/W	Port F Low Byte Multiple Function Control Register	0x00FF_FFFF			
PORCTL	GCR_BA+0x60	R/W	Power-On-Reset Controller Register	0x0000_0000			
BODCTL	GCR_BA+0x64	R/W	Brown-out Detector Controller Register	0x00xx_x0xx			

BODSTS	GCR_BA+0x68	R	Brown-out Detector Status Register	0x0000_0000
Int_VREFCTL	GCR_BA+0x6C	R/W	Internal Voltage Reference Control Register	0x0000_0700
LDO_CTL	GCR_BA+0x70	R/W	LDO Control Register	0x0000_0X0C
IRCTRIMCTL	GCR_BA+0x80	R/W	HIRC Trim Control Register	0x0000_0000
IRCTRIMIEN	GCR_BA+0x84	R/W	HIRC Trim Interrupt Enable Register	0x0000_0000
IRCTRIMINT	GCR_BA+0x88	R/W	HIRC Trim Interrupt Status Register	0x0000_0000
RegLockAddr	GCR_BA+0x100	R/W	Register Lock Key address	0x0000_0000

6.4.5 Register Description

nuvoTon

Part Device Identification number Register (PDID)

Register	Offset	R/W	Description	Reset Value
PDID	GCR_BA+0x00	R	Part Device Identification Number Register	0x0011_XXXX

[1] Every part device identification has a unique default reset value.

31	30	29	28	27	26	25	24
	PDID						
23	22	21	20	19	18	17	16
	PDID						
15	14	13	12	11	10	9	8
	PDID						
7	6	5	4	3	2	1	0
	PDID						

Bits	Description				
[31:0]	PDID	Part Device ID This register reflects device part number code. Software can read this register to identify which device is used.			

NANO112 Series	Part Device ID
NANO112LB0AN	0x00111201
NANO112LB1AN	0x00111202
NANO112LC1AN	0x00111203
NANO112LC2AN	0x00111204
NANO112SB0AN	0x00111205
NANO112SB1AN	0x00111206
NANO112SC1AN	0x00111207
NANO112SC2AN	0x00111208
NANO112RB0AN	0x00111209
NANO112RB1AN	0x00111210
NANO112RC1AN	0x00111211
NANO112RC2AN	0x00111212
NANO112VB0AN	0x00111213
NANO112VB1AN	0x00111214
NANO112VC1AN	0x00111214

NANO112VC2AN	0x00111216
NANO102ZB0AN	0x00110201
NANO102ZB1AN	0x00110202
NANO102ZC1AN	0x00110203
NANO102ZC2ZN	0x00110204
NANO102LB0AN	0x00110205
NANO102LB1AN	0x00110206
NANO102LC1AN	0x00110207
NANO102LC2AN	0x00110208
NANO102SB0AN	0x00110209
NANO102SB1AN	0x00110210
NANO102SC1AN	0x00110211
NANO102SC2AN	0x00110212

System Reset Source Register (RST_SRC)

nuvoTon

This register provides specific information for software to identify the chip's reset source from the last operation.

Register	Offset	R/W	Description	Reset Value
RST_SRC	GCR_BA+0x04	R/W	System Reset Source Register	0x0000_00xx

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
RSTS_CPU	Reserved	RSTS_SYS	RSTS_BOD	Reserved	RSTS_WDT	RSTS_PAD	RSTS_POR

Bits	Description	
[31:8]	Reserved	Reserved.
[7]	RSTS_CPU	The RSTS_CPU Flag Is Set by Hardware If Software Writes CPU_RST (IPRST_CTL1[1]) "1" to Rest Cortex-m0 Core and Flash Memory Controller (FMC) 0 = No reset from CPU. 1 = Cortex-M0 core and FMC are reset by software setting CPU_RST to 1. Note: This bit is cleared by writing 1 to it.
[6]	Reserved	Reserved.
[5]	RSTS_SYS	The RSTS_SYS Flag Is Set by the "Reset Signal" From the Cortex_M0 Kernel to Indicate the Previous Reset Source 0 = No reset from Cortex_M0. 1 = Cortex_M0 had issued the reset signal to reset the system by writing 1 to the bit SYSRESTREQ(AIRCR[2], Application Interrupt and Reset Control Register) in system control registers of Cortex_M0 kernel. Note: This bit is cleared by writing 1 to it. The RSTS_BOD Flag Is Set by the "Reset Signal" From the Brown-out-detected Module to Indicate the Previous Reset Source 0 = No reset from BOD.
[4]	RSTS_BOD	 0 = No reset from BOD. 1 = Brown-out-Detected module had issued the reset signal to reset the system. Note: This bit is cleared by writing 1 to it.
[3]	Reserved	Reserved.
[2]	RSTS_WDT	The RSTS_WDT Flag Is Set by the "Reset Signal" From the Watchdog Timer Module to Indicate the Previous Reset Source 0 = No reset from Watchdog Timer. 1 = The Watchdog Timer module had issued the reset signal to reset the system. Note: This bit is cleared by writing 1 to it.
[1]	RSTS_PAD	The RSTS_PAD Flag Is Set by the "Reset Signal" From the /RESET Pin or Power

Bits	Description	
		Related Reset Sources to Indicate the Previous Reset Source
		0 = No reset from nRESET pin.
		1 = The /RESET pin had issued the reset signal to reset the system.
		Note: This bit is cleared by writing 1 to it.
		The RSTS_POR Flag Is Set by the "Reset Signal" From the Power-on Reset (POR) Module or Bit CHIP_RST (IPRSTC1[0]) to Indicate the Previous Reset Source
[0]	RSTS POR	0 = No reset from POR or CHIP_RST.
		1 = Power-on Reset (POR) or CHIP_RST had issued the reset signal to reset the system.
		Note: This bit is cleared by writing 1 to it.

Peripheral Reset Control Register1 (IPRST_CTL1)

Register	Offset	R/W	Description	Reset Value
IPRST_CTL1	GCR_BA+0x08	R/W	Peripheral Reset Control Resister1	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
			Rese	erved					
7 6 5 4 3 2 1 0									
Reserved					DMA_RST	CPU_RST	CHIP_RST		

Bits	Description	
[31:3]	Reserved	Reserved.
[2]	DMA_RST	DMA Controller Reset This is a protected register. Please refer to open lock sequence to program it. Set this bit "1" will generate a reset signal to the DMA. SW needs to set this bit to low to release reset signal. 0 = Normal operation. 1 = DMA IP reset.
[1]	CPU_RST	Cortex-m0 Core One-shot Reset This is a protected register. Please refer to open lock sequence to program it. Setting this bit will only reset the Cortex-M0 core and Flash Memory Controller (FMC), and this bit will automatically return to "0" after the 2 clock cycles 0 = Normal. 1 = Reset Cortex-M0 core.
[0]	CHIP_RST	Chip One-shot Reset This is a protected register. Please refer to open lock sequence to program it. Setting this bit will reset the whole chip, including Cortex-M0 core and all peripherals like power-on reset and this bit will automatically return to "0" after the 2 clock cycles. The chip setting from flash will be also reloaded when chip one shot reset. 0 = Normal. 1 = Reset chip. Note: In the following conditions, chip setting from flash will be reloaded. Power-on Reset Brown-out-Detected Reset Low level on the nRESET pin Set IPRST_CTL1[CHIP_RST]

Peripheral Reset Control Register2 (IPRST_CTL2)

Register	Offset	R/W	Description	Reset Value
IPRST_CTL2	GCR_BA+0x0C	R/W	Peripheral Reset Control Resister2	0x0000_0000

31	30	29	28	27	26	25	24
SC1_RST	SC0_RST	Reserved	ADC_RST	Reserved	LCD_RST	Rese	erved
23	22	21	20	19	18	17	16
Reserved	ACMP01_RST	Reserved	PWM0_RST	Rese	erved	UART1_RST	UARTO_RST
15	14	13	12	11	10	9	8
Rese	erved	SPI1_RST	SPI0_RST	Rese	erved	I2C1_RST	I2C0_RST
7	6	5	4	3	2	1	0
Rese	erved	TMR3_RST	TMR2_RST	TMR1_RST	TMR0_RST	GPIO_RST	Reserved

Bits	Description	
[31]	SC1_RST	SmartCard1 Controller Reset 0 = SmartCard module normal operation. 1 = SmartCard module reset.
[30]	SC0_RST	SmartCard 0 Controller Reset 0 = SmartCard module normal operation. 1 = SmartCard module reset.
[29]	Reserved	Reserved.
[28]	ADC_RST	ADC Controller Reset 0 = ADC module normal operation. 1 = ADC module reset.
[27]	Reserved	Reserved.
[26]	LCD_RST	LCD Controller Reset 0 = LCD module normal operation. 1 = LCD module reset.
[25:23]	Reserved	Reserved.
[22]	ACMP01_RST	Comparator Controller Reset 0 = Comparator module normal operation. 1 = Comparator module reset.
[21]	Reserved	Reserved.
[20]	PWM0_RST	PWM0 Controller Reset 0 = PWM0 module normal operation. 1 = PWM0 module reset.
[19:18]	Reserved	Reserved.
[17]	UART1_RST	UART1 Controller Reset

Bits	Description						
		0 = UART1 module normal operation. 1 = UART1 module reset.					
[16]	UART0_RST	UART0 Controller Reset 0 = UART0 module normal operation. 1 = UART0 module reset.					
[15:14]	Reserved	Reserved.					
[13]	SPI1_RST	SPI1 Controller Reset 0 = SPI1 module normal operation. 1 = SPI1 module reset.					
[12]	SPI0_RST	SPI0 Controller Reset 0 = SPI0 module normal operation. 1 = SPI0 module reset.					
[11:10]	Reserved	Reserved.					
[9]	I2C1_RST	I2C1 Controller Reset 0 = I2C1 module normal operation. 1 = I2C1 module reset.					
[8]	I2C0_RST	I2C0 Controller Reset 0 = I2C0 module normal operation. 1 = I2C0 module reset.					
[7:6]	Reserved	Reserved.					
[5]	TMR3_RST	Timer3 Controller Reset 0 = Timer3 module normal operation. 1 = Timer3 module reset.					
[4]	TMR2_RST	Timer2 Controller Reset 0 = Timer2 module normal operation. 1 = Timer2 module reset.					
[3]	TMR1_RST	Timer1 Controller Reset 0 = Timer1 module normal operation. 1 = Timer1 module reset.					
[2]	TMR0_RST	Timer0 Controller Reset 0 = Timer0 module normal operation. 1 = Timer0 module reset.					
[1]	GPIO_RST	GPIO Controller Reset 0 = GPIO module normal operation. 1 = GPIO module reset.					
[0]	Reserved	Reserved.					

Temperature Sensor Control Register (TEMPCTL)

Register	Offset	R/W	Description	Reset Value
TEMPCTL	GCR_BA+0x20	R/W	Temperature Sensor Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	7 6 5 4 3 2 1								
			Reserved				VTEMP_EN		

Bits	Description	Description			
[31:1]	Reserved	Reserved.			
[0]	VTEMP_EN	Temperature Sensor Enable Control 0 = Temperature sensor function Disabled (default). 1 = Temperature sensor function Enabled.			

Multiple Function Port A low byte Control Register (PA_L_MFP)

Register	Offset	R/W	Description	Reset Value
PA_L_MFP	GCR_BA+0x30		Port A Low Byte Multiple Function Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	PA7_MFP				PA6_	MFP		
23	22	21	20	19	18	17	16	
	PA5_MFP				PA4_MFP			
15	14	13	12	11	10	9	8	
	PA3_	MFP		PA2_MFP				
7	6	5	4	3	2	1	0	
	PA1_MFP				PA0_	MFP		

Bits	Description	Description				
		PA.7 Pin Function Sel	PA.7 Pin Function Selection			
		PA7_MFP	Function			
[31:28]	PA7_MFP	0000	GPIOA[7]			
		0010	ADC input channel 7			
		0100	SmartCard1 card detect			
		PA.6 Pin Function Sel	ection			
		PA6_MFP	Function			
[27:24] PA6 _I		0000	GPIOA[6]			
	PA6_MFP	0010	ADC analog input6			
		0011	Comparator0 output			
		0100	SmartCard0 RST pin			
		1001	Comparator0 charge/discharge path			
		PA.5 Pin Function Sel	ection			
		PA5_MFP	Function			
		0000	GPIOA[5]			
		0010	ADC analog input5			
[23:20]	PA5_MFP	0011	Comparator0 N-end input0			
		0100	SmartCard0 Power pin			
		0101	I ² C1 data I/O pin			
		0110	SPI1 1 st slave select pin			
		1001	Comparator0 charge/discharge path			

Bits	Description	Description				
		PA.4 Pin Function Sel	ection			
		PA4_MFP	Function			
		0000	GPIOA[4]			
[19:16]	PA4_MFP	0010	ADC analog input4			
		0011	Comparator0 P-end input0			
		0100	SmartCard0 card detect pin			
		1001	Comparator0 charge/discharge path			
		PA.3 Pin Function Sel	ection			
		PA3_MFP	Function			
		0000	GPIOA[3]			
[15:12]	DAG MED	0001	External interrupt 1			
	PA3_MFP	0010	ADC analog input3			
		0011	Comparator0 P-end input1			
		0100	SmartCard0 DATA pin(SC0_UART_RXD)			
		1001	Comparator0 charge/discharge path			
		PA.2 Pin Function Selection				
		PA2_MFP	Function			
		0000	GPIOA[2]			
[44.0]	DAG MED	0001	External interrupt0 input pin			
[11:8]	PA2_MFP	0010	ADC analog input2			
		0011	Comparator0 P-end input2			
		0100	SmartCard0 clock pin(SC0_UART_TXD)			
		1001	Comparator0 charge/discharge path			
		PA.1 Pin Function Selection				
		PA2_MFP	Function			
[7.4]	DA4 MED	0000	GPIOA[1]			
[7:4]	PA1_MFP	0010	ADC analog input1			
		0011	Comparator0 P-end input3			
		1001	Comparator0 charge/discharge path			
		PA.0 Pin Function Sel	ection			
10.01	DAG 2450	PA0_MFP	Function			
[3:0]	PA0_MFP	0000	GPIOA[0]			
		0010	ADC input channel 0			

Multiple Function Port A high byte Control Register (PA_H_MFP)

Register	Offset	R/W	Description	Reset Value
PA_H_MFP	GCR_BA+0x34	R/W	Port A High Byte Multiple Function Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	PA15	_MFP			PA14	_MFP	
23	22	21	20	19	18	17	16
	PA13_MFP			PA12_MFP			
15	14	13	12	11	10	9	8
	PA11	_MFP			PA10	MFP	
7	6	5	4	3	2	1	0
	PA9_MFP				PA8_	MFP	

Bits	Description	on				
		PA.15 Pin Function Se	lection			
		PA15_MFP	Function			
		0000	GPIOA[15]			
		0010	Timer3 capture input			
[31:28]	PA15_MFP	0011	Comparator1 output			
		0101	I ² C1 data I/O pin			
		0110	SPI1 1 st slave select pin			
		1000	LCD segment output 16 at 48-pin			
			LCD segment output 30 at 64-pin			
		PA.14 Pin Function Selection				
		PA14_MFP	Function			
		0000	GPIOA[14]			
[27:24]	PA14_MFP	0101	I ² C1 clock pin			
[=]		0110	SPI1 serial clock pin			
		1000	LCD segment output 17 at 48-pin			
			LCD segment output 31 at 64-pin			
		1001	Comparator0 charge/discharge path			
		PA.13 Pin Function Se	lection			
[00.00]	DA42 MED	PA13_MFP	Function			
[23:20]	PA13_MFP	0000	GPIOA[13]			
		0011	Comparator1 N-end input			

Bits	Description					
		0101	I ² C0 data I/O pin			
		0110	SPI1 1 st MISO (Master In, Slave Out) pin			
		0111	UART0 Data receiver input pin			
		1000	LCD segment output 18 at 48-pin			
		PA.12 Pin Function Selection				
		PA12_MFP	Function			
		0000	GPIOA[12]			
		0011	Comparator1 P-end input			
[19:16]	PA12_MFP	0101	I ² C 0 clock pin			
[19.10]	FA1Z_WIFF	0110	SPI1 1 st MOSI (Master Out, Slave In) pin			
		0111	UART0 Data transmitter output pin(This pin could modulate with PWM0 output. Please refer PWM_SEL(UARTx_CTL[26:24]))			
		1000	LCD segment output 19 at 48-pin			
			LCD segment output 18 at 48-pin			
		PA.11 Pin Function Selection				
		PA13_MFP	Function			
[15:12]	PA11_MFP	0000	GPIOA[11]			
		0010	ADC external trigger input.			
		0100	SmartCard0 DATA pin(SC0_UART_RXD)			
		PA.10 Pin Function Selection				
[44.0]	DA40 MED	PA10_MFP	Function			
[11:8]	PA10_MFP	0100	SmartCard0 clock pin(SC0_UART_TXD)			
		0000	GPIOA[10]			
		PA.9 Pin Function Sele	ction			
F= 43		PA9_MFP	Function			
[7:4]	PA9_MFP	0000	GPIOA[9]			
		0100	SmartCard0 RST pin			
		PA.8 Pin Function Sele	ction			
ro o1		PA8_MFP	Function			
[3:0]	PA8_MFP	0000	GPIOA[8]			
		0100	SmartCard0 Power pin			

Multiple Function Port B low byte Control Register (PB_L_MFP)

Register	Offset	R/W	Description	Reset Value
PB_L_MFP	GCR_BA+0x38	R/W	Port B Low Byte Multiple Function Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	PB7	_MFP			PB6_	_MFP		
23	22	21	20	19	18	17	16	
	PB5_MFP				PB4_MFP			
15	14	13	12	11	10	9	8	
	PB3	_MFP		PB2_MFP				
7	6	5	4	3	2	1	0	
PB1_MFP					PB0_	_MFP		

Bits	Description	Description				
		PB.7 Pin Function Sel	PB.7 Pin Function Selection			
		PB7_MFP	Function			
[04,00]	DD7 MED	0000	GPIOB[7]			
[31:28] F	PB7_MFP	0100	SmartCard0 card detect			
		0111	UART1 Clear to Send input pin			
		1000	LCD segment output 33 at 100-pin			
		PB.6 Pin Function Sel	ection			
	PB6_MFP	Function				
		0000	GPIOB[6]			
		0001	Frequency Divider0 output pin			
[27:24]	PB6_MFP	0110	SPI1 2 nd slave select pin			
		0111	UART1 Data transmitter output pin(This pin could modulate with PWM0 output. Please refer PWM_SEL(UARTx_CTL[26:24]))			
		1000	LCD segment output 25 at 64-pin			
			LCD segment output 34 at 100-pin			
		PB.5 Pin Function Selection				
		PB5_MFP	Function			
[23:20]	PB5_MFP	0000	GPIOB[5]			
[0110	SPI1 2 nd MOSI (Master Out, Slave In) pin SmartCard0 RST			
		0111	UART1 Data receiver input pin			

Bits	Description				
		1000	LCD segment output 35 at 100-pin		
		PB.4 Pin Function Sel	ection		
		PB4_MFP	Function		
[19:16]	PB4_MFP	0000	GPIOB[4]		
		0110	SPI1 2 nd MISO (Master In, Slave Out) pin		
		0111	UART1 Request to Send output pin		
		PB.3 Pin Function Sel	ection		
		PB3_MFP	Function		
		0000	GPIOB[3]		
		0010	Timer2 external counter input		
[15:12]	PB3_MFP	0101	I ² C0 data I/O pin		
		0110	SPI1 2 nd MISO (Master In, Slave Out) pin		
İ		0111	UART0 Clear to Send input pin		
		1000	LCD segment output 26 at 64-pin		
		PB.2 Pin Function Sel	ection		
		PB2_MFP	Function		
		0000	GPIOB[2]		
[44.0]	DD2 MED	0010	Timer3 external counter input		
[11:8]	PB2_MFP	0101	I ² C0 clock pin		
		0110	SPI1 2 nd MOSI (Master Out, Slave In) pin		
		0111	UART0 Request to Send output pin		
		1000	LCD segment output 27 at 64-pin		
		PB.1 Pin Function Sel	ection		
		PB1_MFP	Function		
		0000	GPIOB[1]		
[7:4]	PB1_MFP	0001	External interrupt1 input pin		
		0010	Timer 2 capture input		
		0111	UART0 Data receiver input pin		
		1000	LCD segment output 28 at 64-pin		
		PB.0 Pin Function Selection			
		PB0_MFP	Function		
[3-0]	PB0_MFP	0000	GPIOB[0]		
[3:0]	FDV_IVIFF	0001	Frequency Divider1 output pin		
		0111	UART0 Data transmitter output pin(This pin could modulate with PWM0 output. Please refer PWM_SEL(UARTx_CTL[26:24]))		

Bits	Description		
		1000	LCD segment output 29 at 64-pin

Multiple Function Port B high byte Control Register (PB_H_MFP)

Register	Offset	R/W	Description	Reset Value
PB_H_MFP	GCR_BA+0x3C	IR////	Port B High Byte Multiple Function Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	PB15	_MFP		PB14_MFP			
23	22	21	20	19	18	17	16
	PB13	_MFP		PB12_MFP			
15	14	13	12	11	10	9	8
	PB11	_MFP		PB10_MFP			
7	6	5	4	3	2	1	0
PB9_MFP					PB8_	MFP	

Bits	Description					
		PB.15 Pin Function Selection				
		PB15_MFP	Function			
		0000	GPIOB[15]			
[31:28]	PB15_MFP	0110	SPI0 1 st slave select pin			
		0111	UART0 Clear to Send input pin			
		1000	LCD segment output 12 at 48-pin LCD segment output 19 at 64-pin LCD segment output 23 at 100-pin			
		PB.14 Pin Function Selection				
		PB14_MFP	Function			
		0000	GPIOB[14]			
[27:24]	PB14 MFP	0110	SPI0 serial clock pin			
[27.24]	FB14_WIFF	0111	UART0 Data transmitter output pin(This pin could modulate with PWM0 output)			
		1000	LCD segment output 13 at 48-pin			
			LCD segment output 20 at 64-pin			
			LCD segment output 24 at 100-pin			
		PB.13 Pin Function Se	election			
		PB13_MFP	Function			
[23:20]	PB13_MFP	0000	GPIOB[13]			
		0110	SPI0 1st MISO (Master In, Slave Out) pin			
		0111	UART0 Data receiver input pin			

Bits	Description	Description					
		1000	LCD segment output 14 at 48-pin LCD segment output 21 at 64-pin LCD segment output 25 at 100-pin				
		PB.12 Pin Function Selection					
		PB12_MFP	Function				
		0000	GPIOB[12]				
		0001	Frequency Divider0 output pin				
[19:16]	PB12_MFP	0010	Timer0 external counter input or Timer0 toggle out.				
,		0110	SPI0 1 st MOSI (Master Out, Slave In) pin				
		0111	UART0 Request to Send output pin				
		1000	LCD segment output 15 at 48-pin LCD segment output 22 at 64-pin LCD segment output 26 at 100-pin				
		PB.11 Pin Function Se	lection				
		PB11_MFP	Function				
		0000	GPIOB[11]				
[15:12]	PB11_MFP	0010	Timer1 external counter input or Timer1 toggle out				
[10.12]	B11_w11	0110	SPI0 2 rd MISO (Master In, Slave Out) pin				
		0111	UART1 Request to Send output pin				
		1000	LCD segment output 23 at 64-pin LCD segment output 27 at 100-pin				
		PB.10 Pin Function Selection					
		PB10_MFP	Function				
		0000	GPIOB[10]				
[11:8]	PB10_MFP	0110	SPI0 1 st MOSI (Master Out, Slave In) pin				
		0111	UART1 Data receiver input pin				
		1000	LCD segment output 24 at 64-pin LCD segment output 28 at 100-pin				
		PB.9 Pin Function Sele	ection				
		PB9_MFP	Function				
[7:4]	PB9_MFP	0000	GPIOB[9]				
		0011	PWM0 Channel1 output				
		1000	LCD segment output 31 at 100-pin				
		PB.8 Pin Function Sele	ection				
[0.0]	DDO MED	PB8_MFP	Function				
[3:0]	PB8_MFP	0000	GPIOB[8]				
		0001	External interrupt1 input pin				

Bits	Description		
		0010	Timer0 external counter input or Timer0 toggle out.
		0011	PWM0 Channel0 output
		0100	Snooper pin
		1000	LCD segment output 32 at 100-pin

Multiple Function Port C low byte Control Register (PC_MFP)

Register	Offset	R/W	Description	Reset Value
PC_L_MFP	GCR_BA+0x40	R/W	Port C Low Byte Multiple Function Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	PC7_	_MFP		PC6_MFP				
23	22	21	20	19	18	17	16	
	PC5_MFP				PC4_MFP			
15	14	13	12	11	10	9	8	
	PC3_	MFP			PC2_	MFP		
7	6	5	4	3	2	1	0	
PC1_MFP				PC0_	MFP			

Bits	Description	scription					
		PC.7 Pin Function Sel	PC.7 Pin Function Selection				
		PC7_MFP	Function				
		0000	GPIOC[7]				
[31:28]	PC7_MFP	0100	SmartCard0 Power pin				
		0111	UART1 Data receiver input pin				
		1000	LCD segment output 4 at 48-pin LCD segment output 11 at 64-pin LCD segment output 15 at 100-pin				
		PC.6 Pin Fuction Selection					
		PC6_MFP	Function				
		0000	GPIOC[6]				
[27:24]	PC6_MFP	0100	SmartCard0 DATA pin(SC0_UART_RXD)				
		0111	UART1 Request to Send output pin				
		1000	LCD segment output 5 at 48-pin LCD segment output 12 at 64-pin LCD segment output 16 at 100-pin				
		PC.5 Pin Function Sel	ection				
		PC5_MFP	Function				
[23:20]	PC5_MFP	0000	GPIOC[5]				
,		0100	SmartCard0 card detect pin				
		1000	LCD segment output 6 at 48-pin LCD segment output 13 at 64-pin				

Bits	Description						
			LCD segment output 17 at 100-pin				
		PC.4 Pin Function Selection					
		PC4_MFP	Function				
		0000	GPIOC[4]				
		0001	External interrupt0 input pin				
[19:16]	PC4_MFP	0100	SmartCard0 clock pin(SC0_UART_TXD)				
		0111	UART1 Clear to Send input pin				
		1000	LCD segment output 7 at 48-pin LCD segment output 14 at 64-pin LCD segment output 18 at 100-pin				
		PC.3 Pin Function Sel	ection				
		PC3_MFP	Function				
		0000	GPIOC[3]				
[15:12]	PC3_MFP	0011	PWM0 Channel3 output				
		0101	I ² C1 data I/O pin				
		1000	LCD segment output 8 at 48-pin LCD segment output 15 at 64-pin LCD segment output 19 at 100-pin				
		PC.2 Pin Function Selection					
		PC2_MFP	Function				
		0000	GPIOC[2]				
[11:8]	PC2_MFP	0011	PWM0 Channel2 output				
,		0101	I ² C1 clock pin				
		1000	LCD segment output 9 at 48-pin LCD segment output 16 at 64-pin LCD segment output 20 at 100-pin				
		PC.1 Pin Function Selection					
		PC1_MFP	Function				
		0000	GPIOC[1]				
[7:4]	PC1_MFP	0011	PWM0 Channel1 output				
		0101	I ² C0 data I/O pin				
		1000	LCD segment output 10 at 48-pin LCD segment output 17 at 64-pin LCD segment output 21 at 100-pin				
		PC.0 Pin Function Sel	ection				
[3:0]	PC0_MFP	PC0_MFP	Function				
		0000	GPIOC[0]				

Bits	Description	Description						
		0011	PWM0 Channel0 output					
		0101	I ² C0 clock pin					
		0110	SPI0 2 nd slave select pin					
		1000	LCD segment output 11 at 48-pin					
			LCD segment output 18 at 64-pin					
			LCD segment output 24 at 100-pin					

Multiple Function Port C high byte Control Register (PC_H_MFP)

Register	Offset	R/W	Description	Reset Value
PC_H_MFP	GCR_BA+0x44	IR////	Port C High Byte Multiple Function Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	PC15	_MFP		PC14_MFP			
23	22	21	20	19	18	17	16
	PC13	_MFP		PC12_MFP			
15	14	13	12	11	10	9	8
	PC11	_MFP		PC10_MFP			
7	6	5	4	3	2	1	0
PC9_MFP					PC8_	MFP	

Bits	Description	ription					
		PC.15 Pin Function Se	PC.15 Pin Function Selection				
		PC15_MFP	Function				
		0000	GPIOC[15]				
[31:28]	PC15_MFP	0100	SmartCard1 PWR pin				
		1000	LCD segment output 0 at 48-pin				
			LCD segment output 7 at 64-pin				
			LCD segment output 7 at 100-pin				
		PC.14 Pin Function Selection					
	PC14_MFP	PC14_MFP	Function				
		0000	GPIOC[14]				
[27:24]		0100	SmartCard1 card detect				
		1000	LCD segment output 1 at 48-pin				
			LCD segment output 8 at 64-pin				
			LCD segment output 8 at 100-pin				
		PC.13 Pin Function Se	lection				
		PC13_MFP	Function				
[23:20]	PC13_MFP	0000	GPIOC[13]				
		0100	SmartCard1 DATA pin(SC1_UART_RXD)				
		1000	LCD segment output 9 at 100-pin				
		PC.12 Pin Function Selection					
[19:16]	PC12_MFP	PC12_MFP	Function				
		0000	GPIOC[12]				

Bits	Description					
		0100	SmartCard1 clock pin(SC1_UART_TXD)			
		1000	LCD segment output 10 at 100-pin			
		PC.11 Pin Function Selection				
		PC11_MFP	Function			
[45,40]	DOLL MED	0000	GPIOC[11]			
[15:12]	PC11_MFP	0100	SmartCard1 PWR pin			
		0101	I ² C 1 data I/O pin			
		1000	LCD segment output 11 at 100-pin			
		PC.10 Pin Function Se	election			
		PC10_MFP	Function			
[44-0]	DC10 MED	0000	GPIOC[10]			
[11:8]	PC10_MFP	0100	SmartCard1 card detect			
		0101	I ² C1 clock pin			
		1000	LCD segment output 12 at 100-pin			
		PC.9 Pin Function Selection				
		PC9_MFP	Function			
[7:4]	PC9_MFP	1000	LCD segment output 2 at 48-pin			
			LCD segment output 9 at 64-pin LCD segment output 13 at 100-pin			
		0000	GPIOC[9]			
		PC.8 Pin Function Sel				
		PC8_MFP	Function			
		0000	GPIOC[8]			
		0100	SmartCard0 RST pin			
[3:0]	PC8_MFP	0111	UART1 Data transmitter output pin(This pin could modulate with PWM0 output. Please refer PWM_SEL(UARTx_CTL[26:24]))			
		1000	LCD segment output 3 at 48-pin LCD segment output 10 at 64-pin LCD segment output 14 at 100-pin			

Multiple Function Port D low byte Control Register (PD_L_MFP)

Register	Offset	R/W	Description	Reset Value
PD_L_MFP	GCR_BA+0x48	IR////	Port D Low Byte Multiple Function Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	PD7_MFP				PD6_MFP			
23	22	21	20	19	18	17	16	
	PD5_MFP				PD4_MFP			
15	14	13	12	11	10	9	8	
	PD3_	MFP			PD2_	MFP		
7	6	5	4	3	2	1	0	
	PD1_MFP				PD0_	MFP		

Bits	Description				
		PD.7 Pin Function Selection			
		PD7_MDP	Function		
		0000	GPIOD[7]		
[31:28]	PD7_MFP	0100	SmartCard1 clock pin(SC1_UART_TXD)		
		1000	LCD common output 3 at 48-pin		
			LCD common output 3 at 64-pin		
			LCD common output 3 at 100-pin		
		PD.6 Pin Function Selection			
		PD6_MFP	Function		
[27:24]	PD6_MFP	0000	GPIOD[6]		
		1000	LCD segment output 0 at 64-pin(or as LD_COM4)		
			LCD segment output 0 at 100-pin(or as LD_COM4)		
		PD.5 Pin Function Selection			
		PD5_MFP	Function		
[23:20]	PD5_MFP	0000	GPIOD[5]		
		1000	LCD segment output 1 at 64-pin(or as LD_COM5)		
			LCD segment output 1 at 100-pin(or as LD_COM5)		
		PD.4 Pin Function Sel	ection		
		PD4_MFP	Function		
[19:16]	PD4_MFP	0000	GPIOD[4]		
		0100	SmartCard1 RST pin		
		1000	LCD segment output 2 at 64-pin		

Bits	Description	Description				
			LCD segment output 2 at 100-pin			
		PD.3 Pin Function Sel	ection			
		PD3_MFP	Function			
[15:12]	PD3_MFP	0000	GPIOD[3]			
		1000	LCD segment output 3 at 64-pin LCD segment output 3 at 100-pin			
		PD.2 Pin Function Sel	ection			
		PD2_MFP	Function			
[11:8]	PD2_MFP	0000	GPIOD[2]			
		1000	LCD segment output 4 at 64-pin			
			LCD segment output 4 at 100-pin			
		PD.1 Pin Function Selection				
		PD1_MFP	Function			
[7:4]	PD1_MFP	0000	GPIOD[1]			
		1000	LCD segment output 5 at 64-pin			
			LCD segment output 5 at 100-pin			
		PD.0 Pin Function Selection				
		PD0_MFP	Function			
[3:0]	PD0_MFP	0000	GPIOD[0]			
		1000	LCD segment output 6 at 64-pin			
			LCD segment output 6 at 100-pin			

Multiple Function Port D high byte Control Register (PD_H_MFP)

Register	Offset	R/W	Description	Reset Value
PD_H_MFP	GCR_BA+0x4C	R/W	Port D High Byte Multiple Function Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	PD15_MFP				PD14_MFP			
23	22	21	20	19	18	17	16	
	PD13_MFP				PD12_MFP			
15	14	13	12	11	10	9	8	
	PD11	_MFP			PD10	MFP		
7	6	5	4	3	2	1	0	
	PD9_MFP				PD8_	MFP		

Bits	Description				
		PD.15 Pin Function Se	lection		
		PD15_MFP	Function		
		0000	GPIOD[15]		
[30:28]	PD15_MFP	1000	LCD Unit voltage for LCD charge pump circuit at 48-pin		
			LCD Unit voltage for LCD charge pump circuit at 64-pin		
			LCD Unit voltage for LCD charge pump circuit at 100-pin		
		PD.14 Pin Function Selection			
		PD14_MFP	Function		
		0000	GPIOD[14]		
[27:24]	PD14_MFP	1000	LCD Unit voltage for LCD charge pump circuit at 48-pin		
			LCD Unit voltage for LCD charge pump circuit at 64- pin		
			LCD Unit voltage for LCD charge pump circuit at 100-pin		
		PD.13 Pin Function Se	lection		
		PD13_MFP	Function		
		0000	GPIOD[13]		
[23:20]	PD13_MFP	0001	External interrupt 1 input pin		
		1000	LCD Unit voltage for LCD charge pump circuit at 48-pin		
		300	LCD Unit voltage for LCD charge pump circuit at 64-pin		

Bits	Description	Description						
			LCD Unit voltage for LCD charge pump circuit at 100-pin					
		PD.12 Pin Function Selection						
		PD12_MFP	Function					
		0000	GPIOD[12]					
		0001	Frequency Divider0 output pin					
[40-46]	PD12_MFP	0010	Timer1 external counter input or Timer1 toggle out					
[19:16]	PD12_WFP	0011	PWM0 Channel0 output					
		1000	LCD externl capacitor pin of charge pump circuit at 64-pin					
			LCD externl capacitor pin of charge pump circuit at 100-pin					
		1001	1, 1/2, 1/4, 1/16 Hz clock output					
		PD.11 Pin Function Se	election					
		PD11_MFP	Function					
		0000	GPIOD[11]					
[15:12]	PD11_MFP	0010	Timer0 capture input					
[10.12]		0011	PWM0 Channel1 output					
		1000	LCD externl capacitor pin of charge pump circuit at 64-pin					
			LCD externl capacitor pin of charge pump circuit at 100-pin					
		PD.10 Pin Function Selection						
		PD10_MFP	Function					
		0000	GPIOD[10]					
[11:8]	PD10_MFP	0010	Timer1 capture input					
. 1	_	0011	PWM0 Channel2 output					
		1000	LCD common output 0 at 48-pin					
			LCD common output 0 at 64-pin					
			LCD common output 0 at 100-pin					
		PD.9 Pin Function Sel						
		PD9_MFP	Function					
		0000	GPIOD[9]					
[7:4]	PD9_MFP	0011	PWM0 Channel3 output					
		0100	SmartCard1 RST pin					
		1000	LCD common output 1 at 48-pin					
			LCD common output 1 at 64-pin					
			LCD common output 1 at 100-pin					
[3:0]	PD8_MFP	PD.8 Pin Function Sel	ection					

Bits	Description	Description			
		PD8_MFP	Function		
		0000	GPIOD[8]		
		0100	SmartCard1 DATA pin(SC1_UART_RXD)		
		1000	LCD common output 2 at 48-pin		
			LCD common output 2 at 64-pin		
			LCD common output 2 at 100-pin		

Multiple Function Port E low byte Control Register (PE_L_MFP)

Register	Offset	R/W	Description	Reset Value
PE_L_MFP	GCR_BA+0x50	R/W	Port E Low Byte Multiple Function Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
PE7_MFP				PE6_MFP				
23	22	21	20	19	18	17	16	
	PE5_MFP				PE4_MFP			
15	14	13	12	11	10	9	8	
	PE3_	_MFP		PE2_MFP				
7	6	5	4	3	2	1	0	
PE1_MFP				PE0_MFP				

Bits	Description	n					
		PE.7 Pin Function Selection					
[24.20]	DEZ MED	PE7_MFP	Function				
[31:28]	PE7_MFP	0000	GPIOE[7]				
		0100	SmartCard1 DATA pin(SC1_UART_RXD)				
		PE.6 Pin Function Sel	ection				
107.041	DEC MED	PE6_MFP	Function				
[27:24]	PE6_MFP	0000	GPIOE[6]				
		0100	SmartCard1 clock pin(SC1_UART_TXD)				
		PE.5 Pin Function Selection					
100,001	DES MED	PE5_MFP	Function				
[23:20]	PE5_MFP	0000	GPIOE[5]				
		0100	SmartCard1 PWR pin				
		PE.4 Pin Function Selection					
[40,40]	DE 4 MED	PE4_MFP	Function				
[19:16]	PE4_MFP	0000	GPIOE[4]				
		0100	SmartCard1 RST pin				
		PE.3 Pin Function Sel	ection				
[45,40]	DE0 MED	PE3_MFP	Function				
[15:12]	PE3_MFP	0000	GPIOE[3]				
		0110	SPI0 1 st slave select pin				
[11:8]	PE2_MFP	PE.2 Pin Function Sel	ection				

Bits	Description						
		PE2_MFP	Function				
		0000	GPIOE[2]				
		0110	SPI0 serial clock pin				
		PE.1 Pin Function Selection					
[7, 4]	PE1 MFP	PE1_MFP	Function				
[7:4]	PE I_WIFP	0000	GPIOE[1]				
		0110	SPI0 1st MISO (Master In, Slave Out) pin				
		PE.0 Pin Function Selection					
[0.0]	DEO MED	PE0_MFP	Function				
[3:0]	PE0_MFP	0000	GPIOE[0]				
		0110	SPI0 1 st MOSI (Master Out, Slave In) pin				

Multiple Function Port E high byte Control Register (PE_H_MFP)

Register	Offset	R/W	Description	Reset Value
PE_H_MFP	GCR_BA+0x54	R/W	Port E High Byte Multiple Function Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved				Reserved			
23	22	21	20	19	18	17	16	
	Rese	erved		Reserved				
15	14	13	12	11	10	9	8	
	Rese	erved			Rese	erved		
7	6	5	4	3	2	1	0	
	PE9_MFP				PE8_	MFP		

Bits	Description						
[31:8]	Reserved	Reserved.					
		PE.9 Pin Function Selection					
		PE9_MFP	Function				
[7:4]	PE9_MFP	0000	GPIOE[9]				
		0011	PWM0 Channel3 output				
		1000	LCD segment output 29 at 100-pin				
		PE.8 Pin Function Selection					
		PE8_MFP	Function				
[3:0]	PE8_MFP	0000	GPIOE[8]				
		0011	PWM0 Channel2 output				
		1000	LCD segment output 30 at 100-pin				

Multiple Function Port F low byte Control Register (PF_L_MFP)

Register	Offset	R/W	Description	Reset Value
PF_L_MFP	GCR_BA+0x58	R/W	Port F Low Byte Multiple Function Control Register	0x00FF_FFFF

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	PF5_MFP				PF4_MFP				
15	14	13	12	11	10	9	8		
	PF3_	MFP		PF2_MFP					
7	6	5	4	3	2	1	0		
	PF1_MFP			PF0_MFP					

Bits	Description					
[31:24]	Reserved	Reserved.				
		PF.5 Pin Function Selection				
		PF5_MFP	Function			
		0000	GPIOF[5]			
[23:20]	PF5_MFP	0010	Timer0 capture input			
		0011	PWM0 Channel3 output			
		1001	Comparator0 charge/discharge path			
		1111	Serial Wired Debugger Data pin			
		PF.4 Pin Function Selection				
		PF4_MFP	Function			
		0000	GPIOF[4]			
[40:46]	DE4 MED	0001	Frequency Divider1 output pin			
[19:16]	PF4_MFP	0010	Timer1 capture input			
		0011	PWM0 Channel2 output			
		1001	1, 1/2, 1/4, 1/8, 1/16 Hz clock output			
		1111	Serial Wired Debugger Clock pin			
		PF.3 Pin Function Sel	ection			
[15:12]	PF3_MFP	PF3_MFP	Function			
		0000	GPIOF[3]			
		0001	External interrupt0 input pin			

Bits	Description					
		0010	Timer 2 capture input			
		0111	UART1 Data transmitter output pin(This pin could modulate with PWM0 output. Please refer PWM_SEL(UARTx_CTL[26:24]))			
		1111	External 4~24 MHz crystal output pin			
		PF.2 Pin Function Sel	ection			
		PF2_MFP	Function			
		0000	GPIOF[2]			
[11:8]	PF2_MFP	0001	External interrupt1 input pin			
		0010	Timer3 capture input			
		0111	UART1 Data receiver input pin			
		1111	External 4~24 MHz crystal input pin(default)			
		PF.1 Pin Function Selection				
		PF1_MFP	Function			
[7:4]	PF1_MFP	0000	GPIOF[1]			
		0010	Timer2 external counter input or Timer2 toggle out.			
		1111	External 32.768 kHz crystal output pin(default)			
		PF.0 Pin Function Selection				
		PF0_MFP	Function			
[3:0]	PF0_MFP	0000	GPIOF[1]			
		0010	Timer3 external counter input or Timer3 toggle out.			
		1111	External 32.768 kHz crystal input pin(default)			

Power-On-Reset Control Register (PORCTL)

Register	Offset	R/W	Description	Reset Value
PORCTL	GCR_BA+0x60	R/W	Power-On-Reset Controller Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
			POR_DI	S_CODE					
7	6	5	4	3	2	1	0		
	POR_DIS_CODE								

Bits	Description	Description			
[31:16]	Reserved	Reserved.			
	Power-on Reset Enable Control				
		This is a protected register. Please refer to open lock sequence to program it.			
[15:0]	POR_DIS_CODE	When powered on, the POR circuit generates a reset signal to reset the whole chip function, but noise on the power may cause the POR active again. If setting the POR_DIS_CODE to 0x5AA5, the POR reset function will be disabled and the POR function will be active again when POR_DIS_CODE is set to another value or POR_DIS_CODE is reset by chip other reset functions, including: /RESET, Watchdog Timer reset, BOD reset, ICE reset command and the software-chip reset function			

Brown-out Detect Control Register (BODCTL)

nuvoTon

A part of the BODCTL control registers bits are initiated by the flash configuration

Register	Offset	R/W	Description	Reset Value
BODCTL	GCR_BA+0x64	R/W	Brown-out Detector Controller Register	0x00xx_x0xx

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	BOD2	5_TRIM		BOD20_TRIM			
15	14	13	12	11	10	9	8
	BOD17	7_TRIM		Reserved	BOD25_INT_E N	BOD20_INT_E N	BOD17_INT_E N
7	6	5	4	3	2	1	0
Reserved	BOD25_RST_ EN	BOD20_RST_ EN	BOD17_RST_ EN	Reserved	BOD25_EN	BOD20_EN	BOD17_EN

Bits	Description	
[31:24]	Reserved	Reserved.
[23:20]	BOD25_TRIM	BOD 2.5 TRIM Value This is a protected register. Please refer to open lock sequence to program it. This value is used to control BOD25 detect voltage level, nominal 2.5 V. Higher trim
[19:16]	BOD20_TRIM	value, higher detection voltage. BOD 2.0 TRIM Value This is a protected register. Please refer to open lock sequence to program it. This value is used to control BOD20 detect voltage level, nominal 2.0 V. Higher trim value, higher detection voltage.
[15:12]	BOD17_TRIM	BOD 1.7 TRIM Value This is a protected register. Please refer to open lock sequence to program it. This value is used to control BOD17 detect voltage level, nominal 1.7 V. Higher trim value, higher detection voltage.
[11]	Reserved	Reserved.
[10]	BOD25_INT_EN	BOD 2.5 V Interrupt Enable Control This is a protected register. Please refer to open lock sequence to program it. 0 = Interrupt does not issue when BOD25 occurs. 1 = Interrupt issues when BOD25 occurs.
[9]	BOD20_INT_EN	BOD 2.0 V Interrupt Enable Control 0 = Interrupt does not issue when BOD20 occurs. 1 = Interrupt issues when BOD20 occurs.
[8]	BOD17_INT_EN	BOD 1.7 V Interrupt Enable Control This is a protected register. Please refer to open lock sequence to program it. 0 = Interrupt does not issue when BOD17 occurs. 1 = Interrupt issues when BOD17 occurs.

Bits	Description						
[7]	Reserved	Reserved.					
[6]	BOD25_RST_EN	BOD 2.5 V Reset Enable Control This is a protected register. Please refer to open lock sequence to program it. 0 = Reset does not issue when BOD25 occurs. 1 = Reset issues when BOD25 occurs. The default value is set by flash controller user configuration register config0 bit[20:19]					
[5]	BOD20_RST_EN	BOD 2.0 V Reset Enable Control This is a protected register. Please refer to open lock sequence to program it. 0 = Reset does not issue when BOD20 occurs. 1 = Reset issues when BOD20 occurs. The default value is set by flash controller user configuration register config0 bit[20:19]					
[4]	BOD17_RST_EN	0 = Reset does not issue when BOD 1 = Reset issues when BOD17 occu The default value is set by flash con	BOD 1.7 V Reset Enable Control This is a protected register. Please refer to open lock sequence to program it. 0 = Reset does not issue when BOD17 occurs. 1 = Reset issues when BOD17 occurs. The default value is set by flash controller user configuration register config0 bit[20:19] BOD17_RST_EN can be controlled (enable or disable) only when BOD17_EN is high.				
			BOD17 RST Function Enable				
		BOD17_EN low	Enabled				
		BOD17_EN high	BOD17_RST_EN				
[3]	Reserved	Reserved.					
[2]	BOD25_EN	Brown-out Detector 2.5 V Function Enable Control This is a protected register. Please refer to open lock sequence to program it. 0 = Brown-out Detector 2.5 V function Disabled. 1 = Brown-out Detector 2.5 V function Enabled.					
[1]	BOD20_EN	Brown-out Detector 2.0 V Function Enable Control This is a protected register. Please refer to open lock sequence to program it. 0 = Brown-out Detector 2.0 V function Disabled. 1 = Brown-out Detector 2.0 V function Enabled. BOD20_EN is default on. If SW disables it, Brown-out Detector 2.0 V function is not disabled until chip enters Power-down mode. If system is not in Power-down mode, BOD20_EN will be enabled by hardware automatically.					
[0]		Brown-out Detector 1.7V Function Enable Control This is a protected register. Please refer to open lock sequence to program it. The default value is set by flash controller user configuration register config0 bit[20:19] Users can disable BOD17_EN but it takes effective (disabled) only in Power-down mode. Once existing Power-down mode, BOD17 will be enabled by HW automatically. When CPU reads this bit, CPU will read whether BOD17 function enabled or not. In other words,CPU will always read high. 0 = Brown-out Detector 1.7V function Disabled. 1 = Brown-out Detector 1.7V function Enabled. BOD17 Function Enable					
[0]	BOD17_EN	0 = Brown-out Detector 1.7V function	n Enabled.				
[0]	BOD17_EN	0 = Brown-out Detector 1.7V function	n Enabled.				

Brown-out Detector Status Register (BODSTS)

Register	Offset	R/W	Description	Reset Value
BODSTS	GCR_BA+0x68	R	Brown-out Detector Status Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
		Reserved			BOD25	BOD20	BOD17
7	6	5	4	3	2	1	0
Reserved	BOD25_rise	BOD20_rise	BOD17_rise	BOD25_drop	BOD20_drop	BOD17_drop	BOD_INT

Bits	Description	
[31:11]	Reserved	Reserved.
[10]	BOD25	Brown-out Detector 2.5V Status This bit reflects the BOD25 status. BOD25 is high if detected voltage is higher than 2.5 V. BOD25 is low if detected voltage is lower than 2.5 V. Note: This bit is ready-only.
[9]	BOD20	Brown-out Detector 2.0V Status This bit reflects the BOD20 status. BOD20 is high if detected voltage is higher than 2.0 V. BOD20 is low if detected voltage is lower than 2.0 V. Note: This bit is ready-only.
[8]	BOD17	Brown-out Detector 1.7V Status This bit reflects the BOD17 status. BOD17 is high if detected voltage is higher than 1.7 V. BOD17 is low if detected voltage is lower than 1.7 V. Note: This bit is ready-only.
[7]	Reserved	Reserved.
[6]	BOD25_rise	Brown-out Detector Higher Than 2.5V Status Setting BOD25_rise high means once the detected voltage is higher than target detected voltage setting (2.5V). Software can write 1 to clear BOD25_rise.
[5]	BOD20_rise	Brown-out Detector Higher Than 2.0V Status Setting BOD20_rise high means once the detected voltage is higher than target detected voltage setting (2.0V). Software can write 1 to clear BOD20_rise
[4]	BOD17_rise	Brown-out Detector Higher Than 1.7V Status Setting BOD17_rise high means once the detected voltage is higher than target detected voltage setting (1.7V). Software can write 1 to clear BOD17_rise
[3]	BOD25_drop	Brown-out Detector Lower Than 2.5V Status Setting BOD25_drop high means once the detected voltage is lower than target detected voltage setting (2.5V). Software can write 1 to clear BOD25_drop
[2]	BOD20_drop	Brown-out Detector Lower Than 2.0V Status

		Setting BOD20_drop high means once the detected voltage is lower than target detected voltage setting (2.0V). Software can write 1 to clear BOD20_drop
[1]	BOD17_drop	Brown-out Detector Lower Than 1.7V Status Setting BOD17_drop high means once the detected voltage is lower than target detected voltage setting (1.7V). Software can write 1 to clear BOD17_drop
[0]	BOD_INT	Brown-out Detector Interrupt Status 0 = Brown-out Detector does not detect any voltage drift at V_{DD} down through or up through the target detected voltage after interrupt is enabled. 1 = When Brown-out Detector detects the V_{DD} is dropped down through the target detected voltage or the V_{DD} is raised up through the target detected voltage and Brown-out interrupt is enabled, this bit will be set to 1. This bit is cleared by writing 1 to it.

Internal Voltage Reference Control Register (Int_VREFCTL)

Register	Offset	R/W	Description	Reset Value
Int_VREFCTL	GCR_BA+0x6C	R/W	Internal Voltage Reference Control Register	0x0000_0700

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved				VREF	_TRIM	
7	6	5	4	3	2	1	0
	Reserved EXT_MODE			SE	L25	REG_EN	BGP_EN

Bits	Description	
[31:12]	Reserved	Reserved.
[11:8]	VREF_TRIM	Internal Voltage Reference Trim
[7:5]	Reserved	Reserved.
[4]	EXT_MODE	Regulator External Mode This is a protected register. Please refer to open lock sequence to program it. Users can output regulator output voltage in V _{REF} pin if EXT_MODE is high. 0 = No connection with external V _{REF} pin. 1 = Connet to external V _{REF} pin. Connect a 1uF to 10uF capacitor to AV _{SS} will let internal voltage reference be more stable.
[3:2]	SEL25	Regulator Output Voltage Selection Select internal reference voltage level. This is a protected register. Please refer to open lock sequence to program it. $00 = 1.5V.$ $01 = 1.8V.$ $10 = 2.5V.$ $11 = 2.5V.$
[1]	REG_EN	Regulator Enable Control Enable internal 1.5, 1.8V or 2.5V reference voltage. This is a protected register. Please refer to open lock sequence to program it. 0 = Disabled. 1 = Enabled.
[0]	BGP_EN	Band-gap Enable Control This is a protected register. Please refer to open lock sequence to program it. Band-gap is the reference voltage of internal reference voltage. User must enable band-gap if want to enable internal 1.5, 1.8V or 2.5V reference voltage. 0 = Disabled. 1 = Enabled.

LDO Control Register (LDO_CTL)

Register	Offset	R/W	Description	Reset Value
LDO_CTL	GCR_BA+0x70	R/W	LDO Control Register	0x0000_0X0C

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved			LDO_I	LEVEL	Reserved	LDO_PD		

Bits	Description	
[31:4]	Reserved	Reserved.
		LDO Output Voltage Select This is a protected register. Please refer to open lock sequence to program it.
[3:2] LDO_LEVEL		00 = Reseved.
		01 = 1.6V.
		10 = 1.8V.
		11 = 1.8V.
[1]	Reserved	Reserved.
		LDO Power Off
		This is a protected register. Please refer to open lock sequence to program it.
[0]	LDO_PD	Set this bit high will off LDO and cause Chip in unexpected state. User must keep this bit low.
		0 = LDO Enabled.
		1 = LDO Disabled.

HIRC Trim Control Register (IRCTRIMCTL)

Register	Offset	R/W	Description	Reset Value
IRCTRIMCTL	GCR_BA+0x80	R/W	HIRC Trim Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Reserved				ERR_STOP	
7	6	5	4	3	2	1	0	
TRIM_RE	TRIM_RETRY_CNT TRIM_LOOP		Reserved TRIM		_SEL			

Bits	Description					
[31:8]	Reserved	Reserved.				
[8]	ERR_STOP	Trim Stop When 32.768 KHz Error Detected This bit is used to control if stop the HIRC trim operation when 32.768 kHz clock error is detected. If set this bit high and 32.768 kHz clock error detected, the status 32K_ERR_INT (IRCTRIMINT[2]) would be set high and HIRC trim operation was stopped. If this bit is low and 32.768 kHz clock error detected, the status 32K_ERR_INT (IRCTRIMINT[2]) would be set high and HIRC trim operation is continuously.				
		0 = Continue the HIRC trim operation even if 1 = Stop the HIRC trim operation if 32.768 kH	32.768 kHz clock error detected.			
[7,0]	TRIM RETRY C	Trim Value Update Limitation Count This field defines that how many times the auto trim circuit will try to update the HIRC trim value before the frequency of HIRC locked. Once the HIRC locked, the internal trim value update counter will be reset. If the trim value update counter reached this limitation value and frequency of HIRC still doesn't lock, the auto trim operation will be disabled and TRIM_SEL (IRCTRIMCTL[1:0]) will be cleared to 00.				
[7:6]	NT	TRIM_RETRY_CNT	Trim Retry Count Limitation			
		00	Trim retry count limitation is 64			
		01	Trim retry count limitation is 128			
		10	Trim retry count limitation is 256			
		11	Trim retry count limitation is 512			
[5:4]		Trim Calculation Loop This field defines that trim value calculation is based on how many 32.768 kHz clock. For example, if TRIM_LOOP is set as 00, auto trim circuit will calculate trim value based on the average frequency difference in 4 32.768 kHz clock.				
		TRIM_LOOP	Average Frequency Difference			

Bits	Description					
		00	4 32.768 kHz clock			
		01	8 32.768 kHz clock			
		10	16 32.768 kHz clock			
		11	32 32.768 kHz clock			
[3:2]		Reserved.	Reserved.			
		If no any target fro disabled. During auto trim o	Selection s the target frequency of HIRC auto trim. equency is selected (TRIM_SEL is 00), the HIRC auto trim function is operation, if 32.768 kHz clock error detected or trim retry limitation count I will be cleared to 00 automatically.			
[1:0]	TRIM_SEL	TRIM_SEL	Function			
		00	Disable HIRC auto trim function			
		01	Enable HIRC auto trim function and trim HIRC to 11.0592 MHz			
		10	Enable HIRC auto trim function and trim HIRC to 12 MHz			
		11	Enable HIRC auto trim function and trim HIRC to 16 MHz			

HIRC Trim Interrupt Enable Register (IRCTRIMIEN)

Register	Offset	R/W	Description	Reset Value
IRCTRIMIEN	GCR_BA+0x84	R/W	HIRC Trim Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved				32K_ERR_IEN	TRIM_FAIL_IE N	Reserved		

Bits	Description	
[31:3]	Reserved	Reserved.
[2]	32K_ERR_IEN	32.768 KHz Clock Error Interrupt Enable Control This bit controls if CPU would get an interrupt while 32.768 kHz clock is inaccuracy during auto trim operation. If this bit is high, and 32K_ERR_INT (IRCTRIMINT[2]) is set during auto trim operation, an interrupt will be triggered to notify the 32.768 kHz clock frequency is inaccuracy. 0 = 32K_ERR_INT (IRCTRIMINT[2]) status Disabled to trigger an interrupt to CPU. 1 = 32K_ERR_INT (IRCTRIMINT[2]) status Enabled to trigger an interrupt to CPU.
[1]	TRIM_FAIL_IEN	Trim Failure Interrupt Enable Control This bit controls if an interrupt will be triggered while HIRC trim value update limitation count reached and HIRC frequency still not locked on target frequency set by TRIM_SEL (IRCTRIMCTL[1:0]). If this bit is high and TRIM_FAIL_INT (IRCTRIMINT[1]) is set during auto trim operation, an interrupt will be triggered to notify that HIRC trim value update limitation count was reached. 0 = TRIM_FAIL_INT (IRCTRIMINT[1:0]) status Disabled to trigger an interrupt to CPU. 1 = TRIM_FAIL_INT (IRCTRIMINT[1:0]) status Enabled to trigger an interrupt to CPU.
[0]	Reserved	Reserved.

HIRC Trim Interrupt Status Register (IRCTRIMINT)

Register	Offset	R/W	Description	Reset Value
IRCTRIMINT	GCR_BA+0x88	R/W	HIRC Trim Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved				32K_ERR_INT	TRIM_FAIL_I NT	FREQ_LOCK		

Bits	Description	
[31:3]	Reserved	Reserved.
		32.768 KHz Clock Error Interrupt Status
		This bit indicates that 32.768 kHz clock frequency is inaccuracy. Once this bit is set, the auto trim operation stopped and TRIM_SEL (IRCTRIMCTL[1:0]) will be cleared to 00 by hardware automatically.
[2]	32K_ERR_INT	If this bit is set and 32K_ERR_IEN (IRCTRIMIEN[2]) is high, an interrupt will be triggered to notify the 32.768 kHz clock frequency is inaccuracy. Write 1 to clear this to zero.
		0 = 32.768 kHz clock frequency is accuracy.
		1 = 32.768 kHz clock frequency is inaccuracy.
		Trim Failure Interrupt Status
		This bit indicates that HIRC trim value update limitation count reached and HIRC clock frequency still doesn't lock. Once this bit is set, the auto trim operation stopped and TRIM_SEL (IRCTRIMCTL[1:0]) will be cleared to 00 by hardware automatically.
[1]	TRIM_FAIL_INT	If this bit is set and TRIM_FAIL_IEN (IRCTRIMIEN[1]) is high, an interrupt will be triggered to notify that HIRC trim value update limitation count was reached. Write 1 to clear this to zero.
		0 = Trim value update limitation count doesn't reach.
		1 = Trim value update limitation count reached and HIRC frequency still doesn't lock.
		HIRC Frequency Lock Status
[0]	FREQ_LOCK	This bit indicates the HIRC frequency lock.
		This is a status bit and doesn't trigger any interrupt.

Register Lock Key Address Register (RegLockAddr)

nuvoton

Some of the system control registers need to be protected to avoid inadvertent write and disturb the chip operation. These system control registers are locked after the power-on reset till users to open the lock. For users to program these protected registers, an open lock sequence needs to be followed by a special programming sequence. The open sequence is to continue write the data "59h", "16h" "88h" to the key controller address 0x5000 0100. Any different data value or different sequence or any other write operations to any other address during these three data program aborts the whole sequence.

After the lock is opened, users can check the lock bit ReqLockAddr[0]. "1" is unlocked, "0" is locked. Then users can update the target register value if RegUnLock is high and write any data to the address "0x5000 0100" to re-lock the protected registers

This register is written for open the RegUnLock key and read for the RegUnLock status.

Register	Offset	R/W	Description	Reset Value
RegLockAddr	GCR_BA+0x100	R/W	Register Lock Key address	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
			Reserved				RegUnLock	

Bits	Description	Description			
[31:1]	Reserved	Reserved.			
[0]	RegUnLock	Protected Register Enable Control 0 = Protected register are Locked. Any write to the target register is ignored. 1 = Protected registers are Unlocked.			

6.5 Clock Controller

6.5.1 Overview

nuvoTon

The clock controller generates clocks for the whole chip, Including system clocks (CPU clock, HCLKx, and PCLKx) and all peripheral module clocks. HCLKx means AHB bus clock for peripherals on AHB bus. PCLKx means APB bus clock for peripherals on APB bus. PCLKx can be the same as HCLKx or divided from HCLKx. The clock controller also implements the power control function with the individually clock ON/OFF control, clock source selection and a 4-bit clock divider. The chip will not enter Power-down mode until CPU sets the power down enable bit PD_EN(PWRCTL[6]) and executes the WFI instruction. In the Power-down mode, clock controller turns off the external high frequency crystal, internal high frequency oscillator, and system clocks (CPU clock, HCLKx, and PCLKx) to reduce the power consumption.

The clock controller consists of 5 sources as listed below:

- 32.768 kHz external low speed crystal oscillator (LXT)
- 4~ 24 MHz external high speed crystal oscillator (HXT)
- 12/16 MHz internal high speed RC oscillator (HIRC)
- One programmable PLL FOUT (PLL source can be selected from HXT or HIRC)
- 10 kHz internal low speed RC oscillator (LIRC)

6.5.2 Features

- Generates clocks for system clocks and all peripheral module clocks.
- Each peripheral module clock can be turned on/off.
- High frequency crystal, internal high frequency oscillator, and system clocks will be turned off when chip is in Power-down mode.

6.5.3 **Block Diagram**

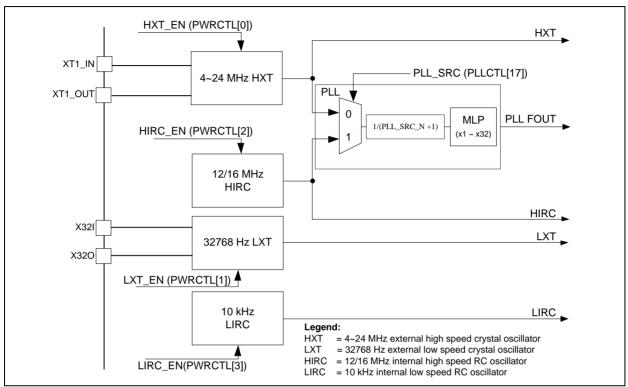


Figure 6-6 Clock Controller Block Diagram (1/3)

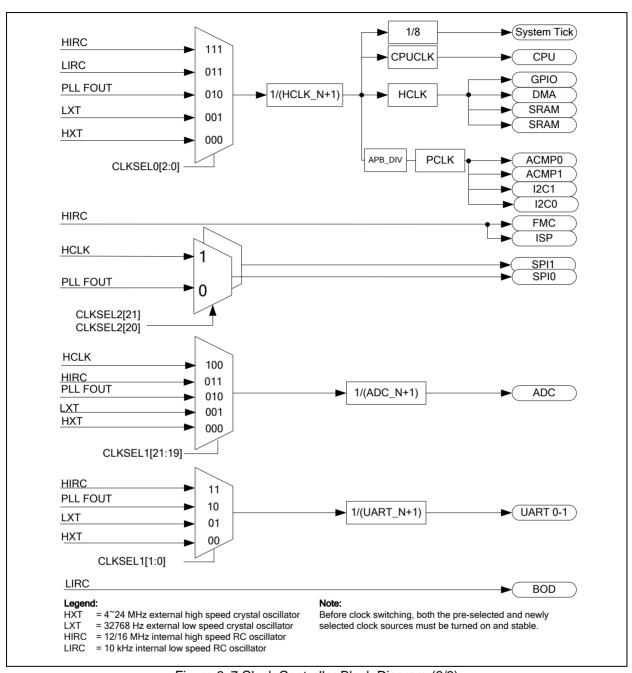


Figure 6-7 Clock Controller Block Diagram (2/3)

nuvoton

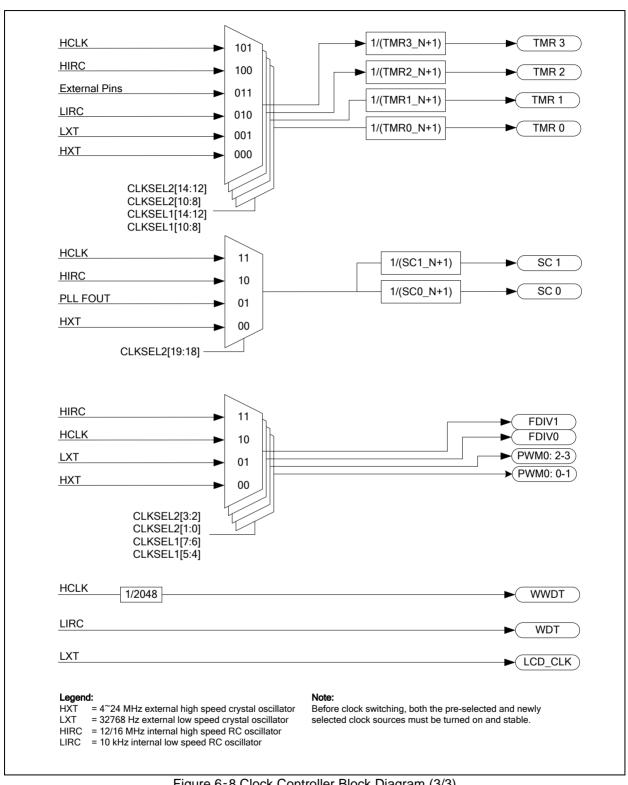


Figure 6-8 Clock Controller Block Diagram (3/3)

6.5.4 Functional Description

6.5.4.1 Peripheral clocks

Each peripheral clock has different clock source switching setting. Please refer to the CLKSEL1 and CLKSEL2 description.

	НХТ	LXT	HIRC	LIRC	HCLK	PCLK	PLL	Ext. Pin
ADC	Yes	Yes	Yes	-	Yes	-	Yes	-
FDIV	Yes	Yes	Yes	-	Yes	-	-	-
I ² C	-	-	-	-		Yes	-	-
LCD	-	Yes	-	-	-	-	-	-
PWM	Yes	Yes	Yes	-	Yes	-	-	-
RTC	-	Yes	-	-	-	-	-	-
SC	Yes	-	Yes	-	Yes		Yes	-
SPI	ı	ı	ı	-	Yes		Yes	-
TMR	Yes	Yes	Yes	Yes	Yes		-	Yes
UART	Yes	Yes	Yes	-	-		Yes	-
WDT	-	-	-	Yes	-	-	-	-
WWDT	-	-	-	-	Yes	-	-	-

Table 6-7 Peripheral Clocks

6.5.4.2 Clocks in Power-down Mode

When chip enters Power-down mode, system clocks (CPU clock, HCLKx, and PCLKx), HXT, HIRC will be disabled directly. LXT and LIRC could be still active in Power-down mode if CPU does not disable these clocks before entering Power-down mode. Peripheral module clocks could be still active in Power-down mode if peripheral module adopts LXT or LIRC and LXT or LIRC does not be disabled respectively.

6.5.4.3 Frequency Divider Output

This device is equipped two power-of-2 frequency divide-FDIV0 and FDIV1. Each is composed by16 chained divide-by-2 shift registers. One of the 16 shift register outputs selected by a sixteen to one multiplexer is reflected to IO. Therefore there are 16 options of power-of-2 divided clocks with the frequency from Fin/2^1 to Fin/2^16 where Fin is input clock frequency to the clock divider.

The output formula is Fout = $Fin/2^{(N+1)}$, where Fin is the input clock frequency, Fout is the clock divider output frequency and N is the 4-bit value in FSEL (FRQDIVx[3:0], x= 0-1).

When FDIV_EN (FRQDIVx[4], x=0-1) is set to high, the rising transition of FDIV_EN will reset the chained counter and then chained counter starts to count. When FDIV_EN (FRQDIVx[4], x=0-1) is written with zero, the chained counter continuously runs till divided clock reaches low state and stay in low state.

nuvoton

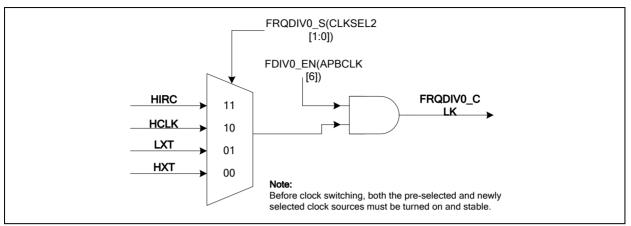


Figure 6-9 Clock Source of Frequency Divider0

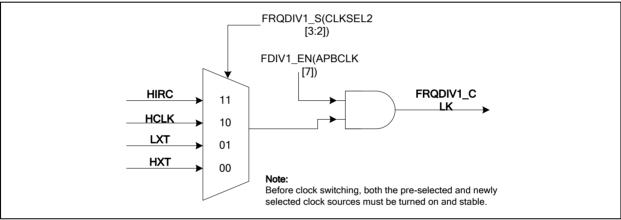


Figure 6-10 Clock Source of Frequency Divider1

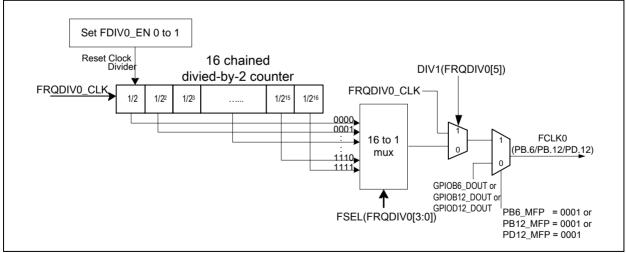


Figure 6-11 Frequency Divider Block Diagram

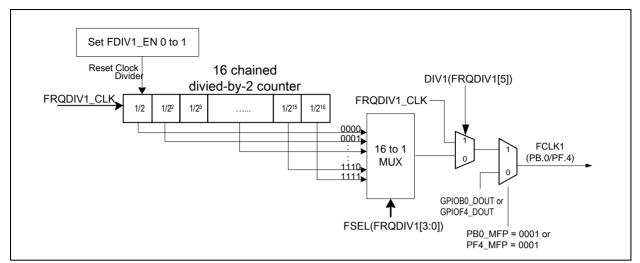


Figure 6-12 Frequency Divider1 Block Diagram

6.5.4.4 PLL

nuvoTon

There are two clock sources of PLL: HXT and HIRC. The clock source must be divided into 0.8 ~2.0 MHz first. Then multiple the divided clock from one to 32 times to get PLL output. PLL output must be in range of 16~32 MHz.

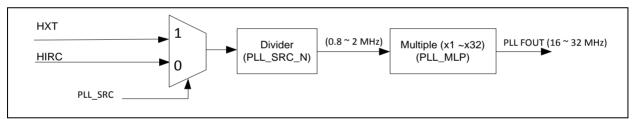


Figure 6-13 PLL Block Diagram

Programming examples:

- 1. Select PLL input clock source (PLLCTL[17])
- 2. Divide the input clock source to 0.8~2 MHz (PLLCTL[11:8])
- 3. Multiple the divided clock to get PLL FOUT (PLLCTL[5:0])

6.5.4.5 HIRC Frequency Changes

There are two output options of HIRC: 12MHz HIRC_FSEL(PWRCTL[12] = 0) or 16MHz HIRC FSEL(PWRCTL[12] = 1). User can switch HIRC output frequency directly. However there will be transient clock period, whose period is between 12MHz and 16MHz. If user concerns this transient interval, user can uppress HIRC output during this time interval by setting HIRC_F_STOP high.

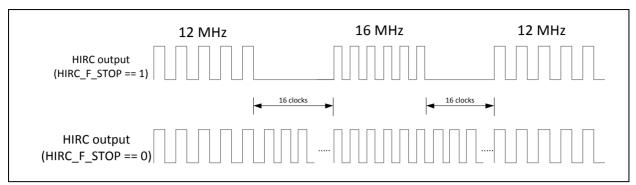


Figure 6-14 HIRC Frequency Change

6.5.5 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value		
CLK Base Address: CLK_BA = 0x5000_0200						
PWRCTL	CLK_BA+0x00	R/W	System Power-down Control Register	0x001A_0B1x		
AHBCLK	CLK_BA+0x04	R/W	AHB Devices Clock Enable Control Register	0x0000_0035		
APBCLK	CLK_BA+0x08	R/W	APB Devices Clock Enable Control Register	0x0000_0001		
CLKSTATUS	CLK_BA+0x0C	R	Clock status monitor Register	0x0000_001x		
CLKSEL0	CLK_BA+0x10	R/W	Clock Source Select Control Register 0	0x0000_000x		
CLKSEL1	CLK_BA+0x14	R/W	Clock Source Select Control Register 1	0x0018_44F3		
CLKSEL2	CLK_BA+0x18	R/W	Clock Source Select Control Register 2	0x0038_440F		
CLKDIV0	CLK_BA+0x1C	R/W	Clock Divider Number Register 0	0x0000_0000		
CLKDIV1	CLK_BA+0x20	R/W	Clock Divider Number Register 1	0x0000_0000		
PLLCTL	CLK_BA+0x24	R/W	PLL Control Register	0x0003_0000		
FRQDIV0	CLK_BA+0x28	R/W	Frequency Divider0 Control Register	0x0000_0000		
WK_INTSTS	CLK_BA+0x30	R	Wake-up Interrupt Status	0x0000_0000		
APB_DIV	CLK_BA+0x34	R/W	APB Clock Divider	0x0000_0000		
FRQDIV1	CLK_BA+0x38	R/W	Frequency Divider1 Control Register	0x0000_0000		
CLK_SP_DET	CLK_BA+0x3C	R/W	Clock Stop Detect Control Register	0x0000_0000		
CLK_SP_STS	CLK_BA+0x40	R	Clock Stop Detect Status Register	0x0000_0000		

Register Description 6.5.6

nuvoTon

Power-down Control Register (PWRCTL)

Register	Offset	R/W	Description	Reset Value
PWRCTL	CLK_BA+0x00	R/W	System Power-down Control Register	0x001A_0B1x

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
Rese	erved	HIRC_F_STO P	HIRC_FSEL	нхт_	GAIN	HXT_CUR_SE L	HXT_SELXT
7	6	5	4	3	2	1	0
Reserved	PD_EN	PD_WK_IE	WK_DLY	LIRC_EN	HIRC_EN	LXT_EN	HXT_EN

Bits	Description	
[31:14]	Reserved	Reserved.
[13]	HIRC_F_STOP	HIRC Stop Output When Frequency Changes This is a protected register. Please refer to open lock sequence to program it. 0 = HIRC will continue to output when HIRC frequency changes. 1 = HIRC will suppress to output during first 16 clocks when HIRC frequency change.
[12]	HIRC_FSEL	HIRC Output Frequency Select 0 = HIRC will output 12MHz clock. 1 = HIRC will output 16MHz Clock.
[11:10]	HXT_GAIN	HXT Gain Control Bit This is a protected register. Please refer to open lock sequence to program it. Gain control is used to enlarge the gain of crystal to make sure crystal wok normally. If gain control is enabled, crystal will consume more power than gain control off. 00 = HXT frequency is lower than from 8 MHz. 01 = HXT frequency is from 8 MHz to 12 MHz. 10 = HXT frequency is from 12 MHz to 16 MHz.
[9] HXT_CUR_SEL		HXT Internal Current Selection HXT has some internal current path to help crystal start-up. However when these currnet path existence, HXT will consume more power. User can use this bit to balance the start-up and power consumption. 0 = HXT current path always exists. HXT will consume more power. For 16MHz to 24 MHz crystal. 1 = HXT current path will exist 2ms then cut down. HXT will consume less power. For 4 MHz to 16 MHz crystal.
[8]	HXT_SELXT	HXT SELXT

Bits	Description	Description						
		This is a protected register. Please refer to open lock sequence to program it. 0 = High frequency crystal loop back path Disabled. It is used for external oscillator. 1 = High frequency crystal loop back path Enabled. It is used for external crystal.						
[7]	Reserved	Reserved.						
		Chip Power-down Mode Enable Bit This is a protected register. Please refer to open lock sequence to program it.						
		When CPU sets this bit, the chip power down is enabled and chip will not enter Power-down mode until CPU sleep mode is also active.						
[6]	PD_EN	When chip wakes up from Power-down mode, this bit will be auto cleared. When chip is in Power-down mode, the LDO, HXT and HIRC will be disabled, but LXT and LIRC are not controlled by Power-down mode.						
		When power down, the PLL and system clock (CPU, HCLKx and PCLKx) are also disabled no matter the Clock Source selection. Peripheral clocks are not controlled by this bit, if peripheral Clock Source is from LXT or LIRC.						
		In Power-down mode, flash macro power is ON. 0 = Chip operated in Normal mode.						
		1 = Chip power down Enabled.						
[5]	PD_WK_IE	Power-down Mode Wake-up Interrupt Enable Control This is a protected register. Please refer to open lock sequence to program it. 0 = Disabled. 1 = Enabled. PD_WK_INT will be set if both PD_WK_IS and PD_WK_IE are high.						
		Wake-up Delay Counter Enable Control						
[4]	WK_DLY	This is a protected register. Please refer to open lock sequence to program it. When chip wakes up from Power-down mode, the clock control will delay 4096 clock cycles to wait HXT stable or 16 clock cycles to wait HIRC stable. 0 = Delay clock cycle Disabled. 1 = Delay clock cycle Enabled.						
[3]	LIRC_EN	LIRC Enable Control This is a protected register. Please refer to open lock sequence to program it. 0 = Disabled. 1 = Enabled.						
		LIRC is enabled by default.						
[2]	HIRC_EN	HIRC Enable Control This is a protected register. Please refer to open lock sequence to program it. 0 = Disabled. 1 = Enabled. HIRC is enabled by default.						
[1]	LXT_EN	LXT Enable Control This is a protected register. Please refer to open lock sequence to program it. 0 = Disabled. 1 = Enabled. LXT is disabled by default.						
[0]	HXT_EN	HXT Enable Control This is a protected register. Please refer to open lock sequence to program it. The bit default value is set by flash controller user configuration register config0 [26].						

Bits	Description	
		0 = Disabled.
		1 = Enabled.
		HXT is disabled by default.

Mode	PD_EN	CPU Run WFI Instruction	Clock Gating
Normal Mode	0	NO	Depending on S/W setting
Idle Mode (CPU entry sleep mode)	0	YES	Only CPU clock gating
Power-down Mode	1	YES	Most Clocks are gating except LXT or LIRC and IP adopting LXT or LIRC. S/W can turn off LXT and LIRC before chip enters Power-down mode.

Table 6-8 Power Modes and Clocks

AHB Devices Clock Enable Control Register (AHBCLK)

nuvoTon

These register bits are used to enable/disable AHB IP HCLK and engine clocks

Register	Offset	R/W	Description	Reset Value
AHBCLK	CLK_BA+0x04	R/W	AHB Devices Clock Enable Control Register	0x0000_0035

31	30	29	28	27	26	25	24	
			Rese	erved				
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
Rese	erved	TICK_EN	SRAM_EN	Reserved	ISP_EN	DMA_EN	GPIO_EN	

Bits	Description	
[31:6]	Reserved	Reserved.
[5]		System Tick Clock Enable Control 0 = Disabled. 1 = Enabled.
[4]		SRAM Controller Clock Enable Control 0 = Disabled. 1 = Enabled.
[3]	Reserved	Reserved.
[2]		Flash ISP Controller Clock Enable Control 0 = Disabled. 1 = Enabled.
[1]	DMA_EN	DMA Controller Clock Enable Control 0 = Disabled. 1 = Enabled.
[0]		GPIO Controller Clock Enable Control 0 = Disabled. 1 = Enabled.

APB Devices Clock Enable Control Register (APBCLK)

nuvoTon

These register bits are used to enable/disable APB IP PCLK and engine clocks.

Register	Offset	R/W	Description	Reset Value
APBCLK	CLK_BA+0x08	R/W	APB Devices Clock Enable Control Register	0x0000_0001

31	30	29	28	27	26	25	24
SC1_EN	SC0_EN	Reserved	ADC_EN	Reserved	LCD_EN	Rese	erved
23	22	21	20	19	18	17	16
Rese	erved	PWM0_CH23_ EN	PWM0_CH01_ EN	Rese	erved	UART1_EN	UARTO_EN
15	14	13	12	11	10	9	8
Rese	erved	SPI1_EN	SPI0_EN	ACMP_EN	Reserved	I2C1_EN	I2C0_EN
7	6	5	4	3	2	1	0
FDIV1_EN	FDIV0_EN	TMR3_EN	TMR2_EN	TMR1_EN	TMR0_EN	RTC_EN	WDT_EN

Bits	Description	
[31]	SC1_EN	SmartCard 1 Clock Enable Control 0 = Disabled. 1 = Enabled.
[30]	SC0_EN	SmartCard 0 Clock Enable Control 0 = Disabled. 1 = Enabled.
[29]	Reserved	Reserved.
[28]	ADC_EN	Analog-digital-converter (ADC) Clock Enable Control 0 = Disabled. 1 = Enabled.
[27]	Reserved	Reserved.
[26]	LCD_EN	LCD Controller Clock Enable Control 0 = Disabled. 1 = Enabled.
[25:22]	Reserved	Reserved.
[21]	PWM0_CH23_E N	PWM0 Channel 2 and Channel 3 Clock Enable Control 0 = Disabled. 1 = Enabled.
[20]	PWM0_CH01_E N	PWM0 Channel 0 and Channel 1Clock Enable Control 0 = Disabled. 1 = Enabled.
[19:18]	Reserved	Reserved.
[17]	UART1_EN	UART1 Clock Enable Control

Bits	Description	Description					
		0 = Disabled. 1 = Enabled.					
[16]	UARTO_EN	UART0 Clock Enable Control 0 = Disabled. 1 = Enabled.					
[15:14]	Reserved	Reserved.					
[13]	SPI1_EN	SPI1 Clock Enable Control 0 = Disabled. 1 = Enabled.					
[12]	SPI0_EN	SPI0 Clock Enable Control 0 = Disabled. 1 = Enabled.					
[11]	ACMP_EN	ACMP Clock Enable Control 0 = Disabled. 1 = Enabled.					
[10]	Reserved	Reserved.					
[9]	I2C1_EN	I2C1 Clock Enable Control 0 = Disabled. 1 = Enabled.					
[8]	I2C0_EN	I2C0 Clock Enable Control 0 = Disabled. 1 = Enabled.					
[7]	FDIV1_EN	Frequency Divider1 Output Clock Enable Control 0 = Disabled. 1 = Enabled.					
[6]	FDIV0_EN	Frequency Divider0 Output Clock Enable Control 0 = Disabled. 1 = Enabled.					
[5]	TMR3_EN	Timer3 Clock Enable Control 0 = Disabled. 1 = Enabled.					
[4]	TMR2_EN	Timer2 Clock Enable Control 0 = Disabled. 1 = Enabled.					
[3]	TMR1_EN	Timer1 Clock Enable Control 0 = Disabled. 1 = Enabled.					
[2]	TMR0_EN	Timer0 Clock Enable Control 0 = Disabled. 1 = Enabled.					
[1]	RTC_EN	Real-time-clock Clock Enable Control This bit is used to control the RTC APB clock only, The RTC engine Clock Source is from					

Bits	Description	
		LXT. 0 = Disabled. 1 = Enabled.
[0]	WDT EN	Watchdog Timer Clock Enable Control This is a protected register. Please refer to open lock sequence to program it. This bit is used to control the WDT APB clock only, The WDT engine Clock Source is from LIRC. 0 = Disabled. 1 = Enabled.

Clock status Register (CLKSTATUS)

nuvoTon

These register bits are used to monitor if the chip Clock Source stable or not, and if clock switch is fail

Register	Offset	R/W	Description	Reset Value
CLKSTATUS	CLK_BA+0x0C	R	Clock status monitor Register	0x0000_001x

31	30	29	28	27	26	25	24	
			Rese	erved				
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
CLK_SW_FAIL	Res	erved	HIRC_STB	LIRC_STB	PLL_STB	LXT_STB	HXT_STB	

Bits	Description	
[31:8]		Reserved.
[7]	CLK_SW_FAIL	Clock Switch Fail Flag 0 = Clock switch success. 1 = Clock switch fail. This bit will be set when target switch Clock Source is not stable. This bit is write 1 clear
[6:5]	Reserved	Reserved.
[4]	HIRC_STB	HIRC Clock Source Stable Flag 0 = HIRC clock is not stable or not enable. 1 = HIRC clock is stable.
[3]	LIRC_STB	LIRC Clock Source Stable Flag 0 = LIRC clock is not stable or not enable. 1 = LIRC clock is stable.
[2]	PLL_STB	PLL Clock Source Stable Flag 0 = PLL clock is not stable or not enable. 1 = PLL clock is stable.
[1]	LXT_STB	LXT Clock Source Stable Flag 0 = LXT clock is not stable or not enable. 1 = LXT clock is stable.
[0]	HXT_STB	HXT Clock Source Stable Flag 0 = HXT clock is not stable or not enable. 1 = HXT clock is stable.

Clock Source Select Control Register 0 (CLKSEL0)

Register	Offset	R/W	Description	Reset Value
CLKSEL0	CLK_BA+0x10	R/W	Clock Source Select Control Register 0	0x0000_000x

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
Reserved					HCLK_S				

Bits	Description	ption						
[31:3]	Reserved	Reserved.						
		HCLK Clock Source Selection	1					
		This is a protected register. Ple	ase refer to open lock sequence to program it.					
		Note:						
		Before Clock Source switches, the related clock sources (pre-select and new-select) must be turn on						
			led with the value of CFOSC (Config0[26:24]) in user controller by any reset. Therefore the default value is either					
[2:0]	HCLK_S	HCLK_S	Clock Source					
		000	нхт					
		001	LXT					
		010	PLL clock					
		011	LIRC					
		111	HIRC					

Clock Source Select Control Register 1 (CLKSEL1)

Register	Offset	R/W	Description	Reset Value
CLKSEL1	CLK_BA+0x14	R/W	Clock Source Select Control Register 1	0x0018_44F3

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
Rese	Reserved ADC_S				LCD_S Reserved		erved	
15	14	13	12	11	10	9	8	
Reserved		TMR1_S		Reserved	TMR0_S			
7	6	5	4	3	2	1	0	
PWM0_	PWM0_CH23_S PWM0_CH01_S		Reserved UART_S		T_S			

Bits	Description							
[31:22]		Reserved.						
		ADC Clock Source Selection						
		ADC_S	Clock Source					
		000	нхт					
[21:19]	ADC_S	001	LXT					
		010	PLL clock					
		011	HIRC					
		others	HCLK					
[18]	LCD_S	LCD Clock Source Selection 0 = Clock Source from LXT. 1 = Reserved.						
[17:15]	Reserved	Reserved.						
		Timer1 Clock Source Selection						
		TMR1_S	Clock Source					
		000	нхт					
[14:12]	TMR1_S	001	LXT					
[14.12]	TWINT_5	010	LIRC					
		011	external pin					
		100	HIRC					
		others	HCLK					
[11]		Reserved.						
[10:8]	TMR0_S	Timer0 Clock Source Selec	tion					

Bits	Description	Description							
		TMR0_S	Clock Source						
		000	НХТ						
		001	LXT						
		010	LIRC						
		011	external pin						
		100	HIRC						
		others	HCLK						
		PWM0 Channel 2 and Channel 3 Clock S PWM0 channel 2 and channel 3 use the sa same prescaler	ource Selection me Engine clock source, both of them with the						
		PWM0_CH23_S	Clock Source						
[7:6]	PWM0_CH23_S	00	нхт						
		01	LXT						
		10	HCLK						
		11	HIRC						
		PWM0 Channel 0 and Channel 1 Clock Source Selection PWM0 channel 0 and channel 1 use the same Engine clock source, both of them with the same prescaler							
		PWM0_CH01_S	Clock Source						
[5:4]	PWM0_CH01_S	00	нхт						
		01	LXT						
		10	HCLK						
		11	HIRC						
[3:2]	Reserved	Reserved.							
		UART 0/1 Clock Source Selection (UART Selection)	0 and UART1 Use the Same Clock Source						
		UART_S	Clock Source						
[1:0]	UART_S	00	нхт						
		01	LXT						
		10	PLL clock						
		11	HIRC						

Clock Source Select Control Register 2 (CLKSEL2)

nuvoTon

Before clock switch the related clock sources (pre-select and new-select) must be turned on.

Register	Offset	R/W	Description	Reset Value
CLKSEL2	CLK_BA+0x18	R/W	Clock Source Select Control Register 2	0x0038_440F

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
Rese	erved	SPI1_S	SPI0_S	sc_s		Reserved			
15	14	13	12	11	10	9	8		
Reserved		TMR3_S		Reserved	TMR2_S				
7	6	5	4	3	2	1	0		
	Reserved			FRQD	IV0_S	FRQD	IV1_S		

Bits	Description					
[31:22]	Reserved	Reserved.				
[21]	SPI1_S	SPI1 Clock Source Selection 0 = PLL. 1 = HCLK.				
[20]	SPI0_S	SPI0 Clock Source Selection 0 = PLL. 1 = HCLK.				
		SC Clock Source Selection				
		sc_s	Clock Source			
[40.40]	sc_s	00	НХТ			
[19:18]		01	PLL output			
		10	HIRC			
		11	HCLK			
[17:15]		Reserved.	·			
		Timer3 Clock Source Selection				
		TMR3_S	Clock Source			
		000	нхт			
[14:12]	TMR3_S	001	LXT			
		010	LIRC			
		011	external pin			
		100	HIRC			

Bits	Description						
		others	HCLK				
[11]	Reserved	Reserved.					
		Timer2 Clock Source Selection					
		TMR2_S	Clock Source				
		000	нхт				
[10:8]	TMR2_S	001	LXT				
[10.6]	TWINZ_3	010	LIRC				
		011	external pin				
		100	HIRC				
		others	HCLK				
[7:4]	Reserved	Reserved.					
		Clock Divider0 Clock Source Selection					
		FRQDIV_S	Clock Source				
[3:2]	FRQDIV0_S	00	нхт				
[3.2]	FRQDIVU_S	01	LXT				
		10	HCLK				
		11	HIRC				
		Clock Divider Clock1 Source Se	lection				
		FRQDIV_S	Clock Source				
[4.0]	FRQDIV1_S	00	нхт				
[1:0]	ראעטועזן_5	01	LXT				
		10	HCLK				
		11	HIRC				

Clock Divider 0 Register (CLKDIV0)

Register	Offset	R/W	Description	Reset Value
CLKDIV0	CLK_BA+0x1C	R/W	Clock Divider Number Register 0	0x0000_0000

31	30	29	28	27	26	25	24	
SC0_N			Reserved					
23	22	21	20	19	18	17	16	
	ADC_N							
15	14	13	12	11	10	9	8	
	Rese	erved		UART_N				
7	6	5	4	3	2	1	0	
Reserved				HCL	.K_N			

Bits	Description	
[31:28]	SC0_N	SC 0 Clock Divide Number From SC 0 Clock Source The SC 0 clock frequency = (SC0 Clock Source frequency) / (SC0_N + 1).
[27:24]	Reserved	Reserved.
[23:16]	ADC_N	ADC Clock Divide Number From ADC Clock Source The ADC clock frequency = (ADC Clock Source frequency) / (ADC_N + 1).
[15:12]	Reserved	Reserved.
[11:8]	UART_N	UART Clock Divide Number From UART Clock Source The UART clock frequency = (UART Clock Source frequency) / (UART_N + 1).
[7:4]	Reserved	Reserved.
[3:0]	HCLK_N	HCLK Clock Divide Number From HCLK Clock Source The HCLK clock frequency = (HCLK Clock Source frequency) / (HCLK_N + 1).

Clock Divider 1 Register (CLKDIV1)

Register	Offset	R/W	Description	Reset Value
CLKDIV1	CLK_BA+0x20	R/W	Clock Divider Number Register 1	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
TMR3_N				TMR2_N			
15	14	13	12	11	10	9	8
	TMF	R1_N		TMR0_N			
7	6	5	4	3	2	1	0
Reserved				sc	1_N		

Bits	Description	
[31:24]		Reserved.
[23:20]	TMR3_N	Timer3 Clock Divide Number From Timer3 Clock Source The Timer3 clock frequency = (Timer3 Clock Source frequency) / (TMR3_N + 1).
[19:16]	TMR2_N	Timer2 Clock Divide Number From Timer2 Clock Source The Timer2 clock frequency = (Timer2 Clock Source frequency) / (TMR2_N + 1).
[15:12]	TMR1_N	Timer1 Clock Divide Number From Timer1 Clock Source The Timer1 clock frequency = (Timer1 Clock Source frequency) / (TMR1_N + 1).
[11:8]	TMR0_N	Timer0 Clock Divide Number From Timer0 Clock Source The Timer0 clock frequency = (Timer0 Clock Source frequency) / (TMR0_N + 1).
[7:4]	Reserved	Reserved.
[3:0]	SC1_N	SC 1 Clock Divide Number From SC 1 Clock Source The SC 1 clock frequency = (SC 1 Clock Source frequency) / (SC1_N + 1).

PLL Control Register (PLLCTL)

nuvoTon

The PLL reference clock input is from HXT or HIRC. This register is used to control PLL output frequency and PLL operating mode

Register	Offset	R/W	Description	Reset Value
PLLCTL	CLK_BA+0x24	R/W	PLL Control Register	0x0003_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
		Rese	erved			PLL_SRC	PD	
15	14	13	12	11	10	9	8	
	Reserved				PLL_S	SRC_N		
7 6 5 4 3					2	1	0	
Reserved PLL_MLP								

Bits	Description	
[31:18]	Reserved	Reserved.
[17]	PLL_SRC	PLL Source Clock Select 0 = PLL source clock from HXT. 1 = PLL source clock from HIRC.
[16]	PD	Power-down Mode If set the PD_EN bit "1" in PWR_CTL register, the PLL will enter Power-down mode too 0 = PLL is in normal mode. 1 = PLL is in Power-down mode (default).
[15:12]	Reserved	Reserved.
[11:8]	PLL_SRC_N	PLL Input Source Divider The PLL input clock frequency = (PLL Clock Source frequency) / (PLL_SRC_N + 1). PLL input clock frequency range: 0.8MHz ~ 2MHz
[7:6]	Reserved	Reserved.
[5:0]	PLL_MLP	PLL Multiple 000000: Reserved 000001: X1 000010: X2 000011: X3 000100: X4 010000:X16 100000: X32 Others: Reserved

PLL output frequency: PLL input frequency * PLL_MLP.
PLL output frequency range: 16MHz ~ 32MHz

Frequency Divider Control Register (FRQDIV0)

Register	Offset	R/W	Description	Reset Value
FRQDIV0	CLK_BA+0x28	R/W	Frequency Divider0 Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
Reserved DIV1 FDIV_EN FSEL								

Bits	Description	Description					
[31:5]	Reserved	Reserved.					
[5]		Output Frequency Divied by 1 0 = Output frequency is equal to FCLK0. 1 = Output frequency is equal to FRQDIV0_CLK.					
[4]		Frequency Divider Enable Bit 0 = Frequency Divider Disabled. 1 = Frequency Divider Enabled.					
[3:0]	FSEL	Divider Output Frequency Selection Bits The formula of output frequency is FCLK0 = FRQDIV0_CLK/2^(N+1),. Where FRQDIV0_CLK is the input clock frequency, Fout is the frequency of divider output clock and N is the 4-bit value of FSEL[3:0].					

Wake-up Interrupts Status (WK_INTSTS)

Register	Offset	R/W	Description	Reset Value
WK_INTSTS	CLK_BA+0x30	R	Wake-up Interrupt Status	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved					PD_WK_IS		

Bits	Description			
[31:1]	Reserved	Reserved.		
[0]	PD_WK_IS	Wake-up Interrupt Sstatus in Chip Power-down Mode This bit indicates that some event resumes chip from Power-down mode The status is set if external interrupts, UART, GPIO, RTC, USB, SPI, Timer, WDT, and BOD wake-up occurred. Write 1 to clear this bit.		

APB Clock Divider Register (APB_DIV)

Register	Offset	R/W	Description	Reset Value
APB_DIV	CLK_BA+0x34	R/W	APB Clock Divider	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved					APBDIV	

Bits	Description				
[31:3]	Reserved	Reserved.			
[2:0]		APB Clock Divider APB PCLK can be divided from HCLK. 000: PCLK = HCLK. 001: PCLK = 1/2 HCLK. 010: PCLK = 1/4 HCLK. 011: PCLK = 1/8 HCLK. 100: PCLK = 1/16 HCLK. Others: PCLK = HCLK.			

Frequency Divider1 Control Register (FRQDIV1)

Register	Offset	R/W	Description	Reset Value
FRQDIV1	CLK_BA+0x38	R/W	Frequency Divider1 Control Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved DIV1			FDIV_EN	FSEL			

Bits	Description				
[31:6]	Reserved	Reserved.			
[5]		Output Frequency Divied by 1 0 = Output frequency is equal to FCLK1. 1 = Output frequency is equal to FRQDIV1_CLK.			
[4]		Frequency Divider Enable Bit 0 = Frequency Divider Disabled. 1 = Frequency Divider Enabled.			
[3:0]	FSEL	Divider Output Frequency Selection Bits The formula of output frequency is FCLK1 = FRQDIV1_CLK /2^(N+1),. Where FRQDIV1_CLK is the input clock frequency, Fout is the frequency of divider output clock and N is the 4-bit value of FSEL[3:0].			

Clock Stop Detect Control Register (CLK_SP_DET)

Register	Offset	R/W	Description	Reset Value
CLK_SP_DET	CLK_BA+0x3C	R/W	Clock Stop Detect Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
					HCLK_DET_I E	HCLK_DET		

Bits	Description	
[31:6]	Reserved	Reserved.
[5]	HIRC_STOP_IE	HIRC Stop Detect Interrupt Enable Control 0 = HIRC stop detect interrupt Disabled. 1 = HIRC stop detect interrupt Enabled.
[4]	HIRC_DET	HIRC Stop Detect Enable Control 0 = HIRC stop detect Disabled. 1 = HIRC stop detect Enabled.
[3]	HXT_STOP_IE	HXT Stop Detect Interrupt Enable Control 0 = HXT stop detect interrupt Disabled. 1 = HXT stop detect interrupt Enabled.
[2]	HXT_DET	HXT Stop Detect Enable Control 0 = HXT stop detect Disabled. 1 = HXT stop detect Enabled.
[1]	HCLK_DET_IE	HCLK Stop Detect Interrupt Enable Control 0 = HCLK stop detect interrupt Disabled. 1 = HCLK stop detect interrupt Enabled.
[0]	HCLK_DET	HCLK Stop Detect Enable Control 0 = HCLK stop detect Disabled. 1 = HCLK stop detect Enabled. Once HCLK stop detected, hardware will force HCLK from LIRC.

Clock Stop Detect Status Register (CLK_SP_STS)

Register	Offset	R/W	Description	Reset Value
CLK_SP_STS	CLK_BA+0x40	R	Clock Stop Detect Status Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
Reserved					H_TCLK_SEL		
7	6	5	4	3	2	1	0
Reserved HIRC_SP_IS			HIRC_SP_IS	Reserved	HXT_SP_IS	Reserved	HCLK_SP_IS

Bits	Description					
[31:11]	Reserved	Reserved.				
		HCLK Target Clock Select				
		H_TCLK_SEL	Clock Source			
		000	HXT			
[10:8]	H_TCLK_SEL	001	LXT			
		010	PLL clock			
		011	LIRC			
	111	HIRC				
[7:5]	Reserved	Reserved.				
[4]	HIRC_SP_IS	HIRC Stop Flag 0 = HIRC normal. 1 = HIRC abnormal.				
[3]	Reserved	Reserved.				
[2]	HXT_SP_IS	HXT Stop Flag 0 = HXT normal. 1 = HXT abnormal.				
[1]	Reserved	Reserved.				
[0]	HCLK_SP_IS	HCLK Clock Stop Flag 0 = HCLK normal. 1 = HCLK abnormal.				

6.6 Flash Memory Controller (FMC)

6.6.1 Overview

This chip is equipped with 16/32 Kbytes on-chip embedded flash memory for application program memory (APROM) that can be updated through ISP/IAP procedure. In System Programming (ISP) function enables user to update program memory when chip is soldered on PCB. After chip powered on Cortex-M0 CPU fetches code from APROM or LDROM decided by boot select (CBS) in Config0. By the way, this chip also provides Data Flash Region, the Data Flash is shared with original program memory and its start address is configurable and defined by user in Config1. The Data Flash size is defined by user application request.

6.6.2 Features

- 16/32 Kbytes application program memory (APROM)
- 4 Kbytes in system programming (ISP) loader program memory (LDROM)
- Programmable Data Flash start address and memory size with 512 bytes page erase unit
- 512 bytes system program memory (SPROM)
- In System Program (ISP)/In Application Program (IAP) to update on chip flash memory

Block Diagram 6.6.3

nuvoTon

The flash memory controller consists of AHB slave interface, ISP control logic, writer interface and flash macro interface timing control logic. The block diagram of flash memory controller is shown as follows.

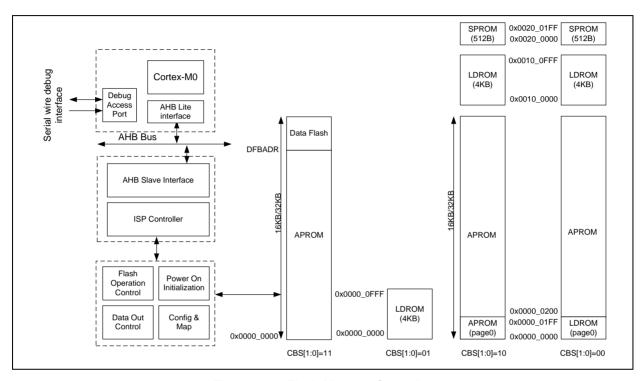


Figure 6-15 Flash Memory Controller

Functional Description 6.6.4

6.6.4.1 Flash Memory Organization

The flash memory consists of application program memory (16KB/32KB), Data Flash, ISP loader program memory, and user configuration. The user configuration block provides several bytes to control system logic, such as flash security lock, boot select, Brown-out voltage level, and Data Flash base address. It works like a fuse for power on setting. It is loaded from flash memory to its corresponding control registers during chip powered on. User can set these bits according to application request by writer before chip is mounted on PCB. The data flash start address and its size can defined by user application.

Block Name	DFEN	Size	Start Address	End Address
APROM	0	(16-0.5*N) Kbytes (32-0.5*N) Kbytes	0x0000_0000	DFBADR-1
APROM	1	16 Kbytes 32 Kbytes	0x0000_0000	0x0000_3FFF 0x0000_7FFF
Data Flash	0	0.5*N Kbytes	DFBADR	0x0000_3FFF

				0x0000_7FFF
Data Flash	1	N/A	N/A	N/A
LDROM	х	4 Kbytes	0x0010_0000	0x0010_0FFF
SPROM	х	512 bytes	0x0020_0000	0x0020_01FF
User Configuration	х	2 words	0x0030_0000	0x0030_0004

Table 6-9 Memory Access Map

The Flash memory organization is shown below.

nuvoTon

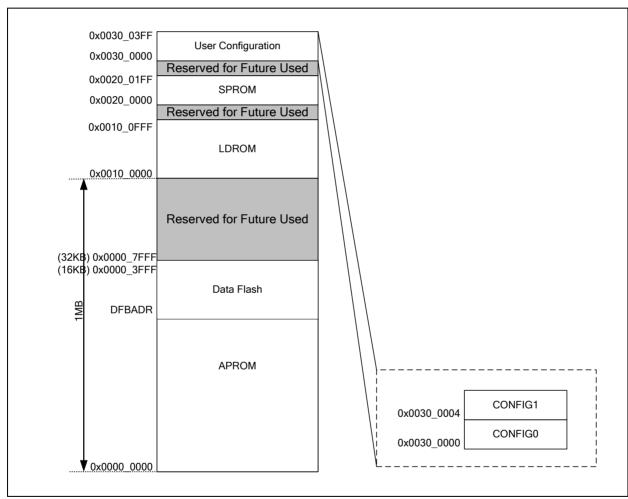


Figure 6-16 Flash Memory Organization

Boot Selection 6.6.4.2

This chip provides in system programming (ISP) feature for user to update program memory when chip is mounted on PCB. A dedicated 4 Kbytes program memory (LDROM) is used to store ISP firmware. Users can select to start program from APROM or LDROM by (CBS) in Config0.

CBS[1:0]	Boot Selection
	LDROM with IAP function
	Chip booting from LDROM, program executing range including SPROM, LDROM and APROM (except APROM's first page).
00	LDROM address is mapping to $0x0010_0000 \sim 0x0010_0FFF$, and the first 512 bytes of LDROM is mapping to the address $0x0000_0000 \sim 0x0000_01FF$ at the same time.
	Both APROM and LDROM are programmable in this mode no matter the code is currently running on LDROM or APROM. Data Flash is not functioned in this mode.
	LDROM without IAP function
01	Chip booting from LDROM, program executing range only including SPROM and LDROM. APROM can only be accessed by ISP commands.
	LDROM is write-protected in this mode.
	APROM with IAP function
10	Chip booting from APROM, program executing range including SPROM, LDROM and APROM. LDROM address is mapping to 0x0010_0000~0x0010_0FFF.
	Both APROM and LDROM are programmable in this mode no matter the code is currently running on LDROM or APROM. Data Flash is not functioned in this mode.
	APROM without IAP function
11	Chip booting from APROM and program executing range only including SPROM and APROM. LDROM can only be access by ISP commands.
	APROM is write-protected in this mode.

Table 6-10 Boot Selection

CBS[1:0]	Boot From	Vector Re-Map	Run In LDROM Write To APROM	Run In APROM Write To LDROM	Run In LDROM Write To LDROM	Run In APROM Write To APROM
00	LDROM	Yes	Yes	-	Yes	-
01	LDROM	-	Yes	-	Yes	-
10	APROM	Yes	-	Yes	-	Yes
11	APROM	-	-	Yes	-	Yes

Table 6-11 Boot Selection and Supports Function

6.6.4.3 BOD

nuvoTon

The brown-out detection function is used for monitoring the voltage on V_{DD} pin. If V_{DD} voltage falls below level setting of CBOV, the BOD event will be triggered when BOD enabled. User can decide to use BOD reset by enable CBORST or just enable BOD interrupt (set CBORST= 11) when BOD detected. Because BOD reset is issued whenever V_{DD} voltage falls below the level setting of CBOV, user must make sure the CBOV setting to avoid BOD reset right after BOD reset enabled. For example, if the V_{DD} is 2.2V, CBOV could only be 10. Otherwise, the system will be halted in BOD reset state when CBOV is 01 or 00.

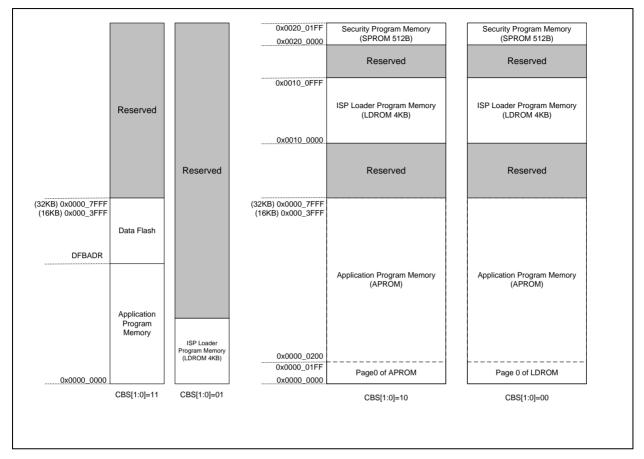


Figure 6-17 Flash Memory Mapping of CBS in CONFIG0

6.6.4.4 In Application Programming

nuvoTon

This chip provides In-application-programming (IAP) function for user to switch the code executing between APROM and LDROM without a reset. User can enable the IAP function by re-booting chip and setting the chip boot selection bits in CONFIG0 (CBS[1:0]) as '10'b or '00'b.

In the case that chip boots from APROM with the IAP function enabled (CBS[1:0] = '10'b), the executable range of code includes all of APROM and LDROM. The address space of APROM is kept as the original size but the address space of the 4 KB LDROM is mapped to 0x0010 0000~ 0x0010 0FFF.

In the case that chip boots from LDROM with the IAP function enabled (CBS[1:0] = '00'b), the executable range of code includes all of LDROM and almost all of APROM except for its first page. User cannot access the first page of APROM because the first page of executable code range becomes the mirror of the first page of LDROM by default. Meanwhile, the address space of 4 KB LDROM is mapped to 0x0010 0000~0x0010 0FFF.

Please refer to the following figure for the address map while IAP is activating.

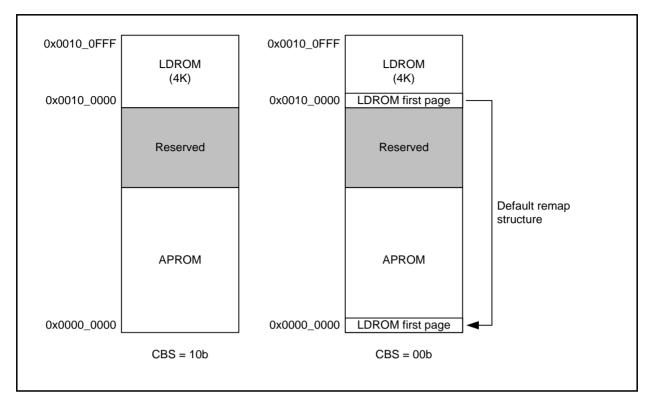


Figure 6-18 Executable Range of Code with IAP Function Enabled

When chip boots with the IAP function enabled, any other page within the executable range of code can be mirrored to the first page of executable code (0x0000 0000~0x0000 07FF) any time. User can change the remap address of the first executing page by filling the target remap address to ISPADR and then go through ISP procedure with the Vector Page Re-map command. After changing the remap address, user can check if the change is successful by reading the VECMAP field in the ISPSTA register.

6.6.4.5 Data Flash

nuvoton

This chip provides Data Flash for user to store data. It is read/written through ISP commands. The size of each erase unit is 512 bytes. When a word will be changed, all 128 words need to be copied to another page or SRAM in advance. The Data Flash base address is defined by DFBADR if DFEN bit in Config0 is enabled and application program memory size is (16-0.5*N) Kbytes for 16 Kbytes flash, (32-0.5*N) Kbytes for 32 Kbytes flash and Data Flash size is 0.5*N Kbytes.

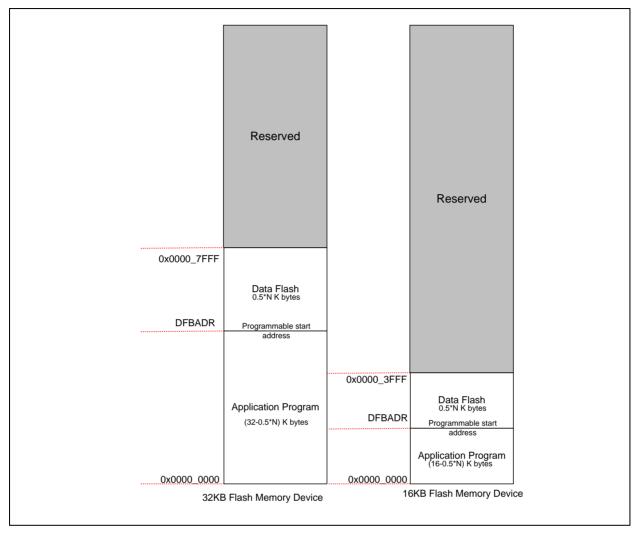


Figure 6-19 16/32KB Flash Memory Structure

6.6.4.6 Security Program Memory (SPROM)

nuvoton

This chip provides security program memory for user to store instruction for security application. It is read/written through ISP procedure and ICE, and this memory cannot be erased by "whole chip erase command" but "page erase command". The security program memory is 512 bytes with location address 0x20_0000 ~ 0x20_01FF. The last byte of this memory is used to identify the code is secured or nonsecured. Refer the following table, it shows that security program memory only allows CPU performs instruction fetch and page-erase operation when it is secured code.

(The last byte= 0xFF): Non-secured code.

	ICE Debug	ISP/IAP	CPU Data	CPU Instruction
Whole chip erase	-	-	-	-
Page-erase	-	0	-	-
Program	-	0	-	-
Read	0	0	0	0

(The last byte=Others): Secured code

	ICE Debug	ISP/IAP	CPU Data	CPU Instruction
Whole chip erase	-	-	-	-
Page-erase	-	0	-	-
Program	-	X	-	-
Read	FFh	FFh	FFh	CPU Instruction

6.6.4.7 User Configuration

nuvoTon

CONFIGO (Address = 0x0030 0000)

31	30	29	28	27	26	25	24	
Reserved						Reserved		
23	22	21	20	19	18	17	16	
	Reserved			RST	Reserved			
15	14	13	12	11	10	9	8	
	CHXT_GAIN		Reserv			Reserved		
7	6	5	4	3	2	1	0	
CBS Reserved					LOCK	DFEN		

CONFIG0	Address = 0x	Address = 0x0030_0000				
Bits	Description					
[31]	Reserved	Should be s	Should be set to 1			
[30:27]	Reserved	Reserved	Reserved			
		CPU Clock S	Source Selection After Reset			
		CFOSC	Clock Source			
[26]	CFOSC	0	External 12 MHz crystal clock (HXT)			
		1	Internal RC 12 MHz oscillator clock (HIRC)			
		The value of reset occurs.	CFOSC will be load to HCLK_S(CLKSEL0[2]) in system register after any			
[25:21]	Reserved	Reserved				
		Brown-out Reset Enable Selection				
		CBORST[1	:0] Brown-out Reset Selection			
100 401	ODODOT	00	BOD17 reset enable			
[20:19]	CBORST	01	BOD20 reset enable			
		10	BOD25 reset enable			
		11	Disable all BOD functions			
[18:16]	Reserved	Reserved				
reset. $000 = reserved$ [15:13] CHXT_GAIN 001 = Set HXT gain for higher than 16MHz crystal			PWRCTL[11:10]) is reloaded from the setting of CHXT_GAIN after chip is			
		011 = Set HXT gain for crystal from 8MHz to 12MHz 100 = Set HXT gain for lower than 8MHz crystal Others = Set HXT gain for crystal from 12MHz to 16MHz				

[14:8]	Reserved	Reserved
[7:6]	CBS	CONFIG Boot Selection 00 = LDROM with IAP function. 01 = LDROM without IAP function. 10 = APROM with IAP function. 11 = APROM without IAP function.
[5:2]	Reserved	Reserved
[1]	LOCK	Security Lock 0 = Flash data is locked 1 = Flash data is not locked When flash data is locked, only Device ID, CONFIG0 and CONFIG1 can be read by writer and ICP through serial debug interface. Other data is locked as 0xFFFFFFFF. ISP can read data anywhere regardless of LOCK bit value.
[0]	DFEN	Data Flash Enable 0 = Data flash Enabled. 1 = Data flash Disabled. This bit is valid when CBS[1:0] = 11 or 10.

CONFIG1 (Address = 0x0030_0004)

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	Rese	rved		DFBADR							
15	14	13	12	11	10	9	8				
	DFBADR										
7	6	5	4	3	2	1	0				
	DFBADR										

CONFIG1	Address = 0x0030_000	Address = 0x0030_0004			
Bits	Description	escription			
[31:20]	Reserved	Reserved It is mandatory to program 0x00 to these Reserved bits			
[19:0]	DFBADR	Data Flash Base Address The data flash base address is defined by user. Since on chip flash erase unit is 512 bytes, it is mandatory to keep bit 8-0 as 0.			

6.6.4.8 In System Program (ISP)

The application program memory and Data Flash supports both hardware programming mode and In System Programming (ISP) mode. Hardware programming mode uses gang-writers to reduce programming costs and time to market while the products enter into the mass production state. However, if the product is just under development or the end product needs firmware updating in the hand of an end user, the hardware programming mode will make repeated programming difficult and inconvenient, ISP method makes it easy and possible. This chip supports ISP mode allowing a device to be reprogrammed under software control. Furthermore, the capability to update the application firmware makes wide range of applications possible.

ISP is performed without removing the microcontroller from the system. Various interfaces enable LDROM firmware to get new program code easily. The most common method to perform ISP is via UART along with the firmware in LDROM. General speaking, PC transfers the new APROM code through serial port. Then LDROM firmware receives it and re-programs into APROM through ISP commands. Nuvoton provides ISP firmware and PC application program for this chip. It makes users quite easy to perform ISP through Nuvoton ISP tool.

ISP Procedure

nuvoTon

This chip supports booting from APROM or LDROM initially defined by user configuration bit (CBS). If user wants to update application program in APROM, user can write 1 to BS(ISPCON[1]) and starts software reset to make chip boot from LDROM. The first step to start ISP function is to write 1 t0 ISPEN(ISPCON[0]). Software is required to write RegLockAddr register in Global Control Register (GCR, 0x5000_0100) with 0x59, 0x16 and 0x88 before writing ISPCON register. This procedure is used to protect flash memory from destroying owning to unintended write during power on/off duration.

Several error conditions are checked after software writes ISPGO(ISPTRG[0]) bit. If error condition occurs, ISP operation is not started and ISP fail flag will be set instead ISPFF(ISPSTA[6]) flag is cleared by Software but it will not be overwritten in next ISP operation. The next ISP procedure can be started even ISPFF(ISPSTA[6]) bit keeps at 1. It is recommended that software to check ISPFF(ISPSTA[6]) and clear it after each ISP operation if it is set to 1..

When ISPGO(ISPTRG[0]) is set, CPU will wait for ISP operation finish, during this period; peripheral still keeps working as usual. If any interrupt request occur, CPU will not service it till ISP operation finish.

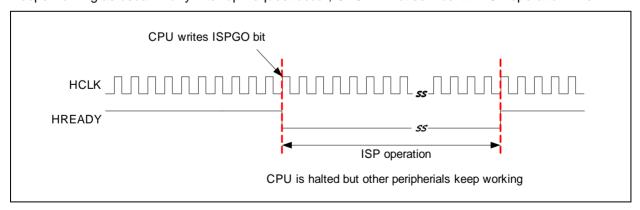


Figure 6-20 CPU Halt during ISP Operation

Note that this chip allows user to update CONFIG value by ISP, but for application program code security issue, software is required to erase APROM by page erase before erase CONFIG. Otherwise, erase CONFIG will not be allowed.

Figure 6-21 ISP Operation Flow

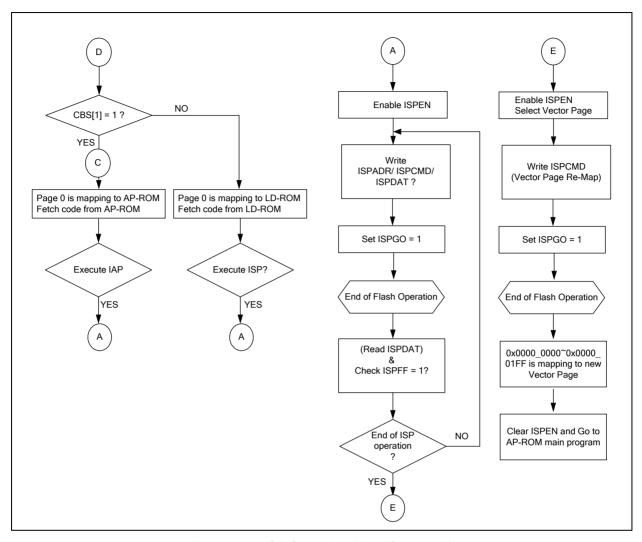


Figure 6-38 ISP Operation Flow (Continued)

	ISPCMD		ISPADR			ISPDAT	
ISP Mode	FOEN	FCEN	FCTRL[3:0]	A21	A20	A[19:0]	D[31:0]
Standby	1	1	х	х	х	х	х
Read Company ID	0	0	1011	x	x	x	Data out D[31:0] = 0x0000_00DA
Read Device ID	0	0	1100	x	x	Address in A[19:0] = 0x00000	Data out D[31:0]= Device ID
Read Unique ID	0	0	0100	x	x	Address in A[19:0] = 0x00000 0x00004 0x00008	Data out D[31:0]= Unique ID
*Read Unique Customer ID	0	o	0100	х	x	Address in A[19:0] = 0x00010 0x00014 0x00018 0x0001C	Data out D[31:0]= Unique Customer ID
Vector Page Re-Map	1	0	1110	0	A20	Address in A[19:0]	х
FLASH Page Erase	1	0	0010	0	A20	Address in A[19:0]	x
FLASH Program	1	0	0001	0	A20	Address in A[19:0]	Data in D[31:0]
FLASH Read	0	0	0000	0	A20	Address in A[19:0]	Data out D[31:0]
CONFIG Page Erase	1	0	0010	1	1	Address in A[19:0]	x
CONFIG Program	1	0	0001	1	1	Address in A[19:0]	Data in D[31:0]
CONFIG Read	0	0	0000	1	1	Address in A[19:0]	Data out D[31:0]

nuvoton

Table 6-12 ISP Operation Command

^{*} The default value of "Unique Customer ID" is 0xFFFF which is from address 0x00010 to 0x0001C. "Unique Customer ID" only can be configured by Nuvoton, please contact Nuvoton or agent to deal with specific customer ID.

6.6.5 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
FMC Base Addres	FMC Base Address:							
$FMC_BA = 0x5000$	_C000							
ISPCON	FMC_BA+0x00	R/W	ISP Control Register	0x0000_0000				
ISPADR	FMC_BA+0x04	R/W	ISP Address Register	0x0000_0000				
ISPDAT	FMC_BA+0x08	R/W	ISP Data Register	0x0000_0000				
ISPCMD	FMC_BA+0x0C	R/W	ISP Command Register	0x0000_0000				
ISPTRG	FMC_BA+0x10	R/W	ISP Trigger Register	0x0000_0000				
DFBADR	FMC_BA+0x14	R	Data Flash Base Address Regrister	0x0001_F000				
ISPSTA	FMC_BA+0x40	R/W	ISP Status Register	0x0000_0000				

6.6.6 Register Description

nuvoTon

ISP Control Register (ISPCON)

Register	Offset	R/W	Description	Reset Value
ISPCON	FMC_BA+0x00	R/W	ISP Control Register	0x0000_0000

31	30	29	28	27 26		25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	Reserved										
7	6	5	4	3	2	1	0				
Reserved	ISPFF	LDUEN	CFGUEN	APUEN	Reserved	BS	ISPEN				

Bits	Description					
[31:7]	Reserved	Reserved.				
[6]	ISPFF	ISP Fail Flag (Write Protect) This bit is set by hardware when a triggered ISP meets any of the following conditions: (1) APROM writes to itself if APUEN is set to 0 or CBS[0]=1. (2) LDROM writes to itself if LDUEN is set to 0 or CBS[0]=1. (3) User Configuration is erased/programmed when CFGUEN is 0. (4) Destination address is illegal, such as over an available range. Note: Write 1 to clear this bit to 0.				
[5]	LDUEN	LDROM Update Enable Control (Write Protect) 0 = LDROM cannot be updated. 1 = LDROM can be updated.				
[4]	CFGUEN	Enable Config-bits Update by ISP (Write Protect) 0 = ISP update User Configuration Disabled. 1 = ISP update User Configuration Enabled.				
[3]	APUEN	APROM Update Enable Control (Write Protect) 0 = APROM cannot be updated. 1 = APROM can be updated.				
[2]	Reserved	Reserved.				
[1] BS		Boot Select (Write Protect) Set/clear this bit to select next booting from LDROM/APROM, respectively. This bit als functions as chip booting status flag, which can be used to check where chip booted from this bit is initiated with the inversed value of CBS in Config0 after power-on reset; It keet the same value at other reset. 0 = Boot from APROM. 1 = Boot from LDROM.				

	ISPEN	ISP Enable Control (Write Protect) ISP function enable bit. Set this bit to enable ISP function.		
[0]		0 = ISP function Disabled.		
		1 = ISP function Enabled.		

ISP Address (ISPADR)

Register	Offset	R/W	Description	Reset Value
ISPADR	FMC_BA+0x04	R/W	ISP Address Register	0x0000_0000

31	30	29	28	27	26	25	24			
	ISPADR									
23	22	21	20	19	18	17	16			
	ISPADR									
15	14	13	12	11	10	9	8			
	ISPADR									
7	6	5	4	3	2	1	0			
	ISPADR									

Bits	Description	
[31:0]	ISPADR	ISP Address This chip supports word program only. ISPADR[1:0] must be kept 00b for ISP operation, and ISPADR[8:0] must be kept all 0 for Vector Page Re-map Command

ISPDAT (ISP Data Register)

Register	Offset	R/W	Description	Reset Value
ISPDAT	FMC_BA+0x08	R/W	ISP Data Register	0x0000_0000

31	30	29	28	27	26	25	24			
	ISPDAT									
23	22	21	20	19	18	17	16			
	ISPDAT									
15	14	13	12	11	10	9	8			
	ISPDAT									
7	6	5	4	3	2	1	0			
	ISPDAT									

Bits	Description					
[31:0]		ISP Data Write data to this register before ISP program operation				
		Read data from this register after ISP read operation				

ISP Command (ISPCMD)

Register	Offset	R/W	Description	Reset Value
ISPCMD	FMC_BA+0x0C	R/W	ISP Command Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved FOEN FCEN FCTRL										

Bits	Description	Description					
[31:6]	Reserved	Reserved.					
[5]	FOEN	ISP Command The ISP command table is shown as follows.					
[4]	FCEN	ISP Command The ISP command table is shown as follows.					
[3:0]	FCTRL	ISP Command The ISP command table is shown as follows.					

Operation Mode	FOEN	FCEN	FCTRL[3:0]			
Read	0	0	0	0	0	0
Vector Page Re-Map	1	0	1	1	1	0
Program	1	0	0	0	0	1
Page Erase	1	0	0	0	1	0
Read CID	0	0	1	0	1	1
Read DID	0	0	1	1	0	0
Read UID	0	0	0	1	0	0

ISP Trigger Control Register (ISPTRG)

Register	Offset	R/W	Description	Reset Value
ISPTRG	FMC_BA+0x10	R/W	ISP Trigger Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved							ISPGO		

Bits	Description					
[31:1]	Reserved	Reserved.				
[0]	ISPGO	ISP Start Trigger Write 1 to start ISP operation and this bit will be cleared to 0 by hardware automatically when ISP operation is finished. 0 = ISP operation is finished.				
		1 = ISP is progressing.				

Data Flash Base Address Register (DFBADR)

Register	Offset	R/W	Description	Reset Value
DFBADR	FMC_BA+0x14	R	Data Flash Base Address Register	0x0001_F000

31	30	29	28	27	26	25	24			
	DFBADR									
23	22	21	20	19	18	17	16			
	DFBADR									
15	14	13	12	11	10	9	8			
	DFBADR									
7	6	5	4	3	2	1	0			
	DFBADR									

Bits	Description	
		Data Flash Base Address
[31:0]	DFBADR	This register indicates data flash start address. It is a read only register.
[31.0]		The data flash start address is defined by user. Since on chip flash erase unit is 512 bytes, it is mandatory to keep bit 8-0 as 0.

ISP Status Register (ISPSTA)

Register	Offset	R/W	Description	Reset Value
ISPSTA	FMC_BA+0x40	R/W	ISP Status Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved			VECMAP						
15	14	13	12	11	10	9	8			
			VECMAP							
7	6	5	4	3	2	1	0			
Reserved	ISPFF	PGFF	Reserved		СВ	S	ISPBUSY			

Bits	Description	
[31:21]	Reserved	Reserved.
[20:9]	VECMAP	Vector Page Mapping Address (Read Only) The current system memory space 0x0000_0000~0x0000_01FF is mapped to flash memory page with base address (VECMAP[11:0] << 9).
[8:7]	Reserved	Reserved.
[6]	ISPFF	ISP Fail Flag (1) APROM writes to itself if APUEN is set to 0 or CBS[0]=1. (2) LDROM writes to itself if LDUEN is set to 0 or CBS[0]=1. (3) User Configuration is erased/programmed when CFGUEN is 0. (4) Destination address is illegal, such as over an available range. Note: Write 1 to clear this bit to 0.
[5]	PGFF	Auto Flash Program Verified Fail Flag This chip will perform flash verification automatically at the end of ISP PROGRAM operation, and set 1 to this bit when flash data is not matched with programming. This bit is clear to 0 by "ERASE" command.
[5:3]	Reserved	Reserved.
[2:1]	CBS	Config Boot Selection Status (Read Only) This filed is a mirror of CBS in CONFIG0.
[0]	ISPBUSY	ISP Busy (Read Only) 0 = ISP operation is finished. 1 = ISP operation is busy.

General Purpose I/O Controller 6.7

6.7.1 Overview

nuvoton

The NuMicro® Nano112 series have up to 80 General Purpose I/O pins to be shared with other function pins depending on the chip configuration. These 80 pins are arranged in 6 ports named with GPIOA, GPIOB, GPIOC, GPIOD, GPIOE and GPIOF. Each one of the 80 pins is independent and has the corresponding register bits to control the pin mode function and data.

The I/O type of each of I/O pins can be independently software configured as input, output, and opendrain mode. Each I/O pin has a very weak individual pull-up resistor which is about 110 K Ω ~300 K Ω for V_{DD} from 1.8 V to 3.6 V.

6.7.2 Features

- Three I/O modes:
 - Schmitt trigger Input-only with high impendence
 - Push-pull output
 - Open-drain output
- I/O pin configured as interrupt source with edge/level setting
- Enabling the pin interrupt function will also enable the pin wake-up function

6.7.3 **Basic Configuration**

The GPIO pin functions are configured in PA_L_MFP, PA_H_MFP, PB_L_MFP, PB_H_MFP, PC_L_MFP, PC_H_MFP, PD_L_MFP, PD_H_MFP, PE_L_MFP, PE_H_MFP, PF_L_MFP registers.

6.7.4 Block Diagram

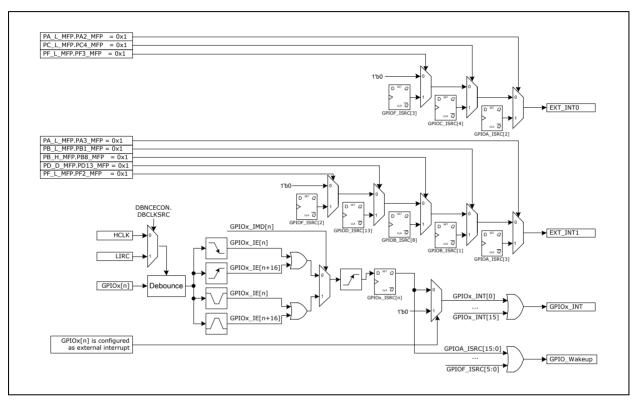


Figure 6-22 GPIO Block Diagram

6.7.5 **Functional Description**

nuvoton

Input Mode Explanation 6.7.5.1

Set GPIOx_PMD (PMDn [1:0]) to 00 the GPIOx port [n] pin is in Input mode and the I/O pin is in tri-state (high impedance) without output drive capability. The GPIOx_PIN value reflects the status of the corresponding port pins.

6.7.5.2 Output Mode Explanation

Set GPIOx_PMD (PMDn [1:0]) to 01 the GPIOx port [n] pin is in Output mode and the I/O pin supports digital output function with source/sink current capability. The bit value in the corresponding bit [n] of GPIO DOUT is driven on the pin.

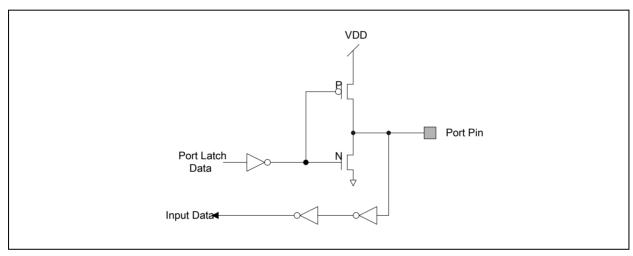


Figure 6-23 Push-Pull Output

Open-Drain Mode Explanation 6.7.5.3

Set GPIOx_PMD (PMDn [1:0]) to 10 the GPIOx port [n] pin is in Open-Drain mode and the I/O pin supports digital output function but only with sink current capability, an additional pull-up resister is needed for driving high state. If the bit value in the corresponding bit [n] of GPIOx_DOUT is "0", the pin drive a "low" output on the pin. If the bit value in the corresponding bit [n] of GPIOx DOUT is "1", the pin output drives high that is controlled by the internal pull-up resistor or the external pull high resistor.

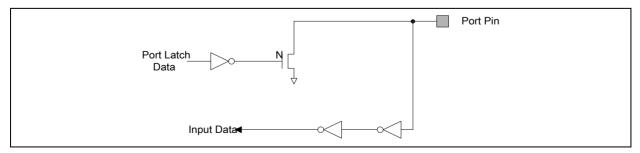


Figure 6-24 Open-Drain Output

6.7.6 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
GP Base Address GP_BA =0x5000_				
GPIOA_PMD	GP_BA+0x000	R/W	GPIO Port A Pin I/O Mode Control Register	0x0000_0000
GPIOA_OFFD	GP_BA+0x004	R/W	GPIO Port A Pin OFF Digital Enable Register	0x0000_0000
GPIOA_DOUT	GP_BA+0x008	R/W	GPIO Port A Data Output Value Register	0x0000_FFFF
GPIOA_DMASK	GP_BA+0x00C	R/W	GPIO Port A Data Output Write Mask Register	0x0000_0000
GPIOA_PIN	GP_BA+0x010	R	GPIO Port A Pin Value Register	0x0000_XXXX
GPIOA_DBEN	GP_BA+0x014	R/W	GPIO Port A De-bounce Enable Register	0x0000_0000
GPIOA_IMD	GP_BA+0x018	R/W	GPIO Port A Interrupt Mode Control Register	0x0000_0000
GPIOA_IER	GP_BA+0x01C	R/W	GPIO Port A Interrupt Enable Register	0x0000_0000
GPIOA_ISRC	GP_BA+0x020	R/W	GPIO Port A Interrupt Trigger Source Status Register	0xXXXX_XXXX
GPIOA_PUEN	GP_BA+0x024	R/W	GPIO Port A Pull-Up Enable Register	0x0000_0000
GPIOB_PMD	GP_BA+0x040	R/W	GPIO Port B Pin I/O Mode Control Register	0x0000_0000
GPIOB_OFFD	GP_BA+0x044	R/W	GPIO Port B Pin OFF Digital Enable Register	0x0000_0000
GPIOB_DOUT	GP_BA+0x048	R/W	GPIO Port B Data Output Value Register	0x0000_FFFF
GPIOB_DMASK	GP_BA+0x04C	R/W	GPIO Port B Data Output Write Mask Register	0x0000_0000
GPIOB_PIN	GP_BA+0x050	R	GPIO Port B Pin Value Register	0x0000_XXXX
GPIOB_DBEN	GP_BA+0x054	R/W	GPIO Port B De-bounce Enable Register	0x0000_0000
GPIOB_IMD	GP_BA+0x058	R/W	GPIO Port B Interrupt Mode Control Register	0x0000_0000
GPIOB_IER	GP_BA+0x05C	R/W	GPIO Port B Interrupt Enable Register	0x0000_0000
GPIOB_ISRC	GP_BA+0x060	R/W	GPIO Port B Interrupt Trigger Source Status Register	0xXXXX_XXXX
GPIOB_PUEN	GP_BA+0x064	R/W	GPIO Port B Pull-Up Enable Register	0x0000_0000
GPIOC_PMD	GP_BA+0x080	R/W	GPIO Port C Pin I/O Mode Control Register	0x0000_0000
GPIOC_OFFD	GP_BA+0x084	R/W	GPIO Port C Pin OFF Digital Enable Register	0x0000_0000
GPIOC_DOUT	GP_BA+0x088	R/W	GPIO Port C Data Output Value Register	0x0000_FFFF
GPIOC_DMASK	GP_BA+0x08C	R/W	GPIO Port C Data Output Write Mask Register	0x0000_0000
GPIOC_PIN	GP_BA+0x090	R	GPIO Port C Pin Value Register	0x0000_XXXX
GPIOC_DBEN	GP_BA+0x094	R/W	GPIO Port C De-bounce Enable Register	0x0000_0000

GPIOC_IMD	GP_BA+0x098	R/W	GPIO Port C Interrupt Mode Control Register	0x0000_0000
GPIOC_IER	GP_BA+0x09C	R/W	GPIO Port C Interrupt Enable Register	0x0000_0000
GPIOC_ISRC	GP_BA+0x0A0	R/W	GPIO Port C Interrupt Trigger Source Status Register	0xXXXX_XXXX
GPIOC_PUEN	GP_BA+0x0A4	R/W	GPIO Port C Pull-Up Enable Register	0x0000_0000
GPIOD_PMD	GP_BA+0x0C0	R/W	GPIO Port D Pin I/O Mode Control Register	0x0000_0000
GPIOD_OFFD	GP_BA+0x0C4	R/W	GPIO Port D Pin OFF Digital Enable Register	0x0000_0000
GPIOD_DOUT	GP_BA+0x0C8	R/W	GPIO Port D Data Output Value Register	0x0000_FFFF
GPIOD_DMASK	GP_BA+0x0CC	R/W	GPIO Port D Data Output Write Mask Register	0x0000_0000
GPIOD_PIN	GP_BA+0x0D0	R	GPIO Port D Pin Value Register	0x0000_XXXX
GPIOD_DBEN	GP_BA+0x0D4	R/W	GPIO Port D De-bounce Enable Register	0x0000_0000
GPIOD_IMD	GP_BA+0x0D8	R/W	GPIO Port D Interrupt Mode Control Register	0x0000_0000
GPIOD_IER	GP_BA+0x0DC	R/W	GPIO Port D Interrupt Enable Register	0x0000_0000
GPIOD_ISRC	GP_BA+0x0E0	R/W	GPIO Port D Interrupt Trigger Source Status Register	0xXXXX_XXXX
GPIOD_PUEN	GP_BA+0x0E4	R/W	GPIO Port D Pull-Up Enable Register	0x0000_0000
GPIOE_PMD	GP_BA+0x100	R/W	GPIO Port E Pin I/O Mode Control Register	0x0000_0000
GPIOE_OFFD	GP_BA+0x104	R/W	GPIO Port E Pin OFF Digital Enable Register	0x0000_0000
GPIOE_DOUT	GP_BA+0x108	R/W	GPIO Port E Data Output Value Register	0x0000_FFFF
GPIOE_DMASK	GP_BA+0x10C	R/W	GPIO Port E Data Output Write Mask Register	0x0000_0000
GPIOE_PIN	GP_BA+0x110	R	GPIO Port E Pin Value Register	0x0000_XXXX
GPIOE_DBEN	GP_BA+0x114	R/W	GPIO Port E De-bounce Enable Register	0x0000_0000
GPIOE_IMD	GP_BA+0x118	R/W	GPIO Port E Interrupt Mode Control Register	0x0000_0000
GPIOE_IER	GP_BA+0x11C	R/W	GPIO Port E Interrupt Enable Register	0x0000_0000
GPIOE_ISRC	GP_BA+0x120	R/W	GPIO Port E Interrupt Trigger Source Status Register	0xXXXX_XXXX
GPIOE_PUEN	GP_BA+0x124	R/W	GPIO Port E Pull-Up Enable Register	0x0000_0000
GPIOF_PMD	GP_BA+0x140	R/W	GPIO Port F Pin I/O Mode Control Register	0x0000_0000
GPIOF_OFFD	GP_BA+0x144	R/W	GPIO Port F Pin OFF Digital Enable Register	0x0000_0000
GPIOF_DOUT	GP_BA+0x148	R/W	GPIO Port F Data Output Value Register	0x0000_003F
GPIOF_DMASK	GP_BA+0x14C	R/W	GPIO Port F Data Output Write Mask Register	0x0000_0000
GPIOF_PIN	GP_BA+0x150	R	GPIO Port F Pin Value Register	0x0000_00XX
GPIOF_DBEN	GP_BA+0x154	R/W	GPIO Port F De-bounce Enable Register	0x0000_0000
GPIOF_IMD	GP_BA+0x158	R/W	GPIO Port F Interrupt Mode Control Register	0x0000_0000

		,		
GPIOF_IER	GP_BA+0x15C	R/W	GPIO Port F Interrupt Enable Register	0x0000_0000
GPIOF_ISRC	GP_BA+0x160	R/W	GPIO Port F Interrupt Trigger Source Status Register	0xXXXX_XXXX
GPIOF_PUEN	GP_BA+0x164	R/W	GPIO Port F Pull-Up Enable Register	0x0000_0000
DBNCECON	GP_BA+0x180	R/W	De-bounce Cycle Control Register	0x0000_0000
GPIOA0	GP_BA+0x200	R/W	GPIO Port A Bit 0 Data Register	0x0000_000X
GPIOA1	GP_BA+0x204	R/W	GPIO Port A Bit 1 Data Register	0x0000_000X
GPIOA2	GP_BA+0x208	R/W	GPIO Port A Bit 2 Data Register	0x0000_000X
GPIOA3	GP_BA+0x20C	R/W	GPIO Port A Bit 3 Data Register	0x0000_000X
GPIOA4	GP_BA+0x210	R/W	GPIO Port A Bit 4 Data Register	0x0000_000X
GPIOA5	GP_BA+0x214	R/W	GPIO Port A Bit 5 Data Register	0x0000_000X
GPIOA6	GP_BA+0x218	R/W	GPIO Port A Bit 6 Data Register	0x0000_000X
GPIOA7	GP_BA+0x21C	R/W	GPIO Port A Bit 7 Data Register	0x0000_000X
GPIOA8	GP_BA+0x220	R/W	GPIO Port A Bit 8 Data Register	0x0000_000X
GPIOA9	GP_BA+0x224	R/W	GPIO Port A Bit 9 Data Register	0x0000_000X
GPIOA10	GP_BA+0x228	R/W	GPIO Port A Bit 10 Data Register	0x0000_000X
GPIOA11	GP_BA+0x22C	R/W	GPIO Port A Bit 11 Data Register	0x0000_000X
GPIOA12	GP_BA+0x230	R/W	GPIO Port A Bit 12 Data Register	0x0000_000X
GPIOA13	GP_BA+0x234	R/W	GPIO Port A Bit 13 Data Register	0x0000_000X
GPIOA14	GP_BA+0x238	R/W	GPIO Port A Bit 14 Data Register	0x0000_000X
GPIOA15	GP_BA+0x23C	R/W	GPIO Port A Bit 15 Data Register	0x0000_000X
GPIOB0	GP_BA+0x240	R/W	GPIO Port B Bit 0 Data Register	0x0000_000X
GPIOB1	GP_BA+0x244	R/W	GPIO Port B Bit 1 Data Register	0x0000_000X
GPIOB2	GP_BA+0x248	R/W	GPIO Port B Bit 2 Data Register	0x0000_000X
GPIOB3	GP_BA+0x24C	R/W	GPIO Port B Bit 3 Data Register	0x0000_000X
GPIOB4	GP_BA+0x250	R/W	GPIO Port B Bit 4 Data Register	0x0000_000X
GPIOB5	GP_BA+0x254	R/W	GPIO Port B Bit 5 Data Register	0x0000_000X
GPIOB6	GP_BA+0x258	R/W	GPIO Port B Bit 6 Data Register	0x0000_000X
GPIOB7	GP_BA+0x25C	R/W	GPIO Port B Bit 7 Data Register	0x0000_000X
GPIOB8	GP_BA+0x260	R/W	GPIO Port B Bit 8 Data Register	0x0000_000X
GPIOB9	GP_BA+0x264	R/W	GPIO Port B Bit 9 Data Register	0x0000_000X
GPIOB10	GP_BA+0x268	R/W	GPIO Port B Bit 10 Data Register	0x0000_000X

GPIOB11	GP_BA+0x26C	R/W	GPIO Port B Bit 11 Data Register	0x0000_000X
GPIOB12	GP_BA+0x270	R/W	GPIO Port B Bit 12 Data Register	0x0000_000X
GPIOB13	GP_BA+0x274	R/W	GPIO Port B Bit 13 Data Register	0x0000_000X
GPIOB14	GP_BA+0x278	R/W	GPIO Port B Bit 14 Data Register	0x0000_000X
GPIOB15	GP_BA+0x27C	R/W	GPIO Port B Bit 15 Data Register	0x0000_000X
GPIOC0	GP_BA+0x280	R/W	GPIO Port C Bit 0 Data Register	0x0000_000X
GPIOC1	GP_BA+0x284	R/W	GPIO Port C Bit 1 Data Register	0x0000_000X
GPIOC2	GP_BA+0x288	R/W	GPIO Port C Bit 2 Data Register	0x0000_000X
GPIOC3	GP_BA+0x28C	R/W	GPIO Port C Bit 3 Data Register	0x0000_000X
GPIOC4	GP_BA+0x290	R/W	GPIO Port C Bit 4 Data Register	0x0000_000X
GPIOC5	GP_BA+0x294	R/W	GPIO Port C Bit 5 Data Register	0x0000_000X
GPIOC6	GP_BA+0x298	R/W	GPIO Port C Bit 6 Data Register	0x0000_000X
GPIOC7	GP_BA+0x29C	R/W	GPIO Port C Bit 7 Data Register	0x0000_000X
GPIOC8	GP_BA+0x2A0	R/W	GPIO Port C Bit 8 Data Register	0x0000_000X
GPIOC9	GP_BA+0x2A4	R/W	GPIO Port C Bit 9 Data Register	0x0000_000X
GPIOC10	GP_BA+0x2A8	R/W	GPIO Port C Bit 10 Data Register	0x0000_000X
GPIOC11	GP_BA+0x2AC	R/W	GPIO Port C Bit 11 Data Register	0x0000_000X
GPIOC12	GP_BA+0x2B0	R/W	GPIO Port C Bit 12 Data Register	0x0000_000X
GPIOC13	GP_BA+0x2B4	R/W	GPIO Port C Bit 13 Data Register	0x0000_000X
GPIOC14	GP_BA+0x2B8	R/W	GPIO Port C Bit 14 Data Register	0x0000_000X
GPIOC15	GP_BA+0x2BC	R/W	GPIO Port C Bit 15 Data Register	0x0000_000X
GPIOD0	GP_BA+0x2C0	R/W	GPIO Port D Bit 0 Data Register	0x0000_000X
GPIOD1	GP_BA+0x2C4	R/W	GPIO Port D Bit 1 Data Register	0x0000_000X
GPIOD2	GP_BA+0x2C8	R/W	GPIO Port D Bit 2 Data Register	0x0000_000X
GPIOD3	GP_BA+0x2CC	R/W	GPIO Port D Bit 3 Data Register	0x0000_000X
GPIOD4	GP_BA+0x2D0	R/W	GPIO Port D Bit 4 Data Register	0x0000_000X
GPIOD5	GP_BA+0x2D4	R/W	GPIO Port D Bit 5 Data Register	0x0000_000X
GPIOD6	GP_BA+0x2D8	R/W	GPIO Port D Bit 6 Data Register	0x0000_000X
GPIOD7	GP_BA+0x2DC	R/W	GPIO Port D Bit 7 Data Register	0x0000_000X
GPIOD8	GP_BA+0x2E0	R/W	GPIO Port D Bit 8 Data Register	0x0000_000X
GPIOD9	GP_BA+0x2E4	R/W	GPIO Port D Bit 9 Data Register	0x0000_000X

GPIOD10	GP_BA+0x2E8	R/W	GPIO Port D Bit 10 Data Register	0x0000_000X
GPIOD11	GP_BA+0x2EC	R/W	GPIO Port D Bit 11 Data Register	0x0000_000X
GPIOD12	GP_BA+0x2F0	R/W	GPIO Port D Bit 12 Data Register	0x0000_000X
GPIOD13	GP_BA+0x2F4	R/W	GPIO Port D Bit 13 Data Register	0x0000_000X
GPIOD14	GP_BA+0x2F8	R/W	GPIO Port D Bit 14 Data Register	0x0000_000X
GPIOD15	GP_BA+0x2FC	R/W	GPIO Port D Bit 15 Data Register	0x0000_000X
GPIOE0	GP_BA+0x300	R/W	GPIO Port E Bit 0 Data Register	0x0000_000X
GPIOE1	GP_BA+0x304	R/W	GPIO Port E Bit 1 Data Register	0x0000_000X
GPIOE2	GP_BA+0x308	R/W	GPIO Port E Bit 2 Data Register	0x0000_000X
GPIOE3	GP_BA+0x30C	R/W	GPIO Port E Bit 3 Data Register	0x0000_000X
GPIOE4	GP_BA+0x310	R/W	GPIO Port E Bit 4 Data Register	0x0000_000X
GPIOE5	GP_BA+0x314	R/W	GPIO Port E Bit 5 Data Register	0x0000_000X
GPIOE6	GP_BA+0x318	R/W	GPIO Port E Bit 6 Data Register	0x0000_000X
GPIOE7	GP_BA+0x31C	R/W	GPIO Port E Bit 7 Data Register	0x0000_000X
GPIOE8	GP_BA+0x320	R/W	GPIO Port E Bit 8 Data Register	0x0000_000X
GPIOE9	GP_BA+0x324	R/W	GPIO Port E Bit 9 Data Register	0x0000_000X
GPIOF0	GP_BA+0x340	R/W	GPIO Port F Bit 0 Data Register	0x0000_000X
GPIOF1	GP_BA+0x344	R/W	GPIO Port F Bit 1 Data Register	0x0000_000X
GPIOF2	GP_BA+0x348	R/W	GPIO Port F Bit 2 Data Register	0x0000_000X
GPIOF3	GP_BA+0x34C	R/W	GPIO Port F Bit 3 Data Register	0x0000_000X
GPIOF4	GP_BA+0x350	R/W	GPIO Port F Bit 4 Data Register	0x0000_000X
GPIOF5	GP_BA+0x354	R/W	GPIO Port F Bit 5 Data Register	0x0000_000X

6.7.7 Register Description

nuvoTon

GPIO Port [A/B/C/D/E/F] Pin I/O Mode Control Register (GPIOx_PMD)

Register	Offset	R/W	Description	Reset Value
GPIOA_PMD	GP_BA+0x000	R/W	GPIO Port A Pin I/O Mode Control Register	0x0000_0000
GPIOB_PMD	GP_BA+0x040	R/W	GPIO Port B Pin I/O Mode Control Register	0x0000_0000
GPIOC_PMD	GP_BA+0x080	R/W	GPIO Port C Pin I/O Mode Control Register	0x0000_0000
GPIOD_PMD	GP_BA+0x0C0	R/W	GPIO Port D Pin I/O Mode Control Register	0x0000_0000
GPIOE_PMD	GP_BA+0x100	R/W	GPIO Port E Pin I/O Mode Control Register	0x0000_0000
GPIOF_PMD	GP_BA+0x140	R/W	GPIO Port F Pin I/O Mode Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PMD15		PMD14		PMD13		PMD12	
23	22	21	20	19	18	17	16
PMD11		PMD10		PMD9		PMD8	
15	14	13	12	11	10	9	8
PMD7		PMD6		PMD5		PMD4	
7	6	5	4	3	2	1	0
PMD3		PMD2		PMD1		PMD0	

Bits	Description			
[2n+1:2n] n = 0,115	PMDn	GPIO Port [X] Pin [N] Mode Control Determine the I/O type of GPIO port [x] pin [n] 00 = GPIO port [x] pin [n] is in INPUT mode. 01 = GPIO port [x] pin [n] is in OUTPUT mode. 10 = GPIO port [x] pin [n] is in Open-Drain mode. 11 = Reserved. Note: For GPIOE_PMD, PMD10 ~ PMD15 are reserved. For GPIOF_PMD, PMD6 ~ PMD15 are reserved.		

GPIO Port [A/B/C/D/E/F] Pin OFF Digital Enable Resistor (GPIOx_OFFD)

Register	Offset	R/W	Description	Reset Value
GPIOA_OFFD	GP_BA+0x004	R/W	GPIO Port A Pin OFF Digital Enable Register	0x0000_0000
GPIOB_OFFD	GP_BA+0x044	R/W	GPIO Port B Pin OFF Digital Enable Register	0x0000_0000
GPIOC_OFFD	GP_BA+0x084	R/W	GPIO Port C Pin OFF Digital Enable Register	0x0000_0000
GPIOD_OFFD	GP_BA+0x0C4	R/W	GPIO Port D Pin OFF Digital Enable Register	0x0000_0000
GPIOE_OFFD	GP_BA+0x104	R/W	GPIO Port E Pin OFF Digital Enable Register	0x0000_0000
GPIOF_OFFD	GP_BA+0x144	R/W	GPIO Port F Pin OFF Digital Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
	OFFD						
23	22	21	20	19	18	17	16
	OFFD						
15	14	13	12	11	10	9	8
Reserved							
7	6	5	4	3	2	1	0
Reserved							

Bits	Description			
	OFFD	GPIO Port [X] Pin [N] Digital Input Path Disable		
		Determine if the digital input path of GPIO port [x] pin [n] is disabled.		
[n+16]		0 = Digital input path of GPIO port [x] pin [n] Enabled.		
n = 0,115		1 = Digital input path of GPIO port [x] pin [n] Disabled (tied digital input to low).		
		Note: For GPIOE_OFFD, bits [31:26] are reserved.		
		For GPIOF_OFFD, bits [31:22] are reserved.		
[15:0]	Reserved	Reserved.		

GPIO Port [A/B/C/D/E/F] Data Output Value Register (GPIOx_DOUT)

Register	Offset	R/W	Description	Reset Value
GPIOA_DOUT	GP_BA+0x008	R/W	GPIO Port A Data Output Value Register	0x0000_FFFF
GPIOB_DOUT	GP_BA+0x048	R/W	GPIO Port B Data Output Value Register	0x0000_FFFF
GPIOC_DOUT	GP_BA+0x088	R/W	GPIO Port C Data Output Value Register	0x0000_FFFF
GPIOD_DOUT	GP_BA+0x0C8	R/W	GPIO Port D Data Output Value Register	0x0000_FFFF
GPIOE_DOUT	GP_BA+0x108	R/W	GPIO Port E Data Output Value Register	0x0000_FFFF
GPIOF_DOUT	GP_BA+0x148	R/W	GPIO Port F Data Output Value Register	0x0000_003F

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	DOUT						
7	6	5	4	3	2	1	0
DOUT							

Bits	Description		
[31:16]	Reserved	Reserved.	
		GPIO Port [X] Pin [N] Output Value	
		Each of these bits controls the status of a GPIO port [x] pin [n] when the GPI/O pin is configures as output or open-drain mode	
[n]	DOUT	0 = GPIO port [x] Pin [n] will drive Low if the corresponding output mode enabling bit is set.	
n = 0,115		1 = GPIO port [x] Pin [n] will drive High if the corresponding output mode enabling bit is set.	
		Note: For GPIOE_DOUT, bits [15:10] are reserved.	
		For GPIOF_DOUT, bits [15:6] are reserved.	

GPIO Port [A/B/C/D/E/F] Data Output Write Mask Register (GPIOx_DMASK)

Register	Offset	R/W	Description	Reset Value
GPIOA_DMAS K	GP_BA+0x00C	R/W	GPIO Port A Data Output Write Mask Register	0x0000_0000
GPIOB_DMAS K	GP_BA+0x04C	R/W	GPIO Port B Data Output Write Mask Register	0x0000_0000
GPIOC_DMAS	GP_BA+0x08C	R/W	GPIO Port C Data Output Write Mask Register	0x0000_0000
GPIOD_DMAS K	GP_BA+0x0CC	R/W	GPIO Port D Data Output Write Mask Register	0x0000_0000
GPIOE_DMAS K	GP_BA+0x10C	R/W	GPIO Port E Data Output Write Mask Register	0x0000_0000
GPIOF_DMAS K	GP_BA+0x14C	R/W	GPIO Port F Data Output Write Mask Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	DMASK						
7	6	5	4	3	2	1	0
	DMASK						

Bits	Description	Description			
[31:16]	Reserved	Reserved.			
		GPIO Port [X] Pin [N] Data Output Write Mask			
		These bits are used to protect the corresponding register of GPIOx_DOUT bit [n]. When set the DMASK[n] to "1", the corresponding DOUT[n] bit is protected. The write signal is masked, write data to the protect bit is ignored			
[n]	DMACK	0 = The corresponding GPIO_DOUT bit [n] can be updated.			
n = 0,115	DMASK	1 = The corresponding GPIO_DOUT bit [n] is protected.			
		Note: For GPIOF_DMASK, bits [15:6] are reserved.			
		Note: These mask bits only take effect while CPU is doing write operation to register GPIOx_DOUT. If CPU is doing write operation to register GPIO[x][n], these mask bits will not take effect.			

GPIO Port [A/B/C/D/E/F] Pin Value Register (GPIOx_PIN)

Register	Offset	R/W	Description	Reset Value
GPIOA_PIN	GP_BA+0x010	R	GPIO Port A Pin Value Register	0x0000_XXXX
GPIOB_PIN	GP_BA+0x050	R	GPIO Port B Pin Value Register	0x0000_XXXX
GPIOC_PIN	GP_BA+0x090	R	GPIO Port C Pin Value Register	0x0000_XXXX
GPIOD_PIN	GP_BA+0x0D0	R	GPIO Port D Pin Value Register	0x0000_XXXX
GPIOE_PIN	GP_BA+0x110	R	GPIO Port E Pin Value Register	0x0000_XXXX
GPIOF_PIN	GP_BA+0x150	R	GPIO Port F Pin Value Register	0x0000_00XX

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	PIN						
7	6	5	4	3	2	1	0
	PIN						

Bits	Description		
[31:16]	Reserved Reserved.		
[n] n = 0,115	PIN	GPIO Port [X] Pin [N] Value The value read from each of these bit reflects the actual status of the respective GPI/O pin Note: For GPIOE_PIN, bits [15:10] are reserved. For GPIOF_PIN, bits [15:6] are reserved.	

GPIO Port [A/B/C/D/E/F] De-bounce Enable Register (GPIOx_DBEN)

Register	Offset	R/W	Description	Reset Value
GPIOA_DBEN	GP_BA+0x014	R/W	GPIO Port A De-bounce Enable Register	0x0000_0000
GPIOB_DBEN	GP_BA+0x054	R/W	GPIO Port B De-bounce Enable Register	0x0000_0000
GPIOC_DBEN	GP_BA+0x094	R/W	GPIO Port C De-bounce Enable Register	0x0000_0000
GPIOD_DBEN	GP_BA+0x0D4	R/W	GPIO Port D De-bounce Enable Register	0x0000_0000
GPIOE_DBEN	GP_BA+0x114	R/W	GPIO Port E De-bounce Enable Register	0x0000_0000
GPIOF_DBEN	GP_BA+0x154	R/W	GPIO Port F De-bounce Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	DBEN						
7	6	5	4	3	2	1	0
DBEN							

Bits	Description	Description			
[31:16]	Reserved	Reserved.			
		GPIO Port [X] Pin [N] Input Signal De-bounce Enable Control			
	DBEN	DBEN[n] used to enable the de-bounce function for each corresponding bit. If the input signal pulse width cannot be sampled by continuous two de-bounce sample cycle the input signal transition is seen as the signal bounce and will not trigger the interrupt.			
l		DBEN[n] is used for "edge-trigger" interrupt only, and ignored for "level trigger" interrupt			
[n]		0 = The GPIO port [x] Pin [n] input signal de-bounce function Disabled.			
n = 0,115		1 = The GPIO port [x] Pin [n] input signal de-bounce function Enabled.			
		The de-bounce function is valid for edge triggered interrupt. If the interrupt mode is level triggered, the de-bounce enable bit is ignored.			
		Note: For GPIOE_DBEN, bits [15:10] are reserved.			
		For GPIOF_DBEN, bits [15:6] are reserved.			

GPIO Port [A/B/C/D/E/F] Interrupt Mode Control Register (GPIOx_IMD)

Register	Offset	R/W	Description	Reset Value
GPIOA_IMD	GP_BA+0x018	R/W	GPIO Port A Interrupt Mode Control Register	0x0000_0000
GPIOB_IMD	GP_BA+0x058	R/W	GPIO Port B Interrupt Mode Control Register	0x0000_0000
GPIOC_IMD	GP_BA+0x098	R/W	GPIO Port C Interrupt Mode Control Register	0x0000_0000
GPIOD_IMD	GP_BA+0x0D8	R/W	GPIO Port D Interrupt Mode Control Register	0x0000_0000
GPIOE_IMD	GP_BA+0x118	R/W	GPIO Port E Interrupt Mode Control Register	0x0000_0000
GPIOF_IMD	GP_BA+0x158	R/W	GPIO Port F Interrupt Mode Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	IMD								
7	6	5	4	3	2	1	0		
	IMD								

Bits	Description					
[31:16]	Reserved	Reserved.				
		GPIO Port [X] Pin [N] Edge or Level Detection Interrupt Control				
		IMD[n] used to control the interrupt is by level trigger or by edge trigger. If the interrupt is by edge trigger, the trigger source is control de-bounce. If the interrupt is by level trigger, the input source is sampled by one clock and the generate the interrupt				
		0 = Edge trigger interrupt.				
[n]		1 = Level trigger interrupt.				
n = 0,115	IMD	If set pin as the level trigger interrupt, then only one level can be set on the registers GPIOX_IER. If set both the level to trigger interrupt, the setting is ignored and no interrupt will occur				
		The de-bounce function is valid for edge triggered interrupt. If the interrupt mode is level triggered, the de-bounce enable bit is ignored.				
		Note: For GPIOE_IMD, bits [15:10] are reserved.				
		For GPIOF_IMD, bits [15:6] are reserved.				

GPIO Port [A/B/C/D/E/F] Interrupt Enable Register (GPIOx_IER)

Register	Offset	R/W	Description	Reset Value
GPIOA_IER	GP_BA+0x01C	R/W	GPIO Port A Interrupt Enable Register	0x0000_0000
GPIOB_IER	GP_BA+0x05C	R/W	GPIO Port B Interrupt Enable Register	0x0000_0000
GPIOC_IER	GP_BA+0x09C	R/W	GPIO Port C Interrupt Enable Register	0x0000_0000
GPIOD_IER	GP_BA+0x0DC	R/W	GPIO Port D Interrupt Enable Register	0x0000_0000
GPIOE_IER	GP_BA+0x11C	R/W	GPIO Port E Interrupt Enable Register	0x0000_0000
GPIOF_IER	GP_BA+0x15C	R/W	GPIO Port F Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24		
	RIER								
23	22	21	20	19	18	17	16		
			RI	ER					
15	14	13	12	11	10	9	8		
			FII	ER					
7 6 5 4 3 2 1 0									
FIER									

Bits	Description	
		GPIO Port [X] Pin [N] Interrupt Enable by Input Rising Edge or Input Level High
		RIER[x] used to enable the interrupt for each of the corresponding input GPIO_PIN[x]. Set bit "1" also enable the pin wake-up function
		When set the RIER[x] bit "1":
[n+16]		If the interrupt is level mode trigger, the input PIN[x] state at level "high" will generate the interrupt.
n = 0,115	RIER	If the interrupt is edge mode trigger, the input PIN[x] state change from "low-to-high" will generate the interrupt.
		0 = PIN[x] level-high or low-to-high interrupt Disabled.
		1 = PIN[x] level-high or low-to-high interrupt Enabled.
		Note: For GPIOE_IE, bits [31:26] are reserved.
		For GPIOF_IE, bits [31:22] are reserved.

Bits	Description	
		GPIO Port [X] Pin [N] Interrupt Enable by Input Falling Edge or Input Level Low
		FIER[n] used to enable the interrupt for each of the corresponding input GPIO_PIN[n]. Set bit "1" also enable the pin wake-up function
		When set the FIER[n] bit "1":
[n]		If the interrupt is level mode trigger, the input PIN[n] state at level "low" will generate the interrupt.
n = 0,115	FIER	If the interrupt is edge mode trigger, the input PIN[n] state change from "high-to-low" will generate the interrupt.
		0 = PIN[n] state low-level or high-to-low change interrupt Disabled.
		1 = PIN[n] state low-level or high-to-low change interrupt Enabled.
		Note: For GPIOE_IER, bits [15:10] are reserved.
		For GPIOF_IER, bits [15:6] are reserved.

GPIO Port [A/B/C/D/E/F] Interrupt Trigger Source Status Register (GPIOx_ISRC)

Register	Offset	R/W	Description	Reset Value
GPIOA_ISRC	GP_BA+0x020	R/W	GPIO Port A Interrupt Trigger Source Status Register	0xXXXX_XXXX
GPIOB_ISRC	GP_BA+0x060	R/W	GPIO Port B Interrupt Trigger Source Status Register	0xXXXX_XXXX
GPIOC_ISRC	GP_BA+0x0A0	R/W	GPIO Port C Interrupt Trigger Source Status Register	0xXXXX_XXXX
GPIOD_ISRC	GP_BA+0x0E0	R/W	GPIO Port D Interrupt Trigger Source Status Register	0xXXXX_XXXX
GPIOE_ISRC	GP_BA+0x120	R/W	GPIO Port E Interrupt Trigger Source Status Register	0xXXXX_XXXX
GPIOF_ISRC	GP_BA+0x160	R/W	GPIO Port F Interrupt Trigger Source Status Register	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	ISRC								
7 6 5 4 3 2 1 0									
	ISRC								

Bits	Description					
[31:16]	Reserved	Reserved.				
[n] n = 0,115	ISRC	GPIO Port [X] Pin [N] Interrupt Trigger Source Indicator Read Operation: 0 = No interrupt at Port x[n]. 1 = Port x[n] generate an interrupt. Write Operation: 0 = No action. 1 = Clear the correspond pending interrupt. Note: For GPIOE_ISRC, bits [15:10] are reserved. For GPIOF_ISRC, bits [15:6] are reserved.				

GPIO Port [A/B/C/D/E/F] Pull-Up Enable Register (GPIOx_PUEN)

Register	Offset	R/W	Description	Reset Value
GPIOA_PUEN	GP_BA+0x024	R/W	GPIO Port A Pull-Up Enable Register	0x0000_0000
GPIOB_PUEN	GP_BA+0x064	R/W	GPIO Port B Pull-Up Enable Register	0x0000_0000
GPIOC_PUEN	GP_BA+0x0A4	R/W	GPIO Port C Pull-Up Enable Register	0x0000_0000
GPIOD_PUEN	GP_BA+0x0E4	R/W	GPIO Port D Pull-Up Enable Register	0x0000_0000
GPIOE_PUEN	GP_BA+0x124	R/W	GPIO Port E Pull-Up Enable Register	0x0000_0000
GPIOF_PUEN	GP_BA+0x164	R/W	GPIO Port F Pull-Up Enable Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	PUEN								
7	6	5	4	3	2	1	0		
	PUEN								

Bits	ts Description				
[31:16]	Reserved	Reserved.			
		GPIO Port [X] Pin [N] Pull-up Enable Register Read Operation:			
[n] n = 0,115	PUEN	0 = GPIO port [A/B/C/D/E/F] bit [n] pull-up resistor Disabled. 1 = GPIO port [A/B/C/D/E/F] bit [n] pull-up resistor Enabled.			
		Note: For GPIOE_PUEN, bits [15:10] are reserved. For GPIOF_PUEN, bits [15:6] are reserved.			

De-bounce Cycle Control Register (DBNCECON)

Register	Offset	R/W	Description	Reset Value
DBNCECON	GP_BA+0x180	R/W	De-bounce Cycle Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
Reserved										
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Rese	Reserved DBCLK_ON DBCLKSRC DBCLKSEL									

Bits	Description			
[31:6]	Reserved	Reserved.		
		De-bounce Clock Enable Control This bit controls if the de-bounce clock is enabled.		
re)	DBCLK_ON	However, if GPI/O pin's interrupt is enabled, the de-bounce clock will be enabled automatically no matter what the DBCLK_ON value is.		
[5]		If CPU is in sleep mode, this bit didn't take effect. And only the GPI/O pin with interrupt enable could get de-bounce clock.		
		0 = De-bounce clock Disabled.		
		1 = De-bounce clock Enabled.		
		De-bounce Counter Clock Source Selection		
[4]	DBCLKSRC	0 = De-bounce counter Clock Source is the HCLK.		
		1 = De-bounce counter Clock Source is the internal 10 kHz clock.		

Bits	Description	
		De-bounce Sampling Cycle Selection
		0000 = Sample interrupt input once per 1 clock.
		0001 = Sample interrupt input once per 2 clocks.
		0010 = Sample interrupt input once per 4 clocks.
		0011 = Sample interrupt input once per 8 clocks.
		0100 = Sample interrupt input once per 16 clocks.
		0101 = Sample interrupt input once per 32 clocks.
		0110 = Sample interrupt input once per 64 clocks.
[3:0]	DBCLKSEL	0111 = Sample interrupt input once per 128 clocks.
		1000 = Sample interrupt input once per 256 clocks.
		1001 = Sample interrupt input once per 2*256 clocks.
		1010 = Sample interrupt input once per 4*256clocks.
		1011 = Sample interrupt input once per 8*256 clocks.
		1100 = Sample interrupt input once per 16*256 clocks.
		1101 = Sample interrupt input once per 32*256 clocks.
		1110 = Sample interrupt input once per 64*256 clocks.
		1111 = Sample interrupt input once per 128*256 clocks.

GPIO Port [A/B/C/D/E/F] Bit [n] Data Register (GPIO[A/B/C/D/E/F][n])

GPIOA0 GP_BA+0 GPIOA1 GP_BA+0 GPIOA2 GP_BA+0 GPIOA3 GP_BA+0 GPIOA4 GP_BA+0 GPIOA5 GP_BA+0 GPIOA6 GP_BA+0 GPIOA7 GP_BA+0 GPIOA8 GP_BA+0 GPIOA9 GP_BA+0	x204 x208 x20C x210 x214 x218 x21C x220	R/W	GPIO Port A Bit 0 Data Register GPIO Port A Bit 1 Data Register GPIO Port A Bit 2 Data Register GPIO Port A Bit 3 Data Register GPIO Port A Bit 4 Data Register GPIO Port A Bit 5 Data Register GPIO Port A Bit 6 Data Register GPIO Port A Bit 7 Data Register GPIO Port A Bit 7 Data Register	0x0000_000X 0x0000_000X 0x0000_000X 0x0000_000X 0x0000_000X 0x0000_000X 0x0000_000X
GPIOA2 GP_BA+03 GPIOA3 GP_BA+03 GPIOA4 GP_BA+03 GPIOA5 GP_BA+03 GPIOA6 GP_BA+03 GPIOA7 GP_BA+03 GPIOA8 GP_BA+03	x208 x20C x210 x214 x218 x21C x220	R/W R/W R/W R/W R/W R/W	GPIO Port A Bit 2 Data Register GPIO Port A Bit 3 Data Register GPIO Port A Bit 4 Data Register GPIO Port A Bit 5 Data Register GPIO Port A Bit 6 Data Register GPIO Port A Bit 7 Data Register	0x0000_000X 0x0000_000X 0x0000_000X 0x0000_000X 0x0000_000X
GPIOA3 GP_BA+03 GPIOA4 GP_BA+03 GPIOA5 GP_BA+03 GPIOA6 GP_BA+03 GPIOA7 GP_BA+03	x20C x210 x214 x218 x21C x220	R/W R/W R/W R/W R/W	GPIO Port A Bit 3 Data Register GPIO Port A Bit 4 Data Register GPIO Port A Bit 5 Data Register GPIO Port A Bit 6 Data Register GPIO Port A Bit 7 Data Register	0x0000_000X 0x0000_000X 0x0000_000X 0x0000_000X
GPIOA4 GP_BA+0 GPIOA5 GP_BA+0 GPIOA6 GP_BA+0 GPIOA7 GP_BA+0 GPIOA8 GP_BA+0	x210 x214 x218 x21C x220 x224	R/W R/W R/W R/W	GPIO Port A Bit 4 Data Register GPIO Port A Bit 5 Data Register GPIO Port A Bit 6 Data Register GPIO Port A Bit 7 Data Register	0x0000_000X 0x0000_000X 0x0000_000X 0x0000_000X
GPIOA5 GP_BA+03 GPIOA6 GP_BA+03 GPIOA7 GP_BA+03 GPIOA8 GP_BA+03	x214 x218 x21C x220 x224	R/W R/W R/W	GPIO Port A Bit 5 Data Register GPIO Port A Bit 6 Data Register GPIO Port A Bit 7 Data Register	0x0000_000X 0x0000_000X 0x0000_000X
GPIOA6 GP_BA+0: GPIOA7 GP_BA+0:	x218 x21C x220 x224	R/W R/W R/W	GPIO Port A Bit 6 Data Register GPIO Port A Bit 7 Data Register	0x0000_000X 0x0000_000X
GPIOA7 GP_BA+0: GPIOA8 GP_BA+0:	x21C x220 x224	R/W R/W	GPIO Port A Bit 7 Data Register	0x0000_000X
GPIOA8 GP_BA+0	x220 x224	R/W		
	x224		GPIO Port A Bit 8 Data Register	0,0000 000
CDIOAO GD BALO		R/W		0x0000_000X
GFIDA9 GF_BA+0.	x228		GPIO Port A Bit 9 Data Register	0x0000_000X
GPIOA10 GP_BA+0:		R/W	GPIO Port A Bit 10 Data Register	0x0000_000X
GPIOA11 GP_BA+0:	x22C	R/W	GPIO Port A Bit 11 Data Register	0x0000_000X
GPIOA12 GP_BA+0:	x230	R/W	GPIO Port A Bit 12 Data Register	0x0000_000X
GPIOA13 GP_BA+0:	x234	R/W	GPIO Port A Bit 13 Data Register	0x0000_000X
GPIOA14 GP_BA+0:	x238	R/W	GPIO Port A Bit 14 Data Register	0x0000_000X
GPIOA15 GP_BA+0:	x23C	R/W	GPIO Port A Bit 15 Data Register	0x0000_000X
GPIOBO GP_BA+0:	x240	R/W	GPIO Port B Bit 0 Data Register	0x0000_000X
GPIOB1 GP_BA+0:	x244	R/W	GPIO Port B Bit 1 Data Register	0x0000_000X
GPIOB2 GP_BA+0:	x248	R/W	GPIO Port B Bit 2 Data Register	0x0000_000X
GPIOB3 GP_BA+0:	x24C	R/W	GPIO Port B Bit 3 Data Register	0x0000_000X
GPIOB4 GP_BA+0:	x250	R/W	GPIO Port B Bit 4 Data Register	0x0000_000X
GPIOB5 GP_BA+0:	x254	R/W	GPIO Port B Bit 5 Data Register	0x0000_000X
GPIOB6 GP_BA+0:	x258	R/W	GPIO Port B Bit 6 Data Register	0x0000_000X
GPIOB7 GP_BA+0:	x25C	R/W	GPIO Port B Bit 7 Data Register	0x0000_000X
GPIOB8 GP_BA+0:	x260	R/W	GPIO Port B Bit 8 Data Register	0x0000_000X
GPIOB9 GP_BA+0:	x264	R/W	GPIO Port B Bit 9 Data Register	0x0000_000X
GPIOB10 GP_BA+0:	x268	R/W	GPIO Port B Bit 10 Data Register	0x0000_000X
GPIOB11 GP_BA+0:	x26C	R/W	GPIO Port B Bit 11 Data Register	0x0000_000X
GPIOB12 GP_BA+0:	x270	R/W	GPIO Port B Bit 12 Data Register	0x0000_000X

GPIOB13	GP_BA+0x274	R/W	GPIO Port B Bit 13 Data Register	0x0000_000X
GPIOB14	GP_BA+0x278	R/W	GPIO Port B Bit 14 Data Register	0x0000_000X
GPIOB15	GP_BA+0x27C	R/W	GPIO Port B Bit 15 Data Register	0x0000_000X
GPIOC0	GP_BA+0x280	R/W	GPIO Port C Bit 0 Data Register	0x0000_000X
GPIOC1	GP_BA+0x284	R/W	GPIO Port C Bit 1 Data Register	0x0000_000X
GPIOC2	GP_BA+0x288	R/W	GPIO Port C Bit 2 Data Register	0x0000_000X
GPIOC3	GP_BA+0x28C	R/W	GPIO Port C Bit 3 Data Register	0x0000_000X
GPIOC4	GP_BA+0x290	R/W	GPIO Port C Bit 4 Data Register	0x0000_000X
GPIOC5	GP_BA+0x294	R/W	GPIO Port C Bit 5 Data Register	0x0000_000X
GPIOC6	GP_BA+0x298	R/W	GPIO Port C Bit 6 Data Register	0x0000_000X
GPIOC7	GP_BA+0x29C	R/W	GPIO Port C Bit 7 Data Register	0x0000_000X
GPIOC8	GP_BA+0x2A0	R/W	GPIO Port C Bit 8 Data Register	0x0000_000X
GPIOC9	GP_BA+0x2A4	R/W	GPIO Port C Bit 9 Data Register	0x0000_000X
GPIOC10	GP_BA+0x2A8	R/W	GPIO Port C Bit 10 Data Register	0x0000_000X
GPIOC11	GP_BA+0x2AC	R/W	GPIO Port C Bit 11 Data Register	0x0000_000X
GPIOC12	GP_BA+0x2B0	R/W	GPIO Port C Bit 12 Data Register	0x0000_000X
GPIOC13	GP_BA+0x2B4	R/W	GPIO Port C Bit 13 Data Register	0x0000_000X
GPIOC14	GP_BA+0x2B8	R/W	GPIO Port C Bit 14 Data Register	0x0000_000X
GPIOC15	GP_BA+0x2BC	R/W	GPIO Port C Bit 15 Data Register	0x0000_000X
GPIOD0	GP_BA+0x2C0	R/W	GPIO Port D Bit 0 Data Register	0x0000_000X
GPIOD1	GP_BA+0x2C4	R/W	GPIO Port D Bit 1 Data Register	0x0000_000X
GPIOD2	GP_BA+0x2C8	R/W	GPIO Port D Bit 2 Data Register	0x0000_000X
GPIOD3	GP_BA+0x2CC	R/W	GPIO Port D Bit 3 Data Register	0x0000_000X
GPIOD4	GP_BA+0x2D0	R/W	GPIO Port D Bit 4 Data Register	0x0000_000X
GPIOD5	GP_BA+0x2D4	R/W	GPIO Port D Bit 5 Data Register	0x0000_000X
GPIOD6	GP_BA+0x2D8	R/W	GPIO Port D Bit 6 Data Register	0x0000_000X
GPIOD7	GP_BA+0x2DC	R/W	GPIO Port D Bit 7 Data Register	0x0000_000X
GPIOD8	GP_BA+0x2E0	R/W	GPIO Port D Bit 8 Data Register	0x0000_000X
GPIOD9	GP_BA+0x2E4	R/W	GPIO Port D Bit 9 Data Register	0x0000_000X
GPIOD10	GP_BA+0x2E8	R/W	GPIO Port D Bit 10 Data Register	0x0000_000X
GPIOD11	GP_BA+0x2EC	R/W	GPIO Port D Bit 11 Data Register	0x0000_000X

GPIOD12	GP_BA+0x2F0	R/W	GPIO Port D Bit 12 Data Register	0x0000_000X
GPIOD13	GP_BA+0x2F4	R/W	GPIO Port D Bit 13 Data Register	0x0000_000X
GPIOD14	GP_BA+0x2F8	R/W	GPIO Port D Bit 14 Data Register	0x0000_000X
GPIOD15	GP_BA+0x2FC	R/W	GPIO Port D Bit 15 Data Register	0x0000_000X
GPIOE0	GP_BA+0x300	R/W	GPIO Port E Bit 0 Data Register	0x0000_000X
GPIOE1	GP_BA+0x304	R/W	GPIO Port E Bit 1 Data Register	0x0000_000X
GPIOE2	GP_BA+0x308	R/W	GPIO Port E Bit 2 Data Register	0x0000_000X
GPIOE3	GP_BA+0x30C	R/W	GPIO Port E Bit 3 Data Register	0x0000_000X
GPIOE4	GP_BA+0x310	R/W	GPIO Port E Bit 4 Data Register	0x0000_000X
GPIOE5	GP_BA+0x314	R/W	GPIO Port E Bit 5 Data Register	0x0000_000X
GPIOE6	GP_BA+0x318	R/W	GPIO Port E Bit 6 Data Register	0x0000_000X
GPIOE7	GP_BA+0x31C	R/W	GPIO Port E Bit 7 Data Register	0x0000_000X
GPIOE8	GP_BA+0x320	R/W	GPIO Port E Bit 8 Data Register	0x0000_000X
GPIOE9	GP_BA+0x324	R/W	GPIO Port E Bit 9 Data Register	0x0000_000X
GPIOF0	GP_BA+0x340	R/W	GPIO Port F Bit 0 Data Register	0x0000_000X
GPIOF1	GP_BA+0x344	R/W	GPIO Port F Bit 1 Data Register	0x0000_000X
GPIOF2	GP_BA+0x348	R/W	GPIO Port F Bit 2 Data Register	0x0000_000X
GPIOF3	GP_BA+0x34C	R/W	GPIO Port F Bit 3 Data Register	0x0000_000X
GPIOF4	GP_BA+0x350	R/W	GPIO Port F Bit 4 Data Register	0x0000_000X
GPIOF5	GP_BA+0x354	R/W	GPIO Port F Bit 5 Data Register	0x0000_000X

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
Reserved									
15	14	13	12	11	10	9	8		
	Reserved								
7	7 6 5 4 3 2 1								
Reserved									

Bits	Description	
[31:1]	Reserved	Reserved.

Bits	Description	
		GPIO Port [X] Pin [N] I/O Data
		This field supports the bit operation mode on related GPIO port [x] pin [n].
		Writing this filed to set the corresponding GPIO port [x] pin [n] output value while reading this field to get the corresponding GPIO port [x] pin [n] value.
		Read Operation:
		0 = The corresponding GPIO port [x] pin [n] value is low.
[0]	GPIO[x][n]	1 = The corresponding GPIO port [x] pin [n] value is high.
		Write Operation:
		0 = Set corresponding GPIO port [x] pin [n] to low.
		1 = Set corresponding GPIO port [x] pin [n] to high.
		Note: The write operation will not be affected by register GPIOx_DMASK.

6.8 DMA Controller

6.8.1 Overview

nuvoton

The NuMicro® NANO112 series DMA contains four-channel peripheral direct memory access (PDMA) controller and a cyclic redundancy check (CRC) generator.

The PDMA that transfers data to and from memory or transfer data to and from peripherals. For PDMA channel (PDMA CH1~CH4), there is one-word buffer as transfer buffer between the Peripherals APB devices and Memory. User can stop the PDMA operation by disable PDMACEN (PDMA CSRx[0]). User can polling TD_IS (PDMA_ISRx[1]) or enable BLKD_IE (PDMA_IERx[1]) and wait interrupt to check PDMA transfer complete. The DMA controller can increase source or destination address, fixed or wrap around them as well.

The DMA controller contains a cyclic redundancy check (CRC) generator that can perform CRC calculation with programmable polynomial settings. The CRC engine supports CPU mode and DMA transfer mode.

6.8.2 Features

- Supports four PDMA channels (CH1 ~ CH4) and one CRC channel. Each PDMA channel can support a unidirectional transfer
- AMBA AHB master/slave interface compatible, for data transfer and register read/write
- Hardware round robin priority scheme. DMA channel 1 has the highest priority and channel 4 has the lowest priority
- **PDMA**
 - Peripheral-to-memory, memory-to-peripheral, and memory-to-memory transfer
 - Supports word boundary address
 - Supports word alignment transfer length in memory-to-memory mode
 - Supports word/half-word/byte alignment transfer length in peripheral-to-memory and memoryto-peripheral mode
 - Supports word/half-word/byte transfer data width from/to peripheral
 - Supports address direction: increment, fixed, and wrap around
 - Supports time-out function in all channel
- Cyclic Redundancy Check (CRC)
 - Supports four common polynomials CRC-CCITT, CRC-8, CRC-16, and CRC-32
 - CRC-CCITT: X16 + X12 + X5 + 1
 - CRC-8: $X^8 + X^2 + X + 1$
 - CRC-16: $X^{16} + X^{15} + X^2 + 1$
 - CRC-32: $X^{32} + X^{26} + X^{23} + X^{22} + X^{16} + X^{12} + X^{11} + X^{10} + X^{8} + X^{7} + X^{5} + X^{4} + X^{2} + X + 1$
 - Programmable seed value
 - Supports programmable order reverse setting for input data and CRC checksum
 - Supports programmable 1's complement setting for input data and CRC checksum
 - Supports CPU mode or DMA transfer mode

Supports 8/16/32-bit of data width in CRC CPU mode

- 8-bit write mode: 1-AHB clock cycle operation
- 16-bit write mode: 2-AHB clock cycle operation
- 32-bit write mode: 4-AHB clock cycle operation
- Supports byte alignment transfer length in CRC DMA mode

6.8.3 **Block Diagram**

nuvoTon

The DMA clock control and block diagram are shown as follows.

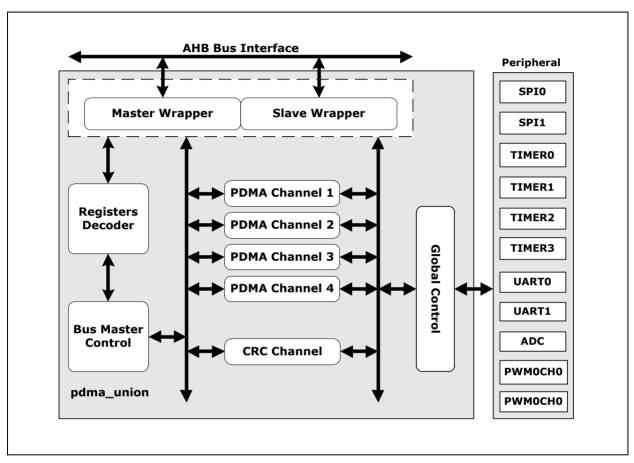


Figure 6-25 DMA Controller Block Diagram

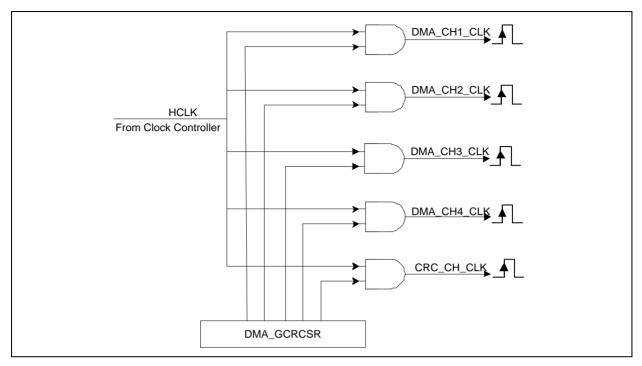


Figure 6-26 DMA Clock Control Diagram

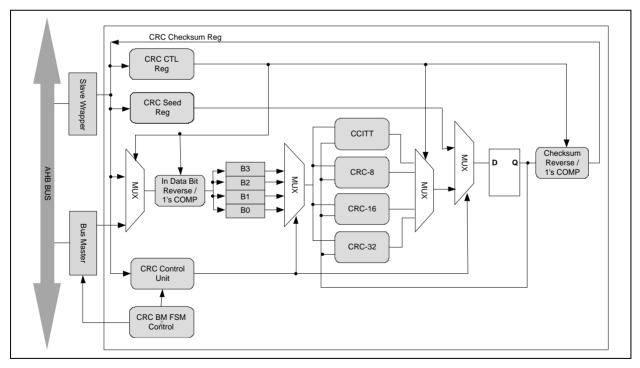


Figure 6-27 CRC Generator Block Diagram

6.8.4 Functional Description

The direct memory access (DMA) controller module transfers data from one address to another address, without CPU intervention. The DMA controller contains four PDMA (Peripheral-to-Memory or Memory-to-Peripheral or Memory-to-Memory) channels and one CRC generator channel.

User can recognize the completion of a DMA operation by polling or when it receives an internal DMA interrupt. As to the source and destination address, the DMA controller has three different modes: increased, fixed and wrap around operation mode.

6.8.4.1 PDMA

nuvoton

The DMA controller has four channels PDMA (Peripheral-to-Memory or Memory-to-Peripheral or Memory-to-Memory). As to the source and destination address, the DMA controller has three different modes: increased, fixed and wrap around operation mode.

Every PDMA channel behavior is not pre-defined, users must configure the channel service settings of DMA DSSR0, DMA DSSR1 registers before starting the related PDMA channel.

User must enable DMA channel PDMACEN (PDMA CSRx[0]) and then write a valid source address to the PDMA SARx register, a destination address to the PDMA DARx register, and a transfer count to the PDMA BCRx register. Next, trigger the TRIG EN (PDMA CSRx[23]). If the source address and destination is not in wrap around mode, the PDMA will continue the transfer until PDMA CBCRx comes down to 0 (in wrap around mode, when PDMA_CBCRx is equal to 0, the PDMA will reload PDMA CBCRx and work around until user disables PDMACEN (PDMA CSRx[0])).

The following sequence is a program sequence example.

- Enable PDMA Channel engine clock by setting CLKx EN (DMA GCRCSR [9~12]) register.
- Configure the channel service setting by setting DMA_DSSR0 / DMA_DSSR1 register.
- Configure PDMA CSRx register:
 - Enable PDMA channel (PDMACEN)
 - Set source/destination address direction (SAD_SEL / DAD_SEL)
 - Configure PDMA mode selection (MODE SEL (PDMA CSRx[3:2]))
 - Configure peripheral transfer width selection (APB TWS(PDMA CSRx[20:19])).
- Configure source /destination address by setting PDMA SARx/PDMA DARx registers.
- Configure PDMA transfer byte count by setting PDMA BCRx register.
- Enable PDMA block transfer done interrupt by setting TD IE (PDMA IERx[1]). (optional)
- Enable PDMA NVIC by setting NVIC_ISER register bit 26 to "1". (optional)
- Enable PDMA read/write transfer by setting TRIG EN (PDMA CSRx[23]) register.
- If PDMA block transfer done interrupt is generated, write "1" to TD_IS (PDMA_ISRx[1]) by user to clear interrupt flag.
- Enable PDMA read/write transfer by setting the TRIG EN for the next block transfer.

If an error occurs during the PDMA operation, the channel stops unless user clears the error condition and sets the SW RST (PDMA CSRx [1]) to reset the PDMA channel and set PDMACEN and TRIG EN to start again.

In PDMA (Peripheral-to-Memory or Memory-to-Peripheral) mode, DMA can transfer data between the

Peripherals APB IP (ex: UART, SPI, ADC....) and Memory.

6.8.4.2 CRC

nuvoton

The DMA controller contains a cyclic redundancy check (CRC) generator that can perform CRC calculation with programmable polynomial settings. The operation polynomial includes CRC-CCITT, CRC-8, CRC-16 and CRC-32; User can choose the CRC operation polynomial mode by setting CRC MODE[1:0] (CRC CTL[31:30] CRC Polynomial Mode).

The CRC engine supports CPU mode if CRCCEN bit (CRC CLT [0] CRC Channel Enable) is 1, TRIG EN bit (CRC CTL [23] CRC DMA Trigger Enable) is 0 and DMA transfer mode if CRCCEN bit (CRC CLT [0] CRC Channel Enable) is 1. TRIG EN bit (CRC CTL [23] CRC DMA Trigger Enable) is 1. The following sequence is a program sequence example.

The procedure when operating in CPU mode:

- Enable CRC engine by setting CRCCEN bit (CRC_CLT [0] CRC Channel Enable) to 1.
- Set the transfer data format WDATA RVS (CRC CTL [24] Write Data Order Reverse), CHECKSUM_RVS (CRC_CTL [25] Checksum Reverse), WDATA COM (CRC CTL [26] Write Data 1's Complement), CHECKSUM COM (CRC CTL [27] Checksum 1's Complement), initial seed value in CRC SEED (CRC SEED [31:0] CRC Seed Register) and select write data length by setting CPU WDLEN [1:0] (CRC CTL [29:28] CPU Write Data Length).
- Set the CRC RST bit (CRC CTL [1] CRC Engine Reset) to 1 to load the initial seed value to CRC circuit but others contents of CRT_CTL register will not be cleared. This bit will be cleared automatically.
- Write data to CRC_WDATA (CRC_WDATA [31:0] CRC Write Data Register) to perform CRC calculation.
- Then, get the CRC checksum results by reading the CRC CHECKSUM (CRC CHECKSUM [31:0] CRC Checksum Register).

Procedure when operating in CRC DMA mode:

- Enable CRC engine by setting CRCCEN bit (CRC_CLT [0] CRC Channel Enable) to 1.
- Set the transfer data format WDATA RVS (CRC CTL [24] Write Data Order Reverse), CHECKSUM_RVS (CRC_CTL [25] Checksum Reverse), WDATA_COM (CRC_CTL [26] Write Data 1's Complement), CHECKSUM_COM (CRC_CTL [27] Checksum 1's Complement) and initial seed value in CRC_SEED (CRC_SEED [31:0] CRC Seed Register).
- Specify a valid source address (word alignment) and transfer counts by setting CRC DMASAR (CRC DMASAR[31:0] CRC DMA Transfer Source Address Register) and CRC DMABCR (CRC DMABCR [15:0] CRC DMA Transfer Byte Count Register).
- Set TRIG EN bit (CRC CTL [23] CRC DMA Trigger Enable) to 1 to perform CRC calculation.
- Wait CRC DMA transfer and check if CRC DMA transfer is done by the CRC_BLKD_IF bit (CRC DMA Block Transfer Done Interrupt Flag), and then get the CRC checksum results by reading the CRC_CHECKSUM (CRC_CHECKSUM [31:0] CRC Checksum Register).

6.8.5 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
PDMA Base Address: PDMA_CHx_BA = 0x5000_8000 + (0x100 * x) x = 1,24 CRC_BA = 0x5000_8E00							
DMA_GCR_BA = 0		<u> </u>					
PDMA_CSR	PDMA_CHx_BA+0x00		PDMA Control Register	0x0000_0000			
PDMA_SAR	PDMA_CHx_BA+0x04	R/W	PDMA Source Address Register	0x0000_0000			
PDMA_DAR	PDMA_CHx_BA+0x08	R/W	PDMA Destination Address Register	0x0000_0000			
PDMA_BCR	PDMA_CHx_BA+0x0C	R/W	PDMA Transfer Byte Count Register	0x0000_0000			
PDMA_CSAR	PDMA_CHx_BA+0x14	R	PDMA Current Source Address Register	0x0000_0000			
PDMA_CDAR	PDMA_CHx_BA+0x18	R	PDMA Current Destination Address Register	0x0000_0000			
PDMA_CBCR	PDMA_CHx_BA+0x1C	R	PDMA Current Transfer Byte Count Register	0x0000_0000			
PDMA_IER	PDMA_CHx_BA+0x20	R/W	PDMA Interrupt Enable Register	0x0000_0001			
PDMA_ISR	PDMA_CHx_BA+0x24	R/W	PDMA Interrupt Status Register	0x0000_0000			
PDMA_TCR	PDMA_CHx_BA+0x28	R/W	PDMA Timer Counter Setting Register	0x0000_0000			
CRC_CTL	CRC_BA+0x00	R/W	CRC Control Register	0x2000_0000			
CRC_DMASAR	CRC_BA+0x04	R/W	CRC DMA Source Address Register	0x0000_0000			
CRC_DMABCR	CRC_BA+0x0C	R/W	CRC DMA Transfer Byte Count Register	0x0000_0000			
CRC_DMACSAR	CRC_BA+0x14	R	CRC DMA Current Source Address Register	0x0000_0000			
CRC_DMACBCR	CRC_BA+0x1C	R	CRC DMA Current Transfer Byte Count Register	0x0000_0000			
CRC_DMAIER	CRC_BA+0x20	R/W	CRC DMA Interrupt Enable Register	0x0000_0001			
CRC_DMAISR	CRC_BA+0x24	R/W	CRC DMA Interrupt Status Register	0x0000_0000			
CRC_WDATA	CRC_BA+0x80	R/W	CRC Write Data Register	0x0000_0000			
CRC_SEED	CRC_BA+0x84	R/W	CRC Seed Register	0xFFFF_FFFF			
CRC_CHECKSUM	CRC_BA+0x88	R	CRC Checksum Register	0xFFFF_FFFF			
DMA_GCRCSR	DMA_GCR_BA+0x00	R/W	DMA Global Control Register	0x0000_0000			
DMA_DSSR0	DMA_GCR_BA+0x04	R/W	DMA Service Selection Control Register 0	0x1F1F_1F00			
DMA_DSSR1	DMA_GCR_BA+0x08	R/W	DMA Service Selection Control Register 1	0x0000_001F			
DMA_GCRISR	DMA_GCR_BA+0x0C	R	DMA Global Interrupt Status Register	0x0000_0000			

Note: The x of the PDMA_REGx represents the PDMA channel.

6.8.6 Register Description

nuvoTon

PDMA Control Register (PDMA_CSR)

Register	Offset	R/W	Description	Reset Value	
PDMA_CSR	PDMA_CHx_BA+0x00	R/W	PDMA Control Register	0x0000_0000	

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
TRIG_EN	Rese	erved	APB_	_TWS	Reserved				
15	14	13	12	11	10	9	8		
	Reserved		TO_EN	Reserved					
7	6	5	4	3	2	1	0		
DAD_SEL SAD_SI			SEL	MODE_SEL SW_RST			PDMACEN		

Bits	Description						
[31:24]	Reserved	Reserved.					
[23]	TRIG_EN	Trigger Enable Control 0 = No effect. 1 = PDMA data read or write transfer Enabled. Note: When PDMA transfer completed, this bit will be cleared automatically. If the bus error occurs, all PDMA transfer will be stopped. User must reset all PDMA channel, and then trigger again.					
[22:21]	Reserved	Reserved.					
[20:19]	APB_TWS	Peripheral Transfer Width Selection 00 = One word (32-bit) is transferred for every PDMA operation. 01 = One byte (8-bit) is transferred for every PDMA operation. 10 = One half-word (16-bit) is transferred for every PDMA operation. 11 = Reserved. Note: This field is meaningful only when MODE_SEL is Peripheral to Memory mode (Peripheral-to-Memory) or Memory to Peripheral mode (Memory-to-Peripheral).					
[18:13]	Reserved	Reserved.					
[12]	TO_EN	Time-out Enable Control This bit will enable PDMA internal counter. While this counter counts to 0, the TO_IS will be set. 0 = PDMA internal counter Disabled. 1 = PDMA internal counter Enabled.					
[11:8]	Reserved	Reserved.					
[7:6]	DAD_SEL	Transfer Destination Address Direction Selection 00 = Transfer Destination address is incremented successively. 01 = Reserved.					

Bits	Description	
		10 = Transfer Destination address is fixed (This feature can be used when data where transferred from multiple sources to a single destination).
		11 = Transfer Destination address is wrapped around (When the PDMA_CBCR is equal to 0, the PDMA_CDAR and PDMA_CBCR register will be updated by PDMA_DAR and PDMA_BCR automatically. PDMA will start another transfer without user trigger until PDMA_EN disabled. When the PDMA_EN is disabled, the PDMA will complete the active transfer but the remained data which in the PDMA_BUF will not transfer to destination address).
		Transfer Source Address Direction Selection
		00 = Transfer Source address is incremented successively.
		01 = Reserved.
[5:4]	SAD SEL	10 = Transfer Source address is fixed (This feature can be used when data where transferred from a single source to multiple destinations).
[5.4]	OAD_GEE	11 = Transfer Source address is wrap around (When the PDMA_CBCR is equal to 0, the PDMA_CSAR and PDMA_CBCR register will be updated by PDMA_SAR and PDMA_BCR automatically. PDMA will start another transfer without user trigger until PDMA_EN disabled. When the PDMA_EN is disabled, the PDMA will complete the active transfer but the remained data which in the PDMA_BUF will not transfer to destination address).
		PDMA Mode Selection
		00 = Memory to Memory mode (Memory-to-Memory).
[3:2]	MODE_SEL	01 = Peripheral to Memory mode (Peripheral-to-Memory).
		10 = Memory to Peripheral mode (Memory-to-Peripheral).
		11 = Reserved.
		Software Engine Reset
[1]	SW RST	0 = No effect.
[11]	on	1 = Reset the internal state machine, pointers and internal buffer. The contents of control register will not be cleared. This bit will be automatically cleared after few clock cycles.
		PDMA Channel Enable Control
[0]	PDMACEN	Setting this bit to 1 enables PDMA operation. If this bit is cleared, PDMA will ignore all PDMA request and force Bus Master into IDLE state.
		Note: SW_RST(PDMA_CSRx[1], x= 1~4) will clear this bit.

PDMA Source Address Register (PDMA_SAR)

Register	Offset		Description	Reset Value
PDMA_SAR	PDMA_CHx_BA+0x04	R/W	PDMA Source Address Register	0x0000_0000

31	30	29	28	27	26	25	24			
PDMA_SAR										
23	22	21	20	19	18	17	16			
			PDMA	_SAR						
15	14	13	12	11	10	9	8			
			PDMA	_SAR						
7 6 5 4 3 2 1 0										
	PDMA_SAR									

Bits	Description	escription						
		PDMA Transfer Source Address Bits						
[31:0]	PDMA_SAR	This field indicates a 32-bit source address of PDMA.						
		Note: The source address must be word alignment.						

PDMA Destination Address Register (PDMA_DAR)

Register	Offset		Description	Reset Value
PDMA_DAR	PDMA_CHx_BA+0x08	R/W	PDMA Destination Address Register	0x0000_0000

31	30	29	28	27	26	25	24			
PDMA_DAR										
23	22	21	20	19	18	17	16			
	PDMA_DAR									
15	14	13	12	11	10	9	8			
	PDMA_DAR									
7 6 5 4 3 2 1 0							0			
			PDMA	_DAR						

Bits	Description	Description						
		PDMA Transfer Destination Address Bits						
[31:0]	PDMA_DAR	This field indicates a 32-bit destination address of PDMA.						
		Note: The destination address must be word alignment						

PDMA Transfer Byte Count Register (PDMA_BCR)

Register	Offset R/N		Description	Reset Value
PDMA_BCR	PDMA_CHx_BA+0x0C	R/W	PDMA Transfer Byte Count Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21 20 19 18 17 1								
	Reserved									
15	14	13	12	11	10	9	8			
	PDMA_BCR									
7 6 5 4 3 2 1 0										
	PDMA_BCR									

Bits	Description	escription						
[31:16]	Reserved	Reserved.						
[15:0]	PDMA_BCR	PDMA Transfer Byte Count Bits This field indicates a 16-bit transfer byte count number of PDMA; it must be word alignment.						

PDMA Current Source Address Register (PDMA_CSAR)

Register	er Offset R/W		Description	Reset Value
PDMA_CSAR	PDMA_CHx_BA+0x14	R	PDMA Current Source Address Register	0x0000_0000

31	30	29	28	27	26	25	24				
	PDMA_CSAR										
23	22	21	20	19	18	17	16				
	PDMA_CSAR										
15	14	13	12	11	10	9	8				
	PDMA_CSAR										
7	6	5	4	3	2	1	0				
			PDMA	_CSAR							

Bits	Description	
[31:0]	IPDMA CSAR	PDMA Current Source Address Bits (Read Only) This field indicates the source address where the PDMA transfer just occurred.

PDMA Current Destination Address Register (PDMA_CDAR)

Register	Offset	R/W	Description	Reset Value
PDMA_CDAR	PDMA_CHx_BA+0x18	R	PDMA Current Destination Address Register	0x0000_0000

31	30	29	28	27	26	25	24				
	PDMA_CDAR										
23	22	21	20	19	18	17	16				
	PDMA_CDAR										
15	14	13	12	11	10	9	8				
	PDMA_CDAR										
7	6	5	4	3	2	1	0				
	PDMA_CDAR										

Bits	Description					
[31:0] PDMA_CDAR	PDMA_CDAR	PDMA Current Destination Address Bits (Read Only)				
		This field indicates the destination address where the PDMA transfer just occurred.				

PDMA Current Byte Count Register (PDMA_CBCR)

Register	Offset	R/W	Description	Reset Value
PDMA_CBCR	PDMA_CHx_BA+0x1C	R	PDMA Current Transfer Byte Count Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	PDMA_CBCR									
7	6	5	4	3	2	1	0			
	PDMA_CBCR									

Bits	Description					
[31:16]	Reserved	Reserved.				
[15:0]	PDMA_CBCR	PDMA Current Byte Count Bits (Read Only) This field indicates the current remained byte count of PDMA. Note1: This field value will be cleared to 0 when user sets SW_RST (PDMA_CSRx[1]) to "1".				

PDMA Interrupt Enable Control Register (PDMA_IER)

Register Offset R/W		R/W	Description	Reset Value
PDMA_IER PDMA_CHx_BA+0x20		R/W	PDMA Interrupt Enable Register	0x0000_0001

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	Reserved										
7	6	5	4	3	2	1	0				
Reserved	TO_IE		WRA_E	TD_IE	TABORT_IE						

Bits	Description	Description					
[31:7]	Reserved	Reserved.					
[6]	TO_IE	Time-out Interrupt Enable Control 0 = Time-out interrupt Disabled. 1 = Time-out interrupt Enabled.					
[5:2]	WRA_BCR_IE	Wrap Around Byte Count Interrupt Enable Control 0001 = Interrupt enable of PDMA_CBCR equals 0. 0100 = Interrupt enable of PDMA_CBCR equals 1/2 PDMA_BCR. Others = Reserved.					
[1]		PDMA Block Transfer Done Interrupt Enable Control 0 = Interrupt generator Disabled when PDMA transfer is done. 1 = Interrupt generator Enabled when PDMA transfer is done.					
[0]		PDMA Read/Write Target Abort Interrupt Enable Control 0 = Target abort interrupt generation Disabled during PDMA transfer. 1 = Target abort interrupt generation Enabled during PDMA transfer.					

PDMA Interrupt Status Register (PDMA_ISR)

Register	Offset	R/W	Description	Reset Value
PDMA_ISR	PDMA_CHx_BA+0x24	R/W	PDMA Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
Reserved	TO_IS	WRA_BCR_IS TD_IS TABOF					TABORT_IS	

Bits	Description	
[31:7]	Reserved	Reserved.
[6]	то_is	Time-out Interrupt Status Flag This flag indicated that PDMA has waited peripheral request for a period defined by PDMA_TCR. 0 = No time-out flag. 1 = Time-out flag. Note: This bit is cleared by writing "1" to it.
[5:2]	WRA_BCR_IS	Wrap Around Transfer Byte Count Interrupt Status Flag WAR_BCR_IS [0] (xxx1) = PDMA_CBCR equal 0 flag. WAR_BCR_IS [2] (x1xx) = PDMA_CBCR equal 1/2 PDMA_BCR flag. Note: Each bit is cleared by writing "1" to it. This field is only valid in wrap around mode. (DAD_SEL (PDMA_CSR[7:6]) =11 or SAD_SEL (PDMA_CSR[5:4]) =11).
[1]	TD_IS	Transfer Done Interrupt Status Flag This bit indicates that PDMA has finished all transfer. 0 = Not finished yet. 1 = Done. Note: This bit is cleared by writing "1" to it.
[0]	TABORT_IS	PDMA Read/Write Target Abort Interrupt Status Flag 0 = No bus ERROR response received. 1 = Bus ERROR response received. Note1: This bit is cleared by writing "1" to it. Note2: This bit indicates bus master received ERROR response or not, if bus master received occur it means that target abort is happened. PDMA controller will stop transfer and respond this event to user then go to IDLE state. When target abort occurred, user must reset PDMA controller, and then transfer those data again.

PDMA Timer Count Setting Register (PDMA_TCR)

Register	Offset	R/W	Description	Reset Value
PDMA_TCR	PDMA_CHx_BA+0x28	R/W	PDMA Timer Counter Setting Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			PDMA	_TCR				
7	6	5	4	3	2	1	0	
PDMA_TCR								

Bits	Description					
[31:16]	Reserved	Reserved.				
[15:0]	PDMA_TCR	PDMA Timer Count Setting Each PDMA channel contains an internal counter. This internal counter will reload and start counting when completing each peripheral request service. The internal counter loads the value of PDAM_TCR and starts counting down when setting TO_EN (PDMA_CSRx[12]). PDMA will request interrupt when this internal counter reaches 0 and TO_IE (PDMA_IERx[6]) is 1.				

CRC Control Register (CRC_CTL)

Register	Offset	R/W	Description	Reset Value
CRC_CTL	CRC_BA+0x00	R/W	CRC Control Register	0x2000_0000

31	30	29	28	27	26	25	24	
CRC_	MODE	CPU_WDLEN		CHECKSUM_ COM	WDATA_COM	CHECKSUM_ RVS	WDATA_RVS	
23	22	21	20	19	18	17	16	
TRIG_EN			Reserved					
15	14	13	12	11	10	9	8	
			Reserved					
7	6	5	4	3	2	1	0	
	Reserved CRC_RST CRCCE					CRCCEN		

Bits	Description	
		CRC Polynomial Mode This field indicates the CRC operation polynomial mode.
		00 = CRC-CCITT Polynomial Mode.
[31:30]	CRC_MODE	01 = CRC-8 Polynomial Mode.
		10 = CRC-16 Polynomial Mode.
		11 = CRC-32 Polynomial Mode.
		CPU Write Data Length
		This field indicates the CPU write data length only when operating in CPU mode.
		00 = The write data length is 8-bit mode.
		01 = The write data length is 16-bit mode.
[29:28]	CPU_WDLEN	10 = The write data length is 32-bit mode.
		11 = Reserved.
		Note1: This field is only valid when operating in CPU mode.
		Note2: When the write data length is 8-bit mode, the valid data in CRC_WDATA register is only CRC_WDATA [7:0] bits; if the write data length is 16-bit mode, the valid data in CRC_WDATA register is only CRC_WDATA [15:0].
		Checksum 1's Complement
[27]	CHECKSUM_COM	This bit is used to enable the 1's complement function for checksum result in CRC_CHECKSUM register.
		0 = 1's complement for CRC checksum Disabled.
		1 = 1's complement for CRC checksum Enabled.
[26]		Write Data 1's Complement
	WDATA_COM	This bit is used to enable the 1's complement function for write data value in CRC_WDTAT register.
		0 = 1's complement for CRC write data in Disabled.
		1 = 1's complement for CRC write data in Enabled.

		Checksum Reverse
		This bit is used to enable the bit order reverse function for write data value in CRC_CHECKSUM register.
[25]	CHECKSUM_RVS	0 = Bit order reverse for CRC checksum Disabled.
		1 = Bit order reverse for CRC checksum Enabled.
		Note: If the checksum result is 0XDD7B0F2E, the bit order reverse for CRC checksum is 0x74F0DEBB
		Write Data Order Reverse
		This bit is used to enable the bit order reverse function for write data value in CRC_WDTAT register.
[24]	WDATA_RVS	0 = Bit order reverse for CRC write data in Disabled.
		1 = Bit order reverse for CRC write data in Enabled (per byre).
		Note: If the write data is 0xAABBCCDD, the bit order reverse for CRC write data in is 0x55DD33BB
		Trigger Enable Control
		This bit is used to trigger the CRC DMA transfer.
		0 = No effect.
	TRIG_EN	1 = CRC DMA data read or write transfer Enabled.
[23]		Note1: If this bit asserts which indicates the CRC engine operation in CRC DMA mode, do not fill in any data in CRC_WDATA register.
		Note2: When CRC DMA transfer completed, this bit will be cleared automatically.
		Note3: If the bus error occurs when CRC DMA transfer data, all CRC DMA transfer will be stopped. User must reset all DMA channel before trigger DMA again.
[22:2]	Reserved	Reserved.
		CRC Engine Reset
		0 = No effect.
[1]	CRC_RST	1 = Reset the internal CRC state machine and internal buffer. The others contents of CRC_CTL register will not be cleared. This bit will be cleared automatically.
		Note: When operated in CPU mode, setting this bit will reload the initial seed value (CRC_SEED register).
		CRC Channel Enable Control
		0 = No effect.
		1 = CRC operation Enabled.
[0]	CRCCEN	When operating in CRC DMA mode (TRIG_EN = 1), if user clears this bit, the DMA operation will be continuous until all CRC DMA operation is done, and the TRIG_EN bit will keep 1 until all CRC DMA operation done. But in this case, the CRC_DMAISR [BLKD_IF] flag will inactive, user can read CRC checksum result only if TRIG_EN clears to 0
		When operating in CRC DMA mode (TRIG_EN = 1), if user wants to stop the transfer immediately, user can write 1 to CRC_RST bit (CRC_CTL [1] CRC Engine Reset) to stop the transmission.

CRC DMA Source Address Register (CRC_DMASAR)

Register	Offset	R/W	Description	Reset Value
CRC_DMASAR	CRC_BA+0x04	R/W	CRC DMA Source Address Register	0x0000_0000

31	30	29	28	27	26	25	24			
	CRC_DMASAR									
23	22	21	20	19	18	17	16			
			CRC_D	MASAR						
15	14	13	12	11	10	9	8			
			CRC_D	MASAR						
7	6	5	4	3	2	1	0			
	CRC_DMASAR									

Bits	Description			
	CRC DMA Transfer Source Address Bits			
[24:0]	CRC_DMASAR	This field indicates a 32-bit source address of CRC DMA.		
[31:0]		(CRC_DMASAR + CRC_DMABCR) = (CRC_DMACSAR + CRC_DMACBCR).		
		Note: The source address must be word alignment		

CRC DMA Transfer Byte Count Register (CRC_DMABCR)

Register	Offset	R/W	Description	Reset Value
CRC_DMABCR	CRC_DMABCR CRC_BA+0x0C F		CRC DMA Transfer Byte Count Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
			CRC_D	MABCR						
7	6	5	4	3	2	1	0			
	CRC_DMABCR									

Bits	Description				
[31:16]	Reserved	Reserved.			
[15:0]	CRC_DMABCR	CRC DMA Transfer Byte Count This field indicates a 16-bit total transfer byte count number of CRC DMA (CRC_DMASAR + CRC_DMABCR) = (CRC_DMACSAR + CRC_DMACBCR).			

CRC DMA Current Source Address Register (CRC_DMACSAR)

Register	Offset	R/W	Description	Reset Value
CRC_DMACSAR	CRC_BA+0x14	R	CRC DMA Current Source Address Register	0x0000_0000

31	30	29	28	27	26	25	24		
	CRC_DMACSAR								
23	22	21	20	19	18	17	16		
	CRC_DMACSAR								
15	14	13	12	11	10	9	8		
			CRC_DI	MACSAR					
7	6	5	4	3	2	1	0		
	CRC_DMACSAR								

Bits	Description			
		CRC DMA Current Source Address Bits (Read Only)		
[31:0]	CRC_DMACSAR	This field indicates the current source address where the CRC DMA transfer just occurs.		
	(CRC_DMASAR + CRC_DMABCR) = (CRC_DMACSAR + CRC_DMACBCR).			

CRC DMA Current Transfer Byte Count Register (CRC_DMACBCR)

Register	Offset	R/W	Description	Reset Value
CRC_DMACBCR	CRC_BA+0x1C	R	CRC DMA Current Transfer Byte Count Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			CRC_DN	MACBCR				
7	6	5	4	3	2	1	0	
	CRC_DMACBCR							

Bits	Description				
[31:16]	Reserved	Reserved.			
[15:0]	CRC_DMACBCR	CRC DMA Current Remained Byte Count (Read Only) This field indicates the current remained byte count of CRC DMA. (CRC_DMASAR + CRC_DMABCR) = (CRC_DMACSAR + CRC_DMACBCR). Note: Setting the CRC_RST bit to 1 will clear this register value.			

CRC DMA Interrupt Enable Register (CRC_DMAIER)

Register	Offset	R/W	Description	Reset Value
CRC_DMAIER	CRC_BA+0x20	R/W	CRC DMA Interrupt Enable Register	0x0000_0001

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Reserved						CRC_TABOR T_IE		

Bits	Description	Description					
[31:2]	Reserved	Reserved.					
[1]	CRC_BLKD_IE	CRC DMA Block Transfer Done Interrupt Enable Control Enable this bit will generate the CRC DMA Transfer Done interrupt signal while CRC_BLKD_IF bit (CRCDMAISR [1] CRC DMA Block Transfer Done Interrupt Flag) is set to 1. 0 = Interrupt generator Disabled when CRC DMA transfer done. 1 = Interrupt generator Enabled when CRC DMA transfer done.					
[0]	CRC_TABORT_IE	CRC DMA Read/Write Target Abort Interrupt Enable Control Enable this bit will generate the CRC DMA Target Abort interrupt signal while CRC_TARBOT_IF bit (CRCDMAISR [0] CRC DMA Read/Write Target Abort Interrupt Flag) is set to 1. 0 = Target abort interrupt generation Disabled during CRC DMA transfer. 1 = Target abort interrupt generation Enabled during CRC DMA transfer.					

CRC DMA Interrupt Status Register (CRC_DMAISR)

Register	Offset	R/W	Description	Reset Value
CRC_DMAISR	CRC_BA+0x24	R/W	CRC DMA Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved						CRC_BLKD_I F	CRC_TABOR T_IF		

Bits	Description				
[31:2]	Reserved	Reserved.			
[1]	CRC_BLKD_IF	CRC DMA Block Transfer Done Interrupt Flag This bit indicates that CRC DMA transfer has finished or not. 0 = Not finished if TRIG_EN (CRC_CTL[23]) has enabled. 1 = CRC transfer done if TRIG_EN (CRC_CTL[23]) has enabled. (When CRC DMA transfer done, TRIG_EN (CRC_CTL[23]) will be cleared automatically)			
		Note: This bit is cleared by writing "1" to it.			
[0]	CRC_TABORT_IF	CRC DMA Read/Write Target Abort Interrupt Flag This bit indicates that CRC bus has error or not during CRC DMA transfer. 0 = No bus error response received during CRC DMA transfer. 1 = Bus error response received during CRC DMA transfer. Note1: This bit is cleared by writing "1" to it. Note2: This bit indicates bus master received error response or not. If bus master received error response, it means that CRC transfer target abort is happened. DMA will stop transfer and respond this event to user then CRC state machine goes to IDLE state. When target abort occurred, user must reset DMA before transfer those data again			

CRC Write Data Register (CRC_WDATA)

Register	Offset	R/W	Description	Reset Value
CRC_WDATA	CRC_BA+0x80	R/W	CRC Write Data Register	0x0000_0000

31	30	29	28	27	26	25	24		
	CRC_WDATA								
23	22	21	20	19	18	17	16		
	CRC_WDATA								
15	14	13	12	11	10	9	8		
			CRC_V	VDATA					
7	6	5	4	3	2	1	0		
	CRC_WDATA								

Bits	Description			
[31:0]	CRC_WDATA	CRC Write Data Bits When operating in CPU mode, user can write data to this field to perform CRC operation. When operating in DMA mode, this field indicates the DMA read data from memory and cannot be written. Note: When the write data length is 8-bit mode, the valid data in CRC_WDATA register is only CRC_WDATA [7:0] bits: if the write data length is 16-bit mode, the valid data in		
		only CRC_WDATA [7:0] bits; if the write data length is 16-bit mode, the valid data in CRC_WDATA register is only CRC_WDATA [15:0].		

CRC Seed Register (CRC_SEED)

Register	Offset	R/W	Description	Reset Value
CRC_SEED	CRC_BA+0x84	R/W	CRC Seed Register	0xFFFF_FFFF

31	30	29	28	27	26	25	24		
	CRC_SEED								
23	22	21	20	19	18	17	16		
	CRC_SEED								
15	14	13	12	11	10	9	8		
	CRC_SEED								
7	6	5	4	3	2	1	0		
	CRC_SEED								

Bits	Description			
[31:0] CRC_SEED	CRC SEED	CRC Seed Value		
	This field indicates the CRC seed value.			

CRC Checksum Register (CRC_CHECKSUM)

Register	Offset	R/W	Description	Reset Value
CRC_CHECKSUM	CRC_BA+0x88	R	CRC Checksum Register	0xFFFF_FFFF

31	30	29	28	27	26	25	24			
CRC_CHECKSUM										
23	22	21	20	19	18	17	16			
	CRC_CHECKSUM									
15	14	13	12	11	10	9	8			
	CRC_CHECKSUM									
7	6	5	4	3	2	1	0			
	CRC_CHECKSUM									

E	Bits	Description					
[:	31:0]	CRC CHECKSUM	CRC Checksum Results This fields indicates the CRC checksum result				

DMA Global Control Register (DMA_GCRCSR)

Register	Offset	R/W	Description	Reset Value
DMA_GCRCSR	DMA_GCR_BA+0x00	R/W	DMA Global Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved		CLK4_EN	CLK3_EN	CLK2_EN	CLK1_EN	Reserved			
7	6	5	4	3	2	1	0			
	Reserved									

Bits	Description				
[31:25]	Reserved	Reserved.			
[24]	CRC_CLK_EN	CRC Controller Clock Enable Control 0 = Disabled. 1 = Enabled.			
[23:13]	Reserved	Reserved.			
[12]	CLK4_EN	PDMA Controller Channel 4 Clock Enable Control 0 = Disabled. 1 = Enabled.			
[11]	CLK3_EN	PDMA Controller Channel 3 Clock Enable Control 0 = Disabled. 1 = Enabled.			
[10]	CLK2_EN	PDMA Controller Channel 2 Clock Enable Control 0 = Disabled. 1 = Enabled.			
[9]	CLK1_EN	PDMA Controller Channel 1 Clock Enable Control 0 = Disabled. 1 = Enabled.			
[8:0]	Reserved	Reserved.			

DMA Service Selection Control Register 0 (DMA_DSSR0)

Register	Offset		Description	Reset Value
DMA_DSSR0	DMA_GCR_BA+0x04	R/W	DMA Service Selection Control Register 0	0x1F1F_1F00

31	30	29	28	27	26	25	24		
Reserved				CH3_SEL					
23	22	21	20	19	18	17	16		
	Reserved			CH2_SEL					
15	14	13	12	11	10	9	8		
	Reserved		CH1_SEL						
7	6	5	4	3	2	1	0		
	Reserved								

Bits	Description					
[31:29]	Reserved	Reserved.				
[28:24]	CH3_SEL	Channel 3 Selection This filed defines which peripheral is connected to PDMA channel 3. User can configure the peripheral setting by CH3_SEL. The channel configuration is the same as CH1_SEL field. Please refer to the explanation of CH1_SEL.				
[23:21]	Reserved	Reserved.				
[20:16]	CH2_SEL	Channel 2 Selection This filed defines which peripheral is connected to PDMA channel 2. User can configure the peripheral setting by CH2_SEL. The channel configuration is the same as CH1_SEL field. Please refer to the explanation of CH1_SEL.				
[15:13]	Reserved	Reserved.				
[12:8]	CH1_SEL	Channel 1 Selection This filed defines which peripheral is connected to PDMA channel 1. User can configure the peripheral by setting CH1_SEL. 00000 = Connect to SPI0_TX. 00001 = Connect to SPI1_TX. 00010 = Connect to UART0_TX. 00011 = Connect to UART1_TX. 00100 = Reserved. 00101 = Reserved. 00110 = Reserved. 00111 = Reserved. 01000 = Reserved. 01001 = Connect to TMR0. 01010 = Connect to TMR1. 01011 = Connect to TMR2. 01100 = Connect to TMR3. 10000 = Connect to SPI0_RX.				

Bits	Description	
		10001 = Connect to SPI1_RX.
		10010 = Connect to UART0_RX.
		10011 = Connect to UART1_RX.
		10100 = Reserved.
		10101 = Reserved.
		10110 = Connect to ADC.
		10111 = Reserved.
		11000 = Reserved.
		11001 = Connect to PWM0_CH0.
		11010 = Connect to PWM0_CH2.
		11011 = Reserved.
		11100 = Reserved
		Others = Disable to connected any peripheral.
[7:0]	Reserved	Reserved.

DMA Service Selection Control Register 1 (DMA_DSSR1)

Register Offset		R/W	Description	Reset Value
DMA_DSSR1	DMA_GCR_BA+0x08	R/W	DMA Service Selection Control Register 1	0x0000_001F

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
Reserved			CH4_SEL							

Bits	Description						
[31:5]	Reserved	Reserved.					
[4:0]	CH4_SEL	Channel 4 Selection This filed defines which peripheral is connected to PDMA channel 4. User can configure the peripheral by setting CH4_SEL. 00000 = Connect to SPI0_TX. 00001 = Connect to UART0_TX. 00010 = Connect to UART1_TX. 00011 = Connect to UART1_TX. 00100 = Reserved. 00101 = Reserved. 00111 = Reserved. 00111 = Reserved. 01100 = Connect to TMR0. 01001 = Connect to TMR1. 01011 = Connect to TMR2. 01100 = Connect to TMR3. 10000 = Connect to SPI0_RX. 10001 = Connect to SPI1_RX. 10001 = Connect to UART1_RX. 10010 = Connect to UART1_RX. 10010 = Connect to UART1_RX. 10010 = Connect to UART1_RX. 10111 = Reserved. 10111 = Reserved. 10110 = Reserved. 10111 = Reserved. 10111 = Reserved. 11001 = Connect to ADC. 11011 = Reserved. 11001 = Connect to PWM0_CH0. 11010 = Connect to PWM0_CH0. 11011 = Reserved.					

Bits	Description
	11100 = Reserved.
	Others = Disable to connected any peripheral.

DMA Global Interrupt Status Register (DMA_GCRISR)

Register	Offset	R/W	Description	Reset Value
DMA_GCRISR	DMA_GCR_BA+0x0C	R	DMA Global Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
Reserved			INTR4	INTR3	INTR2	INTR1	Reserved	

Bits	Description	
[31:17]	Reserved	Reserved.
[16]	INTRCRC	Interrupt Status of CRC Controller (Read Only) This bit is the interrupt status of CRC controller
[15:5]	Reserved	Reserved.
[4]	INTR4	Interrupt Status of Channel 4 (Read Only) This bit is the interrupt status of PDMA channel4.
[3]	INTR3	Interrupt Status of Channel 3 (Read Only) This bit is the interrupt status of PDMA channel3.
[2]	INTR2	Interrupt Status of Channel 2 (Read Only) This bit is the interrupt status of PDMA channel2. Note: This bit is read only
[1]	INTR1	Interrupt Status of Channel 1 (Read Only) This bit is the interrupt status of PDMA channel1.
[0]	Reserved	Reserved.

Timer Controller 6.9

6.9.1 Overview

nuvoTon

This chip is equipped with four timer modules including TIMER0, TIMER1, TIMER2 and TIMER3, which allow user to easily implement a counting scheme or timing control for applications. The timer can perform functions like frequency measurement, event counting, interval measurement, clock generation, delay timing, and so on. The timer can generate an interrupt signal upon timeout, or provide the current value of count during operation.

6.9.2 Features

- Independent Clock Source for each Timer (TMRx_CLK, x= 0, 1,2,3)
- Time-out period = (Period of timer clock input) * (8-bit pre-scale counter + 1) * (24-bit TCMP)
- Counting cycle time = $(1 / TMRx CLK) * (2^8) * (2^{24})$
- Internal 8-bit pre-scale counter
- Internal 24-bit up counter is readable through TDR (Timer Data Register)
- Supports One-shot, Periodic, Output Toggle and Continuous Counting Operation mode
- Supports external pin capture for interval measurement
- Supports external pin capture for timer counter reset
- Supports Inter-Timer trigger
- Supports event generator in TIMER 0 and TIMER 2 to generate event to TIMER1 and TIMER3, respectively.
- Supports Internal trigger event to ADC and PDMA

6.9.3 **Block Diagram**

nuvoton

Each timer is equipped with an 8-bit pre-scale counter, a 24-bit up-counter, a 24-bit compare register and an interrupt request signal. Refer to Figure 6-28 And Figure 6-29 For the timer controller block diagram. There are five options of clock sources for each timer, Figure 6-30 Illustrate the Clock Source control function.

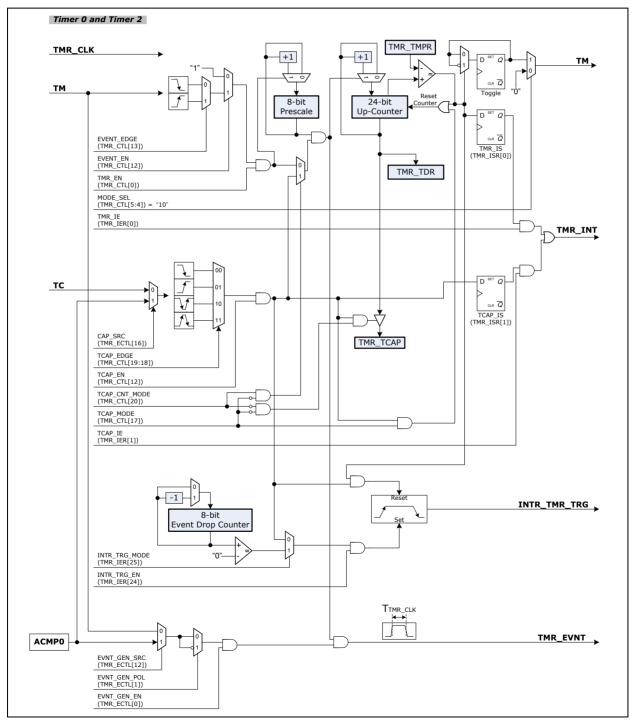


Figure 6-28 Timer 0 and Timer 2 Controller Block Diagram

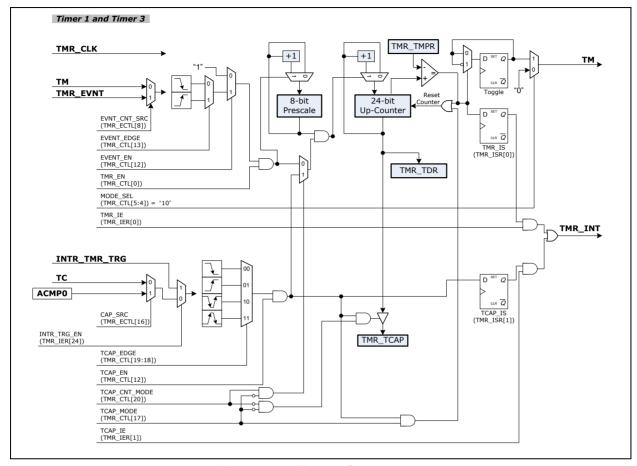


Figure 6-29 Timer 1 and Timer 3 Controller Block Diagram

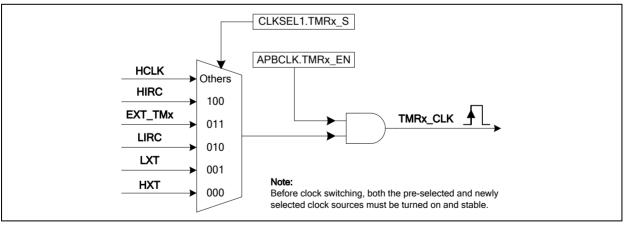


Figure 6-30 Timer Clock Controller Diagram

6.9.4 Functional Description

nuvoton

Timer controller provides One-shot, Period, Toggle and Continuous Counting operation modes. The event counting function is also provided to count the events/counts from external pin and external pin capture function for interval measurement or reset timer counter. In addition, timer controller provides the Inter-Timer Trigger Mode to measure input frequency precisely. Each operating function mode is shown as follows:

6.9.4.1 One-Shot Mode

If the timer is operated in One-shot mode (MODE SEL (TMRx CTL[5:4]) is 00) and TMR EN (TMRx CTL[0] timer counter enable bit) is set to 1, the timer counter starts up counting. Once the timer counter value (TMRx DR) reaches timer compare register (TMRx CMPR) value, the TMR IS (TMRx_ISR[0] timer interrupt status) will set to 1. If TMR_IE (TMRx_IER[0] timer interrupt enable bit) is set to 1, and TMR IS (TMRx ISR[0] timer interrupt status) is 1 then the interrupt signal is generated and sent to NVIC to inform CPU for indicating that the timer counting overflow happens. If TMR IE (TMRx_IER[0] timer interrupt enable bit) is set to 0, no interrupt signal is generated.

In this operating mode, once the timer counter value (TMRx DR) reaches timer compare register (TMRx_CMPR) value, TMR_IS (TMRx_ISR[0] timer interrupt status) will set to 1, timer counting operation stops and the timer counter value (TMRx DR) goes back to counting initial value then TMR EN (TMRx CTL[0] timer counter enable bit) is cleared to 0 by timer controller automatically. That is to say, timer operates timer counting and compares with TMRx CMPR value function only one time after programming the timer compare register (TMRx CMPR) value and TMR EN (TMRx CTL[0] timer counter enable bit) is set to 1. So, this operating mode is called One-Shot mode.

6.9.4.2 Periodic Mode

If the timer is operated in Period mode (MODE SEL (TMRx CTL[5:4]) is 01) and TMR EN (TMRx CTL[0] timer counter enable bit) is set to 1, the timer counter starts up counting. Once the timer counter value (TMRx DR) reaches timer compare register (TMRx CMPR) value, the TMR IS (TMRx ISRI0) timer interrupt status) will set to 1. If TMR IE (TMRx IERI0) timer interrupt enable bit) is set to 1, and TMR IS (TMRx ISR[0] timer interrupt status) is 1 then the interrupt signal is generated and sent to NVIC to inform CPU for indicating that the timer counting overflow happens. If TMR IE (TMRx IER[0] timer interrupt enable bit) is set to 0, no interrupt signal is generated.

In this operating mode, once the timer counter value (TMRx DR) reaches timer compare register (TMRx CMPR) value, TMR IS (TMRx ISR[0] timer interrupt status) will set to 1, the timer counter value (TMRx DR) goes back to counting initial value and TMR EN (TMRx CTL[0] timer counter enable bit) is kept at 1 (counting enable continuously) and timer counter operates up counting again. If TMR IS (TMRx_ISR[0] timer interrupt status) is cleared by software, once the timer counter value (TMRx_DR) reaches timer compare register (TMRx CMPR) value again, TMR IS (TMRx ISR[0] timer interrupt status) will set to 1 also. That is to say, timer operates timer counting and compares with TMRx CMPR value function periodically. The timer counting operation does not stop until the TMR EN (TMRx CTL[0] timer counter enable bit) is set to 0. The interrupt signal is also generated periodically. So, this operating mode is called Periodic mode.

6.9.4.3 Toggle Mode

If the timer is operated in Toggle mode (MODE SEL (TMRx CTL[5:4]) is 10) and TMR EN (TMRx_CTL[0] timer counter enable bit) is set to 1, the timer counter starts up counting. Once the timer counter value (TMRx DR) reaches timer compare register (TMRx CMPR) value, the TMR IS (TMRx ISR[0] timer interrupt status) will set to 1. If TMR IE (TMRx IER[0] timer interrupt enable bit) is set to 1, and TMR_IS (TMRx_ISR[0] timer interrupt status) is 1 then the interrupt signal is generated and sent to NVIC to inform CPU for indicating that the timer counting overflow happens. If TMR IE

(TMRx IER[0] timer interrupt enable bit) is set to 0, no interrupt signal is generated.

In this operating mode, once the timer counter value (TMRx DR) reaches timer compare register (TMRx CMPR) value, TMR IS (TMRx ISR[0] timer interrupt status) will set to 1, toggle out signal is inverted, the timer counter value (TMRx DR) goes back to counting initial value and TMR EN (TMRx_CTL[0] timer counter enable bit) is kept at 1 (counting enable continuously) and timer counter operates up counting again. If TMR_IS (TMRx_ISR[0] timer interrupt status) is cleared by software, once the timer counter value (TMRx DR) reaches timer compare register (TMRx CMPR) value again, TMR_IS (TMRx_ISR[0] timer interrupt status) will set to 1 also and toggle out signal is inverted again. The timer counting operation does not stop until the TMR_EN (TMRx_CTL[0] timer counter enable bit) is set to 0. Thus, the togale output signal is changing back and forth with 50% duty cycle. So, this operating mode is called Toggle mode.

6.9.4.4 Continuous Counting Mode

nuvoton

If the timer is operated in Continuous Counting mode (MODE_SEL (TMRx_CTL[5:4]) is 11) and TMR_EN (TMRx_CTL[0] timer counter enable bit) is set to 1, the timer counter starts up counting. Once the timer counter value (TMRx DR) reaches timer compare register (TMRx CMPR) value, the TMR IS (TMRx_ISR[0] timer interrupt status) will set to 1. If TMR_EN (TMRx_CTL[0] timer counter enable bit) is set to 1, and TMR_IS (TMRx_ISR[0] timer interrupt status) is 1 then the interrupt signal is generated and sent to NVIC to inform CPU for indicating that the timer counting overflow happens. If TMR EN (TMRx CTL[0] timer counter enable bit) is set to 0, no interrupt signal is generated.

In this operating mode, once the timer counter value (TMRx DR) reaches timer compare register (TMRx CMPR) value, TMR IS (TMRx ISR[0] timer interrupt status) will set to 1 and TMR EN (TMRx CTL[0] timer counter enable bit) is kept at 1 (counting enable continuously) and timer counter continuous counting without reload the timer counter value (TMRx_DR) to counting initial value. User can change different timer compare register (TMRx CMPR) value immediately without disabling timer counter and restarting timer counter counting.

For example, the timer compare register (TMRx_CMPR) value is set as 80, first. (The timer compare register (TMRx CMPR) should be less than 2^24 and be greater than 1). Once the timer counter value (TMRx_DR) reaches to 80, TMR_IS (TMRx_ISR[0] timer interrupt status) will set to 1 and TMR_EN (TMRx_CTL[0] timer counter enable bit) is kept at 1 (counting enable continuously) and timer counter value (TMRx DR) will not goes back to 0, it continues counting to 81, 82, 83, " to (2^24 -1) then 0, 1, 2, 3, "to 2^24 -1 again and again. Next, if user programs timer compare register (TMRx CMPR) value as 200 and the TMR_IS (TMRx_ISR[0] timer interrupt status) is cleared to 0, then TMR_IS (TMRx ISR[0] timer interrupt status) will set to 1 again when timer counter value (TMRx DR) reaches to 200. At last, user programs timer compare register (TMRx_CMPR) value as 500 and clears TMR_IS (TMRx_ISR[0] timer interrupt status) to 0, then TMR_IS (TMRx_ISR[0] timer interrupt status) will set to 1 again when timer counter value (TMRx_DR) reaches to 500. In this mode, the timer counter value (TMRx_DR) is keeping up counting always even if TMR_IS (TMRx_ISR[0] timer interrupt status) is 1. So, this operation mode is called as Continuous Counting mode.

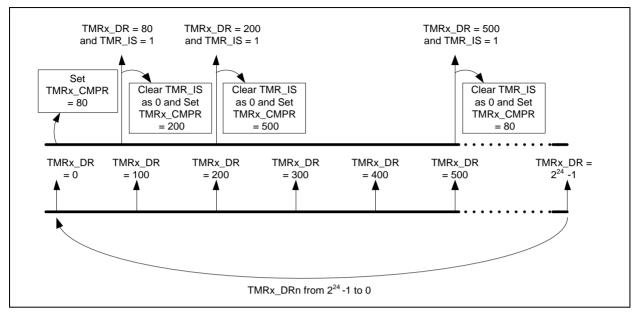


Figure 6-31 Continuous Counting Mode

6.9.4.5 Event Counting Mode

nuvoTon

An application which can count the events/counts from external event input pin is called as event counting function. In this mode, most of the timer control registers are the same with the timer operating function mode except EVENT EN (TMRx CTL[12] event counting mode enable) has to set to 1. When status transition on external event input pin, the event counter value (TMRx DR value) will be counted according to EVENT_EDGE (TMRx_CTL[13] event counting mode edge selection) setting. EVNT DEB EN (TMRx CTL[14] external event de-bounce enable) bit is for enabled or disabled edge detection de-bounce circuit of external event input pin. The max frequency of event counting source on external event input pin should be less than 1/4 TMRx_CLK if EVNT_DEB_EN (TMRx_CTL[14] external event de-bounce enable) is 0 or less than 1/10 TMRx CLK if EVNT DEB EN (TMRx CTL[14] external event de-bounce enable) is 1. Otherwise, the event counter value (TMRx DR value) will not be counted normally.

Timer Counter Capture/Reset Function

In this mode, Timer will monitor the transition of external pin to save the 24-bit counter value or reset the 24-bit counter.

If TCAP_MODE (TMRx_CTL[17]) is 0, the transition on external pin is used as timer counter capture function. In this mode, if TCAP_CNT_MOD (TMRx_CTL[20]) is 0, the free-counting mode, 24-bit upcounting timer will keep counting continuously. And when the transition of external pin matches the TCAP_EDGE (TMRx_CTL[19:18]) setting, the value of 24-bit up-counting timer will be saved into register TMRx_TCAP. If TCAP_CNT_MOD (TMRx_CTL[20]) is 1, the trigger-counting mode, 24-bit upcounting timer will keep its value at 0. Once the transition of external pin matches the 1st transition of TCAP EDGE (TMRx CTL[19:18]) setting, the 24-bit up-counting timer will start counting. And then if the transition of external pin matches the 2nd transition of TCAP_EDGE (TMRx_CTL[19:18]) setting, the 24bit up-counting timer value will be saved into register TMRx TCAP. At the same time, if MODE SEL (TMRx CTL[5:4]) is 00, the 24-bit up-counting timer stops the counting; if MODE SEL (TMRx CTL[5:4]) is 01 or 10 and TCAP EDGE (TMRx CTL[19:18]) is 10 or 11, the 24-bit up-counting timer reset and restart the counter from 0; if MODE_SEL (TMRx_CTL[5:4]) is 11, the 24-bit up-counting timer continues the counting.

If TCAP_MODE (TMRx_CTL[17]) is 1, the transition on external pin is used as timer counter reset

function. In this mode, once the transition of external pin matches the TCAP_EDGE (TMRx_CTL[19:18]) setting, the 24-bit up-counting timer will be reset.

To detect the transition of external pin, the timer circuit implements the de-bounce circuit for external pin. Based on the result of de-bounce circuit and external pin, the rising-edge or falling-edge could be detected. The reset value of de-bounce circuit is "0" and the de-bounce would only active when both TCAP_DEB_EN (TMRx_CTL[22]) and TCAP_EN (TMRx_CTL[16]) are enabled. So, if the external pin level is "1" and TCAP EDGE (TMRx CTL[19:18]) is set to detect rising-edge of external pin, then after de-bounce circuit active (TCAP_DEB_EN (TMRx_CTL[22]) is "1" and TCAP_EN (TMRx_CTL[16]) is "1"), a false rising-edge would be detected. This would result in the incorrect capture data (TMRx_TCAP) while 1st time the TCAP_IS (TMRx_ISR[1]) is set. To avoid this incorrect capture data to affect the capture application, discard this 1st capture data is necessary and recommended.

6.9.4.7 Inter-Timer Trigger Mode

nuvoTon

In this mode, the TMRx (where x=0 or 2), will be forced in counter mode, counting with external event, and will generate a signal (INTR_TMR_TRG) to trigger TMRx+1 (where x=0 or 2). The TMRx+1 will be forced in trigger-counting mode of capture function.

While INTR_TRG_EN (TMRx_CTL[24], x=0 or 2) is set, the TMRx will make a rising-edge transition of trigger signal (INTR_TMR_TRG) to TMRx+1 while 24-bit counter is counting from 0 to 1. And when 24bit counter reaches the 24-bit TCMPR value, the TMRx will make a falling-edge transition of trigger signal (INTR TMR TRG) to TMRx+1.

When INTR_TMR_TRG transited from low to high (rising-edge), the 24-bit counter of TMRx+1 will start to count. Also, when INTR TMR TRG transited from high to low (falling-edge), the 24-bit counter of TMRx+1 will stop counting. At the same time, the value of 24-bit counter will be saved into TMRx+1_TCAP.

The example shown below described how inter-timer trigger mode work. When inter-timer trigger mode is enabled (INTR_TRG_EN (TMRx_CTL[24]) = 1), the TMRx_Counter starts to up-counting in each external event (TMRx) detected. When TRMx_Counter counted from 0 to 1, the INTR_TMR_TRG is set high, and TMRx+1 Counter is then start counting in each TMRx+1 CLK. When TMRx Counter reaches the value of TMRx_CMPR, it stops counting and ITNR_TMR_TRG is set low. And then, the TMRx+1 Counter stops counting, too. In the same time, the value of TMRx+1 Counter is sampled into TMRx+1 TCAP and interrupt status TMR IS (TMRx ISR[0]) is also set. In addition, the INTR TRG EN (TRMx CTL[24]) is also automatically cleared by H/W.

By using Inter-timer Trigger mode, the period of external event (TMRx) could be measured more precisely. For the example shown below when TMRx received 100 events, the counter of TMRx+1 counting to 999. If TMRx+1 CLK frequency is 10 MHz, then we know the time for 100 events is about 99900ns. Therefore, the period of an external event is 999ns and the frequency of external event will be 1.001 MHz.

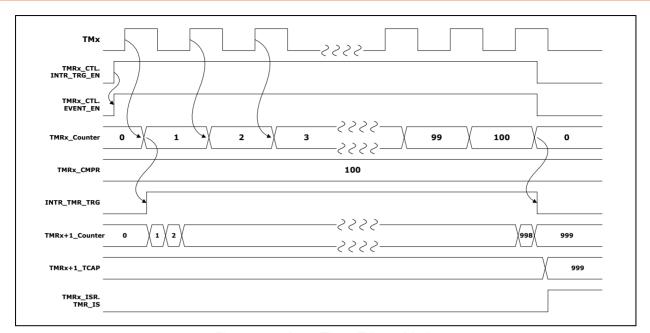


Figure 6-32 Inter-Timer Trigger Mode

6.9.4.8 Event Generator Mode

nuvoTon

Timer 0 and Timer 2 equipped a function to monitor a signal and generate a pulse event out to Timer 1 and Timer 3 respectively. Timer 1 and Timer 3 use this internal pulse event as the external event from pin TM1 and TM3. In Timer 1 and Timer 3, they use EVNT CNT SRC (TMR ECTL[8]) to select the event source is from external event pin (TM1 and TM3) or from internal pulse event generated by Event Generator Mode of Timer 0 and Timer 2.

When EVNT_GEN_EN (TMRx_ECTL[0]) is high, timer starts to monitor the polarity of signal defined by EVNT GEN SRC (TMRx ECTL[12]). If the polarity of signal defined by EVNT GEN SRC (TMRx ECTL[12]) is the same as the polarity define by EVNT GEN POL (TMRx ECTL[1]), timer would generate a high pulse event out when it increase the 24-bit up counter. The width of this high pulse is a clock cycle of TMRx CLK.

For example, if the EVNT_GEN_EN (TMRx_ECTL[0]) and EVNT_GEN_POL (TMRx_ECTL[1]) are both high, timer monitor the polarity of signal defined by EVNT_GEN_SRC (TMRx_ECTL[12]). If the polarity of signal defined by EVNT GEN SRC (TMRx ECTL[12]) is high, timer generate a high pulse out (pulse width is a clock cycle of TRMx_CLK). If the polarity of signal defined by EVNT_GEN_SRC (TMRx_ECTL[12]) is low, timer keep the out signal in low.

The table below described the event generator related settings and result.

EVNT_GEN_EN (TMR_ECTL[0])	EVNT_GEN_POL (TMR_ECTL[1])	Event Generator Reference Input Source Signal	Event Generator Output
0	X	Х	0
1	0	0	High Pulse
1	0	1	0
1	1	0	0
1	1	1	High Pulse

6.9.5 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value		
TMR0_BA = 0x400 TMR1_BA = 0x400	TMR Base Address: TMR0_BA = 0x4001_0000 TMR1_BA = 0x4001_0100 TMR2_BA = 0x4011_0000 TMR3_BA = 0x4011_0100					
TMR0_CTL	TMR0_BA+0x000	R/W	Timer 0 Control Register	0x0000_0000		
TMR0_PRECNT	TMR0_BA+0x004	R/W	Timer 0 Pre-Scale Counter Register	0x0000_0000		
TMR0_CMPR	TMR0_BA+0x008	R/W	Timer 0 Compare Register	0x0000_0000		
TMR0_IER	TMR0_BA+0x00C	R/W	Timer 0 Interrupt Enable Register	0x0000_0000		
TMR0_ISR	TMR0_BA+0x010	R/W	Timer 0 Interrupt Status Register	0x0000_0000		
TMR0_DR	TMR0_BA+0x014	R/W	Timer 0 Data Register	0x0000_0000		
TMR0_TCAP	TMR0_BA+0x018	R	Timer 0 Capture Data Register	0x0000_0000		
TMR0_ECTL	TMR0_BA+0x020	R/W	Timer 0 Extended Control Register	0x0000_0002		
TMR1_CTL	TMR1_BA+0x000	R/W	Timer 1 Control Register	0x0000_0000		
TMR1_PRECNT	TMR1_BA+0x004	R/W	Timer 1 Pre-Scale Counter Register	0x0000_0000		
TMR1_CMPR	TMR1_BA+0x008	R/W	Timer 1 Compare Register	0x0000_0000		
TMR1_IER	TMR1_BA+0x00C	R/W	Timer 1 Interrupt Enable Register	0x0000_0000		
TMR1_ISR	TMR1_BA+0x010	R/W	Timer 1 Interrupt Status Register	0x0000_0000		
TMR1_DR	TMR1_BA+0x014	R/W	Timer 1 Data Register	0x0000_0000		
TMR1_TCAP	TMR1_BA+0x018	R	Timer 1 Capture Data Register	0x0000_0000		
TMR1_ECTL	TMR1_BA+0x020	R/W	Timer 1 Extended Control Register	0x0000_0002		
TMR2_CTL	TMR2_BA+0x000	R/W	Timer 2 Control Register	0x0000_0000		
TMR2_PRECNT	TMR2_BA+0x004	R/W	Timer 2 Pre-Scale Counter Register	0x0000_0000		
TMR2_CMPR	TMR2_BA+0x008	R/W	Timer 2 Compare Register	0x0000_0000		
TMR2_IER	TMR2_BA+0x00C	R/W	Timer 2 Interrupt Enable Register	0x0000_0000		
TMR2_ISR	TMR2_BA+0x010	R/W	Timer 2 Interrupt Status Register	0x0000_0000		
TMR2_DR	TMR2_BA+0x014	R/W	Timer 2 Data Register	0x0000_0000		
TMR2_TCAP	TMR2_BA+0x018	R	Timer 2 Capture Data Register	0x0000_0000		
TMR2_ECTL	TMR2_BA+0x020	R/W	Timer 2 Extended Control Register	0x0000_0002		

TMR3_CTL	TMR3_BA+0x000	R/W	Timer 3 Control Register	0x0000_0000
TMR3_PRECNT	TMR3_BA+0x004	R/W	Timer 3 Pre-Scale Counter Register	0x0000_0000
TMR3_CMPR	TMR3_BA+0x008	R/W	Timer 3 Compare Register	0x0000_0000
TMR3_IER	TMR3_BA+0x00C	R/W	Timer 3 Interrupt Enable Register	0x0000_0000
TMR3_ISR	TMR3_BA+0x010	R/W	Timer 3 Interrupt Status Register	0x0000_0000
TMR3_DR	TMR3_BA+0x014	R/W	Timer 3 Data Register	0x0000_0000
TMR3_TCAP	TMR3_BA+0x018	R	Timer 3 Capture Data Register	0x0000_0000
TMR3_ECTL	TMR3_BA+0x020	R/W	Timer 3 Extended Control Register	0x0000_0002
GPA_SHADOW	TMR0_BA+0x200	R	GPIO Port A Pin Value Shadow Register	0x0000_XXXX
GPB_SHADOW	TMR0_BA+0x204	R	GPIO Port B Pin Value Shadow Register	0x0000_XXXX
GPC_SHADOW	TMR0_BA+0x208	R	GPIO Port C Pin Value Shadow Register	0x0000_XXXX
GPD_SHADOW	TMR0_BA+0x20C	R	GPIO Port D Pin Value Shadow Register	0x0000_XXXX
GPE_SHADOW	TMR0_BA+0x210	R	GPIO Port E Pin Value Shadow Register	0x0000_XXXX
GPF_SHADOW	TMR0_BA+0x214	R	GPIO Port F Pin Value Shadow Register	0x0000_XXXX

6.9.6 Register Description

nuvoTon

Timer Control Register (TMR_CTL)

Register	Offset	R/W	Description	Reset Value
TMR0_CTL	TMR0_BA+0x000	R/W	Timer 0 Control Register	0x0000_0000
TMR1_CTL	TMR1_BA+0x000	R/W	Timer 1 Control Register	0x0000_0000
TMR2_CTL	TMR2_BA+0x000	R/W	Timer 2 Control Register	0x0000_0000
TMR3_CTL	TMR3_BA+0x000	R/W	Timer 3 Control Register	0x0000_0000

31	30	29	28	27	26	25	24
		INTR_TRG_M ODE	INTR_TRG_E N				
23	22	21	20	19	18	17	16
Reserved	TCAP_DEB_E N	Reserved	TCAP_CNT_M OD	TCAP_	EDGE	TCAP_MODE	TCAP_EN
15	14	13	12	11	10	9	8
Reserved	EVNT_DEB_E N	EVENT_EDGE	EVENT_EN	TMR_TRG_SE L	PDMA_TEEN	Reserved	ADC_TEEN
7	6	5	4	3	2	1	0
TMR_ACT	ACMP_EN_T MR	MODE_SEL		DBGACK_EN	WAKE_EN	SW_RST	TMR_EN

Bits	Description				
[31:26]	Reserved	Reserved.			
[25]	INTR_TRG_MODE	Inter-timer Trigger Mode Selection This bit controls the timer operation mode when inter-timer trigger function is enabled. When this bit is low, the TMRx will be in counter mode and counting with external Clock Source or event. In addition, TMRx+1 will be in trigger-counting mode of capture function. In this mode, TMRx_CMPR control when inter-timer trigger function terminated. When this bit is high, the TMRx will be in counter mode and counting with external Clock Source or event. In addition, TMRx+1 will be in trigger-counting mode of capture function. In this mode, TMRx+1_CMPR control when inter-timer trigger function terminated. In this mode, TMRx would ignore some incoming event based on the EVNT_DROP_CNT (TMRx_ECTL[31:24]). And once the TMRx+1 counter value equal or large than TMRx+1_CMPR, TMRx would terminate the operation when next incoming event received. 0 = Inter-Timer Trigger function wouldn't ignore any incoming event. 1 = Inter-Timer Trigger function would ignore incoming event based on the EVNT_DROP_CNT (TMRx_ECTL[31:24]). Note: For TMRx+1_CTL, this bit is ignored and the read back value is always 0.			

Bits	Description	
		Inter-timer Trigger Function Enable Control
	INTR_TRG_EN	This bit controls if Inter-timer Trigger function is enabled.
[24]		If Inter-timer Trigger function is enabled, the TMRx will be in counter mode and counting with external Clock Source or event. In addition, TMRx+1 will be in trigger-counting mode of capture function.
		0 = Inter-timer trigger function Disabled.
		1 = Inter-timer trigger function Enabled.
		Note: For TMRx+1_CTL, this bit is ignored and the read back value is always 0.
[23]	Reserved	Reserved.
		TC Pin De-bounce Enable Control
		When CAP_DEB_EN (TMRx_CTL[22]) is set, the TC pin de-bounce circuit will be enabled to eliminate the bouncing of the signal.
		In de-bounce circuit the TC pin signal will be sampled 4 times by TMRx_CLK.
		0 = De-bounce circuit Disabled.
		1 = De-bounce circuit Enabled.
[22]	TCAP_DEB_EN	Note: When TCAP_EN (TMRx_CTL[16]) is enabled, enable this bit is recommended. And, while TCAP_EN (TMRx_CTL[16]) is disabled, disable this bit is recommended to save power consumption.
		Note: When CAP_SRC (TMRx_ECTL[16]) is high, the capture signal is from internal of chip and the de-bounce circuit would not take effect no matter this bit is high or low.
		Note: For Timer 1 and 3, when INTR_TRG_EN (TMRx_CTL[24]) is high, the capture signal is from internal of chip and the de-bounce circuit would not take effect no matter this bit is high or low.
[21]	Reserved	Reserved.
	TCAP_CNT_MOD	Timer Capture Counting Mode Selection
		This bit indicates the behavior of 24-bit up-counting timer while TCAP_EN (TMRx_CTL[16]) is set to high.
		If this bit is 0, the free-counting mode, the behavior of 24-bit up-counting timer is defined by MODE_SEL (TMRx_CTL[5:4]) field. When TCAP_EN (TMRx_CTL[16]) is set, TCAP_MODE (TMRx_CTL[17]) is 0, and the transition of TC pin matches the TCAP_EDGE (TMRx_CTL[19:18]) setting, the value of 24-bit up-counting timer will be saved into register TMRx_TCAP.
[20]		If this bit is 1, Trigger-counting mode, 24-bit up-counting timer will be not counting and keep its value at 0. When TCAP_EN (TMRx_CTL[16]) is set, TCAP_MODE (TMRx_CTL[17]) is 0, and once the transition of external pin matches the 1 st transition of TCAP_EDGE (TMRx_CTL[19:18]) setting, the 24-bit up-counting timer will start counting. And then if the transition of external pin matches the 2 nd transition of TCAP_EDGE (TMRx_CTL[19:18]) setting, the 24-bit up-counting timer will stop counting. And its value will be saved into register TMRx_TCAP.
		0 = Capture with free-counting timer mode.
		1 = Capture with trigger-counting timer mode.
_		Note: For TMRx+1_CTL, if INTR_TRG_EN (TMRx_CTL[24]) is set, the TCAP_CNT_MOD will be forced to high, the capture with Trigger-counting Timer mode (where x = 0 or 2).

Bits	Description								
		This field defines timer capture fund For timer counter	TC Pin Edge Detect Selection This field defines that active transition of TC pin is for timer counter reset function or for timer capture function. For timer counter reset function and free-counting mode of timer capture function, the						
			configurations are:						
		TCAP_EDGE	Output Clock (MCLK)						
		00	A falling edge (1 to 0 transition) on TC pin is an active transition.						
		01	A rising edge (0 to 1 transition) on TC pin is an active transition.						
		10	Both falling edge (1 to 0 transition) and rising edge (0 to 1 transition) on TC pin are active transitions.						
		11	Both falling edge (1 to 0 transition) and rising edge (0 to 1 transition) on TC pin are active transitions.						
[19:18]	TCAP_EDGE	For trigger-counti	ng mode of timer capture function, the configurations are:						
		TCAP_EDGE	Output clock (MCLK)						
		00	1 st falling edge on TC pin triggers 24-bit timer to start counting while 2 nd falling edge triggers 24-bit timer to stop countin ^g .						
		01	1 st rising edge on TC pin triggers 24-bit timer to start counting while 2 nd rising edge triggers 24-bit timer to stop counting.						
		10	Falling edge on TC pin triggers 24-bit timer to start counting, while rising edge triggers 24-bit timer to stop counting.						
		11	Rising edge on TC pin triggers 24-bit timer to start counting, while falling edge triggers 24-bit timer to stop counting.						
		Note: For TMRx+1_CTL, if INTR_TRG_EN (TMRx_CTL[24]) is set, the TCAP_EDGE will be forced to 11 (where x = 0 or 2).							
		TC Pin Function Mode Selection							
		This bit indicates if the transition on TC pin is used as timer counter reset function or timer capture function.							
[17]	TCAP_MODE		on TC pin is used as timer capture function.						
		1 = The transition on TC pin is used as timer counter reset function. Note: For TMRx+1_CTL, if INTR_TRG_EN (TMRx_CTL[24]) is set, the TCAP_MODE will be forced to low (where x = 0 or 2).							
	+		al Enable Control						
			the transition on TC pin could be used as timer counter reset fur	nction or					
		0 = The transition	on TC pin is ignored.						
[16]	TCAP_EN		on TC pin will result in the capture or reset of 24-bit timer counted						
			CTL, if INTR_TRG_EN (TMRx_CTL[24]) is set, the TCAP_EN with the TC pin transition is ignored (where $x = 0$ or 2).	ill be					
			-1_CTL, if INTR_TRG_EN (TMRx_CTL[24]) is set, the TCAP_EN	will be					
[15]	Reserved	Reserved.							

Bits	Description	
		External Event De-bounce Enable Control
		When EVNT_DEB_EN is set, the external event pin de-bounce circuit will be enabled to eliminate the bouncing of the signal.
		In de-bounce circuit the external event pin will be sampled 4 times by TMRx_CLK.
[14]	EVNT_DEB_EN	0 = De-bounce circuit Disabled.
		1 = De-bounce circuit Enabled.
		Note: When EVENT_EN (TMRx_CTL[12]) is enabled, enable this bit is recommended. And, while EVENT_EN (TMRx_CTL[12]) is disabled, disable this bit is recommended to save power consumption.
		Event Counting Mode Edge Selection
[40]	EVENT EDGE	This bit indicates which edge of external event pin enabling the timer to increase 1.
[13]	EVENT_EDGE	0 = A falling edge of external event enabling the timer to increase 1.
		1 = A rising edge of external event enabling the timer to increase 1.
		Event Counting Mode Enable Control
		When EVENT_EN is set, the increase of 24-bit up-counting timer is controlled by external event pin.
[12]	EVENT_EN	While the transition of external event pin matches the definition of EVENT_EDGE (TMRx_CTL[13]), the 24-bit up-counting timer increases by 1. Or, the 24-bit up-counting timer will keep its value unchanged.
		0 = Timer counting is not controlled by external event pin.
		1 = Timer counting is controlled by external event pin.
		Timer Trigger Selection
		This bit controls if the TMR_IS (TMRx_ISR[0]) or TCAP_IS (TMRx_ISR[1]) is used to trigger PDMA and ADC while TMR_IS (TMRx_ISR[0]) or TCAP_IS (TMRx_ISR[1]) is set.
[11]	TMR_TRG_SEL	If this bit is low and TMR_IS (TMRx_ISR[0]) is set, timer will generate an internal trigger event to PDMA or ADC while related trigger enable bit (PDMA_TEEN (TMRx_CTL[10]) or ADC_TEEN (TMRx_CTL[8])) is set.
		If this bit is set high and TCAP_IS (TMRx_ISR[0]) is set, timer will generate an internal trigger event to PDMA or ADC while related trigger enable bit (PDMA_TEEN (TMRx_CTL[10]) or ADC_TEEN (TMRx_CTL[8])) is set.
		0 = TMR_IS (TMRx_ISR[0]) is used to trigger PDMA and ADC.
		1 = TCAP_IS (TMRx_ISR[1]) is used to trigger PDMA and ADC.
		Timer Trigger PDMA Enable Control
		This bit controls if TMR_IS (TMRx_ISR[0]) or TCAP_IS (TMRx_ISR[1]) could trigger PDMA.
[10]	PDMA_TEEN	When PDMA_TEEN is set, TMR_IS (TMRx_ISR[0]) is set and the CAP_TRG_EN (TMRx_CTL[11]) is low, the timer controller will generate an internal trigger event to PDMA controller.
		When PDMA_TEEN is set, TCAP_IS (TMRx_ISR[1]) is set and the CAP_TRG_EN (TMRx_CTL[11]) is high, the timer controller will generate an internal trigger event to PDMA controller.
		0 = TMR_IS (TMRx_ISR[0]) or TCAP_IS (TMRx_ISR[1]) trigger PDMA Disabled.
		1 = TMR_IS (TMRx_ISR[0]) or TCAP_IS (TMRx_ISR[1]) trigger PDMA Enabled.

Bits	Description	Description						
[8]	ADC_TEEN	Timer Trigger ADC Enable Control This bit controls if TMR_IS (TMRx_ISR[0]) or TCAP_IS (TMRx_ISR[1]) could trigger ADC. When ADC_TEEN is set, TMR_IS (TMRx_ISR[0]) is set and the CAP_TRG_EN (TMRx_CTL[11]) is low, the timer controller will generate an internal trigger event to ADC controller. When ADC_TEEN is set, TCAP_IS (TMRx_ISR[1]) is set and the CAP_TRG_EN (TMRx_CTL[11]) is high, the timer controller will generate an internal trigger event to ADC controller. 0 = TMR_IS (TMRx_ISR[0]) or TCAP_IS (TMRx_ISR[1]) trigger ADC Disabled.						
[7]	TMR_ACT	1 = TMR_IS (TMR Timer Active Star This bit indicates to	= TMR_IS (TMRx_ISR[0]) or TCAP_IS (TMRx_ISR[1]) trigger ADC Enabled. Timer Active Status Bit (Read Only) This bit indicates the timer counter status of timer. D = Timer is not active.					
[6]	ACMP_EN_TMR	ACMP Trigger Timer Enable Control This bit high enables the functionality that when ACMP0 is in sigma-delta mode, it could enable Timer. 0 = ACMP0 trigger timer functionality disabled. 1 = ACMP0 trigger timer functionality enabled.						
		MODE_SEL 00	Mode Select Output clock (MCLK) The timer is operating in the one-shot mode. In this mode, the associated interrupt signal is generated (if TMR_IE (TMR_IER [0]) is enabled) once the value of 24-bit up counter equals the TMRx_CMPR. And TMR_EN (TMR_CTL [0]) is automatically cleared by hardware.					
		01	The timer is operating in the periodic mode. In this mode, the associated interrupt signal is generated periodically (if TMR_IE (TMR_IER [0]) is enabled) while the value of 24-bit up counter equals the TMRx_CMPR. After that, the 24-bit counter will be reset and starts counting from 0 again.					
[5:4]	MODE_SEL	10	The timer is operating in the periodic mode with output toggling. In this mode, the associated interrupt signal is generated periodically (if TMR_IE (TMR_IER [0]) is enabled) while the value of 24-bit up counter equals the TMR_CMPR. After that, the 24-bit counter will be reset and starts counting from 0 again. At the same time, timer controller will also toggle the output pin TM to its inverse level (from low to high or from high to low). Note: The default level of TM after reset is low.					
		11	The timer is operating in continuous counting mode. In this mode, the associated interrupt signal is generated when TMR_DR = TMR_CMPR (if TMR_IE (TMR_IER [0]) is enabled). However, the 24-bit upcounter counts continuously without reset.					

Bits	Description	
		ICE Debug Mode Acknowledge Ineffective Enable Control
[3]	DBGACK_EN	0 = ICE debug mode acknowledgement effects TIMER counting and TIMER counter will be held while ICE debug mode acknowledged.
		1 = ICE debug mode acknowledgement is ineffective and TIMER counter will keep going no matter ICE debug mode acknowledged or not.
		Wake-up Enable Control
[2]	WAKE_EN	When WAKE_EN is set and the TMR_IS (TMRx_ISR[0]) or TCAP_IS (TMRx_ISR[1]) is set, the timer controller will generate a wake-up trigger event to CPU.
		0 = Wake-up trigger event Disabled.
		1 = Wake-up trigger event Enabled.
		Software Reset
		Set this bit will reset the timer counter, pre-scale counter and also force TMR_EN (TMRx_CTL [0]) to 0.
[1]	SW_RST	0 = No effect.
		1 = Reset Timer's pre-scale counter, internal 24-bit up-counter and TMR_EN (TMRx_CTL [0]) bit.
		Note: This bit will be auto cleared and takes at least 3 TMRx_CLK clock cycles.
		Timer Counter Enable Control
		0 = Stops/Suspends counting.
		1 = Starts counting.
[0]	TMR_EN	Note1: Set TMR_EN to 1 enables 24-bit counter keeps up counting from the last stop counting value.
		Note2: This bit is auto-cleared by hardware in one-shot mode (MODE_SEL (TMRx_CTL[5:4]) = 00) once the value of 24-bit up counter equals the TMRx_CMPR.

Timer Pre-Scale Counter Register (TMR_PRECNT)

Register	Offset R/W Description F		Reset Value	
TMR0_PRECNT	TMR0_BA+0x004	R/W	Timer 0 Pre-Scale Counter Register	0x0000_0000
TMR1_PRECNT	TMR1_BA+0x004	R/W	Timer 1 Pre-Scale Counter Register	0x0000_0000
TMR2_PRECNT	TMR2_BA+0x004	R/W	Timer 2 Pre-Scale Counter Register	0x0000_0000
TMR3_PRECNT	TMR3_BA+0x004	R/W	Timer 3 Pre-Scale Counter Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
	Reserved									
7	7 6 5 4 3 2 1 0									
	PRESCALE_CNT									

Bits	Description				
[31:8]	Reserved	Reserved.			
[7:0]	PRESCALE_CNT	Pre-scale Counter Clock input is divided by PRESCALE_CNT + 1 before it is fed to the counter. If PRESCALE_CNT =0, then there is no scaling.			

Timer Compare Register (TMR_CMPR)

Register	Offset	R/W	Description	Reset Value
TMR0_CMPR	TMR0_BA+0x008	R/W	Timer 0 Compare Register	0x0000_0000
TMR1_CMPR	TMR1_BA+0x008	R/W	Timer 1 Compare Register	0x0000_0000
TMR2_CMPR	TMR2_BA+0x008	R/W	Timer 2 Compare Register	0x0000_0000
TMR3_CMPR	TMR3_BA+0x008	R/W	Timer 3 Compare Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			TMR_	_CMP						
15	14	13	12	11	10	9	8			
	TMR_CMP									
7	7 6 5 4 3 2 1 0									
	TMR_CMP									

Bits	Description	escription			
[31:24]	Reserved	Reserved.			
		Timer Compared Value TMR_CMP is a 24-bit compared register. When the internal 24-bit up-counter counts and its value is equal to TMR_CMP value, a Timer Interrupt is requested if the timer interrupt is enabled with TMR_EN (TMRx_CTL [0]) is enabled. The TMR_CMP value defines the timer counting cycle time.			
[23:0]		Time-out period = (Period of timer clock input) * (8-bit PRESCALE_CNT + 1) * (24-bit TMR_CMP). Note1: Never write 0x0 or 0x1 in TMR_CMP, or the core will run into unknown state. Note2: No matter TMR_EN (TMRx_CTL [0]) is 0 or 1, whenever software write a new value into this register, TIMER will restart counting using this new value and abort previous			
		count.			

Timer Interrupt Enable Register (TMR_IER)

Register	Offset	R/W	Description	Reset Value
TMR0_IER	TMR0_BA+0x00C	R/W	Timer 0 Interrupt Enable Register	0x0000_0000
TMR1_IER	TMR1_BA+0x00C	R/W	Timer 1 Interrupt Enable Register	0x0000_0000
TMR2_IER	TMR2_BA+0x00C	R/W	Timer 2 Interrupt Enable Register	0x0000_0000
TMR3_IER	TMR3_BA+0x00C	R/W	Timer 3 Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	7 6 5 4 3 2								
Reserved							TMR_IE		

Bits	Description	Description		
[31:2]	Reserved	Reserved.		
[1]	TCAP_IE	Timer Capture Function Interrupt Enable Control 0 = Timer External Pin Function Interrupt Disabled. 1 = Timer External Pin Function Interrupt Enabled. Note: If timer external pin function interrupt is enabled, the timer asserts its interrupt signal when the TCAP_EN (TMRx_CTL[16]) is set and the transition of external pin matches the TCAP_EDGE (TMRx_CTL[19:18]) setting		
[0] TMR_IE		Timer Interrupt Enable Control 0 = Timer Interrupt Disabled. 1 = Timer Interrupt Enabled. Note: If timer interrupt is enabled, the timer asserts its interrupt signal when the associated counter is equal to TMR_CMPR.		

Timer Interrupt Status Register (TMR_ISR)

Register	Offset	R/W	Description	Reset Value
TMR0_ISR	TMR0_BA+0x010	R/W	Timer 0 Interrupt Status Register	0x0000_0000
TMR1_ISR	TMR1_BA+0x010	R/W	Timer 1 Interrupt Status Register	0x0000_0000
TMR2_ISR	TMR2_BA+0x010	R/W	Timer 2 Interrupt Status Register	0x0000_0000
TMR3_ISR	TMR3_BA+0x010	R/W	Timer 3 Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
Reserved							
7	6	5	4	3	2	1	0
Reserved	TCAP_IS_FE DGE	NCAP_DET_S TS	TMR_WAKE_ STS	Reserved		TCAP_IS	TMR_IS

Bits	Description				
[31:7]	Reserved	Reserved.			
[6]	TCAP_IS_FEDGE	TC Pin Edge Detect Is Falling This flag indicates the edge detected in TC pin is rising edge or falling edge. Timer only updates this flag when it udpates the Timer Capture Data (TMR_TCAP[23:0]) value. When a new incoming capture event detected before CPU clearing the TCAP_IS (TMRx_ISR[1]) status, Timer will keep this bit unchanged. 0 = TC pin edge detected is rising edge. 1 = TC pin edge detected is falling edge.			
[5]	NCAP_DET_STS	New Capture Detected Status This status is to indicate there is a new incoming capture event detected before CPU clearing the TCAP_IS (TMRx_ISR[1]) status. If the above condition occurred, the Timer will keep register TMRx_TCAP unchanged and drop the new capture value. Write 1 to clear this bit to 0. 0 = New incoming capture event didn't detect before CPU clearing TCAP_IS (TMRx_ISR[1]) status. 1 = New incoming capture event detected before CPU clearing TCAP_IS (TMRx_ISR[1]) status.			
[4]	Timer Wake-up Status If timer causes CPU wakes up from Power-down mode, this bit will be set to hig be cleared by software with a write 1 to this bit. 0 = Timer does not cause system wake-up. 1 = Wakes system up from Power-down mode by Timer timeout.				

Bits	Description			
[3:2]	Reserved	Reserved.		
		Timer Capture Function Interrupt Status		
		This bit indicates the external pin function interrupt status of Timer.		
[1]	TCAP_IS	This bit is set by hardware when TCAP_EN (TMRx_CTL[16]) is set high, and the transitio of external pin matches the TCAP_EDGE (TMRx_CTL[19:18]) setting. Write 1 to clear thi bit to 0.		
		If this bit is active and TCAP_IE (TMRx_IER[1]) is enabled, Timer will trigger an interrupt to CPU.		
		Timer Interrupt Status		
		This bit indicates the interrupt status of Timer.		
[0]	TMR_IS	This bit is set by hardware when the up counting value of internal 24-bit counter matches the timer compared value (TMR_CMPR). Write 1 to clear this bit to 0.		
		If this bit is active and TMR_IE (TMRx_IER[0]) is enabled, Timer will trigger an interrupt to CPU.		

Timer Data Register (TMR_DR)

Register	Offset	R/W	Description	Reset Value
TMR0_DR	TMR0_BA+0x014	R/W	Timer 0 Data Register	0x0000_0000
TMR1_DR	TMR1_BA+0x014	R/W	Timer 1 Data Register	0x0000_0000
TMR2_DR	TMR2_BA+0x014	R/W	Timer 2 Data Register	0x0000_0000
TMR3_DR	TMR3_BA+0x014	R/W	Timer 3 Data Register	0x0000_0000

31	30	29	28	27	26	25	24	
RSTACT				Reserved				
23	22	21	20	19	18	17	16	
			т	DR				
15	14	13	12	11	10	9	8	
			т	DR				
7	6	5	4	3	2	1	0	
	TDR							

Bits	Description				
		Reset Active			
		This bit indicates if the counter reset operation active.			
[31]	RSTACT	When user write this register, timer starts to reset its internal 24-bit timer up-counter and 8-bit pre-scale counter to 0. In the same time, timer set this flag to 1 to indicate the counter reset operation is in progress. Once the counter reset operation done, timer clear this bit to 0 automatically.			
		0 = Reset operation done.			
		1 = Reset operation triggered by writing TMR_DR is in progress.			
		Note: This bit is read only. Write operation wouldn't take any effect.			
[30:24]	Reserved	Reserved.			
		Timer Data Register (Read)			
		User can read this register for internal 24-bit timer up-counter value.			
[00.0]	TDD	Counter Reset (Write)			
[23:0]	TDR	User can write any value to this register to reset internal 24-bit timer up-counter and 8-bit pre-scale counter. This reset operation wouldn't affect any other timer control registers and circuit. After reset completed, the 24-bit timer up-counter and 8-bit pre-scale counter restart the counting based on the TMRx_CTL register setting.			

Timer Capture Data Register (TMR_TCAP)

Register	Offset	R/W	Description	Reset Value
TMR0_TCAP	TMR0_BA+0x018	R	Timer 0 Capture Data Register	0x0000_0000
TMR1_TCAP	TMR1_BA+0x018	R	Timer 1 Capture Data Register	0x0000_0000
TMR2_TCAP	TMR2_BA+0x018	R	Timer 2 Capture Data Register	0x0000_0000
TMR3_TCAP	TMR3_BA+0x018	R	Timer 3 Capture Data Register	0x0000_0000

31	30	29	28	27	26	25	24	
			Rese	erved				
23	22	21	20	19	18	17	16	
			C	AP				
15	14	13	12	11	10	9	8	
	CAP							
7	6	5	4	3	2	1	0	
	САР							

Bits	Description	Description					
[31:24]	Reserved	Reserved.					
[23:0]	САР	Timer Capture Data Register When TCAP_EN (TMRx_CTL[16]) is set, TCAP_MODE (TMRx_CTL[17]) is 0, TCAP_CNT_MOD (TMRx_CTL[20]) is 0, and the transition of external pin matches the TCAP_EDGE (TMRx_CTL[19:18]) setting, the value of 24-bit up-counting timer will be saved into register TMRx_TCAP. When TCAP_EN (TMRx_CTL[16]) is set, TCAP_MODE (TMRx_CTL[17]) is 0, TCAP_CNT_MOD (TMRx_CTL[20]) is 1, and the transition of external pin matches the 2 nd transition of TCAP_EDGE (TMRx_CTL[19:18]) setting, the value of 24-bit up-counting timer will be saved into register TMRx_TCAP. User can read this register to get the counter value. When a new incoming capture event detected before CPU clearing the TCAP_IS (TMRxISR[1]) status, Timer will keep this filed value unchanged and drop the new capture value.					

Timer Extended Control Register (TMR_ECTL)

Register	Offset	R/W	Description	Reset Value
TMR0_ECTL	TMR0_BA+0x020	R/W	Timer 0 Extended Control Register	0x0000_0002
TMR1_ECTL	TMR1_BA+0x020	R/W	Timer 1 Extended Control Register	0x0000_0002
TMR2_ECTL	TMR2_BA+0x020	R/W	Timer 2 Extended Control Register	0x0000_0002
TMR3_ECTL	TMR3_BA+0x020	R/W	Timer 3 Extended Control Register	0x0000_0002

31	30	29	28	27	26	25	24
			EVNT_DF	ROP_CNT			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved EVNT_GEN_S Reserved RC						EVNT_CNT_S RC
7	6	5	4	3	2	1	0
Reserved						EVNT_GEN_P OL	EVNT_GEN_E N

Bits	Description	
[31:24]	EVNT_DROP_CNT	Event Drop Count This field indicates timer to drop how many events after inter-timer trigger function enable. For example, if user writes 0x7 to this field, timer would drop 7 first incoming events and starts the inter-timer trigger operation when it get 8 th event. This field would affect timer's operation only when inter-timer trigger function enabled (INTR_TRG_EN (TMRx_CTL[24]) = 1) and ITNR_TRG_MODE (TMRx_CTL[25]) = 1.
[23:17]	Reserved	Reserved.
[16]	CAP_SRC	Capture Function Source Selection This bit defines timer counter reset function or timer capture function controlled by transition of TC pin or transition of internal signals from other functional blocks of this chip. 0 = Transition of TC pin selected. 1 = Transition of internal signals from ACMP0. Note: When this bit is high, the EVNT_DEB_EN (TMRx_CTL[14]) would not take effect.
[15:13]	Reserved	Reserved.
[12]	EVNT_GEN_SRC	Event Generator Reference Input Source Selection This bit defines the event generator function controlled by external event pin or internal event signals from ACMP0. 0 = The event generator reference source is from external event pin. 1 = The event generator reference source is from ACMP0. Note: This bit is only available in TMRx (where x = 0 or 2).
[11:9]	Reserved	Reserved.

Bits	Description	
		Event Counting Source Selection This bit defines the TMRx+1 event counting source is from external event pin TMx+1 or internal signal from TMRx's event generator output (where x = 0 or 2).
[8]	EVNT_CNT_SRC	0 = The event counting source is from external event pin. 1 = The event counting source is from TMRx's event generator output.
		Note: This bit is only available in TMRx+1 (where x = 0 or 2).
[7:2]	Reserved	Reserved.
[1]	EVNT_GEN_POL	Event Generator Reference Input Source Polarity Selection When this bit is low and EVNT_GEN_EN (TMRx_ECTL[0]) is high, timer would generate a high pulse event out when it increases the 24-bit up counter and the polarity of signal defined by EVNT_GEN_SRC (TMRx_ECTL[12]) is low. When this bit is high and EVNT_GEN_EN (TMRx_ECTL[0]) is high, timer would generate a low pulse event pulse out when it increases the 24-bit up counter and the polarity of signal defined by EVNT_GEN_SRC (TMRx_ECTL[12]) is high. This bit only affects timer's operation when EVNT_GEN_EN (TMRx_ECTL[0]) is high. 0 = Timer generates a high pulse event out when it increase the 24-bit up counter and the polarity of signal defined by EVNT_GEN_SRC (TMRx_ECTL[12]) is low. 1 = Timer generates a high pulse event out when it increase the 24-bit up counter and the polarity of signal defined by EVNT_GEN_SRC (TMRx_ECTL[12]) is high.
[0]	EVNT_GEN_EN	Event Generator Function Enable Control When this bit is high, timer would generate a high pulse event out when it increases the 24-bit up counter and the polarity of signal defined by EVNT_GEN_SRC (TMRx_ECTL[12]) is same as the polarity defined by EVNT_GEN_POL (TMRx_ECTL[1]). 0 = Event generator function disabled. 1 = Event generator function enabled.

GPIO Port Pin Value Shadow Register (GPx_SHADOW, x = A, B, C, D, E, F)

Register	Offset	R/W	Description	Reset Value
GPA_SHADO W	TMR0_BA+0x200	R	GPIO Port A Pin Value Shadow Register	0x0000_XXXX
GPB_SHADO W	TMR0_BA+0x204	R	GPIO Port B Pin Value Shadow Register	0x0000_XXXX
GPC_SHADO W	TMR0_BA+0x208	R	GPIO Port C Pin Value Shadow Register	0x0000_XXXX
GPD_SHADO W	TMR0_BA+0x20C	R	GPIO Port D Pin Value Shadow Register	0x0000_XXXX
GPE_SHADO W	TMR0_BA+0x210	R	GPIO Port E Pin Value Shadow Register	0x0000_XXXX
GPF_SHADO W	TMR0_BA+0x214	R	GPIO Port F Pin Value Shadow Register	0x0000_XXXX

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	PIN								
7	6	5	4	3	2	1	0		
	PIN								

Bits	Description				
[31:16]	Reserved	Reserved.			
		GPIO Port [A/B/C/D/E/F] Pin Values			
[n]		The value read from each of these bit reflects the actual status of the respective GPIO pin.			
[n] n = 0.115	PIN	These registers are shadow registers of GPIOx_PIN register.			
11 = 0,115		Note 1: For GPE_SHADOW, bits [15:10] are reserved.			
		Note 1: For GPF_SHADOW, bits [15:6] are reserved.			

6.10 Pulse Width Modulation (PWM)

6.10.1 Overview

nuvoTon

This chip has one PWM controller, which includes 4 independent PWM outputs, CH0~CH3, or as 2 complementary PWM pairs. (CH0. CH1), (CH2. CH3) with 2 programmable dead-zone generators.

Each of the two PWM outputs, (CH0, CH1), (CH2, CH3), share the same 8-bit prescaler, clock divider providing 5 divided frequencies (1, 1/2, 1/4, 1/8, 1/16). Each PWM output has independent 16-bit PWM counter which has two counting modes for PWM period control. The PWM counter operates as down counting in edge-aligned mode and up-down counting in center-aligned mode only. Each PWM output also has a 16-bit comparator for PWM duty control. Each dead-zone generator has two outputs. The first dead-zone generator output is CH0 and CH1, and for the second dead-zone generator, the output is CH2 and CH3. The PWM controller total provide four independent PWM interrupt flags which are set by hardware when the corresponding PWM period down counter in edge-aligned mode (or up-down counter in center-aligned mode) reaches 0. PWM interrupt will be asserted when both PWM interrupt source and its corresponding enable bit are active. Each PWM output can be configured as one-shot mode to produce only one PWM cycle signal or continuous mode to output PWM waveform continuously.

When DZEN01(PWM CTL[4]) is set, CH0 and CH1 perform complementary PWM paired function; the paired PWM timing, period, duty and dead-time are determined by PWM channel 0 timer and Deadzone generator 0. Similarly, When DZEN23(PWM CTL[5]) is set the complementary PWM pair of (CH2, CH3) is controlled by PWM channel 2.

To prevent PWM driving output pin with unsteady waveform, the 16-bit period down counter and 16-bit comparator are implemented with double buffer. When user writes data to counter/comparator buffer registers the updated value will be loaded into the 16-bit down counter/ comparator at the time down counter reaching 0. The double buffering feature avoids glitch at PWM outputs.

When the 16-bit period down counter reaches 0, the interrupt request is generated. If PWM output is set as continuous mode, when the down counter reaches 0, it is reloaded with CN of PWM DUTYy(y=0~3) Register automatically then start decreases, repeatedly. If the PWM output is set as one-shot mode, the down counter will stop and generate one interrupt request when it reaches 0.

The value of PWM counter comparator is used for pulse width modulation. The counter control logic changes the output level when down-counter value matches the value of compare register.

The alternate feature of the PWM is digital input capture function. If capture function is enabled the PWM output pin is switched as capture input pin. The capture channel 0 and PWM CH0 share one timer; and the capture channel 1 and PWM CH1 share one timer, and etc. Therefore user must set up the PWM timer before enabling capture feature. After capture feature of channel 0 is enabled, the capture always latches PWM CH0 timer value to Capture Rising Latch Register CRL (PWM CRL0[15:0]) when input channel has a rising transition and latches PWM CH0 timer value to Capture Falling Latch Register CFL (PWM_CFL0[15:0]) when input channel has a falling transition. Capture channel 0 interrupt is programmable by setting CRL_IE0(PWM_CAPINTEN[0]) for rising transition or CFL IE0 (PWM CAPINTEN[1]) for falling transition. Whenever Capture rising event latched for channel 0, the PWM CH0 timer will be reload at this moment if the corresponding reload enable bit CAPRELOADREN0 (PWM_CAPCTL[6]) is set.

The maximum captured frequency that PWM can capture is dominated by the capture interrupt latency. When capture interrupt occurs, software will do at least three steps, they are: Read PWMINTSTS to tell it from interrupt source and Read PWM_CRLy/PWM_CFLy(y=0~3) to get capture value and finally write 1 to clear PWM INTSTS. If interrupt latency will take time T0 to finish, the capture signal mustn't transient during this interval. In this case, the maximum capture frequency will be 1/T0.

6.10.2 Features

6.10.2.1 PWM Function:

- PWM controllers has 4 independent PWM outputs, CH0~CH3, or as 2 complementary PWM pairs, (CH0, CH1), (CH2, CH3) with 2 programmable dead-zone generators
- Up to 4 PWM channels or 2 PWM paired channels
- Up to 16 bits PWM counter width
- PWM Interrupt request synchronous with PWM period
- Single-shot or Continuous mode
- Two Dead-Zone generators

6.10.2.2 Capture Function:

- Timing control logic shared with PWM timer.
- 4 Capture input channels shared with 4 PWM output channels.
- Each channel supports one rising latch register CRL (PWM_CRL0[15:0]), one falling latch register CFL (PWM_CFL0[15:0]) and Capture interrupt flag CAPIF0 (PWM_CAPINTSTS[0]).
- Four 16-bit counters for four capture channels or two 32-bit counter for two capture channels when cascade is enabled: when CH01CASKEN (PWM_CAPCTL[13]) is set, the original 16-bit counter of channel 1 will combine with channel 0's 16 bit counter for channel 0 input capture counting and so does CH23CASKEN(PWM_CAPCTL[29]) for channel 2, 3
- Supports PDMA transfer function for PWM channel 0, 2

6.10.3 Block Diagram

The following figures illustrate the architecture of PWM in groups. (Timer 0&1 are in one group and timer 2&3 are in another, and so on.)

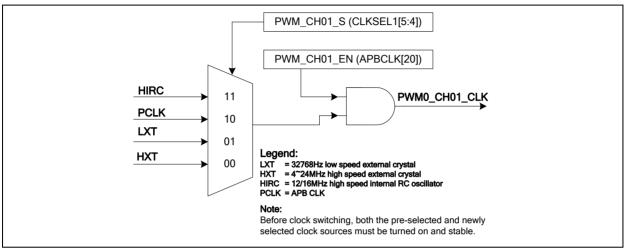


Figure 6-33 PWM Clock for Channel 0, 1

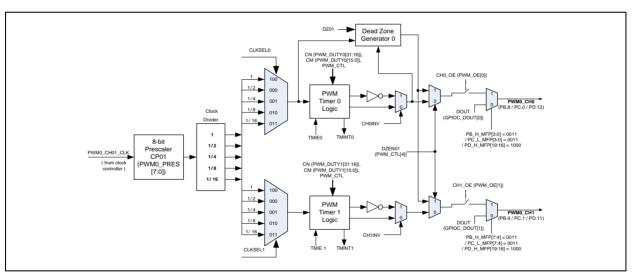


Figure 6-34 PWM Generator for Channel 0, 1

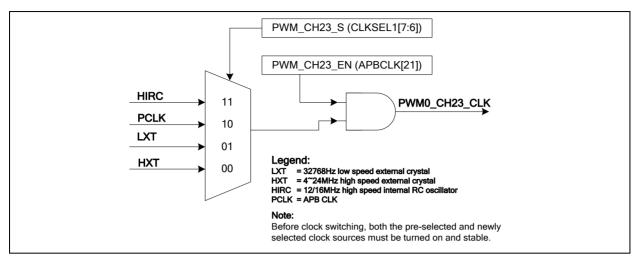


Figure 6-35 PWM Clock for Channel 2, 3

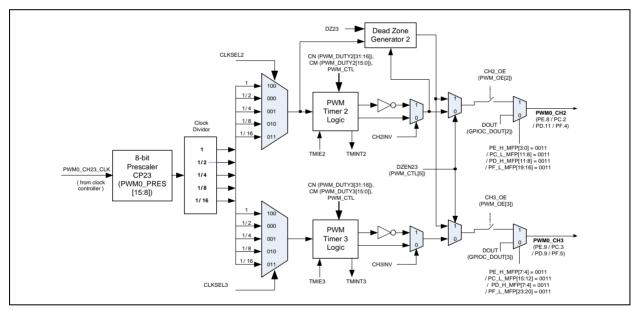


Figure 6-36 PWM Generator for Channel 2, 3

6.10.4 Basic Configuration

nuvoTon

The PWM pin functions are configured in PB_H_MFP, PC_L_MFP, PD_H_MFP, PE_H_MFP, PF_L_MFP registers.

6.10.5 Functional Description

6.10.5.1 PWM-Timer Operation

The PWM period and duty control are decided by PWM_DUTYy (y=0~3) register CN (PWM_DUTYy[15:0]) and CM (PWM_DUTYy[31:16]). The PWM-timer supports two types operation: Edge-aligned type and Center-aligned type.

6.10.5.2 Edge-aligned Type

The PWM-timer timing operation in Edge-aligned type and the pulse width modulation following the formula below and the legend of PWM-Timer Comparator are shown in the following figures. Note that the corresponding I/O pins must be configured as output type before PWM function is enabled.

PWM frequency = $PWMxy_CLK/(prescale+1)*(clock divider)/(CN+1)$; where xy, could be 01, 23, depending on selected PWM channel.

Duty ratio = (CM+1)/(CN+1).

CM >= CN: PWM output is always high.

CM < CN: PWM low width= (CN-CM) unit1; PWM high width = (CM+1) unit.

If CM = 0: PWM low width = (CN) unit; PWM high width = 1 unit

Note: 1. Unit = one PWM clock cycle.

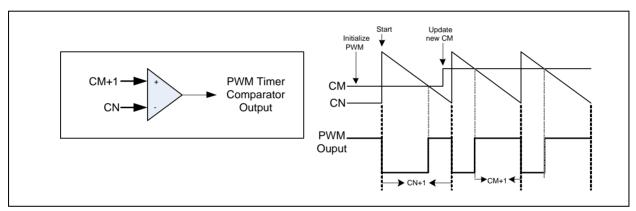


Figure 6-37 Legend of Internal Comparator Output of PWM-Timer

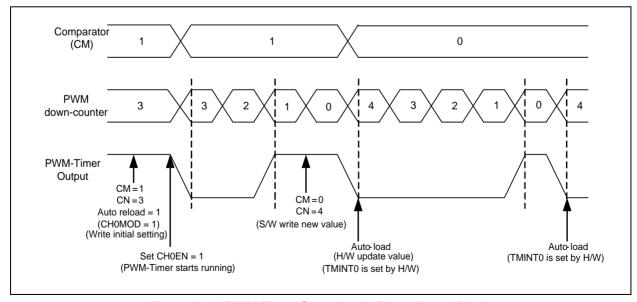


Figure 6-38 PWM-Timer Operation in Edge-aligned Mode

6.10.5.3 Center-aligned Type

nuvoTon

For Center-aligned type, the 16 bits PWM-timer is an up-down counter as shown below. The counter of PWM-timer starts counting up from 0 to (CN+1) and then start counting down to 0 to finish a PWM period. The value of PWM counter will be compared with CM (PWM DUTYy[31:16], y=0~3) to decide the high/low of PWM output.



Figure 6-39 PWM-Timer Operation in Center-aligned Mode

PWM frequency = PWMxy CLK/(prescale+1)*(clock divider)/(2x(CN+1)); where xy could be 01, 23, depending on selected PWM channel.

Duty ratio = (2xCM+1)/(2x(CN+1)).

CM >= CN: PWM output is always high.

CM < CN: PWM low width = 2x(CN-CM)+1 unit; PWM high width = (2xCM+1) unit.

If CM = 0: PWM low width = (2xCN+1) unit; PWM high width = 1 unit

Note: 1. Unit = one PWM clock cycle.

6.10.5.4 PWM Double Buffering, continuous and one-shot Operation

The PWM has double buffering function; the reload value is updated at the start of next period without affecting current timer operation. The PWM counter value can be written into CN (PWM_DUTYy[15:0], where y=0~3).

The bit CH0MOD(PWM CTL[3]) in PWM Control Register (PWM CTL) defines PWM operation in Continuous or One-shot mode If CH0MOD(PWM CTL[3]) is set to one (continuous mode), the controller loads CN(PWM DUTY[15:0]) to PWM counter when PWM counter reaches 0. If CN(PWM DUTY[15:0]) is set to 0, PWM counter will be halt when PWM counter counts to 0.

In one-shot mode (CH0MOD=0; PWM CTL[3])=0), the corresponding channel will output only one duty waveform and counter will be stopped if no further corresponding duty register updated. When PWM counter is running, updating corresponding duty register will engage the next duty waveform.

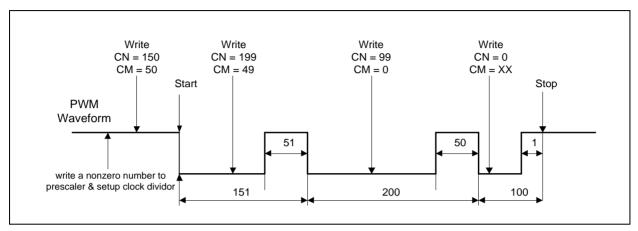


Figure 6-40 PWM Double Buffer Illustration

6.10.5.5 Modulate Duty Ratio

nuvoton

The double buffering function allows CM (PWM_DUTYy[31:16]; y=0~3) to be written at any point in current cycle. The loaded value will take effect from next cycle.

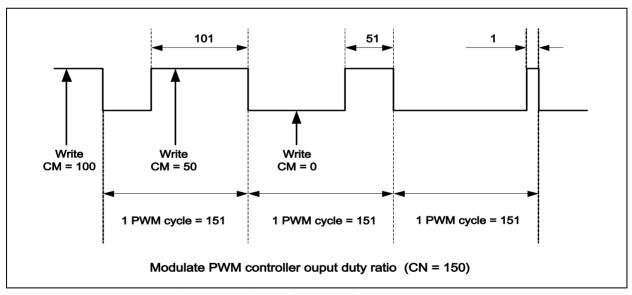


Figure 6-41 PWM Controller Output Duty Ratio

6.10.5.6 Dead-Zone Generator

PWM implements Dead Zone generator. They are built for power device protection. This function generates a programmable time gap called "Dead-Zone" to delay PWM rising output, and it is in order to prevent damage for the power switch devices that connected to the PWM output pins. User can program Dead-Zone counter to determine the Dead Zone interval of channel 0, 1 pair with DZ01 (PWM_PRES[23:16]). The Dead Zone period of channel 0, 1 pair can be calculated by (PWM_CLK

period x (DZ01 + 1)) and the enable bit is DZEN01 (PWM CTL[4]).

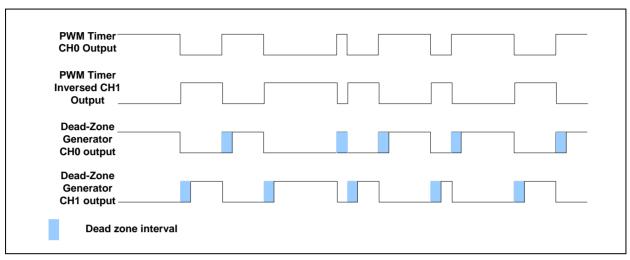


Figure 6-42 Paired PWM Output with Dead Zone Generation Operation

6.10.5.7 Capture Operation

nuvoton

The Capture channel 0 and PWM channel 0 share one timer; and the Capture channel1 and PWM channel 1 share another timer, and etc. The capture always latches PWM-timer to CRL (PWM_CRL0[15:0]) when input channel has a rising transition and latches PWM-timer to CFL (PWM CFL0[15:0]) when input channel has a falling transition. Capture channel 0 interrupt is programmable by setting CRL_IE0 (PWM_CAPINTEN[0]) (Rising latch Interrupt enable) and CFL_IE0 (PWM_CAPINTEN[1]) (Falling latch Interrupt enable) to decide the condition of interrupt occur. Whenever the Capture module issues a capturing flag (rising latched or falling latched) that are defined in PWM_CAPINTSTS, and the reload enable bit (defined in PWM_CAPCTL) is also set the corresponding PWM timer will be reloaded with CN (PWM_DUTYy[15:0], where y=0~3) at this moment. Note that the corresponding I/O pins must be configured as input type before Capture function is enabled.

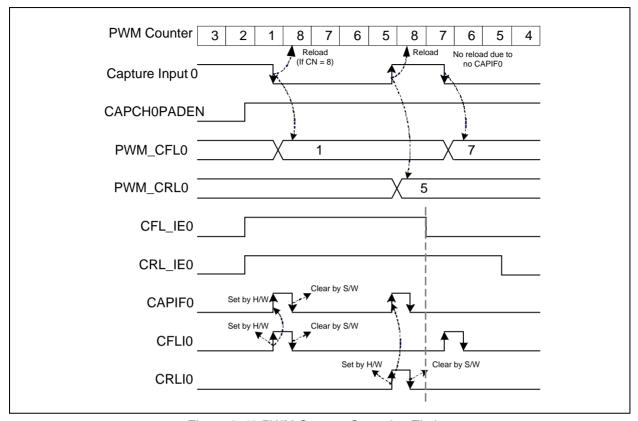


Figure 6-43 PWM Capture Operation Timing

At this example, the CN is 8:

nuvoton

The PWM timer will be reloaded with CN when a capture interrupt flag (CAPIF0) is set.

The channel low pulse width is (CN – CRL), and the channel high pulse width is (CN – CFL).

In some case that need wider counter, user can cascade two 16 bit counters to 32 bit counter for capturing

The cascade method is depicted below

When enabling CH01CASK (PWM CAPCTL[13]), the internal cascade logic will combine CH0's 16 bit counter with CH1's 16 bit counter to become 32 bit counter for CH0 and the same for enabling CH23CASK (PWM CAPCTL[29]) for CH2 and CH3. CN0/CN2 (PWM DUTY0[15:0] / PWM_DUTY2[15:0]) and CN1/CN3 (PWM_DUTY1[15:0] / PWM_DUTY3[15:0]) are also cascaded. At this case, the capturing function for CH1 and CH3 are useless.

When capturing flag is set up, such as rising of CRLI0 (PWM_CAPINTSTS[1]) or falling of CFLI0 (PWM_CAPINTSTS[1]), the capture data for rising latched is stored in CRL0 (PWM_CRL0[15:0]) and CRL1 (PWM_CRL1[15:0]) and CFL0 (PWM_CFL0[15:0]) and CFL1 (PWM_CFL1[15:0]) for falling latched. CRL1 is located in the upper half word and CRL0 is in lower half word and the same for CFL1 and CFL0.

User can also read CRL0 (PWM_CRL[31:0]) or CFL0 (PWM_CFL[31:0]) register directly to get 32-bit capturing data when cascade is enabled

Note: Cascade function is only for PWM capture function.

6.10.5.8 PWM PDMA Function

nuvoton

PWM support PDMA transfer function when operating in capture mode and is only for specified channel (channel 0,2), when the corresponding PDMA enable bit (defined in PWM CAPCTL register) is set, capture module will issue a request to PDMA controller when the preceding capture event happened. PDMA controller will issue ACK to capture module and read back PDMACH0 register to memory. By setting PDMACAPMOD0 (PWM_CAPCTL[5:4]) and PDMACAPMOD2 (PWM_CAPCTL[21:20]), PDMA can transfer rising latched data or falling latched data or both of them to memory. When using PDMA to transfer both falling and rising data, remember to set CH0RFORDER (PWM_CAPCTL[12]) or CH2RFORDER (PWM_CAPCTL[28]) to decide the order of transferring data (falling edge latched is first or rising edged latched first).

6.10.5.9 PWM-Timer Interrupt Architecture

There are four PWM interrupts, PWMCH0_INT ~ PWMCH3_INT which are OR into PWM_INT. PWM CH0 and Capture channel 0 share one interrupt, PWM CH1 and Capture channel 1 share the same interrupt and so on. Therefore, PWM function and Capture function in the same channel cannot be used at the same time.

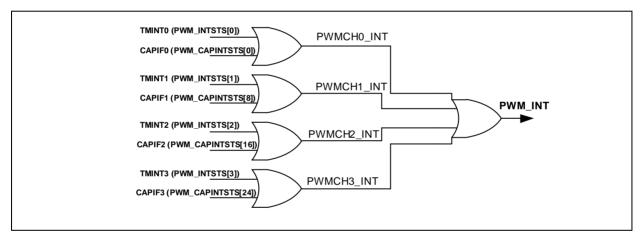


Figure 6-44 PWM-Timer Interrupt

6.10.5.10 PWM-Timer Start Procedure

The following procedure is for starting a PWM drive.

- Set up clock selector (PWM CLKSEL)
- Set up prescaler (PWM PRES)
- Set up inverter on/off, dead zone generator on/off, auto-reload/one-shot mode and Stop PWM-timer (PWM_CTL)
- Set up interrupt enable register (PWM INTEN)
- Set up PWM output enable (PWM_OE)
- Set up the corresponding GPI/O pins to PWM function
- Set up the corresponding GPI/O pins to output type
- Enable PWM down-counter start running (Set ChxEN = 1 in PWM CTL)
- Set up CM and CN of PWM DUTYy register for setting PWM duty, y=0~3.(When cascade is enabled the CM is used for the upper half word of the 32 bit CN)

The procedure 1~8 mentioned above may be set up not in the order and PWM Timer can still work fine

6.10.5.11 PWM-Timer Stop Procedure

Take PWM0, Channel 0 for example:

Method 1:

nuvoton

Set 32 bit PWM DUTY0 register to 0, and wait for PWM timeout interrupt (if bit 0 of PWM IE is set) occurring or polling the corresponding time-out flag. When PWM timeout interrupt occurred or the flag is set, disable PWM-Timer (CH0EN; PWM CTL[0]). (Recommended)

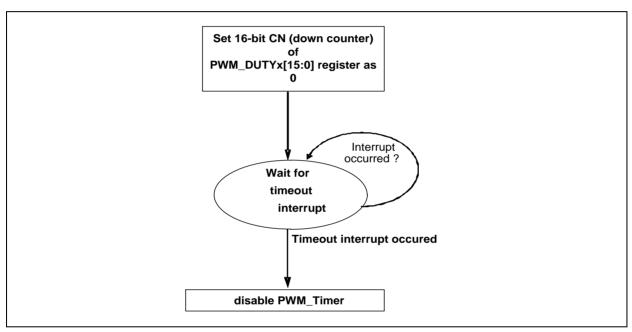


Figure 6-45 PWM-Timer Stop Method 1

Method 2:

Disable PWM-Timer CH0EN (PWM CTL[0]) directly. (Not recommended)

The reason is that disabling Ch0EN (PWM_CTL[0]) will immediately stop PWM output signal and lead to change the duty of the PWM output, this may cause damage to the control circuit of motor.

6.10.5.12 Capture Start Procedure

- Set up clock selector (PWM CLKSEL)
- Set up prescaler (PWM PRES)
- Set up channel enabled, rising/falling interrupt enable and input signal inverter on/off (PWM_CAPCTL, PWM_CAPINTEN)
- Set up PWM down-counter (CN) of PWM_DUTYy register, y=0~3
- Set Capture Input Enable Register (PWM_CAPCTL)
- Set up the corresponding GPI/O pins to PWM function

Set up the corresponding GPI/O pins to input type

nuvoTon

Enable PWM down-counter start running, i.e. set Ch0EN=1 (PWM_CTL[0]=1)

6.10.6 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and written

Register	Offset	R/W	Description	Reset Value
PWM Base Address:				
PWM_BA = 0x4004_00	000			
PWM_PRES	PWM_BA+0x000	R/W	PWM Prescaler Register	0x0000_0000
PWM_CLKSEL	PWM_BA+0x004	R/W	PWM Clock Select Register	0x0000_0000
PWM_CTL	PWM_BA+0x008	R/W	PWM Control Register	0x0000_0000
PWM_INTEN	PWM_BA+0x00C	R/W	PWM Interrupt Enable Register	0x0000_0000
PWM_INTSTS	PWM_BA+0x010	R/W	PWM Interrupt Indication Register	0x0000_0010
PWM_OE	PWM_BA+0x014	R/W	PWM Output Enable for PWM0~PWM3	0x0000_0000
PWM_DUTY0	PWM_BA+0x01C	R/W	PWM Counter/Comparator Register 0	0x0000_0000
PWM_DATA0	PWM_BA+0x020	R	PWM Data Register 0	0x0000_0000
PWM_DUTY1	PWM_BA+0x028	R/W	PWM Counter/Comparator Register 1	0x0000_0000
PWM_DATA1	PWM_BA+0x02C	R	PWM Data Register 1	0x0000_0000
PWM_DUTY2	PWM_BA+0x034	R/W	PWM Counter/Comparator Register 2	0x0000_0000
PWM_DATA2	PWM_BA+0x038	R	PWM Data Register 2	0x0000_0000
PWM_DUTY3	PWM_BA+0x040	R/W	PWM Counter/Comparator Register 3	0x0000_0000
PWM_DATA3	PWM_BA+0x044	R	PWM Data Register 3	0x0000_0000
PWM_CAPCTL	PWM_BA+0x054	R/W	Capture Control Register	0x0000_0000
PWM_CAPINTEN	PWM_BA+0x058	R/W	Capture interrupt enable Register	0x0000_0000
PWM_CAPINTSTS	PWM_BA+0x05C	R/W	Capture Interrupt Indication Register	0x0000_0000
PWM_CRL0	PWM_BA+0x060	R	Capture Rising Latch Register (Channel 0)	0x0000_0000
PWM_CFL0	PWM_BA+0x064	R	Capture Falling Latch Register (Channel 0)	0x0000_0000
PWM_CRL1	PWM_BA+0x068	R	Capture Rising Latch Register (Channel 1)	0x0000_0000
PWM_CFL1	PWM_BA+0x06C	R	Capture Falling Latch Register (Channel 1)	0x0000_0000
PWM_CRL2	PWM_BA+0x070	R	Capture Rising Latch Register (Channel 2)	0x0000_0000
PWM_CFL2	PWM_BA+0x074	R	Capture Falling Latch Register (Channel 2)	0x0000_0000
PWM_CRL3	PWM_BA+0x078	R	Capture Rising Latch Register (Channel 3)	0x0000_0000
PWM_CFL3	PWM_BA+0x07C	R	Capture Falling Latch Register (Channel 3)	0x0000_0000
PWM_PDMACH0	PWM_BA+0x080	R	PDMA Channel 0 Captured Data	0x0000_0000
	1			

Register	Offset	R/W	Description	Reset Value
PWM_PDMACH2	PWM_BA+0x084	R	PDMA Channel 2 Captured Data	0x0000_0000
PWM_ADTRGEN	PWM_BA+0x088	R/W	PWM Center-Triggered Control Register	0x0000_0000
PWM_ADTRGSTS	PWM_BA+0x08C	R	PWM Center-Triggered Indication Register	0x0000_0000

6.10.7 Register Description

PWM Pre-scale Register

Register	Offset	R/W	Description	Reset Value
PWM_PRES	PWM_BA+0x000	R/W	PWM Prescaler Register	0x0000_0000

31	30	29	28	27	26	25	24
	DZ23						
23	22	21	20	19	18	17	16
			DZ	201			
15	14	13	12	11	10	9	8
	CP23						
7	6	5	4	3	2	1	0
	CP01						

Bits	Description	
[31:24]	DZ23	Dead Zone Interval Register for CH2 and CH3 Pair These 8 bits determine dead zone length. The unit time of dead zone length is received from clock selector 2.
[23:16]	DZ01	Dead Zone Interval Register for CH0 and CH1 Pair These 8 bits determine dead zone length. The unit time of dead zone length is received from clock selector 0.
[15:8]	CP23	Clock Prescaler 2 for PWM Timer 2 & 3 Clock input is divided by (CP23 + 1) before it is fed to the PWM counter 2 & 3 If CP23=0, the prescaler 2 output clock will be stopped. So PWM counter 2 and 3 will be stopped also.
[7:0]	CP01	Clock Prescaler 0 for PWM Timer 0 & 1 Clock input is divided by (CP01 + 1) before it is fed to the PWM counter 0 & 1 If CP01 =0, the prescaler 0 output clock will be stopped. So PWM counter 0 and 1 will be stopped also.

PWM Clock Selector Register (PWM_CLKSEL)

Register	Offset	R/W	Description	Reset Value
PWM_CLKSEL	PWM_BA+0x004	R/W	PWM Clock Select Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
Reserved		CLKSEL3		Reserved		CLKSEL2	
7	6	5	4	3	2	1	0
Reserved	CLKSEL1			Reserved		CLKSEL0	

Bits	Description	
[31:15]	Reserved	Reserved.
[14:12]	CLKSEL3	Timer 3 Clock Source Selection Select clock input for timer 3. 000 = input clock is divided by 2. 001 = input clock is divided by 4. 010 = input clock is divided by 8. 011 = input clock is divided by 16. 100 = input clock is divided by 1.
[10:8]	CLKSEL2	Timer 2 Clock Source Selection Select clock input for timer 2. (Table is the same as CLKSEL3)
[6:4]	CLKSEL1	Timer 1 Clock Source Selection Select clock input for timer 1. (Table is the same as CLKSEL3)
[2:0]	CLKSEL0	Timer 0 Clock Source Selection Select clock input for timer 0. (Table is the same as CLKSEL3)

PWM Control Register (PWM_CTL)

Register	Offset	R/W	Description	Reset Value
PWM_CTL	PWM_BA+0x008	R/W	PWM Control Register	0x0000_0000

31	30	29	28	27	26	25	24
PWMTYPE23	PWMTYPE01	Rese	erved	СНЗМОД	CH3INV	Reserved	CH3EN
23	22	21	20	19	18	17	16
	Rese	erved		CH2MOD	CH2INV	Reserved	CH2EN
15	14	13	12	11	10	9	8
	Rese	erved		CH1MOD	CH1INV	Reserved	CH1EN
7	6	5	4	3	2	1	0
Rese	Reserved DZEN23 DZEN01			CH0MOD	CHOINV	Reserved	CH0EN

Bits	Description	
[31]	PWMTYPE23	Channel 2,3 Counter Mode 0 = Edge-aligned Mode. 1 = Center-aligned Mode.
[30]	PWMTYPE01	Channel 0,1 Counter Mode 0 = Edge-aligned Mode. 1 = Center-aligned Mode.
[27]	СНЗМОД	PWM-timer 3 Continuous/One-shot Mode 0 = One-Shot Mode. 1 = Continuous Mode. Note: If there is a rising transition at this bit, it will cause CN and CM of PWM0_DUTY3 to be cleared.
[26]	CH3INV	PWM-timer 3 Output Inverter ON/OFF 0 = Inverter OFF. 1 = Inverter ON.
[24]	CH3EN	PWM-timer 3 Enable/Disable Start Run 0 = PWM-Timer 3 Running Stopped. 1 = PWM-Timer 3 Start Run Enabled.
[19]	CH2MOD	PWM-timer 2 Continuous/One-shot Mode 0 = One-Shot Mode. 1 = Continuous Mode. Note: If there is a rising transition at this bit, it will cause CN and CM of PWM0_DUTY2 be cleared.
[18]	CH2INV	PWM-timer 2 Output Inverter ON/OFF 0 = Inverter OFF. 1 = Inverter ON.
[16]	CH2EN	PWM-timer 2 Enable/Disable Start Run

Bits	Description	Description						
		0 = PWM-Timer 2 Running Stopped. 1 = PWM-Timer 2 Start Run Enabled.						
[11]	CH1MOD	PWM-timer 1 Continuous/One-shot Mode 0 = One-Shot Mode. 1 = Continuous Mode. Note: If there is a rising transition at this bit, it will cause CN and CM of PWM0_DUTY1 to be cleared.						
[10]	CH1INV	PWM-timer 1 Output Inverter ON/OFF 0 = Inverter OFF. 1 = Inverter ON.						
[8]	CH1EN	PWM-timer 1 Enable/Disable Start Run 0 = PWM-Timer 1 Running Stopped. 1 = PWM-Timer 1 Start Run Enabled.						
[5]	DZEN23	Dead-zone 2 Generator Enable/Disable Control 0 = Disabled. 1 = Enabled. Note: When Dead-Zone Generator is enabled, the pair of PWM2 and PWM3 becomes a complementary pair.						
[4]	DZEN01	Dead-zone 0 Generator Enable/Disable Control 0 = Disabled. 1 = Enabled. Note: When Dead-Zone Generator is enabled, the pair of PWM0 and PWM1 becomes a complementary pair.						
[3]	СН0МОД	PWM-timer 0 Continuous/One-shot Mode 0 = One-Shot Mode. 1 = Continuous Mode. Note: If there is a rising transition at this bit, it will cause CN and CM of PWM0_DUTY0 to be cleared.						
[2]	CHOINV	PWM-timer 0 Output Inverter ON/OFF 0 = Inverter OFF. 1 = Inverter ON.						
[0]	CH0EN	PWM-timer 0 Enable/Disable Start Run 0 = PWM-Timer 0 Running Stopped. 1 = PWM-Timer 0 Start Run Enabled.						

PWM Interrupt Enable Register (PWM_INTEN)

Register	Offset		Description	Reset Value
PWM_INTEN	PWM_BA+0x00C	R/W	PWM Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Reserved				TMIE2	TMIE1	TMIE0		

Bits	Description	
[31:4]	Reserved	Reserved.
[3]	тміез	PWM Timer 3 Interrupt Enable Control 0 = Disabled. 1 = Enabled.
[2]	TMIE2	PWM Timer 2 Interrupt Enable Control 0 = Disabled. 1 = Enabled.
[1]	TMIE1	PWM Timer 1 Interrupt Enable Control 0 = Disabled. 1 = Enabled.
[0]	тмієо	PWM Timer 0 Interrupt Enable Control 0 = Disabled. 1 = Enabled.

PWM Interrupt Flag Register (PWM_INTSTS)

Register	Offset	R/W	Description	Reset Value
PWM_INTSTS	PWM_BA+0x010	R/W	PWM Interrupt Indication Register	0x0000_0010

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	7 6 5 4 3 2 1							
Duty3Syncflag	Duty2Syncflag	Duty1Syncflag	Duty0Syncflag	TMINT3	TMINT2	TMINT1	TMINT0	

Bits	Description	Description					
		Prescale Synchronize Flag					
		0 = Two Prescales have been synchronized to corresponding PWM_CLK (of channel 0,1 or channel 2, 3) domain respectively.					
[8]	PresSyncFlag	1 = Prescale01 is synchronizing to PWM_CLK domain of channel 0,1 or Prescaler23 is synchronizing to PWM_CLK domain of channel 2, 3.					
		Note: software should check this flag when writing Prescale, if this flag is set, and user ignore this flag and change Prescale, the Prescale may be wrong for one prescale cycle					
		Duty3 Synchronize Flag					
		0 = Duty3 has been synchronized to PWM_CLK domain of channel 2, 3.					
[7]	Duty3Syncflag	1 = Duty3 is synchronizing to PWM_CLK domain of channel 2, 3.					
		Note: software should check this flag when writing duty3, if this flag is set, and user ignore this flag and change duty3, the corresponding CNR and CMR may be wrong for one duty cycle					
		Duty2 Synchronize Flag					
		0 = Duty2 has been synchronized to PWM_CLK domain of channel 2, 3.					
[6]	Duty2Syncflag	1 = Duty2 is synchronizing to PWM_CLK domain of channel 2, 3.					
		Note: software should check this flag when writing duty2, if this flag is set, and user ignore this flag and change duty2, the corresponding CNR and CMR may be wrong for one duty cycle					
		Duty1 Synchronize Flag					
		0 = Duty1 has been synchronized to PWM_CLK domain of channel 0, 1.					
[5]	Duty1Syncflag	1 = Duty1 is synchronizing to PWM_CLK domain of channel 0, 1.					
		Note: software should check this flag when writing duty1, if this flag is set, and user ignore this flag and change duty1, the corresponding CNR and CMR may be wrong for one duty cycle					
		Duty0 Synchronize Flag					
		0 = Duty0 has been synchronized to PWM_CLK domain of channel 0, 1.					
[4]	Duty0Syncflag	1 = Duty0 is synchronizing to PWM_CLK domain of channel 0, 1.					
		Note: software should check this flag when writing duty0, if this flag is set, and user ignore this flag and change duty0, the corresponding CNR and CMR may be wrong for					

Bits	Description	
		one duty cycle
[3]	TMINT3	PWM Timer 3 Interrupt Flag Flag is set by hardware when PWM3 down counter reaches 0, software can clear this bit by writing a one to it.
[2]	TMINT2	PWM Timer 2 Interrupt Flag Flag is set by hardware when PWM2 down counter reaches 0, software can clear this bit by writing a one to it.
[1]	TMINT1	PWM Timer 1 Interrupt Flag Flag is set by hardware when PWM1 down counter reaches 0, software can clear this bit by writing a one to it.
[0]	TMINTO	PWM Timer 0 Interrupt Flag Flag is set by hardware when PWM0 down counter reaches 0, software can clear this bit by writing a one to it.

Note: User can clear each interrupt flag by writing a one to corresponding bit in PWM_INTSTS.

PWM Output Enable Register (PWM_OE)

Register	Offset	R/W	Description	Reset Value
PWM_OE	PWM_BA+0x014	R/W	PWM Output Enable for PWM0~PWM3	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	Rese	erved		CH3_OE	CH2_OE	CH1_OE	CH0_OE			

Bits	Description	
[3]	CH3_OE	PWM CH3 Output Enable Control 0 = PWM CH3 output to pin Disabled. 1 = PWM CH3 output to pin Enabled. Note: The corresponding GPI/O pin also must be switched to PWM function. (refer to PCx_MFP / PDx_MFP / Pex_MFP / PFx_MFP)
[2]	CH2_OE	PWM CH2 Output Enable Control R 0 = PWM CH2 output to pin Disabled. 1 = PWM CH2 output to pin Enabled. Note: The corresponding GPI/O pin also must be switched to PWM function. (refer to PCx_MFP / PDx_MFP / Pex_MFP / PFx_MFP)
[1]	CH1_OE	PWM CH1 Output Enable Control 0 = PWM CH1 output to pin Disabled. 1 = PWM CH1 output to pin Enabled. Note: The corresponding GPI/O pin also must be switched to PWM function. (refer to PBx_MFP / PCx_MFP / PDx_MFP)
[0]	CH0_OE	PWM CH0 Output Enable Control 0 = PWM CH0 output to pin Disabled. 1 = PWM CH0 output to pin Enabled. Note: The corresponding GPI/O pin also must be switched to PWM function (refer to PBx_MFP / PCx_MFP / PDx_MFP)

PWM DUTY Register 3-0 (PWM_DUTY3~0)

Register	Offset	R/W	Description	Reset Value
PWM_DUTY0	PWM_BA+0x01C	R/W	PWM Counter/Comparator Register 0	0x0000_0000
PWM_DUTY1	PWM_BA+0x028	R/W	PWM Counter/Comparator Register 1	0x0000_0000
PWM_DUTY2	PWM_BA+0x034	R/W	PWM Counter/Comparator Register 2	0x0000_0000
PWM_DUTY3	PWM_BA+0x040	R/W	PWM Counter/Comparator Register 3	0x0000_0000

31	30	29	28	27	26	25	24		
	СМ								
23	22	21	20	19	18	17	16		
	СМ								
15	14	13	12	11	10	9	8		
			С	N					
7	6	5	4	3	2	1	0		
	CN								

Bits	Descriptio	n				
		PWM Comparator Register				
		CM determines the PWM duty.				
		In edge-aligned mode,				
		PWM frequency = PWMxy_CLK/(prescale+1)*(clock divider)/(CN+1); where xy could be 01, 23, depending on the selected PWM channel.				
		Duty ratio = $(CM+1)/(CN+1)$.				
		CM >= CN: PWM output is always high.				
		CM < CN: PWM low width = (CN-CM) unit; PWM high width = (CM+1) unit.				
		CM = 0: PWM low width = (CN) unit; PWM high width = 1 unit.				
[31:16]	СМ	(Unit = one PWM clock cycle).				
		In center-aligned mode,				
		PWM frequency = PWMxy_CLK/(prescale+1)*(clock divider)/(2x(CN+1)); where xy could be 01, 23, depending on the selected PWM channel.				
		Duty ratio = $(2xCM+1)/(2x(CN+1))$.				
		CM >= CN: PWM output is always high.				
		CM < CN: PWM low width = $2x(CN-CM)+1$ unit; PWM high width = $(2xCM+1)$ unit.				
		CM = 0: PWM low width = (2xCN+1) unit; PWM high width = 1 unit.				
		(Unit = one PWM clock cycle).				
		Note: Any write to CM will take effect in next PWM cycle.				
		PWM Counter/Timer Loaded Value				
[15:0]	CN	CN determines the PWM period.				
[10.0]	0.1	In edge-aligned mode,				
		PWM frequency = PWMxy_CLK/(prescale+1)*(clock divider)/(CN+1); where xy could be				

Bits	Description
	01, 23, depending on the selected PWM channel.
	Duty ratio = $(CM+1)/(CN+1)$.
	CM >= CN: PWM output is always high.
	CM < CN: PWM low width = (CN-CM) unit; PWM high width = (CM+1) unit.
	CM = 0: PWM low width = (CN) unit; PWM high width = 1 unit.
	(Unit = one PWM clock cycle).
	In center-aligned mode,
	PWM frequency = PWMxy_CLK/(prescale+1)*(clock divider)/(2x(CN+1)); where xy could be 01, 23, depending on the selected PWM channel.
	Duty ratio = $(2xCM+1)/(2x(CN+1))$.
	CM >= CN: PWM output is always high.
	CM < CN: PWM low width = 2x(CN-CM)+1 unit; PWM high width = (2xCM+1) unit.
	CM = 0: PWM low width = (2xCN+1) unit; PWM high width = 1 unit.
	(Unit = one PWM clock cycle).
	Note: Any write to CN will take effect in next PWM cycle.

PWM Data Register (PWM_DATA)

Register	Offset	R/W	Description	Reset Value
PWM_DATA0	PWM_BA+0x020	R	PWM Data Register 0	0x0000_0000
PWM_DATA1	PWM_BA+0x02C	R	PWM Data Register 1	0x0000_0000
PWM_DATA2	PWM_BA+0x038	R	PWM Data Register 2	0x0000_0000
PWM_DATA3	PWM_BA+0x044	R	PWM Data Register 3	0x0000_0000

31	30	29	28	27	26	25	24		
sync		DATA_H							
23	22	21	20	19	18	17	16		
			DAT	A_H					
15	14	13	12	11	10	9	8		
			DA	TA					
7	6	5	4	3	2	1	0		
	DATA								

Bits	Description	escription					
		CN Value Sync with PWM Counter					
		0 = CN value is sync to PWM counter.					
[31]	sync	1 = CN value is not sync to PWM counter.					
		Note: when the corresponding cascade enable bit is set, this bit will not appear in the corresponding channel					
[30:16]		PWM Data Register User can monitor PWM_DATA to know the current value in 32-bit down count counter of corresponding channel.					
		Notes: This will be valid only for the corresponding cascade enable bit is set					
	DATA	PWM Data Register					
[15:0]		User can monitor PWM_DATA to know the current value in 16-bit down count counter of corresponding channel.					

Capture Control Register (PWM_CAPCTL)

Register	Offset	R/W	Description	Reset Value
PWM_CAPCTL	PWM_BA+0x054	R/W	Capture Control Register	0x0000_0000

31	30	29	28	27	26	25	24
CAPRELOAD FEN3	CAPRELOAD REN3	CH23CASK	CH2RFORDE R	Reserved	CAPCH3PAD EN	CAPCH3EN	INV3
23	22	21	20	19	18	17	16
CAPRELOAD FEN2	CAPRELOAD REN2	PDMAC	PDMACAPMOD2		CAPCH2PAD EN	CAPCH2EN	INV2
15	14	13	12	11	10	9	8
CAPRELOAD FEN1	CAPRELOAD REN1	CH01CASK	CH0RFORDE R	Reserved	CAPCH1PAD EN	CAPCH1EN	INV1
7	6	5	4	3	2	1	0
CAPRELOAD FEN0	CAPRELOAD REN0	PDMACAPMOD0		CH0PDMAEN	CAPCH0PAD EN	CAPCH0EN	INV0

Bits	Description		
[31]	CAPRELOADFEN3	Reload CNR3 When CH3 Falling Capture Event Comes 0 = Falling capture reload for CH3 Disabled. 1 = Falling capture reload for CH3 Enabled.	
[30]	CAPRELOADREN3	Reload CNR3 When CH3 Rising Capture Event Comes 0 = Rising capture reload for CH3 Disabled. 1 = Rising capture reload for CH3 Enabled.	
[29]	CH23CASK Cascade channel 2 and channel 3 PWM counter for capturing usage		
[28]	CH2RFORDER	Set this bit to determine whether the PWM_CRL2 or PWM_CFL2 is the first captured data transferred to memory through PDMA when PDMACAPMOD2 = 2'b11. 0 = PWM_CFL2 is the first captured data to memory. 1 = PWM_CRL2 is the first captured data to memory.	
[27]	Reserved	Reserved.	
[26]	CAPCH3PADEN	Capture Input Enable Control 0 = Disable the channel 3 input capture signal from corresponding multi-function pin. 1 = Enable the channel 3 input capture signal from corresponding multi-function pin.	
[25]	CAPCH3EN	Capture Channel 3 Transition Enable/Disable Control 0 = Capture function on channel 3 Disabled. 1 = Capture function on channel 3 Enabled. When Enabled, Capture latched the PMW-timer and saved to CRL3 (PWM_CRL3[15:0]) for rising latch and CFL3 (PWM_CFL3[15:0]) for falling latch. When Disabled, Capture does not update CRL3 (PWM_CRL3[15:0]) and CFL3 (PWM_CFL3[15:0]), and disable Channel 3 Interrupt.	
[24]	INV3	Channel 3 Inverter ON/OFF 0 = Inverter OFF.	

Bits	Description						
		1 = Inverter ON. Reverse the input signal from GPIO before fed to Capture timer					
[23]	CAPRELOADFEN2	Reload CNR2 When CH2 Capture Failing Event Coming 0 = Failing capture reload for CH2 Disabled. 1 = Failing capture reload for CH2 Enabled.					
[22]	CAPRELOADREN2	Reload CNR2 When CH2 Capture Rising Event Coming 0 = Rising capture reload for CH2 Disabled. 1 = Rising capture reload for CH2 Enabled.					
[21:20]	PDMACAPMOD2	Select CRL2 or CFL2 for PDMA Transfer 00 = reserved. 01 = CRL2 will be transmitted. 10 = CFL2 will be transmitted. 11 = Both CRL2 and CFL2 will be transmitted.					
[19]	CH2PDMAEN	Channel 2 PDMA Enable Control 0 = Channel 2 PDMA function Disabled. 1 = Channel 2 PDMA function Enabled for the channel 2 captured data and transfer to memory.					
[18]	CAPCH2PADEN	Capture Input Enable Control 0 = Disable the channel 2 input capture signal from corresponding multi-function pin. 1 = Enable the channel 2 input capture signal from corresponding multi-function pin.					
[17]	CAPCH2EN	Capture Channel 2 Transition Enable/Disable Control 0 = Capture function on channel 2 Disabled. 1 = Capture function on channel 2 Enabled. When Enabled, Capture latched the PWM-timer value and saved to CRL2 (PWM_CRL2[15:0]) for rising latch and CFL2 (PWM_CFL2[15:0]) for falling latch. When Disabled, Capture does not update CRL2 (PWM_CRL2[15:0]) and CFL2 (PWM_CFL2[15:0]), and disable Channel 2 Interrupt.					
[16]	INV2	Channel 2 Inverter ON/OFF 0 = Inverter OFF. 1 = Inverter ON. Reverse the input signal from GPIO before fed to Capture timer					
[15]	CAPRELOADFEN1	Reload CNR1 When CH1 Capture Falling Event Coming 0 = Capture falling reload for CH1 Disabled. 1 = Capture falling reload for CH1 Enabled.					
[14]	CAPRELOADREN1	Reload CNR1 When CH1 Capture Rising Event Comes 0 = Rising capture reload for CH1 Disabled. 1 = Rising capture reload for CH1 Enabled.					
[13]	CH01CASK	Cascade channel 0 and channel 1 PWM timer for capturing usage					
[12]	CH0RFORDER	Set this bit to determine whether the PWM_CRL0 or PWM_CFL0 is the first captured data transferred to memory through PDMA when PDMACAPMOD0 =2'b11. 0 = PWM_CFL0 is the first captured data to memory. 1 = PWM_CRL0 is the first captured data to memory.					
[11]	Reserved	Reserved.					
[10]	CAPCH1PADEN	Capture Input Enable Control 0 = Disable the channel 1 input capture signal from corresponding multi-function pin. 1 = Enable the channel 1 input capture signal from corresponding multi-function pin.					

Bits	Description	
[9]	CAPCH1EN	Capture Channel 1 Transition Enable/Disable Control 0 = Capture function on channel 1 Disabled. 1 = Capture function on channel 1 Enabled. When Enabled, Capture latched the PMW-counter and saved to CRL1 (PWM_CRL1[15:0]) for rising latch and CFL1 (PWM_CFL1[15:0]) for falling latch. When Disabled, Capture does not update CRL1 (PWM_CRL1[15:0]) and CFL1 (PWM_CFL1[15:0]), and disable Channel 1 Interrupt.
[8]	INV1	Channel 1 Inverter ON/OFF 0 = Inverter OFF. 1 = Inverter ON. Reverse the input signal from GPIO before fed to Capture timer
[7]	CAPRELOADFEN0	Reload CNR0 When CH0 Capture Falling Event Comes 0 = Falling capture reload for CH0 Disabled. 1 = Falling capture reload for CH0 Enabled.
[6]	CAPRELOADREN0	Reload CNR0 When CH0 Capture Rising Event Comes 0 = Rising capture reload for CH0 Disabled. 1 = Rising capture reload for CH0 Enabled.
[5:4]	PDMACAPMOD0	Select CRL0 or CFL0 for PDMA Transfer 00 = reserved. 01 = CRL0 will be transmitted. 10 = CFL0 will be transmitted. 11 = Both CRL0 and CFL0 will be transmitted.
[3]	CHOPDMAEN	Channel 0 PDMA Enable Control 0 = Channel 0 PDMA function Disabled. 1 = Channel 0 PDMA function Enabled for the channel 0 captured data and transfer to memory.
[2]	CAPCH0PADEN	Capture Input Enable Control 0 = Disable the channel 0 input capture signal from corresponding multi-function pin. 1 = Enable the channel 0 input capture signal from corresponding multi-function pin.
[1]	CAPCH0EN	Capture Channel 0 Transition Enable/Disable Control 0 = Capture function on channel 0 Disabled. 1 = Capture function on channel 0 Enabled. When Enabled, Capture latched the PWM-timer value and saved to CRL0 (PWM_CRL0[15:0]) for rising latch and CFL0 (PWM_CFL0[15:0]) for falling latch. When Disabled, Capture does not update CRL0 (PWM_CRL0[15:0]) and CFL0 (PWM_CFL0[15:0]), and disable Channel 0 Interrupt.
[0]	INVO	Channel 0 Inverter ON/OFF 0 = Inverter OFF. 1 = Inverter ON. Reverse the input signal from GPIO before fed to Capture timer

Capture Interrupt enable Register (PWM_CAPINTEN)

Register	Offset	R/W	Description	Reset Value
PWM_CAPINTEN	PWM_BA+0x058	R/W	Capture interrupt enable Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved					CFL_IE3	CRL_IE3
23	22	21	20	19	18	17	16
	Reserved					CFL_IE2	CRL_IE2
15	14	13	12	11	10	9	8
	Reserved					CFL_IE1	CRL_IE1
7	6	5	4	3	2	1	0
Reserved					CFL_IE0	CRL_IE0	

Bits	Description				
[31:26]	Reserved	Reserved.			
		Channel 3 Falling Latch Interrupt Enable ON/OFF			
		0 = Falling latch interrupt Disabled.			
[25]	CFL_IE3	1 = Falling latch interrupt Enabled.			
		When Enabled, if Capture detects Channel 3 has falling transition, Capture issues an Interrupt.			
		Channel 3 Rising Latch Interrupt Enable ON/OFF			
		0 = Rising latch interrupt Disabled.			
[24]	CRL_IE3	1 = Rising latch interrupt Enabled.			
		When Enabled, if Capture detects Channel 3 has rising transition, Capture issues an Interrupt.			
[23:18]	Reserved	Reserved.			
		Channel 2 Falling Latch Interrupt Enable ON/OFF			
		0 = Falling latch interrupt Disabled.			
[17]	CFL_IE2	1 = Falling latch interrupt Enabled.			
		When Enabled, if Capture detects Channel 2 has falling transition, Capture issues an Interrupt.			
		Channel 2 Rising Latch Interrupt Enable ON/OFF			
		0 = Rising latch interrupt Disabled.			
[16]	CRL_IE2	1 = Rising latch interrupt Enabled.			
		When Enabled, if Capture detects Channel 2 has rising transition, Capture issues an Interrupt.			
[15:10]	Reserved	Reserved.			
[9]		Channel 1 Falling Latch Interrupt Enable Control			
	CFL IE1	0 = Falling latch interrupt Disabled.			
	0	1 = Falling latch interrupt Enabled.			
		When Enabled, if Capture detects Channel 1 has falling transition, Capture issues an			

Bits	Description					
		Interrupt.				
		Channel 1 Rising Latch Interrupt Enable Control				
		0 = Rising latch interrupt Disabled.				
[8]	CRL_IE1	1 = Rising latch interrupt Enabled.				
		When Enabled, if Capture detects Channel 1 has rising transition, Capture issues an Interrupt.				
[7:2]	Reserved	Reserved.				
		Channel 0 Falling Latch Interrupt Enable ON/OFF				
		0 = Falling latch interrupt Disabled.				
[1]	CFL_IE0	1 = Falling latch interrupt Enabled.				
		When Enabled, if Capture detects Channel 0 has falling transition, Capture issues an Interrupt.				
		Channel 0 Rising Latch Interrupt Enable ON/OFF				
[0]		0 = Rising latch interrupt Disabled.				
	CRL_IE0	1 = Rising latch interrupt Enabled.				
		When Enabled, if Capture detects Channel 0 has rising transition, Capture issues an Interrupt.				

Capture Interrupt Status Register (PWM_CAPINTSTS)

Register	Offset	R/W	Description	Reset Value
PWM_CAPINTSTS	PWM_BA+0x05C	R/W	Capture Interrupt Indication Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved		CAPOVF3	CAPOVR3	CFLI3	CRLI3	CAPIF3
23	22	21	20	19	18	17	16
	Reserved			CAPOVR2	CFLI2	CRLI2	CAPIF2
15	14	13	12	11	10	9	8
Reserved		CAPOVF1	CAPOVR1	CFLI1	CRLI1	CAPIF1	
7	6	5	4	3	2	1	0
	Reserved			CAPOVR0	CFLI0	CRLI0	CAPIF0

Bits	Description					
[31:29]	Reserved	Reserved.				
[28]	CAPOVF3	Capture Falling Flag Over Run for Channel 3 This flag indicate CFL3 update faster than software reading it when it is set This bit will be cleared automatically when user clear CFLI3 (PWM_CAPINTSTS[26])				
[27]	CAPOVR3	Capture Rising Flag Over Run for Channel 3 This flag indicate CRL3update faster than software reading it when it is set This bit will be cleared automatically when user clear CRLI3 (PWM_CAPINTSTS[25])				
[26]	CFLI3	PWM_CFL3 Latched Indicator Bit When input channel 3 has a falling transition, PWM_CFL3 was latched with the value of PWM down-counter and this bit is set by hardware, software can clear this bit by writing to it.				
[25]	CRLI3	PWM_CRL3 Latched Indicator Bit When input channel 3 has a rising transition, PWM_CRL3 was latched with the value of PWM down-counter and this bit is set by hardware, software can clear this bit by writing to it.				
[24]	CAPIF3	Capture3 Interrupt Indication Flag If channel 3 rising latch interrupt (CRL_IE3, PWM_CAPINTEN[24]) is enabled, a rising transition occurs at input channel 3 will result in CAPIF3 to high; Similarly, a falling transition will cause CAPIF3 to be set high if channel 3 falling latch interrupt (CFL_IE3, PWM_CAPINTEN[25]) is enabled. This flag is cleared by software with a write 1 on it.				
[23:21]	Reserved	Reserved.				
[20]	CAPOVF2	Capture Falling Flag Over Run for Channel 2 This flag indicate CFL2 update faster than software reading it when it is set This bit will be cleared automatically when user clear CFLI2 (PWM_CAPINTSTS[18])				
[19]	CAPOVR2	Capture Rising Flag Over Run for Channel 2 This flag indicate CRL2 update faster than software reading it when it is set This bit will be cleared automatically when user clear CRLI2 (PWM_CAPINTSTS[17])				

Bits	Description	
		PWM_CFL2 Latched Indicator Bit
[18]	CFLI2	When input channel 2 has a falling transition, PWM0_CFL2 was latched with the value of PWM down-counter and this bit is set by hardware, software can clear this bit by writing 1 to it.
		PWM_CRL2 Latched Indicator Bit
[17]	CRLI2	When input channel 2 has a rising transition, PWM0_CRL2 was latched with the value of PWM down-counter and this bit is set by hardware, software can clear this bit by writing 1 to it.
		Capture2 Interrupt Indication Flag
[16]	CAPIF2	If channel 2 rising latch interrupt (CRL_IE2, PWM_CAPINTEN[16]) is enabled, a rising transition occurs at input channel 2 will result in CAPIF2 to high; Similarly, a falling transition will cause CAPIF2 to be set high if channel 2 falling latch interrupt (CFL_IE2, PWM_CAPINTEN[17]) is enabled. This flag is cleared by software with a write 1 on it.
[15:13]	Reserved	Reserved.
		Capture Falling Flag Over Run for Channel 1
[12]	CAPOVF1	This flag indicate CFL1 update faster than software reading it when it is set
		This bit will be cleared automatically when user clear CFLI1 (PWM_CAPINTSTS[10])
		Capture Rising Flag Over Run for Channel 1
[11]	CAPOVR1	This flag indicate CRL1 update faster than software reading it when it is set
		This bit will be cleared automatically when user clear CRLI1 (PWM_CAPINTSTS[9])
		PWM_CFL1 Latched Indicator Bit
[10]	CFLI1	When input channel 1 has a falling transition, PWM_CFL1 was latched with the value of PWM down-counter and this bit is set by hardware, software can clear this bit by writing 1 to it.
		PWM_CRL1 Latched Indicator Bit
[9]	CRLI1	When input channel 1 has a rising transition, PWM_CRL1 was latched with the value of PWM down-counter and this bit is set by hardware, software can clear this bit by writing 1 to it.
		Capture1 Interrupt Indication Flag
[8]	CAPIF1	If channel 1 rising latch interrupt (CRL_IE1, PWM_CAPINTEN[8]) is enabled, a rising transition occurs at input channel 1 will result in CAPIF1 to high; Similarly, a falling transition will cause CAPIF1 to be set high if channel 1 falling latch interrupt (CFL_IE1, PWM_CAPINTEN[9]) is enabled. This flag is cleared by software with a write 1 on it.
[7:5]	Reserved	Reserved.
		Capture Falling Flag Over Run for Channel 0
[4]	CAPOVF0	This flag indicate CFL0 update faster than software read it when it is set
		This bit will be cleared automatically when user clear CFLI0 (PWM_CAPINTSTS[2])
		Capture Rising Flag Over Run for Channel 0
[3]	CAPOVR0	This flag indicate CRL0 update faster than software reading it when it is set
		This bit will be cleared automatically when user clears CRLI0 (PWM_CAPINTSTS[1]).
		PWM_CFL0 Latched Indicator Bit
[2]	CFLI0	When input channel 0 has a falling transition, PWM0_CFL0 was latched with the value of PWM down-counter and this bit is set by hardware, software can clear this bit by writing 1 to it.
		PWM_CRL0 Latched Indicator Bit
[1]	CRLI0	When input channel 0 has a rising transition, PWM0_CRL0 was latched with the value of PWM down-counter and this bit is set by hardware, software can clear this bit by writing 1 to it.

Bits Descripti	on
[0] CAPIF0	Capture0 Interrupt Indication Flag If channel 0 rising latch interrupt (CRL_IE0, PWM_CAPINTEN[0]) is enabled, a rising transition occurs at input channel 0 will result in CAPIF0 to high; Similarly, a falling transition will cause CAPIF0 to be set high if channel 0 falling latch interrupt (CFL_IE0, PWM_CAPINTEN[1]) is enabled. This flag is cleared by software with a write 1 on it.

Capture Rising Latch Register3-0 (PWM_CRL3-0)

Register	Offset	R/W	Description	Reset Value
PWM_CRL0	PWM_BA+0x060	R	Capture Rising Latch Register (Channel 0)	0x0000_0000
PWM_CRL1	PWM_BA+0x068	R	Capture Rising Latch Register (Channel 1)	0x0000_0000
PWM_CRL2	PWM_BA+0x070	R	Capture Rising Latch Register (Channel 2)	0x0000_0000
PWM_CRL3	PWM_BA+0x078	R	Capture Rising Latch Register (Channel 3)	0x0000_0000

31	30	29	28	27	26	25	24	
			CRI	L_H				
23	22	21	20	19	18	17	16	
	CRL_H							
15	14	13	12	11	10	9	8	
	CRL							
7	6	5	4	3	2	1	0	
			CI	₹L				

Bits	Description	
[31:16]	CRL_H	Upper Half Word of 32-bit Capture Data When Cascade Enable Control When cascade is enabled for capture channel 0, 2,the original 16 bit counter extend to 32 bit, and capture result CRL0 and CRL2 are also extend to 32 bit,
[15:0]	CRL	Capture Rising Latch Register Latch the PWM counter when Channel 0/1/2/3 has rising transition.

PWM Capture Falling Latch Register3-0 (PWM_CFL3-0)

Register	Offset	R/W	Description	Reset Value
PWM_CFL0	PWM_BA+0x064	R	Capture Falling Latch Register (Channel 0)	0x0000_0000
PWM_CFL1	PWM_BA+0x06C	R	Capture Falling Latch Register (Channel 1)	0x0000_0000
PWM_CFL2	PWM_BA+0x074	R	Capture Falling Latch Register (Channel 2)	0x0000_0000
PWM_CFL3	PWM_BA+0x07C	R	Capture Falling Latch Register (Channel 3)	0x0000_0000

31	30	29	28	27	26	25	24					
	CFL_H											
23	22	21	20	19	18	17	16					
			CFI	H								
15	14	13	12	11	10	9	8					
			CI	FL								
7	6	5	4	3	2	1	0					
			CI	FL	CFL							

Bits	Description	
[31:16]	CFL_H	Upper Half Word of 32-bit Capture Data When Cascade Enable Control When cascade is enabled for capture channel 0, 2, the original 16 bit counter will be extended to 32 bit, and capture result CFL0 and CFL2 are also extended to 32 bit,
[15:0]	CFL	Capture Falling Latch Register Latch the PWM counter when Channel 0/1/2/3 has Falling transition.

PDMA Data Register for Capture Channel 0 (PWM_PDMACH0)

Register	Offset	R/W	Description	Reset Value
PWM_PDMACH0	PWM_BA+0x080	R	PDMA Channel 0 Captured Data	0x0000_0000

31	30	29	28	27	26	25	24		
	PDMACH04								
23	22	21	20	19	18	17	16		
			PDMA	VCH03					
15	14	13	12	11	10	9	8		
			PDMA	ACH02					
7	6	5	4	3	2	1	0		
			PDMA	ACH01					

Bits	Description	
		Captured Data of Channel 0
		When CH01CASK is disabled, this byte is 0
[31:24]	PDMACH04	When CH01CASK is enabled, It is the 4 th byte of 32 bit capturing data for channel 0.
		Note: This register is used as a buffer to transfer PWM captured rising or falling data to memory by PDMA.
		Captured Data of Channel 0
		When CH01CASK is disabled, this byte is 0
[23:16]	PDMACH03	When CH01CASK is enabled, It is the 3 rd byte of 32 bit capturing data for channel 0.
		Note: This register is used as a buffer to transfer PWM captured rising or falling data to memory by PDMA.
		Captured Data of Channel 0
		When CH01CASK is disabled, this byte is 0
[15:8]	PDMACH02	When CH01CASK is enabled, It is the 2 nd byte of 32 bit capturing data for channel 0.
		Note: This register is used as a buffer to transfer PWM captured rising or falling data to memory by PDMA.
		Captured Data of Channel 0
		When CH01CASK is disabled, this byte is 0
[7:0]	PDMACH01	When CH01CASK is enabled, It is the 1 st byte of 32 bit capturing data for channel 0.
		Note: This register is used as a buffer to transfer PWM captured rising or falling data to memory by PDMA.

PDMA Data Register for Capture Channel 2 (PWM_PDMACH2)

Register	Offset	R/W	Description	Reset Value
PWM_PDMACH2	PWM_BA+0x084	R	PDMA Channel 2 Captured Data	0x0000_0000

31	30	29	28	27	26	25	24		
PDMACH24									
23	22	21	20	19	18	17	16		
			PDMA	ACH23					
15	14	13	12	11	10	9	8		
	PDMACH22								
7	6	5	4	3	2	1	0		
	PDMACH21								

Bits	Description	
		Captured Data of Channel 2
		When CH23CASK is disabled, this byte is 0
[31:24]	PDMACH24	When CH23CASK is enabled, It is the 4 th byte of 32 bit capturing data for channel 0.
		Note: This register is used as a buffer to transfer PWM captured rising or falling data to memory by PDMA.
		Captured Data of Channel 2
		When CH23CASK is disabled, this byte is 0
[23:16]	PDMACH23	When CH23CASK is enabled, It is the 3 rd byte of 32 bit capturing data for channel 0.
		Note: This register is used as a buffer to transfer PWM captured rising or falling data to memory by PDMA.
		Captured Data of Channel 2
		When CH23CASK is disabled, this byte is 0
[15:8]	PDMACH22	When CH23CASK is enabled, It is the 2 nd byte of 32 bit capturing data for channel 0.
		Note: This register is used as a buffer to transfer PWM captured rising or falling data to memory by PDMA.
		Captured Data of Channel 2
		When CH23CASK is disabled, this byte is 0
[7:0]	PDMACH21	When CH23CASK is enabled, It is the 1 st byte of 32 bit capturing data for channel 0.
		Note: This register is used as a buffer to transfer PWM captured rising or falling data to memory by PDMA.

PWM Center-Triggered Control Register (PWM_ADTRGEN)

Register	Offset	R/W	Description	Reset Value
PWM_ADTRGEN	PWM_BA+0x088	R/W	PWM Center-Triggered Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved							
7	6	5	4	3	2	1	0	
Reserved				TRGCH3EN	TRGCH2EN	TRGCH1EN	TRGCH0EN	

Bits	Description	
[3]	TRGCH3EN	PWM CH3 Center-triggered Enable Control 0 = PWM CH3 center-triggered function Disabled. 1 = PWM CH3 center-triggered function Enabled. Note: The center-triggered function is only valid in PWM center-aligned mode.
[2]	TRGCH2EN	PWM CH2 Center-triggered Enable Control 0 = PWM CH2 center-triggered function Disabled. 1 = PWM CH2 center-triggered function Enabled. Note: The center-triggered function is only valid in PWM center-aligned mode.
[1]	TRGCH1EN	PWM CH1 Center-triggered Enable Control 0 = PWM CH1 center-triggered function Disabled. 1 = PWM CH1 center-triggered function Enabled. Note: The center-triggered function is only valid in PWM center-aligned mode.
[0]	TRGCH0EN	PWM CH0 Center-triggered Enable Control 0 = PWM CH0 center-triggered function Disabled. 1 = PWM CH0 center-triggered function Enabled. Note: The center-triggered function is only valid in PWM center-aligned mode.

PWM Center-Triggered Indication Register (PWM_ADTRGSTS)

Register	Offset	R/W	Description	Reset Value
PWM_ADTRGSTS	PWM_BA+0x08C	R	PWM Center-Triggered Indication Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
Reserved				ADTRG3Flag	ADTRG2Flag	ADTRG1Flag	ADTRG0Flag		

Bits	Description	
[3]	ADTRG3Flag	PWM CH3 Center-triggered Flag 0 = PWM CH3 has not crossed half of PWM period yet. 1 = PWM CH3 has crossed half of PWM period. Note: This flag is only valid in center-aligned mode, and software could write 1 into this bit to clear the flag
[2]	ADTRG2Flag	PWM CH2 Center-triggered Flag 0 = PWM CH2 has not crossed half of PWM period yet. 1 = PWM CH2 has crossed half of PWM period. Note: This flag is only valid in center-aligned mode, and software could write 1 into this bit to clear the flag
[1]	ADTRG1Flag	PWM CH1 Center-triggered Flag 0 = PWM CH1 has not crossed half of PWM period yet. 1 = PWM CH1 has crossed half of PWM period. Note: This flag is only valid in center-aligned mode, and software could write 1 into this bit to clear the flag
[0]	ADTRG0Flag	PWM CH0 Center-triggered Flag 0 = PWM CH0 has not crossed half of PWM period yet. 1 = PWM CH0 has crossed half of PWM period. Note: This flag is only valid in center-aligned mode, and software could write 1 into this bit to clear the flag

6.11 Watchdog Timer Controller

6.11.1 Overview

The purpose of Watchdog Timer is to perform a system reset after the software running into a problem. This prevents system from hanging for an infinite period of time. Besides, this Watchdog Timer supports the function to wake-up CPU from Power-down mode. The watchdog timer includes an 18-bit free running counter with programmable time-out intervals.

6.11.2 Features

- 18-bit free running WDT counter for Watchdog timer time-out interval.
- Selectable time-out interval (2⁴ ~ 2¹⁸) and the time-out interval is 104 ms ~ 26.316 s (if WDT_CLK = 10 kHz).
- Reset period = (1 / 10 kHz) * 63, if WDT_CLK = 10 kHz.

6.11.3 Block Diagram

nuvoton

The Watchdog Timer clock control and block diagram are shown as follows.

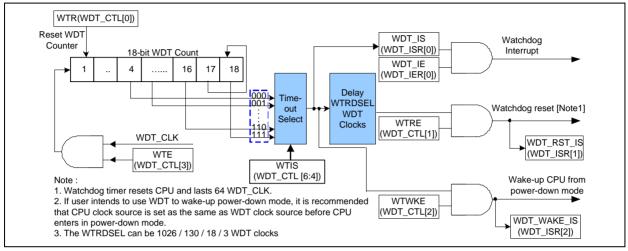


Figure 6-46 Watchdog Controller Block Diagram

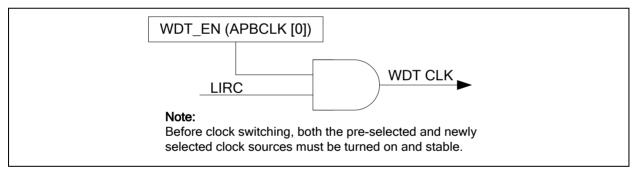


Figure 6-47 Watchdog Timer Clock Control Diagram

6.11.4 Functional Description

The purpose of Watchdog Timer is to perform a system reset after the software running into a problem. This prevents system from hanging for an infinite period of time. Besides, this Watchdog Timer supports the function to wake-up the chip from Power-down mode. Moreover, the Watchdog counter will be automatically reset when the chip is entering Power-down mode. The watchdog timer includes an 18-bit free running counter with programmable time-out intervals. The following figure show the watchdog time-out interval selection and the next figure show the timing of watchdog interrupt signal and reset signal.

Setting WTE (WDT_CTL [3]) enables the watchdog timer and the WDT counter starts counting up. When the counter reaches the selected time-out interval, Watchdog timer interrupt flag WDT_IS (WDT_ISR[0]) will be set immediately to request a WDT interrupt if the watchdog timer interrupt enable bit WDT_IE (WDT_IER[0]) is set, in the meanwhile, a specified delay time (WTRDSEL (WDT_CTL[9:8]) * TWDT) follows the time-out event. User must set WTR (WDT_CTL [0]) (Watchdog timer reset) high to reset the 18-bit WDT counter to avoid CPU from Watchdog timer reset before the delay time expires. WTR (WDT CTL [0]) bit is auto cleared by hardware after WDT counter is reset. There are eight time-

out intervals with specific delay time which are selected by Watchdog timer interval select bits WTIS (WDT CTL [6:4]). If the WDT counter has not been cleared after the specific delay time expires, the watchdog timer will set Watchdog Timer Reset Flag, WDT_RST_IS (WDT_ISR[1]) high and reset CPU. This reset will last 63 * WDT clocks (T^{RST}) then CPU restarts executing program from reset vector (0x0000 0000). WDT RST IS will not be cleared by Watchdog reset. User may poll WDT RST IS by software to recognize the reset source.

nuvoton

WTIS	WTR Time-Out Interval	Reset Delay Period T _{RSTD}	Time-Out Interval WDT_CLK = 10 KHz T _{TIS}
000	2 ⁴ * T _{WDT}	(3/18/130/1026) * T _{WDT}	1.6 ms
001	2 ⁶ * T _{WDT}	(3/18/130/1026) * T _{WDT}	6.4 ms
010	2 ⁸ * T _{WDT}	(3/18/130/1026) * T _{WDT}	25.6 ms
011	2 ¹⁰ * T _{WDT}	(3/18/130/1026) * T _{WDT}	102.4 ms
100	2 ¹² * T _{WDT}	(3/18/130/1026) * T _{WDT}	407 ms
101	2 ¹⁴ * T _{WDT}	(3/18/130/1026) * T _{WDT}	1.638 s
110	2 ¹⁶ * T _{WDT}	(3/18/130/1026) * T _{WDT}	6.553 s
111	2 ¹⁸ * T _{WDT}	(3/18/130/1026) * T _{WDT}	26.214 s

Table 6-13 Watchdog Time-out Interval Selection

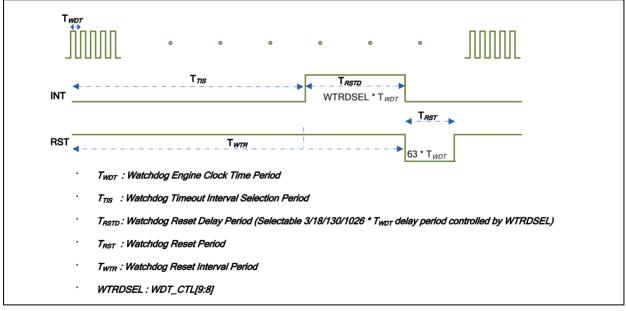


Figure 6-48 Watchdog Timing of Interrupt and Reset Signal

6.11.5 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
WDT Base Address: WDT_BA = 0x4000_4000							
WDT_CTL	WDT_BA+0x00	R/W	Watchdog Timer Control Register	0x0000_0070			
WDT_IER	WDT_BA+0x04	R/W	Watchdog Timer Interrupt Enable Register	0x0000_0000			
WDT_ISR	WDT_BA+0x08	R/W	Watchdog Timer Interrupt Status Register	0x0000_0000			

6.11.6 Register Description

Watchdog Timer Control Register (WDT_CTL)

Register	Offset	R/W	Description	Reset Value
WDT_CTL	WDT_BA+0x00	R/W	Watchdog Timer Control Register	0x0000_0070

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
		Rese	erved			WTR	DSEL		
7 6 5 4				3	2	1	0		
Reserved WTIS			WTE	WTWKE	WTRE	WTR			

Bits	Description							
[31:10]	Reserved	Reserved.	Reserved.					
		Watchdog Timer Reset Delay Select When watchdog timeout happened, software has a time named watchdog reset delay period to clear watchdog timer to prevent watchdog reset happened. Software can select a suitable value of watchdog reset delay period for different watchdog timeout period.						
		WTRDSEL[1:0]	Description					
[9:8]	WTRDSEL	00	Watchdog reset delay period is 1026 watchdog clock					
		01	Watchdog reset delay period is 130 watchdog clock					
		10	Watchdog reset delay period is 18 watchdog clock					
		11	Watchdog reset delay period is 3 watchdog clock					
		Note: This bit will be reset if watchdog reset happened						
[7]	Reserved	Reserved.						
[6:4]	WTIS	Please refer to open lo	erval Selection (Write Protect) ock sequence to program it. the time-out interval for the Watchdog timer. This count is free 6-13.					
[3]	WTE	Please refer to open to 0 = Watchdog timer D	Watchdog Timer Enable Control (Write Protect) Please refer to open lock sequence to program it. 0 = Watchdog timer Disabled (this action will reset the internal counter). 1 = Watchdog timer Enabled.					
[2]	WTWKE	_	Watchdog Timer Wake-up Function Enable Control (Write Protect) Please refer to open lock sequence to program it.					

		0 = Watchdog timer Wake-up CPU function Disabled. 1 = Wake-up function Enabled so that Watchdog timer time-out can wake up CPU from Power-down mode.
[1]	WTRE	Watchdog Timer Reset Function Enable Control (Write Protect) Please refer to open lock sequence to program it. Setting this bit will enable the Watchdog timer reset function. 0 = Watchdog timer reset function Disabled. 1 = Watchdog timer reset function Enabled.
[0]		Clear Watchdog Timer (Write Protect) Please refer to open lock sequence to program it. Setting this bit will clear the Watchdog timer. 0 = No effect. 1 = Reset the contents of the Watchdog timer. Note: This bit will be auto cleared after 1 PCLK clock cycle.

Watchdog Timer Interrupt Enable Register (WDT_IER)

Register	Offset	R/W	Description	Reset Value
WDT_IER	WDT_BA+0x04	R/W	Watchdog Timer Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	21 20 19 18 17						
Reserved									
15	15 14 13 12 11 10 9								
	Reserved								
7	7 6 5 4 3 2 1								
	Reserved								

Bits	Description	escription				
[31:1]	Reserved	Reserved.				
[0]		Watchdog Timer Interrupt Enable Control 0 = Watchdog timer interrupt Disabled. 1 = Watchdog timer interrupt Enabled.				

Watchdog Timer Interrupt Status Register (WDT_ISR)

Register	Offset	R/W	Description	Reset Value
WDT_ISR	WDT_BA+0x08	R/W	Watchdog Timer Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	Reserved					WDT_RST_IS	WDT_IS			

Bits	Description	
[31:3]	Reserved	Reserved.
		Watchdog Timer Wake-up Status If Watchdog timer causes system to wake up from Power-down mode, this bit will be set to 1. It must be cleared by software with a write "1" to this bit.
[2]	WDT_WAKE_IS	0 = Watchdog timer does not cause system wake-up. 1 = Wake system up from Power-down mode by Watchdog time-out. Note1: When system in Power-down mode and watchdog time-out, hardware will set WDT_WAKE_IS and WDT_IS. Note2: After one engine clock, this bit can be cleared by writing "1" to it
[1]	WDT_RST_IS	Watchdog Timer Reset Status When the Watchdog timer initiates a reset, the hardware will set this bit. This flag can be read by software to determine the source of reset. Software is responsible to clear it manually by writing "1" to it. If WTRE is disabled, then the Watchdog timer has no effect on this bit. 0 = Watchdog timer reset did not occur. 1 = Watchdog timer reset occurs. Note: This bit is read only, but can be cleared by writing "1" to it.
[0]	wdt_is	Watchdog Timer Interrupt Status If the Watchdog timer interrupt is enabled, then the hardware will set this bit to indicate that the Watchdog timer interrupt has occurred. If the Watchdog timer interrupt is not enabled, then this bit indicates that a time-out period has elapsed. 0 = Watchdog timer interrupt did not occur. 1 = Watchdog timer interrupt occurs. Note: This bit is read only, but can be cleared by writing "1" to it.

6.12 Window Watchdog Timer Controller

6.12.1 Overview

nuvoTon

The purpose of Window Watchdog Timer is to perform a system reset within a specified window period to prevent software run to uncontrollable status by any unpredictable condition.

6.12.2 Features

- 6-bit down counter and 6-bit compare value to make the window period flexible
- Selectable WWDT clock pre-scale counter to make WWDT time-out interval variable

6.12.3 Block Diagram

nuvoTon

The Window Watchdog Timer block diagram is shown as follows.

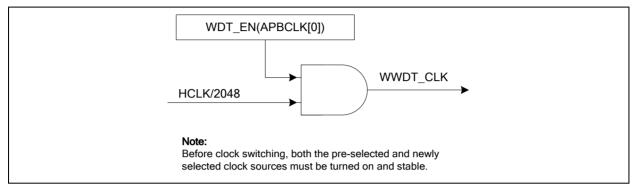


Figure 6-49 Window Watchdog Controller Block Diagram

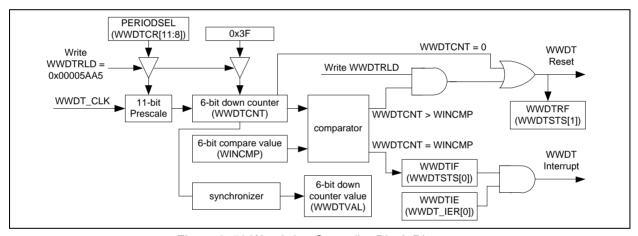


Figure 6-50 Watchdog Controller Block Diagram

6.12.4 Functional Description

The window watchdog timer includes a 6-bit down counter with programmable prescaler to define different time-out intervals.

The clock source of 6-bit window watchdog timer is based on system clock divide 2048 with a programmable 11-bit prescaler. The programmable 11-bit prescaler is controlled by register PERIODSEL (WWDTCR[11:8]) and the correlate of PERIODSEL and prescaler value is list in following table.

PERIODSEL	Prescaler Value	Timeout Period	Timeout Interval 12 MHz/2048 = 5.859 KHz WWDT_CLK=5.859 KHz
0000	1	1 * 64 * T _{WWDT}	10.9 ms

0001	2	2 * 64 * T _{WWDT}	21.8 ms
0010	4	4 * 64 * T _{WWDT}	43.7 ms
0011	8	8 * 64 * T _{WWDT}	87.4 ms
0100	16	16 * 64 * T _{WWDT}	174.7 ms
0101	32	32 * 64 * T _{WWDT}	349.5 ms
0110	64	64 * 64 * T _{WWDT}	699.1 ms
0111	128	128 * 64 * T _{WWDT}	1.3981 s
1000	192	192 * 64 * T _{WWDT}	2.0971 s
1001	256	256 * 64 * T _{WWDT}	2.7962 s
1010	384	384 * 64 * T _{WWDT}	4.1943 s
1011	512	512 * 64 * T _{WWDT}	5.5924 s
1100	768	768 * 64 * T _{WWDT}	8.3886 s
1101	1024	1024 * 64 * T _{WWDT}	11.1848 s
1110	1536	1536 * 64 * T _{WWDT}	16.7772 s
1111	2048	2048 * 64 * T _{WWDT}	22.3696 s

nuvoton

Table 6-14 Window Watchdog Prescaler Value Selection

The window watchdog timer can be enabled by software setting WWDTEN (WWDTCR[0]) to 1. As window watchdog timer is enabled, the down counter will start counting from 0x3F and cannot be stopped by software.

During WWDT down counting, the WWDT interrupt will happen if the counter value is equal to window watchdog timer compare value WINCMP (WWDTCR[21:16]] and WWDTIE(WWDT IER[0]) is set to 1. The WWDT reset will happen if the WWDT counter value reaches to 0. Before WWDT counter down to 0, software can write certain value (0x00005AA5) to register WWDTRLD to reload 0x3F to WWDT counter to prevent WWDT reset happen and this reload action only active when WWDT counter value is equal or smaller than WINCMP. If software writes WWDTRLD during the period that WWDT counter larger than WINCMP, additional WWDT reset will happen to cause chip be reset.

When software writes certain value (0x00005AA5) to register WWDTRLD to reload WWDT counter, it need 3 window watchdog clocks to sync reload command to actually perform reload action. It means if software set window watchdog clock prescaler as divide 1, the compare value WINCMP (WWDTCR[21:16]) should larger than 2 or software will not able to reload WWDT counter before WWDT reset happened.

To prevent program run to unexpected code to disable window watchdog, the control register WWDTCR and WWDT IER can only be written one time after chip power on or reset. In other words, once configured and enabled, window watchdog timer cannot be disabled or re-configure unless chip is reset. Window watchdog timer will stop counting while CPU is in idle mode or Power-down mode, and resume after CPU waked up.

6.12.5 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value		
WWDT Base Address: WWDT_BA = 0x4000_4100						
WWDTRLD	WWDT_BA+0x00	W	Window Watchdog Timer Reload Counter Register	0x0000_0000		
WWDTCR	WWDT_BA+0x04	R/W	Window Watchdog Timer Control Register	0x003F_0800		
WWDT_IER	WWDT_BA+0x08	R/W	Window Watchdog Timer Interrupt Enable Register	0x0000_0000		
WWDTSTS	WWDT_BA+0x0C	R/W	Window Watchdog Timer Status Register	0x0000_0000		
WWDTVAL	WWDT_BA+0x10	R	Window Watchdog Timer Counter Value Register	0x0000_003F		

6.12.6 Register Description

nuvoTon

Window Watchdog Timer Reload Counter Register (WWDTRLD)

Register	Offset	R/W	Description	Reset Value
WWDTRLD	WWDT_BA+0x00	W	Window Watchdog Timer Reload Counter Register	0x0000_0000

31	30	29	28	27	26	25	24			
WWDTRLD										
23	22	21	21 20 19 18 17							
	WWDTRLD									
15	14	13	12	11	10	9	8			
	WWDTRLD									
7 6 5 4 3 2 1 0										
	WWDTRLD									

Bits	Description	escription					
		Nindow Watchdog Timer Reload Counter Register					
[31:0]		Writing 0x00005AA5 to this register will reload the Window Watchdog Timer counter value to 0x3F.					
		Note: This register can only be written when WWDT counter value between 0 and WINCMP, otherwise WWDT will generate RESET signal.					

Window Watchdog Timer Control Register (WWDTCR)

nuvoTon

Register	Offset	R/W	Description	Reset Value
WWDTCR	WWDT_BA+0x04	R/W	Window Watchdog Timer Control Register	0x003F_0800

Note: This register can be write only one time after chip power on or reset.

31	30	29	28	27	26	25	24		
DBGEN		Reserved							
23	22	21	20	19	18	17	16		
Reserved				WINCMP					
15	14	13	12	11	10	9	8		
	Rese	erved		PERIODSEL					
7	6	5	4	3	2	1	0		
Reserved							WWDTEN		

Bits	Description	
[31]	DBGEN	WWDT Debug Enable Control 0 = WWDT stopped count if system is in Debug mode. 1 = WWDT still counted even system is in Debug mode.
[30:22]	Reserved	Reserved.
[21:16]	WINCMP	WWDT Window Compare Register Set this register to adjust the valid reload window. Note: WWDTRLD register can only be written when WWDT counter value between 0 and WINCMP, otherwise WWDT will generate RESET signal.
[15:12]	Reserved	Reserved.
[11:8]	PERIODSEL	WWDT Pre-scale Period Select These three bits select the pre-scale for the WWDT counter period. Please refer to Table 6-14.
[7:1]	Reserved	Reserved.
[0]	WWDTEN	Window Watchdog Enable Control Set this bit to enable Window Watchdog timer. 0 = Window Watchdog timer function Disabled. 1 = Window Watchdog timer function Enabled.

Window Watchdog Timer Interrupt Enable Register (WWDT_IER)

nuvoTon

Register	Offset	R/W	Description	Reset Value
WWDT_IER	WWDT_BA+0x08	R/W	Window Watchdog Timer Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	7 6 5 4 3 2 1						0			
Reserved							WWDTIE			

Note: This register can be write only one time after chip power on or reset.

Bits	Description	escription				
[31:1]	Reserved	eserved.				
[0]	WWDTIE	WWDT Interrupt Enable Control Setting this bit will enable the Window Watchdog timer interrupt function. 0 = Watchdog timer interrupt function Disabled. 1 = Watchdog timer interrupt function Enabled.				

Window Watchdog Timer Status Register (WWDTSTS)

Register	Offset	R/W	Description	Reset Value
wwdtsts	WWDT_BA+0x0C	R/W	Window Watchdog Timer Status Register	0x0000_0000

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	7 6 5 4 3 2						0			
Reserved						WWDTRF	WWDTIF			

Bits	Description	escription					
[31:2]	Reserved	Reserved.					
[1]	WWDTRF	WWDT Reset Flag When WWDT counter down count to 0 or write WWDTRLD during WWDT counter larger than WINCMP, chip will be reset and this bit is set to 1. This bit can be cleared by writing one to it.					
[0]	WWDTIF	WWDT Compare Match Interrupt Flag When WWCMP match the WWDT counter, then this bit is set to 1. This bit can be cleared by writing one to it.					

Window Watchdog Timer Counter Value Register (WWDTVAL)

Register	Offset	R/W	Description	Reset Value
WWDTVAL	WWDT_BA+0x10	R	Window Watchdog Timer Counter Value Register	0x0000_003F

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
Rese	erved			WWD	TVAL		

Bits	Description	
[31:6]	Reserved	Reserved.
[5:0]	IWWDTVAL	WWDT Counter Value This register reflects the current counter value of window watchdog.

6.13 RTC

nuvoton

6.13.1 Overview

Real Time Clock (RTC) unit provides user the real time and calendar message. The Clock Source (LXT) of RTC is from an external 32,768 kHz crystal connected at pins X32I and X32O (reference to pin Description) or from an external 32.768 kHz oscillator output fed at pin X32l. The RTC unit provides the time message (second, minute, hour) in Time Loading Register (TLR) as well as calendar message (day, month, year) in Calendar Loading Register (CLR). The data message is expressed in BCD format. This unit offers alarm function that user can preset the alarm time in Time Alarm Register (TAR) and alarm calendar in Calendar Alarm Register (CAR).

The RTC unit supports periodic Time Tick and Alarm Match interrupts. The periodic interrupt has 8 period options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second which are selected by TTR (RTC TTR[2:0]). When RTC counter in TLR and CLR is equal to alarm setting time registers TAR and CAR, the alarm interrupt status (AIS (RTC RIIR[0])) is set and the alarm interrupt is requested if the alarm interrupt is enabled (AIER (RTC RIER[0])=1). The RTC Time Tick (if wake-up CPU function is enabled, (TWKE (RTC TTR[3]) high) and Alarm Match can cause CPU wake-up from idle or Powerdown mode.

6.13.2 Features

- One time counter (second, minute, hour) and calendar counter (day, month, year) for user to check the time
- Alarm register (second, minute, hour, day, month, year)
- 12-hour or 24-hour mode is selectable
- Leap year compensation automatically
- Day of week counter
- Frequency compensate register (FCR)
- All time and calendar message is expressed in BCD code
- Supports periodic time tick interrupt with 8 period options 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second
- Supports 1, 2, 4, 8 and 16 seconds clock output (CLK Hz) for frequency measuring
- Supports RTC Time Tick and Alarm Match interrupt
- Supports wake-up CPU from Power-down mode
- Supports 80 bytes spare registers and a snoop pin to clear the content of these spare registers

6.13.3 Block Diagram

nuvoTon

The block diagram of Real Time Clock is depicted as follows.

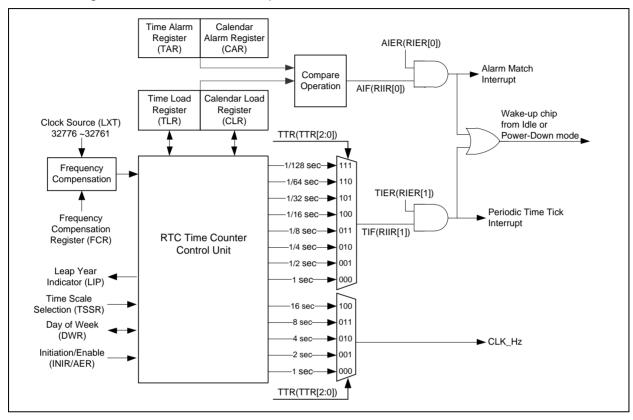


Figure 6-51 RTC Core Block Diagram

6.13.4 Functional Description

nuvoton

6.13.4.1 Access to RTC register

Due to clock difference between RTC clock and system clock, when user writes new data to any one of the registers, the register will not be updated until 2 RTC clocks later (60us).

In addition, user must be aware that RTC block does not check whether loaded data is out of bounds or not. RTC does not check rationality between DWR and CLR either.

6.13.4.2 RTC Initiation

When RTC block is powered on, user has to write a number (0xa5eb1357) to RTC INIR to reset all logic. RTC_INIR acts as hardware reset circuit. Once RTC_INIR has been set as 0xa5eb1357, there is no action for RTC if any value is programmed into RTC INIR register.

6.13.4.3 RTC Read/Write Enable

Register AER bit 15~0 is served as RTC read/write password to protect RTC registers. AER (RTC AER[15:0]) has to be set as 0xa965 to enable access restriction. Once it is set, it will take effect at least 512 RTC clocks (about 15ms). Programmer can read RTC enabled status flag (ENF (RTC AER[16])) to check whether if RTC unit start operating or not.

6.13.4.4 Frequency Compensation

The RTC FCR register allows software to make digital compensation to a clock input. Please follow the example and formula below to write the actual frequency of 32k crystal to RTC FCR register. Following are the compensation examples for higher or lower than 32768 Hz.

Example 1:

Frequency counter measurement: 32773.65 Hz (> 32768 Hz)

FCR = (32768 * 0x200000) / 32773.65 = 0x1FFE96

Example 2:

Frequency counter measurement: 32763.25 Hz (< 32768 Hz)

FCR = (32768 * 0x200000) / 32763.25 = 0x200130

Note: The value of RTC FCR register will be as default value (0x0020 0000) while the compensation is not executed. User can utilize a frequency counter to measure RTC clock source via clock output function in manufacturing. In the meanwhile, user can use clock output function to check the result of RTC frequency compensation.

6.13.4.5 Time and Calendar counter

RTC TLR and RTC CLR registers are used to load the time and calendar. RTC TAR and RTC CAR registers are used for alarm. They are all represented by BCD.

6.13.4.6 12/24 hour Time Scale Selection

The 12/24 hour time scale selection depends on 24hr_12hr (RTC_TSSR[0]).

6.13.4.7 Day of the week counter

The RTC unit provides day of week in Day of the Week Register (RTC_DWR). The value is defined from 0 to 6 to represent Sunday to Saturday respectively.

6.13.4.8 Periodic Time Tick Interrupt

The periodic interrupt has 8 period option 1/128, 1/64, 1/32, 1/16, 1/8, 1/4, 1/2 and 1 second which are selected by TTR(TTR[2:0]). When periodic time tick interrupt is enabled by setting TIER (RTC_RIER[1]) to 1, the Periodic Time Tick Interrupt is requested periodically in the period selected by TTR (RTC_TTR[2:0]).

6.13.4.9 Hz Clock output

RTC support output a Hz clock (CLK_Hz) for frequency measuring.

The clock output frequency has 5 period option 1, 2, 4, 8 and 16 seconds which are selected by TTR(RTC_TTR[2:0]).

6.13.4.10 Alarm Interrupt

When RTC counter in TLR and CLR is equal to alarm setting time TAR and CAR the alarm interrupt status (AIS (RIIR[0])) is set and the alarm interrupt is requested if the alarm interrupt is enabled (AIER (RIER[0])=1).

Application Note:

TAR, CAR, TLR and CLR registers are all BCD counter.

Programmer has to make sure that the loaded values are reasonable. For example, Load CLR as 201a (year), 13 (month), 00 (day), or CLR does not match with DWR, etc.

Reset state:

Register	Reset State
AER	0
CLR	05/1/1 (year/month/day)
TLR	00:00:00 (hour : minute : second)
CAR	00/00/00 (year/month/day)
TAR	00:00:00 (hour : minute : second)
TSSR	1 (24 hr mode)
DWR	6 (Saturday)
RIER	0
RIIR	0
LIR	0
TTR	0

In CLR and CAR, only 2 BCD digits are used to express "year". It is assumed that 2 BCD digits of xy denote 20xy, but not 19xy or 21xy.

6.13.4.11 Spare registers and snoop pin

nuvoton

The RTC is equipped with 80 bytes spare registers to store important user information, and also has a snoop function to detect the transition of snoop pin. Once the transition defined in SNOOPEDGE (RTC_SPRCTL[1]) is detected in snoop pin and SNOOPEN (RTC_SPRCTL[0]) is 1, the 80 bytes spare registers will be cleared by RTC automatically.

6.13.5 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write, C: write 1 to clear

Register	Offset	R/W	Description	Reset Value
RTC Base Addres				
RTC_BA = 0x4000	J_8000 T	1	T	
RTC_INIR	RTC_BA+0x00	R/W	RTC Initiation Register	0x0000_0000
RTC_AER	RTC_BA+0x04	R/W	RTC Access Enable Register	0x0000_0000
RTC_FCR	RTC_BA+0x08	R/W	RTC Frequency Compensation Register	0x0020_0000
RTC_TLR	RTC_BA+0x0C	R/W	Time Loading Register	0x0000_0000
RTC_CLR	RTC_BA+0x10	R/W	Calendar Loading Register	0x0005_0101
RTC_TSSR	RTC_BA+0x14	R/W	Time Scale Selection Register	0x0000_0001
RTC_DWR	RTC_BA+0x18	R/W	Day of the Week Register	0x0000_0006
RTC_TAR	RTC_BA+0x1C	R/W	Time Alarm Register	0x0000_0000
RTC_CAR	RTC_BA+0x20	R/W	Calendar Alarm Register	0x0000_0000
RTC_LIR	RTC_BA+0x24	R	Leap Year Indicator Register	0x0000_0000
RTC_RIER	RTC_BA+0x28	R/W	RTC Interrupt Enable Register	0x0000_0000
RTC_RIIR	RTC_BA+0x2C	R/W	RTC Interrupt Indication Register	0x0000_0000
RTC_TTR	RTC_BA+0x30	R/W	RTC Time Tick Register	0x0000_0000
RTC_SPRCTL	RTC_BA+0x3C	R/W	RTC Spare Functional Control Register	0x0000_0080
RTC_SPR0	RTC_BA+0x40	R/W	RTC Spare Register 0	0x0000_0000
RTC_SPR1	RTC_BA+0x44	R/W	RTC Spare Register 1	0x0000_0000
RTC_SPR2	RTC_BA+0x48	R/W	RTC Spare Register 2	0x0000_0000
RTC_SPR3	RTC_BA+0x4C	R/W	RTC Spare Register 3	0x0000_0000
RTC_SPR4	RTC_BA+0x50	R/W	RTC Spare Register 4	0x0000_0000
RTC_SPR5	RTC_BA+0x54	R/W	RTC Spare Register 5	0x0000_0000
RTC_SPR6	RTC_BA+0x58	R/W	RTC Spare Register 6	0x0000_0000
RTC_SPR7	RTC_BA+0x5C	R/W	RTC Spare Register 7	0x0000_0000
RTC_SPR8	RTC_BA+0x60	R/W	RTC Spare Register 8	0x0000_0000
RTC_SPR9	RTC_BA+0x64	R/W	RTC Spare Register 9	0x0000_0000
RTC_SPR10	RTC_BA+0x68	R/W	RTC Spare Register 10	0x0000_0000
RTC_SPR11	RTC_BA+0x6C	R/W	RTC Spare Register 11	0x0000_0000
RTC_SPR12	RTC_BA+0x70	R/W	RTC Spare Register 12	0x0000_0000

Register	Offset	R/W	Description	Reset Value
RTC_SPR13	RTC_BA+0x74	R/W	RTC Spare Register 13	0x0000_0000
RTC_SPR14	RTC_BA+0x78	R/W	RTC Spare Register 14	0x0000_0000
RTC_SPR15	RTC_BA+0x7C	R/W	RTC Spare Register 15	0x0000_0000
RTC_SPR16	RTC_BA+0x80	R/W	RTC Spare Register 16	0x0000_0000
RTC_SPR17	RTC_BA+0x84	R/W	RTC Spare Register 17	0x0000_0000
RTC_SPR18	RTC_BA+0x88	R/W	RTC Spare Register 18	0x0000_0000
RTC_SPR19	RTC_BA+0x8C	R/W	RTC Spare Register 19	0x0000_0000

6.13.6 Register Description

nuvoTon

RTC Initiation Register (RTC_INIR)

Register	Offset	R/W	Description	Reset Value
RTC_INIR	RTC_BA+0x00	R/W	RTC Initiation Register	0x0000_0000

31	30	29	28	27	26	25	24
			IN	IR			
23	22	21	20	19	18	17	16
			IN	IR			
15	14	13	12	11	10	9	8
			IN	IR			
7	6	5	4	3	2	1	0
			INIR				ACTIVE

Bits	Description	
[31:1]		RTC Initiation (Write Only) When RTC block is powered on, RTC is at reset state. User has to write a number (0x a5eb1357) to INIR to make RTC leaving reset state. Once the INIR is written as 0xa5eb1357, the RTC will be in un-reset state permanently. The INIR is a write-only field and read value will be always "0".
[0]		RTC Active Status (Read Only) 0 = RTC is at reset state. 1 = RTC is at normal active state.

RTC Access Enable Register (RTC_AER)

Register	Offset	R/W	Description	Reset Value
RTC_AER	RTC_BA+0x04	R/W	RTC Access Enable Register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Reserved				ENF
15	14	13	12	11	10	9	8
			Al	ER			
7	6	5	4	3	2	1	0
			Al	ER			

Bits	Description			
[31:17]	Reserved	Reserved.		
		RTC Register Access Ena 0 = RTC register read/write 1 = RTC register read/write This bit will be set after AE 512 RTC clocks or AER[15	Disabled. Enabled. R[15:0] register is load a 0x	xA965, and be cleared automatically
		INIR	R/W	R/W
		AER	R/W	R/W
		FCR	R/W	-
		TLR	R/W	R
[16]	ENF	CLR	R/W	R
[]		TSSR	R/W	R/W
		DWR	R/W	R
		TAR	R/W	-
		CAR	R/W	-
		LIR	R	R
		RIER	R/W	R/W
		RIIR	R/W	R/W
		TTR	R/W	-
		SPRCTL	R/W	-
		SPR0~SPR19	R/W	-

F	Ė	
	4	
ra		
U	ď	
	ľ	
Þ		
C	Ė	
Ш	Š	
	ř	
	ĸ	
i		
Ь		
1		
Ľ		
П	ī	
	Ц	Ц
×	ı	
ú		
É		=
П	П	
И		Ŋ
	IJ	I)
П	ī	
	Ц	
		0
Ρ	Ŕ	4
	П	
	=	
2	5	
É	ï	3
E		9
Ç		
ij	B	
F		
	ø	
7	U	ij
	Ŀ	4
П	П	
н	ы	Ц
ī		
μ	Ц	
١	Ц	
į	Ц	j
Ė	Ц	j 1
Ė	į	j
Ė	t T	; זכי
<u> </u>	t T	j
Ė	t T	; זכי
<u> </u>	t T	<u> </u>
	τ <u>τ</u>	<u> </u>
	τ <u>τ</u>	<u> </u>
	τ <u>τ</u>	<u> </u>
<u> </u>	it T	<u> </u>
	i T T	<u> </u>
	τ Τ < \	<u> </u>
	t T T T	<u> </u>
	t T	<u> </u>
	t T T	<u> </u>
	Σ Τ	<u> </u>
	į T T V D -	<u> </u>
	Σ Τ	<u> </u>
	į T T V D -	<u> </u>

		RTC Register Access Enable Password (Write Only)
[15:0]	AER	0xa965 = RTC access Enable.d
		Others = RTC access Disable.d

RTC Frequency Compensation Register (RTC_FCR)

Register	Offset	R/W	Description	Reset Value
RTC_FCR	RTC_BA+0x08	R/W	RTC Frequency Compensation Register	0x0020_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
Reserved		FCR					
15	14	13	12	11	10	9	8
FCR							
7	6	5	4	3	2	1	0
FCR							

Bits	Description		
[31:22]	Reserved	Reserved.	
[21:0]	FCR	Frequence Compensation Register FCR = 32768 * 0x200000 / (LXT period). LXT period: the clock period (Hz) of LXT.	

RTC Time Loading Register (RTC_TLR)

nuvoTon

Register	Offset	R/W	Description	Reset Value
RTC_TLR	RTC_BA+0x0C	R/W	Time Loading Register	0x0000_0000

31	30	29	28	27	26	25	24				
Reserved											
23	22	21 20		19	18	17	16				
Res	erved	101	-IR	1HR							
15	14	13	12	11	10	9	8				
Reserved		10MIN		1MIN							
7	6	5	4	3	2	1	0				
Reserved		10SEC		1SEC							

Bits	Description	escription						
[31:22]	Reserved	Reserved.						
[21:20]	10HR	10 Hour Time Digit (0~2)						
[19:16]	1HR	1 Hour Time Digit (0~9)						
[15]	Reserved	Reserved.						
[14:12]	10MIN	10 Min Time Digit (0~5)						
[11:8]	1MIN	1 Min Time Digit (0~9)						
[7]	Reserved	Reserved.						
[6:4]	10SEC	10 Sec Time Digit (0~5)						
[3:0]	1SEC	1 Sec Time Digit (0~9)						

Note: TLR is a BCD digit counter and RTC will not check the loaded data.

The reasonable value range is listed in the parenthesis.

RTC Calendar Loading Register (RTC_CLR)

nuvoTon

Register	Offset	R/W	Description	Reset Value
RTC_CLR	RTC_BA+0x10	R/W	Calendar Loading Register	0x0005_0101

31	30	29	28	27	26	25	24			
Reserved										
23	22	21	21 20		18	17	16			
	10Y	EAR		1YEAR						
15	14	13	12	11	10	9	8			
	Reserved		10MON	1MON						
7	6	5	4	3	2	1	0			
Reserved 10DA			DAY	1DAY						

Bits	Description	escription						
[31:24]	Reserved	Reserved.						
[23:20]	10YEAR	10 Year Calendar Digit (0~9)						
[19:16]	1YEAR	1 Year Calendar Digit (0~9)						
[12]	10MON	10 Month Calendar Digit (0~1)						
[11:8]	1MON	1 Month Calendar Digit (0~9)						
[5:4]	10DAY	10 Day Calendar Digit (0~3)						
[3:0]	1DAY	1 Day Calendar Digit (0~9)						

Note: CLR is a BCD digit counter and RTC will not check loaded data.

The reasonable value range is listed in the parenthesis.

RTC Time Scale Selection Register (RTC_TSSR)

Register	Offset	R/W	Description	Reset Value
RTC_TSSR	RTC_BA+0x14	R/W	Time Scale Selection Register	0x0000_0001

31	30	29	28	27	26	25	24				
Reserved											
23	22	21	21 20 19 18 17								
Reserved											
15	14	13	12	11	10	9	8				
			Rese	erved							
7	6	5	4	3	2	1	0				
	Reserved										

Bits	Description								
[31:1]	Reserved	Reserved.							
		It indic 0 = se 1 = se	ates the	at TLF hour t	ime scale	R are in 24-hour mode or 12-hour mode with AM and PM indication.			
		24 - ho ur Ti m e Sc al e	12- hou r Tim e Sca le	24 - ho ur Ti m e Sc al e	12- hour Time Scal e (PM Time + 20)				
[0]	24hr_12hr	00	12(AM 12)	12	32(P M12)				
		01	01 (AM 01)	13	21 (PM0 1)				
		02	02(AM 02)	14	22(P M02)				
		03	03(AM 03)	15	23(P M03)				
		04	04 (AM 04)	16	24 (PM0 4)				
		05	05(AM	17	25(P				

		05)		M05)
	06	06(AM 06)	18	26(P M06)
	07	07(AM 07)	19	27(P M07)
	08	08(AM 08)	20	28(P M08)
	09	09(AM 09)	21	29(P M09)
	10	10 (AM 10)	22	30 (PM1 0)
	11	11 (AM 11)	23	31 (PM1 1)

RTC Day of the Week Register (RTC_DWR)

Register	Offset		Description	Reset Value
RTC_DWR	RTC_BA+0x18	R/W	Day of the Week Register	0x0000_0006

31	30	29	28	27	26	25	24					
Reserved												
23	22	21	20	19	18	17	16					
	Reserved											
15	14	13	12	11	10	9	8					
			Rese	erved								
7	6	5	4	3	2	1	0					
		Reserved		DWR								

Bits	Description						
[31:3]	Reserved	Reserved.					
[2:0]	DWR	Day of the Week Register 000 = Sunday. 001 = Monday. 010 = Tuesday. 011 = Wednesday. 100 = Thursday. 101 = Friday. 110 = Saturday.					

RTC Time Alarm Register (RTC_TAR)

nuvoTon

Register	Offset	R/W	Description	Reset Value
RTC_TAR	RTC_BA+0x1C	R/W	Time Alarm Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
Res	erved	101	-IR	1HR					
15	14	13	12	11	10	9	8		
Reserved		10MIN		1MIN					
7	6	5	4	3	2	1	0		
Reserved	ved 10SEC			1SEC					

Bits	Description				
[31:22]	Reserved	Reserved.			
[21:20]	10HR	10 Hour Time Digit of Alarm Setting (0~2)			
[19:16]	1HR	1 Hour Time Digit of Alarm Setting (0~9)			
[15]	Reserved	Reserved.			
[14:12]	10MIN	10 Min Time Digit of Alarm Setting (0~5)			
[11:8]	1MIN	1 Min Time Digit of Alarm Setting (0~9)			
[7]	Reserved	Reserved.			
[6:4]	10SEC	10 Sec Time Digit of Alarm Setting (0~5)			
[3:0]	1SEC 1 Sec Time Digit of Alarm Setting (0~9)				

Note:

TAR is a BCD digit counter and RTC will not check loaded data.

The reasonable value range is listed in the parenthesis.

The register can be read back after the RTC unit is active by AER

RTC Calendar Alarm Register (RTC_CAR)

nuvoTon

Register	Offset	R/W	Description	Reset Value
RTC_CAR	RTC_BA+0x20	R/W	Calendar Alarm Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	10Y	EAR		1YEAR				
15	14	13	12	11	10	9	8	
	Reserved		10MON	1MON				
7	6	5	4	3	2	1	0	
Reserved 10DAY			1DAY					

Bits	Description	Description					
[31:24]	Reserved	Reserved.					
[23:20]	10YEAR	10 Year Calendar Digit of Alarm Setting (0~9)					
[19:16]	1YEAR	1 Year Calendar Digit of Alarm Setting (0~9)					
[12]	10MON	10 Month Calendar Digit of Alarm Setting (0~1)					
[11:8]	1MON	1 Month Calendar Digit of Alarm Setting (0~9)					
[5:4]	10DAY	10 Day Calendar Digit of Alarm Setting (0~3)					
[3:0]	1DAY 1 Day Calendar Digit of Alarm Setting (0~9)						

Note:

CAR is a BCD digit counter and RTC will not check loaded data.

The reasonable value range is listed in the parenthesis.

The register can be read back after the RTC unit is active by AER

RTC Leap Year Indication Register (RTC_LIR)

Register	Offset	R/W	Description	Reset Value
RTC_LIR	RTC_BA+0x24	R	Leap Year Indicator Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
			Reserved				LIR	

Bits	Description	escription				
[31:1]	Reserved	Reserved.				
[0]	LIR	Leap Year Indication REGISTER (Read Only) 0 = This year is not a leap year. 1 = This year is leap year.				

RTC Interrupt Enable Register (RTC_RIER)

Register	Offset	R/W	Description	Reset Value
RTC_RIER	RTC_BA+0x28	R/W	RTC Interrupt Enable Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved					SNOOPIER	TIER	AIER		

Bits	Description	
[31:3]	Reserved	Reserved.
[2]		Snooper Pin Event Detection Interrupt Enable Control 0 = Snooper Pin Event Detection Interrupt Disabled. 1 = Snooper Pin Event Detection Interrupt Enabled.
[1]	TIER	Time Tick Interrupt and Wake-up by Tick Enable Control 0 = RTC Time Tick Interrupt Disabled. 1 = RTC Time Tick Interrupt Enabled.
[0]		Alarm Interrupt Enable Control 0 = RTC Alarm Interrupt Disabled. 1 = RTC Alarm Interrupt Enabled.

RTC Interrupt Indication Register (RTC_RIIR)

Register	Offset	R/W	Description	Reset Value
RTC_RIIR	RTC_BA+0x2C	R/W	RTC Interrupt Indication Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
	Reserved					TIS	AIS			

Bits	Description	
[31:3]	Reserved	Reserved.
[2]	SNOOPIS	Snooper Pin Event Detection Interrupt Status When SNOOPEN is high and an event defined by SNOOPEDGE detected in snooper pin, this flag will be set. While this bit is set and SNOOPIER (RTC_RIER[2]) is also high, RTC will generate an interrupt to CPU. Write "1" to clear this bit to "0". 0 = Snooper pin event defined by SNOOPEDGE (RTC_SPRCTL[1]) never detected.
		1 = Snooper pin event defined by SNOOPEDGE (RTC_SPRCTL[1]) detected.
[1]	TIS	RTC Time Tick Interrupt Status RTC unit will set this bit to high periodically in the period selected by TTR (RTC_TTR[2:0]). When this bit is set and TIER (RTC_RIER[1]) is also high, RTC will generate an interrupt to CPU. This bit is cleared by writing "1" to it through software.
		0 = RCT Time Tick Interrupt condition never occurred.1 = RTC Time Tick Interrupt is requested.
[0] AIS		RTC Alarm Interrupt Status RTC unit will set AIS to high once the RTC real time counters TLR and CLR reach the alarm setting time registers TAR and CAR. When this bit is set and AIER (RTC_RIER[0]) is also high, RTC will generate an interrupt to CPU. This bit is cleared by writing "1" to it through software. 0 = RCT Alarm Interrupt condition never occurred. 1 = RTC Alarm Interrupt is requested if AIER (RTC_RIER[0])=1.

RTC Time Tick Registeter (RTC_TTR)

Register	Offset	R/W	Description	Reset Value
RTC_TTR	RTC_BA+0x30	R/W	RTC Time Tick Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Reserved			TWKE		TTR			

Bits	Description					
[31:1]	Reserved	Reserved.				
[3]	TWKE	RTC Timer Wake-up CPU Function Enable Control If TWKE is set before CPU enters Power-down mode, when a RTC Time Tick, CPU will be wakened up by RTC unit. 0 = Time Tick wake-up CPU function Disabled. 1 = Wake-up function Enabled so that CPU can be wake up from Power-down mode by Time Tick. Note: Tick timer setting follows the TTR (RTC_TTR[2:0]) description.				
		Time Tick Register The RTC time tick per TTR[2:0]	riod for Periodic Time Tick Interrupt request. Time tick (second)			
		000	1			
		001	1/2			
		011	1/8			
[2:0]	TTR	100	1/16			
		101	1/32			
		110	1/64			
		111	1/128			
		This register also con	trols the clock_out frequency.			
		TTR[2:0]	clock_out frequency (second)			
		000	1			
		001	2			

	010	4	
	011	8	
	100	16	
	101	reserved	
	110	reserved	
	111	reserved	
	Note: This register can be read back after the RTC is active by AER.		

RTC Spare Function Controller Register (RTC_SPRCTL)

Register	Offset	R/W	Description	Reset Value
RTC_SPRCTL	RTC_BA+0x3C	R/W	RTC Spare Functional Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved						SNOOPEN		

Bits	Description				
[31:2]	Reserved	Reserved.			
[1]	SNOOPEDGE	Snooper Active Edge Selection This bit defines which edge of snooper pin will generate a snooper pin detected event to clear the 20 spare registers.			
		Rising edge of snooper pin generates snooper pin detected event. Falling edge of snooper pin generates snooper pin detected event.			
[0]	SNOOPEN	Snooper Pin Event Detection Enable Control This bit enables the snooper pin event detection. When this bit is set high and an event defined by SNOOPEDGE (RTC_SPRCTL[1]) detected, the 20 spare registers will be cleared to "0" by hardware automatically. And, the SNOOPIS (RTC_RIIR[2]) will also be set. In addition, RTC will also generate wake-up event to wake system up. 0 = Snooper pin event detection function Disabled. 1 = Snooper pin event detection function Enabled.			

RTC Spare Register X (RTC_SPRx)

Register	Offset	R/W	Description	Reset Value
RTC_SPR0	RTC_BA+0x40	R/W	RTC Spare Register 0	0x0000_0000
RTC_SPR1	RTC_BA+0x44	R/W	RTC Spare Register 1	0x0000_0000
RTC_SPR2	RTC_BA+0x48	R/W	RTC Spare Register 2	0x0000_0000
RTC_SPR3	RTC_BA+0x4C	R/W	RTC Spare Register 3	0x0000_0000
RTC_SPR4	RTC_BA+0x50	R/W	RTC Spare Register 4	0x0000_0000
RTC_SPR5	RTC_BA+0x54	R/W	RTC Spare Register 5	0x0000_0000
RTC_SPR6	RTC_BA+0x58	R/W	RTC Spare Register 6	0x0000_0000
RTC_SPR7	RTC_BA+0x5C	R/W	RTC Spare Register 7	0x0000_0000
RTC_SPR8	RTC_BA+0x60	R/W	RTC Spare Register 8	0x0000_0000
RTC_SPR9	RTC_BA+0x64	R/W	RTC Spare Register 9	0x0000_0000
RTC_SPR10	RTC_BA+0x68	R/W	RTC Spare Register 10	0x0000_0000
RTC_SPR11	RTC_BA+0x6C	R/W	RTC Spare Register 11	0x0000_0000
RTC_SPR12	RTC_BA+0x70	R/W	RTC Spare Register 12	0x0000_0000
RTC_SPR13	RTC_BA+0x74	R/W	RTC Spare Register 13	0x0000_0000
RTC_SPR14	RTC_BA+0x78	R/W	RTC Spare Register 14	0x0000_0000
RTC_SPR15	RTC_BA+0x7C	R/W	RTC Spare Register 15	0x0000_0000
RTC_SPR16	RTC_BA+0x80	R/W	RTC Spare Register 16	0x0000_0000
RTC_SPR17	RTC_BA+0x84	R/W	RTC Spare Register 17	0x0000_0000
RTC_SPR18	RTC_BA+0x88	R/W	RTC Spare Register 18	0x0000_0000
RTC_SPR19	RTC_BA+0x8C	R/W	RTC Spare Register 19	0x0000_0000

31	30	29	28	27	26	25	24		
	SPARE [31:24]								
23	22	21	20	19	18	17	16		
	SPARE [23:16]								
15	14	13	12	11	10	9	8		
			SPARE	[15:8]					
7	6	5	4	3	2	1	0		
	SPARE [7:0]								

Bits	Description	Pescription				
		SPARE				
[31:0]	SPARE	This field is used to store back-up information defined by software.				
		This field will be cleared by hardware automatically once a snooper pin event is detected.				

6.14 UART Controller

6.14.1 Overview

nuvoton

The UART Controller provides up to two channels of Universal Asynchronous Receiver/Transmitter (UART) modules and performs Normal Speed UART, and supports flow control function. The Universal Asynchronous Receiver/Transmitter (UART) performs a serial-to-parallel conversion on data received from the peripheral, and a parallel-to-serial conversion on data transmitted from the CPU.

The UART controller also supports IrDA (SIR), LIN Master/Slave and RS-485 function modes.

There are four conditions to wake-up the system and it also supports PWM channel source selection to modulate the PWM and the UART transmitter.

6.14.2 Features

- Full duplex, asynchronous communications.
- Separate receiving / transmitting 16 bytes entry FIFO for data payloads.
- Supports hardware auto-flow control/flow control function (CTSn, RTSn) and programmable (CTSn, RTSn) flow control trigger level.
- Supports programmable baud rate generator.
- Supports auto-baud rate detect and baud rate compensation function.
- Supports programmable receiver buffer trigger level.
- Supports incoming data or CTSn or received FIFO is equal to the RFITL or RS-485 AAD mode address matched to wake-up function.
- Supports 9 bit receiver buffer time-out detection function.
- All UART Controller can be served by the PDMA.
- Programmable transmitting data delay time between the last stop bit leaving the TX-FIFO and the de-assertion by setting DLY (UART_TMCTL[23:16]) register.
- Supports IrDA SIR function mode
- Supports LIN function mode.
- Supports RS-485 function mode.
- Supports PWM modulation

6.14.3 Block Diagram

nuvoTon

The UART clock control and block diagram are shown as follows. The UART controller is completely asynchronous design with two clock domains, PCLK and engine clock.

Note: the PCLK should be higher than or equal to the frequency of peripheral clock (UARTx_CLK).

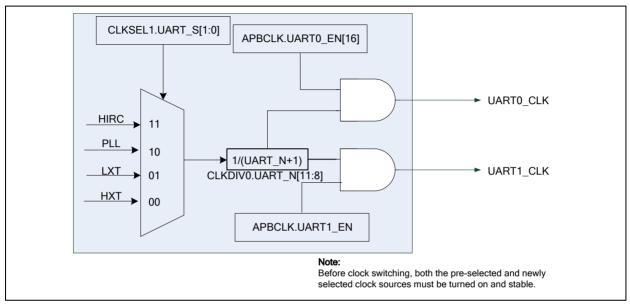


Figure 6-52 UART Clock Control Diagram

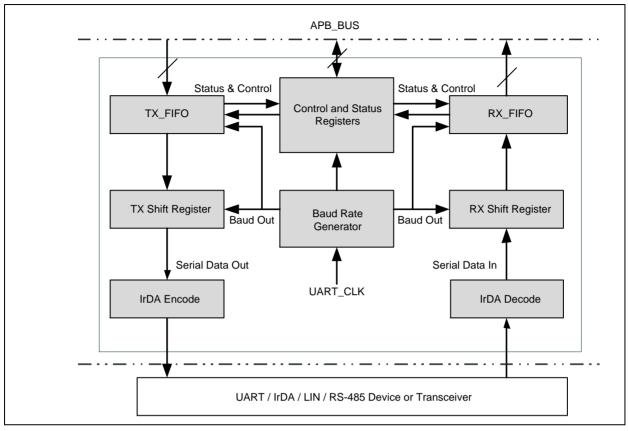


Figure 6-53 UART Block Diagram

TX FIFO

nuvoTon

The transmitter buffered is a 16 byte FIFO to reduce the number of interrupts presented to the CPU.

RX_FIFO

The receiver buffered is a 16 byte FIFO (plus three error bits per byte) to reduce the number of interrupts presented to the CPU.

TX Shift Register

The block shifts the transmitting data out serially control block.

RX Shift Register

The block shifts the receiving data in serially control block.

Baud Rate Generator

Divide the external clock or internal clock by the divisor to get the desired baud rate clock. Refer to for baud rate equation.

IrDA Encode

This block is the IrDA encode control block.

IrDA Decode

This block is the IrDA decode control block.

Control and Status Register

nuvoTon

This is a register set, including the transfer line control registers (UART TLCTL), transfer status registers (UART TRSR), and control register (UART CTL) for transmitter and receiver. The timeout control register (UART TMCTL) identifies the condition of time-out interrupt. This register set also includes the interrupt enable register (UART_IER) and interrupt status register (UART_ISR) to enable or disable the responding interrupt and to identify the occurrence of the responding interrupt. There are nine types of interrupts including receiver threshold level reaching interrupt (INT_RDA), transmitter FIFO empty interrupt (INT_THRE), line status interrupt (break error, parity error, framing error or RS-485 interrupt) (INT RLS), time-out interrupt (INT TOUT), MODEM status interrupt (INT MODEM), Buffer error interrupt (INT BUF ERR), wake-up interrupt (INT WAKE), auto-baud rate detect or auto-baud rate counter overflow flag (INT ABAUD) of LIN function interrupt (INT LIN).

6.14.4 Basic Configuration

- The UART Controller function pins are configured in GPA MFP, GPB MFP, GPC MFP and GPF MFP registers for UART.
- The UART Controller clock are enabled in UART EN(APBCLK[17:16]) for UART.
- The UART Controller clock source is selected by UART_S (CLKSEL[25:24]/CLKSEL1[1:0]).
- The UART Controller clock prescaler is determined by UART N(CLKDIV0[11:8]).

6.14.5 Functional Description

nuvoTon

The UART Controller supports four function modes including UART, IrDA, RS-485 and LIN function modes. User can select a function by setting the UA_FUN_SEL register. The UART baud rate is up to 1 Mbps.

6.14.5.1 Line Function Mode

The UART Controller supports fully programmable serial-interface characteristics by setting the UA_LCR register. Software can use the UA_LCR register to program the word length, stop bit and parity bit. The following tables list the UART word and stop bit length settings and the UART parity bit settings.

NSB (UA_LCR[2])	WLS (UA_LCR[1:0])	Word Length (Bit)	Stop Length (Bit)
0	00	5	1
0	01	6	1
0	10	7	1
0	11	8	1
1	00	5	1.5
1	01	6	2
1	10	7	2
1	11	8	2

Table 6-15 UART Line Control of Word and Stop Length Setting

Parity Type	SPE (UA_LCR[5])	EPE (UA_LCR[4])	PBE (UA_LCR[3])	Description
No Parity	х	х	0	No parity bit output.
Odd Parity	0	0		Odd Parity is calculated by adding all the "1's" in a data stream and adding a parity bit to the total bits, to make the total count an odd number.
Even Parity	0	1	1	Even Parity is calculated by adding all the "1's" in a data stream and adding a parity bit to the total bits, to make the count an even number.
Forced Mask Parity	1	0	1	Parity bit always logic 1. Parity bit on the serial byte is set to "1" regardless of total number of "1's" (even or odd counts).
Forced Space Parity	1	1	1	Parity bit always logic 0. Parity bit on the serial byte is set to "0" regardless of total number of "1's" (even or odd counts).

Table 6-16 UART Line Control of Parity Bit Setting

Note: User cannot change line controller setting when TE_F(UA_FSR[11]) is not empty

6.14.5.2 Baud Rate Generation

nuvoTon

The UART Controller includes a programmable baud rate generator capable of dividing clock input by dividers to produce the serial clock that transmitter and receiver need. The baud rate equation is Baud Rate = UART CLK / M * [BRD + 1], where M and BRD are defined in Baud Rate Divider Register (UART_BAUD). The following tables list the UART baud rate equations in the various conditions and UART baud rate parameter settings. There is no error for the baud rate results calculated through the baud rate parameter and register setting below. In IrDA function mode, the baud rate generator must be set in Mode 0.

DIV_16_EN	Baud Rate Equation
0 (Mode 0)	UART_CLK / (BRD+1), BRD must >2
1 (Mode 1)	UART_CLK / [16 * (BRD+1)]

Table 6-17 UART Baud Rate Equation

System Clock =12 MHz	System Clock =12 MHz					
Baud rate	Mode 0	Mode 1				
921600	BRD=12	Not Supported				
460800	BRD =25	Not Supported				
230400	BRD =51	BRD =2				
115200	BRD =103	BRD =6				
57600	BRD =207	BRD =12				
38400	BRD =311	BRD =19				
19200	BRD =624	BRD =38				
9600	BRD =1249	BRD =77				
4800	BRD =2499	BRD =155				

Table 6-18 UART Baud Rate Setting

6.14.5.3 Baud Rate Compensation

The UART controller supports baud rate compensation function. It is used to optimize the precision in each bit. The precision of the compensation is half of UART module clock because there is BR COM DEC bit (UART BR COMP[31]), to define the positive or negative compensation in each bit. If the BR_COMP_DEC (UART_BR_COMP[31]) = 0, it is positive compensation for each bit, one more module clock will be append in the compensated bit. If the BR COMP DEC (UART BR COMP[31]) = 1, it is negedge compensation for each bit, decrease one module clock in the compensated bit.

There is 9-bits location, BR COMP[8:0], can be configured by user to define the relative bit is compensated or not. BR COMP[7:0] is used to define the compensation of D[7:0] and BR COMP[8] is used to define the parity bit.

Example:

(1). UART's peripheral clock = 32.768K and baud rate is 9600

Baud rate 9600, UART peripheral clock is 32.768K → 3.413 peripheral clock/bit

nuvoTon

If the baud divider is set 2 (3 peripheral clock/bit), the inaccuracy of each bit is -0.413 peripheral clock and BR_COMP_DEC =0, so that the BR_COMP (UART_BR_COMP[8:0]) can be set as 9'b001010101

Bit	Name	Total INACCURACY	BR_COMP Compensated	Final Inaccuracy
0	Start	-0.413	х	-0.413
1	D[0]	-0.826(-0.413-0.413)	1	0.176
2	D[1]	-0.237(0.176-0.413)	0	-0.237
3	D[2]	-0.650(-0.237-0.413)	1	0.150
4	D[3]	-0.263(0.150-0.413)	0	-0.263
5	D[4]	-0.676(-0.263-0.414)	1	0.324
6	D[5]	-0.089(0.324-0.413)	0	-0.089
7	D[6]	-0.502(-0.089-0.413)	1	0.498
8	D[7]	0.085(0.498-0.413)	0	0.085
9	Parity	-0.328(0.085-0.413)	0	-0.328

(2). UART's peripheral clock = 32.768K and baud rate is 4800

If the baud divider is set 6 (7 peripheral clock/bit), the inaccuracy of each bit is 0.173 peripheral clock and BR_COMP_DEC =1, so that the BR COMP (UART BR COMP[8:0]) can be set as 9'b010000010 = 0x82.

Bit	Name	Total INACCURACY	BR_COMP Compensated	Final Inaccuracy
0	Start	0.173	х	0.173
1	D[0]	0.346(0.173+0.173)	0	0.346
2	D[1]	0.519(0.346+0.173)	1	-0.481
3	D[2]	-0.308(-0.481+0.173)	0	-0.308
4	D[3]	-0.135(-0.308+0.173)	0	-0.135
5	D[4]	-0.038(-0.135+0.173)	0	0.038
6	D[5]	0.211(0.038+0.173)	0	0.211
7	D[6]	0.384(0.211+0.173)	0	0.384
8	D[7]	0.557(0.384+0.173)	1	-0.443
9	Parity	-0.270(-0.443+0.173)	0	-0.270

6.14.5.4 Auto-Baud Rate Detection

The UART supports auto-baud rate detection. The auto-baud rate detection controls the process of measuring the incoming clock/data rate for the baud rate generation and can be read and written at user

discretion. If auto-baud feature enabled, controller will measure the bit time of the received data stream (LSB must be "1") and set the divisor latch registers UART BARD. Auto-baud rate detection is started by setting the ABAUD EN (UART CTL [12]). When the auto-baud rate detection flow finishes, the ABAUD EN bit will be cleared automatically, and the ABAUD IS (UART ISR[7]) and ABAUD F (UART TRSR[1]) will be setting. If have time-out occurs (baud rate counter overflow), the ABAUD IS (UART_ISR[7]) and ABAUD_TOUT_F (UART_TRSR[2]) will be setting. The following diagram demonstrates the auto-baud rate detection function.

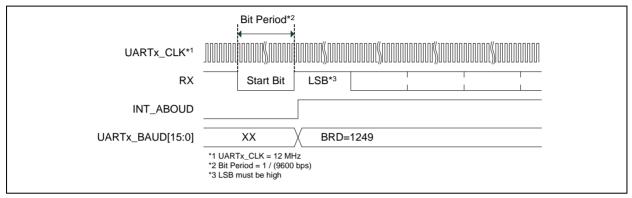


Figure 6-54 UART Auto-Baud Rate Block Diagram

6.14.5.5 FIFO Control and Status

nuvoTon

The UART controller is built-in with a 16-bytes transmitter FIFO (TX FIFO) and a 16-bytes receiver FIFO (RX FIFO) that reduces the number of interrupts presented to the CPU. The CPU can read the status of the UART at any time during operation. The reported status information includes the 6 types of interrupts and condition of the transfer operations being performed by the UART, as well as 3 error conditions (parity error, framing error, break interrupt) probably occur while receiving data. This FIFO control and status also support all of UART, IrDA, and RS-485 function mode.

6.14.5.6 Auto-Flow Control

The UART controllers support auto-flow control function that uses two low-level signals, CTSn (clear-tosend) and RTSn (request-to-send) to control the flow of data transfer between the UART and external devices (ex: Modem). When auto-flow is enabled, the UART is not allowed to receive data until the UART asserts RTSn (RTSn high) to external device. When the number of bytes in the RX-FIFO equals the value of RTS_TRI_LEV (UART_TLCTL[13:12]), the RTSn is de-asserted. The UART sends data out when UART controller detects CTSn is asserted (CTSn high) from external device. If a valid asserted CTSn is not detected the UART controller will not send data out.

The following diagram demonstrates the auto-flow control block diagram.

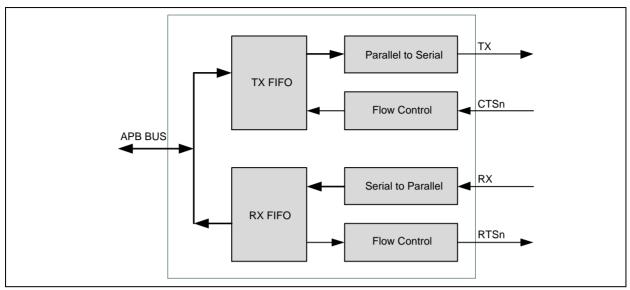


Figure 6-55 UART Auto-Flow Control Block Diagram

6.14.5.7 Wake-Up Function

nuvoTon

The UART Controller supports wake-up system function. The wake-up source includes:

- (a) CTSn pin wake-up (WAKE_CTS_EN (UART_CTL[8]))
- (b) Incoming data wake-up (WAKE_DATA_EN (UART_CTL[9]))
- (c) Received Data FIFO reached threshold wake-up (WAKE_THRESH_EN (UART_CTL[17]))
- (d) RS-485 Address Match (AAD mode) wake-up(WAKE_RS-485 AAD_EN (UART_CTL[18]))

Each wake-up source description as following:

(a) CTSn pin wake-up

When system is in power-down and the WAKE_CTS_EN (UART_CTL[8]) is set, the toggle of CTSn pin can wake-up the system.

Case 1:

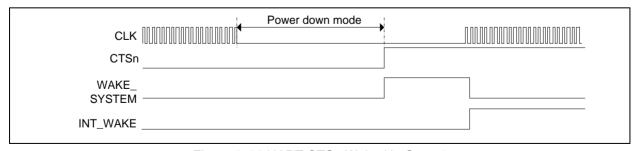


Figure 6-56 UART CTSn Wake-Up Case 1

Case 2:

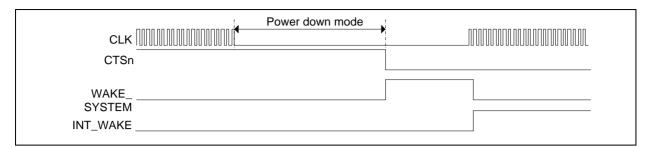


Figure 6-57 UART CTSn Wake-Up Case 2

(b) Incoming data wake-Up

nuvoTon

When system is in power-down and the WAKE_DATA_EN (UART_CTL[9]) is set, the toggle of incoming data (SIN pin) pin can wake-up the system.

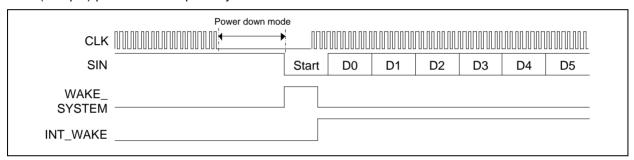


Figure 6-58 UART DATA Wake-UI

(c). Received Data FIFO reached threshold wake-up

In power down condition, when the FIFO threshold reached wake-up function enable bit WAKE THRESH EN (UART CTL[17]) is set and the received data FIFO reached the threshold value RFITL (UART TLCTL[9:8]) can wake-up the system. When system wakes up, controller will clear the WAKE_DATA_EN (UART_CTL[9]) register automatically.

Note: Both of the Clock Divider of APBDIV (APB DIV[2:0]) and the HCLK N (CLK DIV0[3:0]) shall be set as 0 in this condition.

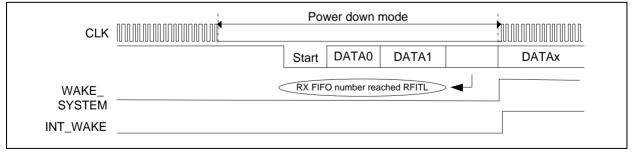


Figure 6-59 UART Receive DATA FIFO Reach RFITL Wake-Up

(d) RS-485 Address Match (AAD mode) wake-up

In power down condition, when the WAKE_RS485_AAD_EN (UART_CTL[18]) is set and the received

data match the ADDR PID MATCH (UART ALT CTL[28:24]), it can wake-up the system.

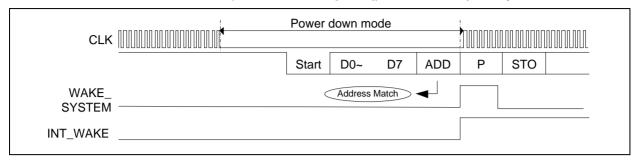


Figure 6-60 UART RS-485 AAD Mode Address Match Wake-Up

6.14.5.8 IrDA Function Mode

nuvoTon

The UART Controller provides Serial IrDA (SIR, Serial Infrared) transmit encoder and receive decoder function. The FUN SEL (UART FUN SEL[1:0]) bits are used to select IrDA function.

The SIR specification defines a short-range infrared asynchronous serial transmission mode with one start bit, 8 data bits, and 1 stop bit. The maximum data rate is 115.2 Kbps (half duplex). The IrDA SIR block contains an IrDA SIR Protocol encoder/decoder. The IrDA SIR protocol is half-duplex only. So it cannot transmit and receive data at the same time. The IrDA SIR physical layer specifies a minimum 10 ms transfer delay between transmission and reception.

In IrDA Operation mode, the receive FIFO trigger level must be "1" by setting RFITL (UART TLCTL[9:8]) = "0" and the DIV 16 EN (UART BAUD[31]) bit must be enabled in IrDA mode operation (Mode 1).

Baud Rate = Clock / (16 * (BRD + 1)), where BRD is Baud Rate Divider in UART_BAUD register.

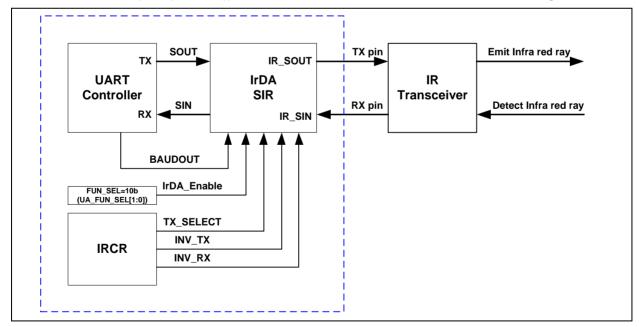


Figure 6-61 IrDA Block Diagram

IrDA SIR Transmit Encoder

The IrDA SIR Transmit Encoder modulates Non-Return-to Zero (NRZ) transmit bit stream output from UART. The IrDA SIR physical layer specifies the usage of Return-to-Zero, Inverted (RZI) modulation

scheme which represent logic 0 as an infra light pulse. The modulated output pulse stream is transmitted to an external output driver and infrared Light Emitting Diode.

The transmitted pulse width is specified as 3/16 period of baud rate.

IrDA SIR Receive Decoder

nuvoTon

The IrDA SIR Receive Decoder demodulates the return-to-zero bit stream from the input detector and outputs the NRZ serial bits stream to the UART received data input. The decoder input is normally high in the idle state. (Because of this, IRCR bit 6 should be set as "1" by default)

A start bit is detected when the decoder input is LOW

IrDA SIR Operation

The IrDA SIR Encoder/decoder provides functionality which converts between UART data stream and half duplex serial SIR interface. Refer to UART IRCR register for detail description. The following diagram is IrDA encoder/decoder waveform:

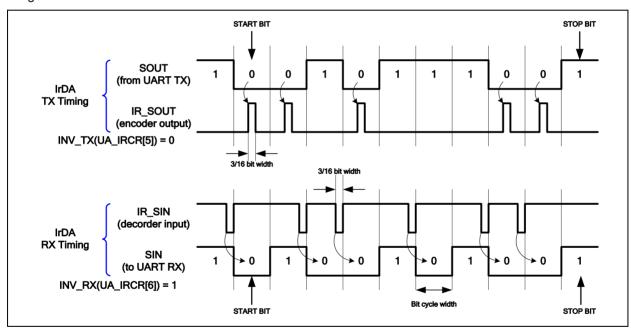


Figure 6-62 IrDA TX/RX Timing Diagram

6.14.5.9 RS-485 Function Mode

Another alternate function of UART controllers is RS-485 9 bit mode function whose direction control can be controlled by RTSn pin or GPIO. The RS-485 mode is selected by setting the UART FUN SEL register to select RS-485 function and when operating in RS-485 mode, the receive FIFO trigger level must be "1" by setting RFITL (UART TLCTL[9:8]) = "0". The RS-485 driver control is implemented by the RTSn control signal from an asynchronous serial port to enable the RS-485 driver. In RS-485 mode, many characteristics of the RX and TX are same as UART.

In RS-485 function mode, the bit 9 will be configured as address bit. For data characters, the bit 9 is set to "0". Software can program UART_TLCTL register to control the 9-th bit (When the PBE, EPE and SPE are set, the 9-th bit is transmitted as "0" and when PBE and SPE are set and EPE is cleared, the 9th bit is transmitted as "1"). The Controller supports three operation modes that are RS-485 Normal Multi-drop Operation Mode (RS-485 NMM Mode), RS-485 Auto Address Detection Operation Mode

(RS-485 AAD Mode) and RS-485 Auto Direction Control Operation Mode (RS-485 AUD Mode). One of the three operation modes can be selected by programming UART ALT CTL register, and software can driving the transfer delay time between the last stop bit leaving the TX-FIFO and the de-assertion by setting DLY (UART TMCTL[23:16]) register.

RS-485 Normal Multi-drop Operation Mode (RS-485 NMM Mode)

In RS-485 Normal Multi-drop operation mode, software can decide whether receiver will ignore data before an address byte is detected (bit 9 = "1"). When an address byte be detected (bit 9 = "1") by hardware, the address byte data will be stored in the RX-FIFO. Software can decide whether to enable or disable receiver to accept the following data byte by setting UART CTL IRX DIS1. If the receiver is be enabled (RX DIS (UART CTL[2]) is low), all received byte data will be accepted and stored in the RX-FIFO, and if the receiver is disabled(RX_DIS (UART_CTL[2]) is high), all received byte data will be ignore until the next address byte be detected. If software disable receiver by setting RX DIS (UART_CTL[2]) register high, when a next address byte is detected, the controller will clear the RX_DIS (UART_CTL[2]) bit and the address byte data will be stored in the RX-FIFO.

Program Sequence Example:

nuvoton

- 1. Program FUN SEL (UART FUN SEL[1:0]) to select RS-485 function.
- 2. Program the RX DIS bit (UART CTL[2]) to determine whether to store the received data before an address byte is detected (bit 9 = "1").
- 3. Program the RS-485 NMM by setting UART ALT CTL register.
- 4. When an address byte is detected (bit 9 = "1"), hardware will set RLS IS (UART ISR[2]) and RS-485_ADDET_F (UART_TRSR[0]) flag.
- 5. Software can decide whether to accept the following data byte by setting RX_DIS (UART_CTL[2]).
- 6. Repeat step 4 and step 5.

RS-485 Auto Address Detection Operation Mode (RS-485 AAD Mode)

In RS-485 Auto Address Detection Operation Mode, the receiver will ignore any data until an address byte is detected (bit 9 = "1") and the address byte data match the ADDR PID MATCH (UART_ALT_CTL[31:24]) value. The address byte data will be stored in the RX-FIFO. The following all data will be accepted and stored in the RX-FIFO until an address byte not match the ADDR_PID_MATCH (UART_ALT_CTL[31:24]) value. In RS-485 AAD mode, don't fill any value to RX_DIS (UART_CTL[2]) bit.

Program Sequence example:

- 1. Program FUN_SEL (UART_FUN_SEL[1:0]) to select RS-485 function.
- 2. Program the RS-485 AAD (UART ALT CTL[17]).
- 3. When an address byte is detected (bit9 = "1"), hardware will compare the address byte and the ADDR_PID_MATCH (UART_ALT_CTL[31:24]) value.
- 4. If the address byte matches the ADDR PID MATCH (UART ALT CTL[31:24]) value, hardware will set RLS_IS (UART_ISR[2]) and RS-485_ADDET_F flag (UART_TRSR[0]). And the receiver will sorted address byte to FIFO and accept the following data transfer and stored data in FIFO until next address byte be detected.
 - However if the address byte does not match the ADDR PID MATCH (UART ALT CTL[31:24]) value, hardware will ignored the address byte data and ignored the following data transfer.
- 5. Respect step 3 and step 4.

RS-485 Auto Direction Mode (RS-485 AUD Mode)

nuvoTon

Another option function of RS-485 controllers is RS-485 auto direction control function. The RS-485 driver control is implemented by using the RTSn control signal from an asynchronous serial port to enable the RS-485 driver. The RTSn line is connected to the RS-485 driver enable such that setting the RTSn line to high (logic "1") will enable the RS-485 driver. Setting the RTSn line to low (logic "0") will put the driver into the tri-state condition. User can setting LEV RTS in UART MCSR register to change the RTSn driving level.

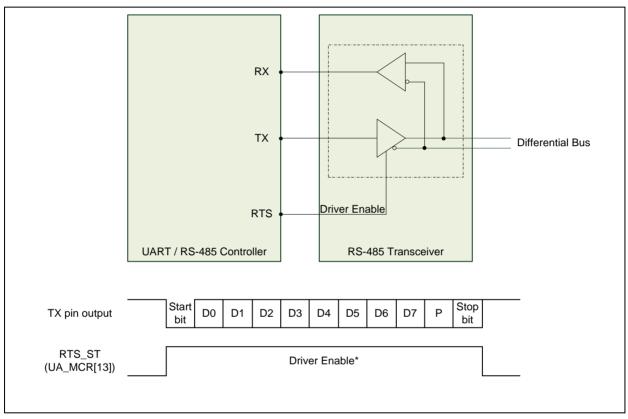


Figure 6-63 Structure of RS-485 Frame

6.14.5.10 LIN (Local Interconnection Network) Function Mode

The UART Controller supports LIN function mode. The LIN mode is selected by setting the (UART FUN SEL[1:0] = 1). In LIN function mode, each byte field is initialed by a start bit with value 0 (dominant), followed by 8 data bits (LSB is first) and ended by 1 stop bit with value one (recessive) in accordance with the LIN standard.

There is LIN received interrupt when the LIN header field is received. The header includes (1). "break field" (2). "break field + sync field" and (3). "break field + sync field + PID field". All of them can be choose by setting UART ALT CTL [LIN HEAD SEL] register.

- (1). If the field includes "break field", when the receiver received break field then the LIN RX F will be set. The controller will receive next data and put it in FIFO.
- (2). If the field includes "break field + sync field", hardware will wait for the flag LIN RX F in UART TRSR to check RX received break field and sync field. If the break and sync field is received, hardware will set UART_TRSR [LIN_RX_F] flag, and if the break is received but the sync field does not then hardware will set UART TRSR equal 0x55, [LIN RX F] UART TRSR

[LIN RX SYNC ERR F] flag. The break and sync data (equals 0x55 or not) will not be stored in FIFO.

(3). If the field includes "break field + sync field + PID field". In this operation mode, hardware will control data automatically. Hardware will ignore any data until received break + sync (0x55) + PID value match the UART ALT CTL [ADDR MATCH] value (break + sync + PID will not be stored in FIFO).

When received break + sync (0x55) + PID value match the UART ALT CTL [ADDR MATCH] value, hardware will set UART TRSR [LIN RX F] and the following all data will be accepted and stored in the RX-FIFO until detect next break field.

If the receiver received break + wrong sync (not equal 0x55) + PID value, hardware will set UART_TRSR [LIN_RX_F] and UART_TRSR [LIN_RX_SYNC_ERR_F] flag and the receiver will be disabled. If the receiver received break + sync (0x55) + wrong PID value, hardware will set UART TRSR [LIN RX F] flag and the receiver will be disabled.

Figure 6-64 Structure of LIN Frame

Program Flow of LIN Bus Transmit Transfer (TX)

The program flow of LIN Bus Transmit transfer (TX) is shown as follows

Case 1: The Header Field Select as "Break"

nuvoTon

- Set LIN function mode by setting UART_FUN_SEL register.
- Choose the data header to "break field" by setting LIN HEAD SEL (UART ALT CTL[5:4]).
- Enable BIT_ERR_EN bit (UART_ALT_CTL[8]), and when the SIN pin is not equal to SOUT pin that the hardware will generator an interrupt to CPU). If user wants to receive data at the same time, user must enable LIN RX EN bit (UART ALT CTL[6]).
- 4. Fill LIN TX BCNT to choose break field length. (The break field length is LIN TX BCNT + 8).
- 5. Set the LIN TX EN bit (UART ALT CTL[7]) register to start transmission break field, and when break filed operation is finished, hardware will set LIN IS (UART ISR[8]) and LIN TX F (UART_TRSR[3]) flag and LIN_TX_EN (UART_ALT_CTL[7]) will be cleared automatically.
- 6. Fill 0x55 to UART THR to request synch field transmission.
- Fill the protected identifier value (PID) in the UART_THR
- Fill N bytes data and Checksum to UART_THR then repeat step 4 ~ step 8 to transmit the data.

Case 2: The Header Field Select as "Break + Sync"

Set LIN function mode by setting UART_FUN_SEL register.

- 2. Choose the data header to "break + sync" field by setting LIN HEAD SEL (UART ALT CTL[5:4]).
- 3. Enable BIT ERR EN bit (UART ALT CTL[8]), and when the SIN pin is not equal to SOUT pin that the hardware will generator an interrupt to CPU). If user wants to receive data at the same time, user must enable LIN RX EN bit (UART ALT CTL[6]).
- 4. Fill LIN_TX_BCNT (UART_ALT_CTL[2:0]) to choose break field length. (The break field length is LIN TX BCNT + 8).
- 5. Set the LIN TX EN bit (UART ALT CTL[7]) to start transmission break and sync field, and when break and sync filed operation is finished, hardware will set LIN IS (UART ISR[2]) and LIN TX F flag (UART_TRSR[3]) and LIN_TX_EN (UART_ALT_CTL[7]) will be cleared automatically.
- 6. Fill the protected identifier value (PID) in the UART THR
- 7. Fill N bytes data and Checksum to UART THR then repeat step 4 ~ step 7 to transmit the data.

8.

nuvoTon

Case 3: The Header Field Select as "Break + Sync + PID"

- 1. Set LIN function mode by setting UART FUN SEL register.
- 2. Choose the data header to "break + sync + PID field" by setting LIN HEAD SEL (UART ALT CTL[5:4]).
- 3. Enable BIT_ERR_EN bit (UART_ALT_CTL[8]), and when the SIN pin is not equal to SOUT pin that the hardware will generator an interrupt to CPU). If user wants to receive data at the same time, user must enable LIN_RX_EN bit (UART_ALT_CTL[6]).
- 4. Fill LIN_TX_BCNT (UART_ALT_CTL[7]) to choose break field length. (The break field length is LIN_TX_BCNT + 8).
- 5. Set the LIN TX EN bit (UART ALT CTL[7]) to start transmission break, sync and PID field, and when break, sync and PID filed operation is finished, hardware will set LIN IS (UART ISR[2]) and LIN_TX_F flag (UART_TRSR[3]) and LIN_TX_EN (UART_ALT_CTL[7]) will be cleared automatically.
- 6. Fill N bytes data and Checksum to UART_THR then repeat step 4 ~ step 6 to transmit the data.

Program Flow of LIN Bus Receiver transfer (RX)

The program flow of LIN Bus Receiver transfer (RX) is show as follows.

Case 1: The header Field Select as "Break"

- Set LIN function mode by setting UART_FUN_SEL register.
- 2. Choose the data header to "break field" by setting LIN HEAD SEL (UART_ALT_CTL[5:4]).
- Set the LIN_RX_EN bit (UART_ALT_CTL[6]) to enable LIN RX mode.
- 4. Wait for the flag LIN_RX_F (UART_TRSR[4]) to check RX received break field or not. (The break field will not be stored in FIFO)
- 5. Wait for the flag RDA IF (UART ISR[0]) and read back the UART RBR register.

Case 2: The Header Field Select as "Break + Sync"

1. Set LIN function mode by setting UART_FUN_SEL register.

- 2. Choose the data header to "break + sync field" by setting LIN_HEAD_SEL (UART_ALT_CTL [5:4]).
- 3. Set the LIN_RX_EN bit (UART_ALT_CTL[6]) to enable LIN RX mode.
- 4. Wait for the flag LIN_RX_F in UART_TRSR to check RX received break field and sync field. If the break and sync field is received, hardware will set LIN_RX_F (UART_TRSR[4]) flag If the break be received but the sync field not equal 0x55, hardware will set LIN_RX_F (UART_TRSR[4]) and LIN_RX_SYNC_ERR_F flag (UART_TRSR[8]). The break and sync data (equal 0x55 or not) will not be stored in FIFO.
- 5. Wait for the flag RDA_IF (UART_ISR[0]) and read back the UART_RBR register.

Case 3: The Header Field Select as "Break + Sync + PID"

- 1. Set LIN function mode by setting UART_FUN_SEL register.
- 2. Choose the data header to "break + sync + PID field" by setting LIN_HEAD_SEL (UART_ALT_CTL[5:4]).
- 3. Set the LIN_RX_EN bit (UART_ALT_CTL[6]) to enable LIN RX mode.
- 4. In this operation mode, hardware will control data automatically. Hardware will ignore any data until received break + sync (0x55) + PID value match the ADDR_PID_MATCH (UART_ALT_CTL[31:24]) value (break + sync + PID will not be stored in FIFO). When received break + sync (0x55) + PID value match the ADDR_PID_MATCH (UART_ALT_CTL[31:24]) value, hardware will set LIN_RX_F (UART_TRSR[4]) and the following all data will be accepted and stored in the RX-FIFO until detect next break field. If the receiver received break + wrong sync (not equal 0x55) + PID value, that hardware will set LIN_RX_F flag (UART_TRSR[4]) and LIN_RX_SYNC_ERR_F flag (UART_TRSR[8]) and the receiver will be disabled. If the receiver received break + sync (0x55) + wrong PID value, that hardware will set LIN_RX_F flag (UART_TRSR[4]) and the receiver will be disabled.
- 5. Wait for the flag RDA_IF (UART_ISR[0]) and read back the UART_RBR register.

6.14.5.11 Interrupt

The UART Controller supports nine types of interrupts including

- (1). Receiver threshold level reaching interrupt (INT_RDA)
- (2). Transmitter FIFO empty interrupt (INT_THRE)
- (3). Line status interrupt (break error, parity error, framing error or RS-485 interrupt) (INT_RLS)
- (4). time-out interrupt (INT TOUT)
- (5). MODEM status interrupt (INT MODEM)
- (6). Buffer error interrupt (INT_BUF_ERR)
- (7). wake-up interrupt (INT_WAKE)
- (8). auto-baud rate detect or auto-baud rate counter overflow flag (INT ABAUD)
- (9). LIN function interrupt (INT_LIN)

•		 Interrupt Flag	Flag Clear
INT_LIN	LIN Function Interrupt	BIR_ERR_F(UART_TRSR[5]) or	Write "1" to BIR_ERR_F(UART_TRSR [5]) or LIN_RX_F(UART_TRSR [4]) or

			LIN_TX_F(UART_TRSR [3])	LIN_TX_F(UART_TRSR [3]).
INT_ABAUD	Auto-Baud Rate Interrupt	ABAUD_IE	ABAUD_IS(UART_ISR[7]) = ABAUD_TOUT_F(UART_TRSR [2]) or ABAUD_F(UART_TRSR [1])	Write "1" to ABAUD_TOUT_F(UART_TRSR [7]), ABAUD_F(UART_TRSR[1]).
INT_WAKE	Wake-Up Interrupt	WAKE_IE	WAKE_IS(UART_ISR[6])	Write "1" to WAKE_IS(UART_ISR[6])
INT_BUF_ERR	Buffer Error Interrupt	BUF_ERR_IE	BUF_ERR_IS(UART_ISR[5]) = RX_OVER_F(UART_FSR [0]) or TX_OVER_F(UART_FSR [8]).	Write "1" to RX_OVER_F(UART_FSR [0]) or TX_OVER_F(UART_FSR [8])
INT_RTO	RX Time-Out Interrupt	RTO_IE	RTO_IS(UART_)SR[4]]	Read UART_RBR
INT_MODEM	Modem Status Interrupt	MODEM_IE	MODME_IS(UART_ISR[3]) = DCT_F(UART_MCSR[18])	Write "1" to DCT_F(UART_MCSR[18])
INT_RLS	Receive Line Status Interrupt	RLS_IE	RLS_IS(UART_ISR[2])= BI_F(UART_FSR [6]) or FE_F(UART_FSR [5]) or PE_F(UART_FSR [4]) or RS-485_ADDDET_F(UART_TRSR [0])	Write "1" to BI_F(UART_FSR [6]) or FE_F(UART_FSR [5]) or PE_F(UART_FSR [4]) or RS- 485_ADDDET_F(UART_TRSR[0])
INT_THRE	Transmit Holding Register Empty Interrupt	THRE_IE	THRE_IS(UART_ISR[1])	Write UART_THR
INT_RDA	Receive Data Available Interrupt	RDA_IE	RDA_IS(UART_ISR[0])	Read UART_RBR

Table 6-19 UART Interrupt Sources and Flags

6.14.5.12 Time-out

nuvoton

The UART Controller supports 9-bits time-out counter. The time-out counter resets and starts counting (the counting clock = baud rate) whenever the RX-FIFO receives a new data word. Once the content of time-out counter (TOUT CNT) is equal to time-out interrupt comparator (TOIC (UART TMCTL[8:0])), a receiver time-out interrupt (INT_TOUT) is generated if UART_IER [RTO_IEN]. A new incoming data word or RX-FIFO empty clears INT_TOUT. Fill all "0" to the TOIC, the time-out function is disabled and the real time-out value is TOIC + 1.

6.14.5.13 PWM modulation

The UART Controller supports UART transmit bus to modulate with PWM channel. The PWM channel selection is defined in PWM_SEL (UART_CTL[26:24]).

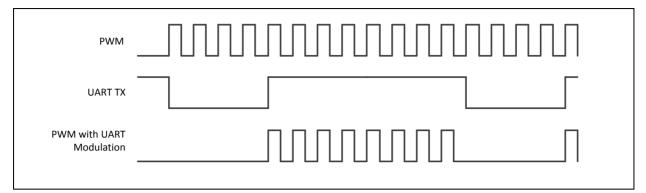


Figure 6-65 UART with PWM Modulation Waveform

6.14.6 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
UART Base Address: UARTx_BA = 0x4005_0000 + 0x100000*x x=0,1							
UART_RBR	UARTx_BA+0x00	R	UART Receive Buffer Register.	Undefined			
UART_THR	UARTx_BA+0x00	W	UART Transmit Holding Register.	Undefined			
UART_CTL	UARTx_BA+0x04	R/W	UART Control State Register.	0x0700_0000			
UART_TLCTL	UARTx_BA+0x08	R/W	UART Transfer Line Control Register.	0x0000_0000			
UART_IER	UARTx_BA+0x0C	R/W	UART Interrupt Enable Register.	0x0000_0000			
UART_ISR	UARTx_BA+0x10	R/W	UART Interrupt Status Register.	0x0000_0002			
UART_TRSR	UARTx_BA+0x14	R/W	UART Transfer State Status Register.	0x0000_0000			
UART_FSR	UARTx_BA+0x18	R/W	UART FIFO State Status Register.	0x0000_0A02			
UART_MCSR	UARTx_BA+0x1C	R/W	UART Modem State Status Register.	0x0002_0002			
UART_TMCTL	UARTx_BA+0x20	R/W	UART Time-Out Control State Register.	0x0000_01FF			
UART_BAUD	UARTx_BA+0x24	R/W	UART Baud Rate Divisor Register	0x0000_0000			
UART_IRCR	UARTx_BA+0x30	R/W	UART IrDA Control Register.	0x0000_0040			
UART_ALT_CSR	UARTx_BA+0x34	R/W	UART Alternate Control State Register.	0x0000_0000			
UART_FUN_SEL	UARTx_BA+0x38	R/W	UART Function Select Register.	0x0000_0000			
UART_BR_COMP	UARTx_BA+0x3C	R/W	UART Baud Rate Compensation	0x0000_0000			

Note: The x of the UARTx_REG represents the UART channel.

6.14.7 Register Description

nuvoTon

UART Receive Buffer Register (UARTx_RBR)

Register	Offset	R/W	Description	Reset Value
UART_RBR	UARTx_BA+0x00	R	UART Receive Buffer Register.	Undefined

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
RBR								

Bits	Description		
[31:8]	Reserved	Reserved.	
[7:0]	RBR	Receive Buffer Register By reading this register, the UART will return an 8-bit data received from RX pin (LSB first).	

UART Transmit Holding Register (UARTx_THR)

Register	Offset	R/W	Description	Reset Value
UART_THR	UARTx_BA+0x00	W	UART Transmit Holding Register.	Undefined

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	THR						

Bits	Description	Pescription			
[31:8]	Reserved	Reserved.			
[7:0]	THR	Transmit Holding Register By writing to this register, the UART will send out an 8-bit data through the TX pin (LSB first).			

UART Control Register (UARTx_CTL)

Register	Offset	R/W	Description	Reset Value
UART_CTL	UARTx_BA+0x04	R/W	UART Control State Register.	0x0700_0000

31	30	29	28	27	26	25	24		
	Reserved					PWM_SEL			
23	23 22 21			19	18	17	16		
	Reserved				WAKE_RS485 _AAD_EN	WAKE_THR ESH_EN	Reserved		
15	14	13	12	11	10	9	8		
	Reserved			Rese	erved	WAKE_DAT A_EN	WAKE_CTS_E N		
7	6	5	4	3	2	1	0		
DMA_TX_EN	DMA_RX_EN	AUTO_CTS_E N	AUTO_RTS_E N	TX_DIS	RX_DIS	TX_RST	RX_RST		

Bits	Description	
[31:27]	Reserved	Reserved.
[26:24]	PWM_SEL	PWM Channel Select for Modulation Select the PWM channel to modulate with the UART transmit bus. 000 = PWM channel 0 modulate with UART TX. 001 = PWM channel 1 modulate with UART TX. 010 = PWM channel 2 modulate with UART TX. 011 = PWM channel 3 modulate with UART TX. The others, no modulation of UART with PWM
[23:19]	Reserved	Reserved.
[18]	WAKE_RS485_ AAD_EN	RS-485 Address Match Wake-up Function Enable Control 0 = RS-485 ADD mode address match wake-up function Disabled. 1 = RS-485 AAD mode address match wake-up function Enabled when the system is in Power-down mode.
[17]	WAKE_THRESH _EN	FIFO Threshold Reach Wake-up Function Enable Control 0 = Received FIFO threshold reach wake-up function Disabled. 1 = Received FIFO threshold reach wake-up function Enabled when the system is in Power-down mode.
[16:13]	Reserved	Reserved.
[12]	ABAUD_EN	Auto-baud Rate Detect Enable Control 0 = Auto-baud rate detect function Disabled. 1 = Auto-baud rate detect function Enabled. Note: When the auto-baud rate detect operation finishes, hardware will clear this bit and the associated interrupt (INT_ABAUD) will be generated (If ABAUD_IE (UART_IER [7]) be enabled).
[11:10]	Reserved	Reserved.

Bits	Description	
[9]	WAKE_DATA_E N	Incoming Data Wake-up Function Enable Control 0 = Incoming data wake-up function Disabled. 1 = Incoming data wake-up function Enabled when the system is in Power-down mode, incoming data will wake-up system from Power-down mode. Note: Hardware will clear this bit when the incoming data wake-up operation finishes and "system clock" work stable.
[8]	WAKE_CTS_EN	CTSn Wake-up Function Enable Control When the system is in Power-down mode, an external CTSn change will wake-up system from Power-down mode. 0 = CTSn wake-up function Disabled. 1 = CTSn wake-up function Enabled.
[7]	DMA_TX_EN	TX DMA Enable Control 0 = TX PDMA service function Disabled. 1 = TX PDMA service function Enabled.
[6]	DMA_RX_EN	RX DMA Enable Control 0 = RX PDMA service function Disabled. 1 = RX PDMA service function Enabled.
[5]	AUTO_CTS_EN	CTSn Auto-flow Control Enable Control When CTSn auto-flow is enabled, the UART will send data to external device when CTSn input assert (UART will not send data to device until CTSn is asserted). 0 = CTSn auto-flow control Disabled. 1 = CTSn auto-flow control Enabled.
[4]	AUTO_RTS_EN	RTSn Auto-flow Control Enable Control When RTSn auto-flow is enabled, if the number of bytes in the RX-FIFO equals the RTS_TRI_LEV (UART_TLCTL[13:12]), the UART will reassert RTSn signal. 0 = RTSn auto-flow control. Disabled. 1 = RTSn auto-flow control Enabled.
[3]	TX_DIS	Transfer Disable Control 0 = Transfer Enabled. 1 = Transfer Disabled.
[2]	RX_DIS	Receiver Disable Control 0 = Receiver Enabled. 1 = Receiver Disabled. Note1: In RS-485 NMM mode, user can set this bit to receive data before detecting address byte. Note2: In RS-485 AAD mode, this bit will be setting to "1" automatically. Note3: In RS-485 AUD mode and LIN "break + sync +PID" header mode, hardware will control data automatically, so don't fill any value to this bit.
[1]	TX_RST	TX Software Reset When TX_RST is set, all the bytes in the transmitting FIFO and TX internal state machine are cleared. 0 = No effect. 1 = Reset the TX internal state machine and pointers. Note: This bit will be auto cleared and take at least 3 UART engine clock cycles.
[0]	RX_RST	RX Software Reset When RX_RST is set, all the bytes in the receiving FIFO and RX internal state machine are cleared.

Bits	Description	
		0 = No effect.
		1 = Reset the RX internal state machine and pointers.
		Note: This bit will be auto cleared and take at least 3 UART engine clock cycles.

UART Transfer Line Control Register (UARTx_TLCTL)

Register	Offset	R/W	Description	Reset Value
UART_TLCTL	UARTx_BA+0x08	R/W	UART Transfer Line Control Register.	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
Rese	erved	RTS_T	RI_LEV	Reserved		RFITL	
7	6	5	4	3	2	1	0
Reserved	всв	SPE	EPE	PBE	NSB	DATA	LEN

Bits	Description	
[31:14]	Reserved	Reserved.
[13:12]	RTS_TRI_LEV	RTSn Trigger Level (For Auto-flow Control Use) 00 = RTS Trigger Level is 1 byte. 01 = RTS Trigger Level is 4 bytes. 10 = RTS Trigger Level is 8 bytes. 11 = RTS Trigger Level is 14 bytes. Note: This field is used for auto RTSn flow control.
[11:10]	Reserved	Reserved.
[9:8]	RFITL	RX-fIFO Interrupt (INT_RDA) Trigger Level When the number of bytes in the receiving FIFO is equal to the RFITL then the RDA_IF will be set (if RDA_IE(IER[0]) is enabled, an interrupt will be generated) 00 = RX FIFO Interrupt Trigger Level is 1 byte. 01 = RX FIFO Interrupt Trigger Level is 4 bytes. 10 = RX FIFO Interrupt Trigger Level is 8 bytes. 11 = RX FIFO Interrupt Trigger Level is 14 bytes. Note: When operating in IrDA mode or RS-485 mode, the RFITL must be set to "0".
[7]	Reserved	Reserved.
[6]	всв	Break Control Bit When this bit is set to logic "1", the serial data output (TX) is forced to the Spacing State (logic "0"). This bit acts only on TX pin and has no effect on the transmitter logic. 0 = Break control Disabled. 1 = Break control Enabled.
[5]	SPE	Stick Parity Enable Control 0 = Stick parity Disabled. 1 = Stick parity Enabled. Note1: When bits PBE, EPE and SPE are set, the parity bit is transmitted and checked as "0". When PBE and SPE are set and EPE is cleared, the parity bit is transmitted and

Bits	Description	
		checked as "1". Note2: In RS-485 mode, PBE, EPE and SPE can control bit 9, the bit 9 setting are shown as follows.
[4]	EPE	Even Parity Enable Control 0 = Odd number of logic 1's are transmitted or check the data word and parity bits in receiving mode. 1 = Even number of logic 1's are transmitted or check the data word and parity bits in receiving mode. Note: This bit has effect only when PBE bit (parity bit enable) is set.
[3]	РВЕ	Parity Bit Enable Control 0 = Parity bit is not generated (transmitting data) or checked (receiving data) during transfer. 1 = Parity bit is generated or checked bet"een the "last data"word "it" and "stop bit" of the serial data.
[2]	NSB	Number of STOP Bit Length 0 = 1 "STOP bit" is generated in the transmitted data. 1 = 1.5 "STOP bit" is generated in the transmitted data when 5-bit word length is selected, and 2 STOP bit" is generated when 6, 7 and 8 bits data length is selected.
[1:0]	DATA_LEN	Data Length 00 = Word length is 5-bit. 01 = Word length is 6-bit. 10 = Word length is 7-bit. 11 = Word length is 8-bit.

UART Interrupt Enable Register (UARTx_IER)

Register	Offset	R/W	Description	Reset Value
UART_IER	UARTx_BA+0x0C	R/W	UART Interrupt Enable Register.	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved				LIN_IE		
7	6	5	4	3	2	1	0
ABAUD_IE	WAKE_IE	BUF_ERR_IE	RTO_IE	MODEM_IE	RLS_IE	THRE_IE	RDA_IE

Bits	Description	
[31:9]	Reserved	Reserved.
[8]	LIN_IE	LIN Interrupt Enable Control 0 = INT_LIN Disable. 1 = INT_LIN Enabled.
[7]	ABAUD_IE	Auto-baud Rate Interrupt Enable Control 0 = INT_ABAUD Disable. 1 = INT_ABAUD Enabled.
[6]	WAKE_IE	Wake-up Interrupt Enable Control 0 = INT_WAKE Disable. 1 = INT_WAKE Enabled.
[5]	BUF_ERR_IE	Buffer Error Interrupt Enable Control 0 = INT_BUT_ERR Disable. 1 = INT_BUF_ERR Enabled.
[4]	RTO_IE	RX Time-out Interrupt Enable Control 0 = INT_TOUT Disable. 1 = INT_TOUT Enabled.
[3]	MODEM_IE	Modem Status Interrupt Enable Control 0 = INT_MOS Disable. 1 = INT_MOS Enabled.
[2]	RLS_IE	Receive Line Status Interrupt Enable Control 0 = INT_RLS Disable. 1 = INT_RLS Enabled.
[1]	THRE_IE	Transmit Holding Register Empty Interrupt Enable Control 0 = INT_THRE Disable. 1 = INT_THRE Enabled.

Bits	Description				
[0]	RDA_IE	Receive Data Available Interrupt Enable Control 0 = INT_RDA Disable. 1 = INT_RDA Enabled.			

UART Interrupt Status Control Register (UARTx_ISR)

Register	Offset	R/W	Description	Reset Value
UART_ISR	UARTx_BA+0x10	R/W	UART Interrupt Status Register.	0x0000_0002

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved				LIN_IS		
7	6	5	4	3	2	1	0
ABAUD_IS	WAKE_IS	BUF_ERR_IS	RTO_IS	MODEM_IS	RLS_IS	THRE_IS	RDA_IS

Bits	Description	
[31:9]	Reserved	Reserved.
		LIN Interrupt Status Flag (Read Only) This bit is set when the LIN TX header transmitted, RX header received or the SIN does not equal SOUT and if LIN_IE(UART_IER[8]) is set then the LIN interrupt will be generated.
[8]	LIN_IS	0 = No LIN interrupt is generated. 1 = LIN interrupt is generated.
		Note1: This bit is read only, but can be cleared by it by writing "1" to BIT_ERR_F (UART_TRSR[5]), LIN_TX_F (UART_TRSR[3]) or LIN_RX_F (UART_TRSR[4]). Note2: This bit is cleared when both the BIT_ERR_F, LIN_TX_F and LIN_RX_F are cleared.
[7]	ABAUD_IS	Auto-baud Rate Interrupt Status Flag (Read Only) This bit is set when auto-baud rate detection function finished or the auto-baud rate counter was overflow and if ABAUD_IE (UART_IER[7]) is set then the auto-baud rate interrupt will be generated. 0 = No Auto-Baud Rate interrupt is generated. 1 = Auto-Baud Rate interrupt is generated. Note1: This bit is read only, but can be cleared by it by writing "1" to ABAUD_TOUT_F (UART_TRSR[2]) or ABAUD_F (UART_TRSR[1]). Note2: This bit is cleared when both the ABAUD_TOUT_F and ABAUD_F are cleared.
[6]	WAKE_IS	Wake-up Interrupt Status Flag (Read Only) This bit is set in Power-down mode, the receiver received data or CTSn signal. If WAKE_IE (UART_IER[6]) is set then the wake-up interrupt will be generated. 0 = No Wake-Up interrupt is generated. 1 = Wake-Up interrupt is generated. Note: This bit is read only, but can be cleared by it by writing "1" to it.
[5]	BUF_ERR_IS	Buffer Error Interrupt Status Flag (Read Only) This bit is set when the TX or RX-FIFO overflowed. When BUF_ERR_IS is set, the transfer maybe not correct. If BUF_ERR_IE (UART_IER[5]) is set then the buffer error interrupt will be generated.

Description					
	0 = No Buffer error interrupt is generated.				
	1 = Buffer error interrupt is generated.				
	Note1: This bit is read only, but can be cleared by it by writing "1" to TX_OVER_F (UART_FSR[8]) or RX_OVER_F (UART_FSR[0]).				
	Note2: This bit is cleared when both the TX_OVER_F and RX_OVER_F are cleared.				
	RX Time-out Interrupt Status Flag (Read Only)				
RTO IS	This bit is set when the RX-FIFO is not empty and no activities occur in the RX-FIFO and the time-out counter equal to TOIC. If RTO_IE (UART_IER[4]) is set then the tout interrupt will be generated.				
	0 = No RX Time-Out interrupt is generated.				
	1 = RX Time-Out interrupt is generated.				
	Note: This bit is read only and user can read UART_RBR (RX is in active) to clear it.				
	MODEM Interrupt Status Flag (Read Only)				
	This bit is set when the CTSn pin has state change (DCTSF = "1"). If MODEM_IEN (UART_IER[3]) is set then the modem interrupt will be generated.				
MODEM_IS	0 = No MODEM interrupt is generated.				
	1 = MODEM interrupt is generated.				
	Note: This bit is read only, but can be cleared by it by writing "1" to DCT_F (UART_MCSR[18]).				
	Receive Line Interrupt Status Flag (Read Only)				
	This bit is set when the RX received data has parity error (PE_F (UART_FSR[4])), framing error (FE_F (UART_FSR[5])), break error (BI_F (UART_FSR[6])) or RS-485 detect address byte (RS-485_ADDET_F (UART_TRSR[0])). If RLS_IE (UART_IER[2]) is set then the RLS interrupt will be generated.				
	0 = No Receive Line interrupt is generated.				
KLS_IS	1 = Receive Line interrupt is generated.				
	Note1: This bit is read only, but can be cleared by it by writing "1" to BI_F (UART_FSR[6]), FE_F (UART_FSR[5]), PE_F (UART_FSR[4]) or RS-485_ADDET_F (UART_TRSR[0]).				
	Note2: This bit is cleared when the BI_F, FE_F, PE_F and RS-485_ADDET_F are cleared.				
	Transmit Holding Register Empty Interrupt Flag (Read Only)				
	This bit is set when the last data of TX-FIFO is transferred to Transmitter Shift Register. If THRE_IEN (UART_IER[1]) is set that the THRE interrupt will be generated.				
THRE_IS	0 = No Transmit Holding register empty interrupt is generated.				
	1 = Transmit Holding register empty interrupt generated.				
	Note: This bit is read only and it will be cleared when writing data into THR (TX-FIFO not empty).				
	Receive Data Available Interrupt Flag (Read Only)				
	When the number of bytes in the RX-FIFO equals the RFITL then the RDA_IF will be set. If RDA_IEN (UART_IER[0]) is set then the RDA interrupt will be generated.				
RDA_IS	0 = No Receive Data available interrupt is generated.				
	1 = Receive Data available interrupt is generated.				
	Note: This bit is read only and it will be cleared when the number of unread bytes of RX-FIFO drops below the threshold level (RFITL).				
	RTO_IS MODEM_IS RLS_IS THRE_IS				

UART Transfer Status Register (UARTx_TRSR)

Register	Offset	R/W	Description	Reset Value
UART_TRSR	UARTx_BA+0x14	R/W	UART Transfer State Status Register.	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
	Reserved						LIN_RX_SYN C_ERR_F
7	6	5	4	3	2	1	0
Rese	Reserved BIT_ERR_F LIN_RX_F			LIN_TX_F	ABAUD_TOU T_F	ABAUD_F	RS-485_ ADDET_F

Bits	Description				
[31:9]	Reserved	Reserved.			
[8]	LIN_RX_SYNC_ ERR_F	LIN RX SYNC Error Flag (Read Only) This bit is set to logic "1" when LIN received incorrect SYNC field. User can choose the header by setting LIN_HEAD_SEL (UART_ALT_CTL[5:4]) register. 0 = No LIN Rx sync error is generated. 1 = LIN Rx sync error is generated. Note: This bit is read only, but can be cleared by writing "1" to LIN_RX_F.			
[7:6]	Reserved	Reserved.			
[5]	BIT_ERR_F	Bit Error Detect Status Flag (Read Only) At TX transfer state, hardware will monitoring the bus state, if the input pin (SIN) state is not equal to the output pin (SOUT) state, BIT_ERR_F will be set. When occur bit error, hardware will generate an interrupt to CPU (INT_LIN). 0 = No Bit error interrupt is generated. 1 = Bit error interrupt is generated. Note1: This bit is read only, but it can be cleared by writing "1" to it. Note2: This bit is only valid when enabling the bit error detection function (BIT_ERR_EN (UART_ALT_CTL[8]) = "1").			
[4]	LIN_RX_F	LIN RX Interrupt Flag (Read Only) This bit is set to logic "1" when received LIN header field. The header may be "break field" or "break field + sync field" or "break field + PID field", and it can be choose by setting LIN_HEAD_SEL (UART_ALT_CTL[5:4]) register. 0 = No LIN Rx interrupt is generated. 1 = LIN Rx interrupt is generated. Note: This bit is read only, but can be cleared by writing "1" to it.			
[3]	LIN_TX_F	LIN TX Interrupt Flag (Read Only) This bit is set to logic "1" when LIN transmitted header field. The header may be "breal field" or "break field + sync field" or "break field + PID field", it can be choose the control of the cont			

Bits	Description	
		by setting LIN_HEAD_SEL (UART_ALT_CTL[5:4]) register.
		0 = No LIN Tx interrupt is generated.
		1 = LIN Tx interrupt is generated.
		Note: This bit is read only, but can be cleared by writing "1" to it.
		Auto-baud Rate Time-out Interrupt (Read Only)
	ABAUD TOUT	This bit is set to logic "1" in Auto-baud Rate Detect mode and the baud rate counter is overflow.
[2]	F	0 = No Auto-Baud Rate Time-Out interrupt is generated.
		1 = Auto-Baud Rate Time-Out interrupt is generated.
		Note: This bit is read only, but can be cleared by writing "1" to it.
		Auto-baud Rate Interrupt (Read Only)
		This bit is set to logic "1" when auto-baud rate detect function finished.
[1]	ABAUD_F	0 = No Auto- Baud Rate interrupt is generated.
		1= Auto-Baud Rate interrupt is generated.
		Note: This bit is read only, but can be cleared by writing "1" to it.
		RS-485 Address Byte Detection Status Flag (Read Only)
	RS-485	This bit is set to logic "1" and set RS-485_ADD_EN (UART_ALT_CTL[19]) whenever in RS-485 mode the receiver detected any address byte character (bit 9 ='1') bit". This bit is reset whenever the CPU writes "1" to this bit.
[0]	ADDET F	0 = No RS-485 address detection interrupt is generated.
		1 = RS-485 address detection interrupt is generated.
		Note1: This field is used for RS-485 mode.
		Note2: This bit is read only, but can be cleared by writing "1" to it.

UART FIFO Status Register (UART_FSR)

Register	Offset	R/W	Description	Reset Value
UART_FSR	UARTx_BA+0x18	R/W	UART FIFO State Status Register.	0x0000_0A02

31	30	29	28	27	26	25	24	
	Reserved				TX_POINTER_F	=		
23	22	21	20	19	18	17	16	
	Reserved			RX_POINTER_F				
15	14	13	12	11	10	9	8	
	Reserved			TE_F	TX_FULL_F	TX_EMPTY_F	TX_OVER_F	
7	6	5	4	3	2	1	0	
Reserved	BI_F	FE_F	PE_F	Reserved	RX_FULL_F	RX_EMPTY_F	RX_OVER_F	

Bits	Description					
[31:28]	Reserved	Reserved.				
[28:24]	TX_POINTER_F	TX-fIFO Pointer (Read Only) This field indicates the TX-FIFO Buffer Pointer. When CPU writes one byte data into UART_THR, TX_POINTER_F increases one. When one byte of TX-FIFO is transferred to Transmitter Shift Register, TX_POINTER_F decreases one.				
[23:21]	Reserved	Reserved.				
[20:16]	RX_POINTER_F	RX-fIFO Pointer (Read Only) This field indicates the RX-FIFO Buffer Pointer. When UART receives one byte from external device, RX_POINTER_F increases one. When one byte of RX-FIFO is read ICPU, RX_POINTER_F decreases one.				
[15:12]	Reserved	Reserved.				
[11]	TE_F	Transmitter Empty Status Flag (Read Only) This bit is set by hardware when TX FIFO (UA_THR) is empty and the STOP bit of the last byte has been transmitted. This bit is cleared automatically when TX FIFO is not empty or the last byte transmission has not completed. 0 = TX FIFO is not empty. 1 = TX FIFO is empty.				
[10]	TX_FULL_F	Transmitter FIFO Full (Read Only) This bit indicates TX-FIFO full or not. This bit is set when TX_POINTER_F is equal to 16, otherwise is cleared by hardware. 0 = TX FIFO is not full. 1 = TX FIFO is full.				
[9]	TX_EMPTY_F	Transmitter FIFO Empty (Read Only) This bit indicates TX-FIFO empty or not. When the last byte of TX-FIFO has been transferred to Transmitter Shift Register, hardware sets this bit high. It will be cleared when writing data into THR (TX-FIFO not empty).				

Bits	Description				
		0 = TX FIFO is not empty.			
		1 = TX FIFO is empty.			
[8]	TX_OVER_F	TX Overflow Error Interrupt Status Flag (Read Only) If TX-FIFO (UART_THR) is full, an additional write to UART_THR will cause this bit to logic "1". 0 = TX FIFO is not overflow. 1 = TX FIFO is overflow. Note: This bit is read only, but it can be cleared by writing "1" to it.			
[7]	Reserved	Reserved.			
[/]	reserved				
[6]	BI_F	Break Status Flag (Read Only) This bit is set to a logic "1" whenever the received data input(RX) is held in the "spacing state" (logic "0") for longer than a full word transmission time (that is, the total time of "start bit" + data bits + parity + stop bits) and it is reset whenever the CPU writes "1" to this bit. 0 = No Break interrupt is generated. 1 = Break interrupt is generated. Note: This bit is read only, but it can be cleared by writing "1" to it.			
		Framing Frank Status Flog (Bood Only)			
[5] FE_F	FE_F	Framing Error Status Flag (Read Only) This bit is set to logic "1" whenever the received character does not have a valid "stop bit" (that is, the stop bit following the last data bit or parity bit is detected as a logic "0"), and it is reset whenever the CPU writes "1" to this bit.			
		 0 = No framing error is generated. 1 = Framing error is generated. Note: This bit is read only, but it can be cleared by writing "1" to it. 			
[4]	PE_F	Parity Error State Status Flag (Read Only) This bit is set to logic "1" whenever the received character does not have a valid "parity bit", and it is reset whenever the CPU writes "1" to this bit. 0 = No parity error is generated. 1 = Parity error is generated. Note: This bit is read only, but it can be cleared by writing "1" to it.			
[3]	Reserved	Reserved.			
[2]	RX_FULL_F	Receiver FIFO Full (Read Only) This bit initiates RX-FIFO full or not. This bit is set when RX_POINTER_F is equal to 16, otherwise is cleared by hardware. 0 = RX FIFO is not full. 1 = RX FIFO is full.			
[1]	RX_EMPTY_F	Receiver FIFO Empty (Read Only) This bit initiate RX-FIFO empty or not. When the last byte of RX-FIFO has been read by CPU, hardware sets this bit high. It will be cleared when UART receives any new data. 0 = RX FIFO is not empty. 1 = RX FIFO is empty.			
[0]	RX_OVER_F	RX Overflow Error Status Flag (Read Only) This bit is set when RX-FIFO overflow. If the number of bytes of received data is greater than RX-FIFO (UART_RBR) size, 16 bytes of UART0/UART1, this bit will be set. 0 = RX FIFO is not overflow.			

Bits	scription
	1 = RX FIFO is overflow.
	Note: This bit is read only, but it can be cleared by writing "1" to it.

UART MODEM Control Register (UARTx_MCSR)

Register	Offset	R/W	Description	Reset Value
UART_MCSR	UARTx_BA+0x1C	R/W	UART Modem State Status Register.	0x0002_0002

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved					CTS_ST	LEV_CTS
15	14	13	12	11	10	9	8
	Reserved						
7	7 6 5 4 3 2					1	0
	Reserved						LEV_RTS

Bits	Description						
[31:19]	Reserved	Reserved.					
[18]	DCT_F	This bit is set whenever interrupt to CPU when N 0 = CTS input has not of 1 = CTS input has chan	Detect CTSn State Change Status Flag (Read Only) This bit is set whenever CTSn input has change state, and it will generate Modem interrupt to CPU when MODEM_IE (UART_IER[3]). 0 = CTS input has not change state. 1 = CTS input has change state. Note: This bit is read only, but it can be cleared by writing "1" to it.				
[17]	CTS_ST	CTSn Pin Status (Read Only) This bit is the pin status of CTSn. 0 = CTS pin input is low level voltage logic state. 1 = CTS pin input is high level voltage logic state.					
		CTSn Trigger Level This bit can change the CTSn trigger level. 0 = Low level triggered. 1 = High level triggered.					
[16]	LEV_CTS	Operation Mode	LEV_CTS	CTSn Pin Input	CTS_ST	Transmitter State	
			0	0	0	STOP	
		CTS Auto-Flow	0	1	1	ACTIVE	
		Control Mode	1	0	0	ACTIVE	
			1	1	1	STOP	
[15:12]	Reserved	Reserved.					
[1]	RTS_ST	1	RTSn Pin State (Read Only) This bit is the pin status of RTSn.				

Bits	Description				
		0 = RTS pin input is low level 1 = RTS pin input is high level			
		RTSn Trigger Level This bit can change the RTSn 0 = low level triggered. 1 = high level triggered. For example, the relation wave		RTSn shown as follows.	
		Operation Mode	LEV_RTS	RTS_ST (Default Output State)	
		RS-485 AUD Mode	0	0	
		(Note)	1	1	
		RTS Auto-Flow	0	1	
		Control Mode (Note)	1	0	
[0]	LEV_RTS	Normal mode	0	1	
			1	0	
		Note: In RS-485 AUD mode and RTS Auto-flow control mode, hardware will control the output RTS pin automatically, so the table indicates the default value. UART Mode: LEV_RTS			
		TX Start bit Start CTX_EN)	D0 D1 D2 D3 D4 D5 D6 D Drive Enable	77 P STOP	
		Note: The default setting in U	ART mode is LEV_RTS = "0" a	and RTS_ST = "1".	

UART TIME-OUT Register (UARTx_TMCTL)

Register	Offset	R/W	Description	Reset Value
UART_TMCTL	UARTx_BA+0x20	R/W	UART Time-Out Control State Register.	0x0000_01FF

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			DI	LY			
15	14	13	12	11	10	9	8
	Reserved						TOIC
7	7 6 5 4 3 2 1					0	
	TOIC						

Bits	Description					
[31:24]	Reserved	Reserved.				
[23:16]	DLY	TX Delay Time Value This field is used to programming the transfer delay time between the last stop bit and next start bit. TX Byte (i) Start Stop Start Note1: Fill all "0" to this field indicates to disable this function. Note2: The real delay value is DLY. Note3: The counting clock is baud rate clock.				
[15:9]	Reserved	Reserved.				
[8:0]	TOIC	Time-out Comparator The time-out counter resets and starts counting whenever the RX-FIFO receives a new data word. Note1: Fill all "0" to this field indicates to disable this function. Note2: The real time-out value is TOIC + 1. Note3: The counting clock is baud rate clock. Note4: The UART data format is start bit + 8 data bits + parity bit + stop bit, although software can configure this field by any value but it is recommend to filled this field great than 0xA.				

UART Baud Rate Divider Register (UARTx_BAUD)

Register	Offset	R/W	Description	Reset Value
UART_BAUD	UARTx_BA+0x24	R/W	UART Baud Rate Divisor Register	0x0000_0000

31	30	29	28	27	26	25	24	
DIV_16_EN				Reserved				
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			BI	RD				
7	6	5	4	3	2	1	0	
	BRD							

Bits	Description				
		Divider 16 Enable Control			
		The BRD = Baud Rate Divider, and the baud rate equation is Baud Rate = UART_CLK/ [M * (BRD + 1)]; The default value of M is 16.			
[31]	DIV_16_EN	0 = The equation of baud	rate is UART_CLK / [(BRD+1)].		
		1 = The equation of baud	rate is UART_CLK / [16 * (BRD+1)].		
		Note: In IrDA mode, this bit must clear to "0".			
[30:16]	Reserved	Reserved.			
		Baud Rate Divider			
		The low byte of the baud rate divider			
		DIV_16_EN	Baud Rate Equation		
[15:0]	BRD	Disable	UART_CLK / (BRD+1), A must >2		
		(Mode 0)			
		Enable	UART_CLK / [16 * (BRD+1)]		
		(Mode 1)			

UART IrDA Control Register (UARTx_IRCR)

Register Offset		R/W	Description	Reset Value
UART_IRCR	UARTx_BA+0x30	R/W	UART IrDA Control Register.	0x0000_0040

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7 6 5 4 3 2 1 0							0	
Reserved	INV_RX	INV_TX	Reserved			TX_SELECT	Reserved	

Bits	Description			
[31:7]	Reserved	Reserved.		
[6]		INV_RX 0 = RX input signal no inversion. 1 = RX input signal inversion.		
[5]		INV_TX 0 = TX output signal no inversion. 1 = TX output signal inversion.		
[4:2]	Reserved	Reserved.		
[1]	TX_SELECT	TX_SELECT 0 = Select IrDA receiver. 1 = Select IrDA transmitter.		
[0]	Reserved	Reserved.		

UART ALT Control State Register (UARTx_ALT_CTL)

Register	Offset	R/W	Description	Reset Value
UART_ALT_CSR	UARTx_BA+0x34	R/W	UART Alternate Control State Register.	0x0000_0000

31	30	29	28	27	26	25	24		
	ADDR_PID_MATCH								
23	22	21	20	19	18	17	16		
	Rese	erved		RS-485_ ADD_EN	RS-485_AUD	RS-485_AAD	RS-485_NMM		
15	14	13	12	11	10	9	8		
			Reserved				BIT_ERR_EN		
7 6 5 4			4	3	2	1	0		
LIN_TX_EN	EN LIN_RX_EN LIN_HEAD_SEL			Reserved		LIN_TX_BCNT			

Bits	Description				
[31:24]	ADDR_PID_MAT CH	Address / PID Match Value Register When in the RS-485 Function Mode, this field contains the RS-485 address match values. When in the LIN Function mode, this field contains the LIN protected identifier field, software fills ID0~ID5 (ADDR_PID_MATCH [5:0]), hardware will calculate P0 and P1. PID Start ID0 ID1 ID2 ID3 ID4 ID5 P0 P1 P0 = ID0 xor ID1 xor ID2 xor ID4 P1 = ~(ID1 xor ID3 xor ID4 xor ID5) Note: This field is used for RS-485 auto address detection mode or used for LIN protected identifier field (PID).			
[23:20]	Reserved	Reserved.			
[19]	RS-485_ ADD_EN	RS-485 Address Detection Enable Control This bit is used to enable RS-485 hardware address detection mode. 0 = Address detection mode Disabled. 1 = Address detection mode Enabled. Note: This field is used for RS-485 any operation mode.			
[18]	RS-485_AUD	RS-485 Auto Direction Mode (AUD Mode) 0 = RS-485 Auto Direction mode (AUD) Disabled. 1 = RS-485 Auto Direction mode (AUD) Enabled. Note: It can be active in RS-485_AAD or RS-485_NMM operation mode.			
[17]	RS-485_AAD	RS-485 Auto Address Detection Operation Mode (AAD Mode) 0 = RS-485 Auto Address Detection Operation mode (AAD) Disabled. 1 = RS-485 Auto Address Detection Operation mode (AAD) Enabled. Note: It can't be active in RS-485_NMM Operation mode.			

Bits	Description	
[16]	RS-485_NMM	RS-485 Normal Multi-drop Operation Mode (NMM Mode) 0 = RS-485 Normal Multi-drop Operation mode (NMM) Disabled. 1 = RS-485 Normal Multi-drop Operation mode (NMM) Enabled. Note: It can't be active in RS-485_AAD Operation mode.
[15:9]	Reserved	Reserved.
[8]	BIT_ERR_EN	Bit Error Detect Enable Control 0 = Bit error detection Disabled. 1 = Bit error detection Enabled. Note: In LIN function mode, when bit error occurs, hardware will generate an interrupt to CPU (INT_LIN).
[7]	LIN_TX_EN	LIN TX Header Trigger Enable Control 0 = LIN TX Header Trigger Disabled. 1 = LIN TX Header Trigger Enabled. Note1: This bit will be cleared automatically and generate a interrupt to CPU (INT_LIN). Note2: If user wants to receive transmit data, it recommended to enable LIN_RX_EN bit.
[6]	LIN_RX_EN	LIN RX Enable Control When LIN RX mode enabled and received a break field or sync field or PID field (Select by LIN_Header_SEL), the controller will generator a interrupt to CPU (INT_LIN) 0 = LIN RX mode Disabled. 1 = LIN RX mode Enabled.
[5:4]	LIN_HEAD_SEL	LIN Header Selection 00 = The LIN header includes "break field". 01 = The LIN header includes "break field + sync field". 10 = The LIN header includes "break field + sync field + PID field". 11 = Reserved.
[3]	Reserved	Reserved.
[2:0]	LIN_TX_BCNT	LIN TX Break Field Count The field contains 3-bit LIN TX break field count. Note: The break field length is LIN_TX_BCNT + 8.

UART Function Select Register (UARTx_FUN_SEL)

Register	Offset	R/W	Description	Reset Value
UART_FUN_SEL	UARTx_BA+0x38	R/W	UART Function Select Register.	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
Reserved					FUN_	_SEL		

Bits	Description	Description		
[31:2]	Reserved	Reserved.		
[1:0]	FUN_SEL	Function Select Enable Control 00 = UART function mode. 01 = LIN function mode. 10 = IrDA function mode. 11 = RS-485 function mode.		

UART Baud Rate Compensation Register (UARTx_BR_COMP)

Register	Offset	R/W	Description	Reset Value
UART_BR_COMP	UARTx_BA+0x3C	R/W	UART Baud Rate Compensation	0x0000_0000

31	30	29	28	27	26	25	24			
BR_COMP_D EC	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
			Reserved				BR_COMP[8]			
7	6	5	4	3	2	1	0			
BR_COMP[7:0]										

Bits	Description	Description			
[31]		Baud Rate Compensation Decrease 0 = Positive (increase one module clock) compensation for each compensated bit. 1 = Negative (decrease one module clock) compensation for each compensated bit.			
[30:9]	Reserved	Reserved.			
[8:0]	BR_COMP	Baud Rate Compensation Patten These 9-bits are used to define the relative bit is compensated or not. BR_COMP[7:0] is used to define the compensation of D[7:0] and BR_COM{[8] is used to define the parity bit.			

6.15 Smart Card Host Interface (SC)

6.15.1 Overview

The Smart Card Interface controller (SC controller) is based on ISO/IEC 7816-3 standard and fully compliant with PC/SC Specifications. It also provides status of card insertion/removal.

6.15.2 Features

- ISO-7816-3 T = 0, T = 1 compliant.
- EMV2000 compliant
- Up to two ISO-7816-3 ports
- Separates receive/transmit 4 byte entry FIFO for data payloads.
- Programmable transmission clock frequency.
- Programmable receiver buffer trigger level.
- Programmable guard time selection (11 ETU ~ 267 ETU).
- A 24-bit and two 8 bit timers for Answer to Request (ATR) and waiting times processing.
- Supports auto inverse convention function.
- Supports transmitter and receiver error retry and error number limitation function.
- Supports hardware activation sequence process.
- Supports hardware warm reset sequence process.
- Supports hardware deactivation sequence process.
- Supports hardware auto deactivation sequence when detected the card removal.
- Supports UART mode
 - Full duplex, asynchronous communications.
 - Separates receiving / transmitting 4 bytes entry FIFO for data payloads.
 - Supports programmable baud rate generator for each channel.
 - Supports programmable receiver buffer trigger level.
 - ◆ Programmable transmitting data delay time between the last stop bit leaving the TX-FIFO and the de-assertion by setting SC_EGTR register.
 - Programmable even, odd or no parity bit generation and detection.
 - Programmable stop bit, 1 or 2 stop bit generation

6.15.3 Block Diagram

nuvoTon

The SC clock control and block diagram are shown as follows. The SC controller is completely asynchronous design with to clock domains, PCLK and engine clock, note that the PCLK should be higher or equal than the frequency of engine clock.

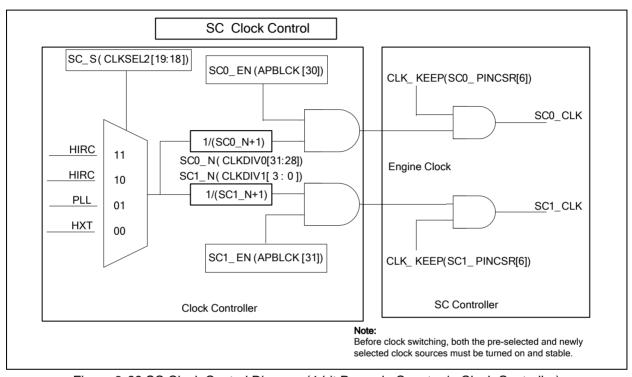


Figure 6-66 SC Clock Control Diagram (4-bit Prescale Counter in Clock Controller)

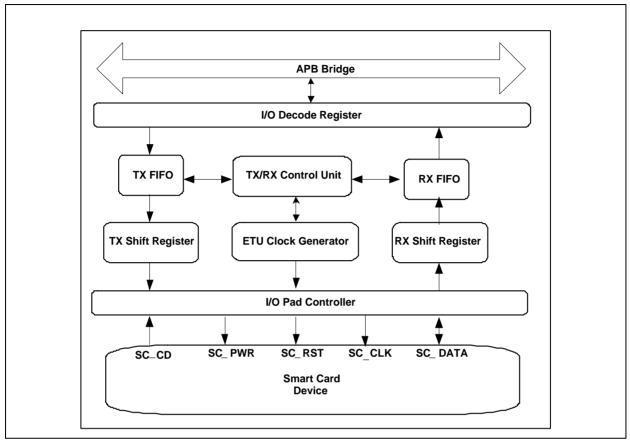


Figure 6-67 SC Controller Block Diagram

6.15.4 Functional description

Basically, the smart card interface acts as a half-duplex asynchronous communication port and its data format is composed of ten consecutive bits which is show as follows.

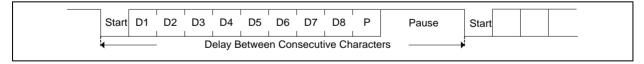


Figure 6-68 SC Data Character

6.15.4.1 Activation, Warm Reset and Deactivation Sequence

Activation

nuvoton

The Smart Card Interface controller supports hardware activation, warm reset and deactivation sequence. The activation sequence is show as Follows.

- Set SC_RST to low
- Set SC_PWR at high level and SC_DAT at high level (reception mode) .
- Enable SC_CLK clock

De-assert SC RST to high

nuvoton

The activation sequence can be controlled by software or hardware. If software wants to control it, software can control SC PINCSR and SC TMRx register to process the activation sequence or setting ACT EN(SC ALTCTL[3]) register, and then the interface will perform the hardware activation sequence.

Following is activation control sequence in hardware activation mode:

- Set activation timing by setting INIT_SEL(SC_ALTCTL[9:8]).
- Timer0 can be selected when TMR SEL(SC CTL[14:13]) is 01. 10 or 11.
- Set operation mode MODE(SC TMR0[27:24]) to 0011 and give an Answer to Request value by setting SC TMR0 [CNT] register.
- When hardware de-asserts SC RST to high, hardware will generator an interrupt INT INIT to CPU at the same time INIT IE(SC IER[8]) = "1"
- If the Timer0 decreases the counter to "1" (start from SC RST) and the card does not response ATR before that time, hardware will generate interrupt TMR0 IS (SC ISR[3]) to CPU.

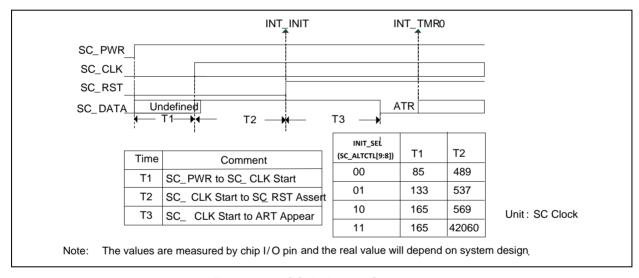


Figure 6-69 SC Activation Sequence

Warm Reset

The warm reset sequence is showed as follows.

- Set SC_RST to low and set SC_DAT to high.
- Set SC_RST to high.

The warm reset sequence can be controlled by software or hardware. If software wants to control it, software can control SC PINCSR and SC TMRx register to process the warm reset sequence or set WARST_EN(SC_ALTCTL[4] register, and then the interface will perform the hardware warm reset sequence.

Following is warm reset control sequence in hardware warm reset mode

- Set warm reset timing by setting INIT_SEL(SC_ALTCTL[9:8]).
- Select Timer0 by setting TMR_SEL(SC_CTL[14:13]) register (TMR_SEL can be 01, 10, or 11).
- Set operation mode MODE(SC_TMR0[27:24]) to 011 and give an Answer to Request value by setting CNT(SC_TMR0[23:0]) register.

- Set TM0 SEN(SC ALTCTL[5] and WARST EN(SC ALTCTL[4]) to start counting.
- When hardware de-asserts SC RST to high, hardware will generate an interrupt INT INIT to CPU at the same time (INIT_IE(SC_IER[8] = "1")
- If the Timer0 decreases the counter to "1" (start from SC_RST) and the card does not response ATR before that time, hardware will generate interrupt INT TMR0 to CPU.

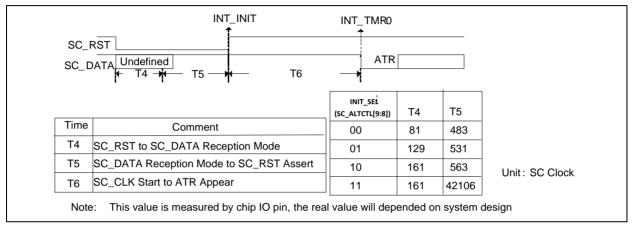


Figure 6-70 SC Warm Reset Sequence

Deactivation

nuvoton

The deactivation sequence is showed as follows:

- Set SC_RST to low.
- Stop SC CLK.
- Set SC_DATA to state low.
- Deactivated SC PWR.

The deactivation sequence can be controlled by software or hardware. If software wants to control it, software can control SC_PINCSR and SC_TMR0 register to process the deactivation sequence or set DACT_EN(SC_ALTCTL[2]) register, and then the interface will perform the hardware deactivation sequence.

The SC controller also supports auto deactivation sequence when the card removal detection is set ADAC_CDEN(SC_ALTCTL[11])

Following is deactivation control sequence in hardware deactivation mode:

Set deactivation timing by setting INIT_SEL(SC_ALTCTL[9:8]). Set DACT_EN(SC_ALTCTL[2]) to start counting by SC_ALTCTL register.

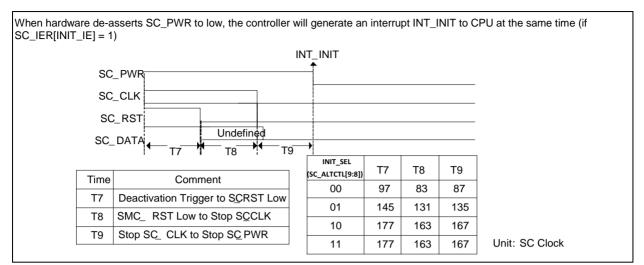


Figure 6-71 SC Deactivation Sequence

6.15.4.2 Initial Character TS

nuvoton

According to 7816-3, the initial character TS of answer to reset follows T=0 mode character description. request (ATR) has two possible patterns (as shown in the following figure). If the TS pattern is 1100 0000, it is inverse convention. When decoded by inverse convention, the conveyed byte is equal to 0x3F. If the TS pattern is 1101 1100, it is direct convention. When decoded by direct convention, the conveyed byte is equal to 0x3B.Software can set AUTO CON EN(SC CTL[3]) and then the operating convention will be decided by hardware. Software can also set the CON_SEL(SC CTL[5:4]) register (set to 00 or 11) to change the operating convention after SC received TS of answer to request (ATR).

If software enables auto convention function by setting AUTO_CON_EN(SC_CTL[3])register, the setting step must be done before Answer to Request state and the first data must be 0x3B or 0x3F. After hardware received first data and stored it at buffer, the hardware will decided the convention and change the CON SEL(SC CTL[5:4]) register automatically. If the first data is neither 0x3B nor 0x3F, the hardware will generate an interrupt INT ACON ERR (if ACON ERR IE (SC IER [10])= "1") to CPU.

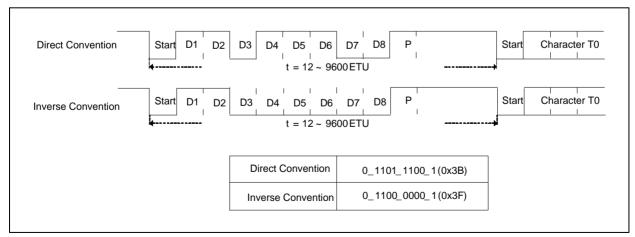


Figure 6-72 Initial Character TS

6.15.4.3 Error Signal and Character Repetition

According to ISO7816-3 T=0 mode description, as shown in following, if the receiver receives a wrong

parity bit, it will pull the SC DAT to low by 1.5 bit period to inform the transmitter parity error. Then the transmitter will retransmit the character. The SC interface controller supports hardware error detection function in receiver and supports hardware re-transmit function in transmitter. Software can enable retransmit function by setting TX ERETRY EN(SC CTL[23]). Software can also define the retry (retransmit) number limitation in TX_ERETRY(SC_CTL[22:20]) register. The re-transmit number is up to TX_ERETRY +1 and if the re-transmit number is equal to TX_ERETRY +1, TX_OVER_REERR flag will be set by hardware and if TERR IE (SC IER [2], SC controller will generate a transfer error interrupt to CPU. Software can also define the received retry number limitation in RX ERETRY(SC CTL[18:16]) register. The receiver retry number is up to RX_ERETRY +1, if the number of received errors by receiver is equal to RX ERETRY +1, receiver will receive this error data to buffer and RX OVER REERR flag will be set by hardware and if TERR IE(SC IER[2]), SC controller will generate a transfer error interrupt to CPU.

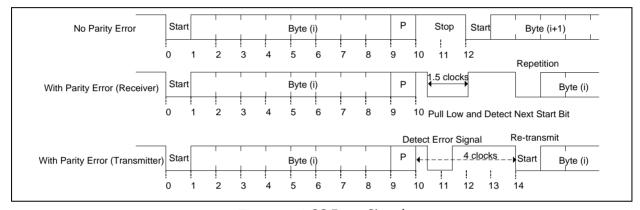


Figure 6-73 SC Error Signal

6.15.4.4 Internal Time-out Counter

nuvoton

The smart card interface includes a 24-bit time-out counter and two 8 bit time-out counters. These counters help the controller in processing different real-time interval (ATR, WWT, BWT, etc.). Each counter can be set to start counting once the trigger enable bit has been written or a START bit has been detected.

The following is the programming flow:

counter by setting TMR_SEL (SC_CTL[14:13]). Select operation mode (SC TMRx[27:24]) and give a count value CNT(SC TMRx[23:0]) by setting SC TMRx register. Set TMR0 SEN (SC ALTCTL [5], TMR1 SEN (SC ALTCTL [6] or TMR2 SEN (SC ALTCTL [7]) is to start counting.

The SC TMR0, SC TMR1 and SC TMR2 timer operation mode are listed below table

Note: Only SC_TMR0 supports mode 0011.

TMRx _SEL (X=0 ~2)	Operation Description				
		ter started when TMRx_SEN (SC_ALTCTL[7:5]) enabled and ended when counter time-out. slue will be CNT (SC_TMR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0])+1			
0000	Start	Start counting when TMRx_SEN (SC_ALTCTL[7:5]) enabled			
	End	When the down counter equals to 0, hardware will set TMRx_IS(SC_ISR[5:3]) and clear			

		TMDy SEN (SC ALTCTI [7:51) automatically					
		TMRx_SEN (SC_ALTCTL[7:5]) automatically.					
		ounter started when the first START bit (reception or transmission) detected and ended when e-out. The time-out value will be CNT (SC_TMR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0])+1.					
0001	Start	Start counting when the first START bit (reception or transmission) detected after TMRx_SEN (SC_ALTCTL[7:5]) set to 1.					
	End	When the down counter equals to 0, hardware will set TMRx_IS(SC_ISR[5:3]) and clear TMRx_SEN (SC_ALTCTL[7:5]) automatically.					
		ounter started when the first START bit (reception) detected and ended when counter time-out . t value will be CNT (SC_TMR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0])+1.					
0010	Start	Start counting when the first START bit (reception) detected bit after TMRx_SEN (SC_ALTCTL[7:5]) set to 1.					
	End	When the down counter equals to 0, hardware will set TMRx_IS(SC_ISR[5:3]) and clear TMRx_SEN (SC_ALTCTL[7:5]) automatically.					
	The timing s	ounter is only used for hardware activation, warm reset sequence to measure ATR timing. tarts when SC_RST de-assertion and ends when ATR response received or time-out. It decreases to 0 before ATR response received, hardware will generate an interrupt to CPU. The use will be CNT (SC_TMR0[32:0])+1.					
0011	Start	Start counting when SC_RST de-assertion after TMR0_SEN (SC_ALTCTL[5]) set to 1. It is used for hardware activation, warm reset mode.					
	End	When the down counter equals to 0 before ATR response received, hardware will set TMR0_IS and clear TMR0_SEN (SC_ALTCTL[5]) automatically.					
		When ATR received and down counter does not equal to 0, hardware will clear TMR0_SEN (SC_ALTCTL[5]) automatically.					
		00, but when the down counter equals to 0, hardware will set TMRx_IS(SC_ISR[5:3]) and counter he SC_TMRx [CNT] value and re-count until software clears TMRx_SEN (SC_ALTCTL[7:5]).					
0100	SC_TMR2[7	:_ATV (SC_ALTCTL[15:13]) =1, software can change CNT (SC_TMR0[32:0], SC_TMR1[7:0], :0]) value at any time. When the down counter equals to 0, counter will reload the new value of MR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0]) and re-count.					
	The time-out	The time-out value will be CNT (SC_TMR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0])+1.					
	will re-load th	01, but when the down counter equals to 0, hardware will set TMRx_IS(SC_ISR[5:3]) and counter he CNT (SC_TMR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0]) value. When the next START bit is unter will re-count until software clears TMRx_ATV (SC_ALTCTL[15:13]).					
0101	SC_TMR0[7	2_ATV (SC_ALTCTL[15:13]) =1 software can change CNT (SC_TMR0[32:0], SC_TMR0[7:0], :0]) value at any time. When the down counter equal to 0, it will reload the new value of CNT 32:0], SC_TMR1[7:0], SC_TMR2[7:0]) and re-counting.					
	-	The time-out value will be CNT (SC_TMR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0])+1.					
	load the CN	10, but when the down counter equals to 0, it will set TMRx_IS(SC_ISR[5:3]) and counter will re-T (SC_TMR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0]) value. When the next START bit is detected, re-count until software clears TMRx_SEN (SC_ALTCTL[7:5]).					
0110	SC_TMR2[7	When TMRx_ATV (SC_ALTCTL[15:13]) =1, software can change CNT (SC_TMR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0]) value at any time. When the down counter equals to 0, counter will reload the new value of CNT (SC_TMR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0]) and re-count.					
	The time-out	The time-out value will be CNT (SC_TMR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0])+1.					
	software clea	ounter started when the first START bit (reception or transmission) detected and ended when ars TMRx_SEN (SC_ALTCTL[7:5]) bit. If next START bit detected, counter will reload the new Γ (SC_TMR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0]) and re-counting.					
0111		r decreases to 0 before the next START bit detected, hardware will generate an interrupt to CPU. t value will be CNT (SC_TMR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0])+1.					
	Start	Start counting when the first START bit detected after TMRx_SEN (SC_ALTCTL[7:5]) set to 1.					
		Stop counting after TMRx_SEN (SC_ALTCTL[7:5]) set to 0.					

	(SC_ALTCTL[7 SC_T)R][1]:8).	The up counter starts when TMRx_SEN (SC_ALTCTL[7:5]) enabled and ends when TMRx_SEN (SC_ALTCTL[7:5]) disabled. This count value will be stored in TDRx(SC_TDRA [23:0], SC_TDRB[7:0], SC_T)R][1]:8). In this mode, hardware cannot generate any interrupt to CPU. The real count value will be TDRx(SC_TDRA [23:0], SC_TDRB[7:0], SC_T)R][1]:8) +1.					
1000	Start Start counting after TMRx_SEN (SC_ALTCTL[7:5]) set to 1, and the start counting after TMRx_SEN (SC_TMR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0])						
	End	Stop counting after TMRx_SEN (SC_ALTCTL[7:5]) set to 0 and the value stored to TDRx(SC_TDRA [23:0], SC_TDRB[7:0], SC_T)R][1]:8) register.					
1111	and ends when reload the new If the counter d	starts when software set TMRx_SEN (SC_ALTCTL[7:5]) bit or any START bit been detected software clears TMRx_SEN (SC_ALTCTL[7:5]) bit. If next START bit detected, counter will value of CNT (SC_TMR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0]) and re-counting. ecreases to "0" before the next START bit be detected, hardware will generate an interrupt to out value will be CNT (SC_TMR0[32:0], SC_TMR1[7:0], SC_TMR2[7:0])+1.					
	Start	Start count when the TMRx_SEN (SC_ALTCTL[7:5]) set to "1" or any START bit (TMRx_SEN (SC_ALTCTL[7:5]) must be set) be detected					
	End	Stop count after TMRx_SEN (SC_ALTCTL[7:5]) set to "0".					

6.15.4.5 UART Mode

nuvoTon

When the UA MODE EN(SC UACTL[0]) bit set, the Smart Card Interface controller can also be used as base UART function. The following is the program example for UART mode.

Program example:

- 1. Software can entry UART mode by setting UA MODE EN(SC UACTL[0]) bit.
- 2. Do software reset by setting RX RST(SC ALTCTL[1]) and TX RST(SC ALTCTL[0]) SCx ALTCTLITX RSTI bit to ensure that all state machine return idle state.
- 3. Filled "0" to CON SEL(SC CTL[5:4]) and AUTO CON EN (SC CTL[3]) field. (In UART mode, those fields must be "0")
- 4. Select the UART baud rate by setting ETU RDIV (SC ETUCR[11:0]) fields. For example, if smartcard module clock is 12 MHZ and target baudrate is 115200bps, ETU RDIV should fill with (12000000 / 1 - 52 - 0 - 1).
- 5. Select the data format include data length (by setting DATA LEN(SC UACTL [5:4]), parity format (by setting OPE(SC_UACTL[7]) and PBDIS(SC_UACTL[6])) and stop bit length (by setting SLEN(SC_CTL[15] or EGT(SC_EGTR[7:0])).
- 6. Select the receiver buffer trigger level by setting RX FTRI LEV(SC CTL[7:6]) field and select the receiver buffer time-out value by setting RFTMR (SC RFTMR[8:0] field.
- 7. Write SC_THR (TX) register or read SC_RBR (RX) register can perform UART function.

6.15.5 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value			
SC Base Address: SCx_BA = 0x4019_0000 + 0x20000*x x= 0, 1							
SC_RBR	SCx_BA+0x00	R	SC Receiving Buffer Register.	0xXXXX_XXXX			
SC_THR	SCx_BA+0x00	W	SC Transmit Holding Register.	0xXXXX_XXXX			
SC_CTL	SCx_BA+0x04	R/W	SC Control Register.	0x0000_0000			
SC_ALTCTL	SCx_BA+0x08	R/W	SC Alternate Control Register.	0x0000_0000			
SC_EGTR	SCx_BA+0x0C	R/W	SC Extend Guard Time Register.	0x0000_0000			
SC_RFTMR	SCx_BA+0x10	R/W	SC Receive buffer Time-out Register.	0x0000_0000			
SC_ETUCR	SCx_BA+0x14	R/W	SC ETU Control Register.	0x0000_0173			
SC_IER	SCx_BA+0x18	R/W	SC Interrupt Enable Control Register.	0x0000_0000			
SC_ISR	SCx_BA+0x1C	R/W	SC Interrupt Status Register.	0x0000_0002			
SC_TRSR	SCx_BA+0x20	R/W	SC Status Register.	0x0000_0202			
SC_PINCSR	SCx_BA+0x24	R/W	SC Pin Control State Register.	0x0000_00x0			
SC_TMR0	SCx_BA+0x28	R/W	SC Internal Timer Control Register 0.	0x0000_0000			
SC_TMR1	SCx_BA+0x2C	R/W	SC Internal Timer Control Register 1.	0x0000_0000			
SC_TMR2	SCx_BA+0x30	R/W	SC Internal Timer Control Register 2.	0x0000_0000			
SC_UACTL	SCx_BA + 0x34	R/W	SC UART Mode Control Register.	0x0000_0000			
SC_TDRA	SCx_BA+0x38	R	SC Timer Current Data Register A.	0x0000_07FF			
SC_TDRB	SCx_BA+0x3C	R	SC Timer Current Data Register B.	0x0000_7F7F			

6.15.6 Register Description

SC Receiving Buffer Register (SC_RBR)

Register	Offset	R/W	Description	Reset Value
SC_RBR	SCx_BA+0x00	R	SC Receiving Buffer Register.	0xXXXX_XXXX

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	15 14 13 12 11 10 9 8									
			Rese	erved						
7	6	5	4	3	2	1	0			
	RBR									

Bits	Description			
[31:8]	Reserved Reserved.			
[7:0]	IRBR	Receiving Buffer By reading RBR, the SC will return an 8-bit received data.		

SC Transmit Holding Register (SC_THR)

Register	Offset	R/W	Description	Reset Value
SC_THR	SCx_BA+0x00	W	SC Transmit Holding Register.	0xXXXX_XXXX

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
THR								

Bits	Description		
[31:8]	Reserved	Reserved.	
		Transmit Holding Buffer	
[7:0]	THR	By writing data to THR, the SC will send out an 8-bit data.	
		Note: If SC_CEN(SC_CTL[0]) is not enabled, THR cannot be programmed.	

SC Control Register (SC_CTL)

Register	Offset	R/W	Description	Reset Value
SC_CTL	SCx_BA+0x04	R/W	SC Control Register.	0x0000_0000

31	30	29	28	27	26	25	24
		Rese	erved			CD_DE	B_SEL
23	22	21	20	19	18	17	16
TX_ERETRY_E N		TX_ERETRY		RX_ERETRY_ EN	RX_ERETRY		
15	14	13	12	11	10	9	8
SLEN	TMR	R_SEL			BGT		
7	6	5	4	3	2	1	0
RX_FTRI_LEV CON_			SEL	AUTO_CON_ EN	DIS_TX	DIS_RX	SC_CEN

Bits	Description	
[31:26]	Reserved	Reserved.
		Card Detect De-bounce Selection
		This field indicates the card detect de-bounce selection.
		00 = De-bounce sample card insert once per 384 (128 * 3) engine clocks and de-bounce sample card removal once per 128 engine clocks.
[25:24]	CD_DEB_SEL	01 = De-bounce sample card insert once per 192 (64 * 3) engine clocks and de-bounce sample card removal once per 64 engine clocks.
		10 = De-bounce sample card insert once per 96 (32 * 3) engine clocks and de-bounce sample card removal once per 32 engine clocks.
		11 = De-bounce sample card insert once per 48 (16 * 3) engine clocks and de-bounce sample card removal once per 16 engine clocks.
		TX Error Retry Enable Control
[22]	TX ERETRY EN	This bit enables transmitter retry function when parity error has occurred.
[23]	IX_EREIRT_EN	0 = TX error retry function Disabled.
		1 = TX error retry function Enabled.
		TX Error Retry Count Number
[22,20]	TV EDETDY	This field indicates the maximum number of transmitter retries that are allowed when parity error has occurred.
[22:20]		Note1: The real retry number is TX_ERETRY + 1, so 8 is the maximum retry number.
		Note2: This field cannot be changed when TX_ERETRY_EN enabled. The change flow is to disable TX_ETRTRY_EN first and then fill in new retry value.

[19]	RX_ERETRY_EN	RX Error Retry Enable Control This bit enables receiver retry function when parity error has occurred. 0 = RX error retry function Disabled. 1 = RX error retry function Enabled. Note: Software must fill in				
		the RX_ERETRY value before enabling this bit.				
		RX Error Retry Count Number				
		This field indicates the maximum number of receiver retries that are allowed when parity error has occurred				
[18:16]	RX_ERETRY	Note1: The real retry number is RX_ERETRY + 1, so 8 is the maximum retry number.				
		Note2: This field cannot be changed when RX_ERETRY_EN enabled. The change flow is to disable RX_ETRTRY_EN first and then fill in new retry value.				
		Stop Bit Length				
		This field indicates the length of stop bit.				
[4.5]	SLEN	0 = The stop bit length is 2 ETU.				
[15]	SLEN	1= The stop bit length is 1 ETU.				
		Note: The default stop bit length is 2. SMC and UART adopts SLEN to program the stop bit length				
		Timer Selection				
		00 = All internal timer function Disabled.				
		01 = Internal 24 bit timer Enabled. Software can configure it by setting SC_TMR0 [23:0]. SC_TMR1 and SC_TMR2 will be ignored in this mode.				
[14:13]	TMR_SEL	10 = internal 24 bit timer and 8 bit internal timer Enabled. Software can configure the 24 bit timer by setting SC_TMR0 [23:0] and configure the 8 bit timer by setting SC_TMR1[7:0]. SC_TMR2 will be ignored in this mode.				
		11 = Internal 24 bit timer and two 8 bit timers Enabled. Software can configure them by setting SC_TMR0 [23:0], SC_TMR1 [7:0] and SC_TMR2 [7:0].				
		Block Guard Time (BGT)				
		Block guard time means the minimum bit length between the leading edges of two consecutive characters between different transfer directions. This field indicates the counter for the bit length of block guard time. According to ISO7816-3, in $T=0$ mode, software must fill 15 (real block guard time = 16.5) to this field; in $T=1$ mode, software must fill 21 (real block guard time = 22.5) to it.				
		Last Receiver Data Transmitter Data				
		Block Guard Time Guard Time Guard Time Guard Time				
[12:8]	BGT	Note 1: Hardware will control the transmit block guard time by BGT(SC_CTL[11:8]) register setting Note 2: Hardware will control the transmit guard time by EGT(SC_EGTR[7:0] register setting				
		In RX mode, software can enable SC_ALTCTL [RX_BGT_EN] to detect the first coming character timing. If the incoming data timing less than BGT, an interrupt will be generated.				
		Last Transmitter Data Receiver Data				
		Block Guard Time				
		Note :If the incoming data timing less than SC_CTL [BGT], an interrupt will be generated (RX_BGT_EN(SC_ALTCTL[12]) enable				

		Note: The real block guard time is BGT + 1.
[7:6]	RX_FTRI_LEV	Rx Buffer Trigger Level When the number of bytes in the receiving buffer equals the RX_FTRI_LEV, the RDA_IF will be set (if IER [RDA_IEN] is enabled, an interrupt will be generated). 00 = INTR_RDA Trigger Level with 01 byte. 01 = INTR_RDA Trigger Level with 02 bytes. 10 = INTR_RDA Trigger Level with 03 bytes. 11 = Reserved.
[5:4]	CON_SEL	Convention Selection 00 = Direct convention. 01 = Reserved. 10 = Reserved. 11 = Inverse convention. Note: If AUTO_CON_EN(SC_CTL[3]) enabled, this fields are ignored.
[3]	AUTO_CON_EN	Auto Convention Enable Control 0 = Auto-convention Disabled. 1 = Auto-convention Enabled. When hardware receives TS in answer to reset state and the TS is direct convention, CON_SEL(SC_CTL[5:4]) will be set to 00 automatically, otherwise if the TS is inverse convention, and CON_SEL (SC_CTL[5:4]) will be set to 11. If software enables auto convention function, the setting step must be done before Answer to Reset state and the first data must be 0x3B or 0x3F. After hardware received first data and stored it at buffer, hardware will decided the convention and change the CON_SEL (SC_CTL[5:4]) bits automatically. If the first data is not 0x3B or 0x3F, hardware will generate an interrupt INT_ACON_ERR (if ACON_ERR IE (SC_IER[10]) = 1 to CPU.
[2]	DIS_TX	TX Transition Disable Control 0 = The transceiver Enabled. 1 = The transceiver Disabled.
[1]	DIS_RX	RX Transition Disable Control 0 = The receiver Enabled. 1 = The receiver Disabled. Note: If AUTO_CON_EN is enabled, these fields must be ignored.
[0]	SC_CEN	SC Engine Enable Control Set this bit to 1 to enable SC operation. If this bit is cleared, SC will force all transition to IDLE state

SC Alternate Control Register (SC_ALTCTL)

Register	Offset	R/W	Description	Reset Value
SC_ALTCTL	SCx_BA+0x08	R/W	SC Alternate Control Register.	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
TMR2_ATV	TMR1_ATV	MR1_ATV TMR0_ATV RX_BGT_EN Reserved INIT_S				_SEL			
7	6	5	4	3	2	1	0		
TMR2_SEN	TMR1_SEN	TMR0_SEN	WARST_EN	ACT_EN	DACT_EN	RX_RST	TX_RST		

Bits	Description	
[31:17]	Reserved	Reserved.
[16]	OUTSEL	Smartcard Data Pin Output Mode Selection Use this bit to select smartcard data pin output mode 0 = Quasi mode. 1 = Open-drain mode.
[15]	TMR2_ATV	Internal Timer2 Active State (Read Only) This bit indicates the timer counter status of timer2. 0 = Timer2 is not active. 1 = Timer2 is active.
[14]	TMR1_ATV	Internal Timer1 Active State (Read Only) This bit indicates the timer counter status of timer1. 0 = Timer1 is not active. 1 = Timer1 is active.
[13]	TMR0_ATV	Internal Timer0 Active State (Read Only) This bit indicates the timer counter status of timer0. 0 = Timer0 is not active. 1 = Timer0 is active.
[12]	RX_BGT_EN	Receiver Block Guard Time Function Enable Control 0 = Receiver block guard time function Disabled. 1 = Receiver block guard time function Enabled.
[11:10]	Reserved	Reserved.
[9:8] INIT_SEL		Initial Timing Selection This fields indicates the timing of hardware initial state (activation or warm-reset or deactivation). Unit: SC clock Activation: Refer to SC Activation Sequence in Figure 6-69.

		Warm-reset: refer to Warm-Reset Sequence in Figure 6-70
		Deactivation: refer to Deactivation Sequence in Figure 6-71
		· · · · · ·
		Internal Timer2 Start Enable Control
		This bit enables Timer 2 to start counting. Software can fill 0 to stop it and set 1 to reload and count.
		0 = Stops counting.
		1 = Start counting.
[7]	TMR2_SEN	Note1: This field is used for internal 8 bit timer when TMR_SEL(SC_CTL[14:13]) = 11. Don't filled TMR2_SEN when TMR_SEL(SC_CTL[14:13]) = 00 or TMR_SEL(SC_CTL[14:13]) = 01 or TMR_SEL(SC_CTL[14:13]) = 10.
		Note2: If the operation mode is not in auto-reload mode (SC_TMR2[26] = 0), this bit will be auto-cleared by hardware.
		Note3: This field will be cleared by TX_RST(SC_ALTCTL[0]) and RX_RST(SC_ALTCTL[1]). So don't fill this bit, TX_RST(SC_ALTCTL[0]), and RX_RST(SC_ALTCTL[1]) at the same time.
		Note4: If SC_CEN(SC_CTL[0]) is not enabled, this filed cannot be programmed.
		Internal Timer1 Start Enable Control
		This bit enables Timer 1 to start counting. Software can fill 0 to stop it and set 1 to reload and count.
		0 = Stops counting.
		1 = Start counting.
[6]	TMR1_SEN	Note1: This field is used for internal 8 bit timer when TMR_SEL(SC_CTL[14:13]) = 10 or TMR_SEL(SC_CTL[14:13]) = 11. Don't filled TMR1_SEN when SC_CTL([TMR_SEL] = 00 or SC_CTL[TMR_SEL] = 01.
		Note2: If the operation mode is not in auto-reload mode (SC_TMR1[26] = 0), this bit will be auto-cleared by hardware.
		Note3: This field will be cleared by TX_RST(SC_ALTCTL[0]) and RX_RST(SC_ALTCTL[1]), so don't fill this bit, TX_RST(SC_ALTCTL[0]), and RX_RST(SC_ALTCTL[1]) at the same time.
		Note4: If SC_CEN(SC_CTL[0]) is not enabled, this filed cannot be programmed.
		Internal Timer0 Start Enable Control
		This bit enables Timer 0 to start counting. Software can fill 0 to stop it and set 1 to reload and count.
		0 = Stops counting.
		1 = Start counting.
[5]	TMR0_SEN	Note1: This field is used for internal 24 bit timer when TMR_SEL (SC_CTL[14:13]) = 01.
		Note2: If the operation mode is not in auto-reload mode (SC_TMR0[26] = 0), this bit will be auto-cleared by hardware.
		Note3: This field will be cleared by TX_RST(SC_ALTCTL[0]) and RX_RST(SC_ALTCTL[1]). So don't fill this bit, TX_RST and RX_RST at the same time.
		Note4: If SC_CEN(SC_CTL[0]) is not enabled, this filed cannot be programmed.
		Warm Reset Sequence Generator Enable Control
		This bit enables SC controller to initiate the card by warm reset sequence
		0 = No effect.
[4]	MARCT EN	1 = Warm reset sequence generator Enabled.
[4]	WARST_EN	Note1: When the warm reset sequence completed, this bit will be cleared automatically and the INIT_IS(SC_ISR[8]) will be set to 1.
		Note2: This field will be cleared by TX_RST(SC_ALTCTL[0]) and RX_RST(SC_ALTCTL[1]), so don't fill this bit, TX_RST, and RX_RST at the same time.
		Note3: If SC_CEN(SC_CTL[0]) is not enabled, this filed cannot be programmed
[2]	ACT EN	Activation Sequence Generator Enable Control
[3]	ACT_EN	This bit enables SC controller to initiate the card by activation sequence
		1

		0 = No effect.
		1 = Activation sequence generator Enabled.
		Note1: When the activation sequence completed, this bit will be cleared automatically and the INIT_IS(SC_ISR[8]) will be set to 1.
		Note2: This field will be cleared by TX_RST(SC_ALTCTL[0]) and RX_RST(SC_ALTCTL[1]), so don't fill this bit, TX_RST(SC_ALTCTL[0]), and RX_RST(SC_ALTCTL[1]) at the same time.
		Note3: If SC_CEN(SC_CTL[0]) is not enabled, this filed cannot be programmed.
		Deactivation Sequence Generator Enable Control
		This bit enables SC controller to initiate the card by deactivation sequence
		0 = No effect.
		1 = Deactivation sequence generator Enabled.
[2]	DACT_EN	Note1: When the deactivation sequence completed, this bit will be cleared automatically and the INIT_IS(SC_ISR[8]) will be set to 1.
		Note2: This field will be cleared by TX_RST(SC_ALTCTL[0]) and RX_RST(SC_ALTCTL[1]). So don't fill this bit, TX_RST, and RX_RST at the same time.
		Note3: If SC_CTL [SC_CEN] not enabled, this filed cannot be programmed.
		Rx Software Reset
		When RX_RST is set, all the bytes in the receiver buffer and Rx internal state machine will be cleared.
[1]	RX_RST	0 = No effect.
		1 = Reset the Rx internal state machine and pointers.
		Note: This bit will be auto cleared after reset is complete.
		TX Software Reset
		When TX_RST is set, all the bytes in the transmit buffer and TX internal state machine will be cleared.
[0]	TX_RST	0 = No effect.
		1 = Reset the TX internal state machine and pointers.
		Note: This bit will be auto cleared after reset is complete.

SC Extend Guard Time Register (SC_EGTR)

Register	Offset	R/W	Description	Reset Value
SC_EGTR	SCx_BA+0x0C	R/W	SC Extend Guard Time Register.	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	EGT								

Bits	Description	
[31:8]	Reserved	Reserved.
[7:0]	EGT	Extended Guard Time This field indicates the extended guard timer value. Start D1 D2 D3 D4 D5 D6 D7 D8 P L2 ETU EGT Note: The counter is ETU base and the real extended guard time is EGT.

SC Receiver buffer Time-out Register (SC_RFTMR)

Register	Offset	R/W	Description	Reset Value
SC_RFTMR	SCx_BA+0x10	R/W	SC Receive buffer Time-out Register.	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
	Reserved									
7	6	5	4	3	2	1	0			
			RF	ТМ						

Bits	Description	escription					
[31:9]	Reserved	Reserved.					
		SC Receiver Buffer Time-out (ETU Base)					
[8:0]	RFTM	The time-out counter resets and starts counting whenever the RX buffer received a new data word. Once the counter decrease to 1 and no new data is received or CPU does not read data by reading SC_RBR buffer, a receiver time-out interrupt INT_RTMR will be generated(if RTMR_IE(SC_IER[9]) = 1).					
		Note1: The counter unit is ETU based and the interval of time-out is RFTM + 0.5 Note2: Fill all 0 to this field indicates to disable this function.					

SC Clock Divider Control Register (SC_ETUCR)

Register	Offset	R/W	Description	Reset Value
SC_ETUCR	SCx_BA+0x14	R/W	SC ETU Control Register.	0x0000_0173

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
COMPEN_EN		Reserved			ETU_	RDIV				
7	6	5	4	3	2	1	0			
	ETU_RDIV									

Bits	Description	escription					
[31:16]	Reserved	Reserved.					
[15]	COMPEN_EN	Compensation Mode Enable Control This bit enables clock compensation function. When this bit enabled, hardware will alternate between n clock cycles and n-1 clock cycles, where n is the value to be written into the ETU_RDIV. 0 = Compensation function Disabled. 1 = Compensation function Enabled.					
[14:12]	Reserved	Reserved.					
[11:0]	ETU_RDIV	ETU Rate Divider The field indicates the clock rate divider. The real ETU is ETU_RDIV + 1. Note: Software can configure this field, but this field must be greater than 0x004.					

SC Interrupt Control Register (SC_IER)

Register	Offset	R/W	Description	Reset Value
SC_IER	SCx_BA+0x18	R/W	SC Interrupt Enable Control Register.	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
		Reserved		ACON_ERR_IE	RTMR_IE	INIT_IE				
7 6 5 4 3					2	1	0			
CD_IE	BGT_IE	TMR2_IE	TMR1_IE	TMR0_IE	TERR_IE	TXBE_IE	RDA_IE			

Bits	Description	
[31:11]	Reserved	Reserved.
[10]	ACON_ERR_IE	Auto Convention Error Interrupt Enable Control This field is used for auto-convention error interrupt enable. 0 = Auto-convention error interrupt Disabled. 1 = Auto-convention error interrupt Enabled.
[9]	RTMR_IE	Receiver Buffer Time-out Interrupt Enable Control This field is used for receiver buffer time-out interrupt enable. 0 = Receiver buffer time-out interrupt Disabled. 1 = Receiver buffer time-out interrupt Enabled.
[8]	INIT_IE	Initial End Interrupt Enable Control This field is used for activation (ACT_EN(SC_ALTCTL[3] = 1)), deactivation (DACT_EN SC_ALTCTL[2] = 1) and warm reset (SC_ALTCTL [WARST_EN]) sequence interrupt enable. 0 = Initial end interrupt Disabled. 1 = Initial end interrupt Enabled.
[7]	CD_IE	Card Detect Interrupt Enable Control This field is used for card detect interrupt enable. The card detect status is CD_INS_F(SC_SR[12]) 0 = Card detect interrupt Disabled. 1 = Card detect interrupt Enabled.
[6]	BGT_IE	Block Guard Time Interrupt Enable Control This field is used for block guard time interrupt enable. 0 = Block guard time Disabled. 1 = Block guard time Enabled.
[5]	TMR2_IE	Timer2 Interrupt Enable Control This field is used for TMR2 interrupt enable. 0 = Timer2 interrupt Disabled.

		1 = Timer2 interrupt Enabled.
[4]	TMR1_IE	Timer1 Interrupt Enable Control This field is used to enable the TMR1 interrupt. 0 = Timer1 interrupt Disabled. 1 = Timer1 interrupt Enabled.
[3]	TMR0_IE	Timer0 Interrupt Enable Control This field is used to enable TMR0 interrupt enable. 0 = Timer0 interrupt Disabled. 1 = Timer0 interrupt Enabled.
[2]	TERR_IE	Transfer Error Interrupt Enable Control This field is used for transfer error interrupt enable. The transfer error states is at SC_SR register which includes receiver break error RX_EBR_F(SC_SR[6]), frame error RX_EFR_F(SC_SR[5]), parity error RX_EPA_F(SC_SR[4]), receiver buffer overflow error RX_OVER_F(SC_SR[0]), transmit buffer overflow error TX_OVER_F(SC_SR[8]), receiver retry over limit error RX_OVER_REERR(SC_SR[22] and transmitter retry over limit error TX_OVER_REERR(SC_SR[30]. 0 = Transfer error interrupt Disabled. 1 = Transfer error interrupt Enabled.
[1]	TXBE_IE	Transmit Buffer Empty Interrupt Enable Control This field is used for transmit buffer empty interrupt enable. 0 = Transmit buffer empty interrupt Disabled. 1 = Transmit buffer empty interrupt Enabled.
[0]	RDA_IE	Receive Data Reach Interrupt Enable Control This field is used for received data reaching trigger level RX_FTRI_LEV (SC_CTL[7:6]) interrupt enable. 0 = Receive data reach trigger level interrupt Disabled. 1 = Receive data reach trigger level interrupt Enabled.

SC Interrupt Status Register (SC_ISR)

Register	Offset	R/W	Description	Reset Value
SC_ISR	SCx_BA+0x1C	R/W	SC Interrupt Status Register.	0x0000_0002

31	30	29	28	27	26	25	24
			erved				
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
Reserved					ACON_ERR_IS	RTMR_IS	INIT_IS
7	6	5	4	3	2	1	0
CD_IS	BGT_IS	TMR2_IS	TMR1_IS	TMR0_IS	TERR_IS	TBE_IS	RDA_IS

Bits	Description	
[31:11]	Reserved	Reserved.
[10]	ACON_ERR_IS	Auto Convention Error Interrupt Status Flag (Read Only) This field indicates auto convention sequence error. If the received TS at ATR state is neither 0x3B nor 0x3F, this bit will be set. Note: This bit is read only, but it can be cleared by writing 1 to it.
[9]	RTMR_IS	Receiver Buffer Time-out Interrupt Status Flag (Read Only) This field is used for receiver buffer time-out interrupt status flag. Note: This field is the status flag of receiver buffer time-out state. If software wants to clear this bit, software must read all receiver buffer remaining data by reading SC_RBR buffer,
[8]	INIT_IS	Initial End Interrupt Status Flag (Read Only) This field is used for activation (ACT_EN(SC_ALTCTL[3])), deactivation (DACT_EN (SC_ALTCTL[2])) and warm reset (WARST_EN (SC_ALTCTL[4])) sequence interrupt status flag. Note: This bit is read only, but it can be cleared by writing 1 to it.
[7]	CD_IS	Card Detect Interrupt Status Flag (Read Only) This field is used for card detect interrupt status flag. The card detect status is CD_INS_F (SC_SR[12])] and CD_REM_F(SC_SR[11]). Note: This field is the status flag of CD_INS_F SC_SR[12]) SC_PINCSR[CD_INS_F] or CD_REM_F(SC_SR[11])]. So if software wants to clear this bit, software must write 1 to this field.
[6]	BGT_IS	Block Guard Time Interrupt Status Flag (Read Only) This field is used for block guard time interrupt status flag. Note1: This bit is valid when RX_BGT_EN (SC_ALTCTL[12]) is enabled.

		Note2: This bit is read only, but it can be cleared by writing "1" to it.
[5]	TMR2_IS	Timer2 Interrupt Status Flag (Read Only) This field is used for TMR2 interrupt status flag. Note: This bit is read only, but it can be cleared by writing 1 to it.
[4]	TMR1_IS	Timer1 Interrupt Status Flag (Read Only) This field is used for TMR1 interrupt status flag. Note: This bit is read only, but it can be cleared by writing 1 to it.
[3]	TMR0_IS	Timer0 Interrupt Status Flag (Read Only) This field is used for TMR0 interrupt status flag. Note: This bit is read only, but it can be cleared by writing 1 to it.
[2]	TERR_IS	Transfer Error Interrupt Status Flag (Read Only) This field is used for transfer error interrupt status flag. The transfer error states is at SC_SR register which includes receiver break error RX_EBR_F(SC_SR[6]), frame error RX_EFR_F(SC_SR[5]), parity error RX_EPA_F(SC_SR[4]) and receiver buffer overflow error RX_OVER_F(SC_SR[0]), transmit buffer overflow error TX_OVER_F(SC_SR[8]), receiver retry over limit error RX_OVER_REERR(SC_SR[22]) and transmitter retry over limit error TX_OVER_REERR(SC_SC[30]). Note: This field is the status flag of RX_EBR_F(SC_SR[6]), RX_EFR_F(SC_SR[5]), RX_EPA_F(SC_SR[4], RX_OVER_F(SC_SR[0]), TX_OVER_F(SC_SR[8])), RX_OVER_REERR(SC_SR[22]) or TX_OVER_REERR(SC_SC[30]). So, if software wants to clear this bit, software must write 1 to each field.
[1]	TBE_IS	Transmit Buffer Empty Interrupt Status Flag (Read Only) This field is used for transmit buffer empty interrupt status flag. Note: This field is the status flag of transmit buffer empty state. If software wants to clear this bit, software must write data to SC_THR buffer and then this bit will be cleared automatically.
[0]	RDA_IS	Receive Data Reach Interrupt Status Flag (Read Only) This field is used for received data reaching trigger level RX_FTRI_LEV (SC_CTL[7:6]) interrupt status flag. Note: This field is the status flag of received data reaching RX_FTRI_LEV (SC_CTL[7:6]). If software reads data from SC_RBR and receiver buffer data byte number is less than RX_FTRI_LEV (SC_CTL[7:6]), this bit will be cleared automatically.

SC Transfer Status Register (SC_TRSR)

Register	Offset	R/W	Description	Reset Value
SC_TRSR	SCx_BA+0x20	R/W	SC Status Register.	0x0000_0202

31	30	29	28	27	26	25	24
TX_ATV	TX_OVER_RE ERR	TX_REERR	Rese	erved		TX_POINT_F	
23	22	21	20	19	18	17	16
RX_ATV	RX_OVER_R EERR	RX_REERR	Rese	erved		RX_POINT_F	
15	14	13	12	11	10	9	8
Rese	erved	CD_PIN_F	CD_INS_F	CD_REM_F	TX_FULL_F	TX_EMPTY_F	TX_OVER_F
7	6	5	4	3	2	1	0
Reserved	RX_EBR_F	RX_EFR_F	RX_EPA_F	Reserved	RX_FULL_F	RX_EMPTY_F	RX_OVER_F

Bits	Description	
		Transmit In Active Status Flag (Read Only)
[31]	TX_ATV	0 = This bit is cleared automatically when TX transfer is finished or the last byte transmission has completed.
		1 = This bit is set by hardware when TX transfer is in active and the STOP bit of the last byte has been transmitted.
		Transmitter Over Retry Error (Read Only)
[30]	TX_OVER_REERR	This bit is set by hardware when transmitter re-transmits over retry number limitation. Note: This bit is read only, but it can be cleared by writing 1 to it.
		Transmitter Retry Error (Read Only)
1001	TV DEEDD	This bit is set by hardware when transmitter re-transmits.
[29]	TX_REERR	Note1: This bit is read only, but it can be cleared by writing 1 to it.
		Note2 This bit is a flag and cannot generate any interrupt to CPU.
[28:26]	Reserved	Reserved.
		Transmit Buffer Pointer Status Flag (Read Only)
[25:24]	TX_POINT_F	This field indicates the TX buffer pointer status flag. When CPU writes data into SC_THR, TX_POINT_F increases one. When one byte of TX Buffer is transferred to transmitter shift register, TX_POINT_F decreases one.
		Receiver In Active Status Flag (Read Only)
[23]	RX_ATV	This bit is set by hardware when RX transfer is in active.
		This bit is cleared automatically when RX transfer is finished.
		Receiver Over Retry Error (Read Only)
		This bit is set by hardware when RX transfer error retry over retry number limit.
[22]	RX_OVER_REER R	Note1: This bit is read only, but it can be cleared by writing 1 to it.
<u></u> ,	IK.	Note2: If CPU enables receiver retries function by setting RX_ERETRY_EN (SC_CTL[19]), the RX_EPA_F(SC_SR[4]) flag will be ignored (hardware will not set RX_EPA_F(SC_SR[4])).

		Receiver Retry Error (Read Only)
		This bit is set by hardware when RX has any error and retries transfer.
		Note1: This bit is read only, but it can be cleared by writing 1 to it.
[21]	RX_REERR	Note2 This bit is a flag and cannot generate any interrupt to CPU.
		Note3: If CPU enables receiver retry function by setting RX_ERETRY_EN (SC_CTL[19]), the RX_EPA_F(SC_SR[4]) flag will be ignored (hardware will not set RX_EPA_F(SC_SR[4])).
[20:18]	Reserved	Reserved.
		Receiver Buffer Pointer Status Flag (Read Only)
[17:16]	RX_POINT_F	This field indicates the RX buffer pointer status flag. When SC receives one byte from external device, RX_POINT_F(SC_SR[17:16]) increases one. When one byte of RX buffer is read by CPU, RX_POINT_F(SC_SR[17:16]) decreases one.
[15:14]	Reserved	Reserved.
		Card Detect Status Of SC_CD Pin Status (Read Only)
[40]	OD DIN E	This bit is the pin status flag of SC_CD
[13]	CD_PIN_F	0 = The SC_CD pin state at low.
		1 = The SC_CD pin state at high.
		Card Detect Insert Status Of SC_CD Pin (Read Only)
		This bit is set whenever card has been inserted.
[40]	CD_INS_F	0 = No effect.
[12]	CD_INS_F	1 = Card insert.
		Note1: This bit is read only, but it can be cleared by writing "1" to it.
		Note2: The card detect engine will start after SC_CEN (SC_CTL[0]) set.
		Card Detect Removal Status Of SC_CD Pin (Read Only)
		This bit is set whenever card has been removal.
[11]	CD_REM_F	0 = No effect.
ניין	CD_IVEIW_I	1 = Card removed.
		Note1: This bit is read only, but it can be cleared by writing "1" to it.
		Note2: Card detect engine will start after SC_CEN (SC_CTL[0])set.
		Transmit Buffer Full Status Flag (Read Only)
[10]	TX_FULL_F	This bit indicates TX buffer full or not. This bit is set when TX pointer is equal to 4, otherwise is cleared by hardware.
		Transmit Buffer Empty Status Flag (Read Only)
101	TV FMPTV F	This bit indicates TX buffer empty or not.
[9]	TX_EMPTY_F	When the last byte of TX buffer has been transferred to Transmitter Shift Register, hardware sets this bit high. It will be cleared when writing data into SC_THR (TX buffer not empty).
		TX Overflow Error Interrupt Status Flag (Read Only)
[8]	TX_OVER_F	If TX buffer is full, an additional write to SC_THR will cause this bit be set to "1" by hardware.
		Note: This bit is read only, but it can be cleared by writing 1 to it.
[7]	Reserved	Reserved.
		Receiver Break Error Status Flag (Read Only)
[6]	RX_EBR_F	This bit is set to logic 1 whenever the received data input (RX) held in the "spacing state" (logic 0) is longer than a full word transmission time (that is, the total time of "start bit" + data bits + parity + stop bits).
		Note1: This bit is read only, but it can be cleared by writing 1 to it.
		Note2: If CPU sets receiver retries function by setting RX_ERETRY_EN(SC_CTL[19]),

		hardware will not set this flag.			
		Receiver Frame Error Status Flag (Read Only)			
(E)	RX EFR F	This bit is set to logic 1 whenever the received character does not have a valid "stop bit" (that is, the stop bit following the last data bit or parity bit is detected as a logic 0).			
[5]	KA_EFK_F	Note1: This bit is read only, but it can be cleared by writing 1 to it.			
		Note2: If CPU sets receiver retries function by setting RX_ERETRY_EN(SC_CTL[19]) , hardware will not set this flag.			
		Receiver Parity Error Status Flag (Read Only)			
[4]	RX_EPA_F	This bit is set to logic 1 whenever the received character does not have a valid "parity bit".			
	KA_EPA_F	Note1: This bit is read only, but it can be cleared by writing 1 to it.			
		Note2: If CPU sets receiver retries function by setting RX_ERETRY_EN(SC_CTL[19]) , hardware will not set this flag.			
[3]	Reserved	Reserved.			
		Receiver Buffer Full Status Flag (Read Only)			
[2]	RX_FULL_F	This bit indicates RX buffer full or not.			
		This bit is set when RX pointer is equal to 4, otherwise it is cleared by hardware.			
		Receiver Buffer Empty Status Flag(Read Only)			
[1]	RX_EMPTY_F	This bit indicates RX buffer empty or not.			
ניו	TOX_EMIL 1 1_1	When the last byte of Rx buffer has been read by CPU, hardware sets this bit high. It will be cleared when SC receives any new data.			
101		RX Overflow Error Status Flag (Read Only)			
	BY OVER E	This bit is set when RX buffer overflow.			
[0]	RX_OVER_F	If the number of received bytes is greater than Rx Buffer size (4 bytes), this bit will be set.			
		Note: This bit is read only, but it can be cleared by writing 1 to it.			

SC PIN Control State Register (SC_PINCSR)

Register	Offset	R/W	Description	Reset Value
SC_PINCSR	SCx_BA+0x24	R/W	SC Pin Control State Register.	0x0000_00x0

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Reserved				SC_DATA_I_ ST
15	14	13	12	11	10	9	8
	Reserved					SC_DATA_O	SC_OEN_ST
7	6	5	4	3	2	1	0
ADAC_CD_E N	CLK_KEEP	Reserved	CD_PIN_ST	CD_INS_F	CD_REM_F	SC_RST	POW_EN

Bits	Description					
[31:17]	Reserved	Reserved.				
[16]	SC_DATA_I_ST	SC Data Input Pin Status (Read Only) This bit is the pin status of SC_DATA_I 0 = The SC_DATA_I pin is low. 1 = The SC_DATA_I pin is high.				
[15:11]	Reserved	Reserved.				
[10]	CD_LEV	Card Detect Level 0 = When hardware detects the card detect pin from high to low, it indicates a card is detected. 1 = When hardware detects the card detect pin from low to high, it indicates a card is detected. CD_LEV = 0 card insert card removal CD_LEV = 1 Note: Software must select card detect level before Smart Card engine enable				
[9]	SC_DATA_O	SC Data Output Pin This bit is the pin status of SC_DATA_O but user can drive SC_DATA_O pin to high or low by setting this bit. 0 = Drive SC_DATA_O pin to low. 1 = Drive SC_DATA_O pin to high. Note: When SC is at activation, warm reset or deactivation mode, this bit will be changed automatically. So don't fill this field when SC is in these modes.				
[8]	SC_OEN_ST	SC Data Output Enable Pin Status (Read Only) This bit is the pin status of SC_DATA_OEN 0 = The SC_DATA_OEN pin state at low.				

		1 = The SC_DATA_OEN pin state at high.
		Auto Deactivation When Card Removal
		0 = Auto deactivation Disabled when hardware detected the card is removal.
[7]	ADAC_CD_EN	1 = Auto deactivation Enabled when hardware detected the card is removal.
[7]	ADAG_GD_LN	Note: When the card is removal, hardware will stop any process and then do deactivation sequence (if this bit be setting). If this process completes. Hardware will generate an interrupt INT_INIT to CPU.
		SC Clock Enable Control
		0 = SC clock generation Disabled.
[6]	CLK_KEEP	1 = SC clock always keeps free running.
		Note: When operating in activation, warm reset or deactivation mode, this bit will be changed automatically. So don't fill this field when operating in these modes.
[5]	Reserved	Reserved.
		Card Detect Status Of SC_CD Pin Status (Read Only)
		This bit is the pin status flag of SC_CD
[4]	CD_PIN_ST	0 = SC_CD pin state at low.
		1 = SC_CD pin state at high.
		Card Detect Insert Status Of SC_CD Pin (Read Only)
		This bit is set whenever card has been inserted.
		0 = No effect.
[3]	CD_INS_F	1 = Card insert.
		Note1: This bit is read only, but it can be cleared by writing "1" to it.
		Note2: Card detect engine will start after SC_CTL [SC_CEN] set.
		Card Detect Removal Status Of SC_CD Pin (Read Only)
		This bit is set whenever card has been removal.
[2]	CD_REM_F	0 = No effect. 1 = Card Removal.
		Note1: This bit is read only, but it can be cleared by writing "1" to it. Note2: Card detect engine will start after SC_CTL [SC_CEN] set.
		SC_RST Pin Signal
		This bit is the pin status of SC_RST but user can drive SC_RST pin to high or low by setting this bit.
		Write this field to drive SC_RST pin.
		0 = Drive SC_RST pin to low.
[1]	SC_RST	1 = Drive SC_RST pin to high.
		Read this field to get SC_RST pin status.
		0 = SC_RST pin status is low.
		1 = SC_RST pin status is high.
		Note: When operating at activation, warm reset or deactivation mode, this bit will be changed automatically. So don't fill this field when operating in these modes.
		SC_POW_EN Pin Signal
		Software can set POW_EN and POW_INV to decide SC_PWR pin is in high or low level.
		Write this field to drive SC_PWR pin
[0]	POW_EN	Refer POW_INV description for programming SC_PWR pin voltage level.
ارح)	. 511_2.14	Read this field to get SC_PWR pin status.
		0 = SC_PWR pin status is low.
		1 = SC_PWR pin status is high.
		Note: When operating at activation, warm reset or deactivation mode, this bit will be

changed automatically. So don't fill this field when operating in these modes.

SC Timer Control Register 0 (SC_TMR0)

Register	Offset	R/W	Description	Reset Value
SC_TMR0	SCx_BA+0x28	R/W	SC Internal Timer Control Register 0.	0x0000_0000

31	30	29	28	27	26	25	24
Reserved				MODE			
23	22	21	20	19	18	17	16
			CI	NT			
15	14	13	12	11	10	9	8
	CNT						
7	6	5	4	3	2	1	0
CNT							

Bits	Description		
[31:28]	Reserved Reserved.		
[27:24]	MODE Timer 0 Operation Mode Selection This field indicates the internal 24-bit timer operation selection.		
[23:0]	ICNT	Timer 0 Counter Value (ETU Base) This field indicates the internal timer operation values.	

SC Timer Control Register 1 (SC_TMR1)

Register	Offset	R/W	Description	Reset Value
SC_TMR1	SCx_BA+0x2C	R/W	SC Internal Timer Control Register 1.	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved				MODE			
23	22	21	20	19	18	17	16	
			CI	NT				
15	14	13	12	11	10	9	8	
	CNT							
7	6	5	4	3	2	1	0	
	CNT							

Bits	Description		
[31:28]	Reserved Reserved.		
[27:24]	MODE	Timer 1 Operation Mode Selection This field indicates the internal 8-bit timer operation selection.	
[7:0]	CNT	Timer 1 Counter Value (ETU Base) This field indicates the internal timer operation values.	

SC Timer Control Register 2 (SC_TMR2)

Register	Offset	R/W	Description	Reset Value
SC_TMR2	SCx_BA+0x30	R/W	SC Internal Timer Control Register 2.	0x0000_0000

31	30	29	28	27	26	25	24
Reserved				MODE			
23	22	21	20	19	18	17	16
			CI	NT			
15	14	13	12	11	10	9	8
			CI	NT			
7	6	5	4	3	2	1	0
CNT							

Bits	Description		
[31:28]	Reserved Reserved.		
[27:24]	MODE Timer 2 Operation Mode Selection This field indicates the internal 8-bit timer operation selection		
[7:0]	CNT	Timer 2 Counter Value (ETU Base) This field indicates the internal timer operation values.	

SC UART Mode Control Register (SCx_UACTL)

Register	Offset	R/W	Description	Reset Value
SC_UACTL	SCx_BA + 0x34	R/W	SC UART Mode Control Register.	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	Reserved						
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
OPE	PBDIS	DATA_LEN		Reserved			UA_MODE_E N

Bits	Description	
[31:8]	Reserved	Reserved.
[7]	OPE	Odd Parity Enable Control 0 = Even number of logic 1's are transmitted or check the data word and parity bits in receiving mode. 1 = Odd number of logic 1's are transmitted or check the data word and parity bits in receiving mode. Note: This bit has effect only when PBDIS bit is '0'.
[6]	PBDIS	Parity Bit Disable Control 0 = Parity bit is generated or checked between the "last data word bit" and "stop bit" of the serial data. 1 = Parity bit is not generated (transmitting data) or checked (receiving data) during transfer. Note: In smart card mode, this field must be '0' (default setting is with parity bit)
[5:4]	DATA_LEN	Data Length 00 = Character Data Length is 8 bits. 01 = Character Data Length is 7 bits. 10 = Character Data length is 6 bits. 11 = Character Data Length is 5 bits. Note: In smart card mode, this DATA_LEN must be '00'
[3:1]	Reserved	Reserved.
[0]	UA_MODE_EN	UART Mode Enable Control 0 = Smart Card mode. 1 = UART mode. Note1: When operating in UART mode, user must set CON_SEL (SC_CTL[5:4]) = 00 and AUTO_CON_EN(SC_CTL[3]) = 0. Note2: When operating in Smart Card mode, user must set SC_UACTL [7:0] = 00. Note3: When UART is enabled, hardware will generate a reset to resetFIFO and internal state machine.

SC Timer Current Data Register A (SC_TDRA)

Register	Offset	R/W	Description	Reset Value
SC_TDRA	SCx_BA+0x38	R	SC Timer Current Data Register A.	0x0000_07FF

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
TDR0							
15	14	13	12	11	10	9	8
TDR0							
7	6	5	4	3	2	1	0
TDR0							

Bits	Description		
[31:24]	Reserved	eserved Reserved.	
[23:0]	ITDR0	Timer0 Current Data Value (Read Only) This field indicates the current count values of timer0.	

SC Timer Current Data Register B (SC_TDRB)

Register	Offset	R/W	Description	Reset Value
SC_TDRB	SCx_BA+0x3C	R	SC Timer Current Data Register B.	0x0000_7F7F

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
Reserved							
15	14	13	12	11	10	9	8
TDR2							
7	6	5	4	3	2	1	0
TDR1							

Bits	Description			
[31:16]	Reserved Reserved.			
[15:8]	TDR2 Timer2 Current Data Value (Read Only) This field indicates the current count values of timer2.			
[7:0]	TDR1	Timer1 Current Data Value (Read Only) This field indicates the current count values of timer1.		

6.16 I²C

nuvoTon

6.16.1 Overview

I²C is a two-wire, bi-directional serial bus that provides a simple and efficient method of data exchange between devices. The I²C standard is a true multi-master bus including collision detection and arbitration that prevents data corruption if two or more masters attempt to control the bus simultaneously. Serial, 8bit oriented bi-directional data transfers can be made up to 1 Mbps.

Data is transferred between a Master and a Slave synchronously to SCL on the SDA line on a byte-bybyte basis. Each data byte is 8-bit long. There is one SCL clock pulse for each data bit with the MSB being transmitted first. An acknowledge bit follows each transferred byte.

A transition on the SDA line while SCL is high is interpreted as a command (START or STOP). Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must be held stable during the high period of SCL.

The controller's on-chip I²C logic provides the serial interface that meets the I²C bus standard mode specification. The I²C controller handles byte transfers autonomously. Pull up resistor is needed for I²C operation as these are open drain pins.

The I²C controller is equipped with two slave address registers. The contents of the registers are irrelevant when I2C is in Master mode. In the Slave mode, the seven most significant bits must be loaded with the user's own slave address. The I²C hardware will react if the contents of I2CADDR are matched with the received slave address.

This controller supports the "General Call (GC)" function. If the GCALL (I2CSADDR[0]) bit is set this controller will respond to General Call address (00H). Clear GC bit to disable general call function. When GCALL bit is set and the I²C is in Slave mode, it can receive the general call address which is equal to 00H after master sends general call address to the I2C bus, then it will follow status of GC mode. If it is in Master mode, the ACK bit must be cleared when it sends general call address of 00H to the I²C bus.

The I²C-bus controller supports multiple address recognition with two address mask register. When the bit in the address mask register is set to one, it means the received corresponding address bit is don'tcare. If the bit is set to 0, that means the received corresponding register bit should be exact the same as address register.

6.16.2 Features

- Supports two I²C channels and both of them can acts as Master or Slave mode
- Bidirectional data transfer between masters and slaves
- Multi-master bus (no central master)
- Arbitration between simultaneously transmitting masters without corruption of serial data on the bus
- Serial clock synchronization allows devices with different bit rates to communicate via one serial
- Serial clock synchronization can be used as a handshake mechanism to suspend and resume serial transfer
- One built-in 14-bit time-out counter requesting the I²C interrupt if the I²C bus hangs up and timerout counter overflows.
- Programmable clock divider allows versatile rate control
- Supports 7-bit addressing mode

- Supports multiple address recognition (Two slave addresses with mask option)
- Supports Power-down wake-up function
- Supports two-Level FIFO

nuvoton

6.16.3 Basic Configuration

The basic configurations of I²C are as follows:

- I2C0 pin configuration: PA13, PA12 (GPA H MFP[23:16]) / PB3, PB2 (GPB L MFP[15:8]) / PC1, PC0 (GPC L MFP[7:0])
- I2C1 pin configuration: PA15, PA14 (GPA_H_MFP[31:24]) / PC3, PC2 (GPC_L_MFP[15:8]) / PC11, PC10 (GPC_H_MFP[15:8]) and PA5 GPA_L_MFP[23:20]
- Enable I2C clock (I2C EN) on APBCLK [9:8] register.
- Reset I2C controller (I2C RST) on IPRSTC2 [9:8] register.

6.16.4 Functional Description

On I²C bus, data is transferred between a Master and a Slave. Data bits transfer on the SCL and SDA lines are synchronously on a byte-by-byte basis. Each data byte is 8-bit long. There is one SCL clock pulse for each data bit with the MSB being transmitted first, and an acknowledge bit follows each transferred byte. Each bit is sampled during the high period of SCL; therefore, the SDA line may be changed only during the low period of SCL and must be held stable during the high period of SCL. A transition on the SDA line while SCL is high is interpreted as a command (START or STOP). Please refer to the following figure for more detailed I²C BUS Timing.

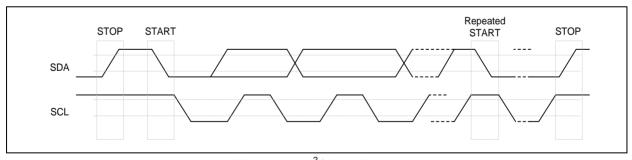


Figure 6-74 I²C Bus Timing

The device's on-chip I²C provides the serial interface that meets the I²C bus standard mode specification. The I²C port handles byte transfers autonomously. To enable this port, the bit IPEN (I2CON[0]) should be s't''o"1'. The I²C hardware interfaces to the I²C bus via two pins: SDA and SCL. When I/O pins are used as I²C ports, user must set the pins function to I²C in advance.

There is two-level FIFO to improve the performance of I²C bus. In two-level FIFO mode, the next transmitted or the last received data can be active even if the current data is transmitted or the last received isn't read back yet.

The I²C SCL bus is stretched low when there is SI event. The NOSTRETCH (I2CON2[5]) bit is used to

force the I²C SCL bus is no stretched under the SI event.

There are under run or over run interrupt when the two-level FIFO mode (TWOFF EN (I2CON2[4]) is enabled and the interrupt event UNDER INTEN (I2CON2[2]) and OVER INTEN (I2CON2[1]) enable is

Note: Pull-up resistor is needed for I²C operation as the SDA and SCL are open-drain pins.

6.16.4.1 I2C Protocol

nuvoTon

The following figure shows the typical I²C protocol. Normally, a standard communication consists of four parts:

- START or Repeated START signal generation
- STOP signal generation
- Slave address transfer
- Data transfer

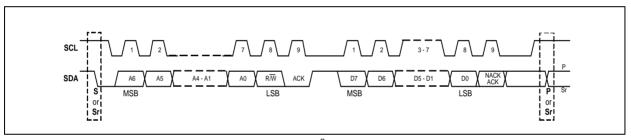


Figure 6-75 I²C Protocol

6.16.4.2 START or Repeated START signal

When the bus is free/idle, meaning no master device is engaging the bus (both SCL and SDA lines are high), a master can initiate a transfer by sending a START signal. A START signal, usually referred to as the S-bit, is defined as a HIGH to LOW transition on the SDA line while SCL is HIGH. The START signal denotes the beginning of a new data transfer.

A Repeated START (Sr) is a START signal without first generating a STOP signal. The master uses this method to communicate with another slave or the same slave in a different transfer direction (e.g. from writing to a device to reading from a device) without releasing the bus.

6.16.4.3 STOP signal

The master can terminate the communication by generating a STOP signal. A STOP signal, usually referred to as the STOP-bit, is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH.

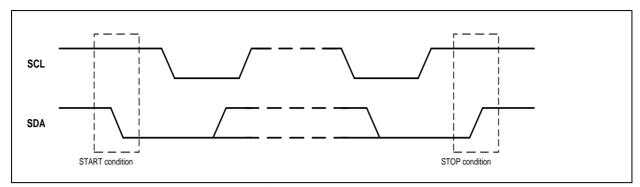


Figure 6-76 I²C START and STOP Conditions

6.16.4.4 Slave Address Transfer

The first byte of data transferred by the master immediately after the START signal is the slave address. This is a 7-bits calling address followed by the R/W bit. The R/W bit signals the slave the data transfer direction. No two slaves in the system can have the same address. Only the slave with an address that matches the one transmitted by the master will respond by returning an acknowledge bit by pulling the SDA low at the 9th SCL clock cycle.

6.16.4.5 Data Transfer

nuvoTon

When a slave receives a correct address with an R/W bit, the data will follow R/W bit specified to transfer. Each transferred byte is followed by an acknowledge bit on the 9th SCL clock cycle. If the slave signals a Not Acknowledge (NACK), the master can generate a STOP signal to abort the data transfer or generate a Repeated START signal and start a new transfer cycle.

If the master, as the receiving device, does Not Acknowledge (NACK) the slave, the slave releases the SDA line for the master to generate a STOP or Repeated START signal.

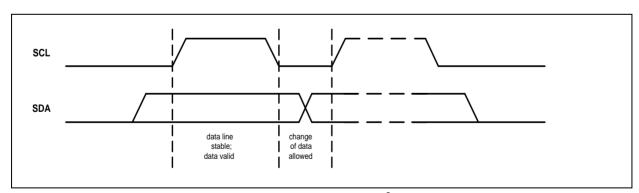


Figure 6-77 Bit Transfer on I²C Bus

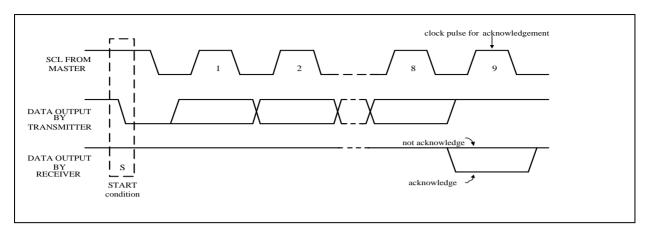


Figure 6-78 Acknowledge on I²C Bus

6.16.4.6 I2C Protocol Register

nuvoTon

To control I²C port through the following special function registers: I2CON (control register), I2CINTSTS (interrupt status register), I2CSTATUS (status register), I2DIV (clock rate register), I2CTOUT (time-out counter register), I2CDAT (data register), I2CSADDRn (address registers, n=0~1), I2CSAMASKn (address mask registers, n=0~1), I2CON2(control register 2) and I2CSTATUS2 (status register2).

6.16.4.7 Control Register (I2CON)

The CPU can read from and write to I2CON[7:0] directly. When the I²C port is enabled by setting IPEN (I2CON [0]) to high, the internal states will be controlled by I2CON and I²C logic hardware.

There are two bits are affected by hardware: the INTSTS (I2CINTSTS[0]) bit is set when the I2C hardware requests a serial interrupt, and the STOP (I2CON[2]) bit is cleared when a STOP condition is present on the bus. The STOP bit is also cleared when IPEN = 0.

Once a new status code is generated and stored in I2CSTATUS, the I2C Interrupt Flag bit INTSTS (I2CINTSTS [0]) will be set automatically. If the Enable Interrupt bit INTEN (I2CON [7]) is set at this time, the I²C interrupt will be generated. The bit field I2CSTATUS[7:0] stores the internal state code, the content keeps stable until INTSTS is cleared by software.

6.16.4.8 Interrupt Status Register (I2CINTSTS)

There are 3 interrupt status.

- (1). INTSTS: When a new state is present in the I2CSTATUS register, this bit will be set automatically, and if INTEN bit is set, the I²C interrupt is requested.
- (2). TIF: Refer to the section I²C time out counter.
- (3). WAKEUP ACK DONE: The ACK bit cycle of address match frame is done in power-down. The controller will stretch the SCL to low when the address is matched the device's slave address and the ACK cycle done. The SCL is stretched until the bit is clear by user. If the frequency of SCL is low speed and the system has wake-up from address match frame, the user shall check this bit to confirm this frame has transaction done and then to do the wake-up procedure.

6.16.4.9 Status Register (I2CSTATUS)

I2CSTATUS[7:0] is an 8-bit read-only register. The bit field I2CSTATUS[7:0] contain the status code. There are 26 possible status codes. When I2CSTATUS[7:0] is F8H, no serial interrupt is requested. All

other I2CSTATUS[7:0] values correspond to defined I2C states. When each of these states is entered, a status interrupt is requested (INTSTS (I2CINTSTSI01) = 1). A valid status code is present in I2CSTATUS[7:0] one cycle after INTSTS is set by hardware and is still present one cycle after INTSTS has been reset by software.

In addition, the state 00H stands for a Bus Error, which occurs when a START or STOP condition is present at an incorrect position in the I²C format frame. A Bus Error may occur during the serial transfer of an address byte, a data byte or an acknowledge bit. To recover I²C from bus error, STOP (I2CON[2]) should be set and INTSTS (I2CINTSTS[0]) should be clear to enter Not Addressed Slave mode. Then STOP is cleared to release bus and to wait for a new communication. I²C bus cannot recognize stop condition during this action when bus error occurs.

Master Mode		Slave Mod	Slave Mode			
STATUS	Description	STATUS	Description			
0x08	Start	0xA0	Slave Transmit Repeat Start or Stop			
0x10	Master Repeat Start	0xA8	Slave Transmit Address ACK			
0x18	Master Transmit Address ACK	0xB0	Slave Transmit Arbitration Lost			
0x20	Master Transmit Address NACK	0xB8	Slave Transmit Data ACK			
0x28	Master Transmit Data ACK	0xC0	Slave Transmit Data NACK			
0x30	Master Transmit Data NACK	0xC8	Slave Transmit Last Data ACK			
0x38	Master Arbitration Lost	0x60	Slave Receive Address ACK			
0x40	Master Receive Address ACK	0x68	Slave Receive Arbitration Lost			
0x48	Master Receive Address NACK	0x80	Slave Receive Data ACK			
0x50	Master Receive Data ACK	0x88	Slave Receive Data NACK			
0x58	Master Receive Data NACK	0x70	GC mode Address ACK			
0x00	Bus error	0x78	GC mode Arbitration Lost			
		0x90	GC mode Data ACK			
		0x98	GC mode Data NACK			
0xF8	Bus Released Note: Status "0xF8" exists in both master/slave modes, and it won't raise interrupt.					

Table 6-20 I²C Status Code Description

6.16.4.10 f²C Baud Rate Bits (I2CDIV)

nuvoTon

The data baud rate of I²C is determined by CLK_DIV(I2CDIV[7:0]) register when I²C is in Master mode. It is not necessary in a Slave mode. In Slave mode, I²C will automatically synchronize with any clock frequency from master I²C device.

The data baud rate of I^2C setting is Data Baud Rate of I^2C = (system clock) / (4x (CLK DIV +1)). If system clock = 16 MHz, the CLK DIV = 40 (28H), the data baud rate of I2C = 16 MHz / (4x (40 +1)) = 97.5K bits/sec.

6.16.4.11 The I²C Time-out Counter (I2CTOUT)

There is a 14-bits time-out counter which can be used to deal with the I²C bus hang-up. If the time-out

counter is enabled, the counter starts up counting until it overflows (TIF (I2CINTSTS[1])=1) and generates I²C interrupt to CPU or stops counting by clearing INTEN (I2CON[7]) to 0. When time-out counter is enabled, setting flag INTSTS (I2CINTSTS[0]) to high will reset the counter and re-start counting after INTSTS is cleared. If I²C bus is hung up, it causes the I2CSTATUS and flag INTSTS are not updated for a period, the 14-bit time-out counter may overflow and acknowledge CPU the I²C interrupt. Refer to the following figure for the 14-bit time-out counter. User may write 1 to clear TIF to 0.

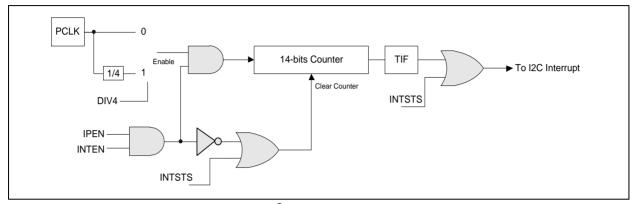


Figure 6-79 I²C Time-out Block Diagram

6.16.4.12 f²C Data Register (I2CDATA)

nuvoTon

This register contains a byte of serial data to be transmitted or a byte which just has been received. The CPU can read from or write to this 8-bit (DATA(I2CDATA[7:0])) directly while it is not in the process of shifting a byte. When I2C is in a defined state and the serial interrupt flag INTSTS (I2CINTSTS[0]) is set, data in DATA remains stable. While data is being shifted out, data on the bus is simultaneously being shifted in; DATA always contains the last data byte present on the bus.

The acknowledge bit is controlled by the I²C hardware and cannot be accessed by the CPU. Serial data is shifted through into DATA on the rising edges of serial clock pulses on the SCL line. When a byte has been shifted into DATA, the serial data is available in DATA, and the acknowledge bit (ACK or NACK) is returned by the control logic during the ninth clock pulse. In order to monitor bus status while sending data, the bus data will be shifted to DATA[7:0] when sending DATA[7:0] to bus. In the case of sending data, serial data bits are shifted out from I2CDAT [7:0] on the falling edge of SCL clocks, and is shifted to DATA [7:0] on the rising edge of SCL clocks.

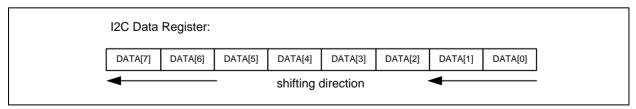


Figure 6-80 I²C Data Shifting Direction

6.16.4.13 Address Registers (I2CSADDR)

The I²C port is equipped with four slave address registers I2CSADDRn (n=0~1). The contents of the register are irrelevant when I²C is in Master mode. In Slave mode, the bit field I2CSADDRn[7:1] must be loaded with the chip's own slave address. The I²C hardware will react if the contents of I2CSADDRn are matched with the received slave address.

The I²C ports support the "General Call" function. If the GCALL (I2CSADDRn[0]) bit is set, the I²C port

hardware will respond to General Call address (00H). Clearing GCALL bit will disable general call function.

When GCALL bit is set and the I²C is in Slave mode, it can receive the general call address by 00H after Master send general call address to I²C bus, then it will follow status of GCALL mode.

6.16.4.14 Slave Address Mask Registers (I2CSAMASK)

I²C bus controllers support multiple address recognition with two address mask registers. When the bit in the address mask register is set to 1, it means the received corresponding address bit is don't-care. If the bit is set to 0, that means the received corresponding register bit should be exact the same as address register.

6.16.4.15 ²C Control Register 2 (I2CON2)

nuvoTon

The bus clock is stretched automatically when the INTSTS (I2CINTSTS[0]) is set. The NOSTRETCH (I2CON2[5]) bit is used to no stretch the bus clock when this bit is set to 1.

For the TWOFF EN (I2CON2[4]) bit, it is used to enable the two-level FIFO for I2C transmitted or received buffer. It is used to improve the performance of the 1^2 C bus. If this bit is set = 1, the control bit of START (I2CON[3]) for repeat start or STOP (I2CON[2]) bit should be set after the current INTSTS is clear. For example: if there are 4 data shall be transmitted and then stop it. The STOP bit shall be set after the 3rd data's INTSTS event being clear. In this time, the 4th data can be transmitted and the 1²C stop after the 4th data transmission done.

The two level FIFO status interrupt enable can be enabled by I2CON2[3:2] to generate the underrun or overrun event.

When enters Power-down mode, other I²C master can wake up our chip by addressing our I²C device, user must configure the related setting WKUP EN (I2CON2[0]) before entering Power-down mode. When the system is wake-up by the matched address frame, the user shall check the WAKEUP ACK DONE (I2CINTSTS[7]) bit is set to 1 to confirm the address wake-up frame has done. Then, the user can read the WR STATUS (I2CSTATUS2[3]) to know the bus transaction direction in the next frame. The bus of SCL is stretched after the ACK bit cycle done. It can't be released before clearing the WAKEUP ACK DONE bit to 0.

6.16.4.16 l²C Status Register 2 (I2CSTATUS2)

The two level FIFO status, busy free information, FIFO empty, FIFO full and overrun or underun are also list in the this register.

The WR STATUS (I2CSTATUS2[3]) bit records the Read/Write command on the address match wakeup frame. The user can use read this bit's status to prepare the next transmitted data (WR_STATUS = 0) or to wait the incoming data (WR STATUS = 1) can be stored in time after the system is wake-up by the address match frame.

When system is woken up by other I²C master device, WKUPIF (I2CSTATUS2[0]) is set to indicate this event. User needs write "1" to clear this bit. The other status bits are used to indicate the current FIFO status when the TWOFF EN (I2CON2[4]) is set.

6.16.4.17 Operation Mode

The on-chip I²C ports support three operation modes, Master, Slave, and General Call Mode.

In a given application, I²C port may operate as a master or as a slave. In Slave mode, the I²C port hardware looks for its own slave address and the general call address. If one of these addresses is detected, and if the slave is willing to receive or transmit data from/to master(by setting the ACK (I2CON[1]) bit), acknowledge pulse will be transmitted out on the 9th clock, hence an interrupt is requested on both master and slave devices if interrupt is enabled. When the microcontroller wishes to become the bus master, hardware waits until the bus is free before entering Master mode so that a possible slave action is not be interrupted. If bus arbitration is lost in Master mode, I²C port switches to Slave mode immediately and can detect its own slave address in the same serial transfer.

To control the I^2C bus transfer in each mode, user needs to set I2CON, I2CDATA registers according to current status code of I2CSTATUS register. In other words, for each I^2C bus action, user needs to check current status by I2CSTATUS register, and then set I2CON, I2CDATA registers to take bus action. Finally, check the response status by I2CSTATUS.

The bits, START, STOP and ACK (I2CON[3:1]) are used to control the next state of the I²C hardware after INTSTS flag of I2CINTSTS [0] register is cleared. Upon completion of the new action, a new status code will be updated in I2CSTATUS register and the INTSTS flag (I2CINTSTS[0]) will be set. If the I²C interrupt control bit INTEN (I2CON [7]) is set, appropriate action or software branch of the new status code can be performed in the Interrupt service routine.

The following figure shows the current I^2C status code is 0x08, and then set DATA=SLA+W and (STA,STO,SI,AA) = (0,0,1,x) to send the address to I^2C bus. If a slave on the bus matches the address and response ACK, the I2CSTATUS will be updated by status code 0x18.

Note: (STA, STO, SI, AA) = (START, STOP, INTSTS, ACK)

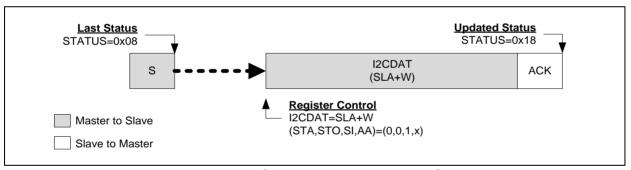


Figure 6-81 Control I²C Bus according to Current I²C Status

6.16.4.18 Master Mode

In the following figures, all possible protocols for I^2C master are shown. User needs to follow proper path of the flow to implement required I^2C protocol.

In other words, user can send a START signal to bus and I²C will be in Master Transmitter mode or Master receiver mode after START signal has been sent successfully and new status code would be 0x08. Followed by START signal, user can send slave address, read/write bit, data and Repeat START, STOP to perform I²C protocol.

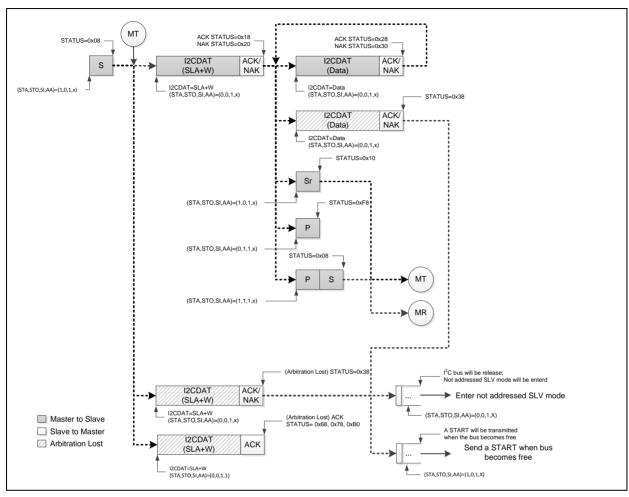


Figure 6-82 Master Transmitter Mode Control Flow

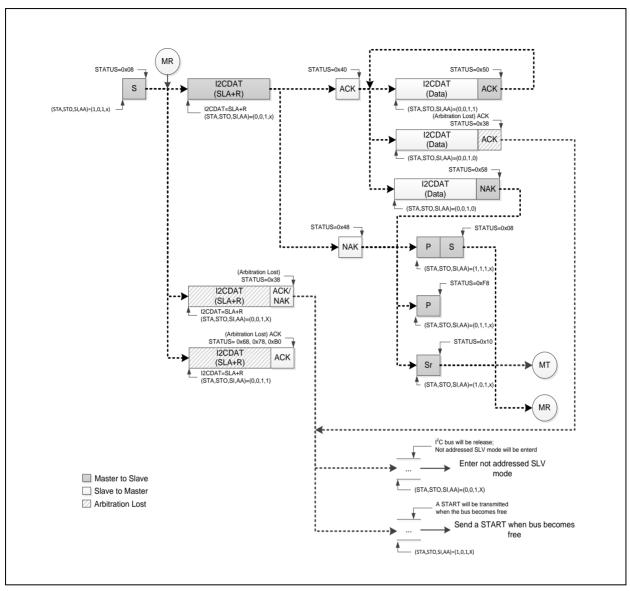


Figure 6-83 Master Receiver Mode Control Flow

If the I²C is in Master mode and gets arbitration lost, the status code will be 0x38. In status 0x38, user may set (START, STOP, INTSTS, ACK) = (1, 0, 1, X) to send START to re-start Master operation when bus become free. Otherwise, user may set (START, STOP, INTSTS, ACK) = (0, 0, 1, X) to release I²C bus and enter not addressed Slave mode.

Note: (STA, STO, SI, AA) = (START, STOP, INTSTS, ACK)

6.16.4.19 Slave Mode

nuvoton

When reset default, I²C is not addressed and will not recognize the address on I²C bus. User can set slave address by I2CSADDRx and set (START, STOP, INTSTS, ACK) = (0, 0, 1, 1) to let I2C recognize the address sent by master. The follow figure shows all the possible flow for I²C in Slave mode. Users need to follow a proper flow to implement their own I²C protocol.

If bus arbitration is lost in Master mode, I²C port switches to Slave mode immediately and can detect its

own slave address in the same serial transfer. If the detected address is SLA+W (Master want to write data to Slave) after arbitration lost, the status code is 0x68. If the detected address is SLA+R (Master want to read data from Slave) after arbitration lost, the status code is 0xB0.

Note: During I²C communication, the SCL clock will be released when writing '1' to clear INTSTS flag in Slave mode.

Note: (STA, STO, SI, AA) = (START, STOP, INTSTS, ACK)

nuvoTon

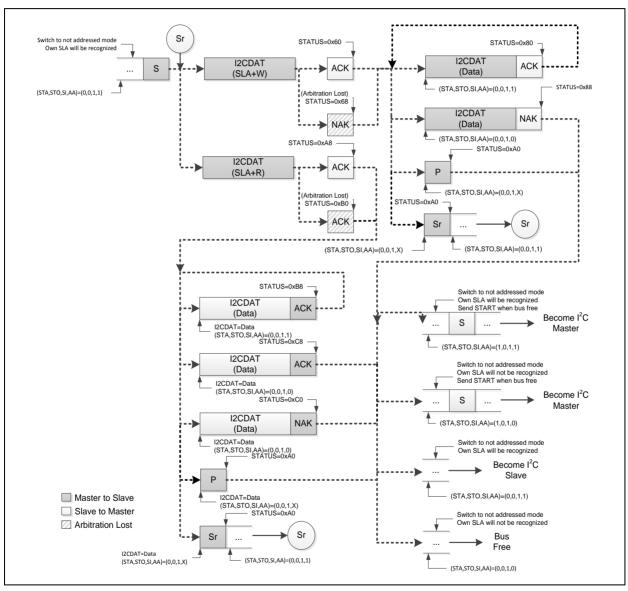


Figure 6-84 Slave Mode Control Flow

If I²C is still receiving data in addressed Slave mode but got a STOP or Repeat START, the status code will be 0xA0. User could follow the action for status code 0x88 as shown in the above figure when getting 0xA0 status.

If I^2C is still transmitting data in addressed Slave mode but got a STOP or Repeat START, the status code will be 0xA0. User could follow the action for status code 0xC8 as shown in the above figure when getting 0xA0 status.

Note: After slave gets status of 0x88, 0xC8, 0xC0 and 0xA0, slave can switch to not address mode and

own SLA will not be recognized. If entering this status, slave will not receive any I2C signal or address from master. At this status, I²C should be reset to leave this status.

6.16.4.20 General Call (GC) Mode

nuvoTon

If the GCALL (I2CSADDRn [0]) bit is set to 1, the I²C port hardware will respond to General Call address (00H). User can clear GCALL bit to disable general call function. When the GCALL bit is set and the I²C is in Slave mode, it can receive the general call address by 0x00 after master send general call address to I²C bus, then it will follow status of GCALL mode.

Note: (STA, STO, SI, AA) = (START, STOP, INTSTS, ACK)

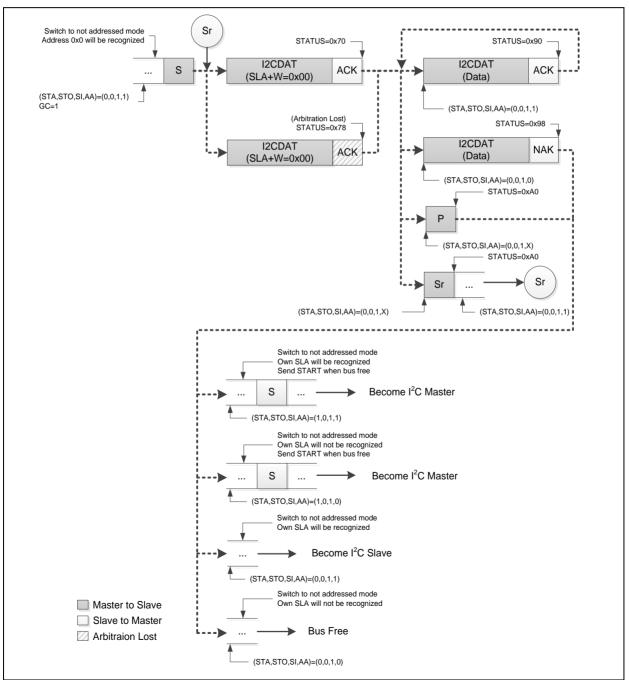


Figure 6-85 GC Mode

If I²C is still receiving data in GCALL mode but got a STOP or Repeat START, the status code will be 0xA0. User could follow the action for status code 0x98 in the above figure when getting 0xA0 status.

Note: After slave gets status of 0x98 and 0xA0, slave can switch to not address mode and own SLA will not be recognized. If entering this status, slave will not receive any I²C signal or address from master. At this time. I²C controller should be reset to leave this status.

6.16.4.21 Multi-Master

nuvoton

In some applications, there are two or more masters on the same I²C bus to access slaves. and the masters may transmit data simultaneously. The 1²C supports multi-master by including collision detection and arbitration to prevent data corruption.

- When I2CSTATUS = 0x38, an "Arbitration Lost" is received. Arbitration lost event maybe occur during the send START bit, data bits or STOP bit. User could set (START, STOP, INTSTS, ACK) = (1, 0, 1, X) to send START again when bus free, or set (START, STOP, INTSTS, ACK) = (0, 0, 1, X) to send STOP to back to not addressed Slave mode.
- When I2CSTATUS = 0x00, a "Bus Error" is received. To recover I2C bus from a bus error, STO should be set and SI should be cleared, and then STO is cleared to release bus.
 - Set (START, STOP, INTSTS, ACK) = (0, 1, 1, X) to stop current transfer
 - Set (START, STOP, INTSTS, ACK) = (0, 0, 1, X) to release bus

6.16.4.22 Example for Random Read on EEPROM

The following steps are used to configure the I²C related registers when using I²C to read data from EEPROM.

- 1. Set the multi-function pin in the "GPA MFP" register as SCL and SDA pins.
- 2. Enable I²C APB clock, I2C0ON (CLK APBC[8]) = 1.
- Set I2C0 RST (IPRSTC2[8]) =1 to reset I²C controller then set I²C controller to normal operation.
- Set IPEN (I2CON[0]) = 1 to enable I^2 C controller.
- Give I²C clock a divided register value for I²C clock rate in the "I2CDIV".
- Set SETENA=0x00040000 in the "NVIC_ISER" register to set I²C IRQ.
- 7. Set INTEN (I2CON[7]) = 1 to enable I^2 C Interrupt.
- Set I²C slave address registers which are "I2CSADDR0~I2CADDR1".

Random read operation is one of the methods of access EEPROM. The method allows the master to access any address of EEPROM space. The following figure shows the EEPROM random read operation.

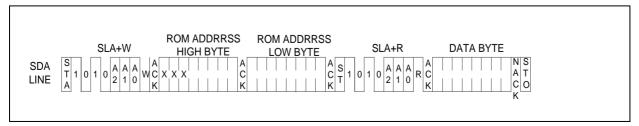


Figure 6-86 EEPROM Random Read

The following figure shows how to use I²C controller to implement the protocol of EEPROM random read.

Note: (STA, STO, SI, AA) = (START, STOP, INTSTS, ACK)

nuvoTon

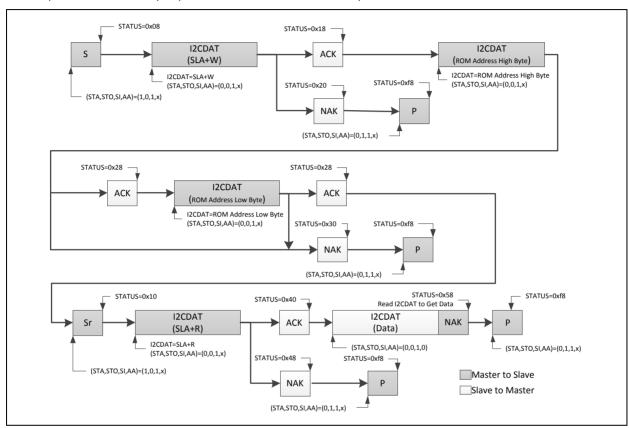


Figure 6-87 Protocol of EEPROM Random Read

The I²C controller sends START to bus to be a master. Then it sends a SLA+W (Slave address + Write bit) to EERPOM followed by two bytes data address to set the EEPROM address to read. Finally, a Repeat START followed by SLA+R is sent to read the data from EEPROM.

6.16.5 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
I2C Base Address: I2Cx_BA = 0x4002_0000+0x100000*x x=0,1								
I2CON	I2Cx_BA+0x00	R/W	I ² C Control Register	0x0000_0000				
12CINTSTS	I2Cx_BA+0x04	R/W	I ² C Interrupt Status Register	0x0000_0000				
I2CSTATUS	I2Cx_BA+0x08	R	I ² C Status Register	0x0000_00F8				
I2CDIV	I2Cx_BA+0x0C	R/W	I ² C clock divided Register	0x0000_0000				
12CTOUT	I2Cx_BA+0x10	R/W	I ² C Time-out control Register	0x0000_0000				
I2CDATA	I2Cx_BA+0x14	R/W	I ² C DATA Register	0x0000_0000				
I2CSADDR0	I2Cx_BA+0x18	R/W	I ² C Slave address Register0	0x0000_0000				
I2CSADDR1	I2Cx_BA+0x1C	R/W	I ² C Slave address Register1	0x0000_0000				
I2CSAMASK0	I2Cx_BA+0x28	R/W	I ² C Slave address Mask Register0	0x0000_0000				
I2CSAMASK1	I2Cx_BA+0x2C	R/W	I ² C Slave address Mask Register1	0x0000_0000				
I2CON2	I2Cx_BA+0x3C	R/W	I ² C Control Register 2	0x0000_0000				
I2CSTATUS2	I2Cx_BA+0x40	R	I ² C Status Register 2	0x0000_0000				

6.16.6 Register Description

nuvoTon

I²C Control Register (I2CON)

Register	Offset	R/W	Description	Reset Value
I2CON	I2Cx_BA+0x00	R/W	I ² C Control Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
Reserved								
7	6	5	4	3	2	1	0	
INTEN	Rese	erved	I2C_STS	START	STOP	ACK	IPEN	

Bits	Description	
[31:8]	Reserved	Reserved.
[7]	INTEN	Interrupt Enable Control 0 = I ² C interrupt Disabled. 1 = I ² C interrupt Enabled.
[6:5]	Reserved	Reserved.
[4]	I2C_STS	I^2C Status When a new state is present in the I2CSTATUS register, if the INTEN bit is set, the I2C interrupt is requested. It must write one by software to this bit after the I2CINTSTS[0] is set to 1 and the I2C protocol function will go ahead until the STOP is active or the IPEN is disabled. $0 = I^2C$'s Status disabled and the I^2C protocol function will go ahead. $1 = I^2C$'s Status active.
[3]	START	I ² C START Command Setting this bit to 1 to enter Master mode, the device sends a START or repeat START condition to bus when the bus is free and it will be cleared to 0 after the START command is active and the STATUS has been updated. 0 = After START or repeat START is active. 1 = Sends a START or repeat START condition to bus.
[2]	STOP	I ² C STOP Control Bit In Master mode, set this bit to 1 to transmit a STOP condition to bus then the controller will check the bus condition if a STOP condition is detected and this bit will be cleared by hardware automatically. In Slave mode, set this bit to 1 to reset the controller to the defined "not addressed" Slave mode. This means it is NO LONGER in the slave receiver mode to receive data from the master transmit device. 0 = Will be cleared by hardware automatically if a STOP condition is detected. 1 = Sends a STOP condition to bus in Master mode or reset the controller to "not addressed" in Slave mode.

Bits	Description	1
[1]	ACK	Assert Acknowledge Control Bit 0 = When this bit is set to 0 prior to address or data received, a Not acknowledged (high level to SDA) will be returned during the acknowledge clock pulse. 1 = When this bit is set to 1 prior to address or data received, an acknowledged will be returned during the acknowledge clock pulse on the SCL line when (a). A slave is acknowledging the address sent from master. (b). The receiver devices are acknowledging the data sent by transmitter.
[0]	IPEN	I ² C Function Enable Control 0 = I ² C function Disabled. 1 = I ² C function Enabled.

I²C Interrupt Status Register (I2CINTSTS)

Register	Offset	R/W	Description	Reset Value
12CINTSTS	I2Cx_BA+0x04	R/W	I ² C Interrupt Status Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
WAKEUP_ACK Reserved				TIF	INTSTS				

Bits	Description	Description				
[31:8]	Reserved	Reserved.				
[7]	WAKEUP_ACK_ DONE	Wake-up Address Frame Acknowledge Bit Done 0 = The ACK bit cycle of address match frame isn't done. 1 = The ACK bit cycle of address match frame is done in power-down.				
[6:2]	Reserved	Reserved.				
[1]	TIF	Time-out Status 0 = No Time-out flag. Software can cleat this flag. 1 = Time-Out flag active and it is set by hardware. It can interrupt CPU when INTEN bit is set.				
[0]	INTSTS	I ² C STATUS's Interrupt Status 0 = No bus event occurred.				

I²C Status Register (I2CSTATUS)

Register	Offset	R/W	Description	Reset Value
12CSTATUS	I2Cx_BA+0x08	R	I ² C Status Register	0x0000_00F8

31	30	29	28	27	26	25	24				
	Reserved										
23	22	21	20	19	18	17	16				
	Reserved										
15	14	13	12	11	10	9	8				
	Reserved										
7	7 6 5 4 3 2 1 0										
			STA	STATUS							

Bits	Description					
[31:8]	Reserved	Reserved.				
[7:0]	STATUS	I ² C Status Bits (Read Only) Indicates the current status code of the bus information. The detail information about the status is described in the sections of I ² C protocol register and operation mode.				

I²C Baud Rate Control Register (I2CDIV)

Register	gister Offset		Description	Reset Value
I2CDIV	I2Cx_BA+0x0C	R/W	I ² C clock divided Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	7 6 5 4 3 2 1 0								
	CLK_DIV								

Bits	Description	escription			
[31:8]	Reserved	Reserved.			
[7:0]	CLK_DIV	I2C Clock Divided Bits The I^2C clock rate bits: Data Baud Rate of I^2C = PCLK /(4 x (CLK_DIV + 1)). Note: the minimum value of CLK_DIV is 4.			

I²C Time-out Counter Register (I2CTOUT)

Register	Offset	R/W	Description	Reset Value
I2CTOUT	I2Cx_BA+0x10	R/W	I ² C Time-out control Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
	Reserved					DIV4	TOUTEN		

Bits	Description	Description				
[31:2]	Reserved	Reserved.				
[1]	DIV4	Time-out Counter Input Clock Divider by 4 0 = Disabled. 1 = Enabled. When Enabled, the time-out period is extended 4 times.				
[0]	TOUTEN	Time-out Counter Enable/Disable Control 0 = Disabled. 1 = Enabled. When set this bit to enable, the 14 bits time-out counter will start counting when INTSTS (I2CINTSTS[0]) is cleared. Setting flag STAINTSTS to high or the falling edge of I ² C clock or stop signal will reset counter and re-start up counting after INTSTS is cleared.				

I²C Data Register (I2CDATA)

Register	Offset	R/W	Description	Reset Value
I2CDATA	I2Cx_BA+0x14	R/W	I ² C DATA Register	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	DATA								

Bits	Description	escription				
[31:8]	Reserved	Reserved.				
[7:0]	DATA	I ² C Data Bits The DATA contains a byte of serial data to be transmitted or a byte which has just been received. Note: Refer to Data register section for more detail information.				

I²C Slave Address Register (I2CSADDRx)

Register	Offset	R/W	Description	Reset Value
I2CSADDR0	I2Cx_BA+0x18	R/W	I ² C Slave address Register0	0x0000_0000
I2CSADDR1	I2Cx_BA+0x1C	R/W	I ² C Slave address Register1	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
Reserved								
15	14	13	12	11	10	9	8	
Reserved								
7	7 6 5 4 3 2 1							
SADDR							GCALL	

Bits	Description	
[31:8]	Reserved	Reserved.
		I ² C Salve Address Bits
[7:1]	SADDR	The content of this register is irrelevant when the device is in Master mode. In the Slave mode, the seven most significant bits must be loaded with the device's own address. The device will react if either of the address is matched.
		General Call Function
[0]	GCALL	0 = General Call Function Disabled.
[0]	GCALL	1 = General Call Function Enabled.
		Note: Refer to Address Register section for more detail information

I2C SLAVE ADDRESS MASK REGISTER (I2CSAMASKx)

Register	Offset	R/W	Description	Reset Value
I2CSAMASK0	I2Cx_BA+0x28	R/W	I ² C Slave address Mask Register0	0x0000_0000
I2CSAMASK1	I2Cx_BA+0x2C	R/W	I ² C Slave address Mask Register1	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
SAMASK						Reserved		

Bits	Description			
[31:8]	Reserved	eserved Reserved.		
[7:1]	SAMASK	I ² C Slave Address Mask Bits 0 = Mask disable (the received corresponding register bit should be exact the same as address register). 1 = Mask enable (the received corresponding address bit is don't care)		
[0]	Reserved	Reserved.		

I²C Control Register 2 (I2CON2)

Register	Offset	R/W	Description	Reset Value
I2CON2	I2Cx_BA+0x3C	R/W	I ² C Control Register 2	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved NOSTRETCH		TWOFF_EN	Reserved	UNDER_INTEN	OVER_INTEN	WKUPEN			

Bits	Description				
[31:6]	Reserved	Reserved.			
[5]	NOSTRETCH	NO STRETCH the I ² C BUS 0 = The I ² C SCL bus is stretched by hardware if the INTSTS (I2CINTSTS[0]) is not cleared in master mode.			
		1 = The I^2C SCL bus is not stretched by hardware if the INTSTS is not cleared in master mode.			
[4]	TWOFF_EN	TWO LEVEL FIFO Enable Control 0 = Disabled. 1 = Enabled.			
[3]	Reserved	Reserved.			
[2]	UNDER_INTEN	l ² C UNDER RUN Interrupt Control Bit 0 = Under run event interrupt Disabled. 1 = Send a interrupt to system when the TWOFF bit is enabled and there is under run event happened in transmitted fifo.			
[1]	OVER_INTEN	I ² C OVER RUN Interrupt Control Bit 0 = Overrun event interrupt Disabled. 1 = Send a interrupt to system when the TWOFF bit is enabled and there is over run event in received fifo.			
[0]	WKUPEN	I ² C Wake-up Function Enable Control 0 = I ² C wake-up function Disabled. 1 = I ² C wake-up function Enabled.			

I²C Status Register 2 (I2CSTATUS2)

Register	Offset	R/W	Description	Reset Value
I2CSTATUS2	I2Cx_BA+0x40	R	I ² C Status Register 2	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved	BUS_FREE	EMPTY	FULL	WR_STATUS	UNDERUN	OVERUN	WKUPIF		

Bits	Description	
[31:7]	Reserved	Reserved.
[6]	BUS_FREE	Bus Free Status The bus status in the controller. 0 = I ² C's "Start" condition is detected on the bus. 1 = Bus free and it is released by "STOP" condition or the controller is disabled.
[5]	EMPTY	I ² C TWO LEVEL FIFO EMPTY 0 = RX FIFO no empty when the TWOFF_EN = 1. 1 = RX FIFO empty when the TWOFF_EN = 1.
[4]	FULL	I ² C TWO LEVEL FIFO FULL 0 = TX FIFO no full when the TWOFF_EN = 1. 1 = TX FIFO full when the TWOFF_EN = 1.
[3]	WR_STATUS	 I²C Read/Write Status Bit in Address Wake-up Frame 0 = Write command be record on the address match wake-up frame. 1 = Read command be record on the address match wake-up frame.
[2]	UNDERUN	I ² C UNDER RUN Status Bit 0 = The transmitted FIFO is not under run when the TWOFF_EN = 1. 1 = The transmitted FIFO is under run when the TWOFF_EN = 1.
[1]	OVERUN	I ² C OVER RUN Status Bit 0 = The received FIFO is not over run when the TWOFF_EN = 1. 1 = The received FIFO is over run when the TWOFF_EN = 1.
[0]	WKUPIF	Wake-up Interrupt Flag 0 = Wake-up flag inactive. 1 = Wake-up flag active. Software can write 1 to clear this flag

6.17 SPI

6.17.1 Overview

The Serial Peripheral Interface (SPI) is a synchronous serial data communication protocol. Devices communicate in Master/Slave mode with 4-wire bi-direction interface. It is used to perform a serial-to-parallel conversion on data received from a peripheral device, and a parallel-to-serial conversion on data transmitted to a peripheral device. The SPI controller can be configured as a master or a slave device.

The SPI controller supports wake-up function. When this chip stays in Power-down mode, it can be waked up by off-chip device.

This controller supports variable serial clock function for special application and 2-bit transfer mode to connect 2 off-chip slave devices. The SPI controller also supports PDMA function to access the data buffer.

6.17.2 Features

- Up to two sets of SPI controllers
- Supports Master (max. 32 MHz) or Slave (max. 16 MHz) mode operation
- Supports 1 bit and 2 bit transfer mode
- Support Dual IO transfer mode
- Configurable bit length of a transaction from 8 to 32-bit
- Supports MSB first or LSB first transfer sequence
- Two slave select lines supported in Master mode
- Configurable byte or word suspend mode
- Supports byte re-ordering function
- Supports variable serial clock in Master mode
- Provide separate 8-level depth transmit and receive FIFO buffer
- Supports wake-up function
- Supports PDMA transfer
- Supports 3-wires, no slave select signal, bi-direction interface

6.17.3 Block Diagram

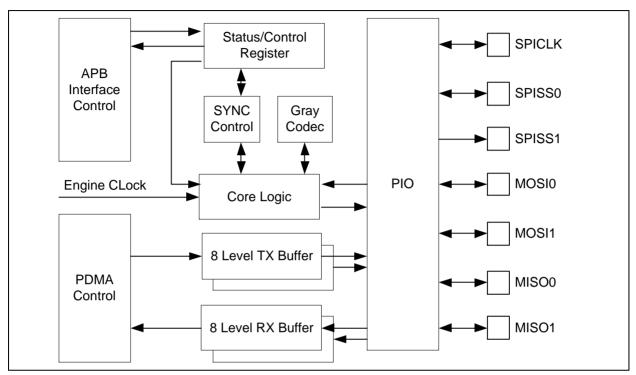


Figure 6-88 SPI Block Diagram

6.17.4 Basic Configuration

nuvoton

- The SPI pin functions are configured in GPA MFP/GPB MFP and GPE MFP register.
- The SPI peripheral clock can be enabled in SPI EN(APBCLK[13:12]) bit and its source can be selected in SPI_S(CLKSEL2[21:20]) bit.

6.17.5 Functional Description

6.17.5.1 SPI Peripheral Clock and Serial Clock

SPI controller needs the SPI peripheral clock to drive the SPI logic unit to perform the data transfer. The SPI peripheral clock rate is determined by the settings of clock source and clock divisor. The SPIx S bit of CLKSEL2 register determines the clock source of the SPI peripheral clock. The clock source can be HCLK or PLL output clock. The DIVIDER setting of SPI DIVIDER register determines the divisor of the clock rate calculation.

In master mode, if the variable clock function is disabled, VARCLK_EN (SPI_CTL[23]) = 0, the output frequency of the serial clock output pin is equal to the SPI peripheral clock rate. In slave mode, the SPI serial clock is provided by an off-chip master device. The frequency of SPI peripheral clock in slave device must be faster than the serial clock rate of the master device connected together. The frequency of SPI peripheral clock cannot be faster than the APB clock rate regardless of master mode or slave mode.

6.17.5.2 Master/Slave Mode

This SPI controller can be set as Master or Slave mode by setting the SLAVE bit (SPI CTL[18]) to communicate with the off-chip SPI slave or master device. The application block diagrams in Master and Slave mode are shown below.

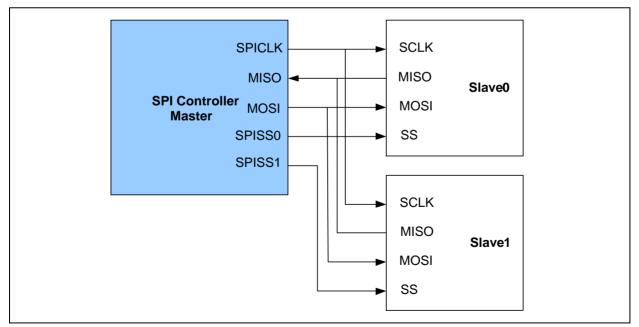


Figure 6-89 SPI Master Mode Application Block Diagram

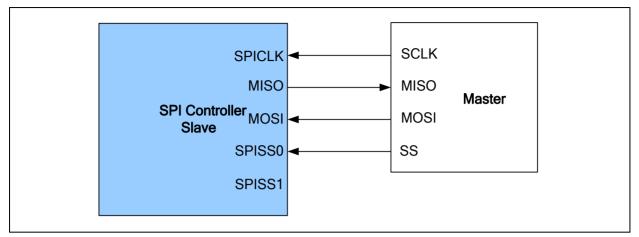


Figure 6-90 SPI Slave Mode Application Block Diagram

6.17.5.3 Slave Selection

nuvoTon

In Master mode, this SPI controller can drive up to two off-chip slave devices through the slave select output signals SPISS0 and SPISS1, but it is a time-sharing operation and it can not operate with two slave devices simultaneously.

In Slave mode, the off-chip master device drives the slave select signal from the SPISS0 port to this SPI controller. In Master/Slave mode, the active level of slave select signal can be programmed to low active or high active in SS LVL bit (SPI SSR[2]), and the SS LTRIG bit (SPI SSR[4]) define the slave select signal SPIxSS0/1 is level trigger or edge trigger. The selection of trigger condition depends on what type of peripheral slave/master device is connected.

In Slave mode, if the SS LTRIG bit is configured as level trigger, the LTRIG FLAG bit (SPI SSR[4]) is used to indicate if the count of received bits among one transaction meets the requirement which define in TX_BIT_LEN.

6.17.5.4 Level-trigger / Edge-trigger

In Slave mode, the slave select signal can be configured as level-trigger, SS LTRIG (SPI SSR[4]) =1, or edge-trigger, SS LTRIG = 0. In edge-trigger, the data transfer starts from an active edge and ends on an inactive edge. If master does not send an inactive edge to slave, the transfer procedure will not be completed and the unit transfer interrupt flag of slave will not be set. In level-trigger, the following two conditions will terminate the transfer procedure and the unit transfer interrupt flag of slave will be set. The first condition is that if the number of transferred bits matches the settings of TX BIT LEN (SPI_CTL[7:3]), the unit transfer interrupt flag of slave will be set. The second condition, if master set the slave select pin to inactive level during the transfer is in progress, it will force slave device to terminate the current transfer no matter how many bits have been transferred and the unit transfer interrupt flag will be set. User can read the status of LTRIG_FLAG (SPI_STATUS[4]) bit to check if the data has been completely transferred.

6.17.5.5 Automatic Slave Select

In Master mode, if the AUTOSS bit (SPI SSR[3]) is set as 1, the slave select signals will be generated automatically and output to SPIxSS0 and SPIxSS1 ports according to SSR[0] (SPI SSR[0]) and SSR[1] (SPI SSR[1]) whether it is enabled or not. It means that the slave select signals, which is enabled in SPI SSR[1:0] register is asserted by the SPI controller when the SPI data transfer is started by setting the GO_BUSY bit (SPI_CTL[0]) and is de-asserted after the data transfer is finished. If the AUTOSS bit is cleared to 0, the slave select output signals are asserted and de-asserted by manual setting and clearing the related bits in SPI_SSR[1:0] register. The active level of the slave select output signals is

specified in SS_LVL bit (SPI_SSR[2]).

nuvoton

In master mode, if the value of SP CYCLE (SPI CTL[15:12]) is less than 3 and the AUTOSS (SPI SSR[3]) is set as 1, the slave select signal will keep at active state between two successive transactions.

In slave mode, to recognize the inactive state of the slave select signal, the inactive period of the slave select signal must be larger than or equal to 6 peripheral clock periods between two successive transactions.

6.17.5.6 No Slave Select Mode (3-WIRE mode)

When the software sets the NOSLVSEL (SPI SSR[5]) bit to enable the 3-wire mode, the SPI controller can work with no slave select signal in slave mode. The NOSLVSEL bit only takes effect in slave mode. It only needs three pins, SPICLK, SPI MISO, and SPI MOSI, to communicate with a SPI master. The SPISS pin can be configured as a GPIO. When the NOSLVSEL bit is set to 1, the SPI slave will be ready to transmit/receive data after the GO BUSY (SPI CTL[0]) bit is set to 1. In 3-wire mode, the SS LTRIG, SPI SSR[4], shall be set as 1.

In normal operation, the interrupt flag in SLV START INTSTS (SPI STATUS[6]) will be set when the transfer has start if the SSTA INTEN (SPI SSR[9]) is set 1. The serial clock toggle input is the transfer start condition. And there is also interrupt event when the received data meet the required bits which define in TX BIT LEN (SPI CTL[7:3]). If the received bits are less than the requirement and there is no more serial clock input over the time period which is defined by the user in Slave mode with no slave select, the user can set the SLV ABORT (SPI SSR[8]) bit to force the current transfer done and then the user can get a transfer done interrupt event.

6.17.5.7 Variable Clock Function

In master mode, if the VARCLK_EN bit (SPI_CTL[23]) is set to 1, the output of serial clock can be programmed as variable frequency pattern. The serial clock period of each cycle depends on the setting of the SPI_VARCLK register. When the variable clock function is enabled, the TX_BIT_LEN setting must be set as 0x10 to configure the data transfer as 16-bit transfer mode. The VARCLK[31] determines the clock period of the first clock cycle. If VARCLK[31] is 0, the first clock cycle depends on the DIVIDER1 setting; if it is 1, the first clock cycle depends on the DIVIDER2 setting. Two successive bits in VARCLK[30:1] defines one clock cycle. The bit field VARCLK[30:29] defines the second clock cycle of SPI serial clock of a transaction, and the bit field VARCLK[28:27] defines the third clock cycle and so on. The VARCLK[0] is unmeaning. The following figure shows the timing relationship among the serial clock (SPICLK), the VARCLK, the DIVIDER1 and the DIVIDER2 registers.

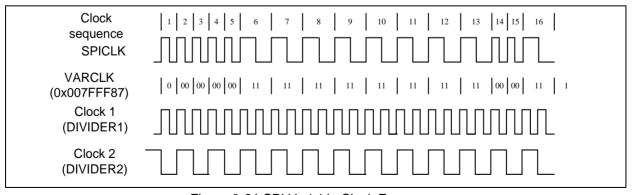


Figure 6-91 SPI Variable Clock Frequency

6.17.5.8 Clock Polarity

nuvoton

The CLKP bit (SPI_CTL[11]) defines the serial clock idle state in Master mode. If CLKP = 1, the output SPICLK is idle at high state. If CLKP = 0, it is idle at low state. For variable serial clock, it works in CLKP = 0 only.

6.17.5.9 Transmitting/Receiving Bit Length

The bit length of a transaction word is defined in TX BIT LEN bit (SPI CTL[7:3]). It can be configured up to 32 bits in a transaction word for transmitting and receiving.

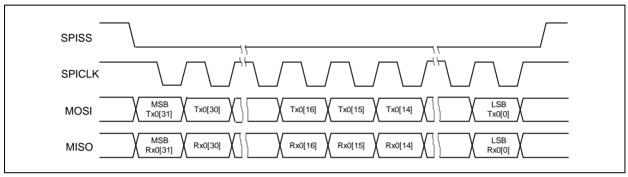


Figure 6-92 SPI 32-bit in One Transaction

6.17.5.10 LSB First

The LSB bit (SPI_CTL[10]) defines the bit transfer sequence in a transaction. If set the LSB bit to 1, the transfer sequence is LSB first. The bit 0 will be transferred firstly. If clear the LSB bit to 0, the transfer sequence is MSB first (refer to the figure above).

6.17.5.11 Edge Condition

The TX NEG bit (SPI CTL[2]) defines the data transmitted out either at negative edge or at positive edge of serial clock SPICLK.

The RX NEG bit (SPI CTL[1]) defines the data received in either at negative edge or at positive edge of serial clock SPICLK. Note that TX NEG and RX NEG must be exclusive.

6.17.5.12 Word Suspend

These four bits field of SP CYCLE (SPI CTL[15:12]) provide a configurable clock suspend interval 0.5 ~ 15.5 serial clock periods between two successive transaction words in Master mode. The definition of the suspend interval is the interval between the last clock edge of the preceding transaction word and the first clock edge of the following transaction word. The default value of SP_CYCLE is 0x3 (3.5 serial clock cycles). This SP_CYCLE setting will not take effect to the word suspend interval if the software disables the FIFO mode.

If both the VARCLK EN(SPI CTL[23]), and the FIFOM(SPI CTL[21]), are set as 1, the minimum word suspend period is (6.5 + SP CYCLE)*SPI serial clock period.

6.17.5.13 Byte Reorder

When the transfer is set as MSB first (LSB (SPI_CTL[10]) = 0), the REORDER (SPI_CTL[19]) is enabled, the data stored in the SPI_TX FIFO and SPI_RX FIFO will be rearranged in the order as [BYTE0, BYTE1, BYTE2, BYTE3] in 32 bit transfer mode (TX_BIT_LEN (SPI_CTL[7:3])= 0). The

sequence of transmitted/received data will be BYTE0. BYTE1. BYTE2, and then BYTE3. If the TX BIT LEN is set as 24-bits transfer mode, the data in TX buffer and RX buffer will be rearranged as [unknown byte, BYTE0, BYTE1, BYTE2]. The SPI controller will transmit/receive data with the sequence of BYTE0, BYTE1 and then BYTE2. Each byte will be transmitted/received with MSB first. The rule of 16-bits mode is the same as above. Byte reorder function is only available when TX BIT LEN is configured as 16, 24, and 32 bits.

Note: The byte reorder function is not supported when the variable serial clock function is enabled.

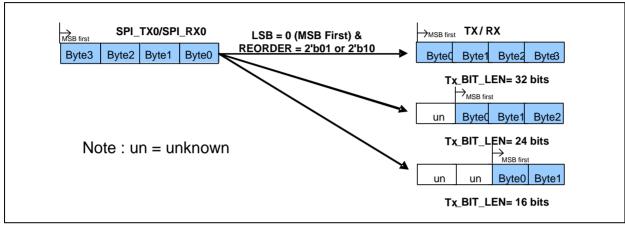


Figure 6-93 SPI Byte Reorder

6.17.5.14 Byte Suspend

nuvoton

In Master mode, if REORDER (SPI CTL[19]) is set to 1, the hardware will insert a suspend interval of 0.5~15.5 serial clock periods between two successive bytes in a transfer word. Both settings of byte suspend interval and word suspend interval are configured in SP CYCLE (SPI CTL[15:12]). Byte Suspend is only used in SPI Byte Reorder mode.

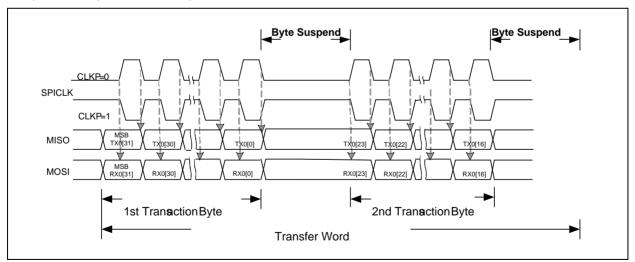


Figure 6-94 SPI Byte Suspend Mode

6.17.5.15 Interrupt

Each SPI controller can generates an individual interrupt when data transfer is finished or the FIFO reach the threshold level and the respective interrupt event flag INTSTS (SPI STATUS[7], TX INTSTS (SPI_STATUS[10]), RX_INTSTS (SPI_STATUS[8]) will be set. The interrupt event flag will generates an interrupt to CPU if the interrupt enable bit INTEN (SPI_CTL[17]) is set. The interrupt event flag INTSTS,

TXINT STS (SPI STATUS[10]), and RXINT STS (SPI STATUS[8]) can be cleared only by writing 1 to

As the SPI controller finishes a unit transfer, the unit transfer interrupt flag INTSTS (SPI STATUS[7]) will be set to 1. The unit transfer interrupt event will generate an interrupt to CPU if the unit transfer interrupt enable bit IE (SPI CTL[17]) is set. The unit transfer interrupt flag can be cleared only by writing 1 to it.

In 3-wire mode, the slave 3-wire mode start interrupt flag, SLV START INTSTS (SPI STATUS[6]), will be set to 1 when the slave senses the SPI clock signal. The SPI controller will issue an interrupt if the SSTA INTEN (SPI SSR[9]) is set to 1. If the count of the received bits is less than the setting of TX BIT LEN (SPI CTL[7:3]) and there is no more serial clock input over the expected time period which is defined by the user, the user can set the SLV ABORT bit to abort the current transfer. The unit transfer interrupt flag. INTSTS (SPI_STATUS[7]), will be set to 1 if the software set the SLV_ABORT (SPI SSR[8]) bit.

In FIFO mode, there is time-out function to inform user. If there is a received data in the FIFO and it does not be read by software over 64 SPI peripheral clock periods in master mode or over 576 SPI peripheral clock periods in slave mode, it will send a time-out interrupt to the system if the time-out interrupt enable bit TIMEOUT EN, FIFO CTL[7], is set to 1.

6.17.5.16 Two Bit Transfer Mode

nuvoton

This SPI controller also supports 2-bit transfer mode when enabling the TWOB bit, SPI CTL[22]. When the TWOB bit is enabled, it can transmit and receive 2-bit serial transfer data simultaneously.

The 1st bit is through the MOSI0 and MISO0 port to transmit the data from SPI TX0 register and receive the data into SPI_RX0 regist^{er}. The 2nd bit is through the MOSI1and MISO1 port to transmit the data from SPI TX1 register and receive the data into SPI RX1 register. The system block and timing of 2-bit transfer mode are shown below.

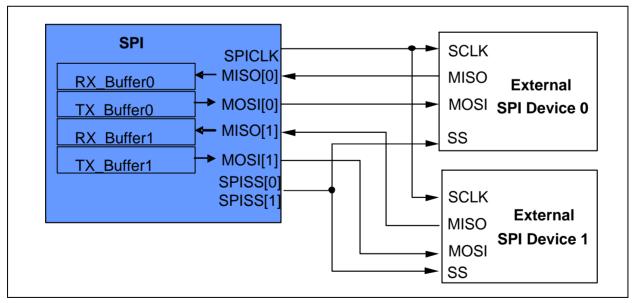


Figure 6-95 SPI 2-bit Transfer Mode

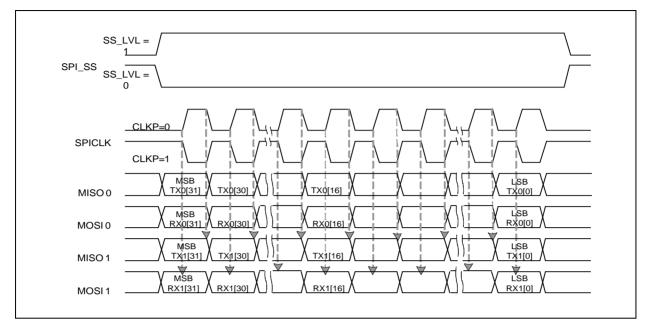


Figure 6-96 SPI 2-bit Transfer Mode Timing Diagram

6.17.5.17 Dual IO Mode

nuvoTon

This SPI controller also supports dual IO transfer when set the DUAL_IO_EN bit (SPI_CTL[29]) to 1. The DUAL_IO_DIR bit (SPI_CTL[28] is used to define the direction of the transfer data. When set the DUAL_IO_DIR bit to 1, the controller will send the data to external device. When the DUAL_IO_DIR bit set 0, the controller will read the data from the external device. This function supports 8, 16, 24, and 32-bits of bit length.

The dual IO mode is not supported when the 3-wire mode or the byte reorder function is enabled.

If both the DUAL_IO_EN and DUAL_IO_DIR bits are set as 1, the MOSI0 is the even bit data output and the MISO0 will be set as the odd bit data output. If the DUAL_IO_EN is set as 1 and DUAL_IO_DIR is set as 0, both the MISO0 and MOSI0 will be set as data input ports.

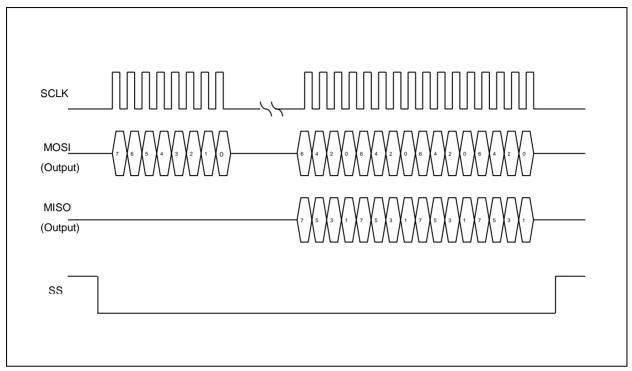


Figure 6-97 SPI DUAL-I/O output Sequence

Note: The byte reorder and no slave select functions are not support in DUAL I/O mode.

6.17.5.18 Time Out

nuvoton

In FIFO mode, there is time-out function to inform user. If there is a received data in the FIFO and it isn't read by user over 64 SPI peripheral clock in master mode or over 576 SPI peripheral clock in slave mode, it will send a time-out interrupt to the system if the time-out enable bit TIMEOUT EN(SPI FFCTL[7]) is set to 1

6.17.5.19 FIFO Mode

The SPI controller supports FIFO mode when the FIFOM bit(SPI CTL[21]) is set as 1. The SPI controllers equip with 8 32-bit wide transmit and receive FIFO buffers.

The transmit FIFO buffer is an 8-level depth, 32-bit wide, first-in, first-out register buffer. The software can write data to the transmit FIFO buffer by writing the SPI TX0 register. The data stored in the transmit FIFO buffer will be read and sent out by the transmission control logic. If the 8-level transmit FIFO buffer is full, the TX FULL (SPI STATUS[3]) bit will be set to 1. When the SPI transmission logic unit draws out the last datum of the transmit FIFO buffer, so that the 8-level transmit FIFO buffer is empty, the TX EMPTY (SPI STATUS[2]) bit will be set to 1. Notice that the TX EMPTY flag is set to 1 while the last transaction is still in progress. In master mode, the software should check both the GO BUSY (SPI CTL[0]) bit and TX EMPTY bit to make sure whether the SPI is in idle or not.

The received FIFO buffer is also an 8-level depth, 32-bit wide, first-in, first-out register buffer. The receive control logic will store the received data to this buffer. The software can read the FIFO buffer data from SPI RX0 register. There are FIFO related status bits, like RX EMPTY (SPI STATUS[0]) and RX_FULL (SPI_STATUS[1]), to indicate the current status of FIFO buffer.

In FIFO mode, the software can set the transmitting and receiving threshold by setting the TX THRESHOLD (SPI FFCTL[30:28]) and RX THRESHOLD (SPI FFCTL[26:24]) settings. When the count of valid data stored in transmit FIFO buffer is less than or equal to TX_THRESHOLD setting, the TX INTSTS (SPI STATUS[10]) bit will be set to 1. When the count of valid data stored in receive FIFO

buffer is larger than RX THRESHOLD setting, the RX INTSTS (SPI STATUS[8]) bit will be set to 1.

nuvoton

In FIFO mode, the software can write 8 data to the SPI transmit FIFO buffer in advance. When the SPI controller operates in FIFO mode, the GO BUSY bit (SPI CTL[0]) will be controlled by hardware, software should not modify the content of SPI CTL register unless clearing the FIFOM (SPI CTL[21]) bit to disable the FIFO mode.

In Master mode transmission operation, the TX EMPTY flag will be cleared to 0 when the FIFOM bit is set to 1 and the software write the first datum to the SPI TX0 register. The transmission starts immediately as long as the transmit FIFO buffer is not empty. User can write the next data into SPI TX0 register immediately. The SPI controller will insert a suspend interval between two successive transactions in FIFO mode and the period of suspend interval is decided by the setting of SP CYCLE (SPI CTL [15:12]). User can write data into SPI TX0 register as long as the TX FULL flag is 0. Word suspend is only used in FIFO mode.

The subsequent transactions will be triggered automatically if the transmitted data are updated in time. If the SPI TX0 register does not be updated after all data transfer are done, the transfer will stop.

In Master mode reception operation, the serial data are received from MISOx pin and stored to receive FIFO buffer. The RX EMPTY flag will be cleared to 0 while the receive FIFO buffer contain unread data. The software can read the received data from SPI_RX0 register as long as the RX_EMPTY flag is 0. If the receive FIFO buffer contains 8 unread data, the RX FULL flag will be set to 1. The SPI controller will stop receiving data until the software read the SPI RX0 register.

In Slave mode, when the FIFOM bit is set as 1, the GO BUSY bit will be set as 1 by hardware automatically. If user wants to stop the slave mode SPI data transfer, both the FIFOM bit and GO BUSY bit must be cleared to 0 by software.

In Slave mode transmission operation, when the software writes data to SPI_TX0 register, the data will be loaded into transmit FIFO buffer and the TX_EMPTY flag will be set to 0. The transmission will start when the slave device receives clock signal from master. The software can write data to SPI_TX0 register as long as TX FULL flag is 0. After all data have been drawn out by the SPI transmission logic unit and the software does not update the SPI TX0 register, the TX EMPTY flag will be set to 1.

In Slave mode reception operation, the serial data is received from MOSIx pin and stored to SPI_RX0 register. The reception mechanism is similar to master mode receiving operation.

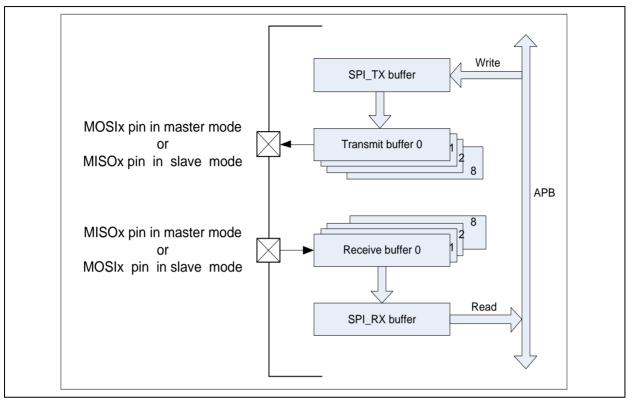


Figure 6-98 SPI FIFO Mode Control

6.17.5.20 Wake-Up

nuvoton

There is wake-up function in the SPI controller. When the system enter Power-down mode by user, it can be waked up by receive a toggle signal of bus clock (SPICLK) from the external device.

6.17.5.21 DMA

There are transmission and receive DMA function in the SPI controller.

When the TX_DMA_EN (SPI_DMA[0]) bit is set 1, the controller will issue request to PDMA controller to start the DMA transmission process automatically. If using the PDMA mode to transfer data, remember not to set GO BUSY bit (SPI CTL[0]). The SPI controller will set it automatically whenever necessary.

When the RX DMA EN (SPI DMA[1]) bit is set 1, the controller will start the receive PDMA process. SPI controller will issue request to PDMA controller automatically when there is data written into the received buffer or the status of RX_EMPTY (SPI_STATUS[0]) is set to 0 in FIFO mode. If using the receive mode to receive data but the transmission DMA is disable, the GO BUSY bit shall be set by user.

6.17.5.22 SPI Programming

In Master/Slave mode, the active level of device/slave select (SPI SS) signal can be programmed to low active or high active in SS_LVL bit (SPI_SSR[2]), but the SPISS0/1 is level trigger or edge trigger which is defined in SS LTRIG bit (SPI SSR[4]). The serial clock (SPICLK) idle state can be configured as high state or low state by setting the CLKP bit (SPI_CTL[11]). It also provides the bit length of a transaction in TX BIT LEN (SPI CTL[7:3]), and transmit/receive data from MSB or LSB first in LSB bit (SPI CTL[10]). Users also can select which edge of serial clock to transmit/receive data in TX NEG/RX NEG (SPI CTL[2:1]) . Four SPI timing diagrams for Master/Slave operations and the related settings are

shown below.

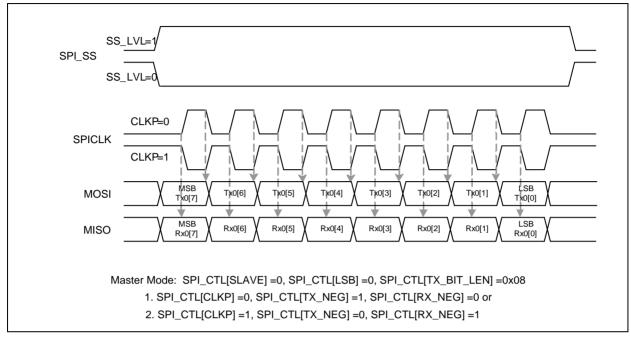


Figure 6-99 SPI Timing in Master Mode

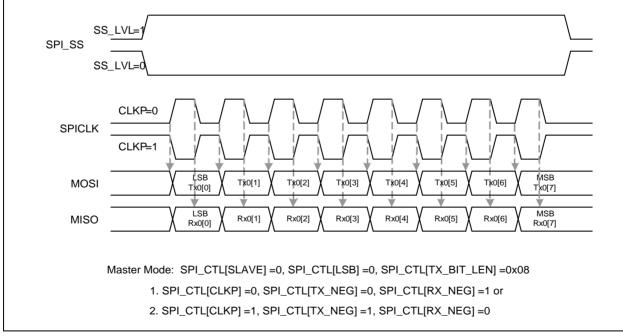


Figure 6-100 SPI Timing in Master Mode (Alternate Phase of SPICLK & LSB = 1)

nuvoton

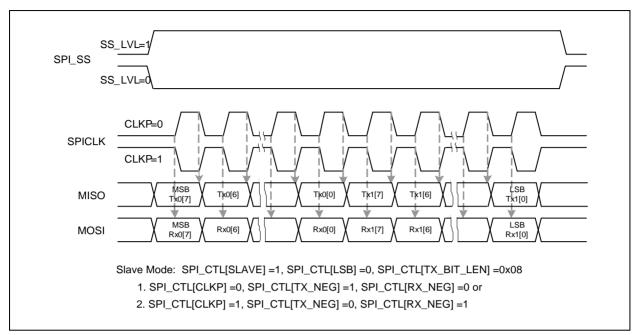


Figure 6-101 SPI Timing in Slave Mode (Alternate Phase of SPICLK & LSB = 0)

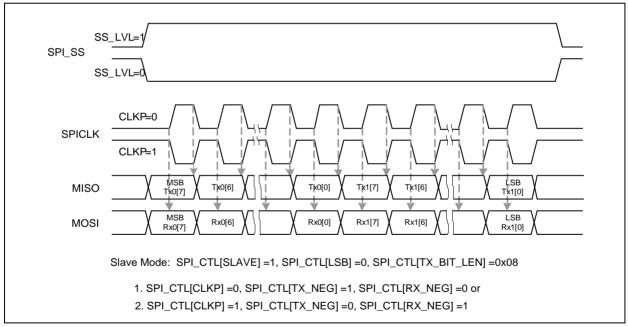


Figure 6-102 SPI Timing in Slave Mode

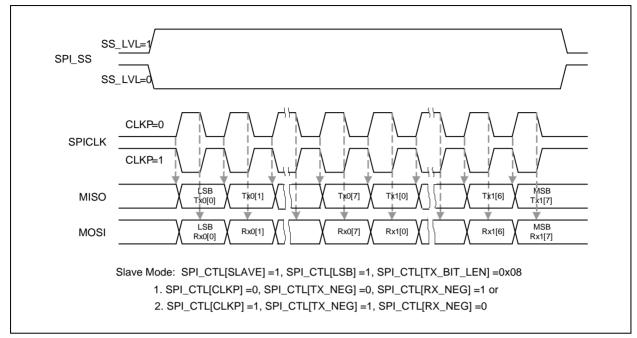


Figure 6-103 SPI Timing in Slave Mode (Alternate Phase of SPICLK)

6.17.5.23 SPI Programming Example

nuvoTon

Example 1, SPI controller is set as a master to access an off-chip slave device with following specifications:

- Data bit is received on positive edge of serial clock
- Data bit is transmitted on negative edge of serial clock
- Data bit is transferred from MSB first
- SPICLK is idle at low state
- Only one byte of data to be transmitted/received in a transfer
- Slave select signal is active low

Basically, the specification of the connected off-chip slave device should be referred in details before the following steps:

- 1. Set the DIVIDER1 (SPI_CLKDIV[7:0]) register to determine the output frequency of serial clock.
- 2. Write the SPI SSR register a proper value for the related settings of Master mode:
 - (a). to disable the Automatic Slave Select bit AUTOSS (SPI_SSR[3] = 0).
 - (b). Select low level trigger output of slave select signal in the Slave Select Active Level bit SS LVL (SPI_SSR[2] = 0) and Slave Select Level Trigger bit SS_LII(c). Select slave select signal to be output at the I/O pin by setting the respective Slave Select Register bits SSR[0] or SSR[1] (SPI_SSR[1:0]) to active the off-chip slave devices.
- 3. Write the related settings into the SPI CTL register
- (a). To control this SPI controller as master device in SLAVE bit (SPI_CTL[18] = 0).
- (b). Force the serial clock idle state at low in CLKP bit (SPI_CTL[11] = 0).
- (c). Select data transmitted at negative edge of serial clock in TX_NEG bit (SPI_CTL[2] = 1).

- (d). Select data received at positive edge of serial clock in RX NEG bit (SPI CTL[1] = 0).
- (e). Set the bit length of transaction as 8 in TX BIT LEN bit field (SPI CTL[7:3] = 0x08).
- (f). Set LSB transfer first in LSB bit (SPI_CTL[10] = 1).

nuvoton

- 4. If this SPI master attempts to transmit (write) one byte data to the off-chip slave device, write the byte data that will be transmitted into the SPI TX0 register.
- 5. If this SPI master just only attempts to receive (read) one byte data from the off-chip slave device and does not care what data will be transmitted, the software does not need to update the SPI_TX0 register.
- 6. Enable the GO BUSY bit (SPI CTL[0] = 1) to start the data transfer at the SPI interface.
- 7. Waiting for SPI interrupt (if the Interrupt Enable INTEN bit(SPI CTL[17]) is set) or just polling the GO BUSY bit till it be cleared to 0 by hardware automatically.
- 8. Read out the received one byte data from RDATA0 (SPI_RX0[7:0]) register.
- 9. Go to 4) to continue another data transfer or set SSR[0] or SSR[1] to 0 to inactivate the off-chip slave devices.

Example 2, SPI controller is set as a slave device that is controlled by an off-chip master device, and supposes the off-chip master device to access the on-chip SPI slave controller through the SPI interface with the following specifications:

- Data bit is received on positive edge of serial clock
- Data bit is transmitted on negative edge of serial clock
- Data bit is transferred from LSB first
- SPICLK is idle at high state
- Only one byte of data to be transmitted/received in a transfer
- Slave select signal is high level trigger

Basically, the specification of the connected off-chip master device should be referred in details before the following steps

- 1. Select high level and level trigger for the input of slave select signal in the Slave Select Active Level bit SS LVL (SPI SSR[2] = 1) and the Slave Select Level Trigger bit SS LTRIG (SPI SSR[4] = 1).
- 2. Write the related settings into the SPI CTL register to control this SPI slave actions. Set this SPI controller as slave device in SLAVE bit (SPI_CTL[18] = 1). Select the serial clock idle state at high in CLKP bit (SPI CTL[11] = 1). Select data transmitted at negative edge of serial clock in TX NEG bit (SPI_CTL[2] = 1), Select data received at positive edge of serial clock in RX_NEG bit (SPI_CTL[1] = 0). Set the bit length of transaction as 8 bits in TX_BIT_LEN bit field (SPI_CTL[7:3] = 0x08). Set LSB transfer first in LSB bit (SPI CTL[10] = 1), and don't care the SP CYCLE bit field (SPI_CTL[15:12]) due to not burst mode in this case.
- 3. If this SPI slave attempts to transmit (be read) one byte data to the off-chip master device, write the byte data that will be transmitted into the SPI TX0 register.
- 4. If this SPI slave just only attempts to receive (be written) one byte data from the off-chip master device and does not care what data will be transmitted, the software does not need to update the SPI TX0 register.
- 5. Enable the GO BUSY bit (SPI CTL[0] = 1) to wait for the slave select trigger input and serial clock input from the off-chip master device to start the data transfer at the SPI interface.
- 6. Waiting for SPI interrupt (if the Interrupt Enable INTEN bit is set) or just polling the GO BUSY bit till it be cleared to 0 by hardware automatically

7. Read out the received one byte data from (SPI_RX0[7:0])

nuvoTon

8. Go to 3) to continue another data transfer or stop data transfer.

6.17.6 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write, C: Write 1 Clear

Register	Offset	R/W	Description	Reset Value			
	SPI Base Address: SPIx_BA = 0x4003_0000 + 0x100000*x x=0,1						
SPI_CTL	SPIx_BA+0x00	R/W	SPI Control Register	0x0000_0004			
SPI_STATUS	SPIx_BA+0x04	R/W	SPI Status Register	0x0000_0005			
SPI_CLKDIV	SPIx_BA+0x08	R/W	SPI Clock Divider Register	0x0000_0000			
SPI_SSR	SPIx_BA+0x0C	R/W	SPI Slave Select Register	0x0000_0000			
SPI_RX0	SPIx_BA+0x10	R	SPI Receive Data FIFO Register 0	0x0000_0000			
SPI_RX1	SPIx_BA+0x14	R	SPI Receive Data FIFO Register 1	0x0000_0000			
SPI_TX0	SPIx_BA+0x20	W	SPI Transmit Data FIFO Register 0	0x0000_0000			
SPI_TX1	SPIx_BA+0x24	W	SPI Transmit Data FIFO Register 1	0x0000_0000			
SPI_VARCLK	SPIx_BA+0x34	R/W	SPI Variable Clock Pattern Flag Register	0x007F_FF87			
SPI_DMA	SPIx_BA+0x38	R/W	SPI DMA Control Register	0x0000_0000			
SPI_FFCTL	SPIx_BA+0x3C	R/W	SPI FIFO Control Register	0x0000_0000			
SPI_INTERNA L	SPIx_BA+0x50	R/W	SPI INTERNAL Register	0x0000_0000			

Note: In the following register description, the "x" indicates 0~1 for each SPI module. For example, SPIx_BA includes the sPI0_BAand SPI1_BA.

6.17.7 Register Description

nuvoTon

SPI Control Register (SPI_CTL)

Register	Offset	R/W	Description	Reset Value
SPI_CTL	SPIx_BA+0x00	R/W	SPI Control Register	0x0000_0004

31	30	29	28	27	26	25	24
WKEUP_EN	Reserved	DUAL_IO_EN	DUAL_IO_DIR	Reserved		Reserved	
23	22	21	20	19	18	17	16
VARCLK_EN	тwов	FIFOM	Reserved	REORDER	SLAVE	INTEN	Reserved
15	14	13	12	11	10	9	8
	SP_CYCLE				LSB	Res	erved
7	6	5	4	3	2	1	0
	TX_BIT_LEN					RX_NEG	GO_BUSY

Bits	Description	Description					
		Wake-up Enable Control					
		0 = Wake-up function Disabled.					
[31]	WKEUP_EN	1 = Wake-up function Enabled.					
		Note: When the system enters Power-down mode, the system can be wake-up from the SPI controller when this bit is enabled and if there is any toggle in the SPICLK port. After the system wake-up, this bit must be cleared by user to disable the wake-up requirement.					
[30]	Reserved	Reserved.					
		Dual IO Mode Enable Control					
[29]	DUAL_IO_EN	0 = Dual I/O Mode function Disabled.					
[29]	DUAL_IO_EN	1 = Dual I/O Mode function Enabled.					
		Refer to Dual IO Mode section.					
		Dual IO Mode Direction					
[28]	DUAL IO DIR	0 = Date read in the Dual I/O Mode function.					
[20]	DOAL_IO_DIIK	1 = Data write in the Dual I/O Mode function					
		Refer to Dual IO Mode section.					
[27:24]	Reserved	Reserved.					
		Variable Clock Enable Control					
		0 = The serial clock output frequency is fixed and only decided by the value of DIVIDER1.					
[23]	VARCLK_EN	1 = The serial clock output frequency is variable. The output frequency is decided by the value of VARCLK (SPI_VARCLK), DIVIDER1, and DIVIDER2.					
		.Refer to Variable Clock Function section.					
		2-bit Transfer Mode Active					
[22]	тwов	0 = 2-bit transfer mode Disabled.					
[حح]	IVVOB	1 = 2-bit transfer mode Enabled.					
		Refer to Two Bit Transfer Mode section					

		FIFTON A F ALL O A A
		FIFO Mode Enable Control
[21]	FIFOM	0 = FIFO mode Disabled (in Normal mode).
		1 = FIFO mode Enabled.
		Refer to FIFO Mode section.
	REORDER	Byte Reorder Function Enable Control
		0 = Disable byte reorder function.
		1 = Enable byte reorder function and insert a byte suspend interval among each byte.
[19]		The setting of TX_BIT_LEN must be configured as 00b (32 bits/ word)
		The suspend interval is defined in SP_CYCLE. Refer to Byte Reorder section.
		Note:
		Byte Suspend is only used in SPI Byte Reorder mode.
[18]	SLAVE	Slave Mode
		0 = SPI controller set as Master mode.
		1 = SPI controller set as Slave mode.
		Refer to Slave Selection section
	INTEN	Interrupt Enable Control
[17]		0 = SPI Interrupt Disabled.
		1 = SPI Interrupt Enabled.
[16]	Reserved	Reserved.
	SP_CYCLE	Suspend Interval (Master Only)
		These four bits provide configurable suspend interval between two successive transmit/receive transaction in a transfer. The suspend interval is from the last falling
		clock edge of the current transaction to the first rising clock edge of the successive transaction if CLKP = "0". If CLKP = "1", the interval is from the rising clock edge to the falling clock edge.
		The default value is 0x3. The desired suspend interval is obtained according to the following equation:)(SP_]YCLE[3]0) + 0.5) * period of SPICLK
[15:12]		Ex:
[]		SP_CYCLE = 0x0 0.5 SPICLK clock cycle.
		SP_CYCLE = 0x1 1.5 SPICLK clock cycle.
		,
		SP_CYCLE = 0xE 14.5 SPICLK clock cycle.
		SP_CYCLE = 0xF 15.5 SPICLK clock cycle.
		If the Variable Clock function is enabled, the minimum period of suspend interval (the transmit data in FIFO buffer is not empty) between the successive transaction is (6.5 + SP_CYCLE) * SPICLK clock cycle.
		Clock Polarity
[4.4]	CLKP	0 = The default level of SCLK is low.
[11]		1 = The default level of SCLK is high.
		Refer to Clock Parity section.
		Send LSB First
		0 = The MSB, which bit of transmit/receive register depends on the setting of
1		TX_BITLEN, is transmitted/received first.
[10]	LSB	1 = The LSB, bit 0 of the SPI_TX0/1, is sent first to the the SPI data output pin, and the first bit received from the SPI data input pin will be put in the LSB position of the SPI_RX register (SPI_RX0/1).

[9:8]		Reserved.
		Transmit Bit Length
		This field specifies how many bits can be transmitted / received in one transaction. The minimum bit length is 8 bits and can be up to 32 bits.
		01000 = 8 bits are transmitted in one transaction.
[7:3]	TX_BIT_LEN	01001 = 9 bits are transmitted in one transaction.
		01010 = 10 bits are transmitted in one tran.
		11111 = 31 bits are transmitted in one transaction.
		00000 = 32 bits are transmitted in one transaction.
		Transmit At Negative Edge
	TX_NEG	0 = The transmitted data output is changed on the rising edge of SPI_SCLK.
[2]		1 = The transmitted data output is changed on the falling edge of SPI_SCLK.
		Refer to Edge section.
		Receive At Negative Edge
	RX_NEG	0 = The received data is latched on the rising edge of SPI_SCLK.
[1]		1 = The received data is latched on the falling edge of SPI_SCLK.
		Refer to Edge section.
		SPI Transfer Control Bit and Busy Status
		0 = Writing this bit "0" will stop data transfer if SPI is transferring.
		1 = In Master mode, writing "1" to this bit will start the SPI data transfer; In Slave mode, writing '1' to this bit indicates that the salve is ready to communicate with a master.
		If the FIFO mode is disabled, during the data transfer, this bit keeps the value of '1'. As the transfer is finished, this bit will be cleared automatically. Software can read this bit to check if the SPI is in busy status.
[0]	GO_BUSY	In FIFO mode, this bit will be controlled by hardware. Software should not modify this bit. In slave mode, this bit always returns 1 when software reads this register. In master mode, this bit reflects the busy or idle status of SPI.
		Note:
		1.When FIFO mode is disabled, all configurations should be set before writing "1" to the GO_BUSY bit in the SPI_CTL register.
		2. When FIFO bit is disabled and the software uses TX or RX PDMA function to transfer data, this bit will be cleared after the PDMA controller finishes the data transfer.

SPI Status Register (SPI_STATUS)

Register	Offset	R/W	Description	Reset Value
SPI_STATUS	SPIx_BA+0x04	R/W	SPI Status Register	0x0000_0005

31	30	29	28	27	26	25	24	
Res				erved				
23	22	21	20	19	18	17	16	
TX_FIFO_CNT				RX_FIFO_CNT				
15	14	13	12	11	10	9	8	
	Reserved		TIME_OUT_STS	Reserved	TXINT_STS	RX_OVER_RUN	RXINT_STS	
7	6	5	4	3	2	1	0	
INTSTS	SLV_START_I NTSTS	Reserved	LTRIG_FLAG	TX_FULL	TX_EMPTY	RX_FULL	RX_EMPTY	

Bits	Description				
[31:24]	Reserved	Reserved.			
[23:20]	TX_FIFO_CNT	Data counts in TX FIFO (Read Only)			
[19:16]	RX_FIFO_CNT	Data counts in RX FIFO (Read Only)			
[15:13]	Reserved	Reserved.			
[12]	TIME_OUT_STS	TIMEOUT Interrupt Flag 0 = There is not timeout event on the received buffer. 1 = Time out event active in RX FIFO is not empty. Refer to Time Out section. Note: This bit will be cleared by writing 1 to it.			
[11]	Reserved	Reserved.			
[10]	TXINT_STS	TX FIFO Threshold Interrupt Status (Read Only) 0 = TX valid data counts bigger than TXTHRESHOLD (SPI_FFCTL[31:28]. 1 = TX valid data counts small or equal than TXTHRESHOLD.			
[9]	RX_OVER_RUN	RX FIFO Over Run Status 0 = No FIFO is over run. 1 = Receive FIFO over run. Note 1: If SPI receives data when RX FIFO is full, this bit will set to 1, and the received data will dropped. Note 2: This bit will be cleared by writing 1 to it.			
[8]	RXINT_STS	RX FIFO Threshold Interrupt Status (Read Only) 0 = RX valid data counts small or equal than RXTHRESHOLD (SPI_FFCTL[27:24]). 1 = RX valid data counts bigger than RXTHRESHOLD. Note: If RXINT_EN(SPI_FFCTL[2]) = 1 and RX_INTSTS = 1, SPI will generate interrupt.			
[7]	INTSTS	Interrupt Status			

1 = Transfer is done. The interrupt is requested when the INTEN(SPI_CTL[17]) benabled. Note: This bit is read only, but can be cleared by writing "1" to this bit. Slave Start Interrupt Status It is used to dedicate that the transfer has started in Slave mode with no slave sel 0 = Slave started transfer no active. 1 = Transfer has started in Slave mode with no slave select. It is auto clear by tradone or writing one clear. Level Trigger Accomplish Flag (INTERNAL ONLY) In Slave mode, this bit indicates whether the received bit number meets the requior not after the current transaction done.	llect. Insfer
SLV_START_INT STS Slave Start Interrupt Status It is used to dedicate that the transfer has started in Slave mode with no slave sel 0 = Slave started transfer no active. 1 = Transfer has started in Slave mode with no slave select. It is auto clear by tradone or writing one clear. Level Trigger Accomplish Flag (INTERNAL ONLY) In Slave mode, this bit indicates whether the received bit number meets the requi	nsfer
[6] SLV_START_INT STS It is used to dedicate that the transfer has started in Slave mode with no slave sellong a slave started transfer no active. 1 = Transfer has started in Slave mode with no slave select. It is auto clear by transfer has started in Slave mode with no slave select. It is auto clear by transfer has started in Slave mode with no slave select. It is auto clear by transfer has started in Slave mode with no slave select. It is auto clear by transfer has started in Slave mode with no slave select. It is auto clear by transfer has started in Slave mode with no slave select. It is auto clear by transfer has started in Slave mode with no slave select. It is auto clear by transfer has started in Slave mode with no slave select. It is auto clear by transfer has started in Slave mode with no slave select. It is auto clear by transfer has started in Slave mode with no slave select. It is auto clear by transfer has started in Slave mode with no slave select. It is auto clear by transfer has started in Slave mode with no slave select. It is auto clear by transfer has started in Slave mode with no slave select. It is auto clear by transfer has started in Slave mode with no slave select. It is auto clear by transfer has started in Slave mode with no slave select. It is auto clear by transfer has started in Slave mode with no slave select.	nsfer
[6] SLV_START_INT STS 0 = Slave started transfer no active. 1 = Transfer has started in Slave mode with no slave select. It is auto clear by tra done or writing one clear. Level Trigger Accomplish Flag (INTERNAL ONLY) In Slave mode, this bit indicates whether the received bit number meets the requi	nsfer
0 = Slave started transfer no active. 1 = Transfer has started in Slave mode with no slave select. It is auto clear by tra done or writing one clear. Level Trigger Accomplish Flag (INTERNAL ONLY) In Slave mode, this bit indicates whether the received bit number meets the requi	
done or writing one clear. Level Trigger Accomplish Flag (INTERNAL ONLY) In Slave mode, this bit indicates whether the received bit number meets the requi	
In Slave mode, this bit indicates whether the received bit number meets the requi	romont
	romont
	rement
0 = The transferred bit length of one transaction does not meet the specified requ	uirement.
[4] LTRIG_FLAG 1 = The transferred bit length meets the specified requirement which defined in TX_BIT_LEN.	
Note: This bit is READ only. As the software sets the GO_BUSY bit to 1, the LTRIG_FLAG will be cleared to 0 after 4 SPI engine clock periods plus 1 system period. In FIFO mode, this bit is unmeaning.	clock
Transmitted FIFO_FULL Status	
[3] TX_FULL 0 = Transmitted data FIFO is not full in the FIFO mode.	
1 = Transmitted data FIFO is full in the FIFO mode.	
Transmitted FIFO_EMPTY Status	
[2] TX_EMPTY 0 = Transmitted data FIFO is not empty in the FIFO mode.	
1 =Transmitted data FIFO is empty in the FIFO mode.	
Received FIFO_FULL Status	
[1] RX_FULL 0 = Received data FIFO is not full in FIFO mode.	
1 = Received data FIFO is full in the FIFO mode.	
Received FIFO_EMPTY Status	
[0] RX_EMPTY 0 = Received data FIFO is not empty in the FIFO mode.	
1 = Received data FIFO is empty in the FIFO mode.	

SPI Serial Clock Divider Register (SPI_CLKDIV)

Register	Register Offset		Description	Reset Value
SPI_CLKDIV	SPI_CLKDIV SPIx_BA+0x08		SPI Clock Divider Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
	DIVIDER2						
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	DIVIDER1						

Bits	Description			
[31:24]	Reserved	Reserved.		
[23:16]	DIVIDER2	Clock Divider 2 The value is the 2 nd frequency divider of the PCLK to generate the serial clock of SPI_SCLK. The desired frequency is obtained according to the following equation: $f_{sclk} = \frac{f_{eclk}}{(DIVIDER2+1)*2}$		
[15:8]	Reserved Reserved.			
[7:0]	DIVIDER1	Clock Divider 1 The value is the 1th frequency divider of the PCLK to generate the serial clock of SPI_SCLK. The desired frequency is obtained according to the following equation: $f_{sclk} = \frac{f_{eclk}}{(DIVIDER1+1)}$ Where f_{eclk} is the SPI peripheral clock source. It is defined in the CLK_SEL2[21:20] in Clock control section (CLK_BA + 0x18).		

SPI Slave Select Register (SPI_SSR)

Register	gister Offset		Description	Reset Value
SPI_SSR	SPIx_BA+0x0C	R/W	SPI Slave Select Register	0x0000_0000

31	30	29	28	27	26	25	24
Reserved							
23	22	21	20	19	18	17	16
	Reserved						SS_INT_OPT
15	14	13	12	11	10	9	8
	Reserved					SSTA_INTEN	SLV_ABORT
7	6	5	4	3	2	1	0
Rese	Reserved NOSLVSEL SS_LTRIG AUTOSS SS_LVL SS					SR	

Bits	Description	
[31:10]	Reserved	Reserved.
[16]	SS_INT_OPT	Slave Select Interrupt Option It is used to enable the interrupt when the transfer has done in slave mode. 0 = No any interrupt, even there is slave select inactive event. 1 = There is interrupt event when the slave select becomes inactive from active condition. It is used to inform the user to know that the transaction has finished and the slave select into the inactive state.
[9]	SSTA_INTEN	Slave Start Interrupt Enable Control 0 = Transfer start interrupt Disabled in no slave select mode. 1 = Transaction start interrupt Enabled in no slave select mode. It is cleared when the current transfer done or the SLV_START_INTSTS bit cleared (write 1 clear). Refer to No Slave Select Mode.
[8]	SLV_ABORT	Abort in Slave Mode with No Slave Selected 0 = No force the slave abort. 1 = Force the current transfer done in no slave select mode. Refer to No Slave Select Mode. Note: It is auto cleared to "0" by hardware when the abort event is active.
[5]	NOSLVSEL	No Slave Selected in Slave Mode This is used to ignore the slave select signal in Slave mode. The SPI controller can work on 3 wire interface including SPICLK, SPI_MISO, and SPI_MOSI when it is set as a slave device. 0 = The controller is 4-wire bi-direction interface. 1 = The controller is 3-wire bi-direction interface in Slave mode. When this bit is set as 1, the controller start to transmit/receive data after the GO_BUSY bit active and the serial clock input. Refer to No Slave Select Mode. Note: In no slave select signal mode, the SS_LTRIG (SPI_SSR[4]) shall be set as "1".
[4]	SS_LTRIG	Slave Select Level Trigger

		0 = The input slave select signal is edge-trigger.
		1 = The slave select signal will be level-trigger. It depends on SS_LVL to decide the signal is active low or active high.
		Automatic Slave Selection (Master Only)
		0 = If this bit is set as "0", slave select signals are asserted and de-asserted by setting and clearing related bits in SSR[1:0] register.
[3]	AUTOSS	1 = If this bit is set as "1", SPISS[1:0] signals are generated automatically. It means that device/slave select signal, which is set in SSR[1:0] register is asserted by the SPI controller when transmit/receive is started, and is de-asserted after each transaction is done.
		Slave Select Active Level
101	00 11/1	It defines the active level of device/slave select signal (SPISS[1:0]).
[2]	SS_LVL	0 = The SPI_SS slave select signal is active Low.
		1 = The SPI_SS slave select signal is active High.
		Slave Select Active Register (Master Only)
		If AUTOSS bit (SPI_SSR[3]) is cleared, writing "1" to SSR[0] bit sets the SPISS[0] line to an active state and writing "0" sets the line back to inactive state.(the same as SSR[1] for SPISS[1])
		AUTOSS = 0.
		00 = Both SPISS[1] and SPISS[0] are inactive.
		01 = SPISS[1] is inactive, SPISS[0] is active.
		10 = SPISS[1] is active, SPISS[0] is inactive.
		11 = Bothe SPISS[1] and SPISS[0] are active
[1:0]	SSR	If AUTOSS bit is set, writing "1" to any bit location of this field will select appropriate SPISS[1:0] line to be automatically driven to active state for the duration of the transaction, and will be driven to inactive state for the rest of the time. (The active level of SPISS[1:0] is specified in SS_LVL).
		AUTOSS =1.
		00 = Both SPISS[1] and SPISS[0] are inactive.
		01 = SPISS[1] is inactive, SPISS[0] is active on the duration of transaction.
		10 = SPISS[1] is active on the duration of transaction, SPISS[0] is inactive.
		11 = Bothe SPISS[1] and SPISS[0] are active on the duration of transaction.
		Note:
		 This interface can only drive one device/slave at a given time. Therefore, the slaves select of the selected device must be set to its active level before starting any read or write transfer.
		2. SPISS[0] is also defined as device/slave select input in Slave mode. And that the slave select input must be driven by edge active trigger which level depend on the SS_LVL setting, otherwise the SPI slave core will go into dead path until the edge active triggers again or reset the SPI core by software.

SPI Receive FIFO Register (SPI_RX)

Register	Offset	R/W	Description	Reset Value
SPI_RX0	SPIx_BA+0x10	R	SPI Receive Data FIFO Register 0	0x0000_0000
SPI_RX1	SPIx_BA+0x14	R	SPI Receive Data FIFO Register 1	0x0000_0000

31	30	29	28	27	26	25	24
			RXD	ATA			
23	22	21	20	19	18	17	16
			RXD	ATA			
15	14	13	12	11	10	9	8
			RXD	ATA			
7	6	5	4	3	2	1	0
	RXDATA						

Bits	Description	Description			
		Receive Data FIFO Bits(Read Only)			
		The received data can be read on it. If the FIFO bit is set as 1, the user also checks the RX_EMPTY, SPI_STATUS[0], to check if there is any more received data or not.			
[31:0]	RXDATA	Note: 1. The SPI_RX1 is used only in TWOB bit (SPI_CTL[22]) is set 1. The first channel's received data shall be read from SPI_RX0 and the second channel's received data shall be read from SPI_RX1 in two-bit mode. SPI_RX0 shall be read first in TWOB mode.			
		In FIFO and two-bit mode, the first read back data in SPI_RX0 is the first channel data and the second read back data in SPI_RX0 is the second channel data.			
		2. These registers are read only.			

SPI Transmit Data FIFO Register (SPI_TX)

Register	Offset	R/W	Description	Reset Value
SPI_TX0	SPIx_BA+0x20	W	SPI Transmit Data FIFO Register 0	0x0000_0000
SPI_TX1	SPIx_BA+0x24	W	SPI Transmit Data FIFO Register 1	0x0000_0000

31	30	29	28	27	26	25	24
			TD	ATA			
23	22	21	20	19	18	17	16
			TD	ATA			
15	14	13	12	11	10	9	8
	TDATA						
7	6	5	4	3	2	1	0
	TDATA						

Bits	Description	Description					
		Transmit Data FIFO Bits(Write Only)					
		The Data Transmit Registers hold the data to be transmitted in the next transfer. The number of valid bits depends on the setting of transmit bit length field of the SPI_CTL register.					
		For example, if TX_BIT_LEN is set to 0x8, the bit SPI_TX[7:0] will be transmitted in next transfer. If TX_BIT_LEN is set to 0x0, the SPI controller will perform a 32-bit transfer.					
[31:0]	TDATA	Note: 1. The SPI_TX1 is used only in TWOB bit (SPI_CTL[22]) is set 1. The first channel's transmitted data shall be written into SPI_TX0 and the second channel's transmitted data shall be written into SPI_TX1 in two-bit mode. SPI_TX0 shall be written first in TWOB mode.					
		In FIFO and two-bit mode, the first written into data in SPI_TX0 is the first channel's transmitted data and the second written data in SPI_RX0 is the second channel's transmitted data.					
		When the SPI controller is configured as a slave device and the FIFO mode is disabled, if the SPI controller attempts to transmit data to a master, the software must update the transmit data register before setting the GO_BUSY bit to 1.					

SPI Variable Clock Register (SPI_VARCLK)

Register	Offset	R/W	Description	Reset Value
SPI_VARCLK	SPIx_BA+0x34	R/W	SPI Variable Clock Pattern Flag Register	0x007F_FF87

31	30	29	28	27	26	25	24
	VARCLK						
23	22	21	20	19	18	17	16
	VARCLK						
15	14	13	12	11	10	9	8
			VAR	CLK			
7	6	5	4	3	2	1	0
	VARCLK						

Bits	Description			
[31:0] VARCLK		Variable Clock Pattern Flag The value in this field is the frequency patterns of the SPICLK.		
		Refer to Variable Clock Function section for detail information. Note: It is used for CLKP = 0 only.		

SPI DMA Control Register (SPI_DMA)

Register	Offset	R/W	Description	Reset Value
SPI_DMA	SPIx_BA+0x38	R/W	SPI DMA Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved				PDMA_RST	RX_DMA_EN	TX_DMA_EN

Bits	Description	
[31:3]	Reserved	Reserved.
[2]	PDMA_RST	PDMA Reset It is used to reset the SPI PDMA function into default state. 0 = After reset PDMA function or in normal operation. 1 = Reset PDMA function. Note: it is auto cleared to "0" after the reset function has done.
[1]	RX_DMA_EN	Receiving PDMA Enable Control 0 = Receiver PDMA function Disabled. 1 = Receiver PDMA function Enabled. Refer to DMA section for more detail information. Note: Hardware will clear this bit to 0 automatically after PDMA transfer done. In Slave mode and the FIFO bit is disabled, if the receive PDMA is enabled but the transmit PDMA is disabled, the minimal suspend interval between two successive transactions input is need to be larger than 9 SPI peripheral clock + 4 APB clock for edge mode and 9.5 SPI peripheral clock + 4 APB clock.
[0]	TX_DMA_EN	Transmit PDMA Enable Control 0 = Transmit PDMA function Disabled. 1 = Transmit PDMA function Enabled. Refer to DMA section for more detail information. SPI_CTLNote: 1. Two transaction need minimal 18 APB clock + 8 SPI peripheral clocks suspend interval in master mode for edge mode and 18 APB clock + 9.5 SPI peripheral clocks for level mode. 2. If the 2-bit function is enabled, the requirement timing shall append 18 APB clock based on the above clock period. Hardware will clear this bit to 0 automatically after PDMA transfer done.

SPI FIFO Control Register (SPI_FFCTL)

Register	Offset		Description	Reset Value
SPI_FFCTL	SPIx_BA+0x3C	R/W	SPI FIFO Control Register	0x0000_0000

31	30	29	28	27	26	25	24
	TX_THRESHOLD				RX_THRESHOLD		
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
			Rese	erved			
7	7 6 5 4 3 2 1 0						
TIMEOUT_EN	Reserved		RXOVE_INTEN	TXINT_EN	RX_INTEN	TX_CLR	RX_CLR

Bits	Description					
[31]	Reserved	Reserved.				
[30:28]	TX_THRESHOLD	Transmit FIFO Threshold If TX valid data counts small or equal than TXTHRESHOLD, TXINT_STS (SPI_STATUS[10]) will set to 1.				
[26:24]	RX_THRESHOLD	Received FIFO Threshold If RX valid data counts large than RXTHRESHOLD, RXINT_STS (SPI_STATUS[8]) will set to 1,.				
[23:8]	Reserved	Reserved.				
[7]	TIMEOUT_EN	RX Read Time Out Function Enable Control 0 = RX read Timeout function Disabled. 1 = RX read Timeout function Enable.				
[6:5]	Reserved	Reserved.				
[4]	RXOVINT_EN	RX FIFO Over Run Interrupt Enable Control 0 = RX FIFO over run interrupt Disabled. 1 = RX FIFO over run interrupt Enable.				
[3]	TXINT_EN	TX Threshold Interrupt Enable Control 0 = TX threshold interrupt Disabled. 1 = TX threshold interrupt Enable.				
[2]	RXINT_EN	RX Threshold Interrupt Enable Control 0 = Rx threshold interrupt Disabled. 1 = RX threshold interrupt Enable.				
[1]	TX_CLR	Transmitting FIFO Counter Clear 0 = No clear the transmitted FIFO. 1 = Clear the transmitted FIFO. Note: This bit is used to clear the transmit counter in FIFO Mode. This bit can be written "1" to clear the transmitting counter and this bit will be cleared to "0" automatically after				

		clearing transmitting counter. After the clear operation, the flag of TX_EMPTY in SPI_STATUS[2] will be set to "1".
		Receiving FIFO Counter Clear
		0 = No clear the received FIFO.
[0]	DV CLD	1 = Clear the received FIFO.
[0]		Note: This bit is used to clear the receiver counter in FIFO Mode. This bit can be written "1" to clear the receiver counter and this bit will be cleared to "0" automatically after clearing receiving counter. After the clear operation, the flag of RX_EMPTY in SPI_STATUS[0] will be set to "1".

6.18 LCD Display Driver

6.18.1 Overview

nuvoton

The LCD driver can directly drive a LCD glass by creating the ac segment and common voltage signals automatically. It can support static, 1/2 duty, 1/3 duty, 1/4 duty, 1/5 duty and 1/6 duty LCD glass with up to 3 segments with 6 COM (segment 0 is used as LCD COM4 and segment 1 is used as LCD COM5) or 36 segments with 4 COM (LCD COM0 ~ LCD COM3).

A built-in charge pump function can be enabled to provide the LCD glass with higher voltage than the system voltage. The LCD driver would generate voltage higher than the threshold voltage in older to darken a segment and a voltage lower than threshold to make a segment clear. However, the LCD display segment will degrade if the applied voltage has a DC-component. To avoid this, the generated waveform by LCD driver are arranged such that average voltage of each segment is 0 and the RMS(root-mean-square) voltage applied on a LCD segment lower than the segment threshold making LCD clear and RMS voltage higher than the segment threshold making LCD dark.

6.18.2 Features

- Supports Segment/Com:
 - 108 dots (6x18) or 80 dots (4x20) in LQFP48 package
 - 108 dots (6x18) or 80 dots (4x20) or 132 dots (6x 22) or 96 dots (4x24) or 180 dots (6x30) or 128 dots (4x32) in LQFP64 package
 - 204 dots (6x34) or 144 dots (4x36) in LQFP100 package
- Common 0-5 multiplexing functions with GPI/O pins
- Segment 0-35 multiplexing function with GPI/O pins
- Supports Static, 1/2 bias and 1/3 bias voltage
- Six display modes: Static, 1/2 duty, 1/3 duty, 1/4 duty, 1/5 duty or 1/6 duty Selectable LCD frequency by frequency divider
- Configurable frame frequency
- Internal Charge pump, adjustable contrast adjustment
- Embedded LCD bias reference ladder (R-Type, 200/300/400 kΩ resisters)
- Configurable Charge pump frequency
- Blinking capability
- Supports R/C/Ext_C-type method
- LCD frame interrupt

6.18.3 Block Diagram

nuvoTon

Figure 6-104 LCD Driver Block Diagram

6.18.4 Functional Description

The LCD driver consists of display memory register, segment output control, common output, timing generator, charge pump and analog voltage multiplexer blocks. The display memory register stores LCD segment darkened or cleared data. The data bit that is stored in display memory register with "1" makes the LCD segment be darkened and the data bit that is stored in display memory register with "0" makes the LCD segment be cleared. The display memory register is organized with LCD_MEM_0 ~ LCD MEM 8 registers. Programming the data bits in LCD MEM 0 ~ LCD MEM 8 registers can make the corresponding LCD segment be darkened or cleared. The data stored in display memory register is multiplexed to segment output block sequentially with clock generated by timing generator block. The segment output block is in charge of producing SEG 0 ~ SEG 35 driving line and the common output block is in charge of producing COM0 ~ COM3 driving line. Charge pump block provides boosting voltage function for LCD glass. The charge pump input voltage range is from 1.8V to 3.6V. The multilevels bias voltage can be programmed by CPUMP_VOL_SET (LCD_DISPCTL[10:8]) and the multilevels bias voltage from 2.6V to 3.3 V can be generated by charge pump block. The analog voltage multiplexer can generates static, 1/2 bias and 1/3 bias voltage output by setting BIAS SEL (LCD_DISPCTL[2:1]). User can program the BIAS_SEL bits to generate different bias voltage for COM and SEG driving line to drive LCD glass. Each common signal is selected sequentially according to the specified number of time slices of its frame period. For example, in 1/3 duty, COM0 to COM2 will output waveforms, COM3 will be tied to low. Whereas for 1/6 duty, COM0 to COM5 will output waveforms. The COM signal waveform is shown in Figure 6-106.

DISPLAY Register X COM5 COM4 COM3 COM2 OCM1 COM0 COM5 COM4 COM3 COM2 OCM1 COM0 COM5 COM4 COM3 COM2 OCM1 COM0 X COM5 COM4 X SEG32 SEG32 SEG32 SEG32 SEG32 SEG32 X SEG35 SEG35 SEG35 SEG35 SEG35 X SEG34 SEG34 SEG34 SEG34 SEG34 SEG33 SEG33 SEG33 SEG33 SEG33 X LCD_MEM_8 X SEG31 SEG31 SEG31 SEG31 SEG31 X SEG28 SEG28 SEG28 SEG28 SEG28 SEG28 X SEG29 SEG29 SEG29 SEG29 SEG29 LCD_MEM_6 X SEG27 SEG27 SEG27 SEG27 SEG27 SEG26 SEG26 SEG26 SEG26 SEG26 SEG26 SEG25 SEG25 SEG25 SEG25 SEG25 SEG24 SEG24 SEG24 SEG24 SEG24 SEG24 LCD_MEM_5 X SEG23 SEG23 SEG23 SEG23 SEG23 X SEG19 SEG19 SEG19 SEG19 Х Х SEG18 SEG18 SEG18 SEG18 SEG18 SEG18 X Х SEG17 SEG17 SEG17 SEG17 SEG17 SEG17 Х X SEG16 SEG16 SEG16 SEG16 SEG16 SEG16 LCD MEM 4 X SEG12 SEG12 SEG12 SEG12 SEG12 SEG12 SEG13 SEG13 SEG13 SEG13 SEG13 SEG13 X SEG15 SEG15 SEG15 SEG15 SEG14 SEG14 SEG14 LCD_MEM_3 SEG14 SEG14 SEG14 X SEG11 SEG11 SEG11 SEG11 SEG11 SEG09 SEG09 SEG09 SEG08 SEG08 SEG08 SEG08 SEG08 SEG08 LCD MEM 2 LCD_MEM_1 X SEG07 SEG07 SEG07 SEG07 SEG07 SEG06 SEG06 SEG06 SEG06 SEG06 SEG05 SEG05 SEG05 SEG05 SEG05 SEG04 SEG04 SEG04 SEG04 SEG04 SEG04 X SEG03 SEG03 SEG03 SEG03 SEG03 CD MEM 0

6.18.4.1 LCD Display Memory MAP

nuvoTon

Figure 6-105 LCD Memory Map

6.18.4.2 Frame Counter (FC) and Blinking Display

In 6-mux configuration, COM0, COM1, COM2, COM3, COM4 and COM5 organize one frame. In 5-mux configuration, COM0, COM1, COM2, COM3 and COM4 organize one frame. In 4-mux configuration, COM0, COM1, COM2 and COM3 organize one frame. In 3-mux configuration, COM0, COM1 and COM2 organize one frame. In 2-mux configuration, COM0 and COM1 organize one frame. In static configuration, COM0 organizes one frame. The frame counter can be pre-scaled by programming prescale counter (PRESCL (LCD FCR[3:2])). The pre-scale counter can be divided by 1, 2, 4 and 8. The frame counter is counted down from FCV (LCD FCR[9:4]) to 0. FCV is the top value of frame counter. If FCEN (LCD FCR[0]) is set to 1 and FCINTEN (LCD FCR[1]) is set to 1, once frame counter is counted down to 0, the frame counter overflow interrupt is generated. At the same time, the frame counter is reloaded with FCV automatically. The LCD blinking display is controlled with frame counter overflow time. In blinking configuration, the segments are turned on and turned off alternately by frame counter overflow time. The frame counter overflowing interrupt can be also used as synchronization for filling data to LCD display memory register.

6.18.4.3 LCD Display Power Down

If the power-down request is triggered from system manager, LCD controller will execute the frame completely to avoid the DC component. When the frame is executed completely, the LCD power down interrupt signal is generated to inform system manager the LCD controller is ready to enter power down state, if PDINT EN (LCD CTL[9]) is enabled. Otherwise, if PDINT EN (LCD CTL[9]) is disabled, the LCD power down interrupt signal is blocked and the interrupt is disabled. If the PDDSIP EN (LCD_CTL[8]) is set to 1, the LCD display is operated in Power-down mode. Otherwise, if PDDSIP_EN (LCD CTL[8]) is cleared to 0, the LCD display is off in Power-down mode.

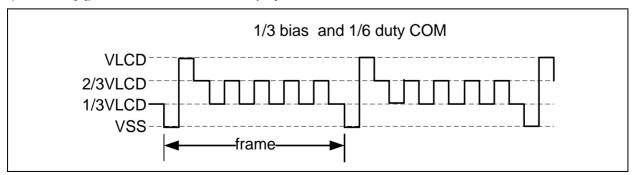


Figure 6-106 COM Signal Waveform

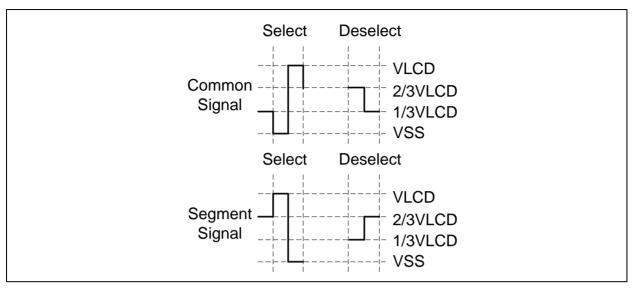


Figure 6-107 SEG Signal Waveform

Figure 6-108 COM-SEG Signal Waveform by 1/6 Duty with 1/3 Bias

6.18.4.4 LCD setting for different types

	R-Type (External Resister Ladder)	R-Type (Internal Resister Ladder)	С-Туре	Ext_C-Type
CPUMP_EN (LCD_DISPCTL[0])	0	0	1	1
BIAS_SEL (LCD_DISPCTL[2:1])	0 ~ 3	0 ~ 3	0 ~ 3	0 ~ 3
IBRL_EN (LCD_DISPCTL[4])	0	1	0	0
BV_SEL (LCD_DISPCTL[6])	1	1	0	0
CPUMP_VOL_SET (LCD_DISPCTL[10:8])	-	-	0 ~ 7	0 ~ 7
CPUMP_FREQ (LCD_DISPCTL[13:11])	-	-	0 ~ 7	0 ~ 7
Ext_C (LCD_DISPCTL[16])	0	0	0	1 ¹
Res_Sel (LCD_DISPCTL[18:17])	-	set (0 or 1 or 3)	-	-

Note: Before setting Ext_C(LCD_DISPCTL[16]), user needs to set LCD C-Type.

6.18.5 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value				
	LCD Base Address: LCD_BA = 0x400B_0000							
LCD_CTL	LCD_BA+0x00	R/W	LCD Control Register	0x0000_0000				
LCD_DISPCTL	LCD_BA+0x04	R/W	LCD Display Control Register	0x0000_0000				
LCD_MEM_0	LCD_BA+0x08	R/W	LCD SEG3 ~ SEG0 data	0x0000_0000				
LCD_MEM_1	LCD_BA+0x0C	R/W	LCD SEG7 ~ SEG4 data	0x0000_0000				
LCD_MEM_2	LCD_BA+0x10	R/W	LCD SEG11 ~ SEG8 data	0x0000_0000				
LCD_MEM_3	LCD_BA+0x14	R/W	LCD SEG15 ~ SEG12 data	0x0000_0000				
LCD_MEM_4	LCD_BA+0x18	R/W	LCD SEG19 ~ SEG16 data	0x0000_0000				
LCD_MEM_5	LCD_BA+0x1C	R/W	LCD SEG23 ~ SEG20 data	0x0000_0000				
LCD_MEM_6	LCD_BA+0x20	R/W	LCD SEG27 ~ SEG24 data	0x0000_0000				
LCD_MEM_7	LCD_BA+0x24	R/W	LCD SEG31 ~ SEG28 data	0x0000_0000				
LCD_MEM_8	LCD_BA+0x28	R/W	LCD SEG35 ~ SEG32 data	0x0000_0000				
LCD_FCR	LCD_BA+0x30	R/W	LCD frame counter control register	0x0000_0000				
LCD_FCSTS	LCD_BA+0x34	R/W	LCD frame counter status	0x0000_0000				

6.18.6 Register Description

nuvoTon

LCD Control Register (LCD_CTL)

Register	Offset	R/W	Description	Reset Value
LCD_CTL	LCD_BA+0x00	R/W	LCD Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
	Reserved									
15	14	13	12	11	10	9	8			
		Rese	erved			PDINT_EN	PDDISP_EN			
7	7 6 5 4 3 2 1									
BLINK FREQ			MUX			EN				

Bits	Description	
[31:10]	Reserved	Reserved.
[9]	PDINT_EN	Power Down Interrupt Enable Control If the power down request is triggered from system management, LCD controller will execute the frame completely to avoid the DC component. When the frame is executed completely, the LCD power down interrupt signal is generated to inform system management that LCD controller is ready to enter power down state, if PDINT_EN is set to 1. Otherwise, if PDINT_EN is set to 0, the LCD power down interrupt signal is blocked and the interrupt is disabled to send to system management. 0 = Power Down Interrupt Disabled. 1 = Power Down Interrupt Enabled.
[8]	PDDISP_EN	Power Down Display Enable Control The LCD can be programmed to be displayed or not be displayed at power down state by PDDISP_EN setting. 0 = LCD display Disabled (LCD is put out) at power down state. 1 = LCD display Enabled (LCD keeps the display) at power down state.
[7]	BLINK	LCD Blinking Enable Control 0 = Blinking Disabled. 1 = Blinking Enabled.
[6:4]	FREQ	LCD Frequency Selection 000 = LCD_CLK Divided by 32. 001 = LCD_CLK Divided by 64. 010 = LCD_CLK Divided by 96. 011 = LCD_CLK Divided by 128. 100 = LCD_CLK Divided by 192. 101 = LCD_CLK Divided by 256. 110 = LCD_CLK Divided by 384. 111 = LCD_CLK Divided by 512.

		Mux Select									
		000 = Static.	000 = Static.								
		001 = 1/2 dut	ty.								
		010 = 1/3 dut	010 = 1/3 duty.								
		011 = 1/4 dut	ty.								
		100 = 1/5 dut	ty.								
		101 = 1/6 du	ty.								
		110 = Reserv	/ed.								
		111 = Reserv	/ed.								
[3:1]	MUX	switch LCD_seg0(Note: User does not need to set PD_H_MFP bit field, but only to set the MUX bit field to switch LCD_SEG0 and LCD_SEG1 to LCD_COM4 and LCD_COM5. LCD_SEG0(LCD_COM4) and LCD_SEG1(LCD_COM5) Pins Definition for Setting MUX Bit Field								
			LQFP100	LQFP100		LQFP64		LQFP48			
		MUX	SEG0 (COM4) for PD.6	SEG1 (COM5) for PD.5	SEG0 (COM4) for PD.6	SEG1 (COM5) for PD.5	SEG0 (COM4) for PC.15	SEG1 (COM5) for PC.14			
		000, 001 010, 011	LCD_SEG 0	LCD_SEG 1	LCD_SEG 0	LCD_SEG 1	LCD_SEG 0	LCD_SEG 1			
		100	LCD_COM 4	LCD_SEG 1	LCD_COM 4	LCD_SEG 1	LCD_COM 4	LCD_SEG 1			
		101	LCD_COM 4	LCD_COM 5	LCD_COM 4	LCD_COM 5	LCD_COM 4	LCD_COM 5			
[0]	EN		Control troller operation troller operation								

LCD Display Control Register (LCD_DISPCTL)

Register	Offset	R/W	Description	Reset Value
LCD_DISPCT L	LCD_BA+0x04	R/W	LCD Display Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
		Reserved			Res	Ext_C				
15	14	13	12	11	10	9	8			
Rese	erved		CPUMP_FREQ		С	PUMP_VOL_SE	Τ			
7	6	5	4	3	2	1	0			
Reserved	BV_SEL	Reserved	IBRL_EN	Reserved	BIAS	CPUMP_EN				

Bits	Description				
[31:19]	Reserved	Reserved.			
[18:17] Res_Sel		R-type Resistor Value Selection The LCD operation current will be different when we select different R-type resistor value. 00 = 200K Ohm. 01 = 300K Ohm. 10 = Reserved. 11 = 400K Ohm.			
[16]	Ext_C	Ext_C Mode Selection This mode is similar to C-type LCD mode, but the operation current is lower than C-tymode. The control register setting is same with C-type mode except this bit is set to "-0 = Disable. 1 = Enable.			
[15:14]	Reserved	Reserved.			
[13:11]	CPUMP_FREQ	Charge Pump Frequency Selection 000 = LCD_CLK. 001 = LCD_CLK/2. 010 = LCD_CLK/4. 011 = LCD_CLK/8. 100 = LCD_CLK/16. 101 = LCD_CLK/32. 110 = LCD_CLK/64. 111 = LCD_CLK/128.			
[10:8]	CPUMP_VOL_SET	Charge Pump Voltage Selection 000 = 2.7V. 001 = 2.8V. 010 = 2.9V.			

		011 = 3.0V.					
		100 = 3.1V.					
		101 = 3.2V.					
		110 = 3.3V.					
		111 = 3.4V.					
[7]	Reserved	Reserved.					
		Bias Voltage Type Selection					
		0 = C-Type bias mode. Bias voltage source from internal bias generator.					
[6]	BV_SEL	1 = R-Type bias mode. Bias voltage source from external bias generator.					
		Note: The external resistor ladder should be connected to the V1 pin, V2 pin, V3 pin and V_{SS} . The V_{LCD} pin should also be connected to V_{DD} .					
[5]	Reserved	Reserved.					
		Internal Bias Reference Ladder Enable Control					
[4]	IBRL_EN	0 = Bias reference ladder Disabled.					
		1 = Bias reference ladder Dnabled.					
[3]	Reserved	Reserved.					
		Bias Selection					
		00 = Static.					
[2:1]	BIAS_SEL	01 = 1/2 Bias.					
		10 = 1/3 Bias.					
		11 = Reserved.					
		Charge Pump Enable Control					
[0]	CPUMP_EN	0 = Disabled.					
		1 = Enabled.					

LCD MEM_x Register (LCD_MEMORY_x) (x= 0 ~ 8)

Register	Offset	R/W	Description	Reset Value
LCD_MEM_0	LCD_BA+0x08	R/W	LCD SEG3 ~ SEG0 data	0x0000_0000
LCD_MEM_1	LCD_BA+0x0C	R/W	LCD SEG7 ~ SEG4 data	0x0000_0000
LCD_MEM_2	LCD_BA+0x10	R/W	LCD SEG11 ~ SEG8 data	0x0000_0000
LCD_MEM_3	LCD_BA+0x14	R/W	LCD SEG15 ~ SEG12 data	0x0000_0000
LCD_MEM_4	LCD_BA+0x18	R/W	LCD SEG19 ~ SEG16 data	0x0000_0000
LCD_MEM_5	LCD_BA+0x1C	R/W	LCD SEG23 ~ SEG20 data	0x0000_0000
LCD_MEM_6	LCD_BA+0x20	R/W	LCD SEG27 ~ SEG24 data	0x0000_0000
LCD_MEM_7	LCD_BA+0x24	R/W	LCD SEG31 ~ SEG28 data	0x0000_0000
LCD_MEM_8	LCD_BA+0x28	R/W	LCD SEG35 ~ SEG32 data	0x0000_0000

31	30	29	28	27	26	25	24		
Reserved				SEG_	(3+4x)				
23	22	21	20	19	18	17	16		
Reserved			SEG_(2+4x)						
15	14	13	12	11	10	9	8		
Reserved				SEG_	(1+4x)				
7	6	5	4	3	2	1	0		
Reserved				SEG_	(0+4x)				

Bits	Description	Description						
[31:30]	Reserved	Reserved.						
[29:24]	SEG_(3+4x)	SEG_(3+4x) DATA for COM5~COM0 (x = 0 ~ 8). For the LCD Display Memory MAP, please refer to Figure 6-54.						
[23:22]	Reserved	Reserved.						
[21:16]	SEG_(2+4x)	SEG_(2+4x) DATA for COM5~COM0(x= 0 ~ 8). For the LCD Display Memory MAP, please refer to Figure 6-54.						
[17:15]	Reserved	Reserved.						
[14:8]	SEG_(1+4x)	SEG_(1+4x) DATA for COM5~COM0 (x= 0 ~ 8). For the LCD Display Memory MAP, please refer to Figure 6-54.						
[7:6]	Reserved	Reserved.						
[5:0]	SEG_(0+4x)	SEG_(0+4x) DATA for COM5~COM0 (x= 0 ~ 8). For the LCD Display Memory MAP, please refer to Figure 6-54.						

LCD Frame Counter Register (LCD_FCR)

Register	Offset	R/W	Description	Reset Value
LCD_FCR	LCD_BA+0x30	R/W	LCD frame counter control register	0x0000_0000

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
Reserved						FC	CV
7	6	5	4	3	2	1	0
FCV				PRE	SCL	FCINTEN	FCEN

Bits	Description	
[31:10]	Reserved	Reserved.
[9:4]	FCV	Frame Counter Top Value These 6 bits contain the top value of the Frame counter.
[3:2]	PRESCL	Frame Counter Pre-scaler Value 00 = CLKframe/1. 01 = CLKframe/2. 10 = CLKframe/4. 11 = CLKframe/8.
[1]	FCINTEN	LCD Frame Counter Interrupt Enable Control 0 = Frame counter interrupt Disabled. 1 = Frame counter interrupt Enabled.
[0]	FCEN	LCD Frame Counter Enable Control 0 = Disabled. 1 = Enabled.

LCD Frame Counter Status Register (LCD_INTSTS)

Register	Offset	R/W	Description	Reset Value
LCD_FCSTS	LCD_BA+0x34	R/W	LCD frame counter status	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved						
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved					PDSTS	FCSTS

Bits	Description	Description				
[31:2]	Reserved	Reserved.				
[1]	PDSTS	Power-down Interrupt Status 0 = Inform system manager that LCD controller is not ready to enter power-down state until this bit becomes 1 if power down is set and one frame is not executed completely. 1 = Inform system manager that LCD controller is ready to enter power-down state if power down is set and one frame is executed completely.				
[0]	FCSTS	LCD Frame Counter Status 0 = Frame counter value does not reach FCV (Frame Count TOP value). 1 = Frame counter value reaches FCV (Frame Count TOP value). If the FCINTEN is s enabled, the frame counter overflow Interrupt is generated.				

6.18.7 Application Circuit

External Resister ladder

- 1. Most commonly used for high V_{DD} voltages.
- 2. Uses inexpensive resistors to create the multilevel LCD voltages. Regardless of the number of pixels that are energized the current remains constant. The voltage at point V_{LCD} is typically tied to V_{DD} , either internally or externally
- 3 The resister values are determined by two factors.
 - a. Display quality
 - b. Power consumption

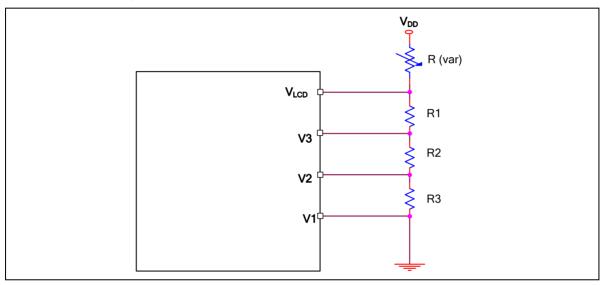


Figure 6-109 1/3 Bias (External Resistor Ladder)

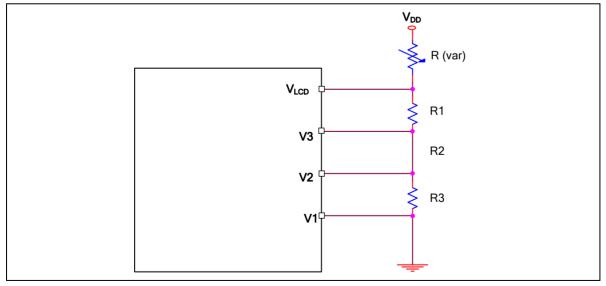


Figure 6-110 1/2 Bias (External Resistor Ladder)

Resistor ladder with capacitors

Sometimes the addition of parallel capacitors to the resistance can reduce the distortion caused by charging/discharging currents. This effect is limited since at some point a large resistor and large capacitor cause a voltage level shift which negatively impacts the display quality.

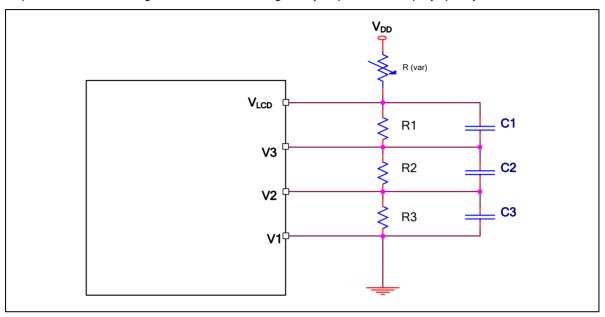


Figure 6-111 1/3 Bias (Resistor Ladder with Capacitor)

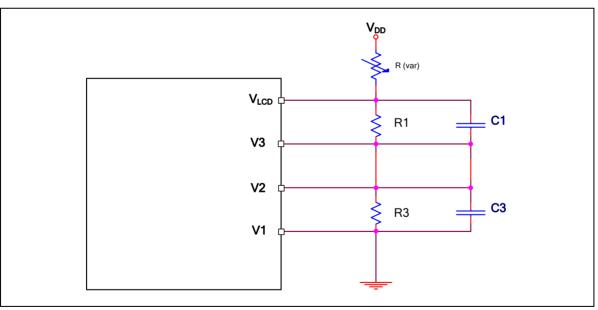


Figure 6-112 1/2 Bias (Resistor Ladder with Capacitor)

Internal R-type

nuvoTon

Nano112 series MCUs also support external R-type mode (bypass internal R) to reduce current consumption. For external R-type application, VLCD is normally connected to system VDD, or it can be connected to VDD through an external variable resistor (VR) which is used for adjusting LCD contrast.

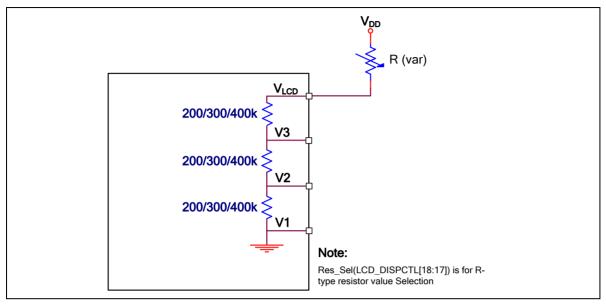


Figure 6-113 1/2 Bias (Resistor Ladder with Capacitor)

Charge Pump

- 1. Ideal for low voltage battery operation because the V_{DD} voltage can be boosted up to drive the LCD panel.
- 2. The charge pump requires a charging capacitor and filter capacitor for each of the LCD voltages.
- 3. These capacitors are typically polyester, polypropylene, or polystyrene material.
- 4. Another feature that makes the charge pump ideal for battery applications is that the current consumption is proportional to the number of pixels that are energized.

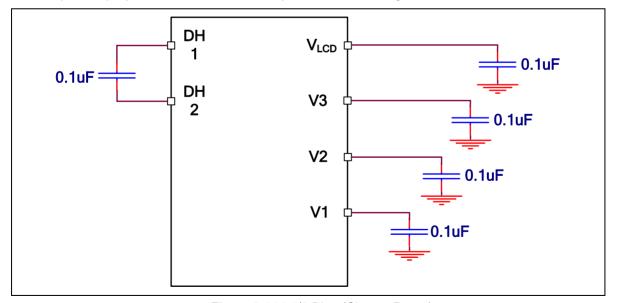


Figure 6-114 1/3 Bias (Charge Pump)

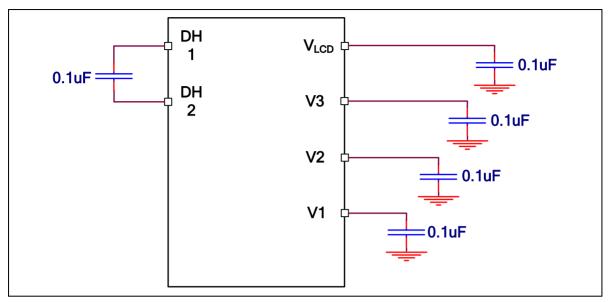


Figure 6-115 1/2 Bias (Charge Pump)

External Capacitor ladder

- 1. This mode is similar to C-type mode except the operation current is lower than C-type mode.
- 2. The major application circuit difference between C-type & Ext_C mode is that we can remove V1 capacitor in 1/3 bias application.

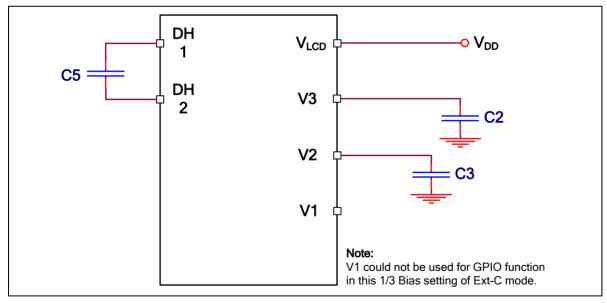


Figure 6-64 1/3 Bias (External Capacitor Ladder)

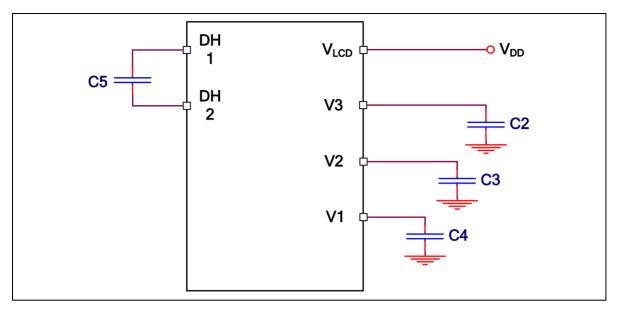


Figure 6-65 1/2 Bias (External Capacitor Ladder)

6.19 Analog to Digital Converter (ADC)

6.19.1 Overview

nuvoton

The Nano112 series contains one 12-bit successive approximation analog-to-digital converter (SAR A/D converter) with 8 external input channels and 4 internal channels. The A/D converter supports three operation modes: Single, Single-cycle Scan and Continuous Scan mode, and can be started by software, external STADC(PA.11) pin, timer event start and PWM trigger.

Note that the I/O pins used as ADC analog input pins must configure the Pin Function (PA_L_MFP) to ADC input and off digital function (GPIOA OFFD) should be turned on before ADC function is enabled.

6.19.2 Features

- Analog input voltage range: 0~V_{REF} (Max to AV_{DD})
- Selectable 12-bits, 10-bits, 8-bits and 6-bits resolution
- Supports sampling time settings for channel 0~7 individually (ADCCHSAMP0 register) and channel 14~17 share the same one sampling time setting (ADCCHSAMP1 register)
- Supports two Power-down modes:
 - Power-down mode
 - Standby mode
- Up to 8 external analog input channels (channel0 ~ channel7), and 4 internal channels (channel14~channel17) converting four voltage sources (internal reference voltage, internal temperature sensor output, AV_{DD}, and AV_{SS}).
- Maximum ADC clock frequency is 32 MHz and each conversion is 19 clocks+ sampling time depending on the input resistance (Rin).
- Three operating modes:
 - Single mode: A/D conversion is performed one time on a specified channel.
 - Single-cycle Scan mode: A/D conversion is performed one cycle on all specified channels with the sequence from the lowest numbered channel to the highest numbered channel.
 - Continuous Scan mode: A/D converter continuously performs Single-cycle scan mode until software stops A/D conversion.
- An A/D conversion can be started by:
 - Software write 1 to ADST bit
 - External pin STADC
 - PWM trigger
 - Selects one from four timer events (TMR0, TMR1, TMR2 and TMR3) that enable ADC and transfer AD results by PDMA
- Conversion results held in data registers for each channel
- Supports digital comparator: Conversion result can be compared with a specified value and user can select whether to generate an interrupt when conversion result is equal to the compare register setting.
- Supports Calibration and load Calibration words capability.

6.19.3 Block Diagram

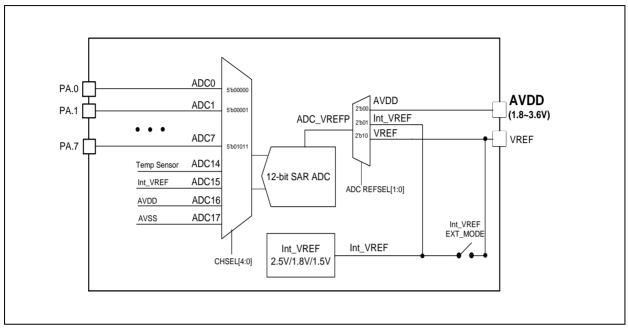


Figure 6-116 ADC Block Diagram

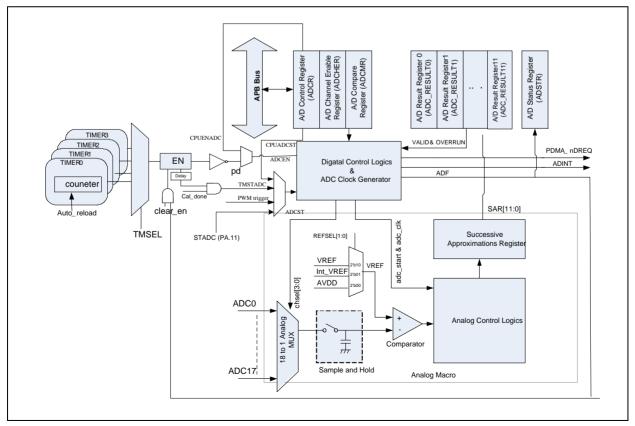


Figure 6-117 ADC Controller Block Diagram

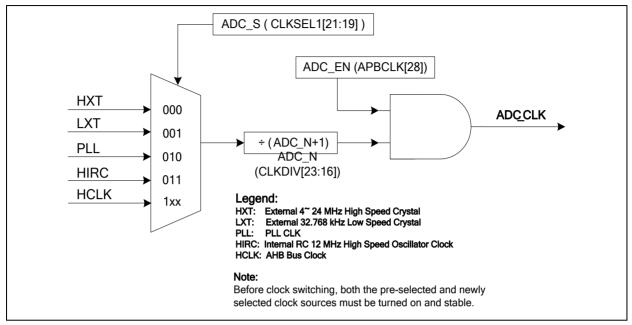


Figure 6-118 ADC Clock Control

6.19.4 Functional Description

nuvoton

The A/D converter is operated by successive approximation with 12-bit resolution. The ADC has three operation modes: Single mode, Single-cycle Scan mode and Continuous Scan mode. When changing the operating mode or analog input channel enabled, in order to avoid incorrect operation, software must clear the ADST (ADCR[11]) to 0. After the operation, the A/D converter discards current conversion and enters idle state while ADST (ADCR[11]) is cleared.

In some applications for saving power, ADC can be enabled by a time-out (TMRx Chy) signal and start A/D conversion after a delay time interval and enter power-down state after converting fixed amount of conversion data transferred to memory through PDMA. There are four time-out source(Timer0~3) to enable ADC by setting TMSEL (ADCR[13:12]) register.

6.19.4.1 Single Mode

In single mode, A/D conversion is performed only once on the specified single channel. The operations are as follows.

A/D conversion is started when the ADST (ADCR[11]) is set to 1 either by software or by external trigger input or by timer event selected by TMSEL (ADCR[13:12]) register or by PWM trigger.

When A/D conversion is finished, the result is stored in the A/D data register corresponding to the channel.

On completion of conversion, the ADF (ADSR[0]) is set to 1 and ADC interrupt is requested if the ADIE (ADCR[1]) is set to 1.

The ADST (ADCR[11]) remains 1 during A/D conversion. When A/D conversion ends, the ADST bit is automatically cleared to 0 and the A/D converter enters in idle state. If the ADST (ADCR[11]) is cleared to 0 by software during A/D conversion, A/D conversion will stop and enter in idle state.

Note: If user enables more than one channel in single mode, the least channel is converted and other enabled channels will be ignored.

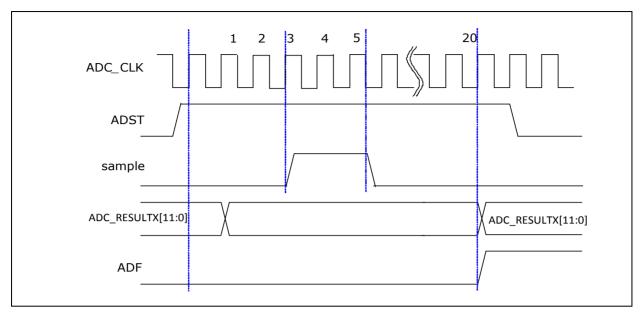


Figure 6-119 ADC Single Mode Conversion Timing Diagram

6.19.4.2 Single-Cycle Scan Mode

nuvoton

In single-cycle scan mode, A/D conversion will sample and convert the specified channels once in the sequence from the least numbered channel to the highest numbered channel. Operations are described as follows.

When the ADST (ADCR[11]) is set to 1 by software or by an external trigger input or by timer event selected by TMSEL (ADCR[13:12]) register or by PWM trigger, A/D conversion starts on the lowest numbered channel.

When A/D conversion for each enabled channel is completed, the result is sequentially transferred to the A/D data register corresponding to each channel.

When conversions of all the enabled channels are completed, the ADF (ADSR[0]) is set to 1. If the ADIE (ADCR[1]) is set to 1 at this time, an ADINT interrupt is set after A/D conversion ends.

After A/D conversion ends, the ADST (ADCR[11]) is automatically cleared to 0 and the A/D converter enters in idle state. If the ADST (ADCR[11]) is cleared to 0 by software during A/D conversion, A/D conversion will stop after current conversion complete and enter in idle state.

An example timing diagram for single-cycle scan is shown below:

(In this example, channel 0,2,3 and 7 are enabled.)

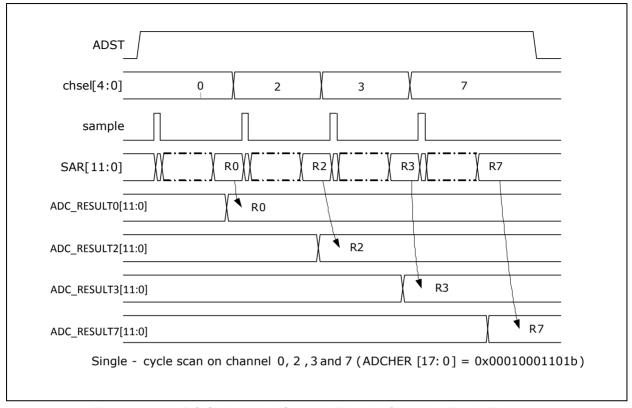


Figure 6-120 ADC Single-cycle Scan on Enabled Channels Timing Diagram

6.19.4.3 Continuous Scan Mode

nuvoTon

In continuous scan mode, A/D conversion is performed sequentially on the specified channels that enabled by CHENx (ADCHER[17:0]) register (maximum 8 external channels and four internal channel for ADC). The operations are as follows.

- 1. When the ADST (ADCR[11]) is set to 1 by software or external trigger input or by timer event selected by TMSEL (ADCR[13:12]) register or by PWM trigger, A/D conversion starts on the channel with the lowest number.
- 2. When A/D conversion for each enabled channel is completed, the result of each enabled channel is stored in the A/D data register corresponding to each enabled channel.
- 3. Once when all of the enabled channel sequentially completes A/D converting, the ADF (ADSR[0]) will be set to 1. If the ADIE (ADCR[1]) is set to 1 at this time, an ADINT interrupt is set after A/D conversion ends.
- 4. Follow Step 3, conversion of the first enabled channel starts again.

Steps 2 to 4 are repeated as long as the ADST (ADCR[11]) remains set to 1. When the ADST (ADCR[11]) is cleared to 0, A/D conversion stops and the A/D converter enters the idle state.

An example timing diagram for continuous scan on enabled channels (0, 2, 3 and 7) is shown below:

(In this example, channel 0, 2, 3 and 7 are enabled.)

(This example is only appropriate for ADC.)

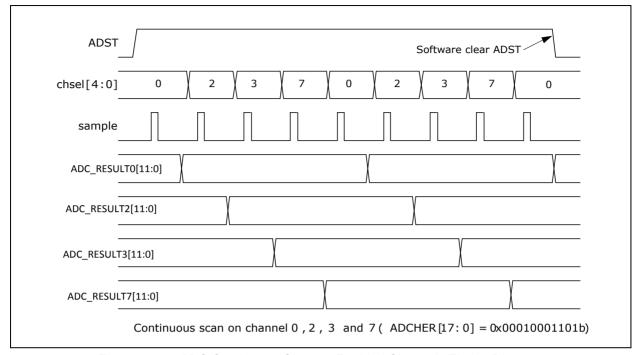


Figure 6-121 ADC Continuous Scan on Enabled Channels Timing Diagram

6.19.4.4 ADC Started by External Triggering

nuvoton

A/D conversion can be triggered by external pin request. When the TRGE (ADCR[8]) is set to high to enable ADC external trigger function, setting the TRGS (ADCR[5:4]) to 00b is to select external trigger input from the STADC pin. Software can set TRGCOND (ADCR[7:6]) to select trigger condition is falling/rising edge or low/high level. If level trigger condition is selected, the STADC pin must be kept at defined state at least 8 PCLKs. The ADST (ADCR[11]) will be set to 1 at the 9th PCLK and start to conversion. In level trigger mode conversion is continuous as long as the external trigger input is in asserted state if external trigger input is pull at low (or high state). It is stopped only when external condition trigger condition disappears. If edge trigger condition is selected, the high and low state must be kept at least 4 PLCKs. When a trigger signal with pulse width smaller than the specified width (4 PCLKs), conversion is not triggered.

6.19.4.5 Conversion Result Monitor by Compare Mode

The ADC controller provides two sets of compare registers ADCMPR0 and ADCMPR1 to monitor at most two specified channel conversion results from A/D conversion module (refer to Figure 6-122). Software can select which channel to be monitored by setting CMPCH(ADCMPRx[5:0]) and CMPCOND (ADCMPRx[2]) which is used to check conversion result is either less or greater than (equal to) the specified value in CMPD(ADCMPRx[27:16]). When the conversion of the channel specified by CMPCH (ADCMPRx[7:3]) is completed, the comparing action will be triggered one time automatically. If the compare result meets the setting, compare match counter will increase by 1, Once the counter value reaches the setting of (CMPMATCNT (ADCMPRx[11:8])+1), CMPFx (ADSR[2,1]) will be set to 1. If the compare result does not meet the setting, compare match counter will reset to 0. If CMPIE (ADCMPRx[1]) is set, an ADINT interrupt request is generated. Software can use this function to monitor whether an external analog input voltage traverse the specified threshold in scan mode without imposing a load on software. Detailed logics diagram is shown below.

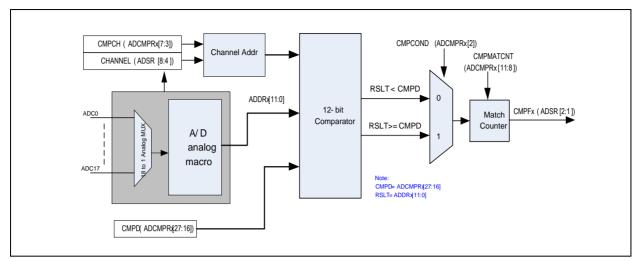


Figure 6-122 ADC Conversion Result Monitor Logic Diagram

6.19.4.6 Interrupt Sources

nuvoTon

The A/D converter generates a conversion end flag, ADF (ADSR[0]) register at the ending moment of A/D conversion. If ADIE (ADCR[1]) is set, the conversion end interrupt is asserted via ADINT occurs. If CMPIE bit is enabled and A/D conversion result meets the setting in ADCMPR register, monitor interrupt occurs, and ADINT will be set also. CPU can clear CMPF and ADF to stop interrupt request.

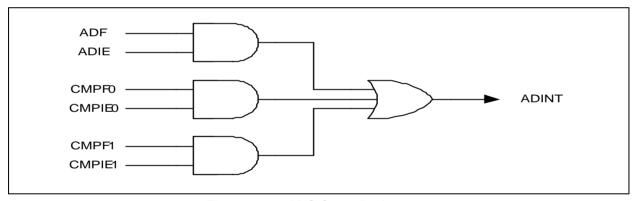


Figure 6-123 ADC Controller Interrupt

6.19.4.7 Peripheral DMA Request

When A/D conversion is finished, the converted result is loaded into ADC RESULTx(x=0~7) register and VALID bit is set to 1. If PTEN (ACDR[9]) is set, ADC controller will generate PDMA request to ask a data transfer. Having the converted result read by PDMA in response to PDMA request enables continuous conversion to be achieved without CPU intervention.

6.19.4.8 ADC enabled by timer event

User can configure ADC to use timer trigger function by programming TMSEL (ACDR[13:12]), TMTRGMOD (ACDR[15]) and TMPDMACNT (ACDR[31:24]). If AD is power down, timer event can enable ADC. TMSEL (ACDR[13:12]) selects timer event source.

After ADC is woken up, it starts to transfer and pass the ADC RESUT to memory by PDMA. User should configure PTEN (ACDR[9]) register to enable PDMA transfer and configure ADMD (ACDR[3:2]) to run ADC in continuous, single or single cycle mode; and configure TMPDMACNT (ACDR[31:24]) register to specify the amount of ADC RESULT that PDMA will deliver to memory each time the timer event occurs. After PDMA have delivered the amount of ADC RESULT specified in TMPDMACNT (ACDR[31:24]). ADC will go to power down until the next timer event coming.

After the total amount of ADC RESULT configured in PDMA byte count register have been delivered to memory. ADC will go to power down, this time the ADC will not be waken up by the following timer event any more.

All the configurations should be done before the system entering power down because CPU can't read and write register while the whole system is power down. In single-cycle and single mode, PDMA transfer count should be exact the same with enabled channel count.

6.19.4.9 ADC enabled by PWM trigger

nuvoTon

A/D conversion can be triggered by PWM. When the TRGE (ADCR[8]) is set to high to enable ADC external trigger function, setting the TRGS (ADCR[5:4]) to 11b is to select PWM trigger.

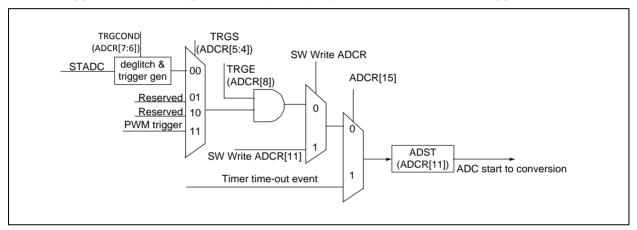


Figure 6-124 ADC Start Conversion Conditions

6.19.4.10 ADC sampling time

The figure below shows the (simplified) equivalent circuit of the S/H (sample and hold) input network, where C_S is the storage capacitor, R_S is the resistance of the sampling switch and R_I is the output impedance of the signal source V_I. The Figure 6-125 shows the situation where the conversion cycle j+1 starts immediately after conversion cycle n ends. In this case the duration of the sampling phase is, approximately, 1.5 x ADC_CLK. C_S must be charged in that phase, and it must be ensured that the voltage at its terminals becomes sufficiently near V_I. To guarantee this, R_I may not take arbitrarily large values

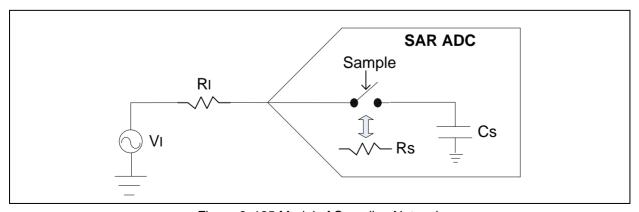


Figure 6-125 Model of Sampling Network

nuvoton

Figure 6-126 shows how the sampling time can be increased, to allow the operation with signal sources having a low driving capability: the adc start signal is delayed during the number of clock cycles necessary to guarantee the accurate input signal sampling. During this period the chsel must remain unchanged. Note that this operation reduces the effective sampling rate.

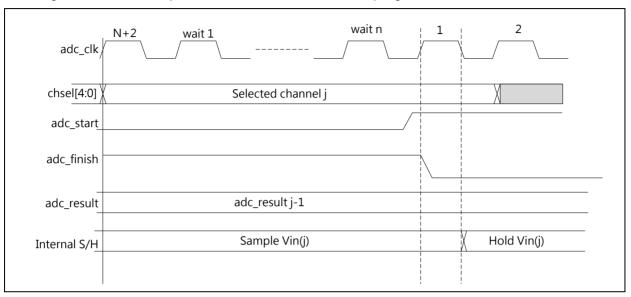


Figure 6-126 Increased Sampling Time Waveform

For both types of inputs, it is possible to achieve the maximum sampling frequency, but under certain conditions (depending either from the resolution mode (RESSEL) or from the output impedance of the signal source) the sampling period should be delayed during the necessary clock cycles to guarantee the sampling precision (above figure).

The following graphics indicates the number of additional sample and hold cycles (n), necessary for a wide range of Ri (signal source output resistance) values, for all ADC input channels depending on the resolution mode (RESSEL). Use sampling counter registers (ADCCHSAMP0 and ADCCHSAMP1) to add additional sample and hold cycle (n).

Please note that these graphics refer to the additional sampling and hold clock cycles (i.e. in the situations where n=0, the sampling period is $1.5 \times ADC CLK$).

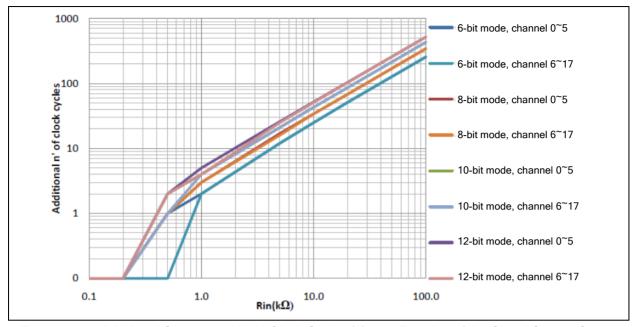


Figure 6-127 Additional Sample and Hold Clock Cycles (n) as a Function of the Signal Source Output Resistance Rin ($k\Omega$)

The results presented in the graphic above were measured under normal conditions (typical process corner, V_{DD} = AV_{DD} = 3.3V, LDO output = 1.8V, Tjunction= 50°C, ADC_CLK=32 MHz, V_{REF}= AV_{DD}).

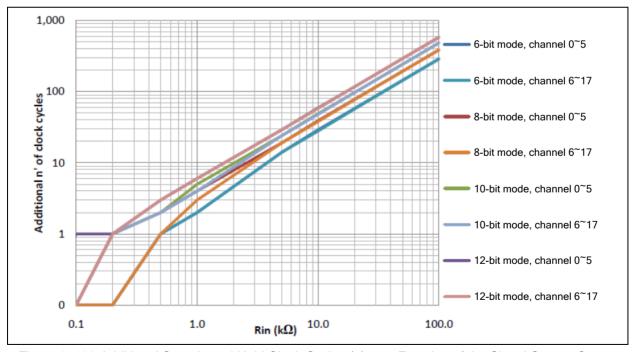


Figure 6-128 Additional Sample and Hold Clock Cycles (n) as a Function of the Signal Source Output Resistance Rin ($k\Omega$)

The results presented in the graphic above were measured under the worst case conditions (slow process corner, V_{DD} = AV_{DD} = 1.8V, LDO output = 1.62V, Tjunction= -40°C, ADC_CLK=32 MHz, V_{REF}= AV_{DD}).

6.19.4.11 ADC Power-down mode

nuvoton

There are two Power-down modes user can select, including Power-down mode, and Standby mode. User can configure PWDMOD (ADCPWD[3:2]) to determine what Power-down mode that user want to be before disabling ADEN (ADCR[0]) register.

In different Power-down mode (power down, standby), the power up sequence are quite different, user should know currently Power-down mode and configure PWDMOD (ADCPWD[3:2]) to determine what power up sequence that user want to be before enabling ADEN (ADCR[0]), if the sequence was wrong, ADC would be mal-function.

The difference between those Power-down modes are power consumption and the stable time after resuming from each Power-down mode, the least power consumption is Power-down mode and then standby mode, and stable time are in reversed order Before ADC entering power down, make sure that ADC is stop (by disabling ADST) and all conversion are completed (by polling ADF (ADSR[0])).

6.19.4.12 ADC Offset calibration

To decrease the effect of electrical random noise, the ADC performs calibration to get average offset measurement. Afterwards, in normal operation, the digital block applies the calibrated word to the internal ADC capacitor array, so that the offset voltage is removed.

User can set CALEN (ADCCALCTL[0]) to high and select CALSEL (ADCCALCTL[3]) to 1(to do calibration) and write 1 to CALSTART (ADCCALCTL[1]), and then waiting for CALDONE (ADCCALCTL[2]) to high; when CALDONE (ADCCALCTL[2]) is high, the calibration is complete and the calibration word is in ADC CALWORD register.

User can also load the specified calibrated word to ADC CALWORD register to save time to complete the calibration method. The configuration are the same except setting CALSEL to 0, and waiting for CALDONE bit to high; when CALDONE is high, the load calibration word is complete and the loaded calibration word is now applied to ADC.

6.19.4.13 Selectable resolution

The ADC has the selectable resolution between 12, 10, 8 and 6 bit. User can choose the resolution by setting RESSEL (ADCR[17:16]).

The resolution selection can only be updated after the end of the conversion (ADF (ADSR[0]) becomes high), different resolutions will result in the different conversion cycle. Take 12 bit resolution for example, it will take 19 ADC clock cycle to complete one channel conversion; and 17 ADC clock cycle,15 ADC clock cycle, 14 ADC clock cycle for the resolution 10 bits, 8 bits, and 6 bits.

6.19.4.14 Temperature Sensor

The figure below shows the typical temperature sensor transfer function. The formula for the output voltage (V_{TEMP}) is as below equation.

 V_{TEMP} (mV) = -1.73 (mV/°C) x Temperature (°C) + 740 (mV).

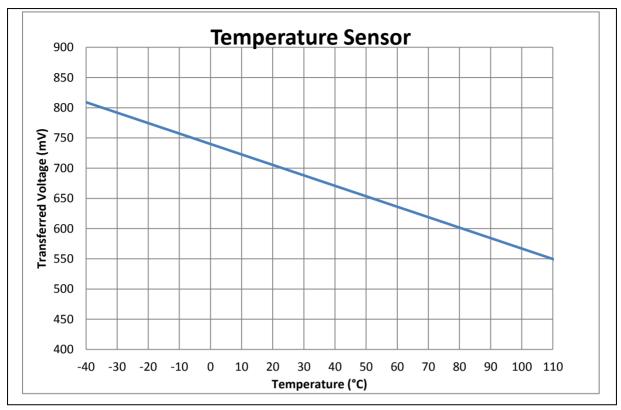


Figure 6-129 Temperature Sensor Transfer Function

6.19.4.15 Internal Reference Voltage

The internal reference voltage (Int_V_{RFF}) is an internal fixed reference voltage regardless of power supply variations. The Int_V_{REF} output is internally connected to ADC input channel15 (ADC15) and Analog Comparator's negative input side. For battery power detection application, user can connect V_{REF} pin to AV_{DD} for ADC reference voltage. The Int_V_{REF} can be used as ADC input channel such that user can convert the ADC value to estimate AV_{DD} voltage with following formula and the block diagram is shown as Figure 6-130.

 $AV_{DD} = ((2^{N})/R)^* Int_{REF}$

N: ADC resolution

nuvoTon

R: ADC conversion result

Int_V_{REF}: Internal reference voltage

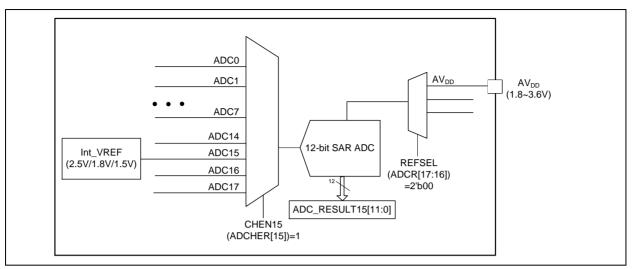


Figure 6-130 Int_V_{REF} for Measuring AV_{DD} Application Block Diagram

For example, The setting value for Int_V_{REF} is 1.8 V, the ADC is 12-bit resolution, and Int_V_{REF} is set as ADC input channel to trigger ADC conversion. Assuming ADC conversion result is 2048.

 $AV_{DD} = 3.6 V$

nuvoTon

N = 12

R = 2048

 $Int_V_{REF} = 1.8 V$

 $AV_{DD} = ((2^{12})/2048)^{13} = (4096/2048)^{13} = 3.6 \text{ V}$

If the ADC conversion result is 2457

 $AV_{DD} = ((2^{12})/2458)^{13} = (4096/2458)^{13} = 3 V$

If the ADC conversion result is 2949

 $AV_{DD} = ((2^{12})/2949)^{13} = (4096/2949)^{13} = 2.5 \text{ V}$

6.19.5 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value
ADC Base Address: ADC_BA = 0x400E_00	000		•	
ADC_RESULT0	ADC_BA+0x00	R	A/D Data Register 0	0x0000_0000
ADC_RESULT1	ADC_BA+0x04	R	A/D Data Register 1	0x0000_0000
ADC_RESULT2	ADC_BA+0x08	R	A/D Data Register 2	0x0000_0000
ADC_RESULT3	ADC_BA+0x0C	R	A/D Data Register 3	0x0000_0000
ADC_RESULT4	ADC_BA+0x10	R	A/D Data Register 4	0x0000_0000
ADC_RESULT5	ADC_BA+0x14	R	A/D Data Register 5	0x0000_0000
ADC_RESULT6	ADC_BA+0x18	R	A/D Data Register 6	0x0000_0000
ADC_RESULT7	ADC_BA+0x1C	R	A/D Data Register 7	0x0000_0000
ADC_RESULT14	ADC_BA+0x38	R	A/D Data Register 14	0x0000_0000
ADC_RESULT15	ADC_BA+0x3C	R	A/D Data Register 15	0x0000_0000
ADC_RESULT16	ADC_BA+0x40	R	A/D Data Register 16	0x0000_0000
ADC_RESULT17	ADC_BA+0x44	R	A/D Data Register 17	0x0000_0000
ADCR	ADC_BA+0x48	R/W	A/D Control Register	0x0001_0000
ADCHER	ADC_BA+0x4C	R/W	A/D Channel Enable Register	0x0000_0000
ADCMPR0	ADC_BA+0x50	R/W	A/D Compare Register 0	0x0000_0000
ADCMPR1	ADC_BA+0x54	R/W	A/D Compare Register 1	0x0000_0000
ADSR	ADC_BA+0x58	R/W	A/D Status Register	0x0000_0000
ADPDMA	ADC_BA+0x60	R	A/D PDMA current transfer data Register	0x0000_0000
ADCPWD	ADC_BA+0x64	R/W	ADC Power Management Register	0x0000_0A00
ADCCALCTL	ADC_BA+0x68	R/W	ADC Calibration Control Register	0x0000_0009
ADCCALWORD	ADC_BA+0x6C	R/W	A/D calibration load word register	0xXXXX_XXXX
ADCCHSAMP0	ADC_BA+0x70	R/W	ADC Channel Sampling Time Counter Register Group 0	0x0000_0000
ADCCHSAMP1	ADC_BA+0x74	R/W	ADC Channel Sampling Time Counter Register Group 1	0x0000_0000

6.19.6 Register Description

nuvoTon

A/D Data Registers (ADC_RESULT0~ ADC_RESULT17)

Register	Offset	R/W	Description	Reset Value
ADC_RESULT0	ADC_BA+0x00	R	A/D Data Register 0	0x0000_0000
ADC_RESULT1	ADC_BA+0x04	R	A/D Data Register 1	0x0000_0000
ADC_RESULT2	ADC_BA+0x08	R	A/D Data Register 2	0x0000_0000
ADC_RESULT3	ADC_BA+0x0C	R	A/D Data Register 3	0x0000_0000
ADC_RESULT4	ADC_BA+0x10	R	A/D Data Register 4	0x0000_0000
ADC_RESULT5	ADC_BA+0x14	R	A/D Data Register 5	0x0000_0000
ADC_RESULT6	ADC_BA+0x18	R	A/D Data Register 6	0x0000_0000
ADC_RESULT7	ADC_BA+0x1C	R	A/D Data Register 7	0x0000_0000
ADC_RESULT14	ADC_BA+0x38	R	A/D Data Register 14	0x0000_0000
ADC_RESULT15	ADC_BA+0x3C	R	A/D Data Register 15	0x0000_0000
ADC_RESULT16	ADC_BA+0x40	R	A/D Data Register 16	0x0000_0000
ADC_RESULT17	ADC_BA+0x44	R	A/D Data Register 17	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
		Rese	erved			OVERRUN	VALID			
15	14	13	12	11	10	9	8			
	Rese	erved			RS	LT				
7	6	5	4	3	2	1	0			
	RSLT									

Bits	Description	Description				
[31:18]	Reserved	Reserved.				
[17]	OVERRUN	Over Run Flag When VALID is high and ADC converts finish, this field will set to high.				
[16]		Data Valid Flag After ADC converts finish, this field will set to high. This field will clear when this register be read.				
[15:12]	Reserved	Reserved.				

Bits	Description	Description				
[11:0]	RSLT	A/D Conversion Result This field contains 12 bits conversion results.				

A/D Control Register (ADCR)

Register	Offset	R/W	Description	Reset Value
ADCR	ADC_BA+0x48	R/W	A/D Control Register	0x0001_0000

31	30	29	28	27	26	25	24			
	TMPDMACNT									
23	17	16								
	Rese	erved		RES	SEL	REFSEL				
15	14	13	12	11	10	9	8			
TMTRGMOD	Reserved	TMS	SEL	ADST	DIFF	PTEN	TRGEN			
7	6	5	4	3	2	1	0			
TRGCOND TRGS				AD	MD	ADIE	ADEN			

Bits	Description	Description					
[31:24]	TMPDMACNT	PDMA Count When each timer event occur PDMA will transfer TMPDMACNT +1 ADC result in the amount of this register setting Note: The total amount of PDMA transferring data should be set in PDMA byte count register. When PDMA finish is set, ADC will not be enabled and start transfer even though the timer event occurred					
[23:20]	Reserved	Reserved.					
[19:18]	RESSEL	Resolution Selection 00 = 6 bits. ADC result will put at RSLT[5:0] (ADC_RESULTx[5:0]), 01 = 8 bits. ADC result will put at RSLT[7:0] (ADC_RESULTx[7:0]) 10 = 10 bits. ADC result will put at RSLT[9:0] (ADC_RESULTx[9:0]) 11 = 12 bits. ADC result will put at RSLT (ADC_RESULTx[1:0])					
[17:16]	REFSEL	Reference Voltage Source Selection 00 = Select AV _{DD} as reference voltage. 01 = Select Int_V _{REF} as reference voltage. 10 = Select V _{REF} as reference voltage.					
[15]	TMTRGMOD	Timer Event Trigger ADC Conversion 0 = This function Disabled. 1 = ADC Enabled by TiMER OUt event. setting TMSEL to select timer event from timer0~3					
[14]	Reserved	Reserved.					
[13:12]	TMSEL	Select A/D Enable Time-out Source 00 = TMR0. 01 = TMR1. 10 = TMR2. 11 = TMR3.					

Bits	Description	Description						
[11]	ADST	A/D Conversion Start 0 = Conversion stopped and A/D converter enter idle state. 1 = Conversion starts. ADST bit can be set to 1 from three sources: software write, external pin STADC and PWM trigger. ADST is cleared to 0 by hardware automatically at the end of single mode and single-cycle scan mode on specified channels. In continuous scan mode, A/D						
		conversion is continuously performed sequentially unless software writes 0 to this bit or chip reset. Note: After ADC conversion done, SW needs to wait at least one ADC clock before to set this bit high again.						
[10]	DIFF	Differential Mode Selection 0 = ADC is operated in single-ended mode. 1 = ADC is operated in differential mode. Note: Calibration should calibrated each time when switching between single-ended and differential mode						
[9]	PTEN	PDMA Transfer Enable Control 0 = PDMA data transfer Disabled. 1 = PDMA data transfer in ADC_RESULT 0~17 Enabled. When A/D conversion is completed, the converted data is loaded into ADC_RESULT 0~10, software can enable this bit to generate a PDMA data transfer request. When PTEN=1, software must set ADIE=0 to disable interrupt. PDMA can access ADC_RESULT 0-17 registers by block or single transfer mode.						
[8]	TRGEN	External Trigger Enable Control Enable or disable triggering of A/D conversion by external STADC pin. 0 = Disabled,. 1 = Enabled,.						
[7:6]	TRGCOND	External Trigger Condition These two bits decide external pin STADC trigger event is level or edge. The signal must be kept at stable state at least 8 PCLKs for level trigger and 4 PCLKs at high and low state. 00 = Low level. 01 = High level. 10 = Falling edge. 11 = Rising edge.						
[5:4]	TRGS	Hardware Trigger Source 00= A/D conversion is started by external STADC pin. 01= Reserved. 10= Reserved. 11= PWM trigger. Software should disable TRGE and ADST before change TRGS. In hardware trigger mode, the ADST bit is set by the external trigger from STADC or PWM trigger, However software has the highest priority to set or cleared ADST bit at any time.						
[3:2]	ADMD	A/D Converter Operation Mode 00 = Single conversion. 01 = Reserved. 10 = Single-cycle scan. 11 = Continuous scan.						

Bits	Description	escription					
[1]	ADIE	A/D Interrupt Enable Control 0 = A/D interrupt function Disabled. 1 = A/D interrupt function Enabled. A/D conversion end interrupt request is generated if ADIE bit is set to 1.					
[0]	ADEN	A/D Converter Enable Control 0 = Disabled. 1 = Enabled. Before starting A/D conversion, this bit should be set to 1. Clear it to 0 to disable A/D converter analog circuit power consumption.					

A/D Channel Enable Register (ADCHER)

Register	Offset	R/W	Description	Reset Value
ADCHER	ADC_BA+0x4C	R/W	A/D Channel Enable Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
		Rese	erved			CHEN17	CHEN16			
15	14	13	12	11	10	9	8			
CHEN15	CHEN14			Rese	erved					
7	6	5	4	3	2	1	0			
CHEN7	CHEN6	CHEN5	CHEN4	CHEN3	CHEN2	CHEN1	CHEN0			

Bits	Description	
[31:18]	Reserved	Reserved.
[17]	CHEN17	Analog Input Channel 17 Enable Control (Convert AV _{SS}) 0 = Disabled. 1 = Enabled.
[16]	CHEN16	Analog Input Channel 16 Enable Control (Convert AV _{DD}) 0 = Disabled. 1 = Enabled.
[15]	CHEN15	Analog Input Channel 15 Enable Control (Convert Int_V _{REF}) 0 = Disabled. 1 = Enabled.
[14]	CHEN14	Analog Input Channel 14 Enable Control (Convert V _{TEMP}) 0 = Disabled. 1 = Enabled.
[13:8]	Reserved	Reserved.
[7]	CHEN7	Analog Input Channel 7 Enable Control (Convert Input Voltage From PA.7) 0 = Disabled. 1 = Enabled.
[6]	CHEN6	Analog Input Channel 6 Enable Control (Convert Input Voltage From PA.6) 0 = Disabled. 1 = Enabled.
[5]	CHEN5	Analog Input Channel 5 Enable Control (Convert Input Voltage From PA.5) 0 = Disabled. 1 = Enabled.

Bits	Description	Description							
[4]	CHEN4	Analog Input Channel 4 Enable Control (Convert Input Voltage From PA.4) 0 = Disabled. 1 = Enabled.							
[3]	CHEN3	Analog Input Channel 3 Enable Control (Convert Input Voltage From PA.3) 0 = Disabled. 1 = Enabled.							
[2]	CHEN2	Analog Input Channel 2 Enable Control (Convert Input Voltage From PA.2) 0 = Disabled. 1 = Enabled.							
[1]	CHEN1	Analog Input Channel 1 Enable Control (Convert Input Voltage From PA.1) 0 = Disabled. 1 = Enabled.							
[0]	CHEN0	Analog Input Channel 0 Enable Control (Convert Input Voltage From PA.0) 0 = Disabled. 1 = Enabled. If more than one channel in single mode is enabled by software, the least channel is converted and other enabled channels will be ignored.							

A/D Compare Register 0/1 (ADCMPR0/1)

Register	Offset	R/W	Description	Reset Value
ADCMPR0	ADC_BA+0x50	R/W	A/D Compare Register 0	0x0000_0000
ADCMPR1	ADC_BA+0x54	R/W	A/D Compare Register 1	0x0000_0000

31	30	29	28	27	26	25	24
	Reserved				СМ	PD	
23	22	21	20	19	18	17	16
			CM	IPD			
15	14	13	12	11	10	9	8
	Rese	erved			СМРМ	ATCNT	
7	6	5	4	3	2	1	0
СМРСН					CMPCOND	CMPIE	CMPEN

Bits	Description	
[31:28]	Reserved	Reserved.
[27:16]	CMPD	Comparison Data The 12 bits data is used to compare with conversion result of specified channel. Software can use it to monitor the external analog input pin voltage variation in scan mode without imposing a load on software.
[15:12]	Reserved	Reserved.
[11:8]	CMPMATCNT	Compare Match Count When the specified A/D channel analog conversion result matches the compare condition defined by CMPCOND[2], the internal match counter will increase 1. When the internal counter reaches the value to (CMPMATCNT +1), the CMPF bit will be set.
[7:3]	СМРСН	Compare Channel Selection Set this field to select which channel's result to be compared. Note: Valid setting of this field is channel 0~17, but channel 8~14 are reserved.
[2]	CMPCOND	Compare Condition 0 = Set the compare condition as that when a 12-bit A/D conversion result is less than the 12-bit CMPD (ADCMPRx[27:16]), the internal match counter will increase one. 1 = Set the compare condition as that when a 12-bit A/D conversion result is greater or equal to the 12-bit CMPD (ADCMPRx[27:16]), the internal match counter will increase by one. Note: When the internal counter reaches the value to (CMPMATCNT +1), the CMPF bit will be set.
[1]	CMPIE	Compare Interrupt Enable Control 0 = Compare function interrupt Disabled. 1 = Compare function interrupt Enabled. If the compare function is enabled and the compare condition matches the setting of CMPCOND and CMPMATCNT, CMPF bit will be asserted, in the meanwhile, if CMPIE is set to 1, a compare interrupt request is generated.

Bits	Description	escription					
		Compare Enable Control					
	CMPEN	0 = Compare Disabled.					
		1 = Compare Enabled.					
[0] C I		Set this bit to 1 to enable compare CMPD[11:0] with specified channel conversion result when converted data is loaded into ADC_RESULTx register.					
		When this bit is set to 1, and CMPMATCNT is 0, the CMPF will be set once the match is hit.					

Register	Offset	R/W	Description	Reset Value
ADSR	ADC_BA+0x58	R/W	A/D Status Register	0x0000_0000

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Reserved				CHANNEL	
7	6	5	4	3	2	1	0	
	CHANNEL				CMPF1	CMPF0	ADF	

Bits	Description	
[31:17]	Reserved	Reserved.
[16]	INITRDY	ADC Power-up Sequence Completed 0 = ADC not powered up after system reset. 1 = ADC has been powered up since the last system reset. Note: This bit will be set after system reset occurred and automatically cleared by power-up event.
[15:9]	Reserved	Reserved.
[8:4]	CHANNEL	Current Conversion Channel (Read Only) This filed reflects current conversion channel when BUSY=1. When BUSY=0, it shows the next channel to be converted.
[3]	BUSY	BUSY/IDLE (Read Only) 0 = A/D converter is in idle state. 1 = A/D converter is busy at conversion. Note: This bit is a mirror of ADST (ADCR[11]). That is to say if ADST(ADCR[11]) = 1,then BUSY is 1 and vice versa.
[2]	CMPF1	Compare Flag When the selected channel A/D conversion result meets setting condition in ADCMPR1 then this bit is set to 1. And it is cleared by writing 1 to self. 0 = Conversion result in ADC_RESULTx does not meet ADCMPR1 setting. 1 = Conversion result in ADC_RESULTx meets ADCMPR1 setting. This flag can be cleared by writing 1 to it. Note: When this flag is set, the matching counter will be reset to 0,and continue to count when user writes 1 to clear CMPF1.

Bits	Description	escription					
		Compare Flag					
		When the selected channel A/D conversion result meets setting condition in ADCMPR0 then this bit is set to 1. And it is cleared by writing 1 to self.					
[4]	CMPF0	0 = Conversion result in ADC_RESULTx does not meet ADCMPR0setting.					
[1]	CMPFU	1 = Conversion result in ADC_RESULTx meets ADCMPR0setting.					
		This flag can be cleared by writing 1 to it.					
		Note: When this flag is set, the matching counter will be reset to 0,and continue to count when user write 1 to clear CMPF0					
		A/D Conversion End Flag					
		A status flag that indicates the end of A/D conversion.					
[0]	ADE	ADF is set to 1 at these two conditions:					
[0]	ADF	When A/D conversion ends in single mode					
		When A/D conversion ends on all specified channels in scan mode.					
		This flag can be cleared by writing 1 to it.					

A/D PDMA Current Transfer Data Register (ADPDMA)

Register	Offset	R/W	Description	Reset Value
ADPDMA	ADC_BA+0x60	R	A/D PDMA Current Transfer Data Register	0x0000_0000

31	30	29	28	27	26	25	24	
Reserved								
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
	Rese	erved			AD_F	PDMA		
7	6	5	4	3	2	1	0	
	AD_PDMA							

Bits	Description	Description					
[31:12]	Reserved	rved Reserved.					
[11:0]	AD PDMA	ADC PDMA Current Transfer Data (Read Only) When PDMA transferring, reading these bits can monitor the current PDMA transfer data.					

A/D Power Management Register (ADCPWD)

Register	Offset	R/W	Description	Reset Value
ADCPWD	ADC_BA+0x64	R/W	ADC Power Management Register	0x0000_0A00

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
Reserved				PWD	MOD	PWDCALEN	PWUPRDY		

Bits	Description	
[31:4]	Reserved	Reserved.
		ADC Power-down Mode
		Set this bit fields to select ADC Power-down mode when system power-down.
		00 = Reserved.
		01 = ADC Power-down mode.
[2.2]	PWDMOD	10 = ADC Standby mode.
[3:2]	PWDIVIOD	11 = Reserved.
		Note1: Different PWDMOD has different power down/up sequence, in order to avoid ADC powering up with wrong sequence; user must keep PWMOD consistent each time in power down and power up.
		Note2: While the ADC is power up from Power-down mode without calibration, the PWDCALEN(ADCPWD[1]) is set to 0. (The calibration value will be reset)
		Power Up Calibration Function Enable Control
		0 = Power up without calibration.
		1 = Power up with calibration.
		Note: This bit work together with CALSEL (ADCCALCTL[3]), see the following
[1]	PWDCALEN	{PWDCALEN,CALFBSEL} Description:
		PWDCALEN is 0 and CALFBSEL is 0: No need to calibrate.
		PWDCALEN is 0 and CALFBSEL is 1: No need to calibrate.
		PWDCALEN is 1 and CALFBSEL is 0: Load calibration word when power up.
		PWDCALEN is 1 and CALFBSEL is 1: Calibrate when power up.
		ADC Power-up Sequence Completed and Ready for Conversion
	PWUPRDY	0 = ADC is not ready for conversion may be in power down state or in the progress
[0]	I WOLKE	of power up.

A/D calibration control register (ADCCALCTL)

Register	Offset	R/W	Description	Reset Value
ADCCALCTL	ADC_BA+0x68	R/W	ADC Calibration Control Register	0x0000_0009

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
	Rese	erved		CALSEL	CALDONE	CALSTART	CALEN		

Bits	Description	
[31:4]	Reserved	Reserved.
[3]	CALSEL	Select Calibration Functional Block 0 = Load calibration functional block. 1 = Calibration functional block.
[2]	CALDONE	Calibrate Functional Block Complete 0 = Not yet. 1 = Selected functional block complete.
[1]	CALSTART	Calibration Functional Block Start 0 = Stops calibration functional block. 1 = Starts calibration functional block. Note: This bit is set by SW and clear by HW; don't write 1 to this bit while CALEN = 0.
[0]	CALEN	Calibration Function Enable Control Enable this bit to turn on the calibration function block. 0 = (BYPASSCAL). 1 = Enabled.

A/D Calibration Word (ADCCALWORD)

Register	Offset	R/W	Description	Reset Value
ADCCALWORD	ADC_BA+0x6C	R/W	A/D calibration load word register	0xXXXX_XXXX

31	30	29	28	27	26	25	24		
Reserved									
23	22	21	20	19	18	17	16		
	Reserved								
15	14	13	12	11	10	9	8		
	Reserved								
7	6	5	4	3	2	1	0		
Reserved	CALWORD								

Bits	Description	
[31:7]	Reserved	Reserved.
[6:0]	CALWORD	Calibration Word Bits Write to this register with the previous calibration word before load calibration action Read this register after calibration done Note: The calibration block contains two parts "CALIBRATION" and "LOAD CALIBRATION"; if the calibration block configure as "CALIBRATION"; then this register represent the result of calibration when calibration is completed; if configure as "LOAD CALIBRATION"; configure this register before loading calibration action, after loading calibration complete, the laoded calibration word will apply to the ADC; while in loading calibration function the loaded value will not be equal to the original CALWORD until calibration is done.

A/D Channel Samping0 Register (ADCCHSAMP0)

Register	Offset	R/W	Description	Reset Value
ADCCHSAMP0	ADC_BA+0x70	R/W	ADC Channel Sampling Time Counter Register Group 0	0x0000_0000

31	30	29	28	27	26	25	24
CH7SAMPCNT				CH6SAMPCNT			
23	22	21	20	19	18	17	16
	CH5SA	MPCNT		CH4SAMPCNT			
15	14	13	12	11	10	9	8
	CH3SA	MPCNT		CH2SAMPCNT			
7	6	5	4	3	2	1	0
CH1SAMPCNT					CH0SA	MPCNT	

Bits	Description	
[31:28]	CH7SAMPCNT	Channel 7 Sampling Counter The same as Channel 0 sampling counter table.
[27:24]	CH6SAMPCNT	Channel 6 Sampling Counter The same as Channel 0 sampling counter table.
[23:20]	CH5SAMPCNT	Channel 5 Sampling Counter The same as Channel 0 sampling counter table.
[19:16]	CH4SAMPCNT	Channel 4 Sampling Counter The same as Channel 0 sampling counter table.
[15:12]	CH3SAMPCNT	Channel 3 Sampling Counter The same as Channel 0 sampling counter table.
[11:8]	CH2SAMPCNT	Channel 2 Sampling Counter The same as Channel 0 sampling counter table.
[7:4]	CH1SAMPCNT	Channel 1 Sampling Counter The same as Channel 0 sampling counter table.

Bits	Description					
Bits [3:0]	Description CH0SAMPCNT	Channel 0 Sampling Counter CH0SAMPCNT ADC Clock 0 = 0. 1 = 1. 2 = 2. 3 = 4. 4 = 8. 5 = 16. 6 = 32.				
		7 = 64. 8 = 128. 9 = 256. 10 = 512. 11 = 1024. 12 = 1024. 13 = 1024. 14 = 1024. 15 = 1024.				

A/D Channel Samping1 Register (ADCCHSAMP1)

Register	Offset	R/W	Description	Reset Value
ADCCHSAMP1	ADC_BA+0x74	R/W	ADC Channel Sampling Time Counter Register Group 1	0x0000_0000

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
Reserved				INTCHSAMPCNT					
15	14	13	12	11	10	9	8		
Reserved									
7	6	5	4	3	2	1	0		
Reserved									

Bits	Description		
[31:20]	Reserved	Reserved.	
[19:16]	INTCHSAMPCNT	Internal Channel (V _{TEMP} , AV _{DD} , AV _{SS} , Int_V _{REF}) Sampling Counter The same as Channel 0 sampling counter table.	
[15:0]	Reserved	Reserved.	

6.20 Analog Comparator Controller (ACMP)

6.20.1 Overview

nuvoTon

The Nano112 series contains two comparators. The comparator output is logic 1 when positive input is greater than negative input; otherwise, the output is 0. Each comparator can be configured to generate an interrupt when the comparator output value changes. The comparator ACMP0 can be used as normal comparator or it can emulate ADC function. The comparator ACMP1 can be used as normal comparator only.

6.20.2 Features

- Analog input voltage range: 0 ~ AVDD
- Supports hysteresis function
- Supports wake-up function
- Comparator ACMP0 supports
 - 4 positive sources(ACMP0 Px)
 - PA.1, PA.2, PA.3, or PA.4
 - 4 negative sources
 - PA.5 (ACMP0 N)
 - Comparator Reference Voltage (CRV)
 - Int_V_{REF}
 - **AGND**
- Comparator ACMP1 supports
 - 1 positive source
 - PA.12(ACMP1 P)
 - 4 negative sources
 - PA.13(ACMP1_N)
 - Comparator Reference Voltage (CRV)
 - Int_V_{REF}
 - **AGND**
- Comparator ACMP0 supports three operation modes:
 - Normal Comparator mode
 - Single Slope ADC mode: Resistance measurement (e.g. PTC, NTC, PT1000)
 - Supports to measure 7 channels resistor
 - Sigma-Delta ADC mode
 - Supports up to 4 channel voltage input from ACMP0 Px

6.20.3 Block Diagram

nuvoTon

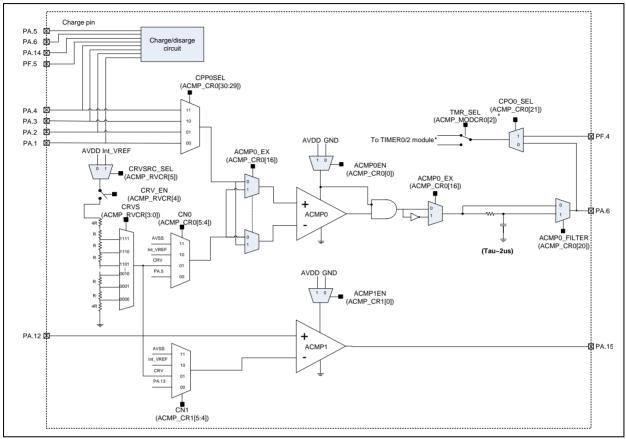


Figure 6-131 Analog Comparator Block Diagram

6.20.4 Functional Description

6.20.4.1 Comparator Reference Voltage (CRV)

The comparator reference voltage (CRV) module is responsible for generating reference voltage for comparators. The CRV module consists of resisters ladder and analog switch, and user can set the CRV output voltage using the CRVS(ACMP_RVCR[3:0]) register and select the reference voltage to ACMP by setting the CRVSRC SEL(ACMP RVCR[5]) register.

Features:

- 1. User selectable references voltage source by setting the CRVSRC_SEL(ACMP_RVCR[5]) register.
- 2. User selectable references voltage by setting the CRVS(ACMP_RVCR[3:0]) register.

Comparator reference voltage = V_{IN} * (1/6+CRVS[3:0]/24); $V_{IN} = AV_{DD}$ or Int V_{REF}

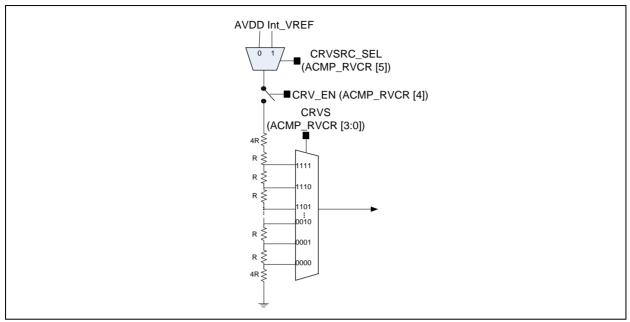


Figure 6-132 Comparator Reference Voltage Block Diagram

6.20.4.2 Normal Comparator Mode

nuvoTon

Both the comparator ACMP0 and comparator ACMP1 have normal comparator mode. The following shows the general application circuit for the normal mode.

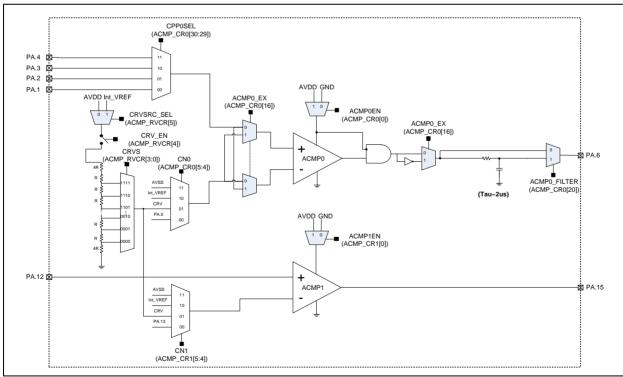


Figure 6-133 Normal Comparator Mode Block Diagram

6.20.4.3 ACMP0 Single Slope ADC Mode

nuvoton

The Single Slop ADC mode is an analog-to-digital conversion technique to measure unknown resistance and can be implemented with a comparator rather than a standalone ADC module. The technique is using known and unknown resistor to discharge a capacitor. While the capacitor is discharged, the number of clock cycles counted by timer indicates resistance ratio. Larger counting number indicates Larger resistance value. The unknown resistance can be calculated based on the discharge time and known resistance.

Only the comparator ACMP0 has Single Slope ADC mode which can implement a low-cost but high resolution ADC function by using just a little additional external components. The external components include a thermistor (e.g. PT1000), a reference resistor, and a capacitor. The components are connected directly to the Nano112 as shown in Figure 6-134.

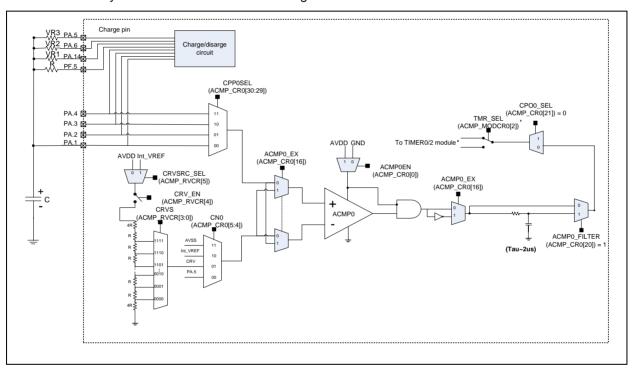


Figure 6-134 ACMP Single Slope ADC Mode Reference Circuit

Both of TIMER0 and TIMER2 can support the Single Slope ADC mode. Below description uses TIMER0 as an example.

ACMP0 controller is set as single slope convert with following steps:

- 1. Set ACMP_EN_TMR (TMR0_CTL[6]) to 1, allow ACMP0 can enable TIMER0.
- 2. Select using TIMER0, refer to TMR SEL (ACMP MODCR0[2]).
- 3. Select ACMP0_Px, refer to CPP0SEL(ACMP_CR0[30:29]).
- Set TMR_TRI_LV (ACMP_MODCR0[3]) to 0, let's comparator output from low to high to trigger the Timer.
- 5. Set MOD_SEL (ACMP_MODCR0[1:0]) to 2 (Single Slope mode).
- 6. Select charge/discharge pin, refer to CH_DIS_FUN_SEL (ACMP_MODCR0[6:4]).
- 7. Wait capacitor saturation.

- 8. Set START (ACMP MODCR0[8]) to 1, to start Single Slope convert.
- 9. Wait TIMER0 interrupt then check Timer capture counter.
- 10. Set START (ACMP_MODCR0[8]) to 0.

For next Single Slope conversion, repeat Step 6 to 10.

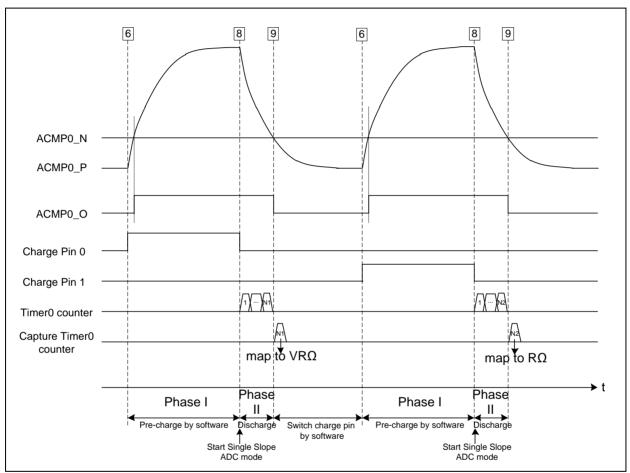


Figure 6-135 ACMP0 Single Slope ADC Mode Timing

- Phase I: The software will pre-charge (refer to single slope convert step 6) on C(Capacitor) until saturation.
- Phase II: After setting the programming flow, hardware will start TIMER0 and discharge the capacitor at the same time. Till ACMPO O reverses, TIMERO counter stops and the value can be calculated as discharge time.

6.20.4.4 ACMP0 Sigma-Delta ADC Mode

The Sigma-Delta principle is becoming more and more important for high-resolution ADCs and is proven in many applications. The concept of an integrating A/D converter is to match an unknown voltage of interest ACMP0_Px, with a known voltage, V_{DD}.

Only the comparator ACMP0 has Sigma-Delta ADC mode which can implement a low-cost but high resolution ADC function by using just a little additional external components. The external components include a resistor and a capacitor. The components are connected directly to the Nano112 as shown in the following figure.

nuvoton

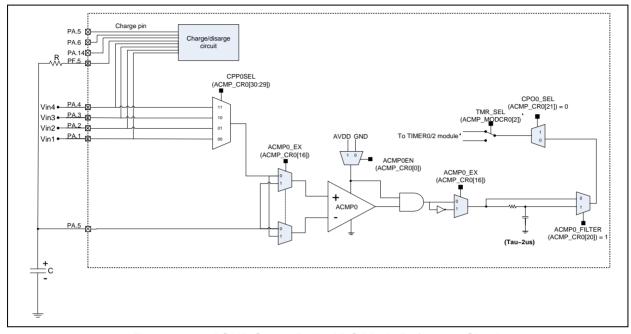


Figure 6-136 ACMP Sigma-Delta ADC Mode Reference Circuit

In Sigma Delta ADC mode, ACMP0 would output high on the charge pin to charge the capacitor first. After analog comparator output is inversed, ACMP0 will change to output low on the charge pin to discharge the capacitor. Similarly, after analog comparator output is inversed again, ACMP0 will change to output high on charge pin to charge the capacitor again.

Sigma Delta ADC mode needs ACMP0 and two Timers. Both of TIMER0/TIMER1 and TIMER2/TIMER3 can support the Sigma Delta ADC mode. Below description uses TIMER0/TIMER1 as an example.

The number of charge and dis-charge process is defined in TMR CMP (TMR0 CMPR[23:0]). If setting 1500 to TMR_CMP (TMR0_CMPR[23:0]), the charge and dis-charge process would go for 3000 times.

The software setting for sigma-delta convert is described with following steps:

- Set MOD_SEL (ACMP_MODCR0[1:0]) to 1 to select Sigma-Delta ADC mode. 1.
- 2. Set TIMER0 as One-shot mode for Sigma-Delta ADC mode conversion clock.
- 3. Set ACMP EN TMR (TMR0 CTL[6]) to 1 that allows ACMP0 can enable TIMER0.
- Set EVENT_EN (TMR1_CTL[12]) to 1 that enables TIMER1 Event Counting mode to get Sigma-Delta ADC mode conversion data.
- 5. Set ACOMP0_PN_AutoEx (ACMP_CR0[19]) to 1 that enables ACMP0 to swap the positive with negative input and inverse ACMP0 output level while TIMER0 counter overflow. The swapping can cancel the offset error of the comparator.

- 6. Set TMR SEL (ACMP MODCR0[2]) to 0 to use TIMER0 and TIMER1.
- 7. Set CH_DIS_FUN_SEL (ACMP_MODCR0[6:4]) to select the charge/discharge pin.
- 8. Set TMR_TRI_LV (ACMP_MODCR0[3]) to 1 that enables the TIMER0 while ACMP0 output changes from high to low.
- 9. Set CPP0SEL (ACMP_CR0[30:29]) to select the input pin of ACMP0_Px, which is the voltage to be measured by Sigma-Delta ADC.
- 10. Set START (ACMP_MODCR0[8]) to 1 to start Sigma-Delta ADC conversion.
- 11. Wait TIMER0 interrupt and then read the TIMER1 capture data register (TMR1_TCAP) for ADC conversion data.
- 12. Set START (ACMP_MODCR0[8]) to 0 for correcting the initial condition of next conversion.

For the next Sigma-Delta conversion, repeat Step 9 to 12.

Refer to following diagram for detailed conversion timing.

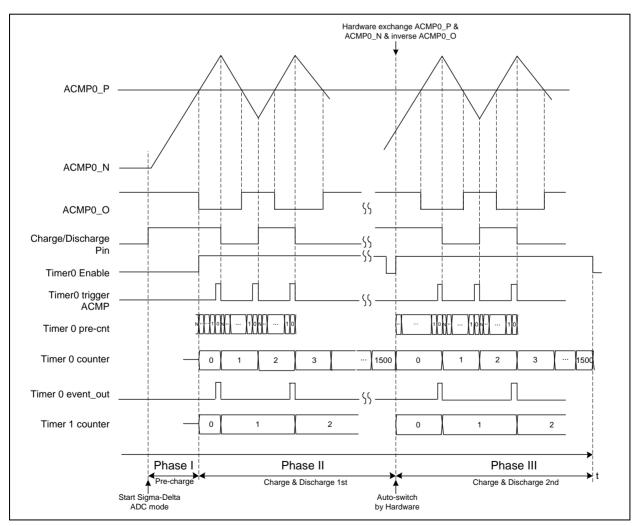


Figure 6-137 ACMP Sigma-Delta ADC Mode Timing

After setting the software according to programming flow (refer to sigma-delta convert steps), hardware behaves from **Phase I** to **III**:

- Phase I: Drive "charge/discharge pin" high to charge capacitor (C in Figure 6-136) until the ACMP0 O reverses and then start TIMER0.
- Phase II: Continue to charge or discharge capacitor depending on ACMP0 O value. If ACMP0 O = 0, drive "charge/discharge pin" low to discharge capacitor. Otherwise, drive "charge/discharge pin" high to charge capacitor. Simultaneously, TIMER1 counter value plus 1 If ACMP0 O = 0.
 - In the end of Phase II: TIMER0 counter overflow will swap ACMP0 Px with ACMP0 N and inverse ACMP0 O.
- Phase III: Do the same flow as Phase II.

Software reads TIMER1 event counter value after completing the above procedures. This value could be calculated to get ACMP0 Px voltage. The formula is listed as below:

$$V_{IN} = \frac{\text{TMR1_TCAP}}{TMR0\ CMPR \times 2} \times V_{DD}$$
 V_{IN}: the voltage of ACMP0_Px

For example, if AV_{DD} is 3000mV, the voltage of "charge/discharge pin" is 3000mV, too. For the convenience of calculation, TMR0_CMPR can be set to 15000. After conversion is finished, if TMR1_TCAP is 18000, the voltage of ACMP0_Px (V_{IN}) is calculated as 1800mV.

6.20.4.5 Interrupt Sources

nuvoTon

The comparator generates an output CO0 (ACMP_SR[2]) and CO1 (ACMP_SR[3]) in ACMP SR register which is sampled by PCLK. If ACMP0IE (ACMP_CR0[1]) and ACMP1IE (ACMP_CR1[1]) bit in ACMP CR0 and ACMP CR1 are set, a state change on the comparator output CO0 (ACMP SR[2]) and CO1 (ACMP_SR[3]) will cause comparator flag ACMPF0 (ACMP_SR[0]) and ACMPF1 (ACMP SR[1]) set and the comparator interrupt requested. Software can write 1 to ACMPF0 (ACMP_SR[0]) and ACMPF1 (ACMP_SR[1]) to stop interrupt request.

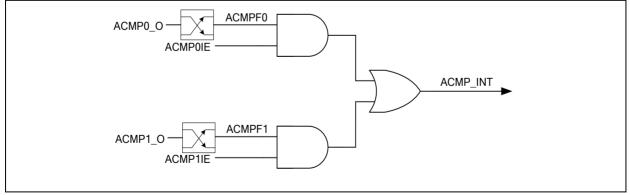


Figure 6-138 Analog Comparator Interrupt Sources

6.20.5 Register Map

nuvoTon

R: read only, W: write only, R/W: both read and write

Register	Offset	R/W	Description	Reset Value		
ACMP Base Address: ACMP_BA = 0x401D_0000						
ACMP_CR0	ACMP_BA+0x00	R/W	Analog Comparator 0 Control Register	0x0000_0000		
ACMP_CR1	ACMP_BA+0x04	R/W	Analog Comparator 1 Control Register	0x0000_0000		
ACMP_SR	ACMP_BA+0x08	R/W	Analog Comparator Status Register	0x0000_0000		
ACMP_RVCR	ACMP_BA+0x0C	R/W	Analog Comparator Reference Voltage Control Register	0x0000_0000		
ACMP_MODCR0	ACMP_BA+0x10	R/W	Analog Comparator 0 Mode Control Register	0x0000_0000		

6.20.6 Register Description

Analog Comparator 0 Control Register (ACMP_CR0)

Register	Offset	R/W	Description	Reset Value
ACMP_CR0	ACMP_BA+0x00	R/W	Analog Comparator 0 Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
ACMP0_WKE UP_EN CPP0SEL				Reserved					
23	22	21	20	19	18	17	16		
Rese	rved	CPO0_SEL	ACMP0_FILT ER	ACOMP0_PN _AutoEx	Rese	ACMP0_EX			
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
Reserved CN			N0	Reserved	ACMP0_HYS EN	ACMP0IE	ACMP0EN		

Bits	Description	
[31]	ACMP0_WKEUP_ EN	Comparator ACMP0 Wake-up Enable Control 0 = Wake-up function Disabled. 1 = Wake-up function Enabled when the system enters Power-down mode.
[30:29]	CPP0SEL[1:0]	Comparator ACMP0 Positive Input Selection 00 = Input from PA.4. 01 = Input from PA.3. 10 = Input from PA.2. 11 = Input from PA.1.
[28:22]	Reserved	Reserved.
[21]	CPO0_SEL	Comparator ACMP0 Output to Timer Path Selection 0 = Comparator ACMP0 output to Timer is through internal path. 1 = Comparator ACMP0 output to Timer is through external pin (through PF.4).
[20]	ACMP0_FILTER	Comparator ACMP0 Output Filter 0 = Comparator ACMP0 output is not filtered by internal RC filter. 1 = Comparator ACMP0 output is filtered by internal RC filter.
[19]	ACOMP0_PN_Aut oEx	Comparator Analog ACMP0_Px & ACMP0_N Input Swap Function Automatically This bit is only for sigma-delta ADC mode use. 0 = Disabled to swap comparator ACMP0 input function, ACMP0_Px and ACMP0_N, automatically. 1 = Enabled to swap comparator ACMP0 input function, ACMP0_Px and ACMP0_N, automatically.
[18:17]	Reserved	Reserved.

Bits	Description	Description					
[16]	ACMP0_EX	Comparator ACMP0 Swap 0 = No swap to the comparator inputs and output. 1 = Swap the comparator inputs with ACMP0_Px and ACMP0_N, and invert the polarity of comparator 0 output. Note: This bit swaps the comparator inputs and inverts the comparator output.					
[15:6]	Reserved	Reserved.					
[5:4]	CN0	Comparator ACMP0 Negative Input Selection 00 = The comparator reference pin ACMP0_N is selected as the negative comparator input. 01 = The internal comparator reference voltage (CRV) is selected as the negative comparator input. 10 = The internal reference voltage (Int_V _{REF}) is selected as the negative comparator input. 11 = The AGND is selected as the negative comparator input.					
[3]	Reserved	Reserved.					
[2]	ACMP0_HYSEN	Comparator ACMP0 Hysteresis Enable Control 0 = ACMP0 Hysteresis function Disabled. 1 = ACMP0 Hysteresis function Enabled. The typical range is 20mV.					
[1]	ACMP0IE	Comparator ACMP0 Interrupt Enable Control 0 = ACMP0 interrupt function Disabled. 1 = ACMP0 interrupt function Enabled. Note: Interrupt generated if ACMP0IE bit is set to "1" after ACMP0 output changed.					
[0]	ACMP0EN	Comparator ACMP0 Enable Control 0 = Disabled. 1 = Enabled. Note: Comparator output needs to wait 10 µs stable time after ACMP0EN is set.					

Analog Comparator 1 Control Register (ACMP_CR1)

Register	Offset	R/W	Description	Reset Value
ACMP_CR1	ACMP_BA+0x04	R/W	Analog Comparator 1 Control Register	0x0000_0000

31	30	29	28	27	26	25	24		
ACMP1_WKE UP_EN		Reserved							
23	22	21	20	19	18	17	16		
			Rese	erved					
15	14	13	12	11	10	9	8		
			Rese	erved					
7	6	5	4	3	2	1	0		
Reserved CN1			N1	Reserved	ACMP1_HYS EN	ACMP1IE	ACMP1EN		

Bits	Description					
[31]	ACMP1_WKEUP_ EN	Comparator ACMP1 Wake-up Enable Control 0 = Wake-up function Disabled. 1 = Wake-up function Enabled when the system enters Power-down mode.				
[30:6]	Reserved	Reserved.				
[5:4]	CN1	Comparator ACMP1 Negative Input Selection 00 = The comparator reference pin ACMP0_N is selected as the negative comparator input. 01 = The internal comparator reference voltage (CRV) is selected as the negative comparator input. 10 = The internal reference voltage (Int_V _{REF}) is selected as the negative comparator input. 11 = The AGND is selected as the negative comparator input.				
[3]	Reserved	Reserved.				
[2]	ACMP1_HYSEN	Comparator ACMP1 Hysteresis Enable Control 0 = ACMP1 Hysteresis function Disabled. 1 = ACMP1 Hysteresis function Enabled. The typical range is 20mV.				
[1]	ACMP1IE	Comparator ACMP1 Interrupt Enable Control 0 = ACMP1 interrupt function Disabled. 1 = ACMP1 interrupt function Enabled. Note: Interrupt is generated if ACMP0IE bit is set to "1" after ACMP1 output changed.				
[0]	ACMP1EN	Comparator ACMP1 Enable Control 0 = Disabled. 1 = Enabled. Note: Comparator output needs to wait 10 µs stable time after ACMP1EN is set.				

Analog Comparator Status Register (ACMP_SR)

Register	Offset	R/W	Description	Reset Value
ACMP_SR	ACMP_BA+0x08	R/W	Analog Comparator Status Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
	Rese	erved		CO1	CO0	ACMPF1	ACMPF0			

Bits	Description	
[31:4]	Reserved	Reserved.
[3]	CO1	Comparator ACMP1 Output Synchronized to the PCLK to allow reading by software. Cleared when the comparator is disabled (ACMP1EN = 0).
[2]	COO	Comparator ACMP0 Output Synchronized to the PCLK to allow reading by software. Cleared when the comparator is disabled (ACMP0EN = 0).
[1]	ACMPF1	Comparator ACMP1 Flag This bit is set by hardware whenever the comparator 1 output changes state. This will generate an interrupt if ACMP1IE set. Note: Write "1" to clear this bit to 0.
[0]	ACMPF0	Comparator ACMP0 Flag This bit is set by hardware whenever the comparator 0 output changes state. This will generate an interrupt if ACMP0IE set. Note: Write "1" to clear this bit to 0.

Analog Comparator Reference Voltage Control Register (ACMP_RVCR)

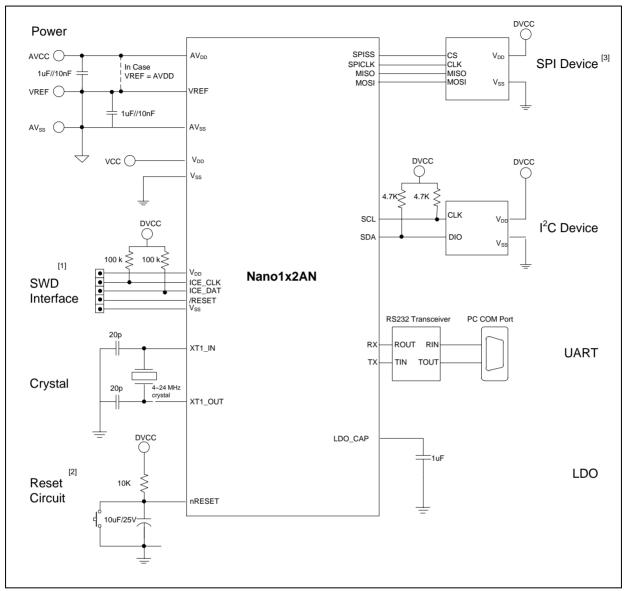
Register	Offset	R/W	Description	Reset Value
ACMP_RVCR	ACMP_BA+0x0C	R/W	Analog Comparator Reference Voltage Control Register	0x0000_0000

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
Rese	erved	CRVSRC_SEL	CRV_EN	CRVS						

Bits	Description	Description				
[31:6]	Reserved	Reserved.				
[5]	CRVSRC_SEL	CRV Source Selection $0 = \text{From AV}_{DD}.$ $1 = \text{From Int}_{V_{REF}}.$				
[4]	CRV_EN	CRV Enable Control 0 = CRV Disabled. 1 = CRV Enabled.				
[3:0]	CRVS[3:0]	Comparator Reference Voltage Setting Comparator reference voltage = V_{IN} * (1/6+CRVS[3:0]/24). V_{IN} = AV _{DD} or Int_V _{REF} .				

Analog Comparator 0 Mode Control Register (ACMP_MODCR0)

Register	Offset	R/W	Description	Reset Value
ACMP_MODCR0	ACMP_BA+0x10	R/W	Analog Comparator 0 Mode Control Register	0x0000_0000


31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
	Reserved						START	
7	6	6 5 4		3	2	1	0	
CH_DIS_FUN _SEL	C	H_DIS_PIN_SE	L	TMR_TRI_LV	TMR_SEL	MOD	_SEL	

Bits	Description					
[31:9]	Reserved	Reserved.				
[8]	START	Start ADC Mode 0 = Stop Sigma-Delta ADC Mode or Single Slope ADC Mode. 1 = Start Sigma-Delta ADC Mode or Single Slope ADC Mode.				
[7]	CH_DIS_FUN_SE L	Charge or Discharge Pin Function Option This bit is for Single Slope ADC Mode only. 0 = Drive low on charge pin to dis-charge capacitor and drive high on charge pin to charge capacitor. 1 = Drive high on charge pin to dis-charge capacitor and drive low on charge pin to charge capacitor.				
[6:4]	CH_DIS_PIN_SEL	Charge or Discharge Pin Selection 000 = PA.1. 001 = PA.2. 010 = PA.3. 011 = PA.4. 100 = PA.5. 101 = PA.6. 110 = PA.14. 111 = PF.5.				
[3]	Timer Trigger Level This bit is for Sigma-Delta ADC Mode. 0 = Comparator Output Low to High to Enable Timer. 1 = Comparator Output High to Low to Enable Timer.					
[2]	TMR_SEL	Analog Comparator 0 Co-operation Timer Selection 0 = Select TIMER0 as co-operation Timer. 1 = Select TIMER2 as co-operation Timer.				

Bits	Description		
		Comparator Mode Selection	
		00 = Normal Comparator Mode.	
[1:0]	MOD_SEL	01 = Sigma-Delta ADC Mode.	
		10 = Single Slope ADC Mode.	
		11 = Reserved.	

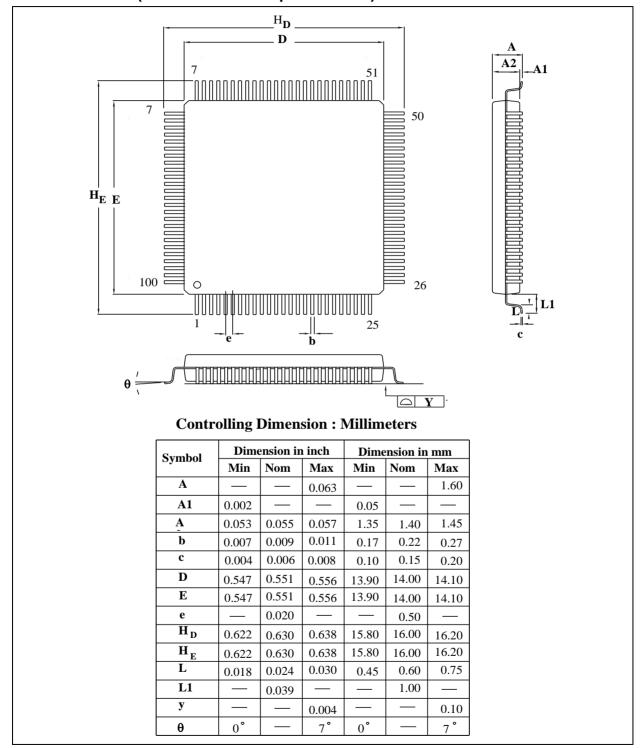
APPLICATION CIRCUIT 7

nuvoTon

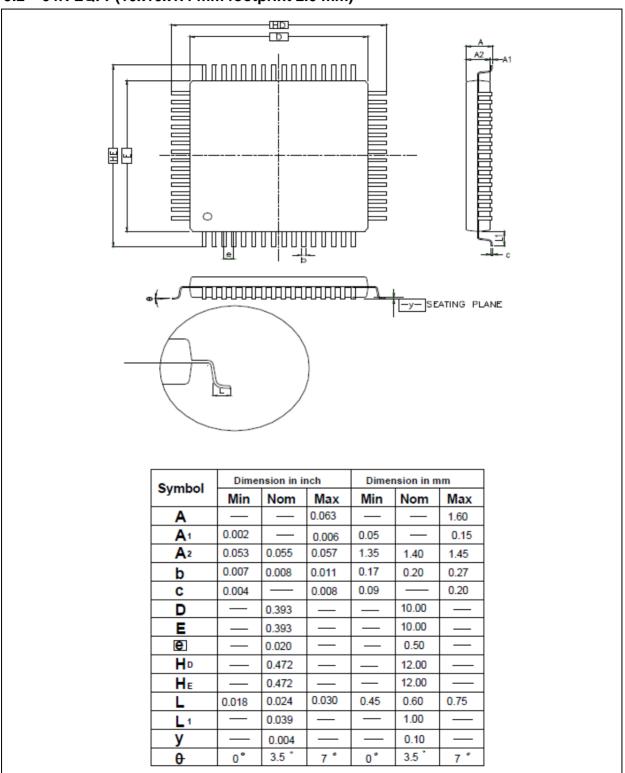
Note 1: It is recommended to use 100 k Ω pull-up resistor on both ICE_DAT and ICE_CLK pin.

Note 2: It is recommended to use 10 k Ω pull-up resistor and 10 μ F capacitor on nRESET pin.

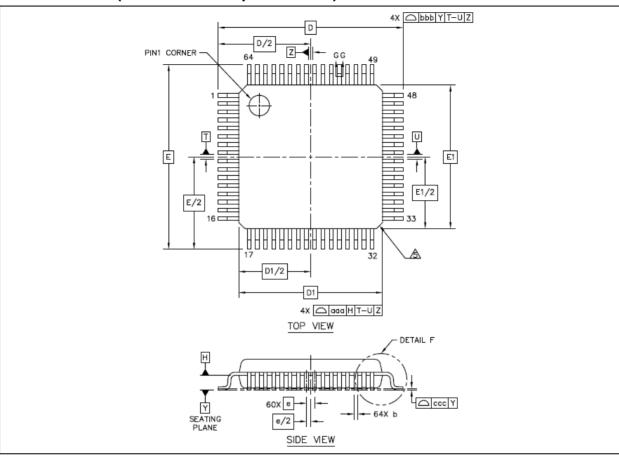
Note 3: For the SPI device, the chip supply voltage must be equal to SPI device working voltage. For example, when the SPI Flash working voltage is 3.3 V, the Nano1x2 chip supply voltage must also be 3.3 V

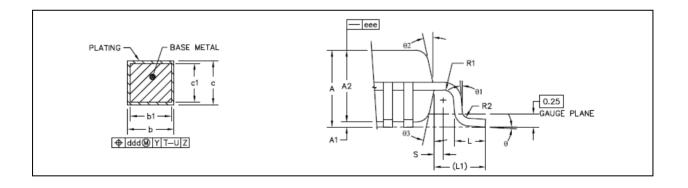

ELECTRICAL CHARACTERISTICS

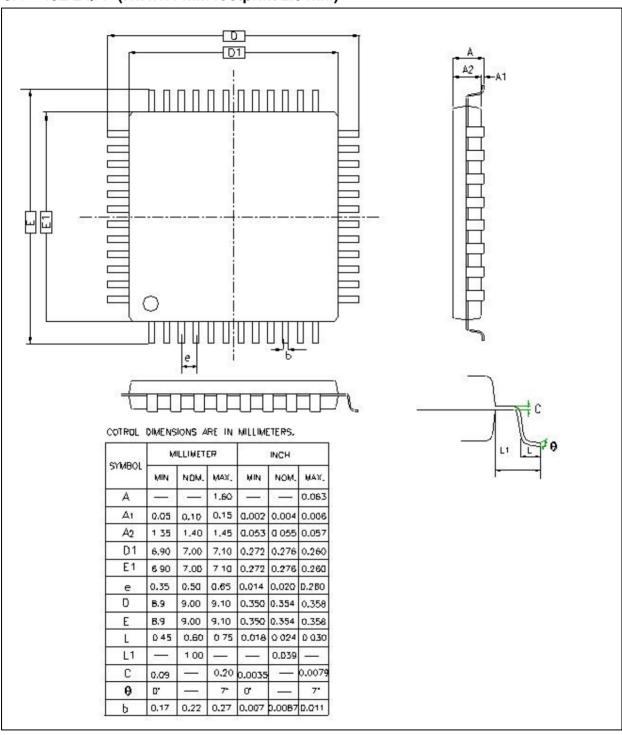
nuvoTon

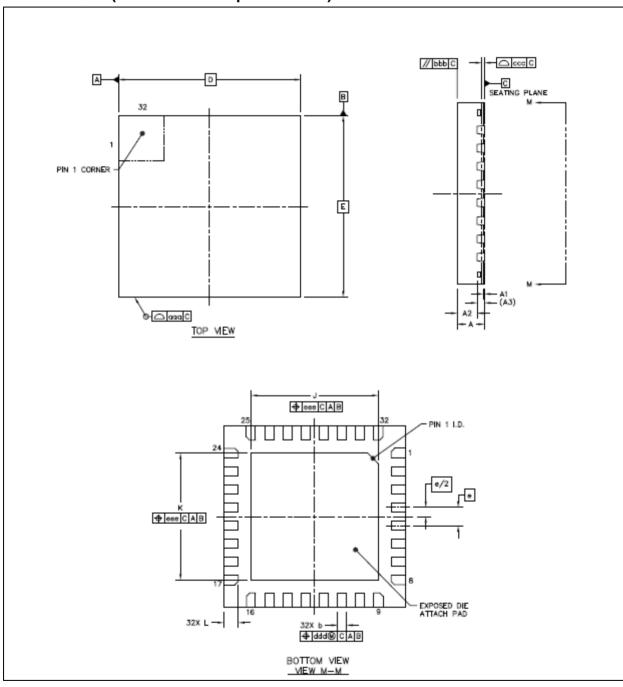

For information on the Nano102/Nano112 series electrical characteristics, please refer to NuMicro® Nano102/Nano112 Series Datasheet.

9 PACKAGE DIMENSIONS


9.1 100L LQFP (14x14x1.4 mm footprint 2.0 mm)


64R LQFP(10x10x1.4 mm footprint 2.0 mm) 9.2


64S LQFP (7x7x1.4 mm footprint 2.0 mm) 9.3


		SYMBOL	MIN	NOM	MAX		
TOTAL THICKNESS	Α			1.6			
STAND OFF	A1	0.05		0.15			
MOLD THICKNESS		A2	1.35	1.4	1.45		
LEAD WIDTH(PLATING)		ь	0.13	0.18	0.23		
LEAD WIDTH		b1	0.13	0.16	0.19		
L/F THICKNESS(PLATIN	VG)	С	0.09		0.2		
L/F THICKNESS		c1	0.09		0.16		
	Х	D		9 BSC			
	Υ	Е		9 BSC			
BODY SIZE	Х	D1	7 BSC				
BODT SIZE	Υ	E1	7 BSC				
LEAD PITCH		e	0.4 BSC				
		L	0.45	0.6	0.75		
FOOTPRINT	L1	1 REF					
		θ	0.	3.5*	7*		
		θ1	0.				
		θ2	11*	12*	13*		
		03	11"	12*	13*		
		R1	0.08				
					0.2		
	S	0.2					
PACKAGE EDGE TOLER	aaa	0.2					
LEAD EDGE TOLERANC	bbb	0.2					
COPLANARITY	ccc	80.0					
LEAD OFFSET				0.07			
MOLD FLATNESS		eee		0.05			

48L LQFP (7x7x1.4 mm footprint 2.0 mm)

33L QFN (5x5x1.4 mm footprint 2.0 mm) 9.5

		SYMBOL	MIN	NOM	MAX	
TOTAL THICKNESS		Α	0.7	0.75	0.8	
STAND OFF		A1	0	0.035	0.05	
MOLD THICKNESS		A2		0.55	0.57	
L/F THICKNESS		А3	0.203 REF			
LEAD WIDTH		ь	0.2	0.25	0.3	
0000 0175	Χ	D		5 BSC		
BODY SIZE	Y	Е	5 BSC			
LEAD PITCH		e	0.5 BSC			
ED 017E	X	J	3.4	3.5	3.6	
EP SIZE	Υ	K	3.4	3.5	3.6	
LEAD LENGTH		L	0.35	0.4	0.45	
PACKAGE EDGE TOLE	RANCE	aaa		0.1		
MOLD FLATNESS		bbb		0.1		
COPLANARITY LEAD OFFSET EXPOSED PAD OFFSET		ccc	0.08			
		ddd		0.1		
		eee		0.1		

10 REVISION HISTORY

Date	Revision	Description				
2014.03.28	1.00	1.	Initial version			
2014.05.08	1.01	1.	Modified some typos and format			
		1.	Modified the pin description for LCD_Vx in section 4.4			
		2.	Modified the CHXT_GAIN(Config0[15:13]) bit description in section 6.6.4.7			
		3.	Modified all PWM1 group to PWM0 group in section 6.10			
		4.	Modified "PWM1 channel 2 and 3" to "PWM0 channel 2 and 3" in section 6.10			
2014.09.02	1.02	5.	Updated Table 6-14 Watchdog Time-out Interval Selection in section 6.11.4			
2014.09.02	1.02	6.	Updated I ² C pin configuration in section 6.16.3			
		7.	Removed redundant description of I ² C protocol in section 6.16.4.1			
		8.	Modified the I2C_STS(I2CON[4]) bit description in section 6.16.6			
		9.	Modified External Capacitor ladder type application circuit in section 6.18.7			
		10.	Modified some typos and format			
		1.	Updated ADC channel number in NANO102 feature list in Chapter 2			
		2.	Corrected typo in NANO102 64-pin sequence in section 4.4			
2015.01.15	1.03	3.	Updated PE_L_MFP bit field number in section 6.4.5			
2015.01.15		4.	Updated the bit 31 description in Config0 to "Should be set to 1" in section 6.6.4.7			
		5.	Updated all power related pins from "VDD, VSS, AVDD, AVSS, VTEMP and VLCD" to "VDD, VSS, AVDD, AVSS, VTEMP and VLCD" in the TRM			
		1.	Added a note in all clock source block diagram of all peripherals sections that "Before clock switching, both the pre-selected and newly selected clock sources must be turned on and stable."			
		2.	Added Systick related description and register in section 6.1			
		3.	Updated power distribution diagram in section 6.4.3.3			
		4.	Corrected Px_MFP bit field length in section 6.4.5			
2015.05.19	1.04	5.	Updated LCD application circuit in section 6.18.7			
		6.	Updated bit field description and note for PWDMOD(ADCPWD[3:2]) in section 6.19.6			
		7.	Updated bit field description of register PWM_PDMACH0 and PWM_PDMACH2 in section 6.10.7			
		8.	Changed chapter order for Chapter 8 and 9			
		9.	Corrected typos and updated document format			
0040.00.04	4.05	1.	Modified the TEMPCTL register address offset value in section 6.4.4 and 6.4.5			
2016.03.31	1.05	2.	Added Internal Reference Voltage description in section 6.19.4.15			
		1.	Added application circuit in chapter 7			
2020.04.17	1.06	2.	Added notes about the hardware reference design for ICE_DAT, ICE_CLK and nRESET pins in section 4.4 and chapter 7			

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.