

Apr 8, 2019 Page 1 of 20 Rev 1.00

AN0043

Application Note for 32-bit NuMicro®

 Family

Document Information

Abstract This document describes a method of OTA for firmware upgrade
that implemented by the dual bank Flash to improve system
performance.

Apply to NuMicro® M261 Series

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

How to Use OTA for Firmware Upgrade

http://www.nuvoton.com/

Apr 8, 2019 Page 2 of 20 Rev 1.00

AN0043

Table of Contents

1 INTRODUCTION .. 3

2 APPLICATION OVERVIEW ... 4

2.1 Firmware Upgrade Architecture .. 4

2.2 System and Application Firmware Upgrade Process.. 6

2.2.1 Update Process in Dual Bank Flash ... 6
2.2.2 Version Control of Firmware ... 7
2.2.3 Communication by OTA Protocol .. 7

2.3 Architectural Advantages ... 10

2.3.1 Integrity for Update Firmware ... 10
2.3.2 Stability for System Operation .. 10
2.3.3 Efficiency for Firmware Upgrade ... 10

3 SAMPLE DESCRIPTION .. 11

3.1 Programming Architecture ... 11

3.2 Sample Code of OTA Client ... 13

4 CONCLUSION .. 18

Apr 8, 2019 Page 3 of 20 Rev 1.00

AN0043

1 Introduction

Over-the-Air Technology, the abbreviation is OTA, which is a technique for deploying new
firmware to a terminal device and transmitting firmware information by wireless technology.
The wireless technology adopted in this application note is the Bluetooth 2.0 + EDR SPP
profile. Bluetooth 2.0 + EDR is a wireless technology standard for data exchange over short
distances, with a wireless operating band of 2.4 to 2.485 GHz for industrial, scientific and
medical frequency bands. The 2.4GHz ISM wireless band, belonging to the agreement
between low energy and flow consumption without permission to use the band. SPP is an
abbreviation for Bluetooth Serial Port Profile, which simulates a serial cable to replace an
existing RS-232 and defines how to set up a virtual serial port and connect two Bluetooth
devices. In the wireless sensor network and internet of things, by hundreds or thousands of
nodes in the network, OTA can through the Bluetooth SPP profile to achieve the purpose of
system firmware upgrade.

Apr 8, 2019 Page 4 of 20 Rev 1.00

AN0043

2 Application Overview

Bluetooth 2.0+EDR wireless technology standard, which can be used to allow two mobile
devices to exchange data between short distances. The OTA technology can make a device
that was equipped with Bluetooth peripheral, according to product requirements to upgrade
the terminal device system firmware of Bluetooth slave side, to correct the terminal equipment
system problems, or expand its service functions.

2.1 Firmware Upgrade Architecture

In the Bluetooth 2.0+EDR wireless technology standard, in a piconet network topology, only
one as the Bluetooth master, while the other is the Bluetooth slave. Bluetooth master is the
OTA server, and the Bluetooth slave is the OTA client. The implementation of an OTA
upgrade architecture, that is, through the OTA server will be the new version of the terminal
equipment system firmware deployed to the OTA client device which within the OTA server’s
wireless communication range. So planning the system architecture can be different from the
system application and OTA role.

The main function of OTA server is to transfer the new version of the firmware, through the
wireless protocol channel to the OTA client side, so the implementation of OTA server is not
limited to the use of this series of chips, just follow the same OTA agreement can be. The
OTA application architecture example in Figure 2-1 is to use the OTA protocol defined by
ourselves on a mobile device and transfer the new version of the firmware information
through the Bluetooth SPP profile.

BT Server(SPP)

Mobile Device

OTA protocol

(OTA server)

M261 Device

BT Client(SPP)

OTA protocol

(OTA client)

Figure 2-1 OTA Application Architecture

The use of this series of chips to implement the OTA client-side system architecture, in
response to its upgrade firmware requirements the bank0 of the dual bank Flash memory is
planned as a Firmware Upgrade Buffer and the bank1 is planned as an Active Firmware
Block. Firmware Upgrade Buffer is used to write the new version of the firmware; and the
Active Firmware Block is to place the old firmware, is also the currently operating firmware. A
boot loader in the bank0 of Flash, used to determine the system after power up to switch to

Apr 8, 2019 Page 5 of 20 Rev 1.00

AN0043

the new version system operation; while the current version of the operating firmware is
divided into bank1 of Flash.

The dual bank Flash scheme is as shown in Figure 2-2.

APROM

Bank0

Bank1

Old Firmware

New Firmware

Boot Loader

APROM

Bank0

Bank1

Active Firmware Block

Firmware Upgrade

Buffer

Boot Loader

Figure 2-2 OTA Client Dual Bank Flash Diagram

Apr 8, 2019 Page 6 of 20 Rev 1.00

AN0043

2.2 System and Application Firmware Upgrade Process

The following three sections will depict the use of OTA technology to upgrade dual bank
Flash, firmware version control, and OTA protocol communication.

2.2.1 Update Process in Dual Bank Flash

In order to ensure that each time the process of OTA client firmware upgrade, can effectively
use the dual bank Flash memory architecture advantage. The currently running firmware must
to be stored in the Flash bank 1, and through the OTA protocol download the new version of
the firmware are stored in the Flash bank 0.

When the new version of firmware is completely written to Flash bank 0, the system needs to
re-boot, so that the boot loader will to complete the final step for firmware update. First,
confirm that there is a new version of the firmware, and then check the firmware’s CRC
checksum is correct, if it is wrong then do not process the firmware update; if the firmware’s
CRC checksum is correct, read the new version of the firmware from Flash bank 0 and write
to Flash bank 1 to completely replace the old version of the original firmware.

Figure 2-3 is the firmware upgrade process state in OTA client-side Flash.

The update process is described below:

(1) When the OTA client has not yet received a new version of the firmware through the OTA

server, only the Flash bank 1 maintains the currently operating system and application

firmware. After firmware update flow finished, the Flash bank 0 will also keep a copy of

the same version of the firmware, can be used as a backup firmware.

(2) The OTA client received the new version of the firmware from the OTA server side, and

write to the Flash bank 0.

(3) The current system of OTA client will to determine the new version of the firmware

information that wrote to the Flash bank 0 is correct, then reset the system. Then, boot

loader confirmed once again the new version of the firmware information is correct, the

new version of the firmware will be written into the Flash bank 1. Then boot loader active

the system firmware in Flash bank 1 to operation.

Apr 8, 2019 Page 7 of 20 Rev 1.00

AN0043

Figure 2-3 Firmware Update State in Dual Bank Flash

 After the new version of the firmware were released in the OTA server side, the OTA client
side will repeat (2) ~ (3) step for firmware upgrade.

2.2.2 Version Control of Firmware

The firmware version number will be included in the bin file in the fixed address, so by reading
the value of version number address in each bin file, that is, that bin file’s version. And the
version number is the use of 32 bits of data, as shown in Table 2-1, bit 31 ~ 24 for the major
version number, bit 23 to 16 for minor version number, bit 15 to 8 for the bug fix release, and
bit 7 ~ 0 Build number. The greater value of the higher bit indicates a newer version. For
example as (1) 1.0.0.10 and (2) 2.0.0.1, then the version number of (2) is new, because of
the major version number of (2) is greater than (1)’s , 2 is greater than 1, even if the build
number of (2) is less than (1), 1 is less than 10.

Bit 31 ~ 24 Bit 23 ~ 16 Bit 15 ~ 8 Bit 7 ~ 0

Major version Minor version Bug fix release Build number

Table 2-1 Firmware Version Number

2.2.3 Communication by OTA Protocol

Figure 2-4 illustrates the handshake flow when performing OTA firmware upgrade. The
requirements of the OTA application definition firmware upgrade are issued by the OTA
server side, which facilitates the control of the OTA client firmware version.

Bank0 Bank1

Boot

Loader

Old

Firmware

Bank0 Bank1

Boot

Loader

Old

Firmware
New

Firmware

(1) APROM Initial State

(2) APROM Write New Firmware

Bank0 Bank1

Boot

Loader

New

Firmware
New

Firmware

(3) APROM Update Firmware

Apr 8, 2019 Page 8 of 20 Rev 1.00

AN0043

The whole steps are as follows:

(1) OTA server side issued firmware update request (CMD_FWUPDATE_REQ), send out the

verification pattern and the new firmware version number. The purpose of the validation

pattern is to allow the OTA client to verify that the new firmware to be deployed by the

OTA server is matched.

(2) After the OTA client received the firmware update request, verify that the pattern is correct,

and then reply to firmware update confirm (CMD_FWUPDATE_CFM) containing the result

to inform the OTA server.

(3) When the OTA client side to verify pattern passed, will be based on OTA server sent to

the firmware version number, to decide to update firmware or do not update. And then

send this decision by firmware update type selection request (CMD_UPTYPSEL_REQ) to

the OTA server side.

(4) After receiving the OTA client, the OTA client will reply to the firmware update type

selection confirm (CMD_UPTYPSEL_CFM) and give the size of the firmware so that the

OTA client can know the reception progress of firmware upgrade.

(5) Next, OTA server side will start to send the firmware data. Whole data of the firmware will

be divided into multiple frame and send to OTA client by data of firmware update

indication (CMD_UPSYSDAT_IND) with the firmware information, and wait for response

by OTA client reply data of firmware update status indication

(CMD_UPSYSDATSTS_IND). If the result is correct, the next frame data will be

transferred.

Apr 8, 2019 Page 9 of 20 Rev 1.00

AN0043

OTA server(BT server)OTA client(BT client)

Start OTA process

CMD_FWUPDATE_CFM

CMD_FWUPDATE_REQ

CMD_UPTYPSEL_REQ

Transfer all new firmware data

CMD_UPSYSDAT_IND

CMD_UPTYPSEL_CFM

CMD_UPSYSDATSTS_IND

1.Pattern check(chip

series name)

2.send newest firmware

version

Select update type

1. update firmware

2. none

Send new firmware.

If selected update type is

update firmware

Pattern check(chip series

name) pass

Figure 2-4 OTA Protocol Communication Flow

Apr 8, 2019 Page 10 of 20 Rev 1.00

AN0043

2.3 Architectural Advantages

The OTA system upgrade service with the above system upgrade architecture provides the
following advantages and features. To ensure that the system source code intact, the new
system can be stable and normal operation, as well as perform system upgrades efficiently in
the background.

2.3.1 Integrity for Update Firmware

OTA protocol can be used to communication the update selection of OTA client side, update
the firmware or do not update. The new firmware data deployed by the OTA server shall each
contain a CRC checksum of the complete firmware. When the OTA client receives the
firmware to be upgraded, it needs to recalculate the CRC checksum of new firmware data to
do comparison, so OTA client can confirm that the firmware to be upgraded has been intact
write into Flash, in order to ensure that the switch to the new system can work properly.

2.3.2 Stability for System Operation

In the OTA client to implement a boot loader, is to select the appropriate and no damage to
the firmware, to ensure that the system of OTA client side can work properly. Because the
Flash will exist two firmware, and these usually are have the same version number. Then the
system boot, the first will check the currently enabled firmware CRC checksum. If the value is
correct, boot loader will read the backup of firmware version number. If the version number is
newer than the original enabled firmware, then check its CRC checksum is correct. If checked
by CRC checksum, then erase the old version of the firmware, and write the latest firmware.
Next, the new version of the firmware will start operation. If the new version of the firmware
CRC checksum failed to check, then choose to enable the original firmware version, and
erase the firmware version of the new firmware; write the currently enabled firmware, used as
a spare firmware. This implementation ensures that the firmware upgrade process can be
continuous in the next system boot if power is lost when the system is updating.

If OTA client device take into account the worst case that both the two firmware in the Flash
are damaged. It can place a copy of the initial firmware version in Flash, and never be
overwrote by perform firmware update.

2.3.3 Efficiency for Firmware Upgrade

To take the advantage of dual bank Flash memory hardware architecture, by written the
current operation of the firmware and to the new firmware on different Flash bank, so CPU
can still perform the current tasks while update firmware at the same time. This method does
not affect the performance of current system, and process firmware upgrade in the
background.

Apr 8, 2019 Page 11 of 20 Rev 1.00

AN0043

3 Sample Description

This sample implements an OTA client that uses an NuTiny board with an HC-05 Bluetooth
module, the SPP profile over the Bluetooth 2.0 + EDR protocol, and an OTA server for OTA
upgrades the OTA client-side system and application firmware. The visual difference before
and after the firmware update is a flashing frequency of a LED on the NuTiny board. While the
firmware will be upgraded from version 1.0.0.1 to 1.0.0.2.

3.1 Programming Architecture

The firmware programming architecture of the OTA client is shown in Figure 3-1. To add an
OTA porting layer under the OTA protocol layer, this porting layer is an interface adaptor for
MCU peripheral resources, such as FMC, UART, and TIMER. This OTA porting layer
facilitates the subsequent use of other MCU or replace Bluetooth wireless module with other
wireless module.

BT Client(SPP)

OTA protocol

(OTA client)

LED

OTA porting layer

UART FMC(Flash) TIMER GPIO

M261

Figure 3-1 OTA Client Firmware Architecture

The currently defined OTA porting layer interface is as follows:

/* send OTA command to another device */

void OTA_API_SendFrame(uint8_t* pu8Buff, uint32_t u32Len);

/* configure next receiving buffer length */

void OTA_API_RecvFrame(uint32_t u32Len);

/* the callback interface for a command has received */

int8_t OTA_API_RecvCallBack(uint8_t* pu8Buff, uint32_t u32Len, uint32_t u32StartIdx,
uint32_t u32ValidLen);

Apr 8, 2019 Page 12 of 20 Rev 1.00

AN0043

/* init function for any hardware requirements(optional) */

void OTA_API_Init(void);

/* give user to define their own firmware version number definition */

uint8_t OTA_API_GetFWUpdateTypeSel(uint32_t u32NewFwVer);

/* firmware CRC checksum calculation function */

uint32_t OTA_API_CalCrcChkSum32(uint32_t u32addr, uint32_t u32count);

/* get each flash page size for different chip */

uint32_t OTA_API_GetFlashPageSize(void);

/* erase flash */

uint8_t OTA_API_EraseFlash(uint32_t u32FlashAddr);

/* write flash */

uint8_t OTA_API_WriteFlash(uint32_t u32FlashAddr, uint32_t u32Data);

/* get new system firmware CRC checksum */

uint32_t OTA_API_GetNewSysFwChkSum(void);

/* inform firmware upgrade operation has finish */

void OTA_API_NewFwReady(void);

/* init a timer for receiving data timeout, timeout period is 1s */

void OTA_API_ProgressTimerInit(void);

/* start timer counting*/

void OTA_API_ProgressTimerStart(void);

/* stop timer counting*/

void OTA_API_ProgressTimerStop(void);

Apr 8, 2019 Page 13 of 20 Rev 1.00

AN0043

3.2 Sample Code of OTA Client

The following lists definitions of the firmware upgrade macro.

#define SYS_FW_BASE (0x40000UL) /* base address of current system firmware */

#define SYS_FW_BLOCK_SIZE (0x8000UL) /* block size of current system firmware */

#define SYS_FW_CHECKSUM_BASE (0x47FFCUL) /* CRC checksum address of current system
firmware */

#define SYS_FW_VERSION_BASE (0x00047FF8) /* current firmware version address */

/**/

/****** System Firmware Upgrade Definitions ******/

/**/

#define SYS_NEW_FW_BASE (0x00006000UL) /* 0x0 ~ 0x6000 was reserved for
boot loader(default one flash page size is 2Kbytes) */

#define SYS_NEW_FW_BLOCK_SIZE (0x8000UL) /* include system firmware, CRC
checksum and firmware version */

#define SYS_NEW_FW_VERSION_BASE (SYS_NEW_FW_BASE + SYS_NEW_FW_BLOCK_SIZE - 0x8UL) /*
firmware version of new system firmware location, size is one word */

#define SYS_NEW_FW_CHECKSUM_BASE (SYS_NEW_FW_VERSION_BASE + 0x4UL) /*
CRC checksum of firmware location, size is one word */

The following is the sample code for the main function in the OTA client side.

#define IO_LED PC14 // LED on NuTiny

void SYS_Init(void);

void UART5_Init(void);

void UART2_Init(void);

uint32_t GetSystemCoreClock(void)

{

 return SystemCoreClock;

}

void LED_On(uint32_t us)

{

 DEBUG_MSG("LED On\n");

 IO_LED = 0;

}

void LED_Off(uint32_t us)

{

Apr 8, 2019 Page 14 of 20 Rev 1.00

AN0043

 DEBUG_MSG("LED OFF\n");

 IO_LED = 1;

}

/*--

 SysTick IRQ Handler

 --/

void SysTick_Handler(void)

{

 static uint32_t ticks = 0;

 switch(ticks++)

 {

 case 0:

 LED_On(7u);

 break;

 case 40:

 LED_Off(7u);

 break;

 case 80:

 ticks = 0;

 break;

 default:

 if(ticks > 80)

 {

 ticks = 0;

 }

 }

}

/* ------------- */

/* Main function */

/* ------------- */

int main(void)

{

 uint32_t u32SysFwVer;

 SYS_UnlockReg();

 SYS_Init();

 /* For BT control */

Apr 8, 2019 Page 15 of 20 Rev 1.00

AN0043

 UART2_Init();

 /* For debug message */

 UART5_Init();

 /* Configure PC.14 as output mode for IO_LED */

 PC->MODE |= (GPIO_MODE_OUTPUT << 14 * 2);

/* Configre timuout time for system tick */

 SysTick_Config(SystemCoreClock / 100);

 printf("\n");

 printf("+---+\n");

 printf("| OTA Client(BT Client) |\n");

 printf("+---+\n");

 u32SysFwVer = OTA_API_GetSysFwVer();

 printf("Firmware Version: %02d.%02d.%02d.%02d\n", \

 u32SysFwVer>>24, (int32_t)(u32SysFwVer&BYTE2_Msk)>>16,
(int32_t)(u32SysFwVer&BYTE1_Msk)>>8, (int32_t)(u32SysFwVer&BYTE0_Msk));

 printf("System core clock = %d\n", SystemCoreClock);

/* OTA initialization */

 OTA_Init();

 while(SYS->PDID)__WFI();

 return 0;

}

void SYS_Init(void)

{

 int32_t i;

 /*--*/

 /* Init System Clock */

 /*--*/

 /* Enable PLL */

 CLK->PLLCTL = CLK_PLLCTL_96MHz_HIRC;

 /* Waiting for PLL stable */

 while((CLK->STATUS & CLK_STATUS_PLLSTB_Msk) == 0);

Apr 8, 2019 Page 16 of 20 Rev 1.00

AN0043

 /* Set HCLK divider to 2 */

 CLK->CLKDIV0 = (CLK->CLKDIV0 & (~CLK_CLKDIV0_HCLKDIV_Msk)) | 1;

 /* Switch HCLK clock source to PLL */

 CLK->CLKSEL0 = (CLK->CLKSEL0 & (~CLK_CLKSEL0_HCLKSEL_Msk)) | CLK_CLKSEL0_HCLKSEL_PLL;

 /* Enable IP clock */

 CLK->APBCLK0 |= CLK_APBCLK0_UART5CKEN_Msk | CLK_APBCLK0_UART2CKEN_Msk;

 /* Select IP clock source */

 CLK->CLKSEL1 = CLK_CLKSEL1_UART0SEL_HIRC;

 CLK->CLKSEL3 = CLK_CLKSEL3_UART2SEL_HIRC | CLK_CLKSEL3_UART5SEL_HIRC;

 /* Update System Core Clock */

 /* User can use SystemCoreClockUpdate() to calculate PllClock, SystemCoreClock and
CycylesPerUs automatically. */

 //SystemCoreClockUpdate();

 PllClock = 96000000; // PLL

 SystemCoreClock = 96000000 / 2; // HCLK

 CyclesPerUs = 48000000 / 1000000; // For SYS_SysTickDelay()

 /*--*/

 /* Init I/O Multi-function */

 /*--*/

 /* Init UART2 for Bluetooth */

 SYS->GPB_MFPL |= SYS_GPB_MFPL_PB5MFP_UART2_RXD;

 SYS->GPA_MFPH |= SYS_GPA_MFPH_PA13MFP_UART2_TXD;

 /* Init UART5 for debug message */

 SYS->GPG_MFPH = SYS_GPG_MFPH_PG9MFP_UART5_RXD | SYS_GPG_MFPH_PG10MFP_UART5_TXD;

}

void UART5_Init(void)

{

 /*--*/

 /* Init UART */

 /*--*/

 /* Configure UART5 and set UART5 Baudrate */

 UART5->BAUD = UART_BAUD_MODE2 | UART_BAUD_MODE2_DIVIDER(__HIRC, 115200);

Apr 8, 2019 Page 17 of 20 Rev 1.00

AN0043

 UART5->LINE = UART_WORD_LEN_8 | UART_PARITY_NONE | UART_STOP_BIT_1;

}

void UART2_Init(void)

{

 /*--*/

 /* Init UART */

 /*--*/

 /* Configure UART2 and set UART2 Baudrate */

 UART2->BAUD = UART_BAUD_MODE2 | UART_BAUD_MODE2_DIVIDER(__HIRC, 9600);

 UART2->LINE = UART_WORD_LEN_8 | UART_PARITY_NONE | UART_STOP_BIT_1;

 /* Enable UART2 Interrupt */

 UART_ENABLE_INT(UART2, (UART_INTEN_RDAIEN_Msk));

 NVIC_EnableIRQ(UART2_IRQn);

}

Apr 8, 2019 Page 18 of 20 Rev 1.00

AN0043

4 Conclusion

The M261 series chip, with its dual bank Flash hardware architecture, implements the
technology of the OTA firmware update. The OTA firmware update can be processed in the
background without affecting the original firmware operating efficiency.

Apr 8, 2019 Page 19 of 20 Rev 1.00

AN0043

Revision History

Date Revision Description

2019.04.08 1.00 1. Initially issued.

Apr 8, 2019 Page 20 of 20 Rev 1.00

AN0043

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.

 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

	1 Introduction
	2 Application Overview
	2.1 Firmware Upgrade Architecture
	2.2 System and Application Firmware Upgrade Process
	2.2.1 Update Process in Dual Bank Flash
	2.2.2 Version Control of Firmware
	2.2.3 Communication by OTA Protocol

	2.3 Architectural Advantages
	2.3.1 Integrity for Update Firmware
	2.3.2 Stability for System Operation
	2.3.3 Efficiency for Firmware Upgrade

	3 Sample Description
	3.1 Programming Architecture
	3.2 Sample Code of OTA Client

	4 Conclusion

