

Aug 13, 2019 Page 1 of 41 Rev 1.01

AN0044

Application Note for 32-bit NuMicro® Family

Document Information

Abstract Introduce the M261 Secure Bootloader, Secure Boot verification
mechanism, and how it works to perform a trusted boot; and
demonstrate using the SecureBootDemo to create a trusted
execution system launched from the Secure Bootloader.

Apply to NuMicro® M261 series

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

M261 Trusted Boot

http://www.nuvoton.com/

Aug 13, 2019 Page 2 of 41 Rev 1.01

AN0044

Table of Contents

1 OVERVIEW .. 4

2 SECURE BOOTLOADER (NUBL1) ... 5

2.1 Features .. 5

2.2 Boot Source Selection .. 5

2.3 Execution Region .. 6

3 NUBL2 AND NUBL32 .. 7

3.1 NuBL2 Features ... 8

3.2 NuBL32 Features ... 8

4 FIRMWARE VERIFICATION MECHANISM .. 9

4.1 Required Components .. 9

4.1.1 Required Components to Verify the NuBL2 ... 9
4.1.2 Required Components to Verify the NuBL32 ... 11

4.2 Verification Procedure .. 12

4.2.1 NuBL1 Verification Procedure .. 12
4.2.2 NuBL2 Verification Procedure .. 15

5 SECUREBOOTDEMO .. 19

5.1 NuBL2/NuBL32 FW INFO .. 20

5.1.1 Information Template ... 20
5.1.2 FW INFO Structure .. 21
5.1.3 FW INFO Generation ... 23

5.2 NuBL2 Marker .. 27

5.2.1 NuBL2 Marker Structure ... 27
5.2.2 NuBL2 Marker Generation .. 28

5.3 NuBL2 Verification Functions .. 30

5.4 NuBL32 Public Key Storage ... 32

5.4.1 Encrypted Public Key .. 32
5.4.2 Encrypted Public Key Hash .. 33
5.4.3 Allocate Key Storage ... 34
5.4.4 AES-256 Key .. 35

5.5 Download Firmware and Information ... 37

Aug 13, 2019 Page 3 of 41 Rev 1.01

AN0044

6 CONCLUSION .. 39

Aug 13, 2019 Page 4 of 41 Rev 1.01

AN0044

1 Overview

The M261 Secure Bootloader is a bootable code pre-written in the M261 Mask ROM. It is
tamper-proof due to the Read-Only feature of Mask ROM. Besides, the memory attribute of
Secure Bootloader is configured as Execute-Only to prevent a thief from reading the source
code or tracing the instruction execution.

The trusted boot is a chain of trust process for verifying each software identity and integrity on
the system. The M261 Secure Bootloader provides a root of trust solution for a system
developer to create a trusted execution system in the M261 microcontroller (MCU).

In this document, Chapter 2 will detail the features of M261 Secure Bootloader (NuBL1).
Chapter 3 introduces the features of NuBL2 and NuBL32. Chapter 4 describes the secure
boot verification mechanism in NuBL1 and NuBL2.

Chapter 5 "SecureBootDemo" will demonstrate how to develop a trusted execution system
launched from M261 Secure Bootloader (also named NuBL1), including a trusted boot code
(also named NuBL2) and a system code (also named NuBL32). Figure 1-1 shows the trusted
execution system in M261.

 System boots from M261 Mask ROM, then NuBL1 performs Secure Boot verification to

NuBL2

 System runs in NuBL2 and performs the identity and integrity verification to NuBL32

SecureBootDemo

System Code
(NuBL32)

Mask ROM

Secure Bootloader
(NuBL1)

Secure Bootloader
(NuBL1)

Trusted Boot Code
(NuBL2) Verify

& execute

Identification, Authentication, Integrity

Secure Boot Verification
& execute

M261M261

Boot

Figure 1-1 Trusted Execution System in M261

Aug 13, 2019 Page 5 of 41 Rev 1.01

AN0044

2 Secure Bootloader (NuBL1)

The Secure Bootloader (NuBL1) is a built-in bootloader in the M261 Mask ROM. It is a boot-
up code to verify the next stage trusted boot code (NuBL2) in the M261 trusted execution
system.

This chapter introduces the main features and related configuration of Secure Bootloader.

2.1 Features

The features of Secure Bootloader are as follows.

 Memory attribute is configured as Execute-Only Memory (XOM)

 Support Secure Boot verification for validating the identity and integrity of the next stage

firmware

 The verification is based on the ECDSA (Elliptic Curve Digital Signature Algorithm)

 Store the verification fail status at SRAM 0x2000_0000

 Use internal HIRC-48M as system clock

2.2 Boot Source Selection

CONFIG0 in the User Configuration Block is an internal programmable configuration area for
specifying boot options in the M261 series MCU. The boot source is selected by setting the
CONFIG[5] MBS and CONFIG[7] CBS, as shown in Figure 2-1.

Mask ROM
(execute Secure Bootloader)

Mask ROM
(execute Secure Bootloader)

0

1

MBS
(CONFIG0[5])

CBS
(CONFIG0[7])

0

1

LDROM with IAPLDROM with IAP

APROM with IAPAPROM with IAP

Figure 2-1 Boot Source Selection

According to the boot source selection, the CONFIG[5] MBS should be configured to 0 to
execute the Secure Bootloader in the M261 Mask ROM. To ensure the trusted boot, the
system developer should not erase CONFIG[5] MBS to 1, which will cause the system reboot
and execute the unauthenticated code in APROM or LDROM.

Aug 13, 2019 Page 6 of 41 Rev 1.01

AN0044

Once a Flash mass erase command is executed, all Flash data including CONFIG0 will be
erased to 1, thus the system will start from APROM on the next reboot. The system developer
should configure MBS to 0 and program the next trusted boot code again to implement a
trusted execution system launched from Secure Bootloader.

2.3 Execution Region

The Secure Bootloader code is built in the tamper-proof Mask ROM and placed between
0x0080_0000 to 0x0080_7FFF, with a total of 32KB.

The SRAM range used in the Secure Bootloader is from SRAM 0x2000_0000 to
0x2000_3FFF, with a total of 16KB.

Figure 2-2 shows the execution region of Secure Bootloader.

Mask ROM (32KB)
(Secur Bootloader)

0x80_0000 0x2000_0000

0x2001_7FFF

0x80_7FFF

0x2000_3FFF
SRAM

SRAM (96KB)SRAM (96KB)

Figure 2-2 Execution Region of Secure Bootloader

Aug 13, 2019 Page 7 of 41 Rev 1.01

AN0044

3 NuBL2 and NuBL32

In addition to the Secure Bootloader (NuBL1) in the Mask ROM, the M261 trusted execution

system also includes a trusted boot code (NuBL2) and a system code (NuBL32) to achieve

the trusted boot. The function of these codes is briefly described below.

 NuBL2: A trusted boot code as a customer loader to load and execute the next stage

system code (NuBL32).

 NuBL32: A system code to initialize system services and perform applications on the

M261 MCU.

Figure 3-1 shows the relation among the NuBL2 and NuBL32 in the M261 trusted execution
system.

NuBL1
(Secure Bootloader)

NuBL2
(Customer Loader)

NuBL32
(System services,

Applications)

Boot

M261M261

Verify & Load Verify & Load

Figure 3-1 NuBL2/NuBL32 Function in M261 Trusted Execution System

Alternatively, a system developer can also integrate NuBL32 into NuBL2 to support NuBL2

only without customer loader function, as shown in Figure 3-2.

NuBL1
(Secure Bootloader)

NuBL2
(System services,

Applications)

Boot

M261M261

Verify & Load

Figure 3-2 Only NuBL2 in Trusted Execution System

The following sections describe the main features of NuBL2 and NuBL32 in the M261 trusted

Aug 13, 2019 Page 8 of 41 Rev 1.01

AN0044

execution system.

3.1 NuBL2 Features

NuBL2 is the trusted boot code used to verify the NuBL32. The features of NuBL2 are as
follows.

 The first stage code in the trusted execution system booted by NuBL1.

 Verifies NuBL32 identity and integrity. After successfully verifying NuBL32, the NuBL2

will generate a software reset to execute NuBL32.

3.2 NuBL32 Features

The NuBL32 is a system code. The features of NuBL32 is as follows.

 The system initialization and application code in the trusted execution system booted by

NuBL2.

Aug 13, 2019 Page 9 of 41 Rev 1.01

AN0044

4 Firmware Verification Mechanism

The current firmware needs to verify its identity and integrity before executing the next stage

firmware. In order to correctly verify the firmware, some components related to the next stage

firmware are required. The necessary components will be introduced in section 4.1.

The verification procedure is supported in both NuBL1 and NuBL2. The NuBL1 or NuBL2

identifies the firmware and verifies its integrity. The detailed verification procedure will be

introduced in section 4.2.

4.1 Required Components

4.1.1 Required Components to Verify the NuBL2

To achieve the Secure Boot verification in Secure Bootloader (NuBL1), the required
components related to NuBL2 are listed as follows.

 NuBL1 FW (Secure Bootloader, built in the M261 Mask ROM)

 NuBL2 Marker (programmed in Flash)

 NuBL2 Public Key Hash (programmed in OTP0~3 region)

 NuBL2 FW INFO (programmed in Flash)

 NuBL2 FW (a trusted boot code, programmed in Flash)

Figure 4-1 shows the required components for verifying NuBL2 in the M261 trusted execution
system.

Aug 13, 2019 Page 10 of 41 Rev 1.01

AN0044

NuBL2 FW
NuBL2 Public Key

Hash

OTP0 ~ 3OTP0 ~ 3

NuBL1 FW

Mask ROMMask ROM

0x80_0000

FlashFlash

FW INFO address

NuBL2 FW start address

Magic Word (0x4C42754E)+0x10

NuBL2 FW INFO address

Reserved

Checksum

+0x14

+0x18

+0x1c

NuBL2 Marker

NuBL2 FW INFO

ECC Public Key
(256-bits + 256-bits)

Metadata
(Firmware region, Extend information)

FW Hash
(256-bits)

ECDSA Signature
(256-bits + 256-bits)

Figure 4-1 Required Component for Verifying the NuBL2

The function of each component is described as follows.

 NuBL1 FW is used to verify the identity and integrity of NuBL2

 Use NuBL2 Public Key Hash to identify NuBL2Use NuBL2 FW INFO and its ECDSA

signature for NuBL2 authentication

 Use NuBL2 firmware hash for verifying NuBL2 integrity

 NuBL2 Marker is used to indicate the NuBL2 execution address and NuBL2 firmware

information address.

 NuBL2 Public Key Hash located at OTP0~3 is a SHA-256 digest of NuBL2 ECC public

key

 If the OTP0~3 data are all “1”, it means that there is no public key hash in this

system, and NuBL1 will skip to identify NuBL2.

 NuBL2 FW INFO (firmware information) is a data block consisting of NuBL2 “ECC Public

Key”, “Metadata”, “FW Hash” and “ECDSA Signature”.

 Metadata includes firmware region and extend NuBL2 information

Aug 13, 2019 Page 11 of 41 Rev 1.01

AN0044

 ECDSA Signature is generated with NuBL2 ECC private key and a hash message.

 The hash message is a SHA-256 digest calculated by NuBL2 “ECC Public Key”,

“Metadata” and “FW Hash”.

4.1.2 Required Components to Verify the NuBL32

NuBL2 needs the required components as listed below to verify the NuB32.

 NuBL32 Public Key Storage (programmed in Flash)

 NuBL32 FW INFO (programmed in Flash)

 NuBL32 FW (programmed in Flash)

Figure 4-2 shows the required components for verifying the NuBL32 in the M261 trusted
execution system.

NuBL32 FW

NuBL32/NuBL33
Public Key Storage

FlashFlash

NuBL2 FW

FlashFlash

NuBL32 FW INFO

ECC Public Key
(256-bits + 256-bits)

Metadata
(Firmware region, Extend information)

FW Hash
(256-bits)

ECDSA Signature
(256-bits + 256-bits)

Aug 13, 2019 Page 12 of 41 Rev 1.01

AN0044

Figure 4-2 Required Component for Verifying the NuBL32

The function of each requirement is described as follows.

 NuBL32 Public Key Storage is used for NuBL2 to obtain the NuBL32 ECC public key.

 Includes encrypted NuBL32 ECC public key and its SHA-256 digest

 NuBL32 FW INFO (firmware information) is a data block consisting of NuBL32 “ECC

Public Key”, “Metadata”, “FW Hash” and “ECDSA Signature”

 Metadata includes firmware region and extend NuBL32 information.

 ECDSA Signature is generated with NuBL32 ECC private key and a hash message.

 The hash message is a SHA-256 digest calculated by NuBL32 “ECC Public

Key”, “Metadata” and “FW Hash”.

4.2 Verification Procedure

The following sections will detail the verification procedure in NuBL1 and NuBL2, including
identification, authentication and firmware integrity.

4.2.1 NuBL1 Verification Procedure

4.2.1.1 Identification

The identification is to ensure that the NuBL2 ECC public key (as NuBL2 firmware identity)
exists in the M261 MCU.

The NuBL1 obtains the NuBL2 ECC public key in NuBL2 FW INFO, calculates its hash and
identifies it with the NuBL2 public key hash stored in M261 OTP0~3.

If NuBL1 does not recognize the NuBL2 identity, no firmware can be executed from NuBL1. It
means that only the firmware with the NuBL2 ECC public key (NuBL2 identity) can be
executed on the M261 MCU.

Figure 4-3 shows the process of identification in NuBL1.

1. Reset to execution in Secure Bootloader (NuBL1).

2. Get and calculate NuBL2 ECC public key hash in (1).

3. Read OTP0~3 (public key hash) in (2) and identify it using the calculated NuBL2 ECC

public key hash.

Aug 13, 2019 Page 13 of 41 Rev 1.01

AN0044

NuBL1 FW
(Secure Bootloader)

Secure World

Reset

Authentication

 NuBL1 FW Scope NuBL1 FW Scope

Identification

OTP

 HASHBL2

(2)

ECC Private Key

BL2

ECC Public Key

BL2

Glossary of NuBL2 Key GroupGlossary of NuBL2 Key Group

Private AES Key

AES

 NuBL2 FW Package NuBL2 FW Package

NuBL2 FW INFO

ECDSA Signature

Metadata

BL2

NuBL2 FW
(trusted boot code)

FW Hash Metadata

BL2

FW Hash

Information HashInformation Hash

BL2

 (ECDSA)

 HASHBL2

(1)

Figure 4-3 Identification in NuBL1

4.2.1.2 Authentication

The authentication intends to validate a NuBL2 FW INFO (firmware information) provided by
the NuBL2 developer.

Since the “ECDSA Signature” in NuBL2 FW INFO is generated using the NuBL2 ECC private
key and a hash message calculated by NuBL2 “ECC Public Key”, “Metadata” and “FW Hash”.
NuBL1 can verify the “ECDSA Signature” using the NuBL2 ECC public key and the calculated
hash message without knowing the exact NuBL2 ECC private key.

After authentication, NuBL1 can obtain the valid NuBL2 firmware region and hash for
firmware integrity verification.

Figure 4-4 shows the process of authentication in NuBL1.

1. Calculate an information hash in (1), (2) and (3)

 It’s a SHA-256 digest that calculated by NuBL2 “ECC Public Key”, “Metadata” and

“FW Hash”

2. Perform ECDSA signature verification using the calculated information hash, the NuBL2

ECC public key in (4), and the ECDSA signature in (5)

Aug 13, 2019 Page 14 of 41 Rev 1.01

AN0044

Secure World

Intergrity

 NuBL1 FW Scope NuBL1 FW Scope NuBL2 FW Package NuBL2 FW Package

NuBL2 FW INFO

ECDSA Signature

Metadata

BL2

NuBL2 FW
(trusted boot code)

FW Hash Metadata

BL2

FW Hash

Information HashInformation Hash

BL2

 (ECDSA)

Authentication

Verify Signature

ECDSA Signature

Calculate Message

Information Hash (1)
(2)
(3)

 (4)

(5)OTP

 HASHBL2

Figure 4-4 Authentication in NuBL1

4.2.1.3 Integrity

Performing the firmware (NuBL2 FW) integrity verification is the last verification mechanism in
the trusted execution system.

NuBL1 obtains the firmware region in the Metadata from NuBL2 FW INFO to calculate the
NuBL2 firmware hash.

After that, NuBL1 performs firmware integrity verification using the calculated NuBL2 firmware
hash and FW Hash in NuBL2 FW INFO.

Figure 4-5 shows the process for verifying integrity in NuBL1.

1. Obtain FW Hash from NuBL2 FW INFO in (1).

2. Calculate the firmware hash in (2) and compare it with FW Hash.

 The calculated NuBL2 firmware region is recorded in the Metadata.

Aug 13, 2019 Page 15 of 41 Rev 1.01

AN0044

Secure World

Execute NuBL2 FW

 NuBL1 FW Scope NuBL1 FW Scope NuBL2 FW Package NuBL2 FW Package

NuBL2 FW INFO

ECDSA Signature

Metadata

BL2

NuBL2 FW
(trusted boot code)

FW Hash Metadata

BL2

FW Hash

Information HashInformation Hash

BL2

 (ECDSA)

Integrity

Calculate & Verify

Calculated Firmware Hash

Extract

FW Hash

(1)

(2)
 HASHBL2

OTP

 HASHBL2

Figure 4-5 Integrity in NuBL1

4.2.2 NuBL2 Verification Procedure

The verification process in NuBL2 is similar to the NuBL1 verification process. But it uses the
encrypted NuBL32 Public Key Storage instead of the public key hash in OTP0~3 for firmware
identification.

The following sections detail the NuBL2 verification procedure.

4.2.2.1 Identification

The identification is to ensure that the NuBL32 ECC public key (as NuBL32 firmware identity)
exists in the M261 MCU.

The Public Key Storage located in Flash consists of the encrypted NuBL32 ECC public key
and its SHA-256 digest.

When system runs in NuBL2, NuBL2 verifies the integrity of Public Key Storage first, and then
decrypts the Public Key Storage to obtain the NuBL32 ECC public key. After that, NuBL2 will
perform an identification using this decrypted public key and the ECC public key in the
NuBL32 FW INFO.

If NuBL2 does not recognize the NuBL32 identity, no firmware can be executed from NuBL2.
It means that only firmware with a NuBL32 ECC public key (NuBL32 identity) can be executed
on the M261 MCU.

Figure 4-6 shows the process to decrypt the Public Key Storage in NuBL2.

1. Use internal NuBL2 AES key to decrypt the Public Key Storage in (1).

2. Obtain the NuBL32 public key from the decrypted key storage in (2).

Aug 13, 2019 Page 16 of 41 Rev 1.01

AN0044

Secure World

 NuBL2 FW Scope NuBL2 FW Scope NuBL32 FW Package NuBL32 FW Package

NuBL32 FW INFO

ECDSA Signature

Metadata

BL32

NuBL32 FW

FW Hash Metadata

BL32

FW Hash

Information HashInformation Hash

BL32

 (ECDSA)

NuBL2 FW
(trusted boot code)

AES

Public Key Storage

(AES)

Encrypt

Extract

Continue ...

Internal AES Key

Decrypt

Public Key Storage

AES

BL32

BL32

(1)

(2)

Figure 4-6 Decrypt Public Key Storage in NuBL2

Figure 4-7 shows the process for identification in NuBL2.

3. Get NuBL32 public key from the Public Key Storage in (3).

4. Obtain the NuBL32 public key in (4) and identify it using the public key decrypted from the

Public Key Storage.

Secure World

 NuBL32 FW Package NuBL32 FW Package

NuBL32 FW INFO

ECDSA Signature

Metadata

BL32

NuBL32 FW

FW Hash Metadata

BL32

FW Hash

Information HashInformation Hash

BL32

 (ECDSA)

 NuBL2 FW Scope NuBL2 FW Scope

Public Key Storage

(AES)

Authentication

BL32

Continue ...
Identification

BL32
(4)

(3)

Figure 4-7 Identification in NuBL2

Aug 13, 2019 Page 17 of 41 Rev 1.01

AN0044

4.2.2.2 Authentication

The authentication intends to validate a NuBL32 FW INFO (firmware information) provided by
the NuBL32 developer.

The NuBL32 FW INFO consists of “NuBL32 ECC Public Key”, “Metadata”, “FW Hash” and
“ECDSA Signature”.

Since the “ECDSA Signature” in NuBL32 FW INFO is generated using the NuBL32 ECC
private key and a hash message calculated by NuBL32 “ECC Public Key”, “Metadata” and
“FW Hash”. NuBL2 can verify the “ECDSA Signature” using the NuBL32 ECC public key and
the calculated hash message without knowing the exact NuBL32 ECC private key.

After authentication, NuBL2 can obtain the valid NuBL32 firmware region and hash for
firmware integrity verification.

Figure 4-8 shows the process for authentication in NuBL2.

1. Calculate an information hash in (1), (2) and (3).

 It’s a SHA-256 digest that calculated by NuBL32 “ECC Public Key”, “Metadata” and

“FW Hash”.

2. Perform ECDSA signature verification using the calculated information hash, the NuBL32

ECC public key in (4), and the ECDSA signature in (5).

Secure World

 NuBL2 FW Scope NuBL2 FW Scope NuBL32 FW Package NuBL32 FW Package

NuBL32 FW INFO

ECDSA Signature

Metadata

BL32

NuBL32 FW

FW Hash Metadata

BL32

FW Hash

Information HashInformation Hash

BL32

 (ECDSA)
Public Key Storage

(AES)

Integrity

Calculate Message

BL32

(2)
Authentication

Verify Signature

(1)Information Hash

ECDSA Signature

(3)

 (4)

(5)

Figure 4-8 Authentication in NuBL2

4.2.2.3 Integrity

Performing the firmware (NuBL32 FW) integrity verification is the last verification mechanism
in trusted execution system.

NuBL2 obtains the firmware region in the Metadata from NuBL32 FW INFO to calculate the
NuBL32 firmware hash.

Aug 13, 2019 Page 18 of 41 Rev 1.01

AN0044

After that, NuBL2 performs firmware integrity verification using the calculated NuBL32
firmware hash and FW Hash in NuBL32 FW INFO.

Figure 4-9 shows the process for verifying integrity in NuBL2.

1. Obtain FW Hash from NuBL2 FW INFO in (1).

2. Calculate the firmware hash in (2) and compare it with FW Hash.

 The calculated NuBL32 firmware region is recorded in the Metadata.

Secure World

 NuBL2 FW Scope NuBL2 FW Scope NuBL32 FW Package NuBL32 FW Package

NuBL32 FW INFO

ECDSA Signature

Metadata

BL32

NuBL32 FW

FW Hash Metadata

BL32

FW Hash

Information HashInformation Hash

BL32

 (ECDSA)
Public Key Storage

(AES)

Execute NuBL32 FW

Extract

BL32

Integrity

Calculate & Verify

(1)

FW Hash

Calculated Firmware Hash

(2)

Figure 4-9 Integrity in NuBL2

Aug 13, 2019 Page 19 of 41 Rev 1.01

AN0044

5 SecureBootDemo

The SecureBootDemo sample code is created by using Keil® MDK to demonstrate how to
create a trusted execution system, including the Secure Bootloader (NuBL1) verifies the
trusted boot code (NuBL2) and the NuBL2 verifies the next application code (NuBL32).

All the sample code could be found at “\SampleCode\MKROM\SecureBootDemo” in the M261
BSP, including “NuBL2” folder containing the first stage code and “NuBL32” folder containing
the second stage system code.

Figure 5-1 shows the execution regions of NuBL2/NuBL32 in SecureBootDemo.

NuBL2
(SRAM 0x2000_0000 ~

0x2000_FFFF)0x0

NuBL32
(SRAM 0x2000_0000 ~

0x2000_FFFF)0x2_0000

0x1_0000

0x1_8000

0x1_C000

(XOM)

(NuBL2 FW INFO)

(Public Key Storage)

0x3_8000 (NuBL32 FW INFO)

Figure 5-1 Execution Regions of NuBL2 and NuBL32

 Execution region of NuBL2:

 Flash from 0x0 to 0x0001_FFFF, total 128KB

 SRAM from 0x2000_0000 to 0x2000_FFFF, total 64KB

 Execution region of NuBL32:

 Flash from 0x2_0000 to 0x0003_FFFF, total 128KB

 SRAM from 0x2000_0000 to 0x2000_FFFF, total 64KB

Section 5.1 to Section 5.4 will introduce how to create FW INFO, NuBL2 Maker and Public
Key Storage of NuBL32. Section 5.5 will introduce how to download NuBL2/NuBL32 firmware
and the firmware information using an .ini file in the NuBL2 project.

Aug 13, 2019 Page 20 of 41 Rev 1.01

AN0044

5.1 NuBL2/NuBL32 FW INFO

The NuBL2/NuBL32 FW INFO (firmware information) is a required component for verifying
firmware identity and integrity. It consists of “ECC Public Key”, “Metadata”, “FW Hash” and
“ECDSA Signature”.

5.1.1 Information Template

The source file FwInfo.c includes an information template and is used for NuBL2/NuBL32
project to generate the target FW INFO and reserve a Flash region to store it.

Figure 5-2 shows the NuBL2 firmware information template. For the source file, refer to
“M261BSP\SampleCode\MKROM\SecureBootDemo\NuBL2\FwInfo\FwInfo.c”.

ECC Public Key

Metadata

FW Hash

ECDSA Signature

Figure 5-2 NuBL2 Firmware Information Template

Figure 5-3 shows the NuBL32 firmware information template. For the source file, refer to
“M261BSP\SampleCode\MKROM\SecureBootDemo\NuBL32\FwInfo\FwInfo.c”.

Aug 13, 2019 Page 21 of 41 Rev 1.01

AN0044

ECC Public Key

Metadata

FW Hash

ECDSA Signature

Figure 5-3 NuBL32 Firmware Information Template

After successfully building the NuBL2/NuBL32 project, the “ECC Public Key”, “Metadata”, “FW
Hash” and “ECDSA Signature” will automatically update in the target firmware information
according to its ECC private/public key pair and firmware region.

5.1.2 FW INFO Structure

5.1.2.1 ECC Public Key

The ECC Public Key consists of two sets of 256-bits key data, total 512-bits.

This public key pair intends to identify the firmware and authenticate the firmware information.

5.1.2.2 Metadata

The Metadata includes the Mode selection, Firmware region and Extend information field.

Figure 5-4 shows the Metadata in NuBL2 FW INFO.

Mode selection Firmware region

Extend information

Metadata

Figure 5-4 Metadata in NuBL2 FW INFO

The description of each field is as follows.

 Mode selection

Aug 13, 2019 Page 22 of 41 Rev 1.01

AN0044

The first word of Metadata is to configure the Mode selection as shown in Table 5-1.

Valid Bits Description

BIT[1:0] MUST be 1

BIT[2]
0: Not support PID in the information hash

1: Supports PID in the information hash

BIT[3]
0: Not support UID in the information hash

1: Supports UID[0]~[2] in the information hash

BIT[4]
0: Not support UCID in the information hash

1: Supports UCID[0]~[3] in the information hash

BIT[31:5] Reserved, MUST be all 0

Table 5-1 Mode Selection

 Firmware region

The first word of Firmware region indicates the size of firmware region, and the next two

words are used to store the firmware start address and the firmware size as shown in

Figure 5-5.

Firmware regionFirmware region

Firmware region size Firmware start address

Firmware size

Figure 5-5 Example of Firmware Region

 Firmware region size 0x8 indicates this field contains only one firmware region

 4-bytes is for Firmware start address, the other 4-bytes is for Firmware size

 Firmware start address 0x0 configures the firmware start address for calculating

firmware hash

 Firmware size default to 0x0 in FwInfo.c. But the actual firmware size will be written

in the target FwInfo region after built the NuBL2 project

 Extend information

The first word of Extend information indicates the size of extend information, should be

less than 256 bytes and a multiple of 4, and the follow words are used to set the extend

information as shown in Figure 5-6.

Aug 13, 2019 Page 23 of 41 Rev 1.01

AN0044

Extend informationExtend information

Information sizeInformation size Information dataInformation data

Figure 5-6 Example of Extend Information

5.1.2.3 FW Hash

The FW Hash (firmware hash) is a SHA-256 digest and intend for verifying the firmware
integrity. It is calculated based on the firmware region specified in the Metadata.

5.1.2.4 ECDSA Signature

This ECDSA Signature is a total 512-bits ECDSA firmware information signature. An ECC
private key and information hash are necessary for generating the target ECDSA Signature.
The information hash is generated by the following data and order.

 ECC Public Key

 Metadata

 FW Hash

 ID Information

 BIT[4:2] in the first word of Metadata is to configure whether the ID information is

supported to be calculated in information hash

 BIT[4:2] is 0x0, not support any ID

 BIT[4:2] is not 0x0, supports specified ID

Moreover, using this ECDSA Signature can authenticate the firmware information with the
ECC public key and information hash.

5.1.3 FW INFO Generation

This section describes how to generate the firmware information using the information
template and FwSign tool in the NuBL2 project. The NuBL32 firmware information can be
generated with the same flow in the NuBL32 project.

1. Add FwInfo.c to the NuBL2 project to allocate a firmware information region.

Aug 13, 2019 Page 24 of 41 Rev 1.01

AN0044

 Figure 5-7 FwInfo.c in NuBL2 Project

2. Add a scatter file to configure the NuBL2 firmware information output file and its address

as shown in Figure 5-8.

Figure 5-8 Configure NuBL2 Firmware Information

3. Open “After Build/Rebuild” in the “Options” and configure the parameters of FwSign for

generating the NuBL2 firmware information as shown in Figure 5-9.

Aug 13, 2019 Page 25 of 41 Rev 1.01

AN0044

Figure 5-9 Configure FwSign.exe in NuBL2 Project

 The required files, FwSign.exe and FwSign.ini could be found at

“\SecureBootDemo\NuBL2\Keil”, are for generating the target NuBL2 firmware

information.

 Figure 5-10 shows an example of the initial file FwSign.ini of FwSign.exe.

Figure 5-10 FwSign.ini in NuBL2 Project

 “KEY” field: stores the ECC private/public key pair for generating firmware

information ECDSA Signature

 “ECDSA” field: stores the actual ECDSA Signature after successfully building

the target project

 “HASH” field: stores the actual firmware and information hash after successfully

building the NuBL2 project

 Output the target NuBL2 firmware information

Aug 13, 2019 Page 26 of 41 Rev 1.01

AN0044

After successfully building the NuBL2 project, FwInfo.bin and FwInfo.hex will be

generated in the “\SecureBootDemo\NuBL2\Keil\NuBL2\” folder.

 Figure 5-11 shows the output FwInfo.bin

NuBL2.bin sizeNuBL2.bin size

NuBL2 ECC Public Key

Metadata

NuBL2 FW Hash

NuBL2 ECDSA Signature

Figure 5-11 Target NuBL2 Firmware Information

 FwInfo.hex is also a NuBL2 firmware information, but output as Intel HEX format.

Developer can use Load_NuBL2FwInfo_NuBL3x.ini to download the firmware

information at Flash 0x18000.

Figure 5-12 Load FwInfo.hxe in NuBL2 Project

The secure boot procedure also supports to identify CHIP PID, UID or UCID information that
can be enclosed in the firmware information hash for ECDSA authentication. Figure 5-13
shows the example to add all ID information in FwSign.ini for secure boot verification. In
addition, after the target project has successfully built, the first word of the Metadata will be
updated to 0x1D in FwInfo.bin.

Aug 13, 2019 Page 27 of 41 Rev 1.01

AN0044

Figure 5-13 PID, UID and UCID Example in FwInfo.ini

5.2 NuBL2 Marker

The NuBL2 Marker is a consecutive 16-byte data placed at the NuBL2 execution address
(must be page-size aligned) plus offset 0x10, it records a Flash address for storing NuBL2
firmware information.

The Secure Bootloader (NuBL1) will search the valid NuBL2 Marker first, and then obtain the
NuBL2 firmware information to start the Secure Boot verification to NuBL2.

5.2.1 NuBL2 Marker Structure

This section describes the field and function of the NuBL2 Marker.

 Address and description

NuBL2 execution address

(FW_ADDR)
Description

+ 0x10 Magic Word (0x4C42754E)

+ 0x14 NuBL2 FW INFO address

+ 0x18 Reserved (0x0)

+ 0x1C Checksum

Table 5-2 NuBL2 Marker Structure

 Magic Word

Aug 13, 2019 Page 28 of 41 Rev 1.01

AN0044

 0x4C42754E, it is the ASCII code of “NuBL”

 NuBL1 will search the Magic Word page by page from the bottom of LDROM, if not

found, then search from the bottom of APROM

 NuBL2 FW INFO address

 Record a Flash address for storing NuBL2 firmware information

 Checksum

 The source data are “Magic Word”, “NuBL2 FW INFO address” and “Reserved”, and

the calculation formula as shown follows,

((~M32(FW_ADDR+0x10)) + M32(FW_ADDR+0x14) + M32(FW_ADDR+0x18)) + 1

 NuBL1 can obtain this checksum to check whether the valid NuBL2 Marker present

5.2.2 NuBL2 Marker Generation

The address and contents of the NuBL2 Marker must be allocated in the reserved area of
NuBL2_startup.s.

Figure 5-14 shows the NuBL2 Marker in the NuBL2_startup.s, including “Magic Word”,

“NuBL2 FW INFO address” (g_InitialFWinfo is declared in FwInfo.c) and “Checksum”.

Figure 5-14 NuBL2 Marker in NuBL2_startup.s

Figure 5-15 shows the target NuBL2 Marker in NuBL2 Firmware after successfully building

the NuBL2 project.

Aug 13, 2019 Page 29 of 41 Rev 1.01

AN0044

NuBL2 Marker

Figure 5-15 NuBL2 Marker in NuBL2 Firmware

Aug 13, 2019 Page 30 of 41 Rev 1.01

AN0044

5.3 NuBL2 Verification Functions

The VerifyNuBL3x.c is the source file that provides a set of verification functions in the NuBL2
project.

NuBL2 can call VerifyNuBL3x() API directly to perform NuBL32 identification, authentication
and firmware integrity.

 ……

 /* Verify NuBL32 identity and F/W integrity */

 memcpy((void *)&g_NuBL3xFwInfo, (void *)NUBL32_FW_INFO_BASE, sizeof(FW_INFO_T));

 if(VerifyNuBL3x((uint32_t *)&g_NuBL3xFwInfo, NUBL32_FW_INFO_BASE) == -1)

 {

 printf("\n\nNuBL2 verifies NuBL32 FAIL.\n");

 while(1) {}

 }

 else

 {

 u32NuBL32Base = g_NuBL3xFwInfo.mData.au32FwRegion[0].u32Start;

 printf("\nNuBL2 identify NuBL32 public key and verify NuBL32 F/W integrity
PASS.\n");

 }

……

All the verification functions in VerifyNuBL3x.c could be configured as XOM code in the XOM
region at address 0x10000 as shown in the following example code and Figure 5-16. This
prevents the verification function in VerifyNuBL3x.c from being replaced or the
secret/sensitive data being stolen. Even if ICE debug mode is entered, the source code and
procedure in XOM region cannot be traced.

#define ENABLE_XOM0_REGION (1) // Set 1 to configure VerifyNuBL3x.c code in XOM0 region,
and cannot trace VerifyNuBL3x.c flow in ICE debug mode

 ……

#if (ENABLE_XOM0_REGION == 1)

 /* Enable XOM0, and all the functions in VerifyNuBL3x.c cannot trace in ICE debug mode

 EnableXOM0();

#endif

 ……

Aug 13, 2019 Page 31 of 41 Rev 1.01

AN0044

Figure 5-16 Configure VerifyNuBL3x.c in XOM

Aug 13, 2019 Page 32 of 41 Rev 1.01

AN0044

5.4 NuBL32 Public Key Storage

This section describes how to use CryptoTool to generate an encrypted NuBL32 Public Key
Storage and its SHA-256 digest.

5.4.1 Encrypted Public Key

This section demonstrates how to generate an encrypted NuBL32 public key for storing in the
Public Key Storage.

1. Prepare a NuBL32 public key raw data, NuBL32Pub_Raw.bin

Figure 5-17 NuBL32 ECC Public Key Raw Data

2. Use CryptoTool to output an encrypted public key file

Input AES Key, Initialization Vector and NuBL32Pub_Raw.bin to generate and output the

encrypted key file, NuBL32PubKeyEncrypted.bin, as shown in Figure 5-18.

Aug 13, 2019 Page 33 of 41 Rev 1.01

AN0044

Input

Output

Figure 5-18 Encrypted NuBL32 ECC Public Key Raw Data

5.4.2 Encrypted Public Key Hash

The encrypted public key hash is a SHA-256 digest of NuBL32PubKeyEncrypted.bin
(encrypted NuBL32 ECC public key), and used for NuBL2 can verify the Public Key Storage
integrity before decrypting it.

Figure 5-19 shows using the CryptoTool to generate an encrypted public key hash.

Aug 13, 2019 Page 34 of 41 Rev 1.01

AN0044

Input

Output
(ASCII format)

Save to HEX format In NuBL32PubKeyEncryptedHash.bin

Figure 5-19 Encrypted NuBL32 ECC Public Key Hash

5.4.3 Allocate Key Storage

This section demonstrates how to allocate a Flash region to store the Public Key Storage,

including encrypted NuBL32 ECC public key and its SHA-256 hash.

1. Add a NuBL3xKeyStorage.s shown in Figure 5-20 for including all NuBL32 key files in the

NuBL2 project. All the related files could be found at

“\SampleCode\MKROM\SecureBootDemo\NuBL2\KeyInfo\”.

NuBL32 key address

Aug 13, 2019 Page 35 of 41 Rev 1.01

AN0044

Figure 5-20 Include NuBL32 Key Files

2. Modify NuBL2.sct to allocate the key storage region at 0x1C000 as shown in Figure 5-21.

Figure 5-21 Allocate NuBL32 Key Storage Region

5.4.4 AES-256 Key

An AES-256 key and IV (Initialization Vector) are declared in the NuBL2 project for decrypting
the Public Key Storage to obtain the NuBL32 ECC public key.

 AES key:

1234567800accdef

 IV key:

 12345678000000000000000000accdef

The functions for AES decryption below are also provided in the VerifyNuBL3x.c. NuBL2 can
use the internal AES and IV through these functions for decrypting Public Key Storage to
obtain the NuBL32 ECC public key at runtime.

static uint32_t *SetAES256Key(uint32_t *key)

{

// AES: 1234567800accdef

 key[0] = 0x12345678;

 key[1] = 0x00000000;

 key[2] = 0x00000000;

 key[3] = 0x00000000;

 key[4] = 0x00000000;

 key[5] = 0x00000000;

 key[6] = 0x00000000;

 key[7] = 0x00accdef;

Aug 13, 2019 Page 36 of 41 Rev 1.01

AN0044

 return key;

}

static uint32_t *SetAESIV(uint32_t *iv)

{

// IV: 12345678000000000000000000accdef

 iv[0] = 0x12345678;

 iv[1] = 0x00000000;

 iv[2] = 0x00000000;

 iv[3] = 0x00accdef;

 return iv;

}

Aug 13, 2019 Page 37 of 41 Rev 1.01

AN0044

5.5 Download Firmware and Information

After successfully building the NuBL2 and NuBL32 project, developer can click the “Load”

button in NuBL2 project to program the NuBL2 firmware into Flash. In addition, according to

the Load_NuBL2FwInfo_NuBL3x.ini file in NuBL2 project, the NuBL2 firmware information,

NuBL32 firmware and NuBL32 firmware information could be programmed to the specific

Flash regions.

Click“Load”

Figure 5-22 Load Firmware and Information

Note that MCU will execute NuBL2 (APROM code) directly not start booting from M261

Secure Bootloader after “Load” operation is completed.

Developer can configure booting form Secure Bootloader at KEIL IDE environment as shown

in Figure 5-23, or configure it in NuBL2 execution by set SET_SECURE_BOOT 1 in NuBL2

code as shown below.

#define SET_SECURE_BOOT (1) // Set 1 to support modify CFG0[5] MBS 0 for booting from
Secure Bootloader

Aug 13, 2019 Page 38 of 41 Rev 1.01

AN0044

Figure 5-23 Configure Secure Boot in KEIL IDE Environment

Aug 13, 2019 Page 39 of 41 Rev 1.01

AN0044

6 Conclusion

Through the Secure Boot verification mechanism in M261 Secure Bootloader, a system
developer can create a trusted execution system launched form Secure Bootloader. All
software requires authentication and integrity checks before executes on the M261 series
MCU. It prevents malicious code from stealing secret/sensitive data and replacing
authenticated code.

The SecureBootDemo sample code provides templates for the system developer to create a
trusted execution system, including a trusted boot code (NuBL2) and an application code
(NuBL32).

Aug 13, 2019 Page 40 of 41 Rev 1.01

AN0044

Revision History

Date Revision Description

2019.04.08 1.00 1. Initially issued.

2019.08.13 1.01

1. Revised ID information description and an
example usage of firmware information
ECDSA in section 5.1.2 and 5.1.3.

2. Described the limitation of extend
information size in firmware information in
section 5.1.2.

3. Added the XOM usage and limitation of
NuBL2 project in section 5.3.

4. Described how to enable the secure boot
after the firmware and firmware information
has been updated in section 5.5.

Aug 13, 2019 Page 41 of 41 Rev 1.01

AN0044

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.

 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

	1 Overview
	2 Secure Bootloader (NuBL1)
	2.1 Features
	2.2 Boot Source Selection
	2.3 Execution Region

	3 NuBL2 and NuBL32
	3.1 NuBL2 Features
	3.2 NuBL32 Features

	4 Firmware Verification Mechanism
	4.1 Required Components
	4.1.1 Required Components to Verify the NuBL2
	4.1.2 Required Components to Verify the NuBL32

	4.2 Verification Procedure
	4.2.1 NuBL1 Verification Procedure
	4.2.1.1 Identification
	4.2.1.2 Authentication
	4.2.1.3 Integrity

	4.2.2 NuBL2 Verification Procedure
	4.2.2.1 Identification
	4.2.2.2 Authentication
	4.2.2.3 Integrity

	5 SecureBootDemo
	5.1 NuBL2/NuBL32 FW INFO
	5.1.1 Information Template
	5.1.2 FW INFO Structure
	5.1.2.1 ECC Public Key
	5.1.2.2 Metadata
	5.1.2.3 FW Hash
	5.1.2.4 ECDSA Signature

	5.1.3 FW INFO Generation

	5.2 NuBL2 Marker
	5.2.1 NuBL2 Marker Structure
	5.2.2 NuBL2 Marker Generation

	5.3 NuBL2 Verification Functions
	5.4 NuBL32 Public Key Storage
	5.4.1 Encrypted Public Key
	5.4.2 Encrypted Public Key Hash
	5.4.3 Allocate Key Storage
	5.4.4 AES-256 Key

	5.5 Download Firmware and Information

	6 Conclusion

