

Sep. 20, 2018 Page 1 of 30 Rev 1.00

AN0025

Application Note for 32-bit NuMicro® Family

Document Information

Abstract Introduce how to update firmware reliably with a dual bank Flash
architecture and a rollback mechanism supported for user to roll
back to the previous firmware if a new firmware works abnormally.

Apply to NuMicro® M2351 Series.

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Dual Bank Firmware Upgrade Mechanism

http://www.nuvoton.com/

Sep. 20, 2018 Page 2 of 30 Rev 1.00

AN0025

Table of Contents

1 OVERVIEW .. 3

2 MEMORY MAP FOR FIRMWARE UPGRADE ... 4

3 DUAL BANK FIRMWARE UPGRADE PROCESS ... 5

3.1 Firmware Upgrade Flow .. 5

3.2 Verify Firmware .. 7

3.3 Execute Active Firmware .. 8

3.4 Swap Firmware ... 8

3.4.1 Swap Process ... 9
3.4.2 Swap Continue Process .. 10
3.4.3 Swap CRC Region ... 11
3.4.4 Swap Back Process ... 11

3.5 Firmware Execution Failure Detection ... 12

4 SAMPLE CODE ... 13

5 CONCLUSION .. 28

Sep. 20, 2018 Page 3 of 30 Rev 1.00

AN0025

1 Overview

Although products are well tested before being delivered to customers, sometimes, product

developers still need to upgrade the product firmware to fix vulnerabilities or improve the

compatibility. To minimize the maintenance cost and maximize user convenience, upgrading

firmware on user side is necessary. However, upgrading firmware on user side may

encounter many unexpected conditions, such as, power lose, incorrect firmware, older

version, etc. That will cause product failure and increase more maintenance efforts when

firmware update failed. Here, a reliable firmware upgrade mechanism based on the NuMicro®

M2351 series microcontroller (MCU) is provided to avoid such firmware upgrade failures.

The FMC (Flash Memory Controller) in the M2351 series provides APROM Flash memory for

users to develop application. APROM is 512Kbytes while its Flash address ranges from 0x0

to 0x7FFFF. The M2351 FMC also provides dual bank architecture where APROM is

separated into Bank0 and Bank1. Bank0’s Flash address range is from 0x0 to 0x3FFFF while

Bank1’s Flash address range is from 0x40000 to 0x7FFFF. In such dual bank architecture, a

firmware upgrade mechanism is provided which uses APROM Bank0 as firmware executing

region and APROM Bank1 as storage region for newer version of firmware, as shown in

Figure 1-1.

FW

Execute

position

New FW

storage

APROM Bank 0 APROM Bank 1

0x0 0x3ffff 0x40000 0x7ffff

Figure 1-1 APROM Bank0 and Bank1 Usage

The firmware in Bank0 can erase Bank1 and program new firmware to Bank1 without

stopping instruction fetching form Bank0. This is so called read-while-write (RWW), which

provides the ability for firmware to keep software services while firmware updating. The

firmware upgrade mechanism here also provides a rollback process to roll back to the original

firmware if a new firmware woks abnormally. Such mechanism ensures the firmware to be

safe to update in any circumstance.

Sep. 20, 2018 Page 4 of 30 Rev 1.00

AN0025

2 Memory Map for Firmware Upgrade

In the dual bank firmware upgrade mechanism, several regions are arranged in APROM, as
shown in Figure 2-1.

Boot

Loader

Bank0

FW

Bank 0 Bank 1

Bank0

CRC

Bank1

CRC
Temp

Bank1

FW

0x0 0x3ffff 0x40000 0x7ffff

Figure 2-1 Memory Map for Firmware Upgrade

Each region is described as follows:

 Boot loader:

The boot loader is used to detect new firmware, verify firmware, update firmware and

load firmware to be executed. A reliable firmware upgrade mechanism is implemented

in boot loader.

 Bank0 firmware region:

This region is used to store the active firmware that boot loader always loads the

firmware in Bank0 to execute. Any firmware required to be executed must be copied to

Bank0 first, and then it will be loaded and executed by boot loader.

 Bank0/Bank1 CRC (checksum) region:

To verify the firmware integrity, both the firmware in Bank0 and Bank1 has their own

CRC check region. Each CRC region is 2 Kbytes.

 Temp region:

To support rollback function, the firmware upgrade is implemented by swapping the old

firmware with new firmware. This ensures the old firmware still existed and could be

rolled back after updating. By the way, it is also necessary to prevent data lost during

swapping. Therefore, a temp region is necessary to back up the swapping data to

avoid data lost when the swap process is incomplete due to any circumstance.

 Bank1 firmware region:

The Bank1 firmware region is used to store the new firmware before it can be activated.

In general, when application detected remote new firmware and wants to use it to

replace local firmware. The application must download the new firmware to Bank1

region in local first. Then the boot loader will find it and start firmware upgrade

procedure at booting time.

Sep. 20, 2018 Page 5 of 30 Rev 1.00

AN0025

3 Dual Bank Firmware Upgrade Process

3.1 Firmware Upgrade Flow

Figure 3-1 shows the firmware upgrade flow.

Start

Update FW?

Bank0 FW

Integrity OK?

Load Bank0 FW

and Execute

Bank1 FW

Integrity OK?

Swap Process

Active Firmware

Executing

Reset

Boot from Boot

Loader

Yes

No

Yes

NoCasued by

Swap Fail?

Yes

No

New FW in

Remote?

Update FW?
Download

Firmware

Yes

NoYes

No

Reset

Swap Continue

Reset

Firmware

Execute Fail?
Swap Back

Reset

Yes

No

Bank1 FW

Integrity OK?

Copy Bank1 FW

to Bank0

Yes

End
No

Reset

No

 Figure 3-1 Firmware Upgrade Flow

Sep. 20, 2018 Page 6 of 30 Rev 1.00

AN0025

In general case, the system should boot from boot loader. The boot loader will check integrate

of Bank0 firmware and load it. Therefore, the Bank0 firmware is called as active firmware. If

there is a new firmware to update, the active firmware should start the download process to

download the new firmware. For example, if the new firmware is stored in a SD card, the

download process will start to read new firmware data from external SD card and program the

data to Bank1 region. Figure 3-2 shows the firmware download process.

Active

Firmware

Bank1 FW

Region

APROM Bank 0

New Firmware

D
o
w

n
lo

a
dSetup download process

APROM Bank 1

Figure 3-2 Firmware Download Process

After the firmware download process is completed, the new firmware should be located at

Bank1 firmware region as shown in Figure 3-3.

Active

FW

New

FW

APROM Bank 0 APROM Bank 1

Figure 3-3 Download Process Completed

User needs to reset system to boot loader. Then the boot loader will start the swap process.

In the swap process, the new firmware will be swapped from Bank1 to Bank0 page by page

while the original firmware will be swapped to Bank1 for backup, as shown in Figure 3-4.

Sep. 20, 2018 Page 7 of 30 Rev 1.00

AN0025

New

FW

Old

FW

APROM Bank 0 APROM Bank 1

Boot

Loader

(Active)

Figure 3-4 Swap Process Completed

Now, the new firmware is located at Bank0 firmware region as active firmware. Because the

old firmware is still backed up at Bank1 region, it is possible to start the swap process again

to swap the original firmware back to Bank0 when there are problems with new firmware.

A swap continue process is provided to prevent the swap process from being incomplete due

to unexpected conditions such as power off, randomly reset, and system crash. If the swap

process is incomplete, Bank0 firmware and Bank1 firmware are both corrupted. The swap

continue process will analyze the corrupted condition to find the corrupted page and continue

to complete the swap process.

3.2 Verify Firmware

If there is no firmware in the Bank1 region, the value of Bank1 CRC region should be all

0xFFFFFFFF. After active firmware downloads a remote new firmware to the Bank1 region,

the relative CRC value and version number will be written into the Bank1 CRC region.

The format of CRC region is show in Figure 3-5.

Bank0 CRC

Page1

CRC

Page2

CRC

Page3

CRC

PageN

CRC
FW

Version
Full CRC……

Bank1 CRC

Page1

CRC

Page2

CRC

Page3

CRC

PageN

CRC
FW

Version
Full CRC……

Figure 3-5 Format of CRC Region

The firmware CRC is calculated every 2 Kbytes (one page size in M2351), and the CRC value

of first 2 Kbytes is written to Page1 CRC. The CRC value of the second 2 Kbytes is written to

Page2 CRC and so on. Each CRC value is 32 bits wide. The Page CRC values are used for

the swap continue process to avoid firmware upgrade procedure fail.

Sep. 20, 2018 Page 8 of 30 Rev 1.00

AN0025

The firmware version is stored following by the Page CRC values. It could be used to

determine whether the firmware in Bank1 region is newer than the firmware in Bank0 region.

Finally, the whole firmware CRC are calculated and written to the following firmware version.

It could be used to check firmware integrity quickly without comparing all page CRC values.

3.3 Execute Active Firmware

If there is a firmware in the Bank0 firmware region and integrity check with Bank0 CRC region
is correct, this firmware will be executed and called active firmware. The active firmware
execution process is shown in Figure 3-6.

Active Firmware Start

Download FW to

Bank1 while Bank0

FW continue its

process

Download

firmware to

Bank1?

Download

process

completed?

Do other jobs Reset from boot

loader

Yes

Yes
No

No

Active Firmware

Figure 3-6 Execute Active Firmware Process

The active firmware process is as follows:

1. Active firmware starts.

2. If any firmware exists in PC, SD card, or other storage, user can decide to download

the firmware to Bank1 firmware region or not.

3. Execute Bank0 firmware if user decides not to download firmware to Bank1. Otherwise,

the download firmware process will start.

4. Download firmware to Bank1 firmware region while active firmware executing in Bank0.

Because the M2351 series supports Read-While-Write (RWW), the instruction fetching

will not be suspended while programming Bank1 firmware.

5. After Bank1 firmware download, user can decide to execute new firmware by swap

process to swap the new firmware to Bank0 firmware buffer to execute.

3.4 Swap Firmware

To make sure that the system always has workable firmware in MCU, the firmware upgrade is

Sep. 20, 2018 Page 9 of 30 Rev 1.00

AN0025

performed by the swap process. By swapping, the firmware could be swapped to a new
firmware or an old firmware.

3.4.1 Swap Process

When the boot loader starts, it will check if it is necessary to update firmware. If yes, the boot
loader will check Bank1 firmware integrity and compare the Bank1 firmware version with
Bank0 firmware. If Bank1 firmware has a newer version (Bank1 firmware version number is
higher than Bank0 firmware version number), the boot loader will start a swap process. The
swap process is performed page by page with a temp page. Figure 3-7 shows the page swap
procedure of swap process.

Bank1

page

Step1: Move Bank0 to Temp

Bank1

page

Bank0

page

Bank0

page

Step2: Move Bank1 to Bank0

Bank0

page
Step3: Move Temp to Bank1

Bank0

page

Bank0

page
Temp

page

Bank1

page
Start

Bank1

page
Temp

page

Bank0

page
End

Figure 3-7 Page Swap Procedure

The page swap procedure is as follows:

1. Move Bank0 page to temp page.

2. Move Bank1 page to Bank0 page.

3. Move temp page to Bank1 page.

Sep. 20, 2018 Page 10 of 30 Rev 1.00

AN0025

The whole swap process is shown in Figure 3-8.

Swap

process start

Is swap

completed?

Bank0/Bank1

FW swap

page by page

Reset from

boot loader

No

Swap process

Yes Execute

new FW
Bank0/Bank1

CRC swap

Figure 3-8 Swap Process

The swap process is as follows:

1. Boot loader starts the swap process.

2. Swap the firmware of Bank0 and Bank1 page by page. In this step, the temp region is

used to complete the process. Such temp region also ensures that each correct

firmware page could be kept even if the swap process is incomplete due to unknown

events.

3. After the swap process is completed, the system is reset to restart boot loader.

4. Swap Bank0 and Bank1 CRC values to be synchronous with Bank0/Bank1 firmware.

5. Execute the new firmware in Bank0.

3.4.2 Swap Continue Process

Under abnormal conditions, the swap process cannot be completed due to unexpectedly
power off, reset, or system crash. When system restarts from boot loader, the boot loader will
find the firmware in Bank0 and Bank1 are both corrupted. The corrupted firmware condition
shows the incorrect full firmware CRC and partial of page CRC values are correct while the
others are incorrect. In this case, the boot loader will start the swap continue process. The
swap continue process is shown in Figure 3-9.

Sep. 20, 2018 Page 11 of 30 Rev 1.00

AN0025

Yes

No

Swap continue process

Is swap

completed?

 swap continue

process start

Check page

CRC values to

find the corrupt

page

Start the swap

process from

corrupt page

Reset from

boot loader

Bank0/Bank1

CRC swap

Execute new FW

Figure 3-9 Swap Continue Process

The swap continue process is as follows:

1. Boot loader starts the swap continue process.

2. Get Bank0 and Bank1 CRC values to check which page is corrupted in the last

incomplete swap process.

3. Start the swap process from corrupted page.

4. After the swap process is completed, reset system to start from boot loader.

5. Swap Bank0 and Bank1 CRC values to synchronous with Bank0/Bank1 firmware.

6. Execute new firmware in Bank0.

3.4.3 Swap CRC Region

Once the swap process or swap continue process is completed, the system will be reset to
boot loader. The boot loader will find that the Bank0 CRC value is the same as Bank1
firmware and Bank1 CRC value is the same as Bank0 firmware. This is because Bank0/1
firmware is swapped but CRC regions are not swapped yet. Therefore, the boot loader needs
to swap the Bank0/1 CRC region to keep the CRC and firmware synchronized.

3.4.4 Swap Back Process

To make sure the reliability, the boot loader starts the swap back process if the new firmware
execution failed due to self-test fail or watchdog reset fail. The swap back process is shown in
Figure 3-10.

Sep. 20, 2018 Page 12 of 30 Rev 1.00

AN0025

Swap back

process

starts

Is swap

completed?

Bank0/Bank1

FW swap

page by page

Reset from

boot loader

No

Swap back process

Yes Execute

previous FW
Bank0/Bank1

CRC swap

Figure 3-10 Swap Back Process

The swap back process is as follows:

1. Boot loader starts the swap back process.

2. Swap the firmware of Bank0 and Bank1 page by page.

3. Reset system form boot loader.

4. Swap Bank0 and Bank1 CRC values to synchronous with Bank0/Bank1 firmware.

5. Execute previous firmware in Bank0.

3.5 Firmware Execution Failure Detection

After the swap process is done, the new firmware is in Bank0 firmware region while the
original firmware is in Bank1 firmware region. Then user can reset the system to execute the
new firmware in Bank0 firmware region. To prevent the new firmware execution from being
failed, user can set the watchdog (WDT) timer with a time-out value and enable WDT reset
function. If the new firmware execution failed, the swap back process will start. If new
firmware crashed, the system will be reset by watchdog. The boot loader can detect watchdog
reset and set the swap back process to roll back to the original firmware. In addition to the
watchdog timer, user can use a self-test mechanism to detect whether the new firmware
works well or not. The detection result could be a failure flag for boot loader. Figure 3-11
shows fail recovery flow.

Firmware Executing Failure Detection

FW works ok?

Do jobs

Yes

Reset from

boot loader
Swap back process

Execute

new FW

WDT

Reset?

No

Yes

Boot Start

Set

WatchDog

1'st

Booting?

Yes

Set FW

Failure

Flag
No

Is FW

Failed?

No
Yes

No

Figure 3-11 Firmware Executing Failure Detection

Sep. 20, 2018 Page 13 of 30 Rev 1.00

AN0025

4 Sample Code

User can get sample code of dual bank firmware upgrade mechanism form the M2351 BSP
folder. The path is:

 bsp\SampleCode\StdDriver\FMC_DualBankFwUpdate

FMC_DualBankFwUpdate folder includes 3 sub-folders. The function description of these
sub-folders is as follows:

 Common:

 Definition of the address of each region in APROM。

 Definition of CRC function.

 FMC_DualBankBoot:

 System start.

 Control the executing flow by checking the status of firmware in Bank0/Bank1.

 Execute the swap process, swap continue process, and swap back process.

 Watch dog reset control.

 FMC_DualBankFW

 Execute firmware in Bank0 firmware region.

 Download new firmware to Bank1 firmware region.

Before system starts, the system environment should be set up first.

1. The boot loader, Bank0/Bank1 firmware region, Bank0/Bank1 CRC region, and temp

region should be erased first, as shown in Figure 4-1.

Bank 0 Bank 1

All

0xFFFFFFFF

Boot

Loader

Bank0

FW

Bank0

CRC

Bank1

FW

Bank1

CRC
Temp

Figure 4-1 Initial Memory Status

If there is no firmware in Bank0/1 firmware region, the value of CRC region should be all
0xFFFFFFFF.

Sep. 20, 2018 Page 14 of 30 Rev 1.00

AN0025

2. Load Boot Loader program into APROM address 0x0 and load active firmware into

Bank0 firmware region, as shown in Figure 4-2.

Boot

Loader
Active FW

Bank 0 Bank 1

All

0xFFFFFFFF

Boot

Loader

Bank0

FW

Bank0

CRC

Bank1

FW

Bank1

CRC
Temp

Figure 4-2 Load Boot Loader and Active Firmware

3. Execute active firmware in Bank0 firmware region and calculate the CRC of each

Bank0 firmware page and CRC of full Bank0 firmware.

4. Write CRC value and version number of active firmware into Bank0 CRC region, as

shown in Figure 4-3.

Boot

Loader
Active FW

Bank 0 Bank 1

Bank0

CRC

All

0xFFFFFFFF

Boot

Loader

Bank0

FW

Bank0

CRC

Bank1

FW

Bank1

CRC
Temp

Figure 4-3 Write Bank0 Firmware CRC value

5. If there is any other version of firmware in PC, SD card, or other storage, the CRC of

each firmware page and full CRC of the firmware should also be calculated after the

firmware being downloaded to Bank1 firmware region.

6. Writes CRC value and version number of the firmware into Bank1 CRC region, as

shown in Figure 4-4.

Sep. 20, 2018 Page 15 of 30 Rev 1.00

AN0025

Boot

Loader
Active FW

Bank 0 Bank 1

Bank0

CRC

Bank1

CRC

All

0xFFFFFFFF

Boot

Loader

Bank0

FW

Bank0

CRC

Bank1

FW

Bank1

CRC
Temp

New

FW

Figure 4-4 Write Bank1 CRC value

Definition for each region in APROM: (in common)

#define BOOT_BASE 0x0

#define TMP_PAGE_SIZE 0x800

/* CRC of each PAGE for bank0 */

#define BANK0_PAGE_CRC_BASE 0x3E800

/* CRC of each PAGE for bank1 */

#define BANK1_PAGE_CRC_BASE 0x3F000

/* Bank0 firmware related definition */

#define BANK0_FW_BASE 0x10000

#define BANK0_FW_SIZE TMP_PAGE_SIZE*8

#define BANK0_FW_VER_BASE (BANK0_PAGE_CRC_BASE + (BANK0_FW_SIZE/TMP_PAGE_SIZE)*4)

#define BANK0_FW_CRC_BASE (BANK0_PAGE_CRC_BASE + (BANK0_FW_SIZE/TMP_PAGE_SIZE+1)*4)

/* Bank1 firmware related definition */

#define BANK1_FW_BASE 0x40000

#define BANK1_FW_SIZE TMP_PAGE_SIZE*8

#define BANK1_FW_VER_BASE (BANK1_PAGE_CRC_BASE + (BANK1_FW_SIZE/TMP_PAGE_SIZE)*4)

#define BANK1_FW_CRC_BASE (BANK1_PAGE_CRC_BASE + (BANK1_FW_SIZE/TMP_PAGE_SIZE+1)*4)

/* For FW Swap tmp buffer, size is 1 page (2 Kbytes) */

#define TMP_PAGE_BASE 0x3F800

CRC calculating function: (in common)

 /**

 * @brief Checksum calculation function

Sep. 20, 2018 Page 16 of 30 Rev 1.00

AN0025

 * @param[in] start check sum calculation start address

 * @param[in] len check sum calculation block size

 * @retval sum check sum value

 */

uint32_t func_crc32(uint32_t start, uint32_t len)

{

 uint32_t idx, data32 = 0UL;

 int i;

 /* WDTAT_RVS, CHECKSUM_RVS, CHECKSUM_COM */

 for(idx = 0; idx < len; idx += 4)

 {

 data32 += *(uint32_t *)(start + idx);

 }

 data32 = 0xFFFFFFFF - data32 + 1UL;

 return data32;

}

Reset and start from Bank0 firmware buffer: (in FMC_DualBankBoot)

/* Set remmaping address */

FMC->ISPADDR = BANK0_FW_BASE;

/* Set VECMAP */

FMC->ISPCMD = 0x2E;

FMC->ISPTRG = 1;

while(FMC->ISPTRG);

/* CPU Reset */

SYS->IPRST0 |= SYS_IPRST0_CPURST_Msk;

Execute the current firmware in Bank0 and writes CRC, version information into Bank0 CRC
buffer: (in FMC_DualBankFW)

/* Erase Bank0 CRC Buffer */

FMC_Erase(BANK0_PAGE_CRC_BASE);

/* Calculate Bank0 CRC */

sum = func_crc32(BANK0_FW_BASE, BANK0_FW_SIZE);

/* Write Bank0 CRC values*/

if(FMC_Read(BANK0_FW_CRC_BASE)==0xFFFFFFFF)

 FMC_Write(BANK0_FW_CRC_BASE, sum);

/* Write Bank0 version value*/

Sep. 20, 2018 Page 17 of 30 Rev 1.00

AN0025

uf(FMC_Read(BANK0_FW_VER_BASE)==0xFFFFFFFF)

 FMC_Write(BANK0_FW_VER_BASE, version number); /* version number set by user*/

/* Write CRC for each Page */

for(i = 0; i < BANK0_FW_SIZE/TMP_PAGE_SIZE; i++)

{

 sum = func_crc32(BANK0_FW_BASE + i*TMP_PAGE_SIZE, TMP_PAGE_SIZE);

 if(FMC_Read(BANK0_PAGE_CRC_BASE + i*4) == 0xFFFFFFFF)

 FMC_Write(BANK0_PAGE_CRC_BASE + i*4, sum);

}

System initial settings：(in FMC_DualBankBoot)

void SYS_Init(void)

{

 /* Enable HIRC clock */

 CLK_EnableXtalRC(CLK_PWRCTL_HIRCEN_Msk);

 /* Wait for HIRC clock ready */

 CLK_WaitClockReady(CLK_STATUS_HIRCSTB_Msk);

 /* Select HCLK clock source as HIRC and HCLK source divider as 1 */

 CLK_SetHCLK(CLK_CLKSEL0_HCLKSEL_HIRC, CLK_CLKDIV0_HCLK(1));

 /* Enable HXT clock */

 CLK_EnableXtalRC(CLK_PWRCTL_HXTEN_Msk);

 /* Wait for HXT clock ready */

 CLK_WaitClockReady(CLK_STATUS_HXTSTB_Msk);

 /* Enable PLL */

 CLK->PLLCTL = CLK_PLLCTL_128MHz_HIRC;

 /* Waiting for PLL stable */

 CLK_WaitClockReady(CLK_STATUS_PLLSTB_Msk);

 /* Select HCLK clock source as PLL and HCLK source divider as 2 */

 CLK_SetHCLK(CLK_CLKSEL0_HCLKSEL_PLL, CLK_CLKDIV0_HCLK(2));

 /* Enable UART module clock */

 CLK_EnableModuleClock(UART0_MODULE);

Sep. 20, 2018 Page 18 of 30 Rev 1.00

AN0025

 /* Select UART module clock source as HXT and UART module clock divider as 1 */

 CLK_SetModuleClock(UART0_MODULE, CLK_CLKSEL1_UART0SEL_HXT, CLK_CLKDIV0_UART0(1));

 /* Enable WDT module clock */

 CLK_EnableModuleClock(WDT_MODULE);

 CLK_SetModuleClock(WDT_MODULE, CLK_CLKSEL1_WDTSEL_LIRC, 0);

 /* Set multi-function pins for UART0 RXD and TXD */

 SYS->GPB_MFPH = (SYS->GPB_MFPH & (~(UART0_RXD_PB12_Msk | UART0_TXD_PB13_Msk))) |
UART0_RXD_PB12 | UART0_TXD_PB13;

}

Get Bank0/Bank1 CRC, firmware version and calculate Bank0/Bank1 CRC value. System will
compare the obtained values and the calculated values to check integrity and correctness of
firmware in Bank0 and Bank1. (in FMC_DualBankBoot)

/* Get Bank0 firmware version, crc values*/

ver0 = FMC_Read(BANK0_FW_VER_BASE);

crc0 = FMC_Read(BANK0_FW_CRC_BASE);

/* Get Bank1 firmware version, crc values*/

ver1 = FMC_Read(BANK1_FW_VER_BASE);

crc1 = FMC_Read(BANK1_FW_CRC_BASE);

/* Calculate Bank0 CRC */

crcGet0 = func_crc32(BANK0_FW_BASE, BANK0_FW_SIZE - 8);

/* Calculate Bank1 CRC */

crcGet1 = func_crc32(BANK1_FW_BASE, BANK1_FW_SIZE - 8);

/* Get Bank0 CRC for each page */

for(i = 0; i < BANK0_FW_SIZE/TMP_PAGE_SIZE; i++)

{

 bank0PageSumInFlash[i] = FMC_Read(BANK0_PAGE_CRC_BASE + i*4);

}

/* Get Bank1 CRC for each page */

for(i = 0; i < BANK1_FW_SIZE/TMP_PAGE_SIZE; i++)

{

 bank1PageSumInFlash[i] = FMC_Read(BANK1_PAGE_CRC_BASE + i*4);

}

Execute the current firmware in Bank0 and download new firmware to Bank1.

Global variable definition(in FMC_DualBankFW)

Sep. 20, 2018 Page 19 of 30 Rev 1.00

AN0025

/* Dual bank background program state */

enum

{

 DB_STATE_START, /* Start background dual bank program */

 DB_STATE_ERASE, /* Executing ISP page erase */

 DB_STATE_PROGRAM, /* Executing ISP write */

 DB_STATE_DONE, /* All queued ISP operations finished. Idle */

 DB_STATE_FAIL /* ISP command failed or verify error */

};

static volatile int db_state = DB_STATE_DONE; /* dual bank background program state */

static volatile uint32_t db_length; /* dual bank program remaining length */

static volatile uint32_t db_addr; /* dual bank program current flash address */

Download new firmware flow in main function: (in FMC_DualBankFW).

while(1)

{

 db_state = DB_STATE_DONE; /* dual bank program state idle */

 db_addr = BANK1_FW_BASE; /* Dual bank background program address */

 db_length = BANK1_FW_SIZE; /* Dual bank background length */

 db_state = DB_STATE_START; /* Start background dual bank program */

 /*User can do jobs here*/

 for(loop = 0; loop < CRC32_LOOP_CNT; loop++)

 {

 /* Calculate 64KB CRC32 value, just to consume CPU time */

 func_crc32(0x0, 0x10000);

 }

 while(db_state != DB_STATE_DONE) ;

 sum = func_crc32(BANK1_FW_BASE, BANK1_FW_SIZE);

}

Program the new firmware word by word into Bank1 firmware buffer in interrupt function: (in
FMC_DualBankFW).

void SysTick_Handler(void)

{

 /* Background program is in idle state */

 if(db_state == DB_STATE_DONE)

 {

 return;

 }

Sep. 20, 2018 Page 20 of 30 Rev 1.00

AN0025

 /* Background program done? */

 if(db_length == 0)

 {

 /* enter idle state */

 db_state = DB_STATE_DONE;

 return;

 }

 /* ISP is busy, postpone to next called */

 if(FMC->MPSTS & FMC_MPSTS_MPBUSY_Msk)

 return;

 /* Dual-bank background program */

 switch(db_state)

 {

 case DB_STATE_START:

 if(db_addr & ~FMC_PAGE_ADDR_MASK)

 {

 printf("Warning - dual bank start address is not page aligned!\n");

 db_state = DB_STATE_FAIL;

 break;

 }

 if(db_length & ~FMC_PAGE_ADDR_MASK)

 {

 printf("Warning - dual bank length is not page aligned!\n");

 db_state = DB_STATE_FAIL;

 break;

 }

 /* Next state is to erase flash */

 db_state = DB_STATE_ERASE

 break;

 case DB_STATE_ERASE:

 FMC->ISPCMD = FMC_ISPCMD_PAGE_ERASE; /* ISP page erase command */

 FMC->ISPADDR = db_addr; /* page address */

 FMC->ISPTRG = FMC_ISPTRG_ISPGO_Msk; /* trigger ISP page erase and no wait */

 printf("Erase [0x%8x].\n", db_addr);

 db_addr += TMP_PAGE_SIZE;

 if(db_addr >= (BANK1_FW_BASE + BANK1_FW_SIZE))

 {

 printf("\nErase Done db_addr[0x%8x]\n", db_addr);

Sep. 20, 2018 Page 21 of 30 Rev 1.00

AN0025

 db_addr = BANK1_FW_BASE;

 db_state = DB_STATE_PROGRAM; /* Next state is to program flash */

 }

 break;

 case DB_STATE_PROGRAM:

 FMC->ISPCMD = FMC_ISPCMD_PROGRAM; /* ISP word program command */

 FMC->ISPADDR = db_addr; /* word program address */

 FMC->ISPDAT = input source; /* 32-bits data to be programmed, user decide
the downloading source*/

/* trigger ISP program and no wait */

FMC->ISPTRG = FMC_ISPTRG_ISPGO_Msk;

 /* advance to next word */

 db_addr += 4;

 db_length -= 4;

 if(db_addr % 0x800 == 0)

 printf("[0x%8x] page programing done\n", db_addr);

 if(db_length == 0)

 printf("\nAll programing done!!!!!db_addr[0x%8x]\n", db_addr);

 break;

 default:

 printf("Unknown db_state state!\n");

 while(1);

 }

}

After getting Bank0/Bank1 firmware version number and CRC information, check the CRC
value and compare firmware version to determine whether to start the swap process. (in
FMC_DualBankBoot)

/* Bank0 CRC and Bank1 CRC are correct */

if((crcGet0 == crc0) && (crcGet1 == crc1))

{

 if(ver0 < ver1)

 {

 printf("Bank1 FW is new, do bank0/bank1 swap \n");

 Bank_Swap();

 printf("Swap done!!! \n");

 /* Set remmaping address */

Sep. 20, 2018 Page 22 of 30 Rev 1.00

AN0025

 FMC->ISPADDR = BOOT_BASE;

 /* Set VECMAP */

 FMC->ISPCMD = 0x2E;

 FMC->ISPTRG = 1;

 while(FMC->ISPTRG);

 /* CPU Reset to Boot Loader to update CRC*/

 SYS->IPRST0 |= SYS_IPRST0_CPURST_Msk;

 }

 else

 {

 printf(" Execute Bank0 FW\n");

 /* Set remmaping address */

 FMC->ISPADDR = BANK0_FW_BASE;

 /* Set VECMAP */

 FMC->ISPCMD = 0x2E;

 FMC->ISPTRG = 1;

 while(FMC->ISPTRG);

 /* CPU Reset */

 SYS->IPRST0 |= SYS_IPRST0_CPURST_Msk;

 }

}

Swap Function: (in FMC_DualBankBoot)

static void Bank_Swap(void)

{

 uint32_t i, j;

 FMC_Erase(TMP_PAGE_BASE);

 for(i = 0; i < BANK0_FW_SIZE; i+= TMP_PAGE_SIZE)

 {

 Dump_Swap_Info(i);

 for(j = 0; j < TMP_PAGE_SIZE; j +=4)

 {

 /*Bank0 --> tmp*/

 FMC_Write(TMP_PAGE_BASE + j, FMC_Read(BANK0_FW_BASE + i + j));

 }

 Dump_Swap_Info(i);

 FMC_Erase(BANK0_FW_BASE + i);

 Dump_Swap_Info(i);

 for(j = 0; j < TMP_PAGE_SIZE; j +=4)

Sep. 20, 2018 Page 23 of 30 Rev 1.00

AN0025

 {

 /* Bank1 --> bank0 */

 FMC_Write(BANK0_FW_BASE + i + j, FMC_Read(BANK1_FW_BASE + i + j)); }

 Dump_Swap_Info(i);

 FMC_Erase(BANK1_FW_BASE + i);

 Dump_Swap_Info(i);

 for(j = 0; j < TMP_PAGE_SIZE; j +=4)

 {

 /* Tmp --> bank1 */

 FMC_Write(BANK1_FW_BASE + i + j, FMC_Read(TMP_PAGE_BASE + j));

 }

 Dump_Swap_Info(i);

 FMC_Erase(TMP_PAGE_BASE);

 Dump_Swap_Info(i);

}

}

Swap Continued Function: (in FMC_DualBankBoot)

static void BankSwapContinue(void)

{

 uint32_t u32i, u32j, u32StartPage = 0;

 uint32_t u32TmpSum = 0;

 /* Calculate current bank0, bank1 CRC */

 for(u32i = 0; u32i < BANK0_FW_SIZE / TMP_PAGE_SIZE; u32i++)

 {

 g_au32Bank0PageSum[u32i] = func_crc32(BANK0_FW_BASE + u32i * TMP_PAGE_SIZE,
TMP_PAGE_SIZE);

 g_au32Bank1PageSum[u32i] = func_crc32(BANK1_FW_BASE + u32i * TMP_PAGE_SIZE,
TMP_PAGE_SIZE);

 }

 /* calculate tmp CRC */

 u32TmpSum = func_crc32(TMP_PAGE_BASE, TMP_PAGE_SIZE);

 for(u32i = 0; u32i < BANK0_FW_SIZE / TMP_PAGE_SIZE; u32i++)

 {

 if((g_au32Bank0PageSum[u32i] == g_au32Bank0PageSumInFlash[u32i])

 && (g_au32Bank1PageSum[u32i] == g_au32Bank1PageSumInFlash[u32i]))

 {

Sep. 20, 2018 Page 24 of 30 Rev 1.00

AN0025

 /* Re-start from step 1 */

 u32StartPage = u32i;

 break;

 }

 else if((u32TmpSum == g_au32Bank0PageSumInFlash[u32i])

 && (g_au32Bank1PageSum[u32i] == g_au32Bank1PageSumInFlash[u32i])

 && (g_au32Bank0PageSum[u32i] != g_au32Bank0PageSumInFlash[u32i]))

 {

 /* Re-start from step 2 */

 FMC_Erase(BANK0_FW_BASE + u32i * TMP_PAGE_SIZE);

 DumpSwapInfo(u32i * TMP_PAGE_SIZE);

 /* Swap step2: move from Bank1 to Bank0 */

 for(u32j = 0; u32j < TMP_PAGE_SIZE; u32j += 4)

 {

 FMC_Write(BANK0_FW_BASE + u32i * TMP_PAGE_SIZE + u32j, FMC_Read(BANK1_FW_BASE +
u32i * TMP_PAGE_SIZE + u32j));

 }

 DumpSwapInfo(u32i * TMP_PAGE_SIZE);

 FMC_Erase(BANK1_FW_BASE + u32i * TMP_PAGE_SIZE);

 DumpSwapInfo(u32i * TMP_PAGE_SIZE);

 for(u32j = 0; u32j < TMP_PAGE_SIZE; u32j += 4)

 {

 FMC_Write(BANK1_FW_BASE + u32i * TMP_PAGE_SIZE + u32j, FMC_Read(TMP_PAGE_BASE +
u32j));

 }

 DumpSwapInfo(u32i * TMP_PAGE_SIZE);

 u32StartPage = u32i + 1;

 break;

 }

 else if((u32TmpSum == g_au32Bank0PageSumInFlash[u32i])

 && (g_au32Bank0PageSum[u32i] == g_au32Bank1PageSumInFlash[u32i])

 && (g_au32Bank1PageSum[u32i] != g_au32Bank1PageSumInFlash[u32i]))

 {

 /* Re-start from step 3 */

 FMC_Erase(BANK1_FW_BASE + u32i * TMP_PAGE_SIZE);

 DumpSwapInfo(u32i * TMP_PAGE_SIZE);

 /* Swap step3: move from tmp to Bank1 */

Sep. 20, 2018 Page 25 of 30 Rev 1.00

AN0025

 for(u32j = 0; u32j < TMP_PAGE_SIZE; u32j += 4)

 {

 FMC_Write(BANK1_FW_BASE + u32i * TMP_PAGE_SIZE + u32j, FMC_Read(TMP_PAGE_BASE +
u32j));

 }

 DumpSwapInfo(u32i * TMP_PAGE_SIZE);

 u32StartPage = u32i + 1;

 break;

 }

 else if((g_au32Bank0PageSum[u32i] == g_au32Bank1PageSumInFlash[u32i])

 && (g_au32Bank1PageSum[u32i] == g_au32Bank0PageSumInFlash[u32i]))

 {

 printf("Page[%d] has been completed!!!\n", u32i);

 u32StartPage = u32i + 1;

 }

 else

 {

 printf("Other condition!!! page @[%d]\n", u32i);

 }

 }

 /* Start the remained swap process from the start page */

 if(u32StartPage < BANK0_FW_SIZE / TMP_PAGE_SIZE)

 {

 FMC_Erase(TMP_PAGE_BASE);

 for(u32i = u32StartPage * TMP_PAGE_SIZE; u32i < BANK0_FW_SIZE; u32i += TMP_PAGE_SIZE)

 {

 DumpSwapInfo(u32i);

 /* Bank0  temp */

 for(u32j = 0; u32j < TMP_PAGE_SIZE; u32j += 4)

 {

 FMC_Write(TMP_PAGE_BASE + u32j, FMC_Read(BANK0_FW_BASE + u32i + u32j));

 }

 DumpSwapInfo(u32i);

 FMC_Erase(BANK0_FW_BASE + u32i);

 DumpSwapInfo(u32i);

 /* Bank1  bank0 */

 for(u32j = 0; u32j < TMP_PAGE_SIZE; u32j += 4)

 {

Sep. 20, 2018 Page 26 of 30 Rev 1.00

AN0025

 FMC_Write(BANK0_FW_BASE + u32i + u32j, FMC_Read(BANK1_FW_BASE + u32i + u32j));

 }

 DumpSwapInfo(u32i);

 FMC_Erase(BANK1_FW_BASE + u32i);

 DumpSwapInfo(u32i);

 /* temp  bank1 */

 for(u32j = 0; u32j < TMP_PAGE_SIZE; u32j += 4)

 {

 FMC_Write(BANK1_FW_BASE + u32i + u32j, FMC_Read(TMP_PAGE_BASE + u32j));

 }

 DumpSwapInfo(u32i);

 FMC_Erase(TMP_PAGE_BASE);

 DumpSwapInfo(u32i);

 }

 }

}

After the swap process is done, system restarts from boot loader. When system starts, it
updates CRC information for Bank0/Bank1CRC buffer and restarts from Bank0 firmware
buffer to execute the new firmware. (in FMC_DualBankBoot)

FMC_Erase(TMP_PAGE_BASE);

/*Bank0 CRC  temp*/

for (i = 0; i <(BANK0_FW_SIZE/TMP_PAGE_SIZE+2); i++){

 FMC_Write(TMP_PAGE_BASE + i*4, FMC_Read(BANK0_PAGE_CRC_BASE + i*4));

}

FMC_Erase(BANK0_PAGE_CRC_BASE);

/* Bank1 CRC  Bank0 CRC*/

for (i = 0; i <(BANK0_FW_SIZE/TMP_PAGE_SIZE+2); i++){

 FMC_Write(BANK0_PAGE_CRC_BASE + i*4, FMC_Read(BANK1_PAGE_CRC_BASE + i*4));

}

FMC_Erase(BANK1_PAGE_CRC_BASE);

/* Temp  Bank1 CRC*/

for (i = 0; i <(BANK0_FW_SIZE/TMP_PAGE_SIZE+2); i++){

 FMC_Write(BANK1_PAGE_CRC_BASE + i*4, FMC_Read(TMP_PAGE_BASE + i*4));

}

FMC_Erase(TMP_PAGE_BASE);

FMC->ISPADDR = BANK0_FW_BASE;

/* Set VECMAP */

Sep. 20, 2018 Page 27 of 30 Rev 1.00

AN0025

FMC->ISPCMD = 0x2E;

FMC->ISPTRG = 1;

while(FMC->ISPTRG);

/* CPU Reset */

SYS->IPRST0 |= SYS_IPRST0_CPURST_Msk;

When system hangs up in the new firmware process, it will be reset by watchdog and reset to
start from boot loader and swap back to the previous firmware to execute. (in
FMC_DualBankBoot)

if(WDT_GET_RESET_FLAG() == 1)

{

WDT_CLEAR_RESET_FLAG();

/* System reset by WDT time-out event */

/* swap page CRC data */

 FMC_Erase(TMP_PAGE_BASE);

for (i = 0; i <(BANK0_FW_SIZE/TMP_PAGE_SIZE+2); i++){

 FMC_Write(TMP_PAGE_BASE + i*4, FMC_Read(BANK0_PAGE_CRC_BASE + i*4));

}

FMC_Erase(BANK0_PAGE_CRC_BASE);

for (i = 0; i <(BANK0_FW_SIZE/TMP_PAGE_SIZE+2); i++){

 FMC_Write(BANK0_PAGE_CRC_BASE + i*4, FMC_Read(BANK1_PAGE_CRC_BASE + i*4));

}

FMC_Erase(BANK1_PAGE_CRC_BASE);

for (i = 0; i <(BANK0_FW_SIZE/TMP_PAGE_SIZE+2); i++){

 FMC_Write(BANK1_PAGE_CRC_BASE + i*4, FMC_Read(TMP_PAGE_BASE + i*4));

}

 FMC_Erase(TMP_PAGE_BASE);

 Bank_Swap();

 /* Set remmaping address */

 FMC->ISPADDR = BANK0_FW_BASE;

 /* Set VECMAP */

 FMC->ISPCMD = 0x2E;

 FMC->ISPTRG = 1;

 while(FMC->ISPTRG);

 /* CPU Reset */

 SYS->IPRST0 |= SYS_IPRST0_CPURST_Msk;

}

Sep. 20, 2018 Page 28 of 30 Rev 1.00

AN0025

5 Conclusion

There are so many reasons to update firmware after products have been delivered, including
fixing bugs, adding new functions or increasing security. The products may be delivered
anywhere with so many circumstances. Therefore, a reliable method to update the firmware is
very important to avoid products return to factory maintenance.

The dual bank firmware upgrade mechanism can avoid product failure caused by firmware
upgrade. The Swap continue process can avoid failure caused by unexpected conditions,
such as power off, random reset, and system crash. The Swap back process is used to
prevent new firmware execution fail. Furthermore, the hardware dual bank architecture
improves the performance of firmware download by Flash Read-While-Write (RWW)
capability.

Sep. 20, 2018 Page 29 of 30 Rev 1.00

AN0025

Revision History

Date Revision Description

2018.09.20 1.00 1. Initially issued.

Sep. 20, 2018 Page 30 of 30 Rev 1.00

AN0025

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.

 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

	1 Overview
	2 Memory Map for Firmware Upgrade
	3 Dual Bank Firmware Upgrade Process
	3.1 Firmware Upgrade Flow
	3.2 Verify Firmware
	3.3 Execute Active Firmware
	3.4 Swap Firmware
	3.4.1 Swap Process
	3.4.2 Swap Continue Process
	3.4.3 Swap CRC Region
	3.4.4 Swap Back Process

	3.5 Firmware Execution Failure Detection

	4 Sample Code
	5 Conclusion

