

Sep 06, 2018 Page 1 of 32 Rev 1.00

AN0016

Application Note for 32-bit NuMicro® Family

Document Information

Abstract Introduce the concept of Collaborative Secure Software
Development (CSSD), and the precautions to be considered by
the first and the second developer during development.

Apply to NuMicro® M2351 series

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

M2351 Collaborative Secure Software Development

http://www.nuvoton.com/

Sep 06, 2018 Page 2 of 32 Rev 1.00

AN0016

Table of Contents

1 OVERVIEW .. 3

2 FIRST DEVELOPMENT ... 4

2.1 First Development Flow .. 4

2.2 SCRLOCK – Secure Region Lock ... 7

2.2.1 Keil
®
 MDK .. 7

2.2.2 ICP Programming Tool .. 8

3 COLLABORATIVE DEVELOPMENT .. 10

3.1 Collaborative Development Flow .. 10

3.2 XOM – Execute-Only Memory .. 14

3.2.1 Keil
®
 MDK .. 14

3.2.2 ICP Programming Tool .. 15

3.3 Download Code .. 16

3.3.1 Keil
®
 MDK .. 16

3.3.2 ICP Programming Tool .. 19

3.4 ARLOCK – All Region Lock.. 20

3.4.1 Keil
®
 MDK .. 20

3.4.2 ICP Programming Tool .. 21

4 SAMPLE CODE .. 22

4.1 Operation Procedure ... 22

4.2 Sample Code Description ... 22

4.2.1 CSSD_LED – Secure .. 22
4.2.2 CSSD_LED – NonSecure ... 27

5 CONCLUSION .. 30

Sep 06, 2018 Page 3 of 32 Rev 1.00

AN0016

1 Overview

In the past, software intellectual property (IP) provider needs to release their library to their
customer. Then the customer links the library to build the firmware for end products. By this
flow, it is hard to control how many end products produced by the customer, because the
software IP has been embedded into the firmware and could be copied as many as
customer’s want. Since the library has been released to customer side, it is also hard to
prevent the customer to reverse engineering the software IP from the library.

The NuMicro® M2351 series based on the Armv8-M architecture supports Arm® TrustZone®
Technology to separate the M2351 into secure world and non-secure world. All services
provided in the secure world could be called from the non-secure world but the services are
never exposed in the view of non-secure world. It means the customer can never copy or
trace the software IP in the secure world while the software IP providing their services. This
development flow is called Collaborative Secure Software Development (CSSD). The
software IP provider is called “first developer” and its customer is called “second developer”.

The CSSD indicates that the second developer deploys APIs based on mature products
provided by the first developer to expand features and speed up the development of a certain
type of product. For example, the first developer provides fingerprint identification algorithm
library, such that the second developer can use it for the applications of door lock, car lock
and access control system, and so on.

To meet the Arm® TrustZone® technology, Flash memory controller (FMC) provides the
secure and non-secure world with secure region and non-secure region respectively under
the TrustZone® environment. In the M2351 series microcontroller (MCU), there are non-
secure regions which can be dominated by the second developer and secure regions which
cannot be dominated by the second developer. In secure regions, the first developer
partitions a block used to place library, and the second developer can only call and execute
the APIs in this block by non-secure callable. The overall concept is shown in Figure 1-1.

Figure 1-1 Concept of CSSD

NuMicro® M2351 Series

Hardware

Non-secure Region

Software

Secure Region

Hardware

Software
Non-secure callable

Collaborative Development Product

First Development Product

Sep 06, 2018 Page 4 of 32 Rev 1.00

AN0016

2 First Development

This chapter describes the precautions on development flow to be considered by the first
developer and the environment setup before, in, after or when secure region development is
completed.

2.1 First Development Flow

Figure 2-1 First Development Flow Chart

According to the development flow chart as shown in Figure 2-1, the development setup flow
in Keil® MDK is as follows.

 Before development

 Click [Options for Target – Target] as shown in Figure 2-2, and the first developer

must check if the Software Model is in Secure Mode.

Figure 2-2 Check Software Model in Keil® MDK

Project Setup

Develop

Software Model
(Secure Mode)

SCRLOCK

In Development

Before Development

After Development

Sep 06, 2018 Page 5 of 32 Rev 1.00

AN0016

 Click [Options for Target – Linker] as shown in Figure 2-3.

 Edit secure script component file in Scatter File, which is used to define the

range of secure APROM, secure SRAM and placing non-secure callable APIs.

 Specify a path to save the object file generated by non-secure callable provided

to the second developer in Misc controls.

Figure 2-3 Specify Scatter File and Misc Controls in Keil® MDK

 In development

The first developer must configure security attributions in development. For example, the size
of SRAM, the setup of non-secure region starting address, and the secure or non-secure
configuration of peripheral and interrupt, etc. In addition, the first developer must use non-
secure callable to pack APIs built in the peripheral that secure configured to non-secure use.

For details about the environment setup and the usage of non-secure callable with the first
developer before or in development mentioned above, please refer to M2351 TrustZone®
Program Development document.

 After development

To protect code in the secure region, the first developer must open SCRLOCK to avoid code
from being tampered or destroyed in secure region. Section 2.2 will introduce the concept of
SCRLOCK and how to set up environment in Keil® MDK and ICP Programming Tool.

 Development completed

Finally, when development is completed, the first developers must pack the following

Sep 06, 2018 Page 6 of 32 Rev 1.00

AN0016

information to the second developers, such that the second developers are able to develop.

 Non-secure APROM and SRAM base address

 The object file generated by non-secure callable

 Non-secure callable APIs header file

Sep 06, 2018 Page 7 of 32 Rev 1.00

AN0016

2.2 SCRLOCK – Secure Region Lock

If SCRLOCK address in 0x0020_0804 is not read as 0x5A when MCU detects there is ICE
connected, the MCU will start read and write protection mechanism, namely user can only
read 0xFFFF_FFFF through ICE in secure region, and all program to secure region will be
ignored. It is noteworthy that the first developer can use this setup to protect code in secure
region, and the second developer can only use library in secure region by calling non-secure
callable functions but cannot know or re-write code in secure region. Additionally, the sizes of
secure and non-secure regions are determined by the set value of non-secure boundary
value, NSCBA in 0x0020_0800. Consequently, the second developers must pay attention to
that the range of non-secure region they are able to develop is from NSCBA to the APROM
size, 512KB.

The following shows the setting methods of NSCBA and SCRLOCK in Keil® MDK and ICP
Programming Tool. In addition, please note that chip will do erase when setting NSCBA.

2.2.1 Keil® MDK

Open a project in the Keil® MDK environment.

1. Click [Options for Target – Utilities], and click [Settings] button to open Flash Download

page. Then click [Setting] button under Chip Setting to open the Secure Setting page, as

shown in Figure 2-4.

2. The method of setting NSCBA is that select [Non-secure region], specify Start Address

and then click [OK]. Select [Secure Region Lock] and click [OK] and then secure region

can be locked.

Figure 2-4 Setting Methods of NSCBA and SCRLOCK in Keil® MDK

Sep 06, 2018 Page 8 of 32 Rev 1.00

AN0016

2.2.2 ICP Programming Tool

After selecting a target chip correctly, connect the ICP Programming Tool with Nu-Link. When
connected:

1. Click [Setting] button under Chip Settings to open the Secure Setting page, as shown in

Figure 2-5.

2. Select [Non-Secure Region (APROM_NS)] and specify Start Address and then click [OK],

or select [Secure Region Lock] and then click [OK].

3. Select [Chip Setting] under Programming and click [Start] to start programming, then the

value of NSCBA can be set or secure region can be locked.

Figure 2-5 Setting Methods of NSCBA and SCRLOCK in ICP Programming Tool

Sep 06, 2018 Page 9 of 32 Rev 1.00

AN0016

If users find that they need to modify code after secure region is locked, in response to this
situation, the ICP Programming Tool provides the function that can erase the whole chip.
User just needs to click [Erase Whole Target Chip] in [Tool] as shown in Figure 2-6 and then
SCRLOCK can be unlocked. But this action will erase whole data in this chip; therefore, the
second developer must pay attention to not clicking this function item by mistake.

Figure 2-6 Erase Whole Target Chip in ICP Programming Tool

Sep 06, 2018 Page 10 of 32 Rev 1.00

AN0016

3 Collaborative Development

This chapter describes the concept of the collaborative development flow and the precautions
including environment setup and restrictions on use before, in or after non-secure region
development.

3.1 Collaborative Development Flow

Figure 3-1 Collaborative Development Flow Chart

According to the development flow chart as shown in Figure 3-1, the development setup flow
in Keil® MDK is as follows.

 Before development

 Click [Options for Target – Target] as shown in Figure 3-2, and the second developer

must check if the Software Model is in Non-Secure Mode.

Figure 3-2 Check Software Model in Keil® MDK

Project Setup

Develop

Software Model
(Non-Secure Mode)

ARLOCK

In Development

Before Development

After Development

Sep 06, 2018 Page 11 of 32 Rev 1.00

AN0016

 Click [Options for Target – Linker] as shown in Figure 3-3.

 According to the first developer provides the information of non-secure APROM

and SRAM base address, the second developer can edit non-secure script

component file in Scatter File, which is used to define the range of non-secure

APROM and non-secure SRAM.

Figure 3-3 Specify Scatter File in Keil® MDK

 Click [Options for Target – Utilities] and click [Setting] button, and then Flash

Download page will appear as shown in Figure 3-4.

 The second developer can read the information that non-secure region range is

from 0x1000_0000 to 0x1007_FFFF in the red box. In the later example, the first

developer divides the first 256KB of APROM as secure region; therefore, the

development range that can be programmed by the second developer is from

0x1004_0000 to 0x1007_FFFF.

 In addition, regardless of whether secure region is locked by the first developer

or not, all of the following need to be checked to ensure that ICE download is

available.

 Flash Select has been set to [APROM_NS].

 Non-secure SRAM base address has been specified in the Start field under

RAM for Algorithm.

Sep 06, 2018 Page 12 of 32 Rev 1.00

AN0016

Figure 3-4 Check Download Setting in Keil® MDK

 Click [Manage Project Items] and then add an object file which is generated by non-

secure callable provided by the first developer to this project, as shown in Figure 3-5.

Figure 3-5 Add Non-secure Callable Library to Project in Keil® MDK

 In development

When the second developer is in development, it can develop the peripheral that is configured

Sep 06, 2018 Page 13 of 32 Rev 1.00

AN0016

to non-secure by the first developer directly, and can only access the peripheral that secure
configured by calling non-secure callable function when user wants to use or control it. In
NuMicro® M2351 series, for instance, the clock controller is fixed to secure only peripheral, if
non-secure callable APIs does not contain the function of clock source select provided by the
first developer, the clock of the peripheral that the second developer wants to develop can
only operate in the setup already configured by the first developer in advance. Furthermore,
the related precautions of downloading code please refer to section 3.3.

 After development

To protect code in non-secure region, the second developer can open ARLOCK to avoid code
from being tampered or destroyed in secure and non-secure regions after completing
development stage. Section 3.4 will introduce the concept of ARLOCK and how to set up
environment in Keil® MDK and ICP Programming Tool.

Sep 06, 2018 Page 14 of 32 Rev 1.00

AN0016

3.2 XOM – Execute-Only Memory

XOM is a region only can execute code, and the data in this region cannot be accessed by
any interface or tool. Hence, no matter the first or the second developers, they can put the
source code not released to the customer in this region. In the case of not being read can
achieve the effect of protect code effectively. For example, the first developers can put library
which they provide to the second developers in XOM, and the second developers can call and
execute the instructions but cannot know what code is in the library.

The following will introduce the XOM setup method in Keil® MDK and ICP Programming Tool.
For details about the XOM configuration method and the precautions on use, please refer to
XOM Configure Manual document.

3.2.1 Keil® MDK

Open a project in the Keil® MDK environment.

1. Click [Options for Target – Utilities] and click [Settings] button, and Flash Download page

will appear. Then click [Setting] button under Chip Setting to open the XOM Setting page,

as shown in Figure 3-6.

2. Select [XOM0/1/2/3], specify Start Address and Page Counts of XOM and then click [OK].

3. Also select [Debug Mode] for program debugging.

Figure 3-6 Configure XOM in Keil® MDK

Sep 06, 2018 Page 15 of 32 Rev 1.00

AN0016

3.2.2 ICP Programming Tool

After selecting a target chip correctly, connect the ICP Programming Tool with Nu-Link. When
connected:

1. Click [Setting] button under Chip Settings to open the XOM Setting page, as shown in

Figure 3-7.

2. Select [XOM0/1/2/3], specify Start Address and Page Counts of XOM and then click [OK].

3. Also select [Debug Mode] for program debugging.

4. Select [Chip Setting] under Programming and then click [Start] to start programming.

Figure 3-7 Configure XOM in ICP Programming Tool

Sep 06, 2018 Page 16 of 32 Rev 1.00

AN0016

3.3 Download Code

Nuvoton provides the debugging tool to adjust and download code on MCU. Because the first
developer protects secure region code by using SCRLOCK, the second developer will have
the restrictions on setup and use when debugging. The following will introduce the
environment setup in Keil® MDK and ICP Programming Tool respectively.

3.3.1 Keil® MDK

The second developers must confirm that all setup flows before development are set correctly
according to section 3.1, and then click [Download] under [Flash] to start downloading code,
or click [Start/Stop Debug Session] under [Debug] to debug code. It should be noted that,
when using [Memory Windows] under [View] in the debugging interface, the second
developer can only read and write the peripheral that non-secure configured. In addition, the
second developer can only do step over in debug mode, if user do step in, code will step out
immediately. And if code run to secure region and did not return to non-secure region, ICE will
be disconnected. The following describes the environment in Keil® MDK with the sample code
in chapter 4.

In the NuMicro® M2351 series, the secure peripheral is configured in the address of
0x4XXX_XXXX, and the non-secure peripheral is configured in the address of
0x5XXX_XXXX. The second developer cannot access all control registers of secure region
directly, hence user can only read the value of 0xFFFF_FFFF in all address of
0x4XXX_XXXX. As shown in Figure 3-8, 0x4000_2000 and 0x4000_4000 are the base
address of clock controller and general purpose I/O (GPIO) in secure region respectively.

Sep 06, 2018 Page 17 of 32 Rev 1.00

AN0016

Figure 3-8 Read 0xFFFF_FFFF in Secure Region Control Registers

The base address of GPIO in non-secure region is 0x5000_4000 as shown in Figure 3-9, the
control registers of PA is in the green box and the control registers of PC is in the red box. In
the following example, the first developer configures PC as non-secure peripheral and PA as
secure peripheral, hence the second developer can read the programmed value of PC in the
red box directly and can also specify value to control the register directly, but can only read
0x0000_0000 and cannot write any value to the control registers in the green box after
entering debugging interface.

Figure 3-9 GPIO Non-secure Region Control Registers

Sep 06, 2018 Page 18 of 32 Rev 1.00

AN0016

Give another example, 0x5007_0000 and 0x5007_1000 are the base address of UART0 and
UART1 respectively in non-secure region as shown in Figure 3-10. In the following example,
the first developer configures UART0 as non-secure peripheral and UART1 as secure
peripheral, hence, the second developer can read and write the control registers of UART0
directly, but can only read 0xFFFF_FFFF in the control registers of UART1 where cannot
write any value after entering debugging interface.

Figure 3-10 UART0/1 Non-secure Region Control Registers

Sep 06, 2018 Page 19 of 32 Rev 1.00

AN0016

3.3.2 ICP Programming Tool

After selecting a target chip correctly, connect the ICP Programming Tool with Nu-Link. When
connected:

1. Add a non-secure file to [APROM_NS].

2. Select [APROM_NS] under Programming and click [Start] to start programming, then

user can download code to non-secure region.

In addition, the second developer can read the initial settings on this chip programmed by the
first developer in the red box shown in Figure 3-11. For example, the size of non-secure
SRAM is 64KB, the size of non-secure APROM is 256KB and the base address of non-secure
region is 0x1004_0000; therefore, the range can be developed is from 0x1004_0000 to
0x1007_FFFF. Moreover, because secure region is locked by the first developer, the second
developer cannot program the secure region, such as LDROM and APROM. And user cannot
read the related information about secure region in On-board Flash.

Figure 3-11 Download Non-secure Region Code in ICP Programming Tool

Sep 06, 2018 Page 20 of 32 Rev 1.00

AN0016

3.4 ARLOCK – All Region Lock

All region lock implies that it will lock code in all regions. When MCU detects there is ICE
connected, If ARLOCK address in 0x0021_0804 is not read as 0x5A, the MCU will start read
and write protection mechanism on secure region and non-secure region. This function can
be enabled after the second developer completes the product development stage. This
prevents code in product from being invaded to get or tampered in any way by people with
bad intention.

In the Keil® MDK environment and ICP Programming Tool, the Secure Setting page contains
options for setting NSCBA, SCRLOCK and ARLOCK. Among them, NSCBA and SCRLOCK
are limited to be used by the first developer and ARLOCK is available for the second
developer for choose. The following introduces the operation method.

3.4.1 Keil® MDK

Open a project in the Keil® MDK environment.

1. Click [Options for Target – Utilities], and click [Settings] button to open Flash Download

page. Then click [Setting] button under Chip Setting to open the Secure Setting page, as

shown in Figure 3-12.

2. Select [All Region Lock] and click [OK] then secure and non-secure regions can be

locked.

Figure 3-12 Setting Method of ARLOCK in Keil® MDK

Sep 06, 2018 Page 21 of 32 Rev 1.00

AN0016

3.4.2 ICP Programming Tool

After selecting a target chip correctly, connect the ICP Programming Tool with Nu-Link. When
connected:

1. Click [Setting] button under Chip Settings to open the Secure Setting page, as shown in

Figure 3-13.

2. Select [All Region Lock] and then click [OK].

3. Select [Chip Setting] under Programming and click [Start] to start programming, then

secure and non-secure regions can be locked.

Figure 3-13 Setting Method of ARLOCK in ICP Programming Tool

Sep 06, 2018 Page 22 of 32 Rev 1.00

AN0016

4 Sample Code

4.1 Operation Procedure

The folder of sample CSSD_LED contains two packs of program: Secure and NonSecure.
Firstly, download Secure code and open SCRLOCK according to the introduction in section
2.2, this can be used to simulate MCU provided by the first developer. After that, download
NonSecure code to simulate the behavior that the second developer conducts collaborative
development.

4.2 Sample Code Description

4.2.1 CSSD_LED – Secure

 System frequency is 64 MHz; UART0_NS serial ports TX/RX is PB.13/PB.12; Baud rate

is 115200 bps.

 Non-secure APROM/SRAM base address is set as 0x1004_0000/0x3000_8000.

 The secure function to be provided to the second developer is placed in non-secure

callable.

#include <arm_cmse.h>

#include <stdio.h>

#include "NuMicro.h" /* Device header */

#include "partition_M2351.h"

#define NEXT_BOOT_BASE 0x10040000

#define JUMP_HERE 0xe7fee7ff /* Instruction Code of "B ." */

/* typedef for NonSecure callback functions */

typedef __NONSECURE_CALL int32_t (*NonSecure_funcptr)(uint32_t);

void SYS_Init(void)

{

 /* Enable PLL */

 CLK->PLLCTL = CLK_PLLCTL_128MHz_HIRC;

 /* Waiting for PLL stable */

 while((CLK->STATUS & CLK_STATUS_PLLSTB_Msk) == 0);

 /* Set HCLK divider to 2 */

 CLK->CLKDIV0 = (CLK->CLKDIV0 & (~CLK_CLKDIV0_HCLKDIV_Msk)) | 1;

Sep 06, 2018 Page 23 of 32 Rev 1.00

AN0016

 ...

 /* Set multi-function pins for UART0 RXD and TXD */

 SYS->GPB_MFPH = (SYS->GPB_MFPH & (~(UART0_RXD_PB12_Msk | UART0_TXD_PB13_Msk))) |
UART0_RXD_PB12 | UART0_TXD_PB13;

}

void DEBUG_PORT_Init(void)

{

 /* Configure UART and set UART Baudrate */

 DEBUG_PORT->BAUD = UART_BAUD_MODE2 | UART_BAUD_MODE2_DIVIDER(__HIRC, 115200);

 DEBUG_PORT->LINE = UART_WORD_LEN_8 | UART_PARITY_NONE | UART_STOP_BIT_1;

}

void Nonsecure_Init(void)

{

 NonSecure_funcptr fp;

 /* SCB_NS.VTOR points to the Non-secure vector table base address. */

 SCB_NS->VTOR = NEXT_BOOT_BASE;

 /* 1st Entry in the vector table is the Non-secure Main Stack Pointer. */

 __TZ_set_MSP_NS(*((uint32_t *)SCB_NS->VTOR)); /* Set up MSP in Non-secure code */

 /* 2nd entry contains the address of the Reset_Handler (CMSIS-CORE) function */

 fp = ((NonSecure_funcptr)(*(((uint32_t *)SCB_NS->VTOR) + 1)));

 /* Clear the LSB of the function address to indicate the function-call

 will cause a state switch from Secure to Non-secure */

 fp = cmse_nsfptr_create(fp);

 /* Check if the Reset_Handler address is in Non-secure space */

 if(cmse_is_nsfptr(fp) && (((uint32_t)fp & 0xf0000000) == 0x10000000))

 {

 printf("Execute non-secure code ...\n");

 fp(0); /* Non-secure function call */

 }

 else

 {

 /* Something went wrong */

Sep 06, 2018 Page 24 of 32 Rev 1.00

AN0016

 printf("No code in non-secure region!\n");

 printf("CPU will halted at non-secure state\n");

 /* Set nonsecure MSP in nonsecure region */

 __TZ_set_MSP_NS(NON_SECURE_SRAM_BASE + 512);

 /* Try to halted in non-secure state (SRAM) */

 M32(NON_SECURE_SRAM_BASE) = JUMP_HERE;

 fp = (NonSecure_funcptr)(NON_SECURE_SRAM_BASE + 1);

 fp(0);

 while(1);

 }

}

__NONSECURE_ENTRY

int32_t Secure_PA11_LED_On(uint32_t num)

{

 printf("Secure PA11 LED On call by secure\n");

 PA11 = 0;

 return 0;

}

__NONSECURE_ENTRY

int32_t Secure_PA11_LED_Off(uint32_t num)

{

 printf("Secure PA11 LED Off call by secure\n");

 PA11 = 1;

 return 1;

}

...

__NONSECURE_ENTRY

uint32_t GetSystemCoreClock(void)

{

 printf("System core clock = %d.\n", SystemCoreClock);

 return SystemCoreClock;

}

int32_t LED_On(void)

Sep 06, 2018 Page 25 of 32 Rev 1.00

AN0016

{

 printf("Secure/Non-secure LED On call by Secure\n");

 PA10 = 0;

 PC1_NS = 0;

 return 0;

}

int32_t LED_Off(void)

{

 printf("Secure/Non-secure LED Off call by Secure\n");

 PA10 = 1;

 PC1_NS = 1;

 return 1;

}

void SysTick_Handler(void)

{

 static uint32_t ticks;

 switch(ticks++)

 {

 case 0:

 LED_On(0u);

 break;

 ...

 case 600:

 ticks = 0;

 break;

 default:

 if(ticks > 600)

 {

 ticks = 0;

 }

 }

}

int main(void)

{

Sep 06, 2018 Page 26 of 32 Rev 1.00

AN0016

 SYS_UnlockReg();

 SYS_Init();

 /* UART is configured as non-secure for debug in both secure and non-secure region */

 DEBUG_PORT_Init();

 printf("Secure code is running ...\n");

 /* Init GPIO Port A for secure LED control */

 GPIO_SetMode(PA, BIT13 | BIT12 | BIT11 | BIT10, GPIO_MODE_OUTPUT);

 /* Init GPIO Port C for non-secure LED control */

 GPIO_SetMode(PC_NS, BIT1, GPIO_MODE_OUTPUT);

 /* Generate Systick interrupt each 10 ms */

 SysTick_Config(SystemCoreClock / 100);

 Nonsecure_Init();

 do

 {

 __WFI();

 }

 while(1);

}

 Defined in secure scatter file

 The range of secure APROM is 0x0000_0000~0x0003_FFFF.

 The range of secure SRAM is 0x2000_0000~0x2000_7FFF.

 The range of placing non-secure callable APIs is 0x0003_F000~0x0003_FFFF.

LR_ROM 0x0

{

 EXE_ROM +0 0x40000

 {

 *.o(RESET, +First)

 *(+RO)

 }

 EXE_RAM 0x20000000 0x8000

Sep 06, 2018 Page 27 of 32 Rev 1.00

AN0016

 {

 *(+RW, +ZI)

 }

}

LR_NSC 0x3F000

{

 NSC +0

 {

 *(Veneer$$CMSE)

 }

}

4.2.2 CSSD_LED – NonSecure

 In the NonSecure folder, cssd_lib.h contains non-secure callable APIs provided by the

first developer to be used by the second developer.

extern int32_t Secure_PA11_LED_On(uint32_t num);

extern int32_t Secure_PA11_LED_Off(uint32_t num);

extern int32_t Secure_PA12_LED_On(uint32_t num);

extern int32_t Secure_PA12_LED_Off(uint32_t num);

extern int32_t Secure_PA13_LED_On(uint32_t num);

extern int32_t Secure_PA13_LED_Off(uint32_t num);

extern uint32_t GetSystemCoreClock(void);

 LED_ON and LED_OFF are the non-secure functions developed by the second

developer.

 Take hybrid display of secure and non-secure LED lights as a collaborative development

example, the location of second developer handle in SysTick_Handler can be configured

to non-secure functions or non-secure callable functions by the second developer.

#include <arm_cmse.h>

#include "NuMicro.h" /* Device header */

#include "cssd_lib.h"

void LED_On(uint32_t us)

{

 printf("NS LED On call by NS\n");

 PC0_NS = 0;

}

Sep 06, 2018 Page 28 of 32 Rev 1.00

AN0016

void LED_Off(uint32_t us)

{

 printf("NS LED Off call by NS\n");

 PC0_NS = 1;

}

void SysTick_Handler(void)

{

 static uint32_t ticks;

 switch(ticks++)

 {

 case 0:

 // second developer handle

 LED_On(7u);

 Secure_PA11_LED_On(0u);

 break;

 ...

 case 600:

 ticks = 0;

 break;

 default:

 if(ticks > 600)

 {

 ticks = 0;

 }

 }

}

int main(void)

{

 printf("\nNonsecure code is running ...\n");

 /* Init GPIO Port C for non-secure LED control */

 GPIO_SetMode(PC_NS, BIT0, GPIO_MODE_OUTPUT);

 /* Call secure API to get system core clock */

Sep 06, 2018 Page 29 of 32 Rev 1.00

AN0016

 SystemCoreClock = GetSystemCoreClock();

 /* Generate Systick interrupt each 10 ms */

 SysTick_Config(SystemCoreClock / 100);

 /* Waiting for secure/non-secure Systick interrupt */

 while(1);

}

 Defined in non-secure scatter file

 The range of non-secure APROM is 0x1004_0000~0x1007_FFFF.

 The range of non-secure SRAM is 0x3000_8000~0x3001_7FFF.

LR_ROM 0x10040000 0x10000

{

 EXE_ROM +0

 {

 *.o(RESET, +First)

 *(+RO)

 }

 EXE_RAM 0x30008000 0x10000

 {

 *(+RW, +ZI)

 }

}

Sep 06, 2018 Page 30 of 32 Rev 1.00

AN0016

5 Conclusion

As described above, the first developer must engage in development under the project
environment in secure mode. After the development is completed, the first developer must
provide the second developer with non-secure APROM and SRAM base address, the object
file generated by non-secure callable and non-secure callable APIs header file.

The second developer must engage in development under the project environment in non-
secure mode. Note that in the development, the peripheral configured to non-secure by the
first developer can be accessed directly; otherwise, only the peripheral configured to secure
can be accessed by calling the non-secure callable function provided by the first developer.

Sep 06, 2018 Page 31 of 32 Rev 1.00

AN0016

Revision History

Date Revision Description

2018.09.06 1.00 1. Initially issued.

Sep 06, 2018 Page 32 of 32 Rev 1.00

AN0016

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.

 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

	1 Overview
	2 First Development
	2.1 First Development Flow
	2.2 SCRLOCK – Secure Region Lock
	2.2.1 Keil® MDK
	2.2.2 ICP Programming Tool

	3 Collaborative Development
	3.1 Collaborative Development Flow
	3.2 XOM – Execute-Only Memory
	3.2.1 Keil® MDK
	3.2.2 ICP Programming Tool

	3.3 Download Code
	3.3.1 Keil® MDK
	3.3.2 ICP Programming Tool

	3.4 ARLOCK – All Region Lock
	3.4.1 Keil® MDK
	3.4.2 ICP Programming Tool

	4 Sample Code
	4.1 Operation Procedure
	4.2 Sample Code Description
	4.2.1 CSSD_LED – Secure
	4.2.2 CSSD_LED – NonSecure

	5 Conclusion

