

Aug 31, 2018 Page 1 of 41 Rev 1.00

AN0019

Application Note for 32-bit NuMicro® Family

Document Information

Abstract Introduce TrustZone® programing including how to partition
security attribution and how to develop program in the Keil® MDK
environment, and show sample code.

Apply to NuMicro® M2351 series

The information described in this document is the exclusive intellectual property of
 Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NuMicro microcontroller based system design.
Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

M2351 TrustZone® Program Development
M2351

http://www.nuvoton.com/

Aug 31, 2018 Page 2 of 41 Rev 1.00

AN0019

Table of Contents

1 OVERVIEW .. 4

2 TRUSTZONE® INTRODUCTION .. 5

2.1 Memory Map Security Attribution Configuration .. 6

2.1.1 IDAU ... 6
2.1.2 SAU .. 7

2.2 Secure and Non-secure State Switch ... 9

2.2.1 Non-secure Code Calls Secure Function ... 9
2.2.2 Secure Code Calls Non-secure Function ... 9
2.2.3 Non-secure Security Attribution Check ... 10

3 KEIL® MDK DEVELOPMENT ENVIRONMENT ... 11

3.1 Security Attribution Configuration... 11

3.1.1 Memory Map ... 12
3.1.2 Flash .. 12
3.1.3 SRAM ... 13
3.1.4 Peripheral .. 14
3.1.5 Peripheral Interrupt .. 14

3.2 Secure and Non-secure Project Setting .. 15

3.2.1 Secure Code ... 15
3.2.2 Non-secure Code ... 21

3.3 Secure and Non-secure State Switch ... 23

3.3.1 Execute from Secure Code to Non-secure Code .. 23
3.3.2 Non-secure Code Calls Secure Function ... 25
3.3.3 Secure Code Calls Non-secure Function ... 29

4 SAMPLE CODE .. 31

4.1 Security Attribution Configuration... 32

4.1.1 Memory Map ... 32
4.1.2 Flash .. 33
4.1.3 SRAM ... 33
4.1.4 Peripheral .. 34
4.1.5 Peripheral Interrupt .. 34

4.2 Secure and Non-secure State Switch ... 34

4.2.1 Execute from Secure Code to Non-secure Code .. 34
4.2.2 Non-secure Code Calls Secure Function ... 35
4.2.3 Secure Code Calls Non-secure Function ... 36

Aug 31, 2018 Page 3 of 41 Rev 1.00

AN0019

4.2.4 Non-secure Security Attribution Check ... 37

5 CONCLUSION .. 39

Aug 31, 2018 Page 4 of 41 Rev 1.00

AN0019

1 Overview

In the IoT (Internet of Things) application, devices not only can communicate with each other
through the Internet, but can be attacked through the Internet. The security is an important
topic to protect device and information. The Arm® TrustZone® technology partitions hardware
into Secure and Non-secure world (or trusted and un-trusted world). Users can implement
their own authentication method additionally. With the TrustZone® technology and software
method, microcontrollers (MCUs) can provide secure application and make it flexible to
design. This document will introduce the TrustZone® technology including how to partition
security attribution and how to develop program in the Keil® MDK environment, and show

sample code.

Aug 31, 2018 Page 5 of 41 Rev 1.00

AN0019

2 TrustZone
®
 Introduction

The Arm® TrustZone® technology partitions the system into two regions. One is Secure world
and another is Non-secure world. The available microcontroller resources including Flash,
SRAM, peripherals and peripheral interrupts security attribution can also be configured to
Secure or Non-secure. After planning the security attribution of these resources, Non-secure
world can only access Non-secure memories and resources, while Secure world can access
all memories and resources, including Secure and Non-secure resources. Important data that
needs protection can be placed and processed in the Secure world safely. Access of Secure
world is limited. The protected data would not be stolen or broken by anyone or anyone
untrusted.

Figure 2-1 Secure and Non-secure World

Non-secure SCB

Non-secure NVIC

Non-Secure SysTick

Debug Debug

SAU

Secure SCB Non-secure SCB

Secure NVIC Non-secure NVIC

Secure SysTick Non-Secure SysTick

ITM/DWT/FPB ITM/DWT/FPB

System System

System control
 and debug

System control
 and debug

External Peripheral External Peripheral

External SRAM External SRAM

Non-secure Peripheral Non-secure Peripheral

Secure Peripheral

Non-secure SRAM Non-secure SRAM

 Secure SRAM

 Non-secure Flash Non-secure Flash

 Secure Flash

0xFFFFFFFF

0xF0000000

0xE0000000

0xA0000000

0x60000000

0x50000000

0x40000000

0x30000000

0x20000000

0x10000000

0x00000000

Address

Secure View

Memory Map

Non-secure View Secure View Non-secure View

Secure

Non-secure

Others

Not available

Aug 31, 2018 Page 6 of 41 Rev 1.00

AN0019

Figure 2-1 shows the configuration of resource security attribution. The memory map, Flash,
SRAM and peripherals are partitioned into Secure or Non-secure attribute. When the code is
executed in Secure memory, the system is called Secure code. The Secure code can access
all resources including Secure and Non-secure. When the code is executed in the Non-secure
memory, the system is called Non-secure code. The Non-secure code can only access Non-
secure resource. Beside the defined access authority, Secure code can provide Non-secure
callable function to allow more authority for Non-secure code access.

2.1 Memory Map Security Attribution Configuration

In the Arm® TrustZone® technology, the memory map security attribution partition can be
configured by IDAU (Implementation Defined Attribution Unit) and SAU (Security Attribution
Unit). The security attribution can be configured as Secure(S), Non-secure(NS) and Non-
secure callable(NSC). Non-secure callable entry function should be placed in Non-secure
callable memory if Secure code provides Non-secure callable function. NuMicro® M2351
series define a fixed memory map security attribution by IDAU. User still can change security
configuration partition by SAU. The result of security attribution is the higher security setting
between IDAU and SAU. The priority of security attribution is Secure(S) has the highest
secure priority, then Non-secure callable(NSC) has lower secure priority and Non-secure(NS)
has the lowest secure priority. The undefined region is Secure(S) by default.

Figure 2-2 Memory Map Address Security Attribution Configuration

2.1.1 IDAU

Figure 2-3 shows the NuMicro® M2351 series memory map security attribution partition
defined by IDAU. The memory map address bit 28 is used to define the security attribution. If
the memory map address bit 28 is 0, it is Secure(S). In Flash and SRAM region, it is Non-

Memory Map Address

Secure Attribution Unit
(SAU)

Implementation Defined
Attribution Unit (IDAU)

Security Attribution Compare

Secure or Non-secure State

Aug 31, 2018 Page 7 of 41 Rev 1.00

AN0019

secure callable (NSC). If the memory map address bit 28 is 1, it is Non-secure(NS). The first
2 Kbytes of Flash are fixed to Secure(S). The system related register does not partition into
certain security attribution. They are determined by current system state.

Figure 2-3 IDAU Defined Memory Map Address Security Attribution

2.1.2 SAU

User can change security configuration partition by SAU. Table 2-1 lists the SAU control
registers. Figure 2-4 shows how to configure security attribution by SAU. All memory map can
be configured to Secure(S) by setting SAU_CTRL.ALLNS=0 or be configured to Non-

Address IDAU Memory Map Resource Type

CPU control
System

System control and debug

Non-secure

External Peripheral
Secure

Non-secure

Secure

Non-secure

External SRAM
 Secure

 Non-secure

 Secure

Non-secure
Peripheral

Secure

Non-secure
SRAM

Non-secure callable

Non-secure
Flash

Non-secure callable

0xFFFFFFFF

0xF0000000

0xE0000000

0xD0000000

0xC0000000

0xB0000000

0xA0000000

0x90000000

0x80000000

0x70000000

0x60000000

0x50000000

0x40000000

0x30000000

0x20000000

0x10000000
0x00000800
0x00000000

Secure
0x00000800
0x00000000

Aug 31, 2018 Page 8 of 41 Rev 1.00

AN0019

secure(NS) by setting SAU_CTRL.ALLNS=1. To configure security attribution in detail, user
can set the SAU_CTL, SAU_RNR, SAU_RBAR and SAU_RLAR register. Set
SAU_CTL.ENABLE=1 to enable SAU, set SAU_RNR (which region to set), SAU_RBAR (with
start address), SAU_RLAR (with end address) and SAU_RLAR.NSC. Set SAU_RLAR.NSC=0
to configure specify memory map region security attribution to Non-secure(NS) and set
SAU_RLAR.NSC=1 to configure as Non-secure callable (NSC). The security attribution of the
regions which do not specified by SAU is Secure(S).

SAU Register Address Description

SAU_CTRL 0xE000EDD0 SAU control register.

SAU_TYPE 0xE000EDD4 The number of SAU setting region, read only.

SAU_RNR 0xE000EDD8 SAU setting region.

SAU_RBAR 0xE000EDDC SAU setting start address.

SAU_RLAR 0xE000EDE0 SAU setting end address and attribution.

Table 2-1 SAU Control Register

Figure 2-4 SAU Security Attribution Configuration

SAU_CTRL.ENABLE

(default)

SAU region matched? SAU_CTRL.ALLNS

1= All Non-secure.

1= NSC.

SAU_RLAR.NSC

Non-secure
Callable
(NSC)

1= The SAU is enabled.

Yes No

0 = The SAU is disabled.

0 = not NSC.

Secure Secure Non-secure

0 = All Secure.

Non-secure

Aug 31, 2018 Page 9 of 41 Rev 1.00

AN0019

2.2 Secure and Non-secure State Switch

Functions in Secure code and Non-secure code can call each other. Secure code can call
Non-secure function directly but Non-secure code cannot call Secure function directly. If
Secure code allows Non-secure code to call a Secure function, it is a Non-secure callable
function. Secure code should place related Non-secure callable entry function in Non-secure
callable region. Non-secure code call Non-secure callable entry function then can call secure
function.

2.2.1 Non-secure Code Calls Secure Function

When Non-secure code calls Secure function, it calls Non-secure callable entry function at
first. The first instruction of Non-secure callable entry function is SG instruction. It is the entry
point that allows the code state switches from Non-secure state to Secure state. Non-secure
callable function is end with BXNS instruction and returns to Non-secure code.

Figure 2-5 Non-secure Code Calls Secure Function

BL: Branch with link instruction

Func_A_entry: Non-secure callable entry function

SG: Secure gateway instruction

B: Branch instruction

Func_A: Secure function

BXNS: Branch with exchange to Non-secure state instruction

2.2.2 Secure Code Calls Non-secure Function

Secure code uses a BLXNS instruction to call Non-secure function. Before switching secure
state to Non-secure state, return address and processor information are pushed into the
Secure stack, while the return address on Link Register (LR) is set to a special value
FNC_RETURN. Non-secure function completes with branch to FNC_RETURN address. The
actual return address unstacks to Secure stack and returns to Secure state.

Non-secure Code Non-secure Callable

Func_A
…
…
…
BXNS LR

Secure Code

BL Func_A_entry
…

Func_A_entry
SG；
B Func_A

Aug 31, 2018 Page 10 of 41 Rev 1.00

AN0019

Figure 2-6 Secure Code Calls Non-secure Function

BLXNS: Branch with link and exchange to Non-secure state instruction

R0: Address of Non-secure function with LSB is 0

FNC_RETURN: 0xFEFFFFFF

Func_B: Non-secure function

BX: Branch with exchange instruction

2.2.3 Non-secure Security Attribution Check

Secure code provides Non-secure callable function for Non-secure code to call secure
function. It also provides parameters and return values. Secure function can check the
memory security by cmse_check_adress_range intrinsic before reading or modifying any data
to prevent the important data from being stolen or broken. To use cmse_check_adress_range
intrinsic, set the flag parameter as CMSE_NONSECURE, and the address range to check is
from p to p+1. If the checked addresses are all in Secure memory, it returns the address p.
Otherwise, it returns NULL. Another intrinsic cmse_check_pointed_object can also be used to
check address security attribution.

void* cmse_check_adress_range(void *p, size_t size, int flags);

void* cmse_check_pointed_object(void *p, int flags);

Non-secure Code Secure Code

BLXNS R0
…

Func_B
…
…
BX LR

Return address push to Secure
stack, LR set to FNC_RETURN.

BX to FNC_RETURN,

unstack return address form Secure
stack.

Aug 31, 2018 Page 11 of 41 Rev 1.00

AN0019

3 Keil
®
 MDK Development Environment

This section describes how to develop NuMicro® M2351 series TrustZone® program with Keil®
MDK. The development environment has to support Cortex® -M23 core and Armv8-M
architecture. The download and debug tool is Nuvoton Nu-Link Debugger.

The resource security attributions need to be planed first before developing TrustZone®
program. User should determine which resources are planned for Secure code and which
resources are planned for Non-secure code. The Secure and Non-secure code are two
projects. Flash and SRAM address need to be specified to compile and download code
correctly. If Secure code provides Non-secure callable function for Non-secure code, Secure
project needs to create a Non-secure callable function library. If Non-secure code wants to
use Non-secure callable function, Non-secure project has to add Non-secure callable function
library. The state switched between Secure and Non-secure state can be observed when
executing the code.

3.1 Security Attribution Configuration

Security attribution is configured in Secure code. The partition_M2351.h file provides a
configuration wizard interface for user to configure the resources security attribution easily.
The security attribution configuration includes memory map, Flash, SRAM, peripherals and
peripheral interrupts. The following section will introduce how to configure security attribution
through partition_M2351.h file configuration wizard interface.

1. Click [Secure] to expand the folder. The [partition_M2351.h] file is in [User] folder.

2. Click [Configuration Wizard] to open Configuration Wizard page.

Security Attribution Configuration

Aug 31, 2018 Page 12 of 41 Rev 1.00

AN0019

3.1.1 Memory Map

Memory map security attribution is set by SAU. For example, plan the address 0x3F000-
0x3F7FF for Non-secure callable function and set the security attribution as Secure and Non-
secure callable.

1. In the [Enable and Set Secure/Non-secure Region], select [SAU Region 3].

2. Specify the start address by setting [Start Address] to [0x00003F000].

3. Specify the end address by setting [End Address] to [0x00003F7FF].

4. In the [Region is], select [Secure, Non-secure Callable] from the pull-down menu.

3.1.2 Flash

Flash security attribution is set by the register NSCBA (Non-secure base address register,
address 0x00200800). NSCBA sets the start address of Non-secure region in Flash and its
read/write is through FMC. User can read register SCU_FNSADDR (Flash Non-secure
address register, address 0x4002F028) to get current NSCBA setting. For example, set
NSCBA value as 0x40000.

 In the [Secure Flash ROM Size], set Non-secure region start address as [0x040000].

Memory Map Security
Attribution Configuration

Aug 31, 2018 Page 13 of 41 Rev 1.00

AN0019

3.1.3 SRAM

SRAM security attribution is set by the register SCU_SRAMNSSET (SRAM secure attribution
set register, address 0x4002F024). For example, set the first 32 Kbytes SRAM as Secure
(address 0x20000000-0x20007FFF) and set the following 64 Kbytes SRAM as Non-secure
(address 0x30008000-0x30017FFF).

 In the [Secure SRAM Size], select [32KB] from the pull-down menu.

SRAM Security Attribution
Configuration

Flash Security Attribution
Configuration

Aug 31, 2018 Page 14 of 41 Rev 1.00

AN0019

3.1.4 Peripheral

Peripheral security attributions are set by the register SCU_PNSSET0-SCU_PNSSET6
(Peripheral secure attribution set register 0-6, address 0x4002F000-0x4002F018) and
SCU_IONSSET (I/O secure attribution set register, address 0x4002F01C). For example, set
the UART1 security attribution as Non-secure.

 In the [Peripheral Secure Attribution Configuration]  [UART1], select [Non-secure] from

the pull-down menu.

3.1.5 Peripheral Interrupt

Peripheral interrupt security attributions are set by the register NVIC_ITNS0-NVIC_ITNS3
(Interrupt Target Non-secure Register 0-3, address 0xE000_E380-0xE000_E38C). For
example, set UART1 interrupt security attribution as Non-secure.

In the [Assign Interrupt to Secure or Non-secure Vector]  [UART1] select [Non-Secure]

from the pull-down menu.

Peripheral Interrupt
Security Attribution
Configuration

Peripheral Security
Attribution Configuration

Aug 31, 2018 Page 15 of 41 Rev 1.00

AN0019

3.2 Secure and Non-secure Project Setting

This section describes Secure and Non-secure project setting. Flash and SRAM address has
to be set according to the security attribution configuration. Secure project needs to create
Non-secure callable function library if Secure code provides Non-secure callable function.
Non-secure project needs to add Non-secure callable function library if Non-secure code
wants to use Non-secure callable function.

3.2.1 Secure Code

Device setting:

1. Open Secure project in the Keil® MDK environment.

2. Click [Project] on the menu bar and click [Options for Target] to open the configuration

window.

3. Under the [Device] page, select Nuvoton  NuMicro Family  M2351  M2351KIAAEES.

Device setting

Aug 31, 2018 Page 16 of 41 Rev 1.00

AN0019

Software model setting:

1. In the [Options for Target] window, click [Target] page.

2. In the [Code Generation] section, select [Software Model] as [Secure Mode].

Flash, SRAM and Non-secure callable entry function location setting:

1. In the [Options for Target] window, click [Linker] page.

2. In the [Scatter File] section, click [Edit] button to edit [secure.sct]. Set Secure Flash start

address as 0x00000000 and size as 0x10000. Set Secure SRAM start address as

0x20000000 and size as 0x800. Locate Non-secure callable entry function in

Veneer$$CMSE region. Set the Non-secure callable region start address is 0x3F000 and

size is 0x800.

Secure code creates Non-secure callable function library:

 In the same [Linker] page, under the [Misc controls] section, create the output library

nsclib_Secure.o by adding command [--import-cmse-lib-out ..\lib\nsclib_Secure.o].

The Secure code adds “cmse_nonsecure_entry” attribute for Non-secure callable function.

attribute__((cmse_nonsecure_entry))

Software model setting

Aug 31, 2018 Page 17 of 41 Rev 1.00

AN0019

Flash, SRAM and Non-secure callable entry function location setting

Secure code creates Non-secure callable function library

Flash and SRAM location setting

Aug 31, 2018 Page 18 of 41 Rev 1.00

AN0019

Debugger setting:

1. In the [Options for Target] window, click [Debug] to open [Debug] page.

2. Use [Nuvoton Nu-Link Debugger] as debugger.

3. Click [Settings] button to open [Debug] window.

4. Select [Chip Type] as [M2351] from the pull-down menu.

Debugger setting

Non-secure callable entry function
location setting

Aug 31, 2018 Page 19 of 41 Rev 1.00

AN0019

Debug Secure and Non-secure code setting:

1. In the same [Debug] page, under the [Initialization File] section, click [Edit] button to edit

[debug.ini]

2. Add command to load Non-secure image at the start of the debug session, to debug both

Secure and Non-secure code.

Debug Secure and Non-secure code setting

Debug Secure and Non-secure code setting

Aug 31, 2018 Page 20 of 41 Rev 1.00

AN0019

Download Secure and Non-secure code setting:

1. In the [Option for Target] window, click [Utilities] page.

2. In the [Configure Flash Menu Command] section [Init File] option.

3. Click [Edit] button to edit [nonsecure.ini] to download both Secure and Non-secure code.

Download Secure and Non-secure code setting

Download Secure and Non-secure code setting

Aug 31, 2018 Page 21 of 41 Rev 1.00

AN0019

3.2.2 Non-secure Code

Software model setting:

1. Open Non-secure project in the Keil® MDK environment.

2. Click [Project] on the menu bar and click [Options for Target] to open the configuration

window.

3. In the [Options for Target] window, click [Target] page.

4. In the [Code Generation] section, select [Software Model] as [Non-secure Mode].

Flash and SRAM location setting:

1. In the [Options for Target] window, click [Linker] page.

2. In the [Scatter File] section, click [Edit] button to edit [nonsecure.sct]. Set Non-secure

code Flash start address as 0x10040000 and size as 0x10000. Set Non-secure SRAM

start address as 0x30008000 and size as 0x10000.

Software model setting

Aug 31, 2018 Page 22 of 41 Rev 1.00

AN0019

Flash and SRAM location setting

Flash and SRAM location setting

Aug 31, 2018 Page 23 of 41 Rev 1.00

AN0019

Add Non-secure callable function library:

Add [nsclib_Secure.o] which is created by Secure project to use Non-secure callable function.

3.3 Secure and Non-secure State Switch

Secure and Non-secure code can run after compiling and downloading Secure and Non-
secure project. The state switches between Secure and Non-secure state that can be
observed by debug session. This section demonstrates how Secure code calls Non-secure
function and Non-secure code calls Secure function by debug session.

3.3.1 Execute from Secure Code to Non-secure Code

Start Secure code debug session:

Click [Debug] on the menu bar and click [Start Debug Session].

Add Non-secure callable
function library

Start Secure code debug session

Aug 31, 2018 Page 24 of 41 Rev 1.00

AN0019

Secure code:

System executes Secure code (main.c) at first.

Add Non-secure code symbol:

Click [View] on the menu bar and click [Symbols Window] to open the configuration window.
In [Nonsecure] project [main_ns.c] file, find the [main] function. Right click and select [Show
code for ‘main()’] to add Non-secure code symbol.

Add Non-secure code symbol

Secure code

Aug 31, 2018 Page 25 of 41 Rev 1.00

AN0019

Non-secure code:

Then system can execute Non-secure code (main_ns.c).

3.3.2 Non-secure Code Calls Secure Function

This section describes Non-secure code calls Secure function to show how Non-secure state
switches to Secure state. When Non-secure code calls Non-secure callable function, it calls
related Non-secure callable entry function in Non-secure callable region. The first instruction
of Non-secure callable entry function is SG instruction. SG instruction is the entry point for
Non-secure state switching to Secure state. Then Non-secure callable function can be called
by Non-secure code.

If Non-secure code (main_ns.c) wants to call Non-secure callable function (Secure_LED_On)
it calls VenTTLSecure_LED_On at first.

Secure code:

Non-secure code

Secure function

Aug 31, 2018 Page 26 of 41 Rev 1.00

AN0019

Secure code:

Non-secure code:

Non-secure code calls Secure function

Non-secure code calls
Non-secure callable entry function

Aug 31, 2018 Page 27 of 41 Rev 1.00

AN0019

VenTTLSecure_LED_On calls Non-secure callable entry function (Secure_LED_On) in
Non-secure callable region. System can switch from Secure state to Non-secure state
through the first SG instruction and execute the Non-secure callable function
(Secure_LED_On).

Secure code:

In the end of Secure function (Secure_LED_On), system switches from Secure state to Non-
secure state through a BXNS instruction.

Non-secure callable entry function
calls Secure function

Non-secure callable entry function

Aug 31, 2018 Page 28 of 41 Rev 1.00

AN0019

Secure code:

Non-secure code:

In the end of Secure code and
switch back to Non-secure state

Aug 31, 2018 Page 29 of 41 Rev 1.00

AN0019

3.3.3 Secure Code Calls Non-secure Function

Secure code (main.c) calls Non-secure function (NonSecure_LED_On) by Non-secure
function pointer (pfNonSecure_LED_On). The BLXNS instruction is the entry point system
switches state from Secure state to Non-secure state.

Secure code:

Non-secure code:

Secure code calls Non-secure function

Aug 31, 2018 Page 30 of 41 Rev 1.00

AN0019

Non-secure function (NonSecure_LED_On) is complete and returns to Secure state.

Non-secure code:

Secure code:

Non-secure function complete and
return to Secure state

Aug 31, 2018 Page 31 of 41 Rev 1.00

AN0019

4 Sample Code

The TrustZone® sample code shows security attribution configuration and the state switch
between Secure and Non-secure state. Figure 4-1 shows the SAU memory map which is
defined by SAU. SAU defines the Non-secure region where data does not need protection
and anyone can read or modify it, including Non-secure Flash, SRAM, peripheral and Non-
secure callable Flash. Other regions not defined by SAU is Secure and data in the Secure
region cannot be read and modified by everyone. SAU defined security memory map and
IDAU memory map are compared with each other to determine the security attribution result.
In the sample code, SAU defined attribution has the higher secure priority. The security
attribution result is based on SAU configuration.

Figure 4-1 TrustZone® Sample Code SAU Memory Map

Non-secure Peripheral

Non-secure SRAM

Non-secure Flash

Non-secure callable Flash

 Non-secure callable Flash

0x30017FFF
0x30008000

0x1007FFFF
0x10040000

0x00807FFF
0x00807E00

System

System control and debug

External Peripheral

External SRAM

Non-secure Peripheral

Secure Peripheral

Non-secure SRAM

Non-secure callable SRAM

Non-secure Flash

Non-secure callable Flash

Address IDAU Memory Map SAU Memory Map

0x5FFFFFFF

0x50000000

0x40000000

0x30000000

0x20000000

0x10000000

0x00000000

0x0003F7FF
0x0003F000

Secure Flash
0x00000800
0x00000000

Aug 31, 2018 Page 32 of 41 Rev 1.00

AN0019

The TrustZone® sample code also shows Secure and Non-secure state switch. Secure and
Non-secure codes configure their Systick independently. System enters Systick interrupt
periodically. In Secure code, system toggles PB.1. In the Non-secure callable function,
system toggles PB.0. In the Non-secure code, system toggles PC.1. When Secure code calls
Non-secure function, system toggles PC.0. State switch between Secure and Non-secure
state can be observed from GPIO status (high or low) change. Table 4-1 lists the GPIO and
its related code state.

GPIO Code State

PB.0 Secure code calls Non-secure function.

PB.1 Secure code.

PC.0 Non-secure code calls Secure function.

PC.1 Non-secure code.

Table 4-1 TrustZone® Sample Code GPIO and Related Code State

4.1 Security Attribution Configuration

This section demonstrates how to configure resources security attribution by programing
including memory map, Flash, SRAM, peripherals and peripheral interrupts.

4.1.1 Memory Map

Memory map security attribution is set by SAU. For example, plan the address 0x3F000-
0x3F7FF for Non-secure callable function and set security attribution as Secure and Non-
secure callable.

/* Enable SAU */

SAU->CTRL = SAU_CTRL_ENABLE_Msk;

/* Set SAU region 3 */

SAU->RNR = 3;

/* Set SAU region 0 start address */

SAU->RBAR = (0x0003F000 & SAU_RLAR_BADDR_Msk);

/* Set SAU region 0 end address and attribute */

SAU->RLAR = (0x0003F7FF & SAU_RLAR_LADDR_Msk) | SAU_RLAR_NSC_Msk | SAU_RLAR_ENABLE_Msk;

Aug 31, 2018 Page 33 of 41 Rev 1.00

AN0019

4.1.2 Flash

Flash security attribution is set by the register NSCBA (Non-secure base address register,
address 0x00200800). NSCBA sets the start address of Non-secure region in Flash and its
read/write is through FMC. User can read the register SCU_FNSADDR (Flash Non-secure
address register, address 0x4002F028) to get current NSCBA setting. For example, set the
NSCBA value as 0x40000.

/* Non-secure code start address setup */

void FMC_NSBA_Setup(void)

{

 /* Check if NSBA value with current active NSBA */

 if(SCU->FNSADDR != 0x40000)

 {

 /* Unlock Protected Register */

 SYS_UnlockReg();

 /* Enable ISP and configuration update */

 FMC_DISABLE_ISP();

FMC_ENABLE_CFG_UPDATE();

 /* Setting NSBA when it is empty */

 if(FMC_Read(0x200800) == 0xfffffffful)

 {

FMC_Write(0x200800, 0x40000);

 /* Force Chip Reset to valid new setting */

 SYS->IPRST0 = SYS_IPRST0_CHIPRST_Msk;

 }

 while(1);

 }

}

4.1.3 SRAM

SRAM security attribution is set by the register SCU_SRAMNSSET (SRAM secure attribution
set register, address 0x4002F024). For example, set the address 0x0-0xBFFF as Secure and
set the address 0xC000-0x17FFF as Non-secure.

Aug 31, 2018 Page 34 of 41 Rev 1.00

AN0019

/* SRAM Secure Attribution Configuration */

SCU->SRAMNSSET = 0x00000FC0;

4.1.4 Peripheral

Peripheral security attributions are set by the register SCU_PNSSET0-SCU_PNSSET6
(Peripheral secure attribution set register 0-6, address 0x4002F000-0x4002F018) and
SCU_IONSSET (IO secure attribution set register, address 0x4002F01C). For example, set
the UART1 security attribution as Non-secure.

/* Set UART0 Peripheral Secure Attribution */

SCU->PNSSET[3] |= SCU_PNSSET3_UART1_Msk;

Or set UART1 security attribution as Non-secure by SCU_SET_PNSSET().

/* Set UART0 Peripheral Secure Attribution */

SCU_SET_PNSSET(UART1_Attr);

4.1.5 Peripheral Interrupt

Peripheral interrupt security attributions are set by the register NVIC_ITNS0-NVIC_ITNS3
(Interrupt Target Non-secure Register 0-3, address 0xE000_E380-0xE000_E38C). For
example, set the UART1 interrupt security attribution as Non-secure.

/* Set UART1 Interrupt Vector Secure Attribution */

NVIC->ITNS[1] |= BIT5;

Or set the UART1 interrupt security attribution as Non-secure by NVIC_SetTargetState().

/* Set UART1 Interrupt Vector Secure Attribution Configuration */

NVIC_SetTargetState(UART1_IRQn);

4.2 Secure and Non-secure State Switch

The system starts up in Secure code by default. This section demonstrates how Secure code
is executed to Non-secure code. The Non-secure code can call Secure function and the
Secure code can call Non-secure function, too.

4.2.1 Execute from Secure Code to Non-secure Code

Secure code:

Before executing Non-secure code, user needs to set Non-secure vector table address and
Non-secure Main Stack Pointer, use a Non-secure function pointer and assign the value to
Non-secure code Reset_Handler function. Use cmse_nsfptr_create intrinsic to clear LSB of
Non-secure function address, then use Non-secure function pointer to call Non-secure
function directly.

Aug 31, 2018 Page 35 of 41 Rev 1.00

AN0019

/* typedef for NonSecure callback functions */

typedef __attribute__((cmse_nonsecure_call)) int32_t (*NonSecure_funcptr)(uint32_t);

void Nonsecure_Init(void)

{

 /* Non-secure function pointer */

 NonSecure_funcptr fp;

 /* SCB_NS.VTOR points to the Non-secure vector table base address. */

 SCB_NS->VTOR = 0x10040000;

 /* 1st Entry in the vector table is the Non-secure Main Stack Pointer. */

 __TZ_set_MSP_NS(*((uint32_t *)SCB_NS->VTOR));

 /* 2nd entry contains the address of the Reset_Handler function */

 fp = ((NonSecure_funcptr)(*(((uint32_t *)SCB_NS->VTOR) + 1)));

 /* Clear the LSB of the function address to indicate the function-call

 will cause a state switch from Secure to Non-secure */

 fp = cmse_nsfptr_create(fp);

/* Non-secure function call */

fp(0);

}

4.2.2 Non-secure Code Calls Secure Function

Secure code:

Secure code adds “cmse_nonsecure_entry” attribute for Non-secure callable function
(Secure_LED_On).

/* Secure function and Non-secure code callable */

attribute__((cmse_nonsecure_entry))

int32_t Secure_LED_On(uint32_t num)

{

 printf("Secure LED ON call by secure\n");

 PB0 = 0;

 return num * 3;

}

Aug 31, 2018 Page 36 of 41 Rev 1.00

AN0019

Non-secure code:

Then Non-secure code can call Non-secure callable function (Secure_LED_On) which is
provided by Secure code.

/* NonSecure Callable Functions from Secure Region */

extern int32_t Secure_LED_On(uint32_t num);

/* Non-secure code call Secure function */

void SysTick_Handler(void)

{

Secure_LED_On(6u);

}

4.2.3 Secure Code Calls Non-secure Function

Non-secure code:

Secure code can call Non-secure function directly. The following is a Non-secure function.

/* NonSecure functions used for callback */

int32_t NonSecure_LED_On(uint32_t num)

{

 printf("Nonsecure LED On call by Secure\n");

 PC0_NS = 0;

 return 0;

}

Call Non-secure callable function and return Non-secure function address to Secure code
when executing Non-secure code.

/* NonSecure Callable Functions from Secure Region */

extern int32_t Secure_LED_On_callback(void *callback);

void main(void)

{

 /* register NonSecure callback in Secure application */

 Secure_LED_On_callback(&NonSecure_LED_On);

}

Aug 31, 2018 Page 37 of 41 Rev 1.00

AN0019

Secure code:

Secure code stores the Non-secure function address in Non-secure function pointer and clear
the LSB of Non-secure function address by cmse_nsfptr_create intrinsic, then Secure code
can call Non-secure function directly by Non-secure function pointer.

/* typedef for NonSecure callback functions */

typedef __attribute__((cmse_nonsecure_call)) int32_t (*NonSecure_funcptr)(uint32_t);

/* NonSecure callback function */

NonSecure_funcptr pfNonSecure_LED_On = (NonSecure_funcptr)NULL;

/* Secure function for NonSecure callbacks exported to NonSecure application */

__attribute__((cmse_nonsecure_entry))

int32_t Secure_LED_On_callback(NonSecure_funcptr *callback)

{

 pfNonSecure_LED_On = (NonSecure_funcptr)cmse_nsfptr_create(callback);

 return 0;

}

/* Secure code call Non-secure function */

void SysTick_Handler(void)

{

pfNonSecure_LED_On(1u);

}

4.2.4 Non-secure Security Attribution Check

Secure code provides Non-secure callable function for Non-secure code to call Secure
function. It also provides parameter and return value. Secure function can check the memory
security by cmse_check_adress_range intrinsic before reading or modifying any data to avoid
the important data is stolen or broken.

Non-secure code:

If “ticks” variable value is greater than 600 then call Non-secure callable function to clear
“ticks” variable value.

/* NonSecure Callable Functions from Secure Region */

extern void ResetTick(uint32_t* buf)

;

/* Non-secure code call Secure function */

void SysTick_Handler(void)

{

Aug 31, 2018 Page 38 of 41 Rev 1.00

AN0019

 static uint32_t ticks;

if(tick>600)

ResetTick(&ticks);

 else

ticks++;

}

Secure code:

This Non-secure callable function is used to clear the specified variable value to 0. Check if
the variable value is located in the Non-secure region before it is modified. Clear the variable
value to 0 if the variable address is in the Non-secure region and add 1 to the counter.

/* Secure function and Non-secure code callable */

uint32_t g_u32Counter = 0;

__attribute__((cmse_nonsecure_entry))

void ResetTick(uint32_t* buf)

{

 /* Check buffer space from Non-secure */

 buf = cmse_check_address_range(buf, 1, CMSE_NONSECURE);

 if(buf==NULL) return;

 /* Set buffer value to 0 */

 *buf = 0;

 /* Record Non-secure Systick reset counter value */

 g_u32Counter++;

}

Aug 31, 2018 Page 39 of 41 Rev 1.00

AN0019

5 Conclusion

In the IoT (Internet of Things) application, devices not only can communication with each
other through the internet but can be attacked through the Internet. The security is an
important topic to protect device and information. The Arm® TrustZone® technology partitions
hardware into Secure and Non-secure world. The device itself is reliable and Secure code is
executed in Secure world. The information from Internet is unreliable such that Non-secure
code is executed in Non-secure word.

Through IDAU which defines fixed memory map security attribution with the user configurable
SAU, all of microcontroller resources can be configured to Secure and Non-secure including
memory map, Flash, SRAM, peripherals and peripheral interrupts. After planning the security
attribution of these resources, the Non-secure world can only access Non-secure memories
and resources, while the Secure world can access all memories and resources, including
secure and Non-secure.

The security attribution can be set by programming or a configuration wizard interface in the
Keil® MDK development environment. The code can switch between Secure and Non-secure
state. An authentication method can be added to Secure code to certify if the Internet
information is trusted so as to provide authority for Non-secure code to access Secure
resources. With TrustZone® hardware architecture and software authentication, the IoT
application can be implemented safely and flexibly.

Aug 31, 2018 Page 40 of 41 Rev 1.00

AN0019

Revision History

Date Revision Description

2018.08.31 1.00 1. Initially issued.

Aug 31, 2018 Page 41 of 41 Rev 1.00

AN0019

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any
malfunction or failure of which may cause loss of human life, bodily injury or severe property damage.
Such applications are deemed, “Insecure Usage”.

 Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy
control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or
safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and
other applications intended to support or sustain life.

All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claims to
Nuvoton as a result of customer’s Insecure Usage, customer shall indemnify the damages and liabilities
thus incurred by Nuvoton.

	1 Overview
	2 TrustZone® Introduction
	2.1 Memory Map Security Attribution Configuration
	2.1.1 IDAU
	2.1.2 SAU

	2.2 Secure and Non-secure State Switch
	2.2.1 Non-secure Code Calls Secure Function
	2.2.2 Secure Code Calls Non-secure Function
	2.2.3 Non-secure Security Attribution Check

	3 Keil® MDK Development Environment
	3.1 Security Attribution Configuration
	3.1.1 Memory Map
	3.1.2 Flash
	3.1.3 SRAM
	3.1.4 Peripheral
	3.1.5 Peripheral Interrupt

	3.2 Secure and Non-secure Project Setting
	3.2.1 Secure Code
	3.2.2 Non-secure Code

	3.3 Secure and Non-secure State Switch
	3.3.1 Execute from Secure Code to Non-secure Code
	3.3.2 Non-secure Code Calls Secure Function
	3.3.3 Secure Code Calls Non-secure Function

	4 Sample Code
	4.1 Security Attribution Configuration
	4.1.1 Memory Map
	4.1.2 Flash
	4.1.3 SRAM
	4.1.4 Peripheral
	4.1.5 Peripheral Interrupt

	4.2 Secure and Non-secure State Switch
	4.2.1 Execute from Secure Code to Non-secure Code
	4.2.2 Non-secure Code Calls Secure Function
	4.2.3 Secure Code Calls Non-secure Function
	4.2.4 Non-secure Security Attribution Check

	5 Conclusion

