

NuMaker NUC980 IIoT User Manual

The information described in this document is the exclusive intellectual property of Nuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.

Nuvoton is providing this document only for reference purposes of NUC980 microprocessor based system design. Nuvoton assumes no responsibility for errors or omissions.

All data and specifications are subject to change without notice.

For additional information or questions, please contact: Nuvoton Technology Corporation.

www.nuvoton.com

Table of	Contents
----------	----------

1 OVE	RVIEW	3
2 INTI	RODUCTION TO NUMAKER NUC980 IIOT BOARD	4
2.1 Nu	Maker NUC980 IIoT Board Features	4
3 NUC	980 LINUX BSP INTRODUCTION	5
4 QUI	CK STARTING TO USE NUMAKER NUC980 IIOT	6
5 NUV	VRITER TOOL	15
5.1 SP	I NAND Mode	
5.1.1	Operation Steps	
5.1.2	Boot from SPI Flash	20
6 U-B	ΟΟΤ	22
0 0 0		
7 DET	AILS OF NUMAKER NUC980 IIOT BOARD	23
71 Nu	Maker NUCO20 Not Poord Front View	22
7.1 NU	Maker NUC980 IIOT Board - Front view	
7.2 Nu	Maker NUC980 IIoT Board — Rear View	
7.3 Nu	Maker NUC980 IIoT Board PCB Placement	
7.4 Nu	Maker NUC980 IIoT Schematics	
7.4.1	NuMaker NUC980 IIoT – Block Diagram Schematic	
7.4.2	NuMaker NUC980 IIoT – GPIO List Schematic	
7.4.3	NuMaker NUC980 IIoT – Power Schematic	
7.4.4	NuMaker NUC980 IIoT – NUC980DK Schematic	
7.4.5	NuMaker NUC980 IIoT – Power Filter Schematic	
7.4.6	NuMaker NUC980 IIoT – Configure Schematic	
7.4.7	NuMaker NUC980 IIoT – NUC123ZD4AN0 Schematic	
7.4.8	NuMaker NUC980 IIoT — Memory Schematic	
7.4.9	NuMaker NUC980 IIoT - RMII_PE Schematic	
7.4.10	NuMaker NUC980 IIoT – Audio Codec Schematic	40
7.4.11	NuMaker NUC980 IIoT — SD1/eMMC1 Schematic	41
7.4.12	NuMaker NUC980 IIoT — Arduino Uno Interface Schematic	
7.4.13	NuMaker NUC980 IIoT – USB Schematic	43
7.4.14	NuMaker NUC980 IIoT — Expand EBI Interface Schematic	
8 RF\	ISION HISTORY	

1 OVERVIEW

This document introduces the specification and features of NuMaker NUC980 IIoT board. Providing a quick guide for developers to realize what the NUC980 with Linux contains and get started quickly for the operation process of NuWriter and U-boot.

Figure 1-1 NuMaker NUC980 IIoT Board

2 INTRODUCTION TO NUMAKER NUC980 IIOT BOARD

The NuMaker NUC980 IIoT is a development board based on an ARM® ARM926EJ-S microprocessor NUC980DK61Y which has very rich peripherals to help users easily to design-in their products or application systems.

The NuMaker NUC980 IIoT board uses NUC980DK61Y microprocessor run up to 300 MHz with built-in 64MB DDR2 memory, 16 KB I-cache, 16 KB D-cache and MMU, 16 KB embedded SRAM and 16.5 KB IBR (Internal Boot ROM) for system booting from USB, SPI NAND flash and SD/eMMC, All functions of the NUC980DK61Y are placed on the board, including peripheral interfaces such as memory (SPI NAND Flash, eMMC, SD), UART, Audio controller(NAU8822L), 10/100 Mb Ethernet MAC controller, high speed USB(device, HOST), JTAG and EBI, furthermore, the board provides Arduino Uno compatible interface for expansion. Users can use it to develop and verify applications to emulate the real behavior.

2.1 NuMaker NUC980 IIoT Board Features

- NUC980DK61Y: LQFP128 pin MCP package with DDR2 (64 MB), which can run up to 300MHz operating speed
- SPI Flash: Quad mode system booting or data storage, use W25N01GVZE1G SPI-NAND (128 MB)
- SD1/eMMC1: User SD/eMMC memory card for system booting, data storage or SDIO (Wi-Fi) device
- UART0: Connected to Virtual COM port for system development, debug message output
- Arduino Uno compatible interface connectors (NU1, NU2, NU3, NU4 and NU5)
- JTAG interface provided for software development
- RJ45 port with Ethernet 10/100Mbps MAC (Ethernet0)
- EBI interface with pin header
- Microphone input and Earphone/Speaker output with 24-bit stereo audio codec (NAU8822L) for I2S interfaces
- 3 sets of LED for status indication
- 2 sets of user-configurable push button keys
- USB port-0 that can be used as Device/HOST and USB port-1 that can be used as HOST Supports pen drives, keyboards, mouse and printers
- Provides over-voltage and over current protection
- 3.3V I/O power, 1.8V Memory power and 1.2V core pow

3 NUC980 LINUX BSP INTRODUCTION

NUC980 Linux BSP provides cross compilation tools based on Linux operating system. We have tested this BSP in different x86 Linux distributions, including Ubuntu, CentOS, and Debian...etc. Because there are so many distributions out there with different system configuration, sometimes it is necessary to change system setting or manually install some missing component in order to cross compile.

Linux development environment could either be native, or install in a virtual machine execute on top of other operating system.

For more detailed on how to download and install VMware virtual machine, please refer to "**NUC980** Linux 3.10 BSP User Manual EN" in the "Documents" directory.

4 QUICK STARTING TO USE NUMAKER NUC980 IIOT

This chapter will help users easily to use NuMaker NUC980 IIoT step by step.

1. Select USB ISP mode and enable the UART_0 message

NuMaker NUC980 IIoT provides jumpers (SW1) to select boot-up conditions. The jumpers (SW1) ON to select USB ISP mode

Switch	Status	Function	GPIO pin of NUC980
SW1.2/SW1.1	ON/ON	Boot from USB	GPG1/GPG0
SW1.2/SW1.1	ON/OFF	Boot from SD/eMMC	GPG1/GPG0
SW1.2/SW1.1	OFF/ ON	Boot from NAND Flash	GPG1/GPG0
SW1.2/SW1.1	OFF/OFF	Boot from QSPI0 Flash	GPG1/GPG0

NuMaker NUC980 IIoT development board defaults to enable the UART_0 message. If you need to disable the NuMaker NUC980 IIoT development board UART_0 message, you must remove the resistor R25.

Switch	Status	Function	GPIO pin of NUC980
R24	ON/OFF	Watch Dog	GPG3
R25	ON/OFF	UART0 Message	GPG5
R27/R26	ON/ON	SPI NAND, 1 bit	GPG9/GPG8
R27/R26	ON/OFF	SPI NAND, 4 bit	GPG9/GPG8
R27/R26	OFF/ ON	SPI NOR, 4 bit	GPG9/GPG8
R27/R26	OFF/OFF	SPI NOR, 1 bit	GPG9/GPG8

2. Insert the 5V adapter (CON1)

3. Plug in the USB cable (CON9)

The burning tool requires a NuWriter driver to be installed on PC first. Please follow the steps below to install the driver.

Please visit nuvoTon's NuMicro[™] website (<u>http://www.nuvoton.com/hq/products/microprocessors/arm9-mpus/Software/?</u> <u>locale=en&resourcePage=Y</u>) to download the "NUC980 NON-OS BSP". Run the "**WinUSB4NuVCOM.exe**" before the USB cable is plugged in. The "**WinUSB4NuVCOM.exe**" can be found in the "Tool" directory. Power on the NUC980 Series MPU EVB and plug the USB cable into PC, the Windows shall find a new device and then request to install its driver. Simply follow the installation and optional steps to install USB Driver, included VCOM driver.

Click "Next". The software installation will ask you how to install the driver.

Select "setup path" to specific location (Advanced), and then click "**Next**". The installation software will ask you the option.

弱 Setup - WinUSB driver(Nuvoton VCOM)	
Select Start Menu Folder Where should Setup place the program's shortcuts?	
Setup will create the program's shortcuts in the followin	ng Start Menu folder.
To continue, click Next. If you would like to select a different fold	der, click Browse.
WinUSB driver(Nuvoton VCOM)	Browse
< Back	Next > Cancel

Click "Next". As follows.

B Setup - WinUSB driver(Nuvoton VCOM)	
Select Start Menu Folder Where should Setup place the program's shortcuts?	
Setup will create the program's shortcuts in the following	Start Menu folder.
To continue, click Next. If you would like to select a different folde WinUSB driver(Nuvoton VCOM)	er, click Browse.
< Back N	ext > Cancel

Click "Next". As follows.

التي Setup - WinUSB driver(Nuvoton VCOM)	
Ready to Install Setup is now ready to begin installing WinUSB driver(Nuvoton VCOM) on your computer.	
Click Install to continue with the installation, or click Back if you want to review or change any settings.	
Destination location: C:\Program Files\WinUSB4NuVCOM	*
Start Menu folder: WinUSB driver(Nuvoton VCOM)	
۲	.
< <u>B</u> ack Install (Cancel

Click "Install". As follows.

Device Dri	ver Installation Wizar	d Completing the De Installation Wizard	vice Driver I	
		The drivers were successfully in:	stalled on this computer.	
		Driver Name	Status	
		Vuvoton NuVCOMDevic	Device Updated	
		< <u>B</u> ack	Finish Cancel	

Click "Finish" to finish install driver. As follows.

If the installation is successful, a virtual COM port named "WinUSB driver (Nuvoton VCOM)" can be found by using "Device Manager" to check the ports devices.

4. Plug in the USB cable (CON4)

The USB serial port function is used to print some messages on PC API, such as SecureCRT, through the standard UART protocol to help user to debug program.

Please download USB CDC driver "TomatoUSB CDC driver" from Nuvoton's official webpage, executing the "NuvotonCDC_V1.00.001_Setup.exe" to install the driver:

http://www.nuvoton.com/hq/products/microprocessors/arm9-mpus/Software/? locale=en&resourcePage=Y

Click "Next".

🖡 NuvotonCDC V1.00.001 Setup	_		×
Choose Install Location			T T
Choose the folder in which to install NuvotonCDC V1.00.001.			-0
Setup will install NuvotonCDC V1.00.001 in the following folder. To click Browse and select another folder. Click Install to start the ins	o install in a di tallation.	fferent f	older,
Destination Folder			
C:\Program Files\Nuvoton\NuvotonCDC\V1.00.001	Bro	wse	
Space required: 2.1MB			
Space available: 92.2GB			
Nuvoton			
< Back	Install	Ca	ncel

Click "Install".

Click "Finish" to finish install driver.

If the installation is successful, the PC will recognize the board as a USB composite device when the USB micro-B port (CON4) connect the PC HOST.

Check the COM port number from device manager.

|--|

Use SecureCRT, HyperTerminal, Putty or TeraTerm to open the serial COM port, and set the baud rate to 115200.

After pressing the reset button (SW1), the chip will reprogram application and print out debug message.

5 NUWRITER TOOL

NuWriter can download images to NAND flash while NUC980 is in USB ISP mode. This chapter will guide users to use this tool boot-up from SPI NAND flash

The NUC980 Series MPU EVB provides jumpers to select boot-up conditions. To select USB ISP mode, the statuses of SW1.1 and SW1.2 are ON. Other boot selects can refer to the following table:

Power-on setting	SW1.2	SW1.1
USB ISP	ON	ON
Boot from eMMC/SD	ON	OFF
Boot from NAND	OFF	ON
Boot from SPI	OFF	OFF

Power-on NUC980 Series MPU EVB, and then open the burning tool, "**NuWriter.exe**", on the PC. Note that the tool cannot work if the "**WinUSB4NuVCOM**" driver is not found.

First, double click "**NuWriter.exe**" on PC. NuWriter will start and a window appears. Select target chip to NUC980 series and select DDR parameter to DDR initial files.

Nuvoton NuWriter v1.01	×
NUC980 series	~
Select DDR parameter : NUC980DK61Y.ini	~
📲 Quit 🖒 Contir 🗹 Auto to countinue	ue(4)

After select DDR parameter, click "Continue" to use NuWriter tool.

Figure 5-1 NuWriter - Set Chip

NuWriter provides 7 types to be downloaded images including DDR/SRAM, SPI, NAND, eMMC/SD, SPI NAND, PACK and Mass Production. This chapter will guide users to download images to SPI NAND flash. If users want to choose others types to download images. Please refer to "**NUC980 NuWriter User Manual**" in the "Documents" directory.

5.1 SPI NAND Mode

This mode can write a new image to SPI NAND flash and specify the type of the image. These types can be recognized by uboot or Linux. The Image type is set Loader, Data, Environment or Pack.

5.1.1 **Operation Steps**

According to the figure below, follow the below steps to add image to SPI NAND flash:

- 1. Select the "**SPI NAND**" type, which will not list the pre-burned images in the SPI NAND Flash ROM.
- 2. Fill in the image information :
 - Image Name : Browse the image file
 - Image Type Select the image type (only one type can be selected)
 - Image execute address: Enter image execute address. Only is Loader Type is vaild.
 - Image start offset: Enter image start offset.
- 3. Click "Program".
- 4. Waiting for finishing progress bar.
- 5. After "Program" the image, click the "Verify" button to read back the image data to make sure the burning status.

DOSE type :	SPI NAND) \	DDR Init	: <u>N</u> U	JC980DK61Y.ini-V1.0 Device Connected Re-Conn
Name env 980uimage u-boot u-boot-spl	Type ENV DATA DATA uBOOT	Start 0x80000 0x200000 0x100000 0x0	End 0xa0000 0x830cb0 0x126ed4 0xce3	Block 0x1 0x32 0x2 0x4	Parameters Image Name : env 2 Image Type : O Data O Environment O Loader O Pack Image execute address : 0x 200 Image start offset : 0x 80000
< Alignment : C	×20000		_	>	SPINAND flash parameter: User Defined 3 5 ▲ Program ▲ Verify ▲ Read ☑ Erase 4 ▲ EXIT

Figure 5-2 SPI NAND – New Image

5.1.1.1 SPI NAND – u-boot spl

For the Linux system, Loader Type is used to boot the Linux kernel. To compile NUC980 U-Boot to get Main U-Boot and SPL U-Boot. The SPL U-Boot is a small binary, it will move Main U-Boot into DDR execution. The SPL U-Boot is only for NAND/SPI NAND boot. The default link address of SPL U-Boot is 0x200. The detailed introduction of Loader Type format, please refer to "NUC980 NuWriter User Manual" in the "Documents" directory.

:019/01/30-V12 hoose type :	SPI NAND	1	✓ DDR Ir	nit: NU	JC980DK61Y.ini-V1.0 Device Connected 🔶 Re-Connect
SPI NAND					
Name u-boot-spl	Туре uBOOT	Start 0x0	End Oxce3	Block 0x4	Image Name : u-boot-spl image Image Type : O Data Environment Image Loader Pack Image execute address : 0x 200 1 1 1 Image start offset : 0x 0 1

Figure 5-3 SPI NAND – u-boot spl

5.1.1.2 SPI NAND – u-boot

For the Linux system, Loader Type is used to boot the Linux kernel. To compile NUC980 U-Boot to get Main U-Boot and SPL U-Boot. The Main U-Boot is a fully featured version of U-Boot. In this case, The Main U-Boot need to set the address at 0x100000 address.

Nuvoton Nu	Writer v1.1	1			- 🗆 X
UVO	То				
019/01/30-V12	2				
ioose type :	SPI NANE) \	DDR Init	: N	JC980DK61Y.ini-V1.0 Device Connected Re-Connect
SPI NAND			_	1	,
	-				Parameters
Name	Type	Start	End	Block	Image Name : u-boot 🗃
u-boot-spl		0x100000	0x126ed4 0xce3	0x2 0v4	Image Tupe :
a boot opi	00001	0.00	0.000	0.11	
					Image execute address : 0x 200
					Image start offset : 0x 100000
					SPINAND flash parameter: User Defined
					👱 Program 🦄 Verify 🚖 Read 🕼 Erase
<				>	
Alignment : 0)x20000				
					📲 EXIT

Figure 5-4 SPI NAND – u-boot

5.1.1.3 SPI NAND – 980uimage

Mainly the image of data type into SPI NAND flash in the specified address. Depending on the value of image start offset (aligned on block size boundary, block size is based on SPI NAND specifications). If image start offset equal then 0x200000, image of data into SPI NAND flash in the 0x200000 address, it can help user to configure SPI NAND flash.

ose type :	SPI NANE) \	DDR Init	: NU	IC980DK61Y.ini-V1.0 Device Connected 🔶 Re-Con
PI NAND —					
Name 980uimage u-boot u-boot-spl	Type DATA DATA uBOOT	Start 0x200000 0x100000 0x0	End 0x830cb0 0x126ed4 0xce3	Block 0x32 0x2 0x4	Image Name : 980uimage Image Type : Data Environment Loader Pack Image execute address : 0x 200
					SPINAND flash parameter: User Defined
<				>	

Figure 5-5 SPI NAND – 980uimage

5.1.1.4 SPI NAND – environment

nuvoTon

Loader Type is set uboot environment variables, the image of environment type into SPI NAND flash in the specified address. U-Boot reads environment variables file to set the environment. If image start offset equal then 0x80000, image of data into SPI NAND flash in the 0x80000 address, it can help user to configure SPI NAND flash.

ose type :	SPI NANE) \	/ DDR Init	: , N L	JC980DK61Y.ini-V1.0 Device Connected 🔶 Re-Con
PI NAND Name env 980uimage u-boot u-boot-spl	Type ENV DATA DATA uBOOT	Start 0x80000 0x200000 0x100000 0x0	End 0xa0000 0x830cb0 0x126ed4 0xce3	Block 0x1 0x32 0x2 0x4	Parameters Image Name : env Image Type : O Data O Environment O Loader O Pack Image execute address : 0x 200 Image start offset : 0x 80000 SPINAND flash parameter: U Iser Defined
< Alignment : 0)x20000			>	👱 Program 🦄 Verify 🔔 Read 😰 Erase

Figure 5-6 SPI NAND – environment

5.1.2 Boot from SPI Flash

The NUC980 Series MPU EVB provides jumpers to select boot-up conditions. According to the following switches, users can boot from SPI Flash and watch the successful boot message from UART_0.

SW	Description (Status and Function)	GPIO pin of NUC980
SW1.2/ SW1.1	Boot Source Selection OFF/OFF = Boot from SPI Flash.	GPG1/GPG0
R24	Watchdog Timer (WDT) Enabled/Disabled Selection ON = After power-on, WDT Disabled. OFF = after power-on WDT Enabled	GPG3
R25	UART 0 Debug Message Output ON/OFF Selection ON = UART 0 debug message output ON.	GPG5
R27, R26	SPI Flash type and data width selection ON/ON = SPI-NAND Flash with 1-bit mode. ON/OFF = SPI-NAND Flash with 4-bit mode. OFF/ON = SPI-NOR Flash with 4-bit mode. OFF/OFF = SPI-NOR Flash with 1-bit mode.	GPG9/ GPG8

NUC980 IBR 20180813 Boot from SPI-NAND DDR-OK finish SPI download SPL load main U-Boot from SPI NAND Flash! (Feb 20 2019 09:12:29) U-Boot 2016.11-g8127c47 (Feb 20 2019 - 09:12:26 +0800) CPU: NUC980 Board: NUC980 DRAM: 64 MiB SF: Detected W25N01GV with page size 2 KiB, erase size 128 KiB, total 128 MiB In: serial Out: serial Err: serial Net: Net Initialization Skipped No ethernet found. Hit any key to stop autoboot: 0 SF: Detected W25N01GV with page size 2 KiB, erase size 128 KiB, total 128 MiB device 0 offset 0x200000, size 0x800000 SF: 8388608 bytes @ 0x200000 Read: OK ## Booting kernel from Legacy Image at 00007fc0 ... Image Name: Linux-4.4.115+
Image Type: ARM Linux Kernel Image (uncompressed) Data Size: 6491128 Bytes = 6.2 MiB Load Address: 00008000 Entry Point: 00008000 Verifying Checksum ... OK XIP Kernel Image ... OK

Figure 5-7 Apllication – LED as an example, Message - Boot from SPI Flash

For more detailed NuWriter tool, please refer to "NUC980 NuWriter User Manual" in the "Documents" directory.

6 **U-BOOT**

The U-Boot utility is a multi-platform, open-source, universal boot-loader with comprehensive support for loading and managing boot images, such as the Linux kernel. It supports the following features:

- Network download: TFTP, BOOTP, DHCP
- Serial download: s-record, binary (via Kermit)
- Flash management: erase, read, update, yaffs2
- Flash types: SPI flash, NAND flash
- Memory utilities: dump, compare, copy, write
- Interactive shell: commands with scripting features

NUC980 U-Boot version is v2016.11. It is downloaded from http://www.denx.de/wiki/U-Boot/SourceCode

For detailed NuMaker NUC980 IIoT board introduction, please refer to "NUC980 U-Boot v2016_11 User Manual" in the "Documents" directory.

7 DETAILS OF NUMAKER NUC980 IIOT BOARD

7.1 NuMaker NUC980 IIoT Board - Front View

Figure 2-1 shows the main components from the front view of NuMaker NUC980 IIoT board

• +5V In (CON1): Power adaptor 5V input

Power Model	CON4 USB Port (Micro-B)	CON9 USB Port (Micro-B)	CON1
Model 1	Connect to PC	-	-
Model 2	-	Connect to PC	-
Model 3	-	-	VDD5V Input

• Power indication LEDs (LED1, LED2):

LED	Color	Descriptions
LED1	Red	The system power will be terminated and LED1 lighting when the input voltage is over 5.7V or the current is over 1.7A.
LED2	Green	Power normal state.

- RTC Battery (CON2): External Battery supply for RTC 3.3V powered
 - CON2.1: Positive (+)
 - CON2.2: Negative (-)
- System Reset (SW2): System will be reset if the SW2 button is pressed
- Virtual COM (CON4, U6): NUC123ZD4AN0 microcontroller (U6), USB micro-B connector (CON4) to PC, for debug message output
- User indication LEDs (LED3, LED4, LED5):

LED	Color	GPIO pin of NUC980
LED3	Yellow	PB8
LED4	Green	PG15
LED5	Red	PB13

- SPI NAND Flash (U7, U8): Use Winbond W25N01GVZE1G 128MB (U8) for system booting, only one (U7 or U8) SPI Flash can be used, support dual / quad mode
- JTAG interface and UART0 (CON3)

Connector	GPIO pin of NUC980	Function
CON3.1	-	VDD33
CON3.2	GPG15	nTRST
CON3.3	GPG14	TDI

CON3.4	GPG13	TMS
CON3.5	GPG12	ТСК
CON3.6	GPG11	TDO
CON3.7	-	nRESET
CON3.8	GPF12	UART0_TXD
CON3.9	GPF11	UART0_RXD
CON3.10	-	VSS

• User Key SWs (K1 and K2)

Кеу	GPIO pin of NUC980
K1	GPE10
K2	GPE12

• Arduino UNO compatible interface (NU1, NU2, NU3, NU4 and NU5)

Connector	GPIO pin of NUN980	Function
NU1.1	-	-
NU1.2	-	VDD33
NU1.3	-	nRESET
NU1.4	-	VDD33
NU1.5	-	VIN
NU1.6	-	VSS
NU1.7	-	VSS
NU1.8	-	VIN

Connector	GPIO pin of NUN980	Function
NU2.1	GPF7	PWM2
NU2.2	GPF8	PWM3
NU2.3	GPG11	SPI1_SS
NU2.4	GPG14	SPI1_DO
NU2.5	GPG13	SPI1_DI
NU2.6	GPG12	SPI1_CLK
NU2.7	-	VSS
NU2.8	-	ADC VDD33

NU2.9	GPB7	I2C2_SDA
NU2.10	GPB5	I2C2_SCL

Connector	GPIO pin of NUN980	Function
NU3.1	GPB1	UART9_TXD
NU3.2	GPB3	UART9_RXD
NU3.3	GPB2	ADC_AIN[2]
NU3.4	GPB0	ADC_AIN[0]
NU3.5	GPB6	UART7_TXD
NU3.6	GPB4	UART7_RXD

Connector	GPIO pin of NUN980	Function
NU4.1	GPF9	UART1_RXD
NU4.2	GPF10	UART1_TXD
NU4.3	GPD12	UART4_TXD
NU4.4	GPD13	UART4_RXD
NU4.5	GPD15	I2C3_SDA
NU4.6	GPD14	I2C3_SCL
NU4.7	GPG6	UART5_RXD
NU4.8	GPG7	UART5_TXD

Connector	GPIO pin of NUN980	Function
NU5.1	GPD11	SPI0_DI
NU5.2	-	VDD33
NU5.3	GPD9	SPI0_CLK
NU5.4	GPD10	SPI0_DO
NU5.5	-	-
NU5.6	-	VSS
NU5.7	GPD8	SPI0_SS
NU5.8	-	-

 EBI port for us 	er use (CON11)
-------------------------------------	----------------

Connector	GPIO pin of NUN980	Function
CON11.1	GPC0	EBI_DATA0
CON11.2	GPC1	EBI_DATA1
CON11.3	GPC2	EBI_DATA2
CON11.4	GPC3	EBI_DATA3
CON11.5	GPC4	EBI_DATA4
CON11.6	GPC5	EBI_DATA5
CON11.7	GPC6	EBI_DATA6
CON11.8	GPC7	EBI_DATA7
CON11.9	GPC8	EBI_DATA8
CON11.10	GPC9	EBI_DATA9
CON11.11	GPC10	EBI_DATA10
CON11.12	GPC11	EBI_DATA11
CON11.13	GPC12	EBI_DATA12
CON11.14	GPC13	EBI_DATA13
CON11.15	GPC14	EBI_DATA14
CON11.16	GPC15	EBI_DATA15
CON11.17	GPA7	EBI_nWE
CON11.18	GPA8	EBI_nRE
CON11.19	GPA9	EBI_nCS0
CON11.20	GPA12	EBI_ADDR8
CON11.21	GPA11	EBI_ADDR9
CON11.22	GPA10	EBI_ADDR10
CON11.23	GPB0	ADC_AIN[0]
CON11.24	GPB2	ADC_AIN[2]
CON11.25	GPB4	ADC_AIN[4]

CON11.26	GPB6	ADC_AIN[6]
CON11.27	-	VDD33
CON11.28	-	VSS

- SD1/eMMC1 (CON8): Use Micro SD/eMMC memory card for system booting, data storage or SDIO (Wi-Fi) device
- Power on setting (SW1, R24~R27)

Switch	Status	Function	GPIO pin of NUC980
SW1.2/SW1.1	ON/ON	Boot from USB	GPG1/GPG0
SW1.2/SW1.1	ON/OFF	Boot from SD/eMMC	GPG1/GPG0
SW1.2/SW1.1	OFF/ ON	Boot from NAND Flash	GPG1/GPG0
SW1.2/SW1.1	OFF/OFF	Boot from QSPI0 Flash	GPG1/GPG0

Resistance	Status	Function	GPIO pin of NUC980
R24	Solder R	Watchdog Timer OFF	GPG3
R24	Remove	Watchdog Timer ON	GPG3

Resistance	Status	Function	GPIO pin of NUC980
R25	Solder R	UART0 debug message ON	GPG5
R25	Remove	UART0 debug message OFF	GPG5

Resistance	Status	Function	GPIO pin of NUC980
R27/R26	Solder R/ Solder R	SPI-NAND Flash boot with 1-bit mode	GPG9/GPG8
R27/R26	Solder R/ Remove	SPI-NAND Flash boot with 4-bit mode	GPG9/GPG8
R27/R26	Remove/ Solder R	SPI-NOR Flash boot with 4-bit mode	GPG9/GPG8
R27/R26	Remove/ Remove	SPI-NOR Flash boot with 1-bit mode	GPG9/GPG8

- Audio CODEC (U11, M1, CON6, CON7, CN1): nuvoTon NAU8822L (U11) connects to NUC980 using I2S interface
 - Microphone (M1): Through the NAU8822L chip sound input

Speaker output (CON6): Through the NAU8822L chip sound output

Connector	Pin Name	Functions
CON6.1	SPKOUT_R	NAU8822L BTL Speaker Positive Output or Right high current output.
CON6.2	SPKOUT_L	NAU8822L BTL Speaker Negative Output or Left high current output.

- Earphone output (CON7): Through the NAU8822L chip sound output
- USB0 Device/HOST (CON9, JP1): USB0 Device/HOST Micro-B connector, By JP1 status or defined by the ID pin of the USB cable
- USB1 HOST (CON10): USB1 for USB HOST with type-A connector
- Ethernet0_PE (CON5, U9): For Ethernet port, the NUC980 support RMII interface which add one Ethernet PHY IP101GR to RJ45 connector with LED indicator
- SOC CPU: NUC980DK61Y (U5)

Figure 7-1 NuMaker NUC980 IIoT Board (Front View)

7.2 NuMaker NUC980 IIoT Board – Rear View

Figure 2-2 shows the main components from the rear view of NuMaker NUC980 IIoT board

 VCOM ICE interface: ICE Controller NUC123ZD4AN0 (U6), USB connector (CON3) to PC Host

Connector	Pin Name	Functions
CON3.1	VDD33	DC 3.3V
CON3.2	ICE_DAT	Serial Wired Debugger Data
CON3.3	ICE_CLK	Serial Wired Debugger Clock
CON3.4	RST#	VCOM Chip Reset, Active Low.
CON3.5	VSS	Power Ground

- Audio CODEC (U11, M1, CON6, CON7, CN1): nuvoTon NAU8822L (U11) connects to NUC980 using I2S interface
 - Auxiliary Input and Output(CN1)

Connector	Pin Name	Functions
CN1.1	AUXOUT1	Mono Mixed Output / Line Output
CN1.2	AUXOUT2	Line Output
CN1.3	AUXINR	Right Auxiliary Input
CN1.4	AUXINL	Left Auxiliary Input

• MicroSD Card Slot: T-Flash slot (CON8)

Figure 7-2 NuMaker NUC980 IIoT Board (Rear View)

7.3 NuMaker NUC980 IIoT Board PCB Placement

The following figure shows NuMaker NUC980 IIoT board PCB placement.

Figure 7-3 NuMaker NUC980 IIoT Board Front PCB Placement

Figure 7-4 NuMaker NUC980 IIoT Board Back PCB Placement

7.4 NuMaker NUC980 IIoT Schematics

7.4.1 NuMaker NUC980 IIoT – Block Diagram Schematic

7.4.2 NuMaker NUC980 IIoT - GPIO List Schematic

PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION	PIN	FUNCTION
PAO	I2C0_SDA	PBO	ADC_AIN[0]	PCO	EBI_DATA0	PD2	QSPI0_SSO	PEO	RMIIO_RXERR	PF'0	SD1_CMD eMMC1_CMD	PGO	CFG[0]
PA1	I2C0_SCL	PB1	ADC_AIN[1]	PC1	EBI_DATA1	PD3	OSBI0_CTK	PE1	RMIIO_CRSDV	PF1	SD1_CLK eMMC1_CLK	PG1	CFG[1]
PA2	123_LRCK	PB2	ADC AIN[2]	PC2	EBI_DATA2	PD4	QSPI0_DO	PE2	RMIIO_RXD1	PF2	SD1_DATA0 eMMC1_DATA0	PG3	CFG[3]
PA3	128_BCLK	PB3	ADC_AIN[3]	PC3	EBI_DATA3	PDS	QSPI0_DI	PE3	RMIIO_RXDO	PF'3	SD1_DATA1 eMMC1_DATA1	PGS	CFG[5]
PA4	123_D1	-	12C1 SCL	PC4	EBI_DATA4	PD6	QSPI0_D2	PE4	RMIIO_REFCLK	PF4	SD1_DATA2 eMMC1_DATA2	PG6	UART5_RXD PMM1.0
PAS	128_DO	PB4	ADC_AIN[4] UART7_RXD	PC5	EBI_DATA5	PD7	QSPI0_D3	PES	RMIIO_TXEN	PF'5	SD1_DATA3 eMMC1_DATA3	867	UART5_TXD
PA6	123_MCLK	PBS	I2C2_SCL	PC 6	EBI_DATA6	PD8	SPIO_SSO	PE6	RMIIO_TXD1	PF'6	SD1_nCD	_	PWM11
PA7	EBI_nWE	PR6	12C1_SDA	PC7	EBI_DATA7	PD9	SPI0_CLK	PE7	RMIIO_TXDO	PE7	PWM02	PG8	CFG[8]
PAB	EBI_nRE		UART7_TXD	PC8	EBI_DATAS	PD10	SPIO_DO	PEB	RMIIO_MDIO	PF'8	PWM0 3	PG9	CFG[9] JTAGO_TDO
PA9	EBI_nCSO	PB7	12C2_SDA ADC_AIN[7]	PC 9	EBI_DATA9	PD11	SRIG_IAD	PE9	RMII0_MDC	PF'9	UART1_RXD PWM10	PG11	3911_330 9WM10
PA10	EBI_ADDR10 (LCD_R3)	PBS	LED_Y	PC10	EBI_DATA10		UART6_RXD	PE10	Keyl	PF10	UART1_TXD PWM11	PG12	JTAGO_TCK SPI1_CLK
PA11	EBI_ADDR9 (LCD_RESET)	PB13	LED_R	PC11	EBI_DATA11	PD12	UART4_TXD PWM00	PE11	USBO_VBUSVLD	PF11	UARTO_RXD	861.2	PWM11 JTAG0_TM8
PA12	EBI_ADDR8 (LCD_BL)			PC12	EBI_DATA12	PD13	UART4_RXD	PE12	Key2	PF12	UARTO_TXD		PWM12 UART5 RXD
				PC13	EBI_DATA13	PD14	1202 BCL					PG14	JTAGO_TDI
				PC14	EBI_DATA14	PD15	PWM02						PWM13 UARTS TXD
				PC15	EBI_DATA15		РМИО З					0615	JTAGO_NTRST
													nen [_] e
									nu	νοΤο	n Technol	logy	Corp.
	THe NK-980IOT												
									A G	PIO L	ist		Rev 1.0
									Date: Thursda	y, January	17, 2019 Sh	eet 2	of 14

7.4.3 NuMaker NUC980 IIoT – Power Schematic

7.4.4 NuMaker NUC980 IIoT - NUC980DK Schematic

7.4.6 NuMaker NUC980 IIoT - Configure Schematic

7.4.7 NuMaker NUC980 IIoT - NUC123ZD4AN0 Schematic

7.4.8 NuMaker NUC980 IIoT - Memory Schematic

7.4.9 NuMaker NUC980 IIoT - RMII_PE Schematic

7.4.11 NuMaker NUC980 IIoT - SD1/eMMC1 Schematic

7.4.12 NuMaker NUC980 IIoT - Arduino Uno Interface Schematic

7.4.14 NuMaker NUC980 IIoT - Expand EBI Interface Schematic

8 **REVISION HISTORY**

Date	Revision	Description	
2020.05.20	1.00	Initial issed	

Important Notice

Nuvoton Products are neither intended nor warranted for usage in systems or equipment, any malfunction or failure of which may cause loss of human life, bodily injury or severe property damage. Such applications are deemed, "Insecure Usage".

Insecure usage includes, but is not limited to: equipment for surgical implementation, atomic energy control instruments, airplane or spaceship instruments, the control or operation of dynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all types of safety devices, and other applications intended to support or sustain life.

All Insecure Usage shall be made at customer's risk, and in the event that third parties lay claims to Nuvoton as a result of customer's Insecure Usage, customer shall indemnify the damages and liabilities thus incurred by Nuvoton.

Please note that all data and specifications are subject to change without notice.

All the trademarks of products and companies mentioned in this datasheet belong to their respective owners.